WO2011096048A1 - Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof - Google Patents

Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof Download PDF

Info

Publication number
WO2011096048A1
WO2011096048A1 PCT/JP2010/051445 JP2010051445W WO2011096048A1 WO 2011096048 A1 WO2011096048 A1 WO 2011096048A1 JP 2010051445 W JP2010051445 W JP 2010051445W WO 2011096048 A1 WO2011096048 A1 WO 2011096048A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
component
mass
carbon monoxide
film
Prior art date
Application number
PCT/JP2010/051445
Other languages
French (fr)
Japanese (ja)
Inventor
瀬田 寧
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Priority to JP2011552603A priority Critical patent/JP5693474B2/en
Priority to PCT/JP2010/051445 priority patent/WO2011096048A1/en
Publication of WO2011096048A1 publication Critical patent/WO2011096048A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a porous film suitable for treatment of carbon monoxide generated in a container in which a power storage element is enclosed in a power storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor.
  • a porous film that can be suitably used as a separator for a nonaqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and electric storage devices such as electric double layer capacitors have been attracting attention in a wide range of mobile devices such as mobile phones, office automation equipment, electric vehicles and hybrid vehicles. Use is expanding.
  • Non-aqueous electrolyte secondary batteries and electric double layer capacitors have a significant decrease in performance when moisture is present in the container in which the electricity storage element is sealed, and thus the life of the battery is reduced. It is enclosed in a container such as an aluminum laminate film.
  • non-aqueous electrolyte secondary batteries and electric double layer capacitors have the property that carbon monoxide gas is likely to be generated in the container in which the electricity storage element is enclosed, and as a result, the life is shortened due to deformation and rupture of the container. There is a problem of inviting.
  • a method for removing carbon monoxide in a gas a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and an alkaline porous material as a carbon dioxide removing agent (for example, Patent Documents) 1) and a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removal agent (for example, Patent Document 2) is known.
  • Patent Documents a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removal agent
  • Patent Document 2 a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removal agent
  • the nonaqueous electrolyte secondary battery and the electric double layer capacitor do not have a supply source of gaseous oxygen to the inside of the container in which the electricity storage element is enclosed. This is because, for the purpose of enclosing more power storage elements in the container, there is no space in the production stage where gaseous air occupies, and since the container is sealed, it is sealed from the outside. This is because there is virtually no supply of gaseous oxygen.
  • carbon monoxide can be oxidized to carbon dioxide in the absence of gaseous oxygen
  • the carbon monoxide gas generated in the container is absorbed by adsorbing the carbon dioxide generated by the oxidation in the container. It can be processed sufficiently and inexpensively in the container. This is useful for preventing a container in which a power storage element in a power storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor is sealed from being deformed or destroyed by the generation of carbon monoxide gas. As a result, it is advantageous for extending the life of the electricity storage device.
  • the present inventor provides a method capable of sufficiently and inexpensively treating carbon monoxide generated in a closed container containing a substance that substantially does not contain gaseous oxygen and generates carbon monoxide.
  • a molded article comprising a resin composition in which the oxidation of carbon monoxide generated in the closed container to carbon dioxide in the container is incorporated with a carbon monoxide oxidation catalyst in the resin That the carbon monoxide can be satisfactorily treated (absorbed) by further including a carbon dioxide adsorbing substance in the resin composition.
  • a separator is disposed between the positive electrode and the negative electrode of the nonaqueous electrolyte battery. This is an important part for isolating the positive electrode and the negative electrode to prevent a short circuit and ensuring ionic conductivity between the positive electrode and the negative electrode.
  • the molded body as the carbon monoxide absorbent can function as a separator.
  • a porous film containing a thermoplastic resin and a filler As a molded body that can be suitably used as a battery separator, a porous film containing a thermoplastic resin and a filler has been proposed (for example, Patent Document 3).
  • This film is capable of adsorbing one or more gases of CO 2 , CO, CH 4 and C 2 H 4 that are generated by decomposition of the electrolytic solution and can deteriorate the battery performance.
  • Carbon black and calcium carbonate are used. However, carbon black and calcium carbonate have insufficient CO absorption function. Further, since carbon black has conductivity, when it is filled in the separator, there is a risk of battery failure due to a short circuit.
  • a separator for a non-aqueous electrolyte secondary battery in which a gas absorbent is mixed in a separator base material such as a porous film made of a polyolefin resin is also known (for example, Patent Document 4).
  • the gas to be absorbed is not specified, and the gas absorbent is not a combination of a carbon monoxide oxidation catalyst and a carbon dioxide adsorbing material.
  • the present inventor has obtained that a porous film can be obtained by stretching the molded body as the carbon monoxide absorbent, and that the obtained porous film absorbs carbon monoxide when disposed between the electrodes of the battery. It has been found that it can function not only as a material but also as a separator, so that it does not impair the demands for battery size reduction and capacity increase.
  • the present invention (A) 100 parts by mass of resin, A porous film comprising a resin composition comprising (B) 1 to 300 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 300 parts by mass of a carbon dioxide adsorbing substance.
  • the porous film of the present invention is porous and has a carbon monoxide absorption function, and can function as a carbon monoxide absorber and separator when disposed between electrodes of a non-aqueous electrolyte secondary battery. It is very advantageous in terms of maintaining the performance of the battery and reducing the size and capacity of the battery.
  • the “porous film” means a film having air permeability.
  • the air permeability is indicated by the Gurley air permeability measured according to JIS P8117. The smaller the Gurley air permeability value, the greater the air permeability of the film.
  • the Gurley air permeability is preferably 1000 seconds / 100 cc or less. More preferably, it is 100 to 1000 seconds / 100 cc, and particularly 200 to 600 seconds / 100 cc.
  • the component (A) in the present invention may be anything as long as it is a resin, and includes, for example, a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, and rubber.
  • ethylene-based copolymer such as ultra-low density polyethylene, linear low-density polyethylene, low-density polyethylene, and high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate, etc. Examples thereof include a polymer, a propylene-based polymer, and a propylene-based copolymer.
  • Examples of the rubber include ethylene- ⁇ olefin copolymer rubber, ethylene propylene rubber (EPDM), butyl rubber (IIR), isoprene rubber, and hydrogenated styrene elastomer.
  • Examples of the ⁇ olefin include propylene, 1-butene, 1-hexene, 1-octene and 1-decane.
  • Component (A) is an ethylene containing an ethylene polymer (A-1) and an acid-modified ethylene resin (A-2) in terms of miscibility with components (B) and (C) as fillers. It is preferable that it is a resin composition.
  • the ethylene polymer (A-1) is excellent in filler acceptability, and the acid-modified ethylene resin (A-2) improves the dispersion of the component (B) and the component (C) in the component (A).
  • Examples of the ethylene polymer (A-1) include low density polyethylene, linear low density polyethylene, ultra low density polyethylene, high density polyethylene, ethylene and ⁇ -olefin (for example, 1-butene, 1-hexene, 1 -Octene and the like), and these can be used alone or in combination of two or more.
  • the battery separator when the battery separator has low heat resistance, it may occur that the battery separator melts at a temperature within a range assumed as a normal use environment of the battery to block ion movement between the electrodes. Therefore, it is particularly preferable that the ethylene polymer (A-1) satisfies the following (i) to (iv) so as to have sufficient miscibility with the filler and sufficient heat resistance.
  • the peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
  • the heat of fusion ( ⁇ H) in the DSC melting curve is 90 to 180 J / g.
  • the crystallinity (Xc110) at 110 ° C. is 10 to 60%, and (iv) MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min.
  • the peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher.
  • the heat of fusion ( ⁇ H) is less than 90 J / g, the heat resistance may be insufficient, and if it exceeds 180 J / g, the miscibility with the filler becomes insufficient and the film-forming property is poor. There is a case.
  • the heat of fusion ( ⁇ H) is preferably 100 to 170 J / g.
  • the crystallinity (Xc110) is less than 10%, the heat resistance may be insufficient, and if it exceeds 60%, the miscibility with the filler may be insufficient and the film forming property may be poor.
  • the crystallinity (Xc110) is preferably 15 to 45%.
  • the crystallinity at 110 ° C. means the ratio of the heat of fusion at 110 ° C. or higher to the total heat of fusion ⁇ H in the DSC melting curve.
  • the MFR is 10 g / 10 min or more, the miscibility between the polyethylene resin composition (A) and the water-absorbing filler (B) is insufficient, or the pullability during film formation is reduced. If it is less than 0.1 g / 10 minutes, it may be difficult to adjust the thickness of the film.
  • the MFR is preferably 0.2 to 7 g / 10 min, most preferably 0.5 to 5 g / 10 min.
  • DSC melting curves are obtained by using a DSC Q1000 model of TA Instruments (TE Instruments Japan Co., Ltd.) and holding the sample at 190 ° C. for 5 minutes. Obtained by performing DSC measurement with a temperature program of cooling to ⁇ 10 ° C. at a temperature decrease rate of 10 ° C./min, holding at ⁇ 10 ° C. for 5 minutes, and then heating to 190 ° C. at a temperature increase rate of 10 ° C./min. It is a curved line.
  • the entire mixture may satisfy the above requirements (i) to (iv).
  • ethylene polymer (A-1) examples include ultra-low density polyethylene commercially available under the trade name KF360 from Nippon Polyethylene Co., Ltd. and linear chains commercially available under the trade names KF271 and UF240. Linear low density polyethylene commercially available from Prime Polymer Co., Ltd. under the trade names SP2040 and SP2520.
  • the acid-modified ethylene-based resin (A-2) is an ethylene-based resin obtained by graft polymerization and / or copolymerization of an unsaturated carboxylic acid or derivative thereof, and may be used alone or in combination of two or more. Can do.
  • unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like.
  • ethylene resin examples include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer. Is mentioned.
  • the acid-modified ethylene resin (A-2) preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the drawability during film formation may be reduced. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film.
  • acid-modified ethylene resin (A-2) examples include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., and Polybond manufactured by Crompton (product) Name) and Bond First (trade name) manufactured by Sumitomo Chemical Co., Ltd.
  • the polyethylene resin composition is composed of 99 to 60% by mass of the ethylene polymer (A-1) and the acid-modified ethylene resin (A-2). 1 to 40% by mass (here, the total amount of component (A-1) and component (A-2) is 100% by mass). More preferably, they are 97 to 70% by mass of the ethylene polymer (A-1) and 3 to 30% by mass of the acid-modified ethylene resin (A-2), and more preferably, the ethylene polymer (A-1). 95 to 80% by mass and 5 to 20% by mass of the acid-modified ethylene resin (A-2).
  • any of composite metal oxide catalysts such as hopcalite (copper-manganese composite oxide) and supported noble metal catalysts known as carbon monoxide oxidation catalysts can be used.
  • the supported noble metal catalyst includes a metal oxide-supported noble metal catalyst such as palladium on alumina (a catalyst in which a noble metal is supported on the metal oxide surface), a noble metal-reducible oxide catalyst such as palladium-cerium oxide, titanium oxide-supported platinum, etc.
  • a noble metal-supported photocatalyst, a supported Wacker type catalyst such as palladium chloride-copper chloride supported on carbon black, and a gold nanoparticle catalyst (a catalyst in which gold nanoparticles are supported on a metal oxide surface).
  • component (B) poisoning / deactivation with high concentration of carbon monoxide is difficult to occur
  • component (B) poisoning / deactivation of component (B)
  • a carbon monoxide oxidation catalyst can be used individually by 1 type or in combination of 2 or more types. Even if the composition is the same as that of hopcalite, it is not in the form of a complex oxide, but in the form of a mixture in which copper (II) oxide and manganese (IV) oxide are simply mixed. Insufficient function.
  • strontium oxide As the component (C), strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more, and magnesium oxide having a BET specific surface area of 50 m 2 / g or more can be preferably used.
  • a component (C) can be used individually by 1 type or in combination of 2 or more types.
  • Component (B) and Component (C) have a particle size distribution of 30 ⁇ m or less (D99) and a particle size of 20 ⁇ m or less (D50) as the particle size distribution from the viewpoint of miscibility with component (A) and melt kneading. What has is preferable.
  • D99 and D55 refer to the particle diameter at the point where the particle diameter distribution becomes 99 mass% and 50 mass%, respectively, from the smaller particle diameter.
  • D99 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • D50 is preferably 0.01 to 15 ⁇ m, more preferably 0.1 to 10 ⁇ m. Coarse particles that deviate from the above range may become a defect or foreign matter of the resulting film.
  • Control of the particle size distribution includes a method in which large particles are produced and then pulverized and sized, and a method in which fine particles are produced and sized from the beginning. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and moldability, a method of generating fine particles from the beginning is more preferable.
  • the amount of component (B) is 1 to 300 parts by weight, preferably 3 to 200 parts by weight, more preferably 5 to 150 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the lower limit, the function of oxidizing carbon monoxide to carbon dioxide becomes unsatisfactory. When the above upper limit is exceeded, melt kneading at the time of compound production and raw film forming may become difficult. In addition, it becomes difficult to apply a stretching method to impart porosity.
  • the amount of component (C) is 1 to 300 parts by weight, preferably 10 to 250 parts by weight, more preferably 20 to 200 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the lower limit, the function of oxidizing carbon monoxide to carbon dioxide becomes unsatisfactory. When the above upper limit is exceeded, melt kneading at the time of compound production and raw film forming may become difficult. In addition, it becomes difficult to apply a stretching method to impart porosity.
  • the resin composition for the porous film of the present invention preferably further contains a slip agent.
  • a slip agent examples include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil.
  • a preferable amount of the slip agent to be added is 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A).
  • the resin composition for the porous film of the present invention may further contain a moisture absorbent. Thereby, the removal of moisture can be performed simultaneously with the removal of carbon monoxide.
  • a moisture absorbent A-type zeolite such as molecular sieve 3A, molecular sieve 4A, molecular sieve 5A and the like is preferable.
  • the amount of the water absorbent added is preferably 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, and still more preferably 15 to 120 parts by weight with respect to 100 parts by weight of the component (A).
  • the resin composition for the porous film of the present invention includes, as necessary, a phosphorus-based, phenol-based, sulfur-based antioxidant, an anti-aging agent, a light stabilizer, a weathering agent such as an ultraviolet absorber, Anti-copper agent, aromatic phosphate metal salt-based, gelol-based nucleating agent, anti-static agent such as glycerin fatty acid monoester, coloring agent, fragrance, antibacterial agent, magnesium oxide, zinc oxide, calcium carbonate, talc
  • additives such as fillers such as metal hydrates, plasticizers such as glycerin fatty acid ester-based, paraffin oil, phthalic acid-based and ester-based plasticizers may be included.
  • the resin composition for the porous film of the present invention can be obtained by melt-kneading necessary components.
  • the melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer.
  • the kneading temperature is preferably higher than the molding temperature in order to avoid moisture absorption foaming troubles during molding.
  • the obtained resin composition can be pelletized by a granulator and then subjected to normal film formation using a T die or the like. In that case, the pelletization is performed using water such as a hot cut method. It is preferable to carry out by a method that does not intervene. Further, a vacuum vent may be provided or a gear pump or the like may be used.
  • the porous film of the present invention can be obtained by imparting porosity to the film obtained above.
  • the method for imparting porosity is not particularly limited, and examples thereof include the following. 1.
  • a chemical foaming agent is blended in advance with the resin composition to form a film, and then the foaming agent is decomposed at an appropriate temperature. 2. After the film is impregnated with carbon dioxide as a supercritical fluid, it is vaporized. 3.
  • a plasticizer or the like is preliminarily blended into the resin composition to form a film, and then the plasticizer is extracted by an appropriate method. 4). The film is stretched at an appropriate temperature to generate microvoids at the crystal / amorphous interface or the resin / filler interface. 5.
  • a hole is mechanically opened in the film with a cutting blade, a needle or the like.
  • the methods 4 and 5 are preferable in that no additional substances are required and therefore the oxidation catalyst and the adsorbed substance are not deteriorated.
  • the film in the present invention before imparting porosity has a uniform film thickness and good appearance (no defects such as blisters), it has a uniform film thickness and good appearance by stretching it. From the viewpoint of obtaining a porous film, the above method 4 is particularly preferred.
  • the draw ratio is appropriately adjusted depending on the types and blending amounts of the components (B) and (C), but is usually about 1.1 to 8 times, preferably about 1.2 to 5 times in the vertical and horizontal directions.
  • the stretching temperature is appropriately adjusted depending on the properties of the component (A) that is the base of the film, but a temperature lower than the normal stretching conditions is preferable for the purpose of imparting porosity.
  • the crystallinity of component (A) at the stretching temperature is selected to be 70% or less.
  • the obtained molded body can be subjected to ⁇ -ray irradiation or vulcanization as necessary.
  • the porous film of the present invention thus obtained has a good appearance and no visible defects such as perforations, so there is no risk of short circuit, the thickness is uniform, and it has sufficient carbon monoxide processing capability. Therefore, it can be advantageously used as a separator in a nonaqueous electrolyte battery.
  • Examples 1 to 8, Comparative Examples 1 to 5 and Reference Example 1 The components (parts by mass) shown in Table 1 were dry blended and melt-kneaded with a twin screw extruder TEX28 of Nippon Steel, Ltd. to obtain a resin composition.
  • a film (a) having a film thickness of 100 ⁇ m was obtained by forming a film using a T-die manufactured by the company.
  • the manufacturing conditions are as follows. Resin temperature at twin screw extruder outlet 220 ° C (use vacuum vent) Gear pump outlet resin temperature 220 °C T-die outlet resin temperature 220 ° C Chill roll temperature 40 °C Take-up speed: 6 m / min.
  • the film (a) obtained above was set to 2.0 ⁇ both vertically and horizontally at the stretching temperatures shown in Table 1 using a table-type test stretching device manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the film was stretched twice to obtain a porous film (b) having a film thickness of 25 ⁇ m.
  • the obtained porous film (b) was stored in a gas substitution type glove box (SG-1000 of ASONE CORPORATION) having a dew point temperature of ⁇ 50 ° C. or lower.
  • the following evaluation tests (1) to (6) were conducted. The results are shown in Table 1. For Examples 2 and 8, the following test (7) was also conducted.
  • the Gurley air permeability of the air permeability film (b) was measured according to JIS P8117 using an Oken type air permeability tester manufactured by Asahi Seiko Co., Ltd.
  • the porous films of the present invention of Examples 1 to 8 have a good appearance, excellent absorption and adsorption function of carbon monoxide and carbon dioxide, air permeability, and heat resistance. Is sufficient for battery separators.
  • non-aqueous electrolyte batteries stop the exchange of ions between electrodes when the battery is exposed to a high temperature of 100 to 130 ° C., the separator material melts and closes the holes. ). Therefore, when the porous film of the present invention is used as a separator, it needs heat resistance that does not melt up to 100 ° C.
  • Example 2 which uses the molecular sieve 4A as a component (C), and Example 8 containing a water
  • the water content after 48 hours of immersion was 17 ppm in Example 2 and 18 ppm in Example 8, and both showed sufficient water absorption ability.
  • the films of Comparative Examples 1 and 2 that do not contain the component (B) do not have a carbon monoxide absorbing function.
  • the film of Comparative Example 3 containing no component (C) was able to oxidize carbon monoxide, it could not adsorb carbon dioxide.
  • Comparative Example 4 in which the blending amount of component (B) is too large and Comparative Example 5 in which the blending amount of component (C) is too large the extrusion load increases during continuous production of melt-kneading and raw film formation, and the screw stops. However, a raw film could not be obtained. Therefore, tests (1) to (6) could not be performed.
  • magnesium oxide having a low BET specific surface area was used as the component (C). Magnesium oxide with a low BET specific surface area requires water to absorb carbon dioxide. Therefore, in the tests (3) to (5) performed in an absolutely dry state, carbon monoxide could be oxidized, but carbon dioxide could not be adsorbed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

Provided is a porous film which can function both as a carbon monoxide absorber and as a separator for a battery. A porous film made of a resin composition which comprises (A) 100 parts by mass of a resin, (B) 1 to 300 parts by mass of a catalyst for the oxidation of carbon monoxide, and (C) 1 to 300 parts by mass of a carbon dioxide-adsorbing substance.

Description

一酸化炭素を酸化処理できる多孔質フィルムおよびその用途Porous film capable of oxidizing carbon monoxide and use thereof
本発明は、非水電解質二次電池や電気二重層キャパシタなどの蓄電デバイスにおける、蓄電要素が封入された容器内において発生する一酸化炭素の処理に適する多孔質フィルムに関する。特に、非水電解質二次電池用のセパレータとして好適に使用できる多孔質フィルムに関する。 The present invention relates to a porous film suitable for treatment of carbon monoxide generated in a container in which a power storage element is enclosed in a power storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor. In particular, the present invention relates to a porous film that can be suitably used as a separator for a nonaqueous electrolyte secondary battery.
近年、リチウムイオン二次電池などの非水電解質二次電池や電気二重層キャパシタなどの蓄電デバイスは、携帯電話等の携帯機器やOA機器、電気自動車やハイブリッド自動車など、広い範囲で注目され、その使用が拡大している。 In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and electric storage devices such as electric double layer capacitors have been attracting attention in a wide range of mobile devices such as mobile phones, office automation equipment, electric vehicles and hybrid vehicles. Use is expanding.
非水電解質二次電池や電気二重層キャパシタは、その蓄電要素が封入された容器内に水分が存在すると性能が著しく低下し、したがって寿命の低下を招くため、それらの蓄電要素は、金属缶、アルミラミネートフィルムなどの容器内に封入されている。 Non-aqueous electrolyte secondary batteries and electric double layer capacitors have a significant decrease in performance when moisture is present in the container in which the electricity storage element is sealed, and thus the life of the battery is reduced. It is enclosed in a container such as an aluminum laminate film.
しかし、非水電解質二次電池や電気二重層キャパシタは,蓄電要素が封入された容器内で一酸化炭素ガスが発生しやすいという性質があり、その結果、容器の変形・破裂による寿命の低下を招くという問題がある。 However, non-aqueous electrolyte secondary batteries and electric double layer capacitors have the property that carbon monoxide gas is likely to be generated in the container in which the electricity storage element is enclosed, and as a result, the life is shortened due to deformation and rupture of the container. There is a problem of inviting.
一酸化炭素ガスの発生による容器の変形・破裂を防ぐために、金属缶にガス放出弁を設けることが広く行われているが、ガスの放出は外気からの水分の浸入を招き、寿命の低下は避けられない。また、ラミネートフィルム外装のタイプでは、ガス放出弁を設けることは困難である。 In order to prevent deformation and rupture of the container due to the generation of carbon monoxide gas, it is widely practiced to provide a gas release valve on the metal can, but the release of the gas leads to the ingress of moisture from the outside air, and the service life is reduced. Inevitable. Moreover, it is difficult to provide a gas release valve in the laminated film exterior type.
一酸化炭素ガスを直接吸収・吸着する物質がいくつか知られているが、それらは、単位量当たり極少量の一酸化炭素しか吸収できず、充分な量の一酸化炭素を吸収・吸着させるという目的には不向きである。 Several substances that directly absorb and adsorb carbon monoxide gas are known, but they can only absorb a very small amount of carbon monoxide per unit amount and absorb and adsorb a sufficient amount of carbon monoxide. Not suitable for the purpose.
一方、気体中の一酸化炭素を除去する方法として、一酸化炭素酸化触媒としての金ナノ粒子触媒と二酸化炭素除去剤としてのアルカリ性多孔質体とを含有する触媒を使用する方法(例えば、特許文献1)および一酸化炭素酸化触媒としての金ナノ粒子触媒と二酸化炭素及び水の除去剤としてのゼオライトとを含有する触媒を使用する方法(例えば、特許文献2)が知られている。これらの方法は、一酸化炭素ガスを二酸化炭素ガスに酸化させ、その結果生じた二酸化炭素ガスを二酸化炭素吸着剤によって除去するものであり、一酸化炭素ガスを直接除去するよりも安価であるが、一酸化炭素ガスの酸化には気体酸素の存在を必要とする。 On the other hand, as a method for removing carbon monoxide in a gas, a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and an alkaline porous material as a carbon dioxide removing agent (for example, Patent Documents) 1) and a method using a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removal agent (for example, Patent Document 2) is known. These methods oxidize carbon monoxide gas to carbon dioxide gas and remove the resulting carbon dioxide gas with a carbon dioxide adsorbent, which is less expensive than removing carbon monoxide gas directly. The oxidation of carbon monoxide gas requires the presence of gaseous oxygen.
非水電解質二次電池や電気二重層キャパシタは、その蓄電要素が封入された容器の内部への気体酸素の供給源を有しない。これは、容器内により多くの蓄電要素を封入する目的から、製造された段階ではその内部に気体空気が占めるような空間は存在していないし、また、上記容器は密封されているので外界からの気体酸素供給も実質的に有り得ないからである。 The nonaqueous electrolyte secondary battery and the electric double layer capacitor do not have a supply source of gaseous oxygen to the inside of the container in which the electricity storage element is enclosed. This is because, for the purpose of enclosing more power storage elements in the container, there is no space in the production stage where gaseous air occupies, and since the container is sealed, it is sealed from the outside. This is because there is virtually no supply of gaseous oxygen.
気体酸素の不存在下で一酸化炭素を二酸化炭素に酸化することができるならば、酸化によって生じた二酸化炭素を上記容器内で吸着することにより、上記容器内で発生する一酸化炭素ガスを上記容器内で十分にかつ安価に処理することができる。これは、非水電解質二次電池や電気二重層キャパシタなどの蓄電デバイスにおける蓄電要素が封入された容器が、一酸化炭素ガスの発生によって変形・破壊するのを防止する上で有用であり、その結果、上記蓄電デバイスの寿命の長期化に有利である。 If carbon monoxide can be oxidized to carbon dioxide in the absence of gaseous oxygen, the carbon monoxide gas generated in the container is absorbed by adsorbing the carbon dioxide generated by the oxidation in the container. It can be processed sufficiently and inexpensively in the container. This is useful for preventing a container in which a power storage element in a power storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor is sealed from being deformed or destroyed by the generation of carbon monoxide gas. As a result, it is advantageous for extending the life of the electricity storage device.
本発明者は、上記事情を鑑み、気体状酸素が実質的に存在せずかつ一酸化炭素を発生する物質を収容する密閉容器内で発生する一酸化炭素を十分かつ安価に処理できる方法を提供することを目的として鋭意研究した結果、上記密閉容器内において発生した一酸化炭素の上記容器内での二酸化炭素への酸化が、一酸化炭素酸化触媒を樹脂に組み入れた樹脂組成物からなる成形体を上記容器内に予め配置しておくことにより行われ得ること、および上記樹脂組成物にさらに二酸化炭素吸着物質を含めることにより、上記一酸化炭素の処理(吸収)が良好に行われ得ることを見出した(特願2009-023790号および特願2009-023888号)。 In view of the above circumstances, the present inventor provides a method capable of sufficiently and inexpensively treating carbon monoxide generated in a closed container containing a substance that substantially does not contain gaseous oxygen and generates carbon monoxide. As a result of earnest research for the purpose of achieving the above, a molded article comprising a resin composition in which the oxidation of carbon monoxide generated in the closed container to carbon dioxide in the container is incorporated with a carbon monoxide oxidation catalyst in the resin That the carbon monoxide can be satisfactorily treated (absorbed) by further including a carbon dioxide adsorbing substance in the resin composition. (Japanese Patent Application Nos. 2009-023790 and 2009-023888).
しかし、上記成形体を非水電解質二次電池において一酸化炭素吸収材として使用するとき、下記の点でさらに改善の余地がある。すなわち、一酸化炭素は非水電解質二次電池の正極と負極との間で特に発生し、小さな泡でも電池内部抵抗を大きくし、性能を低下させる。また、近年の電子機器の小型化に伴い、非水電解質二次電池の小型化、大容量化が求められており、配置スペースの問題もある。 However, when the molded body is used as a carbon monoxide absorbent in a non-aqueous electrolyte secondary battery, there is room for further improvement in the following points. That is, carbon monoxide is particularly generated between the positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery, and even a small bubble increases the internal resistance of the battery and lowers the performance. In addition, with the recent miniaturization of electronic devices, non-aqueous electrolyte secondary batteries are required to be reduced in size and capacity, and there is also a problem of arrangement space.
一方、非水電解質電池の正極と負極との間には、セパレータが配置されている。これは、正極と負極とを隔離して短絡を防ぎ、かつ正極と負極との間のイオン伝導性を確保するための重要な部品である。 On the other hand, a separator is disposed between the positive electrode and the negative electrode of the nonaqueous electrolyte battery. This is an important part for isolating the positive electrode and the negative electrode to prevent a short circuit and ensuring ionic conductivity between the positive electrode and the negative electrode.
そこで、上記の一酸化炭素吸収材としての成形体がセパレータとしても機能することができるならば、さらに有利である。 Therefore, it is further advantageous if the molded body as the carbon monoxide absorbent can function as a separator.
電池用セパレータとして好適に使用できる成形体として、熱可塑性樹脂と充填材を含む多孔質フィルムが提案されている(例えば、特許文献3)。このフィルムは、電解液の分解によって発生して電池性能を低下させ得るところのCO、CO、CHおよびCの1以上のガスを吸着することができるものであり、充填材としてカーボンブラックおよび炭酸カルシウムが使用されている。しかし、カーボンブラックおよび炭酸カルシウムはCO吸収機能が不十分である。また、カーボンブラックは導電性を有するので、セパレータに充填された場合、短絡による電池の故障を招く恐れがある。 As a molded body that can be suitably used as a battery separator, a porous film containing a thermoplastic resin and a filler has been proposed (for example, Patent Document 3). This film is capable of adsorbing one or more gases of CO 2 , CO, CH 4 and C 2 H 4 that are generated by decomposition of the electrolytic solution and can deteriorate the battery performance. Carbon black and calcium carbonate are used. However, carbon black and calcium carbonate have insufficient CO absorption function. Further, since carbon black has conductivity, when it is filled in the separator, there is a risk of battery failure due to a short circuit.
また、ガス吸収剤が、ポリオレフィン系樹脂から成る多孔質フィルム等のセパレータ基材に混ぜ込まれている非水電解質二次電池用セパレータも知られている(例えば、特許文献4)。しかし、吸収されるガスは特定されておらず、また、上記ガス吸収剤は、一酸化炭素酸化触媒と二酸化炭素吸着物質との組合せではない。 A separator for a non-aqueous electrolyte secondary battery in which a gas absorbent is mixed in a separator base material such as a porous film made of a polyolefin resin is also known (for example, Patent Document 4). However, the gas to be absorbed is not specified, and the gas absorbent is not a combination of a carbon monoxide oxidation catalyst and a carbon dioxide adsorbing material.
特開2004-188243号公報JP 2004-188243 A 国際公開第2005/120686号パンフレットInternational Publication No. 2005/120686 Pamphlet 特開2004-139933号公報JP 2004-139933 A 特開2008-146963号公報JP 2008-146963 A
本発明者は、先の一酸化炭素吸収材としての成形体を延伸することによって多孔質フィルムが得られること、および得られた多孔質フィルムは電池の電極間に配置されると一酸化炭素吸収材として機能するだけでなく、セパレータとしても機能することができ、したがって電池の小型化、大容量化の要求をも損なわないことを見出した。 The present inventor has obtained that a porous film can be obtained by stretching the molded body as the carbon monoxide absorbent, and that the obtained porous film absorbs carbon monoxide when disposed between the electrodes of the battery. It has been found that it can function not only as a material but also as a separator, so that it does not impair the demands for battery size reduction and capacity increase.
すなわち、本発明は、
(A)樹脂 100質量部、
(B)一酸化炭素酸化触媒 1~300質量部、および
(C)二酸化炭素吸着物質 1~300質量部
を含む樹脂組成物からなる多孔質フィルムである。
That is, the present invention
(A) 100 parts by mass of resin,
A porous film comprising a resin composition comprising (B) 1 to 300 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 300 parts by mass of a carbon dioxide adsorbing substance.
本発明の多孔質フィルムは、多孔性であるとともに一酸化炭素吸収機能を有し、非水電解質二次電池の電極間に配置されると、一酸化炭素吸収材兼セパレータとして機能することができ、電池の性能維持の点で、また電池の小型化、大容量化の点において非常に有利である。 The porous film of the present invention is porous and has a carbon monoxide absorption function, and can function as a carbon monoxide absorber and separator when disposed between electrodes of a non-aqueous electrolyte secondary battery. It is very advantageous in terms of maintaining the performance of the battery and reducing the size and capacity of the battery.
本明細書において、「多孔質フィルム」は、透気性を有するフィルムを意味する。なお、透気性は、JIS P8117にしたがって測定されるガーレー透気度によって示される。ガーレー透気度の値が小さいほど、フィルムの透気性が大きい。本発明の多孔質フィルムを電池用セパレータとして使用する場合には、ガーレー透気度が1000秒/100cc以下であることが好ましい。より好ましくは100~1000秒/100ccであり、特に200~600秒/100ccである。 In the present specification, the “porous film” means a film having air permeability. The air permeability is indicated by the Gurley air permeability measured according to JIS P8117. The smaller the Gurley air permeability value, the greater the air permeability of the film. When the porous film of the present invention is used as a battery separator, the Gurley air permeability is preferably 1000 seconds / 100 cc or less. More preferably, it is 100 to 1000 seconds / 100 cc, and particularly 200 to 600 seconds / 100 cc.
本発明における成分(A)は、樹脂であれば何でも良く、例えば熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーおよびゴムを包含する。具体的には、超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレンなどのエチレン系重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチルなどのエチレン系共重合体、プロピレン系重合体、プロピレン系共重合体が挙げられる。ゴムとしては、例えば、エチレン-αオレフィン共重合体ゴム、エチレンプロピレンゴム(EPDM)、ブチルゴム(IIR)、イソプレンゴム、水添スチレン系エラストマーなどが挙げられる。上記αオレフィンは、例えばプロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デカンを包含する。 The component (A) in the present invention may be anything as long as it is a resin, and includes, for example, a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, and rubber. Specifically, ethylene-based copolymer such as ultra-low density polyethylene, linear low-density polyethylene, low-density polyethylene, and high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate, etc. Examples thereof include a polymer, a propylene-based polymer, and a propylene-based copolymer. Examples of the rubber include ethylene-α olefin copolymer rubber, ethylene propylene rubber (EPDM), butyl rubber (IIR), isoprene rubber, and hydrogenated styrene elastomer. Examples of the α olefin include propylene, 1-butene, 1-hexene, 1-octene and 1-decane.
成分(A)は、フィラーとしての成分(B)及び成分(C)との混和性の点から、エチレン系重合体(A-1)と酸変性エチレン系樹脂(A-2)とを含むエチレン系樹脂組成物であるのが好ましい。エチレン系重合体(A-1)はフィラー受容性に優れ、酸変性エチレン系樹脂(A-2)は成分(B)及び成分(C)の成分(A)中での分散を良好にする。 Component (A) is an ethylene containing an ethylene polymer (A-1) and an acid-modified ethylene resin (A-2) in terms of miscibility with components (B) and (C) as fillers. It is preferable that it is a resin composition. The ethylene polymer (A-1) is excellent in filler acceptability, and the acid-modified ethylene resin (A-2) improves the dispersion of the component (B) and the component (C) in the component (A).
上記エチレン系重合体(A-1)としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレンとα-オレフィン(例えば、1-ブテン、1-ヘキセン、1-オクテン等)とのコポリマーが挙げられ、これらを単独で、または2種以上を組み合わせて用いることができる。 Examples of the ethylene polymer (A-1) include low density polyethylene, linear low density polyethylene, ultra low density polyethylene, high density polyethylene, ethylene and α-olefin (for example, 1-butene, 1-hexene, 1 -Octene and the like), and these can be used alone or in combination of two or more.
また、電池用セパレータは、耐熱性が小さいと、電池の通常の使用環境として想定される範囲内の温度において熱溶融して電極間のイオン移動を遮断してしまうことが起こり得る。そこで、上記エチレン系重合体(A-1)は、フィラーとの十分な混和性を有するとともに十分な耐熱性を有するように、下記(i)~(iv)を満たすものが特に好ましい。
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化度(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1g/10分以上10g/10分未満である。
In addition, when the battery separator has low heat resistance, it may occur that the battery separator melts at a temperature within a range assumed as a normal use environment of the battery to block ion movement between the electrodes. Therefore, it is particularly preferable that the ethylene polymer (A-1) satisfies the following (i) to (iv) so as to have sufficient miscibility with the filler and sufficient heat resistance.
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallinity (Xc110) at 110 ° C. is 10 to 60%, and (iv) MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min.
上記ピークトップ融点(Tm)が110℃より低いと、耐熱性が不充分になる場合がある。上記ピークトップ融点(Tm)は、好ましくは120℃以上、より好ましくは125℃以上である。 When the peak top melting point (Tm) is lower than 110 ° C., the heat resistance may be insufficient. The peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher.
また、上記融解熱量(ΔH)が90J/g未満であると、耐熱性が不充分になる場合があり、180J/gを超えるとフィラーとの混和性が不十分になり、製膜性に劣る場合がある。上記融解熱量(ΔH)は、好ましくは100~170J/gである。 Further, if the heat of fusion (ΔH) is less than 90 J / g, the heat resistance may be insufficient, and if it exceeds 180 J / g, the miscibility with the filler becomes insufficient and the film-forming property is poor. There is a case. The heat of fusion (ΔH) is preferably 100 to 170 J / g.
また、上記結晶化度(Xc110)が10%未満では耐熱性が不充分になる場合があり、60%を超えるとフィラーとの混和性が不十分になり、製膜性に劣る場合がある。上記結晶化度(Xc110)は、好ましくは15~45%である。なお、110℃における結晶化度とは、DSC融解曲線における融解熱量ΔH全体に対する110℃以上での融解熱量の割合を意味する。 Further, if the crystallinity (Xc110) is less than 10%, the heat resistance may be insufficient, and if it exceeds 60%, the miscibility with the filler may be insufficient and the film forming property may be poor. The crystallinity (Xc110) is preferably 15 to 45%. The crystallinity at 110 ° C. means the ratio of the heat of fusion at 110 ° C. or higher to the total heat of fusion ΔH in the DSC melting curve.
さらに、上記MFRが10g/10分以上では、ポリエチレン系樹脂組成物(A)と吸水性フィラー(B)との混和性が不充分になる場合や、フィルム製膜時の引落性が低下する場合があり、0.1g/10分未満では、フィルムの肉厚調整が困難になる場合がある。上記MFRは、好ましくは0.2~7g/10分、最も好ましくは0.5~5g/10分である。 Furthermore, when the MFR is 10 g / 10 min or more, the miscibility between the polyethylene resin composition (A) and the water-absorbing filler (B) is insufficient, or the pullability during film formation is reduced. If it is less than 0.1 g / 10 minutes, it may be difficult to adjust the thickness of the film. The MFR is preferably 0.2 to 7 g / 10 min, most preferably 0.5 to 5 g / 10 min.
なお、本明細書において、DSC融解曲線は、特に断らない限り、TA Instruments(ティー・エイ・インスツルメント・ジャパン株式会社)のDSC Q1000型を使用し、試料を190℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で190℃まで加熱するという温度プログラムでDSC測定を行って得られる曲線である。 In the present specification, unless otherwise specified, DSC melting curves are obtained by using a DSC Q1000 model of TA Instruments (TE Instruments Japan Co., Ltd.) and holding the sample at 190 ° C. for 5 minutes. Obtained by performing DSC measurement with a temperature program of cooling to −10 ° C. at a temperature decrease rate of 10 ° C./min, holding at −10 ° C. for 5 minutes, and then heating to 190 ° C. at a temperature increase rate of 10 ° C./min. It is a curved line.
エチレン系重合体(A-1)としてエチレン系重合体の混合物を使用する場合には、混合物全体が上記要件(i)~(iv)を満たすようにすればよい。 When a mixture of ethylene polymers is used as the ethylene polymer (A-1), the entire mixture may satisfy the above requirements (i) to (iv).
エチレン系重合体(A-1)として使用され得る具体例として、日本ポリエチレン(株)からKF360の商品名で市販されている超低密度ポリエチレンならびにKF271およびUF240の商品名で市販されている直鎖状低密度ポリエチレン、プライムポリマー(株)からSP2040およびSP2520の商品名で市販されている直鎖状低密度ポリエチレン等が挙げられる。 Specific examples that can be used as the ethylene polymer (A-1) include ultra-low density polyethylene commercially available under the trade name KF360 from Nippon Polyethylene Co., Ltd. and linear chains commercially available under the trade names KF271 and UF240. Linear low density polyethylene commercially available from Prime Polymer Co., Ltd. under the trade names SP2040 and SP2520.
上記酸変性エチレン系樹脂(A-2)は、不飽和カルボン酸またはその誘導体がグラフト重合および/または共重合したエチレン系樹脂であり、1種を単独で、または2種以上を組み合わせて用いることができる。不飽和カルボン酸の例としては、例えば、マレイン酸、イタコン酸、フマル酸が挙げられ、その誘導体の例としては、例えば、マレイン酸モノエステル、マレイン酸ジエステル、無水マレイン酸、イタコン酸モノエステル、イタコン酸ジエステル、無水イタコン酸、フマル酸モノエステル、フマル酸ジエステル、無水フマル酸等のエステルおよび無水物が挙げられる。上記エチレン系樹脂としては、直鎖状ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル(VA)共重合体、エチレン-エチルアクリレート(EA)共重合体、エチレン-メタクリレート共重合体などが挙げられる。 The acid-modified ethylene-based resin (A-2) is an ethylene-based resin obtained by graft polymerization and / or copolymerization of an unsaturated carboxylic acid or derivative thereof, and may be used alone or in combination of two or more. Can do. Examples of unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like. Examples of the ethylene resin include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer. Is mentioned.
上記酸変性エチレン系樹脂(A-2)は、好ましくは0.1~10g/10分のMFR(190℃、21.18N)を有する。さらに好ましくは、0.2~7g/10分、最も好ましくは0.5~5g/10分である。MFRが上記上限より高いと、フィルム製膜時の引落性が低下する場合がある。MFRが上記下限より低いと、フィルムの肉厚調整が困難になる場合がある。 The acid-modified ethylene resin (A-2) preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the drawability during film formation may be reduced. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film.
酸変性エチレン系樹脂(A-2)の具体例としては、三井化学(株)製のアドマー(商品名)、日本ポリオレフィン(株)製のアドテックス(商品名)、クロンプトン社製のポリボンド(商品名)および住友化学(株)製のボンドファースト(商品名)が挙げられる。 Specific examples of the acid-modified ethylene resin (A-2) include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., and Polybond manufactured by Crompton (product) Name) and Bond First (trade name) manufactured by Sumitomo Chemical Co., Ltd.
上記ポリエチレン系樹脂組成物は、成分(B)及び成分(C)との混和性の点から、エチレン系重合体(A-1)99~60質量%および酸変性エチレン系樹脂(A-2)1~40質量%を含む(ここで、成分(A-1)と成分(A-2)の量の合計は100質量%である)。より好ましくは、エチレン系重合体(A-1)97~70質量%および酸変性エチレン系樹脂(A-2)3~30質量%であり、更に好ましくは、エチレン系重合体(A-1)95~80質量%および酸変性エチレン系樹脂(A-2)5~20質量%である。 From the viewpoint of miscibility with the component (B) and the component (C), the polyethylene resin composition is composed of 99 to 60% by mass of the ethylene polymer (A-1) and the acid-modified ethylene resin (A-2). 1 to 40% by mass (here, the total amount of component (A-1) and component (A-2) is 100% by mass). More preferably, they are 97 to 70% by mass of the ethylene polymer (A-1) and 3 to 30% by mass of the acid-modified ethylene resin (A-2), and more preferably, the ethylene polymer (A-1). 95 to 80% by mass and 5 to 20% by mass of the acid-modified ethylene resin (A-2).
成分(B)としては、一酸化炭素酸化触媒として知られている、ホプカライト(銅-マンガン系複合酸化物)などの複合金属酸化物触媒および担持貴金属触媒のいずれも使用することができる。上記担持貴金属触媒は、アルミナ担持パラジウムなどの金属酸化物担持貴金属触媒(貴金属を金属酸化物表面に担持した触媒)、パラジウム-酸化セリウムなどの貴金属-易還元性酸化物触媒、酸化チタン担持プラチナなどの貴金属担持光触媒、カーボンブラック担持塩化パラジウム-塩化銅などの担持Wacker型触媒および金ナノ粒子触媒(金ナノ粒子を金属酸化物表面に担持した触媒)を包含する。高濃度の一酸化炭素による被毒/失活の起き難いものであればより好ましいが、本発明では成分(B)を成分(A)に組み入れることにより、成分(B)の被毒/失活が防止・抑制されるという効果も得られた。本発明における樹脂組成物では、ホプカライトなどの複合金属酸化物およびアルミナ担持パラジウム、酸化マグネシウム担持パラジウムなどの金属酸化物担持貴金属触媒が好ましく使用される。一酸化炭素酸化触媒は、1種を単独で、または2種以上を組みわせて使用され得る。なお、ホプカライトと同じ組成であっても、複合酸化物の形ではなく、酸化銅(II)と酸化マンガン(IV)とを単に混合した混和物の形のものは、一酸化炭素酸化触媒としての機能が不十分である。 As the component (B), any of composite metal oxide catalysts such as hopcalite (copper-manganese composite oxide) and supported noble metal catalysts known as carbon monoxide oxidation catalysts can be used. The supported noble metal catalyst includes a metal oxide-supported noble metal catalyst such as palladium on alumina (a catalyst in which a noble metal is supported on the metal oxide surface), a noble metal-reducible oxide catalyst such as palladium-cerium oxide, titanium oxide-supported platinum, etc. A noble metal-supported photocatalyst, a supported Wacker type catalyst such as palladium chloride-copper chloride supported on carbon black, and a gold nanoparticle catalyst (a catalyst in which gold nanoparticles are supported on a metal oxide surface). Although it is more preferable if poisoning / deactivation with high concentration of carbon monoxide is difficult to occur, in the present invention, by incorporating component (B) into component (A), poisoning / deactivation of component (B) The effect of preventing / suppressing was also obtained. In the resin composition of the present invention, a composite metal oxide such as hopcalite and a metal oxide-supported noble metal catalyst such as palladium on alumina and palladium on magnesium oxide are preferably used. A carbon monoxide oxidation catalyst can be used individually by 1 type or in combination of 2 or more types. Even if the composition is the same as that of hopcalite, it is not in the form of a complex oxide, but in the form of a mixture in which copper (II) oxide and manganese (IV) oxide are simply mixed. Insufficient function.
成分(C)としては、酸化ストロンチウム、酸化カルシウム、0.4nm以上の細孔径を有するゼオライトおよびBET比表面積が50m/g以上である酸化マグネシウムを好ましく使用することができる。成分(C)は、1種を単独で、または2種以上を組みわせて使用され得る。 As the component (C), strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more, and magnesium oxide having a BET specific surface area of 50 m 2 / g or more can be preferably used. A component (C) can be used individually by 1 type or in combination of 2 or more types.
成分(B)及び成分(C)は、成分(A)との混和性および溶融混練性の点から、その粒子径分布として30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有するものが好ましい。ここで、D99およびD55はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う。D99は、好ましくは20μm以下、より好ましくは15μm以下である。また、D50は、好ましくは0.01~15μm、より好ましくは0.1~10μmである。上記範囲から外れるような粗い粒子は、得られるフィルムの欠点や異物になる場合がある。また、粒子が細かすぎると、凝集して、得られるフィルムの欠点や異物になったり、凝集しなかった場合には多量の空気を抱き込んでコンパウンド製造時の溶融混練作業性を悪くしたりする場合がある。 Component (B) and Component (C) have a particle size distribution of 30 μm or less (D99) and a particle size of 20 μm or less (D50) as the particle size distribution from the viewpoint of miscibility with component (A) and melt kneading. What has is preferable. Here, D99 and D55 refer to the particle diameter at the point where the particle diameter distribution becomes 99 mass% and 50 mass%, respectively, from the smaller particle diameter. D99 is preferably 20 μm or less, more preferably 15 μm or less. D50 is preferably 0.01 to 15 μm, more preferably 0.1 to 10 μm. Coarse particles that deviate from the above range may become a defect or foreign matter of the resulting film. In addition, if the particles are too fine, they will aggregate and become defects or foreign matter of the resulting film, or if they do not aggregate, a large amount of air will be embraced, resulting in poor melt-kneading workability during compound production. There is a case.
粒子径分布の制御は、大きな粒子を生成した後、それを粉砕、分球する方法、及び最初から細かい粒子を生成しそして分球する方法がある。粒子径分布を上記範囲内に制御できるならばどちらの方法でも良く、特に限定はされないが、押出負荷および成形性の観点から、細かい粒子を最初から生成する方法がより好ましい。 Control of the particle size distribution includes a method in which large particles are produced and then pulverized and sized, and a method in which fine particles are produced and sized from the beginning. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and moldability, a method of generating fine particles from the beginning is more preferable.
成分(B)の配合量は、成分(A)100質量部に対して1~300質量部、好ましくは3~200質量部、より好ましくは5~150質量部である。上記下限よりも少ないと、一酸化炭素を二酸化炭素に酸化する機能が不満足なものになる。上記上限を超えると、コンパウンド製造時の溶融混練、および原反フィルム成形が困難になる場合がある。また、多孔性付与のために延伸法を適用するのが難しくなる。 The amount of component (B) is 1 to 300 parts by weight, preferably 3 to 200 parts by weight, more preferably 5 to 150 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the lower limit, the function of oxidizing carbon monoxide to carbon dioxide becomes unsatisfactory. When the above upper limit is exceeded, melt kneading at the time of compound production and raw film forming may become difficult. In addition, it becomes difficult to apply a stretching method to impart porosity.
成分(C)の配合量は、成分(A)100質量部に対して1~300質量部、好ましくは10~250質量部、より好ましくは20~200質量部である。上記下限よりも少ないと、一酸化炭素を二酸化炭素に酸化する機能が不満足なものになる。上記上限を超えると、コンパウンド製造時の溶融混練、および原反フィルム成形が困難になる場合がある。また、多孔性付与のために延伸法を適用するのが難しくなる。 The amount of component (C) is 1 to 300 parts by weight, preferably 10 to 250 parts by weight, more preferably 20 to 200 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the lower limit, the function of oxidizing carbon monoxide to carbon dioxide becomes unsatisfactory. When the above upper limit is exceeded, melt kneading at the time of compound production and raw film forming may become difficult. In addition, it becomes difficult to apply a stretching method to impart porosity.
本発明の多孔質フィルムのための樹脂組成物は、さらにスリップ剤を含むことが好ましい。これにより、コンパウンド製造時の溶融混練作業性を向上させ、また、成形性をより良好にすることができる。スリップ剤としては、ステアリン酸カルシウムなどの金属石鹸、オレイン酸アミド、エルカ酸アミドなどの脂肪酸アミド、ポリエチレンワックス、シリコンガム、シリコンオイルなどが挙げられる。スリップ剤の好ましい添加量は、成分(A)100質量部に対して0.1~20質量部、より好ましくは1~10質量部である。 The resin composition for the porous film of the present invention preferably further contains a slip agent. Thereby, the melt-kneading workability at the time of manufacturing the compound can be improved, and the moldability can be further improved. Examples of the slip agent include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil. A preferable amount of the slip agent to be added is 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A).
本発明の多孔質フィルムのための樹脂組成物は、さらに水分吸収剤を含んでいてもよい。これにより、一酸化炭素の除去とともに水分の除去を同時に行うことが出来る。水分吸収剤としては、モレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5AなどのA型ゼオライトが好ましい。水分吸収剤の好ましい添加量は、成分(A)100質量部に対して5~200質量部、より好ましくは10~150質量部、更に好ましくは15~120質量部である。 The resin composition for the porous film of the present invention may further contain a moisture absorbent. Thereby, the removal of moisture can be performed simultaneously with the removal of carbon monoxide. As the moisture absorbent, A-type zeolite such as molecular sieve 3A, molecular sieve 4A, molecular sieve 5A and the like is preferable. The amount of the water absorbent added is preferably 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, and still more preferably 15 to 120 parts by weight with respect to 100 parts by weight of the component (A).
また、本発明の多孔質フィルムのための樹脂組成物は、必要に応じてリン系、フェノール系、硫黄系などの酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤などの耐候剤、銅害防止剤、芳香族リン酸金属塩系、ゲルオール系などの造核剤、グリセリン脂肪酸モノエステルなどの帯電防止剤、着色剤、芳香剤、抗菌剤、酸化マグネシウム、酸化亜鉛、炭酸カルシウム、タルク、金属水和物などのフィラー、グリセリン脂肪酸エステル系、パラフィンオイル、フタル酸系、エステル系などの可塑剤等の添加剤を含んでいてもよい。 In addition, the resin composition for the porous film of the present invention includes, as necessary, a phosphorus-based, phenol-based, sulfur-based antioxidant, an anti-aging agent, a light stabilizer, a weathering agent such as an ultraviolet absorber, Anti-copper agent, aromatic phosphate metal salt-based, gelol-based nucleating agent, anti-static agent such as glycerin fatty acid monoester, coloring agent, fragrance, antibacterial agent, magnesium oxide, zinc oxide, calcium carbonate, talc In addition, additives such as fillers such as metal hydrates, plasticizers such as glycerin fatty acid ester-based, paraffin oil, phthalic acid-based and ester-based plasticizers may be included.
本発明の多孔質フィルムのための樹脂組成物は、必要成分を溶融混練することにより得ることができる。溶融混練は、二軸押出機、バンバリーミキサーなどの慣用の装置を使用して行うことができる。混練温度は、成形時の吸湿発泡トラブルを回避するため、成形温度よりも高くすることが好ましい。得られた樹脂組成物は造粒機によってペレット化した後、Tダイ等を使用する通常の製膜に付することができるが、その場合には、ペレット化を、ホットカット法などの水を介在させない方法で行うことが好ましい。また真空ベントを設けたり、ギヤポンプ等を介したりしても良い。更に、ペレット化することなく、直接製膜に付する方法、例えば、溶融混練して得られた組成物をそのままギヤポンプ等を介してTダイに送って製膜する方法を使用することもできる。 The resin composition for the porous film of the present invention can be obtained by melt-kneading necessary components. The melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer. The kneading temperature is preferably higher than the molding temperature in order to avoid moisture absorption foaming troubles during molding. The obtained resin composition can be pelletized by a granulator and then subjected to normal film formation using a T die or the like. In that case, the pelletization is performed using water such as a hot cut method. It is preferable to carry out by a method that does not intervene. Further, a vacuum vent may be provided or a gear pump or the like may be used. Furthermore, it is also possible to use a method in which film formation is directly performed without pelletization, for example, a method in which a composition obtained by melt kneading is directly sent to a T die via a gear pump or the like to form a film.
本発明の多孔質フィルムは、上記で得られたフィルムに多孔性を付与することにより得られる。多孔性を付与する方法は特に制限されず、例えば下記が挙げられる。
1.樹脂組成物に化学発泡剤をあらかじめ配合しておき、フィルム状にした後、適切な温度で発泡剤を分解する。
2.フィルムに超臨界流体の二酸化炭素などを含浸させた後、気化させる。
3.樹脂組成物に可塑剤等をあらかじめ配合しておき、フィルム状にした後、可塑剤を適切な方法で抽出する。
4.フィルムを適切な温度で延伸して、結晶と非晶との界面や樹脂とフィラーとの界面でミクロボイドを発生させる。
5.切削刃、針等によりフィルムに機械的に孔を開ける。
The porous film of the present invention can be obtained by imparting porosity to the film obtained above. The method for imparting porosity is not particularly limited, and examples thereof include the following.
1. A chemical foaming agent is blended in advance with the resin composition to form a film, and then the foaming agent is decomposed at an appropriate temperature.
2. After the film is impregnated with carbon dioxide as a supercritical fluid, it is vaporized.
3. A plasticizer or the like is preliminarily blended into the resin composition to form a film, and then the plasticizer is extracted by an appropriate method.
4). The film is stretched at an appropriate temperature to generate microvoids at the crystal / amorphous interface or the resin / filler interface.
5. A hole is mechanically opened in the film with a cutting blade, a needle or the like.
中でも、上記4および5の方法は、追加の物質を必要としないので酸化触媒や吸着物質の劣化が起こらないという点で好ましい。また、多孔性を付与する前の本発明におけるフィルムは膜厚が均一で外観も良好である(ブツ等の欠陥がない)ので、それを延伸することにより均一な膜厚および良好な外観を有する多孔質フィルムが得られる点から、上記4の方法が特に好ましい。延伸倍率は、成分(B)および(C)の種類と配合量により適宜調節されるが、通常は縦、横それぞれ1.1~8倍、好ましくは1.2~5倍程度である。延伸温度は、フィルムのベースである成分(A)の特性により適宜調節されるが、多孔性を付与する目的から、通常の延伸条件よりは低めの温度が好ましい。具体的には、延伸温度における成分(A)の結晶化度が70%以下であるように選択される。 Among these, the methods 4 and 5 are preferable in that no additional substances are required and therefore the oxidation catalyst and the adsorbed substance are not deteriorated. In addition, since the film in the present invention before imparting porosity has a uniform film thickness and good appearance (no defects such as blisters), it has a uniform film thickness and good appearance by stretching it. From the viewpoint of obtaining a porous film, the above method 4 is particularly preferred. The draw ratio is appropriately adjusted depending on the types and blending amounts of the components (B) and (C), but is usually about 1.1 to 8 times, preferably about 1.2 to 5 times in the vertical and horizontal directions. The stretching temperature is appropriately adjusted depending on the properties of the component (A) that is the base of the film, but a temperature lower than the normal stretching conditions is preferable for the purpose of imparting porosity. Specifically, the crystallinity of component (A) at the stretching temperature is selected to be 70% or less.
得られた成形体は、必要に応じて、γ線照射や加硫に付すことができる。 The obtained molded body can be subjected to γ-ray irradiation or vulcanization as necessary.
こうして得られる本発明の多孔質フィルムは、外観が良好で目に見える穴開き等の欠陥がないので短絡の恐れがなく、厚さも均一であるとともに、十分な一酸化炭素処理能力を有する。したがって、非水電解質電池におけるセパレータとして有利に使用することができる。 The porous film of the present invention thus obtained has a good appearance and no visible defects such as perforations, so there is no risk of short circuit, the thickness is uniform, and it has sufficient carbon monoxide processing capability. Therefore, it can be advantageously used as a separator in a nonaqueous electrolyte battery.
以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.
実施例1~8、比較例1~5および参考例1
表1に示す配合量(質量部)の成分をドライブレンドし、(株)日本製鋼所の二軸押出機TEX28により溶融混練して樹脂組成物を得た後、そのままギヤポンプを介し、東芝機械(株)製のTダイを用いて製膜して、膜厚100μmのフィルム(a)を得た。製造条件は以下の通りである。
二軸押出機出口樹脂温度 220℃(真空ベント使用)
ギヤポンプ出口樹脂温度 220℃
Tダイ出口樹脂温度 220℃
チルロール温度 40℃
引取速度 6m/分
次いで、上記で得られたフィルム(a)について、東洋精機製作所(株)のテーブル型試験用延伸装置を使用して表1に記載の延伸温度で縦、横それぞれ2.0倍に延伸して、膜厚25μmの多孔質フィルム(b)を得た。得られた多孔質フィルム(b)を、露点温度-50℃以下にしたガス置換型グローブボックス(アズワン株式会社のSG-1000)の中に保管した。下記(1)~(6)の評価試験を行った。結果を表1に示す。実施例2および8については、下記(7)の試験も行った。
Examples 1 to 8, Comparative Examples 1 to 5 and Reference Example 1
The components (parts by mass) shown in Table 1 were dry blended and melt-kneaded with a twin screw extruder TEX28 of Nippon Steel, Ltd. to obtain a resin composition. A film (a) having a film thickness of 100 μm was obtained by forming a film using a T-die manufactured by the company. The manufacturing conditions are as follows.
Resin temperature at twin screw extruder outlet 220 ° C (use vacuum vent)
Gear pump outlet resin temperature 220 ℃
T-die outlet resin temperature 220 ° C
Chill roll temperature 40 ℃
Take-up speed: 6 m / min. Next, the film (a) obtained above was set to 2.0 × both vertically and horizontally at the stretching temperatures shown in Table 1 using a table-type test stretching device manufactured by Toyo Seiki Seisakusho Co., Ltd. The film was stretched twice to obtain a porous film (b) having a film thickness of 25 μm. The obtained porous film (b) was stored in a gas substitution type glove box (SG-1000 of ASONE CORPORATION) having a dew point temperature of −50 ° C. or lower. The following evaluation tests (1) to (6) were conducted. The results are shown in Table 1. For Examples 2 and 8, the following test (7) was also conducted.
(1)フィルム外観
10cm×10cmの大きさに裁断したフィルム(b)10枚を目視で観察し、以下の基準で判定した。
○:穴開きもブツもない。
△:穴開きはないが、ブツがある。
×:穴開きもブツもある。
(1) Film appearance Ten films (b) cut to a size of 10 cm × 10 cm were visually observed and judged according to the following criteria.
○: There is no perforation or puncture.
(Triangle | delta): There is no perforation, but there is a flaw.
X: There are both perforations and lumps.
(2)透気度
フィルム(b)のガーレー透気度を、JIS P8117に準じて、旭精工(株)の王研式透気度試験機を使用して測定した。
(2) The Gurley air permeability of the air permeability film (b) was measured according to JIS P8117 using an Oken type air permeability tester manufactured by Asahi Seiko Co., Ltd.
(3)窒素/一酸化炭素混合気体中での一酸化炭素および二酸化炭素の濃度変化
テトラバックに1000cmのフィルム(b)を入れ、255mLの窒素を充填した。ここに45mLの一酸化炭素を注入した(一酸化炭素の計算濃度:15vol%)。これを24時間、常温、常圧で放置した後、一酸化炭素濃度および二酸化炭素濃度をガスクロマトグラフにより測定した。なお、テトラバックからはガスが少しずつ透過して抜けるため、同時にブランク(上記フィルムを使用しない場合)の測定も行ったところ、24時間後の一酸化炭素濃度は14.1vol%であり、二酸化炭素は検出されなかった。
(3) Concentration change of carbon monoxide and carbon dioxide in a nitrogen / carbon monoxide mixed gas A film (b) of 1000 cm 2 was placed in a tetrabag, and 255 mL of nitrogen was filled therein. 45 mL of carbon monoxide was injected here (calculated concentration of carbon monoxide: 15 vol%). This was left for 24 hours at room temperature and normal pressure, and then the carbon monoxide concentration and the carbon dioxide concentration were measured by a gas chromatograph. In addition, since gas permeate | transmits and escapes little by little from a tetra bag, when the measurement of a blank (when the said film is not used) was also performed simultaneously, the carbon monoxide density | concentration after 24 hours is 14.1 vol%, Carbon was not detected.
(4)空気/一酸化炭素混合気体中での一酸化炭素および二酸化炭素の濃度変化
上記(3)の試験おいて、255mLの窒素の代わりに255mLの空気(窒素/酸素=80/20(体積比))を用いた以外は試験(3)と同様に測定を行った。ブランクでの一酸化炭素濃度は14.2vol%であり、二酸化炭素は検出されなかった。
(4) Concentration change of carbon monoxide and carbon dioxide in air / carbon monoxide mixed gas In the test of (3) above, 255 mL of air (nitrogen / oxygen = 80/20 (volume) instead of 255 mL of nitrogen The measurement was carried out in the same manner as in the test (3) except that the ratio)) was used. The carbon monoxide concentration in the blank was 14.2 vol%, and no carbon dioxide was detected.
(5)窒素/二酸化炭素混合気体中での二酸化炭素の濃度変化
二酸化炭素は透過性が高いため、フィルムによる二酸化炭素の吸着能の測定を行った。上記(3)の試験おいて、45mLの一酸化炭素を注入する代わりに、45mLの二酸化炭素を注入した以外は試験(3)と同様にして、二酸化炭素濃度の測定を行った。ブランクでの二酸化炭素濃度は12.3vol%であった。
(5) Change in concentration of carbon dioxide in nitrogen / carbon dioxide mixed gas Since carbon dioxide has high permeability, the carbon dioxide adsorption ability by the film was measured. In the above test (3), the carbon dioxide concentration was measured in the same manner as in the test (3) except that 45 mL of carbon dioxide was injected instead of 45 mL of carbon monoxide. The carbon dioxide concentration in the blank was 12.3 vol%.
(6)耐熱性
株式会社東洋精機製作所のHG-100型ヒートシール試験機を用い、80~130℃の所定のシール温度で2枚のフィルム(b)をその縦延伸方向がT字剥離試験の引張方向になるように融着した(3秒間、圧力0.2MPa)。次いで、T字剥離試験を、株式会社東洋精機製作所のAE-CT型引張試験機を使用し、引剥幅25mm、引剥速度100mm/分、引剥角度180°で行った。より高いシール温度まで○判定になるものが耐熱性の良いフィルムである。
○:全くあるいは殆ど融着していない(引剥強度<0.1N/25mm)
△:僅かに融着している(引剥強度0.1~2.0N/25mm)
×:融着している(引剥強度>2.0N/25mm)
(6) Heat resistance Using an HG-100 type heat seal tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the two films (b) at a predetermined sealing temperature of 80 to 130 ° C., the longitudinal stretching direction of which is a T-shaped peel test. It fused so that it might become a tension direction (3 seconds, pressure 0.2MPa). Next, a T-peel test was performed using an AE-CT type tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd., with a peeling width of 25 mm, a peeling speed of 100 mm / min, and a peeling angle of 180 °. Films with good heat resistance are those that are judged to have a higher sealing temperature.
○: No or little fusion (peeling strength <0.1 N / 25 mm)
Δ: Slightly fused (peeling strength 0.1 to 2.0 N / 25 mm)
X: Fusing (peeling strength> 2.0 N / 25 mm)
(7)水分吸収能
ジメチルカーボネート(DMC)/ジエチルカーボネート(DEC)/エチレンカーボネート(EC)=1/1/1(容積比)に水を極少量混合し、試験液とした。この試験液中の水分量をカールフィッシャー容量滴定装置(平沼産業株式会社のAQ-300)により測定したところ982ppmであった。次いで、この試験液30g中に450cmのフィルム(b)を浸漬して、25℃×48hr後に試験液中の水分量を同様に測定した。以上の操作はアイ・エイ・シー株式会社のエアードライヤーQD20-75により露点温度-50℃以下にしたガス置換型グローブボックス(アズワン株式会社のSG-1000)中で行った。
(7) Water absorption ability Dimethyl carbonate (DMC) / diethyl carbonate (DEC) / ethylene carbonate (EC) = 1/1/1 (volume ratio) was mixed with a very small amount of water to prepare a test solution. The amount of water in this test solution was measured with a Karl Fischer volumetric titrator (AQ-300 from Hiranuma Sangyo Co., Ltd.) and found to be 982 ppm. Next, a film (b) of 450 cm 2 was immersed in 30 g of this test solution, and the water content in the test solution was similarly measured after 25 ° C. × 48 hours. The above operation was carried out in a gas substitution type glove box (SG-1000 from ASONE CORPORATION) having a dew point temperature of −50 ° C. or lower by means of an air dryer QD20-75 manufactured by ICC Corporation.
使用した材料は以下の通りである。
成分(A)
KF271:日本ポリエチレン(株)製、直鎖状低密度ポリエチレン、Tm=127℃、ΔH=127J/g、Xc110=26%、Xc110=26%、MFR(190℃、21.18N)=2.4g/10分、密度913kg/m
アドマーXE070:三井化学(株)製、無水マレイン酸変性エチレン系重合体、MFR(190℃、21.18N)=3 g/10分
アドマーXM7070:三井化学(株)製、プロピレン系ランダム共重合体、MFR(230℃、21.18N)=7g/10分
The materials used are as follows.
Ingredient (A)
KF271: Nippon Polyethylene Corporation, linear low density polyethylene, Tm = 127 ° C., ΔH = 127 J / g, Xc110 = 26%, Xc110 = 26%, MFR (190 ° C., 21.18 N) = 2.4 g / 10 minutes, density 913 kg / m 3
Admer XE070: manufactured by Mitsui Chemicals, maleic anhydride-modified ethylene polymer, MFR (190 ° C., 21.18N) = 3 g / 10 minutes Admer XM7070: manufactured by Mitsui Chemicals, propylene-based random copolymer , MFR (230 ° C., 21.18 N) = 7 g / 10 min
成分(B)
ホプカライト:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn)、乳鉢で粉砕・分級したもの、D99=12μm、D50=3μm
5%Pd-MgO-01:エヌ・イー・ケムキャット(株)製の酸化マグネシウム担持パラジウム触媒、担持量5質量%、D99=6μm、D50=2μm
Ingredient (B)
Hopcalite: Composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Sciences, pulverized and classified in a mortar, D99 = 12 μm, D50 = 3 μm
5% Pd—MgO-01: Magnesium oxide-supported palladium catalyst manufactured by N.E. Chemcat Co., Ltd., 5 mass%, D99 = 6 μm, D50 = 2 μm
比較成分(B)
カーボンブラック:電気化学工業(株)製、D99=2.1μm(凝集体としての値)、D50=0.5μm(凝集体としての値)
炭酸カルシウム:備北粉化工業(株)製のソフトン1800、D99=17μm、D50=2.8μm
Comparative component (B)
Carbon black: manufactured by Denki Kagaku Kogyo Co., Ltd., D99 = 2.1 μm (value as an aggregate), D50 = 0.5 μm (value as an aggregate)
Calcium carbonate: Softon 1800 manufactured by Bihoku Flour Industry Co., Ltd., D99 = 17 μm, D50 = 2.8 μm
成分(C)
スターマグU:神島化学工業(株)製の高BET酸化マグネシウム、BET比表面積=125m2/g 、D99=6μm、D50=2μm
ゼオラムA4 LPH:東ソー(株)製、細孔径0.4nmのA型ゼオライト(モレキュラーシーブ4A)、D99=20μm、D50=12μm
STO:堺化学工業(株)製、酸化ストロンチウム、粗粉を分級したもの、D99=18μm、D50=5μm
Ingredient (C)
Starmag U: High BET magnesium oxide manufactured by Kamishima Chemical Industry Co., Ltd., BET specific surface area = 125 m 2 / g, D99 = 6 μm, D50 = 2 μm
Zeolum A4 LPH: manufactured by Tosoh Corporation, type A zeolite with a pore size of 0.4 nm (molecular sieve 4A), D99 = 20 μm, D50 = 12 μm
STO: manufactured by Sakai Chemical Industry Co., Ltd., strontium oxide, coarse powder classified, D99 = 18 μm, D50 = 5 μm
成分(C)の比較
スターマグP:神島化学工業(株)の酸化マグネシウム、BET比表面積=10m2/g、D99=9μm、D50=3μm
Comparison of component (C) Starmag P: Magnesium oxide from Kamishima Chemical Co., Ltd., BET specific surface area = 10 m 2 / g, D99 = 9 μm, D50 = 3 μm
その他材料:スリップ剤
LBT-77:堺化学工業(株)製のポリエチレンワックス
ステアリン酸カルシウム
モレキュラーシーブ3Aパウダー:ユニオン昭和(株)製、細孔径0.3mmのA型ゼオライト、粗粉を分級したもの、D99=19μm、D50=9μm
Other materials: Slip agent LBT-77: Polyethylene wax calcium stearate molecular sieve 3A powder manufactured by Sakai Chemical Industry Co., Ltd .: Union Showa Co., Ltd., A-type zeolite having a pore size of 0.3 mm, coarse powder classified, D99 = 19 μm, D50 = 9 μm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1から明らかなように、実施例1~8の本発明の多孔質フィルムは良好な外観を有し、一酸化炭素および二酸化炭素の吸収吸着機能に優れ、透気度もあり、かつ耐熱性も電池のセパレータ用として十分である。なお、非水電解質電池は、安全機構の一つとして、電池が100~130℃の高温に曝されるとセパレータの材料が熱溶融して孔を塞ぎ、電極間のイオンのやり取りを止める(シャットダウン)という機構を有する。従って、本発明の多孔質フィルムをセパレータとして使用する場合には、100℃までは熱溶融しない耐熱性を必要とする。 As is apparent from Table 1, the porous films of the present invention of Examples 1 to 8 have a good appearance, excellent absorption and adsorption function of carbon monoxide and carbon dioxide, air permeability, and heat resistance. Is sufficient for battery separators. As a safety mechanism, non-aqueous electrolyte batteries stop the exchange of ions between electrodes when the battery is exposed to a high temperature of 100 to 130 ° C., the separator material melts and closes the holes. ). Therefore, when the porous film of the present invention is used as a separator, it needs heat resistance that does not melt up to 100 ° C.
また、成分(C)としてモレキュラーシーブ4Aを使用した実施例2および水分吸収剤を含む実施例8のフィルムについては、上記試験(7)も行った。その結果、初期水分量982ppmに対して、48時間浸漬後の水分量が実施例2では17ppmであり、実施例8では18ppmであり、ともに十分な水分吸収能を示した。 Moreover, the said test (7) was also done about the film of Example 2 which uses the molecular sieve 4A as a component (C), and Example 8 containing a water | moisture-content absorber. As a result, with respect to the initial water content of 982 ppm, the water content after 48 hours of immersion was 17 ppm in Example 2 and 18 ppm in Example 8, and both showed sufficient water absorption ability.
一方、成分(B)を含有しない比較例1および2のフィルムは一酸化炭素吸収機能を有しない。成分(C)を含有しない比較例3のフィルムは一酸化炭素を酸化することはできたが、二酸化炭素を吸着することはできなかった。成分(B)の配合量が多過ぎる比較例4および成分(C)の配合量が多過ぎる比較例5では、溶融混練と原反フィルム製膜の連続製造時に押出負荷が高くなってスクリュが停止し、原反フィルムを得ることが出来なかった。したがって、試験(1)~(6)を行うことができなかった。 On the other hand, the films of Comparative Examples 1 and 2 that do not contain the component (B) do not have a carbon monoxide absorbing function. Although the film of Comparative Example 3 containing no component (C) was able to oxidize carbon monoxide, it could not adsorb carbon dioxide. In Comparative Example 4 in which the blending amount of component (B) is too large and Comparative Example 5 in which the blending amount of component (C) is too large, the extrusion load increases during continuous production of melt-kneading and raw film formation, and the screw stops. However, a raw film could not be obtained. Therefore, tests (1) to (6) could not be performed.
参考例1では、成分(C)として低BET比表面積の酸化マグネシウムを使用した。低BET比表面積の酸化マグネシウムは、二酸化炭素を吸収するために水を必要とする。したがって、絶乾状態で行われる試験(3)~(5)において、一酸化炭素を酸化することはできたが、二酸化炭素を吸着することはできなかった。 In Reference Example 1, magnesium oxide having a low BET specific surface area was used as the component (C). Magnesium oxide with a low BET specific surface area requires water to absorb carbon dioxide. Therefore, in the tests (3) to (5) performed in an absolutely dry state, carbon monoxide could be oxidized, but carbon dioxide could not be adsorbed.

Claims (9)

  1. (A)樹脂 100質量部、
    (B)一酸化炭素酸化触媒 1~300質量部、および
    (C)二酸化炭素吸着物質 1~300質量部
    を含む樹脂組成物からなる多孔質フィルム。
    (A) 100 parts by mass of resin,
    (B) A porous film comprising a resin composition comprising 1 to 300 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 300 parts by mass of a carbon dioxide adsorbing substance.
  2. 成分(B)が、ホプカライトおよび担持貴金属触媒から成る群より選択される少なくとも1を含む、請求項1に記載の多孔質フィルム。 The porous film according to claim 1, wherein component (B) comprises at least one selected from the group consisting of hopcalite and a supported noble metal catalyst.
  3. 成分(C)が酸化ストロンチウム、酸化カルシウム、0.4nm以上の細孔径を有するゼオライトおよびBET比表面積が50m/g以上である酸化マグネシウムからなる群より選択される少なくとも1を含む、請求項1または2に記載の多孔質フィルム。 The component (C) includes at least one selected from the group consisting of strontium oxide, calcium oxide, zeolite having a pore diameter of 0.4 nm or more, and magnesium oxide having a BET specific surface area of 50 m 2 / g or more. Or the porous film of 2.
  4. 成分(A)が、エチレン系重合体および酸変性エチレン系樹脂を含むエチレン系樹脂組成物である、請求項1~3のいずれか1項に記載の多孔質フィルム。 The porous film according to any one of claims 1 to 3, wherein the component (A) is an ethylene resin composition containing an ethylene polymer and an acid-modified ethylene resin.
  5. 成分(A)が
    (A-1)下記(i)~(iv)の特性を有するエチレン系重合体99~60質量%、
    (i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
    (ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
    (iii)110℃における結晶化度(Xc110)が10~60%である、および
    (iv)MFR(190℃、21.18N)が0.1g/10分以上10g/10分未満である
    および、
    (A-2)酸変性樹脂1~40質量%
    を含むポリエチレン系樹脂組成物であり、ここで成分(A-1)と成分(A-2)の量の合計が100質量%である、請求項1~4のいずれか1項に記載の多孔質フィルム。
    Component (A) is (A-1) 99 to 60% by mass of an ethylene polymer having the following characteristics (i) to (iv):
    (I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
    (Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
    (Iii) the crystallinity (Xc110) at 110 ° C. is 10 to 60%, and (iv) the MFR (190 ° C., 21.18N) is 0.1 g / 10 min or more and less than 10 g / 10 min, and
    (A-2) Acid-modified resin 1 to 40% by mass
    The porous resin composition according to any one of claims 1 to 4, wherein the total amount of component (A-1) and component (A-2) is 100% by mass. Quality film.
  6. 少なくとも一軸方向に1.1~8倍延伸することにより多孔性を付与された、請求項1~5のいずれか1項に記載の多孔質フィルム。 The porous film according to any one of claims 1 to 5, which has been given porosity by stretching at least 1.1 to 8 times in a uniaxial direction.
  7. 100~1000秒/100ccのガーレー透気度を有する、請求項1~6のいずれか1項記載の多孔質フィルム。 The porous film according to any one of claims 1 to 6, which has a Gurley air permeability of 100 to 1000 seconds / 100 cc.
  8. 請求項1~7のいずれか1項に記載の多孔質フィルムを、蓄電要素が封入された容器の中に含む非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the porous film according to any one of claims 1 to 7 in a container in which a power storage element is enclosed.
  9. 請求項1~7のいずれか1項に記載の多孔質フィルムを、蓄電要素が封入された容器の中に含む電気二重層キャパシタ。 An electric double layer capacitor comprising the porous film according to any one of claims 1 to 7 in a container in which a power storage element is enclosed.
PCT/JP2010/051445 2010-02-02 2010-02-02 Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof WO2011096048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011552603A JP5693474B2 (en) 2010-02-02 2010-02-02 Porous film capable of oxidizing carbon monoxide and use thereof
PCT/JP2010/051445 WO2011096048A1 (en) 2010-02-02 2010-02-02 Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051445 WO2011096048A1 (en) 2010-02-02 2010-02-02 Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof

Publications (1)

Publication Number Publication Date
WO2011096048A1 true WO2011096048A1 (en) 2011-08-11

Family

ID=44355077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051445 WO2011096048A1 (en) 2010-02-02 2010-02-02 Porous film capable of attaining oxidation treatment of carbon monoxide, and use thereof

Country Status (2)

Country Link
JP (1) JP5693474B2 (en)
WO (1) WO2011096048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149781A (en) * 2012-01-19 2013-08-01 Kurita Water Ind Ltd Electric double layer capacitor
JP2020083950A (en) * 2018-11-19 2020-06-04 株式会社ニトムズ Porous film and laminated film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121160A (en) * 1984-07-10 1986-01-29 Karupu Kogyo Kk Production of composite resin composition
JPH11124446A (en) * 1997-10-23 1999-05-11 Okura Ind Co Ltd Thermoshrinkable film
JP2003197487A (en) * 2001-12-28 2003-07-11 Nec Tokin Corp Electric double-layer capacitor
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2006512186A (en) * 2002-09-05 2006-04-13 ビーエーエスエフ アクチェンゲゼルシャフト Adsorption composition for removing carbon monoxide from a material stream and method for removing the same
JP2006216547A (en) * 2005-02-02 2006-08-17 Samsung Sdi Co Ltd All-in-one type hybrid fuel cell system
WO2007066372A2 (en) * 2005-12-06 2007-06-14 Saes Getters S.P.A. Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances
WO2007133903A2 (en) * 2006-05-08 2007-11-22 3M Innovative Properties Company Particle-containing fibrous web

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511640B1 (en) * 2000-06-29 2003-01-28 The Boc Group, Inc. Purification of gases
KR20050121966A (en) * 2004-06-23 2005-12-28 주식회사 제이씨테크놀로지스 Oxygen generating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121160A (en) * 1984-07-10 1986-01-29 Karupu Kogyo Kk Production of composite resin composition
JPH11124446A (en) * 1997-10-23 1999-05-11 Okura Ind Co Ltd Thermoshrinkable film
JP2003197487A (en) * 2001-12-28 2003-07-11 Nec Tokin Corp Electric double-layer capacitor
JP2006512186A (en) * 2002-09-05 2006-04-13 ビーエーエスエフ アクチェンゲゼルシャフト Adsorption composition for removing carbon monoxide from a material stream and method for removing the same
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2006216547A (en) * 2005-02-02 2006-08-17 Samsung Sdi Co Ltd All-in-one type hybrid fuel cell system
WO2007066372A2 (en) * 2005-12-06 2007-06-14 Saes Getters S.P.A. Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances
WO2007133903A2 (en) * 2006-05-08 2007-11-22 3M Innovative Properties Company Particle-containing fibrous web

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUO MATSUURA ET AL., POLYETHYLENE GIJUTSU DOKUHON, 1 July 2001 (2001-07-01), pages 163 - 168 *
KAZUO SOGA ET AL., SHIN SEDAI POLYMER NO SOSEI TO METALLOCENE SHOKUBAI, 20 August 1993 (1993-08-20), pages 25 - 28, 33 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149781A (en) * 2012-01-19 2013-08-01 Kurita Water Ind Ltd Electric double layer capacitor
JP2020083950A (en) * 2018-11-19 2020-06-04 株式会社ニトムズ Porous film and laminated film
JP7219595B2 (en) 2018-11-19 2023-02-08 株式会社ニトムズ laminated film

Also Published As

Publication number Publication date
JP5693474B2 (en) 2015-04-01
JPWO2011096048A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5349830B2 (en) Porous film
JP4753446B2 (en) Polyolefin microporous membrane
JP5172683B2 (en) Polyolefin microporous membrane and non-aqueous electrolyte battery separator
EP3424882B1 (en) Alumina and suspension containing the alumina, and alumina porous layer having the same, laminated separator, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
US9203072B2 (en) Microporous polyolefin film and separator for storage cell
JP5657396B2 (en) Molded body made of resin composition
JP5419817B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2011132533A1 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2010026954A1 (en) Laminated porous film for separator
WO2007034856A1 (en) Process for producing porous laminate and porous laminate
WO2011099129A1 (en) Composite multilayer film
WO2006038532A1 (en) Polyolefin microporous membrane
WO2013146811A1 (en) Laminated porous film and separator for electrical energy storage device
JP6811300B2 (en) Separator for power storage device and its manufacturing method, and power storage device and its manufacturing method
JP2020004729A (en) Power storage device separator and power storage device
US9935303B2 (en) Alumina slurry
JP2012094493A (en) Slurry and method of manufacturing separator for nonaqueous electrolyte secondary battery using that slurry
JP5693474B2 (en) Porous film capable of oxidizing carbon monoxide and use thereof
JP4801706B2 (en) Laminated porous film for separator and method for producing the same
JP4658442B2 (en) Separator and battery using the same
JP2016072154A (en) Separator for power storage device, slurry for separator, and nonaqueous electrolyte secondary battery
JP5311361B2 (en) Porous film, battery separator and battery
WO2020218583A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP4801705B2 (en) Laminated porous film for separator and method for producing the same
JP6042595B2 (en) Film capable of oxidizing carbon monoxide and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552603

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845185

Country of ref document: EP

Kind code of ref document: A1