WO2011096331A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2011096331A1
WO2011096331A1 PCT/JP2011/051701 JP2011051701W WO2011096331A1 WO 2011096331 A1 WO2011096331 A1 WO 2011096331A1 JP 2011051701 W JP2011051701 W JP 2011051701W WO 2011096331 A1 WO2011096331 A1 WO 2011096331A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing composition
concentration
electrolyte
acid
polishing
Prior art date
Application number
PCT/JP2011/051701
Other languages
French (fr)
Japanese (ja)
Inventor
利香 田中
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to CN201180008038.8A priority Critical patent/CN102741370B/en
Priority to JP2011552749A priority patent/JP5132820B2/en
Publication of WO2011096331A1 publication Critical patent/WO2011096331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a polishing composition used for polishing silicon oxide (SiO x (0 ⁇ x ⁇ 2)).
  • ceria slurry has been used as effective for polishing SiO 2 such as glass because a high polishing rate is obtained.
  • polishing composition containing colloidal silica 12.5 (mass%) colloidal silica, 0.49 (mass%) potassium hydroxide, and 0.25 (mass%) side chain type polyoxy
  • HLB value 12
  • the side chain type polyoxyethylene-modified silicone oil has a value of 12 HLB (Hydrophile-Lipophile Balance).
  • the present invention has been made to solve such problems, and an object thereof is to provide a polishing composition capable of increasing the polishing rate of SiO x (0 ⁇ x ⁇ 2).
  • the polishing composition contains colloidal silica and an additive.
  • the additive consists of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
  • the additive consists of any of oxoacids, oxoacid salts, hydrochloric acid, hydrochlorides, acidic or neutral amino acids, and acidic or neutral amino acid salts.
  • the additive is made of sulfuric acid, pyrosulfuric acid, phosphoric acid, pyrophosphoric acid, or a salt thereof, and the concentration of the additive is 2% by weight or less with respect to the entire polishing composition.
  • the concentration of the additive is 1% by weight or less with respect to the entire polishing composition.
  • a polishing composition according to an embodiment of the present invention includes colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution. As a result, SiO x is polished in a state where the concentration of colloidal silica is substantially increased.
  • polishing rate of SiO x can be increased.
  • the polishing composition COMP according to the embodiment of the present invention includes colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
  • the polishing composition COMP is, LSI SiO 2 as an interlayer insulating film used in (Large Scale Integrated circuit), SiO 2 used in a hard disk, and quartz, SiO x (0 of SiO 2 or the like as a glass ⁇ x ⁇ 2) is the target of polishing.
  • the polishing composition COMP is particularly used for finish polishing.
  • the additive consists of any of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, amino acid, amino acid salt, and alcohol.
  • the oxo acid is composed of an inorganic oxo acid or an organic oxo acid.
  • the inorganic oxo acid is composed of any one of sulfuric acid, phosphoric acid, thiosulfuric acid, nitric acid, pyrophosphoric acid, carbonic acid, persulfuric acid, polyphosphoric acid, and pyrosulfuric acid.
  • the organic oxo acid is composed of any of oxalic acid, phthalic acid, benzoic acid, malonic acid, methylsulfonic acid, lactic acid, maleic acid, tartaric acid, citric acid, glycolic acid, polyacrylic acid (PAA), and benzenesulfonic acid.
  • the oxo acid salt is a salt of the above-mentioned inorganic oxo acid and any one of alkali metal, alkaline earth metal and ammonia, or the above-mentioned organic oxo acid and a salt of any of alkali metal, alkaline earth metal and ammonia.
  • the alkali metal consists of potassium and sodium.
  • the alkaline earth metal is composed of calcium, magnesium, barium and the like.
  • the salt of inorganic oxo acid is composed of, for example, ammonium sulfate, potassium sulfate, potassium pyrosulfate, ammonium hydrogen carbonate, potassium carbonate, ammonium persulfate, dipotassium hydrogen phosphate, and ammonium thiosulfate.
  • amino acid consists of any of aspartic acid, asparagine, and alanine.
  • Aspartic acid is an acidic amino acid, and asparagine and alanine are neutral amino acids.
  • the amino acid salt is a salt of the above-described amino acid and any one of an alkali metal, an alkaline earth metal, and ammonia.
  • specific examples of the alkali metal and the alkaline earth metal are the same as the specific examples described above.
  • Alcohol consists of any of butanol, glycerin, propanol and ethanol.
  • Hydrochloric acid salt consists of a salt of hydrochloric acid and one of alkali metal, alkaline earth metal and ammonia. Also in this case, specific examples of the alkali metal and the alkaline earth metal are the same as the specific examples described above.
  • the polishing composition COMP may contain a pH adjuster.
  • a pH adjuster consists of what is normally used for adjustment of pH, such as ammonia, potassium hydroxide, and sodium hydroxide.
  • Polishing composition COMP is produced by appropriately mixing colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution and adding water.
  • the polishing composition COMP is prepared by sequentially mixing colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution into water.
  • means for mixing these components means commonly used in the technical field of polishing compositions such as a homogenizer and ultrasonic waves are used.
  • polishing composition COMP contains a pH adjuster
  • polishing composition COMP is produced by further mixing a pH adjuster by the method mentioned above.
  • the evaluation method of polishing conditions and polishing rate of the SiO x using the polishing composition COMP is as follows.
  • polishing device device name: ECOMET3, manufactured by BUEHLER
  • polishing composition COMP at a rate of 16 ml / min to a polishing pad (trade name: Supreme RN-H, manufactured by Nitta Haas Co., Ltd.)
  • Polishing is performed for 60 seconds while rotating the polishing platen at a rotational speed of 250 rpm while applying a pressure of 3.5 (psi) to a TEOS wafer chip of 2.5 ⁇ 3.0 cm and rotating the carrier at a rotational speed of 60 rpm.
  • the polishing rate is represented by the thickness ( ⁇ / min) of each film removed by polishing per unit time.
  • the thickness of the film removed by polishing was calculated by subtracting the thickness of the film after polishing from the thickness of the film before polishing.
  • the thickness of the film was measured using Nanospec / AFT5100 manufactured by NANOMETRICS.
  • FIG. 1 is a graph showing the relationship between the polishing rate and the average particle size of colloidal silica.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the average particle diameter of colloidal silica.
  • the relationship between the polishing rate and the average particle diameter of colloidal silica shown in FIG. 1 is that the concentration of colloidal silica is 22 (% by weight) with respect to the entire polishing composition COMP, the additive is ammonium sulfate, and ammonium sulfate. Is the relationship between the polishing rate and the average particle size of the colloidal silica when the concentration of is 0.5 (% by weight) with respect to the entire polishing composition COMP.
  • an object to be polished is a TEOS film (SiO 2 film) produced by a plasma CVD (Chemical Vapor Deposition) method using TEOS (tetraethoxysilane) as a source gas (hereinafter the same).
  • the average particle diameter being X (nm) means that the particle diameter of colloidal silica is mainly distributed in X (nm).
  • the polishing rate is about 1800 ( ⁇ ⁇ ⁇ / min) when the average particle size of colloidal silica is 25.3 (nm), and the average particle size of colloidal silica is 32.8 (nm). ), It is about 1577 ( ⁇ / min).
  • the polishing rate increases rapidly to about 2400 ( ⁇ ⁇ ⁇ / min) when the average particle size of colloidal silica is increased to 55 (nm), and the average particle size of colloidal silica is 80 (nm) and 90 (nm). Even if it becomes larger, it is almost constant.
  • the average particle diameter of the colloidal silica is preferably 55 (nm) or more.
  • FIG. 2 is a graph showing the relationship between the average particle size and polishing rate of colloidal silica and the electrolyte concentration.
  • the vertical axis represents the average particle size and polishing rate of colloidal silica
  • the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP.
  • the relationship between the average particle size and polishing rate of the colloidal silica shown in FIG. 2 and the electrolyte concentration is such that the concentration of the colloidal silica is 5 (% by weight) with respect to the entire polishing composition COMP, and This is the relationship between the average particle size and polishing rate of colloidal silica when the particle size is 80 (nm) and the additive is ammonium sulfate, and the electrolyte concentration.
  • Curve k1 shows the relationship between the polishing rate and the electrolyte concentration
  • curve k2 shows the relationship between the average particle size of the colloidal silica and the electrolyte concentration.
  • the polishing rate increases as the electrolyte concentration increases up to 2 (wt%), and decreases when the electrolyte concentration reaches 3 (wt%) (see curve k1). .
  • the average particle size of colloidal silica maintains a constant value of about 80 (nm) in the range of the electrolyte concentration up to 1 (wt%), and the electrolyte concentration is 2 (wt%) and 3 (wt%). Increases to (see curve k2). Therefore, it is considered that aggregation of colloidal silica occurs at electrolyte concentrations of 2 (wt%) and 3 (wt%).
  • the electrolyte concentration is preferably 2 (% by weight) or less with respect to the entire polishing composition COMP. This is because the polishing rate becomes higher as the electrolyte concentration increases at an electrolyte concentration of 2 (% by weight) or less.
  • the electrolyte concentration is more preferably 1 (% by weight) or less with respect to the entire polishing composition COMP. This is because at an electrolyte concentration of 1 (% by weight) or less, the polishing rate increases as the electrolyte concentration increases, and colloidal silica does not aggregate.
  • FIG. 3 is a graph showing the relationship between the polishing rate and the electrolyte concentration when the concentration of colloidal silica is changed.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP.
  • Curve k3 indicates that the colloidal silica concentration is 5 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the additive is ammonium sulfate. The relationship between a polishing rate and electrolyte concentration is shown.
  • the concentration of colloidal silica is 12.5 (% by weight) with respect to the entire polishing composition COMP, the average particle size of colloidal silica is 80 (nm), and the additive is ammonium sulfate.
  • the relationship between the polishing rate and the electrolyte concentration is shown.
  • curve k5 shows that the colloidal silica concentration is 22 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the additive is ammonium sulfate. The relationship between a polishing rate and electrolyte concentration is shown.
  • the electrolyte concentration was changed within a range of 1 (% by weight) or less shown as a more preferable concentration in FIG.
  • the polishing rate increases with increasing electrolyte concentration at each concentration of colloidal silica. Also, the polishing rate increases with increasing concentration of colloidal silica at each concentration of electrolyte.
  • a polishing rate of 2500 ( ⁇ / min) or higher was obtained at an electrolyte concentration of 1 (wt%) and a colloidal silica concentration of 22 (wt%) (see curves k3 to k5).
  • the polishing rate was found to be higher with increasing concentration of the electrolyte concentration and / or colloidal silica.
  • FIG. 4 is a diagram showing the relationship between the polishing rate and the electrolyte concentration when the electrolyte is changed.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP.
  • Curve k6 shows the relationship between the polishing rate and the electrolyte concentration when hydrochloric acid (HCl) is used as the electrolyte.
  • the curve k7 shows the relationship between the polishing rate and the electrolyte concentration when nitric acid (HNO 3 ) is used as the electrolyte.
  • the curve k8 shows the relationship between the polishing rate and the electrolyte concentration when phosphoric acid (H 3 PO 4 ) is used as the electrolyte. Furthermore, the curve k9 shows the relationship between the polishing rate and the electrolyte concentration when sulfuric acid (H 2 SO 4 ) is used as the electrolyte.
  • the experimental results shown in the curves k6 to k9 are experimental results obtained when the concentrations of HCl, HNO 3 , H 3 PO 4 , and H 2 SO 4 were changed within a range of 1 (% by weight) or less. is there.
  • HCl and H 2 SO 4 can be changed in concentration to 0.0, 0.25, 0.5, and HNO 3 and H 3 PO 4 are 0.0, 0.25, 0.5, 1
  • the concentration was changed to 0.0.
  • the average particle diameter of colloidal silica is 80 nm.
  • the polishing rate increases as the concentration of the electrolyte increases (see curves k6 to k9).
  • the polishing rate is 1968 ⁇ / min or 1916 ⁇ / min, respectively, at a concentration of 0.5 (% by weight) (see curves k6 and k9).
  • the polishing rates are 2036 20 / min and 1925 ⁇ / min, respectively, at a concentration of 1.0 (% by weight) (see curves k7 and k8).
  • FIG. 5 is a diagram showing the relationship between the polishing rate and the electrolyte concentration when the electrolyte salt is changed.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP.
  • Curve k10 shows the relationship between the polishing rate and the electrolyte concentration when potassium sulfate (K 2 SO 4 ) is used as the electrolyte salt.
  • the curve k11 shows the relationship between the polishing rate and the electrolyte concentration when dipotassium hydrogen phosphate (K 2 HPO 4 ) is used as the electrolyte salt.
  • the curve k12 shows the relationship between the polishing rate and the electrolyte concentration when potassium carbonate (K 2 CO 3 ) is used as the electrolyte salt.
  • the experimental results shown in the curves k10 to k12 are experimental results obtained when the concentrations of K 2 SO 4 , K 2 HPO 4 , and K 2 CO 3 are changed within a range of 1 (% by weight) or less. is there.
  • the concentration of K 2 SO 4 can be changed to 0.00, 0.25, 0.50, 0.75, and 1.00
  • K 2 HPO 4 is 0.00, 0.25, 0.
  • the concentration was changed to 50, 0.72, 1.00
  • the concentration of K 2 CO 3 was changed to 0.00, 0.25, 0.50, 0.75, 1.00.
  • the average particle diameter of colloidal silica is 80 nm.
  • the polishing rate increases as the concentration of the electrolyte salt increases (see curves k10 to k12). ).
  • the polishing rate increases when the concentration of the electrolyte or the electrolyte salt is 1.0 (wt%) or less. It turns out that it becomes high with it.
  • FIG. 6 is a diagram showing the relationship between the polishing rate and the type of electrolyte.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the type of electrolyte.
  • the relationship between the polishing rate and the type of electrolyte shown in FIG. 6 is that the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP, and the concentration of colloidal silica is the polishing composition COMP. This is the relationship between the polishing rate and the type of electrolyte when the average particle diameter of colloidal silica is 20 (% by weight) and 80 (nm).
  • the polishing rate is greatly improved by adding an electrolyte. Further, it was found that when any one of phosphoric acid, pyrophosphoric acid, sulfuric acid, hydrochloric acid and ammonium sulfate was used as the electrolyte, the polishing rate was about twice as high as when no electrolyte was added. When ammonium sulfate was used as the electrolyte, a polishing rate of 1993 ( ⁇ / min) was obtained.
  • polishing rate is greatly improved by adding an electrolyte.
  • FIG. 7 is a diagram showing the relationship between the polishing rate and the type of salt.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the type of salt.
  • the relationship between the polishing rate and the type of salt shown in FIG. 7 is that the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP, and the concentration of colloidal silica is the polishing composition COMP.
  • the relationship between the polishing rate and the type of salt when the total is 22 (% by weight), the pH is 9.5, and the average particle size of the colloidal silica is 80 (nm) is shown. The pH was adjusted by adding ammonia.
  • ammonium salt represents ammonium sulfate
  • potassium salt represents potassium sulfate
  • sodium salt represents sodium sulfate
  • the polishing rate is improved by adding any one of ammonium salt, potassium salt and sodium salt.
  • the polishing rate is improved to about 2000 ( ⁇ / min) when either an ammonium salt or a potassium salt is added.
  • FIG. 8 is a graph showing the relationship between the polishing rate, the average particle size of colloidal silica, and pH.
  • the vertical axis represents the polishing rate and the average particle diameter of colloidal silica
  • the horizontal axis represents pH.
  • the relationship between the polishing rate and the average particle diameter of the colloidal silica and the pH shown in FIG. 8 is that the electrolyte is sulfuric acid and the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP.
  • the colloidal silica concentration is 22 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the average particle size of the colloidal silica; It is a relationship with pH.
  • Curve k13 shows the relationship between the polishing rate and pH, and curve k14 shows the relationship between the average particle size of colloidal silica and pH.
  • the polishing rate is higher than 1500 ( ⁇ / min) in the pH range of 0-12.
  • the polishing rate is higher than 2000 ( ⁇ / min) at a pH of 2 or less and a pH of 8 or more (see curve k13).
  • the average particle size of colloidal silica is about 80 (nm) at a pH of 2 or less and a pH of 8 or more, and is larger than 80 (nm) at a pH of 2 to 8 (see curve k14). Therefore, it is considered that aggregation of colloidal silica occurs at a pH of 2 to 8.
  • polishing composition COMP is suitable for polishing SiO 2 regardless of the pH value when not used in a circulating manner.
  • the polishing composition COMP is preferably adjusted to a pH of 2 or less, or a pH of 8 or more. .
  • FIG. 9 is a graph showing the relationship between the polishing rate and the concentration of colloidal silica when the concentration of the electrolyte is changed.
  • the vertical axis represents the polishing rate
  • the horizontal axis represents the concentration of colloidal silica.
  • the relationship between the polishing rate and the concentration of colloidal silica shown in FIG. 9 is the relationship between the polishing rate and the concentration of colloidal silica when the electrolyte is ammonium sulfate and the average particle size of the colloidal silica is 80 (nm). is there.
  • X indicates the relationship between the polishing rate when no electrolyte is added and the concentration of colloidal silica
  • the black circle indicates that the concentration of the electrolyte is 0.25 (% by weight) with respect to the entire polishing composition COMP.
  • the relationship between the polishing rate at a certain time and the concentration of colloidal silica is shown, and the black triangle indicates the polishing rate and the colloidal silica when the electrolyte concentration is 0.50 (wt%) with respect to the entire polishing composition COMP.
  • the black squares indicate the relationship between the polishing rate and the concentration of colloidal silica when the concentration of the electrolyte is 1.00 (% by weight) with respect to the entire polishing composition COMP.
  • the polishing rate increases almost linearly as the concentration of colloidal silica increases to 40 (wt%), and colloidal silica of 40 (wt%) or more. At a constant value (see x).
  • the polishing rate increases almost linearly as the colloidal silica concentration increases to about 20 (% by weight), and at a colloidal silica concentration of 20 (% by weight) or more, It becomes a constant value (see black circle, black triangle and black square).
  • the polishing rate increases rapidly as the colloidal silica concentration approaches 20 (% by weight).
  • polishing rate when the electrolyte is added is almost the same as the polishing rate at the concentration of colloidal silica of 40 (wt%) or more when no electrolyte is added at the concentration of colloidal silica of 20 (wt%) or more. The same.
  • the polishing rate is 40 (wt%) or more when no electrolyte is added. The polishing rate at the colloidal silica concentration is maintained.
  • the SiO 2 is polished in a state where the concentration of colloidal silica in the polishing composition is substantially increased.
  • polishing rate of SiO 2 can be increased.
  • polishing composition COMP Even if the concentration of colloidal silica is halved, almost the same polishing rate can be obtained, so that the concentration of colloidal silica in the polishing composition COMP can be reduced. As a result, even if the polishing composition COMP is finally discarded, it can be environmentally friendly.
  • Table 1 to Table 7 show the components of the polishing compositions and the evaluation results in Examples 1 to 31.
  • Tables 8 to 10 show the components of the polishing compositions and the evaluation results in Comparative Examples 1 to 13.
  • Example 1 The polishing composition COMP1 in Example 1 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP1, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP1. And ammonium sulfate.
  • Polishing composition COMP2 in Example 2 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP2, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP2. And potassium sulfate.
  • Polishing composition COMP3 in Example 3 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP3, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP3. And hydrochloric acid.
  • Example 4 Polishing composition COMP4 in Example 4 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP4, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP4. And glycolic acid.
  • Polishing composition COMP5 in Example 5 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP5, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP5. And potassium pyrosulfate.
  • Polishing composition COMP6 in Example 6 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP6, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP6. And aspartic acid.
  • Polishing composition COMP7 in Example 7 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP7, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP7. And sulfuric acid.
  • Polishing composition COMP8 in Example 8 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP8, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP8. And pyrophosphoric acid.
  • Example 9 Polishing composition COMP9 in Example 9 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP9, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP9. And phosphoric acid.
  • Polishing composition COMP10 in Example 10 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP10, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP10. And nitric acid.
  • Polishing composition COMP11 in Example 11 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP11, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP11. ) Oxalic acid.
  • Polishing composition COMP12 in Example 12 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP12, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP12.
  • PAA polyacrylic acid
  • Polishing composition COMP13 in Example 13 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP13, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP13. Asparagine).
  • Example 14 The polishing composition COMP14 in Example 14 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP14, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP14. ) Phthalic acid.
  • Polishing composition COMP15 in Example 15 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP15, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP15. ) Benzoic acid.
  • Polishing composition COMP16 in Example 16 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP16, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP16. And malonic acid.
  • Polishing composition COMP17 in Example 17 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP17, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP17. And ammonium hydrogen carbonate.
  • Polishing composition COMP18 in Example 18 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP18, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP18. And ammonium persulfate.
  • Example 19 The polishing composition COMP19 in Example 19 was colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP19, and the concentration was 0.5 (wt%) with respect to the entire polishing composition COMP19. And ammonium thiosulfate.
  • Polishing composition COMP20 in Example 20 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP20, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP20. And methyl sulfonic acid.
  • Polishing composition COMP21 in Example 21 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP21, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP21. And polyphosphoric acid.
  • Polishing composition COMP22 in Example 22 has a concentration of 20 (wt%) with respect to the entire polishing composition COMP22, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP22. ) Which is lactic acid.
  • Example 23 The polishing composition COMP23 in Example 23 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP23, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP23. ) Which is alanine.
  • Polishing composition COMP24 in Example 24 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP24, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP24. And maleic acid.
  • Polishing composition COMP25 in Example 25 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP25, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP25. ) And tartaric acid.
  • Polishing composition COMP26 in Example 26 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP26, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP26. ) Citric acid.
  • Polishing composition COMP27 in Example 27 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP27, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP27.
  • Benzenesulfonic acid that is).
  • Polishing composition COMP28 in Example 28 was colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP28, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP28. And butanol.
  • Example 29 The polishing composition COMP29 in Example 29 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP29, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP29. ) And glycerin.
  • Polishing composition COMP30 in Example 30 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP30, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP30. ) Which is propanol.
  • Polishing composition COMP31 in Example 31 is a colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP31, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP31. ) Which is ethanol.
  • Polishing composition COMP_CP1 in the comparative example 1 contains the colloidal silica whose density
  • Polishing composition COMP_CP2 in Comparative Example 2 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP2, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP2. Glucose).
  • Polishing composition COMP_CP3 in Comparative Example 3 has a colloidal silica concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP3, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP3. ) Which is).
  • Polishing composition COMP_CP4 in Comparative Example 4 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP4 and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP4. ) Dextrin.
  • Polishing composition COMP_CP5 in Comparative Example 5 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP5, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP5.
  • PEG polyethylene glycol
  • Polishing composition COMP_CP6 in Comparative Example 6 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP6, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP6.
  • Polishing composition COMP_CP7 in Comparative Example 7 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP7, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP7. And triethanolamine.
  • Polishing composition COMP_CP8 in Comparative Example 8 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP8, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP8.
  • PVP poly (N-vinylpyrrolidone)
  • Polishing composition COMP_CP9 in Comparative Example 9 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP9, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP9.
  • TMAH tetramethylammonium hydroxide
  • Polishing composition COMP_CP10 in Comparative Example 10 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP10, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP10. And ethylamine.
  • Polishing composition COMP_CP11 in Comparative Example 11 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP11, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP11.
  • DABCO (1,4-diazabicyclo [2.2.2.] Octane).
  • Polishing composition COMP_CP12 in Comparative Example 12 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP12, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP12. ) Arginine.
  • Polishing composition COMP_CP13 in Comparative Example 13 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP13, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP13. And piperidine.
  • Polishing compositions COMP1 to COMP31, COMP_CP1 to COMP_CP11, COMP_CP13 in Examples 1 to 31 and Comparative Examples 1 to 11 and 13 were adjusted to a pH of 9.5 using ammonia, and the polishing compositions in Comparative Example 12 were used.
  • COMP_CP12 was adjusted to a pH of 10.1 using ammonia.
  • polishing compositions COMP1 to COMP31 and COMP_CP1 to COMP_CP13 contain ammonia in addition to the components shown in Tables 1 to 10.
  • aspartic acid contained in the polishing composition COMP6 is an acidic amino acid
  • asparagine contained in the polishing composition COMP13 and alanine contained in the polishing composition COMP23 are neutral amino acids, and are used for polishing.
  • Arginine contained in the composition COMP_CP12 is a basic amino acid. And these amino acids have both amines and acids.
  • polishing rate when SiO 2 is polished using the polishing compositions COMP1 to COMP31 is higher than the polishing rate when SiO 2 is polished using the polishing compositions COMP1_CP1 to COMP_CP13.
  • the polishing rate when SiO 2 is polished using the polishing compositions COMP1 to COMP9 is about twice as high as the polishing rate when SiO 2 is polished using the polishing compositions COMP1_CP1 to COMP_CP13. .
  • the polishing rate when using the polishing composition COMP6 containing an electrolyte composed of an acidic amino acid aspartic acid as an additive is higher than the polishing rate when using the polishing composition COMP_CP1.
  • the polishing rate when the polishing composition COMP13 containing an electrolyte composed of asparagine, which is a neutral amino acid, is used as an additive is higher than the polishing rate when the polishing composition COMP_CP1 is used.
  • the polishing rate when the polishing composition COMP23 containing an electrolyte composed of a neutral amino acid alanine as an additive is used is higher than the polishing rate when the polishing composition COMP_CP1 is used.
  • the polishing rate when using the polishing composition COMP_CP12 containing an electrolyte composed of arginine that is a basic amino acid as an additive is lower than the polishing rate when using the polishing composition COMP_CP1.
  • the polishing rate is improved by adding an electrolyte made of an acidic or neutral amino acid, and the polishing rate is lowered by adding an electrolyte made of a basic amino acid.
  • an electrolyte composed of an acidic or neutral amino acid is added as an additive.
  • polishing rate when using the polishing compositions COMP28 to COMP31 containing an electrolyte made of alcohol as an additive is higher than the polishing rate when using the polishing composition COMP_CP1.
  • an electrolyte made of alcohol is added as an additive.
  • polishing rate when using the polishing compositions COMP_CP7 and COMP_CP10 containing an amine electrolyte as an additive is lower than the polishing rate when using the polishing composition COMP_CP1.
  • polishing rate is lowered by adding an electrolyte made of amine.
  • the electrolyte composed of amine is excluded from the additive.
  • Polishing composition COMP1 contains ammonium sulfate, which is a salt of sulfuric acid, as an additive.
  • Polishing composition COMP2 contains potassium sulfate which is a salt of sulfuric acid as an additive.
  • Polishing composition COMP4 contains glycolic acid as an additive.
  • Polishing composition COMP5 contains potassium pyrosulfate, which is a salt of pyrosulfuric acid, as an additive.
  • Polishing composition COMP7 contains a sulfuric acid as an additive.
  • Polishing composition COMP8 contains pyrophosphoric acid as an additive.
  • Polishing composition COMP9 contains phosphoric acid as an additive.
  • Polishing composition COMP10 contains nitric acid as an additive.
  • Polishing composition COMP17 contains ammonium hydrogen carbonate, which is a salt of carbonic acid, as an additive.
  • Polishing composition COMP18 contains ammonium persulfate, which is a salt of persulfuric acid, as an additive.
  • Polishing composition COMP19 contains ammonium thiosulfate, which is a salt of thiosulfuric acid, as an additive.
  • Polishing composition COMP21 contains polyphosphoric acid as an additive.
  • sulfuric acid glycolic acid, pyrosulfuric acid, pyrophosphoric acid, phosphoric acid, nitric acid, carbonic acid, persulfuric acid, thiosulfuric acid and polyphosphoric acid are inorganic oxo acids.
  • polishing compositions COMP1, COMP2, COMP4, COMP5, COMP7 to COMP10, COMP17 to COMP19, COMP21 contain an electrolyte made of an inorganic oxo acid or a salt of an inorganic oxo acid as an additive.
  • polishing composition COMP11 contains oxalic acid as an additive.
  • Polishing composition COMP12 contains the electrolyte which consists of PAA (polyacrylic acid) as an additive.
  • Polishing composition COMP14 contains phthalic acid as an additive.
  • Polishing composition COMP15 contains benzoic acid as an additive.
  • Polishing composition COMP16 contains malonic acid as an additive.
  • Polishing composition COMP20 contains methylsulfonic acid as an additive.
  • Polishing composition COMP22 contains lactic acid as an additive.
  • Polishing composition COMP24 contains maleic acid as an additive.
  • Polishing composition COMP25 contains tartaric acid as an additive.
  • Polishing composition COMP26 contains a citric acid as an additive.
  • Polishing composition COMP27 contains benzenesulfonic acid as an additive.
  • oxalic acid phthalic acid, benzoic acid, malonic acid, methylsulfonic acid, lactic acid, maleic acid, tartaric acid, citric acid, polyacrylic acid and benzenesulfonic acid are organic oxo acids.
  • polishing compositions COMP11, COMP12, COMP14 to COMP16, COMP20, COMP22, COMP24 to COMP27 contain an electrolyte made of an organic oxo acid as an additive.
  • polishing composition COMP3 contains an electrolyte composed of hydrochloric acid as an additive.
  • polishing composition COMP6 contains aspartic acid as an additive.
  • polishing composition COMP13 contains asparagine as an additive.
  • polishing composition COMP23 contains alanine as an additive.
  • aspartic acid, asparagine and alanine are acidic or neutral amino acids.
  • polishing compositions COMP6, COMP13, and COMP23 contain an electrolyte composed of an acidic or neutral amino acid as an additive.
  • polishing composition COMP28 contains butanol as an additive.
  • polishing composition COMP29 contains glycerol as an additive.
  • Polishing composition COMP30 contains propanol as an additive.
  • Polishing composition COMP31 contains ethanol as an additive.
  • butanol, glycerin, propanol and ethanol are alcohols.
  • polishing compositions COMP28 to COMP31 contain an electrolyte made of alcohol as an additive.
  • the polishing compositions COMP1 to COMP31 contain as an additive an electrolyte composed of any of inorganic oxoacids, salts of inorganic oxoacids, organic oxoacids, hydrochloric acid, acidic or medieval amino acids, and alcohols.
  • inorganic oxo acids salts of inorganic oxo acids, organic oxo acids, hydrochloric acid, acidic or medieval amino acids, and alcohols release hydrogen ions in aqueous solution.
  • polishing compositions COMP1 to COMP31 contain an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution as an additive.
  • polishing rate of SiO 2 can be improved by adding an additive made of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
  • Organic oxo acid salts, hydrochlorides, and amino acid salts also release hydrogen ions in aqueous solution.
  • the polishing composition COMP in the embodiment of the present invention comprises an inorganic oxo acid, a salt of an inorganic oxo acid, an organic oxo acid, a salt of an organic oxo acid, hydrochloric acid, a hydrochloride, an acidic or neutral amino acid, an acidic or neutral
  • An electrolyte composed of either a neutral amino acid salt or alcohol may be included as an additive. That is, the polishing composition COMP contains an electrolyte comprising any one of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, acidic or neutral amino acid, acidic or neutral amino acid salt and alcohol as an additive. It only has to be.
  • the polishing composition COMP generally only needs to contain an additive made of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
  • Polishing composition COMP preferably contains, as an additive, an electrolyte composed of any of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, acidic or neutral amino acid, and acidic or neutral amino acid salt.
  • the polishing target of the polishing composition COMP is not limited to SiO 2 , and generally may be SiO x (0 ⁇ x ⁇ 2).
  • the present invention is applicable to a polishing composition for polishing SiO x (0 ⁇ x ⁇ 2).

Abstract

Disclosed is a polishing composition which has a high SiOx (0<x=2) polishing rate. The polishing composition comprises colloidal silica and an additive comprising an electrolyte capable of releasing hydrogen ions in an aqueous solution or a salt of the electrolyte. The electrolyte comprises sulfuric acid, pyrophosphoric acid, phosphoric acid or the like, and the salt of the electrolyte comprises ammonium sulfate or the like.

Description

研磨用組成物Polishing composition
 本発明は、シリコン酸化物(SiO(0<x≦2))の研磨に用いられる研磨用組成物に関するものである。 The present invention relates to a polishing composition used for polishing silicon oxide (SiO x (0 <x ≦ 2)).
 従来、ガラス等のSiOの研磨には、高研磨レートが得られることから、セリアスラリーが有効であるとして使用されてきた。 Conventionally, ceria slurry has been used as effective for polishing SiO 2 such as glass because a high polishing rate is obtained.
 しかし、技術が進歩するに従って、セリアスラリーを用いて研磨すると、表面に生じる傷等の欠陥が許容できなくなり、仕上げ研磨に低欠陥のシリカスラリーが用いられるようになった。特に、循環使用に耐えられるコロイダルシリカが汎用されている。 However, as the technology advances, when polishing with ceria slurry, defects such as scratches generated on the surface become unacceptable, and low-defect silica slurry is used for final polishing. In particular, colloidal silica that can withstand circulation is widely used.
 そして、コロイダルシリカを含む研磨用組成物として、12.5(質量%)のコロイダルシリカと、0.49(質量%)の水酸化カリウムと、0.25(質量%)の側鎖型ポリオキシエチレン変性シリコーンオイル(HLB値=12)とを含む研磨用組成物が知られている(特許文献1)。ここで、側鎖型ポリオキシエチレン変性シリコーンオイルは、12のHLB(Hydrophile-Lipophile Balance:親水親油バランス)値を有する。 And as polishing composition containing colloidal silica, 12.5 (mass%) colloidal silica, 0.49 (mass%) potassium hydroxide, and 0.25 (mass%) side chain type polyoxy A polishing composition containing ethylene-modified silicone oil (HLB value = 12) is known (Patent Document 1). Here, the side chain type polyoxyethylene-modified silicone oil has a value of 12 HLB (Hydrophile-Lipophile Balance).
特開2008-130988号公報JP 2008-130988 A
 しかし、しかし、特許文献1に開示されたコロイダルシリカを含む研磨用組成物を用いてSiOを研磨した場合、研磨レートは、1003(Å/min)であり、研磨レートが低いという問題がある。 However, when SiO 2 is polished using the polishing composition containing colloidal silica disclosed in Patent Document 1, the polishing rate is 1003 (Å / min), and there is a problem that the polishing rate is low. .
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、SiO(0<x≦2)の研磨レートを高くできる研磨用組成物を提供することである。 Accordingly, the present invention has been made to solve such problems, and an object thereof is to provide a polishing composition capable of increasing the polishing rate of SiO x (0 <x ≦ 2).
 この発明によれば、研磨用組成物は、コロイダルシリカと、添加剤とを含む。添加剤は、水溶液中で水素イオンを放出する電解質または電解質の塩からなる。 According to this invention, the polishing composition contains colloidal silica and an additive. The additive consists of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
 好ましくは、添加剤は、オキソ酸、オキソ酸塩、塩酸、塩酸塩、酸性または中性のアミノ酸、および酸性または中性のアミノ酸の塩のいずれかからなる。 Preferably, the additive consists of any of oxoacids, oxoacid salts, hydrochloric acid, hydrochlorides, acidic or neutral amino acids, and acidic or neutral amino acid salts.
 好ましくは、添加剤は、硫酸、ピロ硫酸、リン酸、ピロリン酸、またはこれらの塩からなり、添加剤の濃度は、当該研磨用組成物全体に対して2重量%以下である。 Preferably, the additive is made of sulfuric acid, pyrosulfuric acid, phosphoric acid, pyrophosphoric acid, or a salt thereof, and the concentration of the additive is 2% by weight or less with respect to the entire polishing composition.
 好ましくは、添加剤の濃度は、当該研磨用組成物全体に対して1重量%以下である。 Preferably, the concentration of the additive is 1% by weight or less with respect to the entire polishing composition.
 この発明の実施の形態による研磨用組成物は、コロイダルシリカと、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤とを含む。その結果、コロイダルシリカの濃度が実質的に高くなった状態でSiOが研磨される。 A polishing composition according to an embodiment of the present invention includes colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution. As a result, SiO x is polished in a state where the concentration of colloidal silica is substantially increased.
 従って、SiOの研磨レートを高くできる。 Therefore, the polishing rate of SiO x can be increased.
研磨レートとコロイダルシリカの平均粒径との関係を示す図である。It is a figure which shows the relationship between a polishing rate and the average particle diameter of colloidal silica. コロイダルシリカの平均粒径および研磨レートと、電解質濃度との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of colloidal silica, a polishing rate, and electrolyte concentration. コロイダルシリカの濃度を変えたときの研磨レートと電解質濃度との関係を示す図である。It is a figure which shows the relationship between a polishing rate when the density | concentration of colloidal silica is changed, and electrolyte concentration. 電解質を変えたときの研磨レートと電解質濃度との関係を示す図である。It is a figure which shows the relationship between a polishing rate when electrolyte is changed, and electrolyte concentration. 電解質塩を変えたときの研磨レートと電解質濃度との関係を示す図である。It is a figure which shows the relationship between a polishing rate when electrolyte salt is changed, and electrolyte concentration. 研磨レートと電解質の種類との関係を示す図である。It is a figure which shows the relationship between a polishing rate and the kind of electrolyte. 研磨レートと塩の種類との関係を示す図である。It is a figure which shows the relationship between a polishing rate and the kind of salt. 研磨レートおよびコロイダルシリカの平均粒径と、pHとの関係を示す図である。It is a figure which shows the relationship between a polishing rate and the average particle diameter of colloidal silica, and pH. 電解質の濃度を変えたときの研磨レートとコロイダルシリカの濃度との関係を示す図である。It is a figure which shows the relationship between the polishing rate when the density | concentration of electrolyte is changed, and the density | concentration of colloidal silica.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 この発明の実施の形態による研磨用組成物COMPは、コロイダルシリカと、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤とを含む。 The polishing composition COMP according to the embodiment of the present invention includes colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
 そして、研磨用組成物COMPは、LSI(Large Scale Integrated circuit)に用いられる層間絶縁膜としてのSiO、ハードディスクに用いられるSiO、および石英、ガラスとしてのSiO等のSiO(0<x≦2)を研磨の対象とする。また、研磨用組成物COMPは、特に、仕上げ研磨に用いられるものである。 The polishing composition COMP is, LSI SiO 2 as an interlayer insulating film used in (Large Scale Integrated circuit), SiO 2 used in a hard disk, and quartz, SiO x (0 of SiO 2 or the like as a glass <x ≦ 2) is the target of polishing. The polishing composition COMP is particularly used for finish polishing.
 添加剤は、オキソ酸、オキソ酸塩、塩酸、塩酸塩、アミノ酸、アミノ酸塩、およびアルコールのいずれかからなる。 The additive consists of any of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, amino acid, amino acid salt, and alcohol.
 オキソ酸は、無機オキソ酸または有機オキソ酸からなる。 The oxo acid is composed of an inorganic oxo acid or an organic oxo acid.
 無機オキソ酸は、硫酸、リン酸、チオ硫酸、硝酸、ピロリン酸、炭酸、過硫酸、ポリリン酸、およびピロ硫酸のいずれかからなる。 The inorganic oxo acid is composed of any one of sulfuric acid, phosphoric acid, thiosulfuric acid, nitric acid, pyrophosphoric acid, carbonic acid, persulfuric acid, polyphosphoric acid, and pyrosulfuric acid.
 有機オキソ酸は、シュウ酸、フタル酸、安息香酸、マロン酸、メチルスルホン酸、乳酸、マレイン酸、酒石酸、クエン酸、グリコール酸、ポリアクリル酸(PAA)およびベンゼンスルホン酸のいずれかからなる。 The organic oxo acid is composed of any of oxalic acid, phthalic acid, benzoic acid, malonic acid, methylsulfonic acid, lactic acid, maleic acid, tartaric acid, citric acid, glycolic acid, polyacrylic acid (PAA), and benzenesulfonic acid.
 オキソ酸塩は、上述した無機オキソ酸と、アルカリ金属、アルカリ土類金属およびアンモニアのいずれかとの塩、または上述した有機オキソ酸と、アルカリ金属、アルカリ土類金属およびアンモニアのいずれかとの塩からなる。アルカリ金属は、カリウムおよびナトリウム等からなる。アルカリ土類金属は、カルシウム、マグネシウムおよびバリウム等からなる。 The oxo acid salt is a salt of the above-mentioned inorganic oxo acid and any one of alkali metal, alkaline earth metal and ammonia, or the above-mentioned organic oxo acid and a salt of any of alkali metal, alkaline earth metal and ammonia. Become. The alkali metal consists of potassium and sodium. The alkaline earth metal is composed of calcium, magnesium, barium and the like.
 無機オキソ酸の塩は、例えば、硫酸アンモニウム、硫酸カリウム、ピロ硫酸カリウム、炭酸水素アンモニウム、炭酸カリウム、過硫酸アンモニウム、リン酸水素ニカリウム、およびチオ硫酸アンモニウムのいずれかからなる。 The salt of inorganic oxo acid is composed of, for example, ammonium sulfate, potassium sulfate, potassium pyrosulfate, ammonium hydrogen carbonate, potassium carbonate, ammonium persulfate, dipotassium hydrogen phosphate, and ammonium thiosulfate.
 アミノ酸は、アスパラギン酸、アスパラギン、およびアラニンのいずれかからなる。アスパラギン酸は、酸性のアミノ酸であり、アスパラギンおよびアラニンは、中性のアミノ酸である。 An amino acid consists of any of aspartic acid, asparagine, and alanine. Aspartic acid is an acidic amino acid, and asparagine and alanine are neutral amino acids.
 アミノ酸塩は、上述したアミノ酸と、アルカリ金属、アルカリ土類金属およびアンモニアのいずれかとの塩からなる。この場合、アルカリ金属およびアルカリ土類金属の具体例は、上述した具体例と同じである。 The amino acid salt is a salt of the above-described amino acid and any one of an alkali metal, an alkaline earth metal, and ammonia. In this case, specific examples of the alkali metal and the alkaline earth metal are the same as the specific examples described above.
 アルコールは、ブタノール、グリセリン、プロパノールおよびエタノールのいずれかからなる。 Alcohol consists of any of butanol, glycerin, propanol and ethanol.
 塩酸塩は、塩酸と、アルカリ金属、アルカリ土類金属およびアンモニアのいずれかとの塩からなる。この場合も、アルカリ金属およびアルカリ土類金属の具体例は、上述した具体例と同じである。 Hydrochloric acid salt consists of a salt of hydrochloric acid and one of alkali metal, alkaline earth metal and ammonia. Also in this case, specific examples of the alkali metal and the alkaline earth metal are the same as the specific examples described above.
 なお、研磨用組成物COMPは、pH調整剤を含んでいてもよい。pH調整剤は、アンモニア、水酸化カリウムおよび水酸化ナトリウム等のpHの調整に通常用いられるものからなる。 The polishing composition COMP may contain a pH adjuster. A pH adjuster consists of what is normally used for adjustment of pH, such as ammonia, potassium hydroxide, and sodium hydroxide.
 研磨用組成物COMPは、コロイダルシリカと、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤とを適宜混合して水を加えることによって作製される。また、研磨用組成物COMPは、コロイダルシリカと、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤とを、順次、水に混合することによって作製される。そして、これらの成分を混合する手段としては、ホモジナイザー、および超音波等、研磨用組成物の技術分野において常用される手段が用いられる。 Polishing composition COMP is produced by appropriately mixing colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution and adding water. The polishing composition COMP is prepared by sequentially mixing colloidal silica and an additive composed of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution into water. As means for mixing these components, means commonly used in the technical field of polishing compositions such as a homogenizer and ultrasonic waves are used.
 なお、研磨用組成物COMPがpH調整剤を含む場合、研磨用組成物COMPは、上述した方法によってpH調整剤を更に混合して作製される。 In addition, when polishing composition COMP contains a pH adjuster, polishing composition COMP is produced by further mixing a pH adjuster by the method mentioned above.
 そして、研磨用組成物COMPを用いたSiOの研磨条件および研磨レートの評価方法は、次のとおりである。 The evaluation method of polishing conditions and polishing rate of the SiO x using the polishing composition COMP is as follows.
 研磨装置(装置名:ECOMET3、BUEHLER社製)を用い、研磨パッド(商品名:SupremeRN-H、ニッタ・ハース株式会社製)に研磨用組成物COMPを16ml/分の割合で供給し、かつ、2.5×3.0cmのTEOSウェハチップに3.5(psi)の圧力をかけながら研磨定盤を250rpmの回転速度で回転させ、キャリアを60rpmの回転速度で回転させながら、60秒間、研磨を行なった。 Using a polishing device (device name: ECOMET3, manufactured by BUEHLER), supplying the polishing composition COMP at a rate of 16 ml / min to a polishing pad (trade name: Supreme RN-H, manufactured by Nitta Haas Co., Ltd.), and Polishing is performed for 60 seconds while rotating the polishing platen at a rotational speed of 250 rpm while applying a pressure of 3.5 (psi) to a TEOS wafer chip of 2.5 × 3.0 cm and rotating the carrier at a rotational speed of 60 rpm. Was done.
 研磨レートは、単位時間当たりに研磨によって除去された各膜の厚み(Å/min)によって表される。研磨によって除去された膜の厚みは、研磨前の膜の厚みから研磨後の膜の厚みを減算することによって算出された。また、膜の厚みは、NANOMETRICS社製のNanospec/AFT5100を用いて測定された。 The polishing rate is represented by the thickness (Å / min) of each film removed by polishing per unit time. The thickness of the film removed by polishing was calculated by subtracting the thickness of the film after polishing from the thickness of the film before polishing. The thickness of the film was measured using Nanospec / AFT5100 manufactured by NANOMETRICS.
 図1は、研磨レートとコロイダルシリカの平均粒径との関係を示す図である。図1において、縦軸は、研磨レートを表し、横軸は、コロイダルシリカの平均粒径を表す。また、図1に示す研磨レートとコロイダルシリカの平均粒径との関係は、コロイダルシリカの濃度が研磨用組成物COMP全体に対して22(重量%)であり、添加剤が硫酸アンモニウムであり、硫酸アンモニウムの濃度が研磨用組成物COMP全体に対して0.5(重量%)であるときの研磨レートとコロイダルシリカの平均粒径との関係である。更に、研磨の対象物は、TEOS(テトラエトキシシラン)を原料ガスに用いてプラズマCVD(Chemical Vapour Deposition)法によって作製されたTEOS膜(SiO膜)である(以下、同じ)。 FIG. 1 is a graph showing the relationship between the polishing rate and the average particle size of colloidal silica. In FIG. 1, the vertical axis represents the polishing rate, and the horizontal axis represents the average particle diameter of colloidal silica. Further, the relationship between the polishing rate and the average particle diameter of colloidal silica shown in FIG. 1 is that the concentration of colloidal silica is 22 (% by weight) with respect to the entire polishing composition COMP, the additive is ammonium sulfate, and ammonium sulfate. Is the relationship between the polishing rate and the average particle size of the colloidal silica when the concentration of is 0.5 (% by weight) with respect to the entire polishing composition COMP. Further, an object to be polished is a TEOS film (SiO 2 film) produced by a plasma CVD (Chemical Vapor Deposition) method using TEOS (tetraethoxysilane) as a source gas (hereinafter the same).
 なお、平均粒径がX(nm)であるとは、コロイダルシリカの粒径が主にX(nm)に分布していることを言う。 In addition, the average particle diameter being X (nm) means that the particle diameter of colloidal silica is mainly distributed in X (nm).
 図1を参照して、研磨レートは、コロイダルシリカの平均粒径が25.3(nm)であるとき、約1800(Å/min)であり、コロイダルシリカの平均粒径が32.8(nm)であるとき、約1577(Å/min)である。 Referring to FIG. 1, the polishing rate is about 1800 (シ リ カ / min) when the average particle size of colloidal silica is 25.3 (nm), and the average particle size of colloidal silica is 32.8 (nm). ), It is about 1577 (Å / min).
 そして、研磨レートは、コロイダルシリカの平均粒径が55(nm)に大きくなると、約2400(Å/min)へ急激に増加し、コロイダルシリカの平均粒径が80(nm)および90(nm)に大きくなっても、ほぼ一定である。 The polishing rate increases rapidly to about 2400 (シ リ カ / min) when the average particle size of colloidal silica is increased to 55 (nm), and the average particle size of colloidal silica is 80 (nm) and 90 (nm). Even if it becomes larger, it is almost constant.
 従って、この発明の実施の形態においては、コロイダルシリカの平均粒径は、好ましくは、55(nm)以上である。 Therefore, in the embodiment of the present invention, the average particle diameter of the colloidal silica is preferably 55 (nm) or more.
 図2は、コロイダルシリカの平均粒径および研磨レートと、電解質濃度との関係を示す図である。図2において、縦軸は、コロイダルシリカの平均粒径および研磨レートを表し、横軸は、研磨用組成物COMP全体に対する電解質濃度を表す。また、図2に示すコロイダルシリカの平均粒径および研磨レートと、電解質濃度との関係は、コロイダルシリカの濃度が研磨用組成物COMP全体に対して5(重量%)であり、コロイダルシリカの平均粒径が80(nm)であり、添加剤が硫酸アンモニウムであるときのコロイダルシリカの平均粒径および研磨レートと、電解質濃度との関係である。そして、曲線k1は、研磨レートと電解質濃度との関係を示し、曲線k2は、コロイダルシリカの平均粒径と電解質濃度との関係を示す。 FIG. 2 is a graph showing the relationship between the average particle size and polishing rate of colloidal silica and the electrolyte concentration. In FIG. 2, the vertical axis represents the average particle size and polishing rate of colloidal silica, and the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP. Further, the relationship between the average particle size and polishing rate of the colloidal silica shown in FIG. 2 and the electrolyte concentration is such that the concentration of the colloidal silica is 5 (% by weight) with respect to the entire polishing composition COMP, and This is the relationship between the average particle size and polishing rate of colloidal silica when the particle size is 80 (nm) and the additive is ammonium sulfate, and the electrolyte concentration. Curve k1 shows the relationship between the polishing rate and the electrolyte concentration, and curve k2 shows the relationship between the average particle size of the colloidal silica and the electrolyte concentration.
 図2を参照して、研磨レートは、電解質濃度が2(重量%)までは、電解質濃度の増加に伴って高くなり、電解質濃度が3(重量%)になると、低下する(曲線k1参照)。 Referring to FIG. 2, the polishing rate increases as the electrolyte concentration increases up to 2 (wt%), and decreases when the electrolyte concentration reaches 3 (wt%) (see curve k1). .
 一方、コロイダルシリカの平均粒径は、電解質濃度が1(重量%)までの範囲においては、約80(nm)の一定値を保持し、電解質濃度が2(重量%)および3(重量%)へ増加すると、大きくなる(曲線k2参照)。従って、2(重量%)および3(重量%)の電解質濃度においては、コロイダルシリカの凝集が生じているものと考えられる。 On the other hand, the average particle size of colloidal silica maintains a constant value of about 80 (nm) in the range of the electrolyte concentration up to 1 (wt%), and the electrolyte concentration is 2 (wt%) and 3 (wt%). Increases to (see curve k2). Therefore, it is considered that aggregation of colloidal silica occurs at electrolyte concentrations of 2 (wt%) and 3 (wt%).
 図2に示す結果から、電解質濃度は、好ましくは、研磨用組成物COMP全体に対して2(重量%)以下である。研磨レートは、2(重量%)以下の電解質濃度においては、電解質濃度の増加に伴って高くなるからである。 From the results shown in FIG. 2, the electrolyte concentration is preferably 2 (% by weight) or less with respect to the entire polishing composition COMP. This is because the polishing rate becomes higher as the electrolyte concentration increases at an electrolyte concentration of 2 (% by weight) or less.
 また、電解質濃度は、より好ましくは、研磨用組成物COMP全体に対して1(重量%)以下である。1(重量%)以下の電解質濃度においては、研磨レートが電解質濃度の増加に伴って高くなり、かつ、コロイダルシリカの凝集が生じないからである。 Moreover, the electrolyte concentration is more preferably 1 (% by weight) or less with respect to the entire polishing composition COMP. This is because at an electrolyte concentration of 1 (% by weight) or less, the polishing rate increases as the electrolyte concentration increases, and colloidal silica does not aggregate.
 図3は、コロイダルシリカの濃度を変えたときの研磨レートと電解質濃度との関係を示す図である。図3において、縦軸は、研磨レートを表し、横軸は、研磨用組成物COMP全体に対する電解質濃度を表す。また、曲線k3は、コロイダルシリカの濃度が研磨用組成物COMP全体に対して5(重量%)であり、コロイダルシリカの平均粒径が80(nm)であり、添加剤が硫酸アンモニウムであるときの研磨レートと電解質濃度との関係を示す。更に、曲線k4は、コロイダルシリカの濃度が研磨用組成物COMP全体に対して12.5(重量%)であり、コロイダルシリカの平均粒径が80(nm)であり、添加剤が硫酸アンモニウムであるときの研磨レートと電解質濃度との関係を示す。更に、曲線k5は、コロイダルシリカの濃度が研磨用組成物COMP全体に対して22(重量%)であり、コロイダルシリカの平均粒径が80(nm)であり、添加剤が硫酸アンモニウムであるときの研磨レートと電解質濃度との関係を示す。 FIG. 3 is a graph showing the relationship between the polishing rate and the electrolyte concentration when the concentration of colloidal silica is changed. In FIG. 3, the vertical axis represents the polishing rate, and the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP. Curve k3 indicates that the colloidal silica concentration is 5 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the additive is ammonium sulfate. The relationship between a polishing rate and electrolyte concentration is shown. Further, in curve k4, the concentration of colloidal silica is 12.5 (% by weight) with respect to the entire polishing composition COMP, the average particle size of colloidal silica is 80 (nm), and the additive is ammonium sulfate. The relationship between the polishing rate and the electrolyte concentration is shown. Furthermore, curve k5 shows that the colloidal silica concentration is 22 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the additive is ammonium sulfate. The relationship between a polishing rate and electrolyte concentration is shown.
 なお、電解質濃度は、図2において、より好ましい濃度として示された1(重量%)以下の範囲において変えられた。 The electrolyte concentration was changed within a range of 1 (% by weight) or less shown as a more preferable concentration in FIG.
 図3を参照して、研磨レートは、コロイダルシリカの各濃度において、電解質濃度の増加に伴って高くなる。また、研磨レートは、電解質濃度の各濃度において、コロイダルシリカの濃度の増加に伴って高くなる。そして、1(重量%)の電解質濃度および22(重量%)のコロイダルシリカの濃度において、2500(Å/min)以上の研磨レートが得られた(曲線k3~k5参照)。 Referring to FIG. 3, the polishing rate increases with increasing electrolyte concentration at each concentration of colloidal silica. Also, the polishing rate increases with increasing concentration of colloidal silica at each concentration of electrolyte. A polishing rate of 2500 (Å / min) or higher was obtained at an electrolyte concentration of 1 (wt%) and a colloidal silica concentration of 22 (wt%) (see curves k3 to k5).
 このように、研磨用組成物COMPを用いてSiOを研磨した場合、研磨レートは、電解質濃度および/またはコロイダルシリカの濃度の増加に伴って高くなることが分かった。 Thus, when polishing the SiO 2 using the polishing composition COMP, the polishing rate was found to be higher with increasing concentration of the electrolyte concentration and / or colloidal silica.
 図4は、電解質を変えたときの研磨レートと電解質濃度との関係を示す図である。図4において、縦軸は、研磨レートを表し、横軸は、研磨用組成物COMP全体に対する電解質濃度を表す。また、曲線k6は、電解質として塩酸(HCl)を用いたときの研磨レートと電解質濃度との関係を示す。更に、曲線k7は、電解質として硝酸(HNO)を用いたときの研磨レートと電解質濃度との関係を示す。更に、曲線k8は、電解質としてリン酸(HPO)を用いたときの研磨レートと電解質濃度との関係を示す。更に、曲線k9は、電解質として硫酸(HSO)を用いたときの研磨レートと電解質濃度との関係を示す。 FIG. 4 is a diagram showing the relationship between the polishing rate and the electrolyte concentration when the electrolyte is changed. In FIG. 4, the vertical axis represents the polishing rate, and the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP. Curve k6 shows the relationship between the polishing rate and the electrolyte concentration when hydrochloric acid (HCl) is used as the electrolyte. Furthermore, the curve k7 shows the relationship between the polishing rate and the electrolyte concentration when nitric acid (HNO 3 ) is used as the electrolyte. Furthermore, the curve k8 shows the relationship between the polishing rate and the electrolyte concentration when phosphoric acid (H 3 PO 4 ) is used as the electrolyte. Furthermore, the curve k9 shows the relationship between the polishing rate and the electrolyte concentration when sulfuric acid (H 2 SO 4 ) is used as the electrolyte.
 なお、曲線k6~k9に示す実験結果は、HCl、HNO、HPO、およびHSOの各濃度を1(重量%)以下の範囲において変えたときに得られた実験結果である。この場合、HClおよびHSOは、0.0,0.25,0.5と濃度を変えられ、HNOおよびHPOは、0.0,0.25,0.5,1.0と濃度を変えられた。また、コロイダルシリカの平均粒径は、80nmである。 The experimental results shown in the curves k6 to k9 are experimental results obtained when the concentrations of HCl, HNO 3 , H 3 PO 4 , and H 2 SO 4 were changed within a range of 1 (% by weight) or less. is there. In this case, HCl and H 2 SO 4 can be changed in concentration to 0.0, 0.25, 0.5, and HNO 3 and H 3 PO 4 are 0.0, 0.25, 0.5, 1 The concentration was changed to 0.0. Moreover, the average particle diameter of colloidal silica is 80 nm.
 図4を参照して、電解質としてHCl、HNO、HPO、およびHSOを用いた場合、研磨レートは、電解質の濃度が増加するに従って高くなる(曲線k6~k9参照)。 Referring to FIG. 4, when HCl, HNO 3 , H 3 PO 4 , and H 2 SO 4 are used as the electrolyte, the polishing rate increases as the concentration of the electrolyte increases (see curves k6 to k9).
 そして、電解質としてHClおよびHSOを用いた場合、0.5(重量%)の濃度において、研磨レートは、それぞれ、1968Å/minまたは1916Å/minである(曲線k6,k9参照)。また、電解質としてHNOおよびHPOを用いた場合、1.0(重量%)の濃度において、研磨レートは、それぞれ、2036Å/minおよび1925Å/minである(曲線k7,k8参照)。従って、電解質としてHClおよびHSOを用いた場合、電解質の濃度を1.0(重量%)から0.5(重量%)に減少しても、電解質として1.0(重量%)のHNOおよびHPOを用いた場合と同等の研磨レートが得られた。 When HCl and H 2 SO 4 are used as the electrolyte, the polishing rate is 1968 Å / min or 1916 Å / min, respectively, at a concentration of 0.5 (% by weight) (see curves k6 and k9). When HNO 3 and H 3 PO 4 are used as the electrolyte, the polishing rates are 2036 20 / min and 1925 Å / min, respectively, at a concentration of 1.0 (% by weight) (see curves k7 and k8). Therefore, when HCl and H 2 SO 4 are used as the electrolyte, even if the concentration of the electrolyte is reduced from 1.0 (wt%) to 0.5 (wt%), 1.0 (wt%) as the electrolyte A polishing rate equivalent to that obtained when HNO 3 and H 3 PO 4 were used was obtained.
 図5は、電解質塩を変えたときの研磨レートと電解質濃度との関係を示す図である。図5において、縦軸は、研磨レートを表し、横軸は、研磨用組成物COMP全体に対する電解質濃度を表す。また、曲線k10は、電解質塩として硫酸カリウム(KSO)を用いたときの研磨レートと電解質濃度との関係を示す。更に、曲線k11は、電解質塩としてリン酸水素ニカリウム(KHPO)を用いたときの研磨レートと電解質濃度との関係を示す。更に、曲線k12は、電解質塩として炭酸カリウム(KCO)を用いたときの研磨レートと電解質濃度との関係を示す。 FIG. 5 is a diagram showing the relationship between the polishing rate and the electrolyte concentration when the electrolyte salt is changed. In FIG. 5, the vertical axis represents the polishing rate, and the horizontal axis represents the electrolyte concentration relative to the entire polishing composition COMP. Curve k10 shows the relationship between the polishing rate and the electrolyte concentration when potassium sulfate (K 2 SO 4 ) is used as the electrolyte salt. Furthermore, the curve k11 shows the relationship between the polishing rate and the electrolyte concentration when dipotassium hydrogen phosphate (K 2 HPO 4 ) is used as the electrolyte salt. Furthermore, the curve k12 shows the relationship between the polishing rate and the electrolyte concentration when potassium carbonate (K 2 CO 3 ) is used as the electrolyte salt.
 なお、曲線k10~k12に示す実験結果は、KSO、KHPO、およびKCOの各濃度を1(重量%)以下の範囲において変えたときに得られた実験結果である。この場合、KSOは、0.00,0.25,0.50,0.75,1.00と濃度を変えられ、KHPOは、0.00,0.25,0.50,0.72,1.00と濃度を変えられ、KCOは、0.00,0.25,0.50,0.75,1.00と濃度を変えられた。また、コロイダルシリカの平均粒径は、80nmである。 The experimental results shown in the curves k10 to k12 are experimental results obtained when the concentrations of K 2 SO 4 , K 2 HPO 4 , and K 2 CO 3 are changed within a range of 1 (% by weight) or less. is there. In this case, the concentration of K 2 SO 4 can be changed to 0.00, 0.25, 0.50, 0.75, and 1.00, and K 2 HPO 4 is 0.00, 0.25, 0. The concentration was changed to 50, 0.72, 1.00, and the concentration of K 2 CO 3 was changed to 0.00, 0.25, 0.50, 0.75, 1.00. Moreover, the average particle diameter of colloidal silica is 80 nm.
 図5を参照して、電解質塩としてKSO、KHPO、およびKCOを用いた場合、研磨レートは、電解質塩の濃度が増加するに従って高くなる(曲線k10~k12参照)。 Referring to FIG. 5, when K 2 SO 4 , K 2 HPO 4 , and K 2 CO 3 are used as the electrolyte salt, the polishing rate increases as the concentration of the electrolyte salt increases (see curves k10 to k12). ).
 そして、電解質塩としてKSOを用いた場合、1.0(重量%)の濃度において、2170Å/minの研磨レートが得られ(曲線k10参照)、電解質塩としてKHPOを用いた場合、1.0(重量%)の濃度において、1982Å/minの研磨レートが得られ(曲線k11参照)、電解質塩としてKCOを用いた場合、1.0(重量%)の濃度において、1864Å/minの研磨レートが得られた(曲線k12参照)。 When K 2 SO 4 was used as the electrolyte salt, a polishing rate of 2170 Å / min was obtained at a concentration of 1.0 (% by weight) (see curve k10), and K 2 HPO 4 was used as the electrolyte salt. In this case, a polishing rate of 1982 Å / min was obtained at a concentration of 1.0 (wt%) (see curve k11), and when K 2 CO 3 was used as the electrolyte salt, A polishing rate of 1864 Å / min was obtained (see curve k12).
 このように、電解質または電解質塩を含む研磨用組成物COMPを用いてSiOを研磨した場合、研磨レートは、電解質または電解質塩の濃度が1.0(重量%)以下の範囲において増加するに伴って高くなることが分かった。 As described above, when SiO 2 is polished using the polishing composition COMP containing an electrolyte or an electrolyte salt, the polishing rate increases when the concentration of the electrolyte or the electrolyte salt is 1.0 (wt%) or less. It turns out that it becomes high with it.
 図6は、研磨レートと電解質の種類との関係を示す図である。図6において、縦軸は、研磨レートを表し、横軸は、電解質の種類を表す。また、図6に示す研磨レートと電解質の種類との関係は、電解質の濃度が研磨用組成物COMP全体に対して0.5(重量%)であり、コロイダルシリカの濃度が研磨用組成物COMP全体に対して20(重量%)であり、コロイダルシリカの平均粒径が80(nm)であるときの研磨レートと電解質の種類との関係である。更に、電解質として、リン酸、ピロリン酸、ポリリン酸、チオ硫酸アンモニウム、過硫酸アンモニウム、炭酸水素アンモニウム、硫酸、塩酸、硝酸および硫酸アンモニウムが用いられた。更に、比較のために、添加剤(=電解質)を添加しない場合も示されている。 FIG. 6 is a diagram showing the relationship between the polishing rate and the type of electrolyte. In FIG. 6, the vertical axis represents the polishing rate, and the horizontal axis represents the type of electrolyte. Further, the relationship between the polishing rate and the type of electrolyte shown in FIG. 6 is that the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP, and the concentration of colloidal silica is the polishing composition COMP. This is the relationship between the polishing rate and the type of electrolyte when the average particle diameter of colloidal silica is 20 (% by weight) and 80 (nm). Furthermore, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, ammonium thiosulfate, ammonium persulfate, ammonium hydrogen carbonate, sulfuric acid, hydrochloric acid, nitric acid and ammonium sulfate were used as the electrolyte. Further, for comparison, a case where no additive (= electrolyte) is added is also shown.
 図6を参照して、研磨レートは、電解質を添加することによって、大きく向上する。また、電解質として、リン酸、ピロリン酸、硫酸、塩酸および硫酸アンモニウムのいずれかが用いられた場合、研磨レートは、電解質を添加しない場合に比べ、約2倍、高くなることが分かった。そして、電解質として、硫酸アンモニウムが用いられた場合、1993(Å/min)の研磨レートが得られた。 Referring to FIG. 6, the polishing rate is greatly improved by adding an electrolyte. Further, it was found that when any one of phosphoric acid, pyrophosphoric acid, sulfuric acid, hydrochloric acid and ammonium sulfate was used as the electrolyte, the polishing rate was about twice as high as when no electrolyte was added. When ammonium sulfate was used as the electrolyte, a polishing rate of 1993 (Å / min) was obtained.
 このように、電解質を添加することによって、研磨レートが大きく向上することが実証された。 Thus, it has been demonstrated that the polishing rate is greatly improved by adding an electrolyte.
 図7は、研磨レートと塩の種類との関係を示す図である。図7において、縦軸は、研磨レートを表し、横軸は、塩の種類を表す。また、図7に示す研磨レートと塩の種類との関係は、電解質の濃度が研磨用組成物COMP全体に対して0.5(重量%)であり、コロイダルシリカの濃度が研磨用組成物COMP全体に対して22(重量%)であり、pHが9.5であり、コロイダルシリカの平均粒径が80(nm)であるときの研磨レートと塩の種類との関係を示す。そして、pHの調整は、アンモニアを添加することによって行なわれた。 FIG. 7 is a diagram showing the relationship between the polishing rate and the type of salt. In FIG. 7, the vertical axis represents the polishing rate, and the horizontal axis represents the type of salt. Further, the relationship between the polishing rate and the type of salt shown in FIG. 7 is that the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP, and the concentration of colloidal silica is the polishing composition COMP. The relationship between the polishing rate and the type of salt when the total is 22 (% by weight), the pH is 9.5, and the average particle size of the colloidal silica is 80 (nm) is shown. The pH was adjusted by adding ammonia.
 更に、アンモニウム塩は、硫酸アンモニウムを表し、カリウム塩は、硫酸カリウムを表し、ナトリウム塩は、硫酸ナトリウムを表す。 Furthermore, the ammonium salt represents ammonium sulfate, the potassium salt represents potassium sulfate, and the sodium salt represents sodium sulfate.
 図7を参照して、研磨レートは、アンモニウム塩、カリウム塩およびナトリウム塩のいずれかを添加することによって向上する。そして、研磨レートは、アンモニウム塩およびカリウム塩のいずれかが添加された場合、約2000(Å/min)まで向上する。 Referring to FIG. 7, the polishing rate is improved by adding any one of ammonium salt, potassium salt and sodium salt. The polishing rate is improved to about 2000 (Å / min) when either an ammonium salt or a potassium salt is added.
 従って、塩基性の電解質を添加することによって、研磨レートが向上することが実証された。 Therefore, it was proved that the polishing rate was improved by adding a basic electrolyte.
 図8は、研磨レートおよびコロイダルシリカの平均粒径と、pHとの関係を示す図である。図8において、縦軸は、研磨レートおよびコロイダルシリカの平均粒径を表し、横軸は、pHを表す。また、図8に示す研磨レートおよびコロイダルシリカの平均粒径と、pHとの関係は、電解質が硫酸であり、電解質の濃度が研磨用組成物COMP全体に対して0.5(重量%)であり、コロイダルシリカの濃度が研磨用組成物COMP全体に対して22(重量%)であり、コロイダルシリカの平均粒径が80(nm)であるときの研磨レートおよびコロイダルシリカの平均粒径と、pHとの関係である。そして、曲線k13は、研磨レートとpHとの関係を示し、曲線k14は、コロイダルシリカの平均粒径とpHとの関係を示す。 FIG. 8 is a graph showing the relationship between the polishing rate, the average particle size of colloidal silica, and pH. In FIG. 8, the vertical axis represents the polishing rate and the average particle diameter of colloidal silica, and the horizontal axis represents pH. Further, the relationship between the polishing rate and the average particle diameter of the colloidal silica and the pH shown in FIG. 8 is that the electrolyte is sulfuric acid and the concentration of the electrolyte is 0.5 (% by weight) with respect to the entire polishing composition COMP. Yes, the colloidal silica concentration is 22 (% by weight) with respect to the entire polishing composition COMP, the average particle size of the colloidal silica is 80 (nm), and the average particle size of the colloidal silica; It is a relationship with pH. Curve k13 shows the relationship between the polishing rate and pH, and curve k14 shows the relationship between the average particle size of colloidal silica and pH.
 なお、硫酸を添加することによって、pHは、1.3程度になり、pHを1.3よりも大きい値に調整するために、アンモニアが用いられた。 Incidentally, by adding sulfuric acid, the pH became about 1.3, and ammonia was used to adjust the pH to a value larger than 1.3.
 図8を参照して、研磨レートは、0~12のpHの範囲において、1500(Å/min)よりも高い。そして、研磨レートは、2以下のpH、および8以上のpHにおいて、2000(Å/min)よりも高い(曲線k13参照)。 Referring to FIG. 8, the polishing rate is higher than 1500 (Å / min) in the pH range of 0-12. The polishing rate is higher than 2000 (Å / min) at a pH of 2 or less and a pH of 8 or more (see curve k13).
 一方、コロイダルシリカの平均粒径は、2以下のpHおよび8以上のpHにおいて、約80(nm)であり、2~8のpHにおいては、80(nm)よりも大きい(曲線k14参照)。従って、2~8のpHにおいては、コロイダルシリカの凝集が生じているものと考えられる。 On the other hand, the average particle size of colloidal silica is about 80 (nm) at a pH of 2 or less and a pH of 8 or more, and is larger than 80 (nm) at a pH of 2 to 8 (see curve k14). Therefore, it is considered that aggregation of colloidal silica occurs at a pH of 2 to 8.
 図8に示す結果から、2~8のpHにおいては、コロイダルシリカの凝集が生じているが、研磨レートは、1500(Å/min)を大きく上回っている。従って、研磨用組成物COMPは、循環して使用されない場合、pHの値に関係なく、SiOの研磨に適していることが実証された。 From the results shown in FIG. 8, colloidal silica agglomerates at a pH of 2 to 8, but the polishing rate is much higher than 1500 (500 / min). Therefore, it was demonstrated that the polishing composition COMP is suitable for polishing SiO 2 regardless of the pH value when not used in a circulating manner.
 そして、コロイダルシリカの凝集を防止したい場合、即ち、研磨用組成物COMPを循環して使用する場合、研磨用組成物COMPは、好ましくは、2以下のpH、または8以上のpHに調整される。 When it is desired to prevent agglomeration of colloidal silica, that is, when the polishing composition COMP is circulated, the polishing composition COMP is preferably adjusted to a pH of 2 or less, or a pH of 8 or more. .
 図9は、電解質の濃度を変えたときの研磨レートとコロイダルシリカの濃度との関係を示す図である。図9において、縦軸は、研磨レートを表し、横軸は、コロイダルシリカの濃度を表す。また、図9に示す研磨レートとコロイダルシリカの濃度との関係は、電解質が硫酸アンモニウムであり、コロイダルシリカの平均粒径が80(nm)であるときの研磨レートとコロイダルシリカの濃度との関係である。そして、×は、電解質が添加されていないときの研磨レートとコロイダルシリカの濃度との関係を示し、黒丸は、電解質の濃度が研磨用組成物COMP全体に対して0.25(重量%)であるときの研磨レートとコロイダルシリカの濃度との関係を示し、黒三角は、電解質の濃度が研磨用組成物COMP全体に対して0.50(重量%)であるときの研磨レートとコロイダルシリカの濃度との関係を示し、黒四角は、電解質の濃度が研磨用組成物COMP全体に対して1.00(重量%)であるときの研磨レートとコロイダルシリカの濃度との関係を示す。 FIG. 9 is a graph showing the relationship between the polishing rate and the concentration of colloidal silica when the concentration of the electrolyte is changed. In FIG. 9, the vertical axis represents the polishing rate, and the horizontal axis represents the concentration of colloidal silica. Further, the relationship between the polishing rate and the concentration of colloidal silica shown in FIG. 9 is the relationship between the polishing rate and the concentration of colloidal silica when the electrolyte is ammonium sulfate and the average particle size of the colloidal silica is 80 (nm). is there. X indicates the relationship between the polishing rate when no electrolyte is added and the concentration of colloidal silica, and the black circle indicates that the concentration of the electrolyte is 0.25 (% by weight) with respect to the entire polishing composition COMP. The relationship between the polishing rate at a certain time and the concentration of colloidal silica is shown, and the black triangle indicates the polishing rate and the colloidal silica when the electrolyte concentration is 0.50 (wt%) with respect to the entire polishing composition COMP. The black squares indicate the relationship between the polishing rate and the concentration of colloidal silica when the concentration of the electrolyte is 1.00 (% by weight) with respect to the entire polishing composition COMP.
 図9を参照して、研磨レートは、電解質が添加されていない場合、コロイダルシリカの濃度が40(重量%)まで増加するに従って、ほぼ直線的に高くなり、40(重量%)以上のコロイダルシリカの濃度において、ほぼ一定値になる(×を参照)。 Referring to FIG. 9, when no electrolyte is added, the polishing rate increases almost linearly as the concentration of colloidal silica increases to 40 (wt%), and colloidal silica of 40 (wt%) or more. At a constant value (see x).
 一方、研磨レートは、電解質が添加された場合、コロイダルシリカの濃度が約20(重量%)まで増加するに従って、ほぼ直線的に高くなり、20(重量%)以上のコロイダルシリカの濃度において、ほぼ一定値になる(黒丸、黒三角および黒四角参照)。 On the other hand, when the electrolyte is added, the polishing rate increases almost linearly as the colloidal silica concentration increases to about 20 (% by weight), and at a colloidal silica concentration of 20 (% by weight) or more, It becomes a constant value (see black circle, black triangle and black square).
 そして、研磨レートは、コロイダルシリカの濃度が20(重量%)に近づくに従って急激に高くなる。 The polishing rate increases rapidly as the colloidal silica concentration approaches 20 (% by weight).
 また、電解質が添加された場合の研磨レートは、20(重量%)以上のコロイダルシリカの濃度において、電解質が添加されていない場合の40(重量%)以上のコロイダルシリカの濃度における研磨レートとほぼ同じである。 Further, the polishing rate when the electrolyte is added is almost the same as the polishing rate at the concentration of colloidal silica of 40 (wt%) or more when no electrolyte is added at the concentration of colloidal silica of 20 (wt%) or more. The same.
 即ち、電解質を添加することによって、コロイダルシリカの濃度を40(重量%)から20(重量%)へ半分にしても、研磨レートは、電解質が添加されていない場合の40(重量%)以上のコロイダルシリカの濃度における研磨レートを保持する。 That is, even if the concentration of colloidal silica is halved from 40 (wt%) to 20 (wt%) by adding electrolyte, the polishing rate is 40 (wt%) or more when no electrolyte is added. The polishing rate at the colloidal silica concentration is maintained.
 このことは、電解質を添加することによって、研磨用組成物中におけるコロイダルシリカの濃度が実質的に高くなることを意味する。 This means that the concentration of colloidal silica in the polishing composition is substantially increased by adding an electrolyte.
 従って、研磨用組成物COMPを用いてSiOを研磨することによって、SiOは、研磨用組成物中におけるコロイダルシリカの濃度が実質的に高くなった状態で研磨される。 Therefore, by polishing the SiO 2 using the polishing composition COMP, the SiO 2 is polished in a state where the concentration of colloidal silica in the polishing composition is substantially increased.
 従って、SiOの研磨レートを高くできる。 Therefore, the polishing rate of SiO 2 can be increased.
 また、コロイダルシリカの濃度を半分にしても、ほぼ同じ研磨レートが得られるので、研磨用組成物COMP中におけるコロイダルシリカの濃度を低減できる。その結果、研磨用組成物COMPを最終的に廃棄しても、環境にやさしくできる。 Further, even if the concentration of colloidal silica is halved, almost the same polishing rate can be obtained, so that the concentration of colloidal silica in the polishing composition COMP can be reduced. As a result, even if the polishing composition COMP is finally discarded, it can be environmentally friendly.
 以下に実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
 実施例1~実施例31における研磨用組成物の成分と、評価結果とを表1~表7に示す。また、比較例1~比較例13における研磨用組成物の成分と、評価結果とを表8~表10に示す。 Table 1 to Table 7 show the components of the polishing compositions and the evaluation results in Examples 1 to 31. In addition, Tables 8 to 10 show the components of the polishing compositions and the evaluation results in Comparative Examples 1 to 13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (実施例1)
 実施例1における研磨用組成物COMP1は、濃度が研磨用組成物COMP1全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP1全体に対して0.5(重量%)である硫酸アンモニウムとを含む。
Example 1
The polishing composition COMP1 in Example 1 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP1, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP1. And ammonium sulfate.
 (実施例2)
 実施例2における研磨用組成物COMP2は、濃度が研磨用組成物COMP2全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP2全体に対して0.5(重量%)である硫酸カリウムとを含む。
(Example 2)
Polishing composition COMP2 in Example 2 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP2, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP2. And potassium sulfate.
 (実施例3)
 実施例3における研磨用組成物COMP3は、濃度が研磨用組成物COMP3全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP3全体に対して0.5(重量%)である塩酸とを含む。
(Example 3)
Polishing composition COMP3 in Example 3 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP3, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP3. And hydrochloric acid.
 (実施例4)
 実施例4における研磨用組成物COMP4は、濃度が研磨用組成物COMP4全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP4全体に対して0.5(重量%)であるグリコール酸とを含む。
Example 4
Polishing composition COMP4 in Example 4 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP4, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP4. And glycolic acid.
 (実施例5)
 実施例5における研磨用組成物COMP5は、濃度が研磨用組成物COMP5全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP5全体に対して0.5(重量%)であるピロ硫酸カリウムとを含む。
(Example 5)
Polishing composition COMP5 in Example 5 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP5, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP5. And potassium pyrosulfate.
 (実施例6)
 実施例6における研磨用組成物COMP6は、濃度が研磨用組成物COMP6全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP6全体に対して0.5(重量%)であるアスパラギン酸とを含む。
(Example 6)
Polishing composition COMP6 in Example 6 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP6, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP6. And aspartic acid.
 (実施例7)
 実施例7における研磨用組成物COMP7は、濃度が研磨用組成物COMP7全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP7全体に対して0.5(重量%)である硫酸とを含む。
(Example 7)
Polishing composition COMP7 in Example 7 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP7, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP7. And sulfuric acid.
 (実施例8)
 実施例8における研磨用組成物COMP8は、濃度が研磨用組成物COMP8全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP8全体に対して0.5(重量%)であるピロリン酸とを含む。
(Example 8)
Polishing composition COMP8 in Example 8 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP8, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP8. And pyrophosphoric acid.
 (実施例9)
 実施例9における研磨用組成物COMP9は、濃度が研磨用組成物COMP9全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP9全体に対して0.5(重量%)であるリン酸とを含む。
Example 9
Polishing composition COMP9 in Example 9 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP9, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP9. And phosphoric acid.
 (実施例10)
 実施例10における研磨用組成物COMP10は、濃度が研磨用組成物COMP10全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP10全体に対して0.5(重量%)である硝酸とを含む。
(Example 10)
Polishing composition COMP10 in Example 10 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP10, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP10. And nitric acid.
 (実施例11)
 実施例11における研磨用組成物COMP11は、濃度が研磨用組成物COMP11全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP11全体に対して0.5(重量%)であるシュウ酸とを含む。
(Example 11)
Polishing composition COMP11 in Example 11 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP11, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP11. ) Oxalic acid.
 (実施例12)
 実施例12における研磨用組成物COMP12は、濃度が研磨用組成物COMP12全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP12全体に対して0.5(重量%)であるPAA(ポリアクリル酸)とを含む。
(Example 12)
Polishing composition COMP12 in Example 12 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP12, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP12. And PAA (polyacrylic acid).
 (実施例13)
 実施例13における研磨用組成物COMP13は、濃度が研磨用組成物COMP13全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP13全体に対して0.5(重量%)であるアスパラギンとを含む。
(Example 13)
Polishing composition COMP13 in Example 13 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP13, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP13. Asparagine).
 (実施例14)
 実施例14における研磨用組成物COMP14は、濃度が研磨用組成物COMP14全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP14全体に対して0.5(重量%)であるフタル酸とを含む。
(Example 14)
The polishing composition COMP14 in Example 14 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP14, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP14. ) Phthalic acid.
 (実施例15)
 実施例15における研磨用組成物COMP15は、濃度が研磨用組成物COMP15全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP15全体に対して0.5(重量%)である安息香酸とを含む。
(Example 15)
Polishing composition COMP15 in Example 15 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP15, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP15. ) Benzoic acid.
 (実施例16)
 実施例16における研磨用組成物COMP16は、濃度が研磨用組成物COMP16全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP16全体に対して0.5(重量%)であるマロン酸とを含む。
(Example 16)
Polishing composition COMP16 in Example 16 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP16, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP16. And malonic acid.
 (実施例17)
 実施例17における研磨用組成物COMP17は、濃度が研磨用組成物COMP17全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP17全体に対して0.5(重量%)である炭酸水素アンモニウムとを含む。
(Example 17)
Polishing composition COMP17 in Example 17 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP17, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP17. And ammonium hydrogen carbonate.
 (実施例18)
 実施例18における研磨用組成物COMP18は、濃度が研磨用組成物COMP18全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP18全体に対して0.5(重量%)である過硫酸アンモニウムとを含む。
(Example 18)
Polishing composition COMP18 in Example 18 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP18, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP18. And ammonium persulfate.
 (実施例19)
 実施例19における研磨用組成物COMP19は、濃度が研磨用組成物COMP19全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP19全体に対して0.5(重量%)であるチオ硫酸アンモニウムとを含む。
(Example 19)
The polishing composition COMP19 in Example 19 was colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP19, and the concentration was 0.5 (wt%) with respect to the entire polishing composition COMP19. And ammonium thiosulfate.
 (実施例20)
 実施例20における研磨用組成物COMP20は、濃度が研磨用組成物COMP20全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP20全体に対して0.5(重量%)であるメチルスルホン酸とを含む。
(Example 20)
Polishing composition COMP20 in Example 20 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP20, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP20. And methyl sulfonic acid.
 (実施例21)
 実施例21における研磨用組成物COMP21は、濃度が研磨用組成物COMP21全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP21全体に対して0.5(重量%)であるポリリン酸とを含む。
(Example 21)
Polishing composition COMP21 in Example 21 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP21, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP21. And polyphosphoric acid.
 (実施例22)
 実施例22における研磨用組成物COMP22は、濃度が研磨用組成物COMP22全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP22全体に対して0.5(重量%)である乳酸とを含む。
(Example 22)
Polishing composition COMP22 in Example 22 has a concentration of 20 (wt%) with respect to the entire polishing composition COMP22, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP22. ) Which is lactic acid.
 (実施例23)
 実施例23における研磨用組成物COMP23は、濃度が研磨用組成物COMP23全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP23全体に対して0.5(重量%)であるアラニンとを含む。
(Example 23)
The polishing composition COMP23 in Example 23 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP23, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP23. ) Which is alanine.
 (実施例24)
 実施例24における研磨用組成物COMP24は、濃度が研磨用組成物COMP24全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP24全体に対して0.5(重量%)であるマレイン酸とを含む。
(Example 24)
Polishing composition COMP24 in Example 24 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP24, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP24. And maleic acid.
 (実施例25)
 実施例25における研磨用組成物COMP25は、濃度が研磨用組成物COMP25全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP25全体に対して0.5(重量%)である酒石酸とを含む。
(Example 25)
Polishing composition COMP25 in Example 25 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP25, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP25. ) And tartaric acid.
 (実施例26)
 実施例26における研磨用組成物COMP26は、濃度が研磨用組成物COMP26全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP26全体に対して0.5(重量%)であるクエン酸とを含む。
(Example 26)
Polishing composition COMP26 in Example 26 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP26, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP26. ) Citric acid.
 (実施例27)
 実施例27における研磨用組成物COMP27は、濃度が研磨用組成物COMP27全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP27全体に対して0.5(重量%)であるベンゼンスルホン酸とを含む。
(Example 27)
Polishing composition COMP27 in Example 27 is colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP27, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP27. Benzenesulfonic acid that is).
 (実施例28)
 実施例28における研磨用組成物COMP28は、濃度が研磨用組成物COMP28全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP28全体に対して0.5(重量%)であるブタノールとを含む。
(Example 28)
Polishing composition COMP28 in Example 28 was colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP28, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP28. And butanol.
 (実施例29)
 実施例29における研磨用組成物COMP29は、濃度が研磨用組成物COMP29全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP29全体に対して0.5(重量%)であるグリセリンとを含む。
(Example 29)
The polishing composition COMP29 in Example 29 was colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP29, and the concentration was 0.5 (% by weight) with respect to the entire polishing composition COMP29. ) And glycerin.
 (実施例30)
 実施例30における研磨用組成物COMP30は、濃度が研磨用組成物COMP30全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP30全体に対して0.5(重量%)であるプロパノールとを含む。
(Example 30)
Polishing composition COMP30 in Example 30 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP30, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP30. ) Which is propanol.
 (実施例31)
 実施例31における研磨用組成物COMP31は、濃度が研磨用組成物COMP31全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP31全体に対して0.5(重量%)であるエタノールとを含む。
(Example 31)
Polishing composition COMP31 in Example 31 is a colloidal silica having a concentration of 20 (% by weight) with respect to the entire polishing composition COMP31, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP31. ) Which is ethanol.
 (比較例1)
 比較例1における研磨用組成物COMP_CP1は、濃度が研磨用組成物COMP_CP1全体に対して20(重量%)のコロイダルシリカを含む。即ち、研磨用組成物COMP_CP1は、添加剤として電解質または電解質の塩を含まない。
(Comparative Example 1)
Polishing composition COMP_CP1 in the comparative example 1 contains the colloidal silica whose density | concentration is 20 (weight%) with respect to polishing composition COMP_CP1 whole. That is, the polishing composition COMP_CP1 does not contain an electrolyte or an electrolyte salt as an additive.
 (比較例2)
 比較例2における研磨用組成物COMP_CP2は、濃度が研磨用組成物COMP_CP2全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP2全体に対して0.5(重量%)であるグルコースとを含む。
(Comparative Example 2)
Polishing composition COMP_CP2 in Comparative Example 2 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP2, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP2. Glucose).
 (比較例3)
 比較例3における研磨用組成物COMP_CP3は、濃度が研磨用組成物COMP_CP3全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP3全体に対して0.5(重量%)であるピリジンとを含む。
(Comparative Example 3)
Polishing composition COMP_CP3 in Comparative Example 3 has a colloidal silica concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP3, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP3. ) Which is).
 (比較例4)
 比較例4における研磨用組成物COMP_CP4は、濃度が研磨用組成物COMP_CP4全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP4全体に対して0.5(重量%)であるデキストリンとを含む。
(Comparative Example 4)
Polishing composition COMP_CP4 in Comparative Example 4 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP4 and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP4. ) Dextrin.
 (比較例5)
 比較例5における研磨用組成物COMP_CP5は、濃度が研磨用組成物COMP_CP5全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP5全体に対して0.5(重量%)であるPEG(ポリエチレングリコール)とを含む。
(Comparative Example 5)
Polishing composition COMP_CP5 in Comparative Example 5 has a colloidal silica concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP5, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP5. PEG (polyethylene glycol).
 (比較例6)
 比較例6における研磨用組成物COMP_CP6は、濃度が研磨用組成物COMP_CP6全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP6全体に対して0.5(重量%)である溶性デンプンとを含む。
(Comparative Example 6)
Polishing composition COMP_CP6 in Comparative Example 6 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP6, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP6. A soluble starch.
 (比較例7)
 比較例7における研磨用組成物COMP_CP7は、濃度が研磨用組成物COMP_CP7全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP7全体に対して0.5(重量%)であるトリエタノールアミンとを含む。
(Comparative Example 7)
Polishing composition COMP_CP7 in Comparative Example 7 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP7, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP7. And triethanolamine.
 (比較例8)
 比較例8における研磨用組成物COMP_CP8は、濃度が研磨用組成物COMP_CP8全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP8全体に対して0.5(重量%)であるPVP(ポリ(N-ビニルピロリドン))とを含む。
(Comparative Example 8)
Polishing composition COMP_CP8 in Comparative Example 8 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP8, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP8. And PVP (poly (N-vinylpyrrolidone)).
 (比較例9)
 比較例9における研磨用組成物COMP_CP9は、濃度が研磨用組成物COMP_CP9全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP9全体に対して0.5(重量%)であるTMAH(水酸化テトラメチルアンモニウム)とを含む。
(Comparative Example 9)
Polishing composition COMP_CP9 in Comparative Example 9 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP9, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP9. And TMAH (tetramethylammonium hydroxide).
 (比較例10)
 比較例10における研磨用組成物COMP_CP10は、濃度が研磨用組成物COMP_CP10全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP10全体に対して0.5(重量%)であるエチルアミンとを含む。
(Comparative Example 10)
Polishing composition COMP_CP10 in Comparative Example 10 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP10, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP10. And ethylamine.
 (比較例11)
 比較例11における研磨用組成物COMP_CP11は、濃度が研磨用組成物COMP_CP11全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP11全体に対して0.5(重量%)であるDABCO(1,4-ジアザビシクロ[2.2.2.]オクタン)とを含む。
(Comparative Example 11)
Polishing composition COMP_CP11 in Comparative Example 11 is a colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP11, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP11. DABCO (1,4-diazabicyclo [2.2.2.] Octane).
 (比較例12)
 比較例12における研磨用組成物COMP_CP12は、濃度が研磨用組成物COMP_CP12全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP12全体に対して0.5(重量%)であるアルギニンとを含む。
(Comparative Example 12)
Polishing composition COMP_CP12 in Comparative Example 12 has a concentration of 20 (% by weight) with respect to the entire polishing composition COMP_CP12, and a concentration of 0.5 (% by weight) with respect to the entire polishing composition COMP_CP12. ) Arginine.
 (比較例13)
 比較例13における研磨用組成物COMP_CP13は、濃度が研磨用組成物COMP_CP13全体に対して20(重量%)であるコロイダルシリカと、濃度が研磨用組成物COMP_CP13全体に対して0.5(重量%)であるピペリジンとを含む。
(Comparative Example 13)
Polishing composition COMP_CP13 in Comparative Example 13 is colloidal silica having a concentration of 20 (wt%) with respect to the entire polishing composition COMP_CP13, and a concentration of 0.5 (wt%) with respect to the entire polishing composition COMP_CP13. And piperidine.
 実施例1~31および比較例1~11,13における研磨用組成物COMP1~COMP31,COMP_CP1~COMP_CP11,COMP_CP13は、アンモニアを用いて9.5のpHに調整され、比較例12における研磨用組成物COMP_CP12は、アンモニアを用いて10.1のpHに調整された。 Polishing compositions COMP1 to COMP31, COMP_CP1 to COMP_CP11, COMP_CP13 in Examples 1 to 31 and Comparative Examples 1 to 11 and 13 were adjusted to a pH of 9.5 using ammonia, and the polishing compositions in Comparative Example 12 were used. COMP_CP12 was adjusted to a pH of 10.1 using ammonia.
 従って、研磨用組成物COMP1~COMP31,COMP_CP1~COMP_CP13は、表1~表10に示す成分に加え、アンモニアを含む。 Therefore, the polishing compositions COMP1 to COMP31 and COMP_CP1 to COMP_CP13 contain ammonia in addition to the components shown in Tables 1 to 10.
 また、研磨用組成物COMP6に含まれるアスパラギン酸は、酸性のアミノ酸であり、研磨用組成物COMP13に含まれるアスパラギンおよび研磨用組成物COMP23に含まれるアラニンは、中性のアミノ酸であり、研磨用組成物COMP_CP12に含まれるアルギニンは、塩基性のアミノ酸である。そして、これらのアミノ酸は、アミンおよび酸の両方を有する。 Further, aspartic acid contained in the polishing composition COMP6 is an acidic amino acid, asparagine contained in the polishing composition COMP13 and alanine contained in the polishing composition COMP23 are neutral amino acids, and are used for polishing. Arginine contained in the composition COMP_CP12 is a basic amino acid. And these amino acids have both amines and acids.
 (結果)
 研磨用組成物COMP1~COMP31を用いてSiOを研磨したときの研磨レートは、研磨用組成物COMP1_CP1~COMP_CP13を用いてSiOを研磨したときの研磨レートよりも高い。
(result)
The polishing rate when SiO 2 is polished using the polishing compositions COMP1 to COMP31 is higher than the polishing rate when SiO 2 is polished using the polishing compositions COMP1_CP1 to COMP_CP13.
 そして、研磨用組成物COMP1~COMP9を用いてSiOを研磨したときの研磨レートは、研磨用組成物COMP1_CP1~COMP_CP13を用いてSiOを研磨したときの研磨レートよりも、約2倍、高い。 The polishing rate when SiO 2 is polished using the polishing compositions COMP1 to COMP9 is about twice as high as the polishing rate when SiO 2 is polished using the polishing compositions COMP1_CP1 to COMP_CP13. .
 特に、研磨用組成物COMP1を用いた場合、2098(Å/min)の研磨レートが得られた。 In particular, when the polishing composition COMP1 was used, a polishing rate of 2098 (Å / min) was obtained.
 また、酸性のアミノ酸であるアスパラギン酸からなる電解質を添加剤として含む研磨用組成物COMP6を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも高い。中性のアミノ酸であるアスパラギンからなる電解質を添加剤として含む研磨用組成物COMP13を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも高い。中性のアミノ酸であるアラニンからなる電解質を添加剤として含む研磨用組成物COMP23を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも高い。塩基性のアミノ酸であるアリギニンからなる電解質を添加剤として含む研磨用組成物COMP_CP12を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも低い。 Further, the polishing rate when using the polishing composition COMP6 containing an electrolyte composed of an acidic amino acid aspartic acid as an additive is higher than the polishing rate when using the polishing composition COMP_CP1. The polishing rate when the polishing composition COMP13 containing an electrolyte composed of asparagine, which is a neutral amino acid, is used as an additive is higher than the polishing rate when the polishing composition COMP_CP1 is used. The polishing rate when the polishing composition COMP23 containing an electrolyte composed of a neutral amino acid alanine as an additive is used is higher than the polishing rate when the polishing composition COMP_CP1 is used. The polishing rate when using the polishing composition COMP_CP12 containing an electrolyte composed of arginine that is a basic amino acid as an additive is lower than the polishing rate when using the polishing composition COMP_CP1.
 従って、酸性または中性のアミノ酸からなる電解質を添加することによって、研磨レートは、向上し、塩基性のアミノ酸からなる電解質を添加することによって、研磨レートは、低下する。 Therefore, the polishing rate is improved by adding an electrolyte made of an acidic or neutral amino acid, and the polishing rate is lowered by adding an electrolyte made of a basic amino acid.
 そこで、この発明の実施の形態においては、酸性または中性のアミノ酸からなる電解質を添加剤として添加することにしたものである。 Therefore, in the embodiment of the present invention, an electrolyte composed of an acidic or neutral amino acid is added as an additive.
 更に、アルコールからなる電解質を添加剤として含む研磨用組成物COMP28~COMP31を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも高い。 Furthermore, the polishing rate when using the polishing compositions COMP28 to COMP31 containing an electrolyte made of alcohol as an additive is higher than the polishing rate when using the polishing composition COMP_CP1.
 従って、この発明の実施の形態においては、アルコールからなる電解質を添加剤として添加することにしたものである。 Therefore, in the embodiment of the present invention, an electrolyte made of alcohol is added as an additive.
 更に、アミンからなる電解質を添加剤として含む研磨用組成物COMP_CP7,COMP_CP10を用いたときの研磨レートは、研磨用組成物COMP_CP1を用いたときの研磨レートよりも低い。 Furthermore, the polishing rate when using the polishing compositions COMP_CP7 and COMP_CP10 containing an amine electrolyte as an additive is lower than the polishing rate when using the polishing composition COMP_CP1.
 従って、アミンからなる電解質を添加することによって、研磨レートは、低下する。 Therefore, the polishing rate is lowered by adding an electrolyte made of amine.
 そこで、この発明の実施の形態においては、アミンからなる電解質を添加剤から排除することにしたものである。 Therefore, in the embodiment of the present invention, the electrolyte composed of amine is excluded from the additive.
 研磨用組成物COMP1は、硫酸の塩である硫酸アンモニウムを添加剤として含む。研磨用組成物COMP2は、硫酸の塩である硫酸カリウムを添加剤として含む。研磨用組成物COMP4は、グリコール酸を添加剤として含む。研磨用組成物COMP5は、ピロ硫酸の塩であるピロ硫酸カリウムを添加剤として含む。研磨用組成物COMP7は、硫酸を添加剤として含む。研磨用組成物COMP8は、ピロリン酸を添加剤として含む。研磨用組成物COMP9は、リン酸を添加剤として含む。研磨用組成物COMP10は、硝酸を添加剤として含む。研磨用組成物COMP17は、炭酸の塩である炭酸水素アンモニウムを添加剤として含む。研磨用組成物COMP18は、過硫酸の塩である過硫酸アンモニウムを添加剤として含む。研磨用組成物COMP19は、チオ硫酸の塩であるチオ硫酸アンモニウムを添加剤として含む。研磨用組成物COMP21は、ポリリン酸を添加剤として含む。 Polishing composition COMP1 contains ammonium sulfate, which is a salt of sulfuric acid, as an additive. Polishing composition COMP2 contains potassium sulfate which is a salt of sulfuric acid as an additive. Polishing composition COMP4 contains glycolic acid as an additive. Polishing composition COMP5 contains potassium pyrosulfate, which is a salt of pyrosulfuric acid, as an additive. Polishing composition COMP7 contains a sulfuric acid as an additive. Polishing composition COMP8 contains pyrophosphoric acid as an additive. Polishing composition COMP9 contains phosphoric acid as an additive. Polishing composition COMP10 contains nitric acid as an additive. Polishing composition COMP17 contains ammonium hydrogen carbonate, which is a salt of carbonic acid, as an additive. Polishing composition COMP18 contains ammonium persulfate, which is a salt of persulfuric acid, as an additive. Polishing composition COMP19 contains ammonium thiosulfate, which is a salt of thiosulfuric acid, as an additive. Polishing composition COMP21 contains polyphosphoric acid as an additive.
 そして、硫酸、グリコール酸、ピロ硫酸、ピロリン酸、リン酸、硝酸、炭酸、過硫酸、、チオ硫酸およびポリリン酸は、無機オキソ酸である。 And sulfuric acid, glycolic acid, pyrosulfuric acid, pyrophosphoric acid, phosphoric acid, nitric acid, carbonic acid, persulfuric acid, thiosulfuric acid and polyphosphoric acid are inorganic oxo acids.
 従って、研磨用組成物COMP1,COMP2,COMP4,COMP5,COMP7~COMP10,COMP17~COMP19,COMP21は、無機オキソ酸、または無機オキソ酸の塩からなる電解質を添加剤として含む。 Therefore, the polishing compositions COMP1, COMP2, COMP4, COMP5, COMP7 to COMP10, COMP17 to COMP19, COMP21 contain an electrolyte made of an inorganic oxo acid or a salt of an inorganic oxo acid as an additive.
 また、研磨用組成物COMP11は、シュウ酸を添加剤として含む。研磨用組成物COMP12は、PAA(ポリアクリル酸)からなる電解質を添加剤として含む。研磨用組成物COMP14は、フタル酸を添加剤として含む。研磨用組成物COMP15は、安息香酸を添加剤として含む。研磨用組成物COMP16は、マロン酸を添加剤として含む。研磨用組成物COMP20は、メチルスルホン酸を添加剤として含む。研磨用組成物COMP22は、乳酸を添加剤として含む。研磨用組成物COMP24は、マレイン酸を添加剤として含む。研磨用組成物COMP25は、酒石酸を添加剤として含む。研磨用組成物COMP26は、クエン酸を添加剤として含む。研磨用組成物COMP27は、ベンゼンスルホン酸を添加剤として含む。 Moreover, polishing composition COMP11 contains oxalic acid as an additive. Polishing composition COMP12 contains the electrolyte which consists of PAA (polyacrylic acid) as an additive. Polishing composition COMP14 contains phthalic acid as an additive. Polishing composition COMP15 contains benzoic acid as an additive. Polishing composition COMP16 contains malonic acid as an additive. Polishing composition COMP20 contains methylsulfonic acid as an additive. Polishing composition COMP22 contains lactic acid as an additive. Polishing composition COMP24 contains maleic acid as an additive. Polishing composition COMP25 contains tartaric acid as an additive. Polishing composition COMP26 contains a citric acid as an additive. Polishing composition COMP27 contains benzenesulfonic acid as an additive.
 そして、シュウ酸、フタル酸、安息香酸、マロン酸、メチルスルホン酸、乳酸、マレイン酸、酒石酸、クエン酸、ポリアクリル酸およびベンゼンスルホン酸は、有機オキソ酸である。 And oxalic acid, phthalic acid, benzoic acid, malonic acid, methylsulfonic acid, lactic acid, maleic acid, tartaric acid, citric acid, polyacrylic acid and benzenesulfonic acid are organic oxo acids.
 従って、研磨用組成物COMP11,COMP12,COMP14~COMP16,COMP20,COMP22,COMP24~COMP27は、有機オキソ酸からなる電解質を添加剤として含む。 Therefore, the polishing compositions COMP11, COMP12, COMP14 to COMP16, COMP20, COMP22, COMP24 to COMP27 contain an electrolyte made of an organic oxo acid as an additive.
 更に、研磨用組成物COMP3は、塩酸からなる電解質を添加剤として含む。 Furthermore, the polishing composition COMP3 contains an electrolyte composed of hydrochloric acid as an additive.
 更に、研磨用組成物COMP6は、アスパラギン酸を添加剤として含む。研磨用組成物COMP13は、アスパラギンを添加剤として含む。研磨用組成物COMP23は、アラニンを添加剤として含む。 Further, the polishing composition COMP6 contains aspartic acid as an additive. Polishing composition COMP13 contains asparagine as an additive. Polishing composition COMP23 contains alanine as an additive.
 そして、アスパラギン酸、アスパラギンおよびアラニンは、酸性または中性のアミノ酸である。 And aspartic acid, asparagine and alanine are acidic or neutral amino acids.
 従って、研磨用組成物COMP6,COMP13,COMP23は、酸性または中性のアミノ酸からなる電解質を添加剤として含む。 Therefore, the polishing compositions COMP6, COMP13, and COMP23 contain an electrolyte composed of an acidic or neutral amino acid as an additive.
 更に、研磨用組成物COMP28は、ブタノールを添加剤として含む。研磨用組成物COMP29は、グルセリンを添加剤として含む。研磨用組成物COMP30は、プロパノールを添加剤として含む。研磨用組成物COMP31は、エタノールを添加剤として含む。 Furthermore, the polishing composition COMP28 contains butanol as an additive. Polishing composition COMP29 contains glycerol as an additive. Polishing composition COMP30 contains propanol as an additive. Polishing composition COMP31 contains ethanol as an additive.
 そして、ブタノール、グルセリン、プロパノールおよびエタノールは、アルコールである。 And butanol, glycerin, propanol and ethanol are alcohols.
 従って、研磨用組成物COMP28~COMP31は、アルコールからなる電解質を添加剤として含む。 Therefore, the polishing compositions COMP28 to COMP31 contain an electrolyte made of alcohol as an additive.
 その結果、研磨用組成物COMP1~COMP31は、無機オキソ酸、無機オキソ酸の塩、有機オキソ酸、塩酸、酸性または中世のアミノ酸、およびアルコールのいずれかからなる電解質を添加剤として含む。 As a result, the polishing compositions COMP1 to COMP31 contain as an additive an electrolyte composed of any of inorganic oxoacids, salts of inorganic oxoacids, organic oxoacids, hydrochloric acid, acidic or medieval amino acids, and alcohols.
 この場合、無機オキソ酸、無機オキソ酸の塩、有機オキソ酸、塩酸、酸性または中世のアミノ酸、およびアルコールは、水溶液中で水素イオンを放出する。 In this case, inorganic oxo acids, salts of inorganic oxo acids, organic oxo acids, hydrochloric acid, acidic or medieval amino acids, and alcohols release hydrogen ions in aqueous solution.
 従って、研磨用組成物COMP1~COMP31は、水溶液中で水素イオンを放出する電解質または電解質の塩を添加剤として含む。 Therefore, the polishing compositions COMP1 to COMP31 contain an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution as an additive.
 その結果、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤を添加することによって、SiOの研磨レートを向上できることが実証された。 As a result, it was proved that the polishing rate of SiO 2 can be improved by adding an additive made of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
 有機オキソ酸の塩、塩酸塩、およびアミノ酸塩も、水溶液中で水素イオンを放出する。 Organic oxo acid salts, hydrochlorides, and amino acid salts also release hydrogen ions in aqueous solution.
 従って、この発明の実施の形態における研磨用組成物COMPは、無機オキソ酸、無機オキソ酸の塩、有機オキソ酸、有機オキソ酸の塩、塩酸、塩酸塩、酸性または中性のアミノ酸、酸性または中性のアミノ酸の塩およびアルコールのいずれかからなる電解質を添加剤として含んでいればよい。即ち、研磨用組成物COMPは、オキソ酸、オキソ酸塩、塩酸、塩酸塩、酸性または中性のアミノ酸、酸性または中性のアミノ酸の塩およびアルコールのいずれかからなる電解質を添加剤として含んでいればよい。そして、研磨用組成物COMPは、一般的には、水溶液中で水素イオンを放出する電解質または電解質の塩からなる添加剤を含んでいればよい。 Therefore, the polishing composition COMP in the embodiment of the present invention comprises an inorganic oxo acid, a salt of an inorganic oxo acid, an organic oxo acid, a salt of an organic oxo acid, hydrochloric acid, a hydrochloride, an acidic or neutral amino acid, an acidic or neutral An electrolyte composed of either a neutral amino acid salt or alcohol may be included as an additive. That is, the polishing composition COMP contains an electrolyte comprising any one of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, acidic or neutral amino acid, acidic or neutral amino acid salt and alcohol as an additive. It only has to be. The polishing composition COMP generally only needs to contain an additive made of an electrolyte or an electrolyte salt that releases hydrogen ions in an aqueous solution.
 研磨用組成物COMPは、好ましくは、オキソ酸、オキソ酸塩、塩酸、塩酸塩、酸性または中性のアミノ酸、および酸性または中性のアミノ酸の塩のいずれかからなる電解質を添加剤として含む。 Polishing composition COMP preferably contains, as an additive, an electrolyte composed of any of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, acidic or neutral amino acid, and acidic or neutral amino acid salt.
 また、研磨用組成物COMPの研磨対象は、SiOに限らず、一般的には、SiO(0<x≦2)であればよい。 Further, the polishing target of the polishing composition COMP is not limited to SiO 2 , and generally may be SiO x (0 <x ≦ 2).
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 この発明は、SiO(0<x≦2)を研磨する研磨用組成物に適用可能である。 The present invention is applicable to a polishing composition for polishing SiO x (0 <x ≦ 2).

Claims (4)

  1.  コロイダルシリカと、
     水溶液中で水素イオンを放出する電解質または前記電解質の塩からなる添加剤とを含む研磨用組成物。
    Colloidal silica,
    A polishing composition comprising an electrolyte that releases hydrogen ions in an aqueous solution or an additive comprising a salt of the electrolyte.
  2.  前記添加剤は、オキソ酸、オキソ酸塩、塩酸、塩酸塩、酸性または中性のアミノ酸、および酸性または中性のアミノ酸の塩のいずれかからなる、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the additive comprises any one of oxo acid, oxo acid salt, hydrochloric acid, hydrochloride, acidic or neutral amino acid, and acidic or neutral amino acid salt.
  3.  前記添加剤は、硫酸、ピロ硫酸、リン酸、ピロリン酸、またはこれらの塩からなり、
     前記添加剤の濃度は、当該研磨用組成物全体に対して2重量%以下である、請求項2に記載の研磨用組成物。
    The additive comprises sulfuric acid, pyrosulfuric acid, phosphoric acid, pyrophosphoric acid, or a salt thereof,
    The polishing composition according to claim 2, wherein the concentration of the additive is 2% by weight or less with respect to the entire polishing composition.
  4.  前記添加剤の濃度は、当該研磨用組成物全体に対して1重量%以下である、請求項3に記載の研磨用組成物。 The polishing composition according to claim 3, wherein the concentration of the additive is 1% by weight or less with respect to the entire polishing composition.
PCT/JP2011/051701 2010-02-03 2011-01-28 Polishing composition WO2011096331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180008038.8A CN102741370B (en) 2010-02-03 2011-01-28 Composition for polishing
JP2011552749A JP5132820B2 (en) 2010-02-03 2011-01-28 Polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-022411 2010-02-03
JP2010022411 2010-02-03

Publications (1)

Publication Number Publication Date
WO2011096331A1 true WO2011096331A1 (en) 2011-08-11

Family

ID=44355330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051701 WO2011096331A1 (en) 2010-02-03 2011-01-28 Polishing composition

Country Status (5)

Country Link
JP (1) JP5132820B2 (en)
CN (1) CN102741370B (en)
MY (1) MY159481A (en)
TW (1) TWI537368B (en)
WO (1) WO2011096331A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189828A (en) * 2014-03-27 2015-11-02 株式会社フジミインコーポレーテッド polishing composition
JP2019160875A (en) * 2018-03-08 2019-09-19 株式会社フジミインコーポレーテッド Surface-processing composition, manufacturing method thereof, surface-processing method and method for manufacturing semiconductor substrate
JP7409918B2 (en) 2020-03-13 2024-01-09 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484024B (en) * 2013-09-13 2014-10-15 上海新安纳电子科技有限公司 Chemico-mechanical polishing liquid for silicon dioxide dielectric materials and preparing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
JP2009164188A (en) * 2007-12-28 2009-07-23 Fujimi Inc Polishing composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319887B2 (en) * 2005-01-05 2013-10-16 ニッタ・ハース株式会社 Slurry for polishing
JP2008124377A (en) * 2006-11-15 2008-05-29 Jsr Corp Aqueous dispersant for chemical-mechanical polishing, chemical-mechanical polishing method, and kit for preparing aqueous dispersant for chemical-mechanical polishing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
JP2009164188A (en) * 2007-12-28 2009-07-23 Fujimi Inc Polishing composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189828A (en) * 2014-03-27 2015-11-02 株式会社フジミインコーポレーテッド polishing composition
JP2019160875A (en) * 2018-03-08 2019-09-19 株式会社フジミインコーポレーテッド Surface-processing composition, manufacturing method thereof, surface-processing method and method for manufacturing semiconductor substrate
JP7330668B2 (en) 2018-03-08 2023-08-22 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing surface treatment composition, method for surface treatment, and method for production of semiconductor substrate
JP7409918B2 (en) 2020-03-13 2024-01-09 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate

Also Published As

Publication number Publication date
CN102741370B (en) 2015-10-14
MY159481A (en) 2017-01-13
JPWO2011096331A1 (en) 2013-06-10
TWI537368B (en) 2016-06-11
CN102741370A (en) 2012-10-17
JP5132820B2 (en) 2013-01-30
TW201137099A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
US20130005219A1 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using same
JP5084670B2 (en) Silica sol and method for producing the same
US10297461B2 (en) CMP polishing agent, manufacturing method thereof, and method for polishing substrate
JP5333222B2 (en) CMP slurry for polishing silicon film and polishing method
TWI718225B (en) Polishing composition and silicon substrate polishing method
JP5132820B2 (en) Polishing composition
TW201350567A (en) Grinding fluid and grinding method for substrate using the grinding fluid
US20080171441A1 (en) Polishing compound and method for producing semiconductor integrated circuit device
TW200936735A (en) Halide anions for metal removal rate control
KR101656421B1 (en) Slurry composition
TWI743245B (en) Polishing composition and silicon wafer polishing method
TWI546371B (en) Polishing slurry composition
TW201708453A (en) Slurry composition for tungsten polishing
KR102613230B1 (en) Abrasives for synthetic quartz glass substrates and polishing methods for synthetic quartz glass substrates
US20120175550A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using same
KR20130133968A (en) Polishing composition and slurry composition comprising the same
KR101470980B1 (en) Surface-modified abrasive particle and slurry composition having the same
JP2006080406A (en) Composition for polishing
JP6191433B2 (en) Abrasive and polishing method
TWI739945B (en) Polishing composition and silicon wafer polishing method
JP2010192904A (en) Composition for polishing
US20230025469A1 (en) Cerium-based particle and polishing slurry composition including the same
KR102618202B1 (en) Abrasives for synthetic quartz glass substrates and polishing methods for synthetic quartz glass substrates
WO2011006348A1 (en) Chemical mechanical polishing liquid
KR20220097194A (en) Polishing compostion for semiconductor process, manufacturing method of polishing composition and method for manufacturing semiconductor device by using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008038.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552749

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12012501585

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003957

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11739680

Country of ref document: EP

Kind code of ref document: A1