WO2011095063A1 - 一种天线校准的方法及装置 - Google Patents

一种天线校准的方法及装置 Download PDF

Info

Publication number
WO2011095063A1
WO2011095063A1 PCT/CN2011/000189 CN2011000189W WO2011095063A1 WO 2011095063 A1 WO2011095063 A1 WO 2011095063A1 CN 2011000189 W CN2011000189 W CN 2011000189W WO 2011095063 A1 WO2011095063 A1 WO 2011095063A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
antenna
period
channel
receiving
Prior art date
Application number
PCT/CN2011/000189
Other languages
English (en)
French (fr)
Inventor
李传军
孙长果
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US13/577,122 priority Critical patent/US8818291B2/en
Priority to EP11739342.1A priority patent/EP2533360B1/en
Publication of WO2011095063A1 publication Critical patent/WO2011095063A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and apparatus for antenna calibration. Background technique
  • Smart antenna technology brings tremendous advantages to mobile communication systems. For example, when using a smart antenna in combination with other baseband digital signal processing techniques, such as joint detection, interference cancellation, etc., after the smart antenna technology is used in the wireless base station, the signals received by the base station are from the antenna units and the receivers. The sum of the received signals, if the maximum power synthesis algorithm is used, the total received signal will increase by 10 x lgN dB without multipath propagation, where N is the number of antenna elements. In the presence of multipath, this improvement in reception sensitivity will vary depending on the multipath propagation conditions and the up-beam shaping algorithm, and the result will be close to ⁇ ⁇ IgN dB.
  • Smart antenna technology has become one of the main directions for the development of physical layer communication technology.
  • Smart antenna technology can be used not only in time division duplex TDD systems, but also in frequency division duplex FDD systems.
  • the wide application of smart antennas provides us with a leading and perfect technology platform. To a certain extent, the development of mobile communication technology has been promoted.
  • the smart antenna is specifically used in a mobile communication system.
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • the antenna installation process is connected to 8 antennas.
  • the antenna plus a calibration cable has a total of 9 antennas. Due to the presence of multiple antennas, there is a problem of multi-antenna calibration in the actual network.
  • the manual setting method is adopted for the calibration period, and the amplitude and phase difference of each RF channel still cannot be reported in real time after the calibration. If the amplitude and phase differences of the RF channel occur during a longer calibration period, there is a serious impact on the beamforming of the downlink, especially the beamforming of the broadcast channel. This results in a broadcast beam distortion that does not meet the 65 +/- 5 degree beamforming requirements in network planning.
  • the existing antenna calibration method steps are as follows: setting the calibration period; baseband transmission and reception calibration sequence, performing reception calibration coefficient calculation baseband transmission transmission calibration sequence, performing transmission calibration coefficient calculation according to the calibration cycle time, determining whether to perform the next reception calibration and Transmit calibration, using C M and c in this calibration cycle
  • the existing antenna calibration techniques have two main drawbacks:
  • the calibration cycle cannot be adjusted in real time according to the calibration accuracy.
  • the calibration cycle is shortened.
  • the calibration cycle is lengthened.
  • the object of the present invention is to solve at least one of the above technical defects, especially by real-time monitoring of the calibration error parameters, timely understanding the difference of the RF channel, adjusting the calibration period in real time according to the calibration error parameter, and timely calculating according to the calibration accuracy.
  • Antenna calibration is to solve at least one of the above technical defects, especially by real-time monitoring of the calibration error parameters, timely understanding the difference of the RF channel, adjusting the calibration period in real time according to the calibration error parameter, and timely calculating according to the calibration accuracy.
  • an embodiment of the present invention provides, in one aspect, a method for antenna calibration, including the following steps:
  • the calibration period T-i is updated based on the obtained calibration error parameters, and the updated calibration period T-i is used for the next antenna calibration.
  • An embodiment of the present invention further provides an apparatus for antenna calibration, comprising: an obtaining module, configured to acquire a calibration period T_i updated after the last antenna calibration;
  • a calculation module configured to calculate a calibration sequence of each antenna channel in the calibration period T-i; a calibration module, configured to calibrate each antenna according to the calibration period T-i according to the calibration sequence of each antenna channel, and calculate Calibration error parameter;
  • the update module is configured to update the calibration period T-i according to the obtained calibration error parameter, and the updated calibration period T-i is used for the next antenna calibration.
  • the above solution proposed by the present invention can monitor the difference variation of the RF channel in real time through the calibration error parameter, and reflect the calibration accuracy in real time through the reported calibration error parameter.
  • the above solution proposed by the present invention can adjust the calibration period in real time according to the calibration error parameter, shorten the calibration period when the RF channel changes rapidly, and lengthen the calibration period when the RF channel is relatively slowly changed, and timely perform the calibration accuracy according to the calibration accuracy.
  • Reasonable antenna calibration The above solution proposed by the present invention has little change to the existing system, does not affect the compatibility of the system, and is simple and efficient.
  • FIG. 3 are flowcharts of an antenna calibration method according to an embodiment of the present invention.
  • FIG. 2 and FIG. 4 are schematic diagrams showing the structure of an antenna calibration apparatus according to an embodiment of the present invention. detailed description Embodiments of the invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.
  • the present invention discloses a method for antenna calibration, comprising the steps of: obtaining a calibration period T-i updated after the last antenna calibration, and calculating a calibration sequence of each antenna channel in the calibration period T_i; According to the calibration sequence of each antenna channel, each day is calibrated according to the calibration period T-i, and the calibration error parameter is calculated; the calibration period T_i is updated according to the obtained calibration error parameter, and the updated calibration period T_i Used for the next antenna calibration.
  • the antenna performs periodic calibration, and updates the calibration error parameter; according to the calibration error parameter and the ⁇ -i, the calibration cycle TJ of the next calibration is updated, and the antenna is cycled by the TJ cycle through the calibration sequence. Calibration, and update the calibration error parameters.
  • a flowchart of an antenna calibration method includes the following steps: In step S101, first, a calibration period T—i of an antenna calibration is obtained, and a calibration sequence of each antenna channel is calculated, and a calibration period T is obtained.
  • An i is a predetermined threshold A, and it is obvious that the threshold A can be manually configured.
  • the calibration of the antenna includes both the transmission calibration and the reception calibration. Therefore, the periodic calibration includes periodic transmission calibration and periodic reception calibration, and accordingly, the calibration period includes a transmission calibration period and a reception calibration period.
  • step S102 Periodically calibrate the antenna through the calibration sequence and update the calibration error parameter.
  • the antenna is periodically calibrated with a period of T-i by the obtained calibration sequence, and the calibration error parameter is updated.
  • the calibration error parameter includes a calibration coefficient, and the maximum amplitude deviation of the channel after calibration And the maximum phase deviation of the channel after calibration, in particular, the parameters of the two parts of the transmission and reception:
  • the maximum amplitude deviation of the channel after calibration includes the maximum amplitude deviation of the channel after the emission calibration is 3 ⁇ 4 ⁇ « and the maximum amplitude deviation of the channel after receiving the calibration.
  • the maximum phase deviation of the channel after calibration includes the channel after the calibration is transmitted.
  • step S102 and step S103 the process of periodically calibrating the antenna and updating the calibration error parameter is included, and the method of periodically calibrating and updating the calibration error parameter in step S103 is the same in step S102, and the difference is only input.
  • the parameters are different, for example, the calibration error parameter is updated, or the calibration period is updated, thereby generating different results.
  • the process of periodically calibrating the antenna and updating the calibration error parameter in this step refers to the corresponding part of step S103. .
  • step S103 according to the calibration error parameter and the size of the previous cycle, the calibration cycle of the next calibration is updated, and the antenna is periodically calibrated with the updated calibration cycle as the cycle, and the calibration error parameter is updated.
  • the periodic transmission calibration includes: each antenna channel respectively transmitting a respective signal C ⁇ (") ' W , wherein C (") is a calibration coefficient obtained in the last calibration period, which is a calibration sequence;
  • the calibration calibration coefficient of the calibration period C (") C ⁇ .fy ( N ) ⁇ C TXI ("), where The transmission calibration of the antenna RF channel n is performed by transmitting a calibration coefficient ⁇ 7 ⁇ ").
  • the periodic reception calibration includes: each antenna channel receives a respective signal C (") ' ⁇ , where C M / ( ⁇ is the calibration coefficient obtained in the last calibration cycle, n is the calibration sequence;
  • updating the calibration error parameters includes:
  • the calibration cycle for updating the next transmit calibration includes the following:
  • updating the calibration cycle for the next receive calibration includes the following:
  • RX Ti— RX/k
  • ⁇ RXAMPdBinitial , ⁇ RXPHZdeglniital are pre-update calibration parameters
  • ⁇ RXAMPdB , 3 ⁇ 4XPHZdeg are updated calibration parameters
  • ⁇ ⁇ jimit is the maximum allowable calibration parameter threshold
  • k> l.
  • FIG. 2 it is a schematic structural diagram of an antenna calibration apparatus 100 according to an embodiment of the present invention, which includes a configuration module 110, a calibration module 120, and an update module 130.
  • the configuration module 110 is configured to configure the calibration period of the antenna calibration.
  • the T-i calibration period T_i is a predetermined threshold value A.
  • the calibration module 120 is configured to calculate a calibration sequence for each antenna channel, periodically calibrate the antenna with a period of T-i through a calibration sequence, and periodically calibrate the antenna with an updated period.
  • the calibration module 120 periodic calibration includes periodic emission calibration and periodic reception calibration, the calibration cycle including a transmit calibration cycle and a receive calibration cycle.
  • the calibration module 120 periodically transmits calibrations, including: each antenna channel respectively transmitting a respective signal c ⁇ i") ' 3 ⁇ , where C ⁇ (") is a calibration coefficient obtained in the last calibration period, "for Calibration sequence
  • the calibration module 120 calculates the emission calibration coefficient of the calibration cycle
  • the calibration module 120 performs transmission calibration on the antenna RF channel n by transmitting the calibration coefficient;
  • the calibration module 120 periodically receives the calibration includes: each antenna channel receives a respective signal C ⁇ »(" m ", where C ⁇ (") is a calibration coefficient obtained in the last calibration period, and ⁇ ⁇ ⁇ is a calibration sequence;
  • Calibration module 120 calculates the number of calibration calibrations for this calibration period
  • h max ( h "), h" is the channel characteristic of the antenna RF channel n ; the calibration module 120 receives and calibrates the antenna RF channel n by receiving the calibration coefficient C ⁇ ").
  • the update module 130 is configured to update the calibration error parameter, and update the calibration cycle TJ of the next calibration according to the calibration error parameter and Tj.
  • the calibration error parameters updated by the update module 130 include a calibration coefficient, a maximum amplitude deviation of the channel after calibration, and a maximum phase deviation of the channel after calibration:
  • the maximum amplitude deviation of the channel after calibration includes the maximum amplitude deviation of the channel after the emission calibration ⁇ TM ⁇ and the maximum amplitude deviation of the channel after receiving the calibration.
  • the phase deviation includes the maximum phase deviation e?XPHZde g of the channel after the emission calibration and the maximum phase deviation ⁇ XPHZdeg of the channel after receiving the calibration.
  • updating the calibration error parameter by the update module 130 includes:
  • the update module 130 updates the calibration cycle of the next calibration to include:
  • Step 1 Set an initial calibration period.
  • the initial calibration cycle can be manually configured.
  • Step 2 Calculate the calibration sequence for each channel
  • Lm corpse + -1
  • ⁇ , 2, ⁇ , ⁇ .
  • Step 3 Perform periodic emission calibration
  • £ 7XPIIZdeg limit ? can be set according to the 'I' requirement.
  • C TM""'.' One periodic transmission calibration coefficient C TM""'.', the maximum amplitude deviation ⁇ ⁇ of the channel after the last periodic transmission calibration
  • the maximum phase deviation of the channel after the last periodic transmission calibration is 6TM ⁇ '" .
  • £ XAMPdB e TXAMPdBJnUial, e 7XPHZdeg ⁇ e 7XPHZdegIn/i/.
  • T_TX T—TX/k
  • Step 4 Perform periodic reception calibration
  • the channel characteristics of each channel are obtained.
  • the method includes: Step S301: Obtain the calibration period T_i updated after the last antenna calibration.
  • Step S302 and calculating a calibration sequence of each antenna channel in the calibration period T_i.
  • Step S303 According to the calibration sequence of each antenna channel, each antenna is calibrated according to the calibration period T-i, and the calibration error parameter is calculated.
  • Step S304 and updating the calibration period T_i according to the obtained calibration error parameter, and the updated calibration period T_i is used for the next antenna calibration.
  • step S303 performing calibration on each antenna includes transmitting calibration and receiving calibration, and the calibration period T_i includes a transmission calibration period and a reception calibration period.
  • the maximum amplitude deviation of the channel after calibration includes the maximum amplitude deviation e TXAMPdB of the channel after the transmission calibration and the maximum amplitude deviation ⁇ AMPdB of the channel after receiving the calibration;
  • the maximum phase deviation of the channel after calibration includes the maximum phase deviation ⁇ ⁇ " ⁇ after the transmission calibration and the maximum phase deviation ⁇ XPHZdeg of the channel after receiving the calibration.
  • the transmitting calibration comprises: an antenna for each channel respectively emit the respective signals C TM ( ") '", wherein, C (last calibration cycle is obtained calibration coefficients, a calibration sequence of 2 ⁇ ; T-i The emission calibration coefficient ⁇ ") 0 ⁇ " ⁇ "")' 0 ⁇ "), where Transmitting the antenna RF channel n by transmitting a calibration coefficient (");
  • step S303 performing reception calibration includes: each antenna channel receiving a respective signal C ⁇ ' 3 ⁇ , where C (") is the previous one
  • step S303 when calculating the calibration error parameter, the method includes:
  • step 304 the calibration period T-i is updated, including:
  • Update the current calibration period T—i contains the emission calibration period:
  • Ti-TX is the last used calibration calibration period
  • an apparatus for antenna calibration includes:
  • the obtaining module 301 is configured to obtain a calibration period T_i updated after the last antenna calibration
  • a calculation module 302 configured to calculate a calibration sequence of each antenna channel in the calibration period T-i; a calibration module 303, configured to calibrate each antenna according to the calibration period T_i according to the calibration sequence of each antenna channel, And calculating a calibration error parameter;
  • the update module 304 is configured to update the calibration period T-i according to the obtained calibration error parameter, and the updated calibration period Tj is used for the next antenna calibration.
  • step S303 the calibration module 303 performs calibration on each antenna, including emission calibration and reception calibration, and the calibration period TJ includes a transmission calibration period and a reception calibration period.
  • the maximum amplitude deviation of the channel after the calibration includes the maximum amplitude deviation e TXAMPdB of the channel after the transmission calibration and the maximum amplitude deviation ⁇ ⁇ B of the channel after receiving the calibration;
  • the maximum phase deviation after passage of the calibration phase channel comprises a maximum deviation of the maximum phase channel and the deviation £ DOW DEG calibration after receiving transmission calibration ⁇ XPHZdeg.
  • the calibration module 303 performs the transmission calibration, including: each antenna channel respectively transmitting a respective signal ⁇ 0 ⁇ , wherein c ( ⁇ is the calibration coefficient obtained in the last calibration period, which is a calibration sequence;
  • the calibration calibration module calculates the calibration calibration coefficient of the calibration period T_i
  • step S303 the calibration module 303 performs the reception calibration, including: each antenna channel receives a respective signal C ⁇ ' 1 ⁇ , wherein C M (") is a calibration coefficient obtained in the last calibration period, which is a calibration sequence;
  • Calibration module 303 calculates the calibration calibration period of the calibration period T-i
  • ⁇ - max ( h ") , h " is the channel characteristic of the antenna RF channel ⁇ ; the calibration module 303 receives and calibrates the antenna RF channel n by receiving the calibration coefficient.
  • the calibration module 303 calculates the calibration error parameter, it includes:
  • step 304 the update module 304 updates the calibration period T-i, including: updating the current calibration period T-i includes a transmission calibration period:
  • Update the current calibration cycle T-i contains the receive calibration cycle:
  • Ti J X is the last received calibration cycle.
  • the above solution proposed by the present invention can monitor the difference variation of the RF channel in real time through the calibration error parameter, and reflect the calibration accuracy in real time through the reported calibration error parameter.
  • the above solution proposed by the present invention can adjust the calibration period in real time according to the calibration error parameter, shorten the calibration period when the RF channel changes rapidly, and lengthen the calibration period when the RF channel is relatively slowly changed, and timely perform the calibration accuracy according to the calibration accuracy.
  • Reasonable antenna calibration The above solution proposed by the present invention has little change to the existing system, does not affect the compatibility of the system, and is simple and efficient.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Radio Transmission System (AREA)

Description

一种天线校准的方法及装置 技术领域
本发明涉及移动通信领域, 具体而言, 本发明涉及一种天线校准的方 法及装置。 背景技术
移动和宽带成为现代通信技术的发展方向, 如何消除同信道干扰、 多 址干扰与多径衰落的影响成为人们在提高无线移动通信系统性能时考虑的 主要因素。 近年来智能天线技术成为移动通信领域中的一个研究热点。
智能天线技术给移动通信系统带来了巨大的优势。 例如, 在使用智能 天线时结合使用其它基带数字信号处理技术, 如联合检测、 干扰抵消等, 在无线基站中使用了智能天线技术后, 基站接收到的信号是来自各天线单 元和收信机所接收到的信号之和, 如果采用最大功率合成算法, 在不计多 径传播的条件下, 则总的接收信号将增加 10 x lgN dB, 其中, N为天线单 元的数量。 存在多径时, 此接收灵敏度的改善将视多径传播条件及上行波 束赋形算法而变, 其结果也将近 Ιθ χ IgN dB的增益。
目前, 智能天线技术已经作为物理层通信技术发展的主要方向之一。 智能天线技术不仅可以使用在时分双工 TDD系统中,也完全可以使用到频 分双工 FDD系统中, 智能天线的广泛应用正是为我们提供了一个领先的、 完善的技术平台, 它在一定程度上推动了移动通信技术的发展。
智能天线具体应用在移动通信系统中, 例如在采用 8 单元阵的 TD-SCDMA( Time Division-Synchronization Code Division Multiple Access, 时分同步码分多址接入) 系统中, 天线安装过程就要连接 8根天线外加一 根校准电缆一共 9根天线, 由于存在多天线, 因此在实际网络中存在多 天线校准的问题。 目前天线校准技术中, 对于校准周期采用人工设定的方 法,同时也不能实时上报校准后各个射频通道仍然存在幅度和相位的差异。 如果在较长的校准周期中出现射频通道的幅度和相位的差异, 对于下行波 束赋形, 特别是广播信道的波束赋形存在严重影响。 导致广播波束畸变, 无法达到网络规划中的 65+/-5度的波束赋形要求。
通常现有的天线校准方法步骤如下: 设定校准周期; 基带发射接收校准序列, 进行接收校准系数计算 基带发射发送校准序列, 进行发射校准系数计算 根据校准周期时间, 确定是否进行下一次接收校准和发射校准, 在此校准周期内使用 CM和 c 现有的天线校准技术主要存在以下两个缺点:
( 1 )不能实现反馈校准的精度,导致校准后多个射频通道的之间仍然 存在差异情况无法监控。
( 2 )不能实时的根据校准精度情况, 调整校准的周期, 在射频通道变 化较快时, 缩短校准周期, 在射频通道相对緩变时, 拉长校准周期。
因此, 有必要提出一种技术方案, 能够通过校准误差参数来实时监控 射频通道的差异变化,并通过上报的校准误差参数实时反映出校准的精度; 以及能够根据校准误差参数来实时调整校准的周期, 在射频通道变化较快 时缩短校准周期, 在射频通道相对緩变时拉长校准周期。
发明内容
本发明的目的旨在至少解决上述技术缺陷之一, 特别通过对校准误差 参数进行实时监控, 及时了解射频通道的差异变化, 根据校准误差参数来 实时调整校准的周期, 及时根据校准精度情况进行合理的天线校准。
为了达到上述目的, 本发明的实施例一方面提出了一种天线校准的方 法, 包括以下步骤:
获取上一次天线校准后更新的校准周期 T—i, 以及计算校准周期 T— i 内每个天线通道的校准序列; 根据所述每个天线通道的校准序列, 按照校准周期 T— i对各天线进行 校准, 并计算校准误差参数;
根据获得的校准误差参数对校准周期 T— i进行更新, 更新后的校准周 期 T—i用于下一次天线校准。
本发明的实施例另一方面还提出了一种天线校准的装置, 包括: 获取模块, 用于获取上一次天线校准后更新的校准周期 T_i;
计算模块, 用于计算校准周期 T—i内每个天线通道的校准序列; 校准模块,用于根据所述每个天线通道的校准序列,按照校准周期 T—i 对各天线进行校准, 并计算校准误差参数;
更新模块, 用于根据获得的校准误差参数对校准周期 T—i进行更新, 更新后的校准周期 T—i用于下一次天线校准。
本发明提出的上述方案, 能够通过校准误差参数来实时监控射频通道 的差异变化, 并通过上报的校准误差参数实时反映出校准的精度。 此外, 本发明提出的上述方案, 能够根据校准误差参数来实时调整校准的周期, 在射频通道变化较快时缩短校准周期, 在射频通道相对緩变时拉长校准周 期,及时根据校准精度情况进行合理的天线校准。本发明提出的上述方案, 对现有系统的改动很小, 不会影响系统的兼容性, 而且实现简单、 高效。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面 的描述中变得明显, 或通过本发明的实践了解到。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:
图 1和图 3为本发明实施例天线校准方法的流程图;
图 2和图 4为本发明实施例天线校准装置的结构示意图。 具体实施方式 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。
为了实现本发明之目的, 本发明公开了一种天线校准的方法, 包括以 下步骤: 获取上一次天线校准后更新的校准周期 T一 i, 以及计算校准周期 T_i 内每个天线通道的校准序列; 根据所述每个天线通道的校准序列, 按 照校准周期 T—i对各天进行校准, 并计算校准误差参数; 根据获得的校准 误差参数对校准周期 T_i进行更新, 更新后的校准周期 T— i用于下一次天 线校准。
例如, 获取天线校准的校准周期 T— i以及计算每个天线通道的校准序 列, 所述校准周期 T—i为预定门限值 A; 通过所述校准序列, 以所述 T— i 为周期对天线进行周期性校准, 并更新校准误差参数; 根据所述校准误差 参数与所述 Τ—i, 更新下次校准的校准周期 TJ, 通过所述校准序列, 以所 述 TJ为周期对天线进行周期性校准, 并更新校准误差参数。
如图 1所示, 为本发明实施例天线校准方法的流程图, 包括以下步骤: 在步骤 S101中,首先获取天线校准的校准周期 T—i以及计算每个天线 通道的校准序列, 校准周期 T一 i为预定门限值 A, 显然门限值 A可以人工 配置设定。
在本发明中, 对天线校准包括发射校准和接收校准两方面, 因此, 周 期性校准包括周期性发射校准和周期性接收校准, 相应地, 校准周期包括 发射校准周期和接收校准周期。
S 102: 通过校准序列, 对天线进行周期性校准, 并更新校准误差参数。 在步骤 S102中, 通过得到的校准序列, 以 T—i为周期对天线进行周期 性校准, 并更新校准误差参数。
在本发明中, 校准误差参数包括校准系数, 校准后通道最大幅度偏差 以及校准后通道最大相位偏差,具体而言, 又分发射和接收两部分的参数: 校准系数包括发射校准系数 C^ (")和接收校准系数 C^ (") , 其中, " = 1,2,'",N , N为天线射频通道数; 校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差¾^^«和 接收校准后通道最大幅度偏差 校准后通道最大相位偏差包括发射校准后通道最大相位偏差 ε7ΧΡΗΖ 和接收校准后通道最大相位偏差 ^XPHZdeg。
在步骤 S102中与步骤 S103中均包括对天线进行周期性校准、 更新校 准误差参数的过程, 步骤 S 102中与步骤 S 103中周期性校准、 更新校准误 差参数的方法是一致的, 区别只是输入的参数不同, 例如校准误差参数得 到更新, 或者校准周期得到更新, 从而产生不同的结果, 为了避免重复叙 述, 本步骤对天线进行周期性校准、 更新校准误差参数的过程参考步骤 S 103的相应部分。
S 103 : 根据校准误差参数更新校准周期, 通过校准序列, 对天线进行 周期性校准, 并更新校准误差参数。
在步骤 S103 中, 根据校准误差参数与上一周期的大小, 更新下次校 准的校准周期, 通过所述校准序列, 以更新后的校准周期为周期对天线进 行周期性校准, 并更新校准误差参数。
具体而言, 周期性发射校准包括: 每个天线通道分别发射各自的信号 C^ (") ' W , 其中, C (")为上一 次校准周期得到的校准系数, 为校准序列; 计算本次校准周期的发射校准系数 C (") = C^.fy (N) · CTXI ("),其中,
Figure imgf000007_0001
通过发射校准系数 ^7^")对天线射频通道 n进行发射校准。 具体而言, 周期性接收校准包括: 每个天线通道分别接收各自的信号 C (")' ^ , 其中, CM/ (^为上一 次校准周期得到的校准系数, n为校准序列;
计算本次校准周期的接收校准系数°^ (") = (") · CRXI ("),其中,
Figure imgf000008_0001
, = max(h") 5 h"为天线射频通道 n的信道 特性;
通过接收校准系数 C^ (")对天线射频通道 n进行接收校准 ,
在上述实施例中, 更新校准误差参数包括:
Figure imgf000008_0002
相应地, 更新下次发射校准的校准周期包括以下方式:
< £TXAMPJB imit 且 fc'7XPHZdegIniital < fc ε'7XPHZdeg limit 时 , 如 果
' TXAMl'JB 、 XWWa— limit 且 £7XPHZdeg < £7XPHZdeg _ limit , 则 发射校准 的校准周 期
Tj_TX=k*Ti_TX, 否则发射校准的校准周期保持不变 Tj— TX=Ti— TX;
SrXAMPdBMtial ― ε TXAMPdB imit 或 e7XPHZdegIniital ― £rXPHZdeg_ limit 时 , 如 果 STXAMI'dB < ErXAMPUB mx和 £7XPHZde6 < £7XPHZdeg _ limit j¾|J发射校准 0 校准周期保持不变 Tj— TX=Ti—TX, 否则发射校准的校准周期 Tj一 TX=Ti— TX/k, 其中,
£TXAMPdBImtial 、 £7XPHZdegIniital 为更新刖校准参数, £TXAMPdB 、 eiXPHZdeg 为更新后 校准参数,
Figure imgf000009_0001
Jimit 为允许的校准参数最大门限值, k>=l。
相应地, 更新下次接收校准的校准周期包括以下方式:
£ RXAMPdB〗nitial < G RXAMPdB imiX 且 £^XPHZdegIniitai < £/?XPHZdeg— limit 时 , 口 杲 8HXAMPdB < 8 RXAMPdB \ \X且 £^XPHZdeg £^XPHZdeg _ limit, 则接收权准的校准周期
Tj RX-k*Ti_RX, 否则接收校准的校准周期保持不变 Tj—RX=Ti— RX;
8 RXAMPdBinitial ― ε RXAMPdB vmiX 或 ^RXPHZdeglniital ― £RXPHZdeg_ limit 时 , ^口 杲 ^HXAMPdB < £ 聽一 和 ¾xPHZdeg < fiRXPHZdegJimit则接收校准的校准周期保持不 变 Tj_RX=Ti_RX, 否则接收校准的校准周期 Tj— RX=Ti— RX/k, 其中, ε RXAMPdBinitial 、 ^RXPHZdeglniital 为更新前校准参数, ε RXAMPdB 、 ¾XPHZdeg 为更新后 校准参数, ε ^^jimit 、 eRXpHZdeg_ limit 为允许的校准参数最大门限值, k>=l。
如图 2所示, 为本发明实施例天线校准装置 100的结构示意图, 包括 配置模块 1 10、 校准模块 120以及更新模块 130。
其中, 配置模块 110用于配置天线校准的校准周期 T—i校准周期 T— i 为预定门限值 A。
校准模块 120用于计算每个天线通道的校准序列, 通过校准序列, 以 T—i 为周期对天线进行周期性校准, 以及以更新后的周期对天线进行周期 性校准。
具体而言, 校准模块 120周期性校准包括周期性发射校准和周期性接 收校准, 校准周期包括发射校准周期和接收校准周期。
具体而言, 校准模块 120周期性发射校准包括: 每个天线通道分别发射各自的信号 c^ i") ' 3^ , 其中, C∞(")为上一 次校准周期得到的校准系数, "为校准序列;
校 准 模 块 120 计 算 本 次校 准 周 期 的 发射 校 准 系 数
Figure imgf000010_0001
^ (";^ ^ ^ ^^^,其中, , ^ =max(h")? h"为天线射频通道 n的信道特性; 校准模块 120通过发射校准系数 对天线射频通道 n进行发射校 准;
校准模块 120周期性接收校准包括: 每个天线通道分别接收各自的信号 C^»(" m", 其中, C^(")为上一 次校准周期得到的校准系数, ϊ≥η为校准序列;
校 准模 块 120 计 算 本 次 校 准 周 期 的 接 收校 准 系 数
CRX in)
Figure imgf000010_0002
h = max(h"), h"为天线射频通道 n的信道特性; 校准模块 120通过接收校准系数 C^^")对天线射频通道 n进行接收校 准。
更新模块 130用于更新校准误差参数, 以及根据校准误差参数与 Tj, 更新下次校准的校准周期 TJ。
具体而言, 更新模块 130更新的校准误差参数包括校准系数, 校准后 通道最大幅度偏差以及校准后通道最大相位偏差: 校准系数包括发射校准系数 C^(")和接收校准系数 C^("), " = 1,2,···,7ν, Ν为天线射频通道数; 校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差 ε™^^和 接收校准后通道最大幅度偏差 校准后通道最大相位偏差包括发射校准后通道最大相位偏差 e?XPHZdeg 和接收校准后通道最大相位偏差 ^XPHZdeg。 具体而言, 更新模块 130更新校准误差参数包括:
Figure imgf000011_0001
具体而言, 更新模块 130更新下次校准的校准周期包括:
更新下次发射校准的校准周期:
、 且 时 如 果 TXAM dB < £TXAMPJB 且 limit , 贝,J 发射校准 的 校准周 期 Tj」rX=k*Ti__TX, 否则发射校准的校准周期保持不变 Tj— TX=Ti— TX; 当 eTXA B tial ― STXAMPdB Ji iX 或 6rXPHZdegIniital ― SrXPHZdeg _ limit 时 , 如 果 和 则发射校准的校准周期保持不变
Tj__TX=Ti_TX, 否则发射校准的校准周期 Tj— TX=Ti— TX/k, 其中, eTXAMPdBInitial 、 firXPIIZdegIniital 为更新 】校准参数, STXAMPdB 、 £rXPHZdeg 为更新后 校准参数, ε TXAMPdB Jimit 、 &7XPHZdeg_!imit 为允许的校准参数最大门限值, k>=l 更新下次接收校准的校准周期:
E RXAMPdBJmtial ^ 8 RXAMPdB 且 £/?XPHZdegIniital £/?XPHZdeg_
RXAMPdB < ε RXAMPc ― imit且 ^/?XPHZdeg < ^XPHZdeg Jimit , 则接收校准的校准周期
Tj—RX=k*TiJO, 否则接收校准的校准周期保持不变 TjJ X=TiJRX; 当 £RXAMPcW!"itid - 8 RXAMPdB limit 或 ^RXPHZdeglniital ― eRXPHZdeg_ limit 时 , 如 果
ERXAMPdB < £ RXAMPdB Jimit和 ^RXPHZdeg < £RXPHZdeg_ limit贝 'J接收校准的校准周期保持不 变 Tj—RX=Ti— RX, 否则接收校准的校准周期 Tj— RX=Ti— RX/k, 其中, RXAMPdBInitial 、 ^RXPHZdeglniital 为更新前校准参数, ^RXAMPdE 、 ^RXPHZdeg 为更新后 校准参数,
Figure imgf000012_0001
limit 为允许的校准参数最大门限值, k>=l。
为了进一步阐述本发明, 下面结合更具体的参数, 分别对发射校准和 接收校准的完整流程进行举例说明。 需要注意的是, 下述实施例中的步骤 顺序不是对本发明的限定, 某些步骤的执行顺序也可以颠倒, 只要能实现 本发明之目的即可。
第一步: 设定一个初始的校准周期, 例如, 发射校准和接收校准的校 准周期取值为 T— TX=5s,T— RX=5s。 显然初始的校准周期可以人工配置设 定。
第二步: 计算每个通道的校准序列
( 1 )假设每个射频通道所需要的信道估计的窗长为 W, 天线射频通 道数为 N, 因此二进制基序列的 P=W*N, 其表示为:
mA。.、.fc = (m^,m2,---,mp), where P = W* N 对二进制基序列 进行相位均衡得到新的复基序列 ,其表示为:
Mhasic = ( 1 , ^?2,…, ^?尸), Where P = W*N ,
其中: , =(/·)'— ' · , where ί = 1,···,Ρ。
( 2 )将复基序列 51 ^·进行周期性扩展, 形成周期性扩展序列 ^ , 其表示为:
m = (m,,m ,---,wI )
= periodic \=1 =2 =Imax '
= H + 1)尸- Imax+ 1:尸) 1,… (1· )]
Imax
其中: Lm =尸 + — 1, Imax = Lm + (N - ΐ)ίΓ P
( 3 ) 计算每个通道的校准序列 " =(« ··,0
= m periodic (im x― ("― \ 7W一 Lm + 1: \ ax~(n- l)W) '
Figure imgf000013_0001
·
其中: Lm =尸 + -1, η = \,2,···,Ν。
第三步: 进行周期性发射校准
(a) 初始化变量
设定通道允许的最大幅度偏差 e%Wft -limi', 通道最大相位偏差
£7XPIIZdeg limit ? 可才艮据 'I "生肯 要求设定。 例^口 — limit = 0-3, erapHzdeg_Hmit = 3。 在进行周期性发射校准之前, 需定义 3个存储变量: 上一次周期性发 射校准系数 C™""'。', 上一次周期性发射校准后通道最大幅度偏差 ετ
上一次周期性发射校准后通道最大相位偏差 6™·^ '" 。
对其变量进行初始化: ^ΤΧΜΐίαΙ = [1,…,l]lxW, £TXAMPdBlniUal -。, e7XPHZdegIn«(«j/ =。。
( b)计算当前周期性发射校准参数 Crarmo^、 . x e"<PHZdeg 根据初始校准周期 τχ的要求, 进行第一次发射校准, 每个通道分 别发射各自的 C™"'""'^'51"序列, 在校准通道叠加后形成的信号为: 去掉循环移位的部分, 得到长度为 Ρ的 em , 其表达式为:
cm = {e],e2,--,eP) = {ew_l,ew,---ew+P_2). 进行射频通道估计:
= ^,h2,---h,)=iffi{ffi{^lfft{ ha ). 根据每个通道窗长, 得到每个通道的信道特性
h ={h,h2,---,hw^) = ijll , ,··· k 令 =max(h"); 以 N个通道信号功率最差的那个通道为参考, 计算出当前周期性发射 校准修正系数
TXmodii'y \RTJ―
hL , 则当前周期性发射校准系数 C^ =C~fy 'CT , 。
当前周期性校准后通道的最大幅度偏差 £丽 和最大相位偏差 ^XPHZ 设定如下:
如果是第 1次周期校准, £ XAMPdB = eTXAMPdBJnUial, e7XPHZdeg ~ e7XPHZdegIn/i/ 。
Figure imgf000014_0001
( c ) 调整校准周期
设定校准周期调整倍数
£RXAMPdBinitia! < £ RXAMPdB Jx' i't 且 £^XPHZdegIniital < £7?XPHZdeg— limit
eRXAMPdB < 8 RXAMPdB \m\i且 ^XPHZdeg £i?XPHZdeg_ limit 则接收校准的校准周期
T一 TX=k*TJTX, 否则接收校准的校准周期保持不变 T TX=T TX;
ε RXAMPdBlnitial ― 6 RXAMPdB Jimit 或 ¾XPHZdegIniitai ― ^RXPHZdeg_ limit
£RXAMPdB < RXAMPdB imit和 ^RXPHZdeg < £RXPHZdeg_limit则接收校准的校准周期保持不 变 T— ΤΧ=Τ— TX, 否则接收校准的校准周期 T— TX=T— TX/k。 此外, 当 T— TX<5s, 即小于预定周期时, 可以令 T— TX=5s。
(d) 更新数据, 存储数据
^TX!nitial ~ ^TX , £TXAMPJBInitiai = ^TXAMPd ? £7XPHZdegIn///a/ = ^TXPHZdeg · 并上报偏差 eTXMirdBl tial和 ^rXPH deglnio/。
(e)根据新的校准周期 T— TX, 进行下个周期校准, 返回执行(b) 过程。 第四步: 进行周期性接收校准
(a) 初始化变量
设定通道允许的最大幅度偏差 £腦 , 通道最大相位偏差
½XPIIZdeg— lim", 可才艮据 'f1生能要求设定。 例^口 Jimit = 0·3, £/«PHZdeg— limit = 3。
在进行周期性接收校准之前, 需定义 3个存储变量: 上一次周期性接 收校准系敫 C漏 a,, 上一次周期性接收校准后通道最大幅度偏差 £腦陋"'"。1, 上一次周期性接收校准后通道最大相位偏差£^^ '"。'。 对其变量进行初始 化: ^KXImlial = [l,'",l]lxW, £ RXAMPJBInitial =0, ^^XPHZdeglnii/o/ =0。
(b) 计算当前周期性发射校准参数 C/Um0difCRX , £RXAMPUB , £« PHZdeg 根据初始校准周期 Τ— RX的要求, 进行第一次接收校准, 校准通道分 别发射的0^""'"'^)'31'序列, 在各自的 RX通道接收的信号为:
~ m V— ] »— 2, '— / · 的 , 其表达式为:
Figure imgf000015_0001
进行射频通道估计:
, , )= ( (cm")/ ( j);
根据每个通道窗长, 得到每个通道的信道特性
h = ( Ζ, , Α2 , · · · , ) = {h(„-i)if+\, (n-\)IV+2, ' · · (n-l)W+W )
令 ax =max(h") ,
以 N个通道信号功率最差的那个通道为参考, 计算出当前周期性接收 校准修正系数
min(/i' ,·'·,/!_!)
Figure imgf000015_0002
则当前周期性接收校准系数 = ^m。dify · 当前周期性校准后通道的最大幅度偏差 和最大相位偏差 e«xPHZ<kg 设定,
^口杲是第 1次周期校准,
否则
Figure imgf000016_0001
( c )调整校准周期
设定校准周期调整倍数 *,
当 RXAMPdBInitial < £ RXAMPdB imit 且 G/?XPHZdegIniita! < ^/?XPHZdeg _ limit 时 , 如 果
Figure imgf000016_0002
< ½CPHZdeglimit, 则接收校准的校准周期为原来 的 k 倍, 即 T—RX=k*T— RX, 否则接收校准的校准周期保持不变 T_RX=T_RX;
6 RXAMPdBMtial ― S RXAMPdB imit 或 ^RXPHZdeglniital ― £RXPHZdeg_ limit 时 , 口 果 ε RXAMPdB < £ RXAMPdB imxt和 ^RXPHZdeg < £RXPHZdeg_ limit则接收校准的校准周期保持不 变 T_RX=T— RX, 否则接收校准的校准周期的 l/k, 即 T—RX=T— RX/k。 此 外, 当 T__RX<5s, 即小于预定周期时, 令丁_1^=53。
( d ) 更新数据, 存储数据
C 并上才艮偏差 和 。
( e )根据新的校准周期 T_RX, 进行下个周期校准, 返回执行(b ) 过程。
综上所述, 参阅图 3所示, 本发明实施例中, 在每一次进行天线校准 时, 包括: 步骤 S301: 获取上一次天线校准后更新的校准周期 T— i。
步骤 S302: 以及计算校准周期 T— i内每个天线通道的校准序列.
步骤 S303: 根据每个天线通道的校准序列, 按照校准周期 T—i对各天 线进行校准, 并计算校准误差参数。
步骤 S304: 以及根据获得的校准误差参数对校准周期 T_i进行更新, 更新后的校准周期 T—i用于下一次天线校准。
其中, 在步骤 S303中, 对各天线进行校准包括发射校准和接收校准, 所述校准周期 T—i包括发射校准周期和接收校准周期。
所述校准误差参数包括校准系数, 校准后通道最大幅度偏差以及校准 后通道最大相位偏差: 所述校准系数包括发射校准系数 C ")和接收校准系数 C "), " = 1,2,''',N, N为天线射频通道数;
所述校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差 eTXAMPdB和接收校准后通道最大幅度偏差 ^AMPdB;
所述校准后通道最大相位偏差包括发射校准后通道最大相位偏差 ε ΧΡ"Ζ 和接收校准后通道最大相位偏差 ^XPHZdeg。
在步骤 S303中, 进行发射校准包括: 每个天线通道分别发射各自的信号 C™(")' ", 其中, C ( 为上一 次校准周期得到的校准系数, 2^为校准序列; T—i的发射校准系数^^") 0^"^"")'0^^"), 其中,
Figure imgf000017_0001
通过发射校准系数 (")对天线射频通道 n进行发射校准;
在步骤 S303中, 进行接收校准包括: 每个天线通道分别接收各自的信号 C^^^'3^, 其中, C (")为上一 次校准周期得到的校准系数, 胆 为校准序列; 计算校准周期 T一 i的接收校准系数°^(") = (/^。 (")'Cm7("),其中,
Figure imgf000018_0001
, = max(h )5 h"为天线射频通道 n的信道 特性; 通过接收校准系数 对天线射频通道 n进行接收校准 ,
在步骤 S303中, 计算校准误差参数时, 包括:
Figure imgf000018_0002
在步骤 304中, 对校准周期 T—i进行更新, 包括:
更新当前校准周期 T— i包含的发射校准周期:
£TXAMPdBI tial < ^TXAMPdB ii t 且 e7XPHZdegIniital < £7XPHZdeg _ limit 时 , 如 果 εΤΧΑΜΝΒ < erXAMPdB_\im\x且 ^TXPHZdeg < £7XPHZdeg_ limit, 贝' j所述发射校准周期更新为
Ti—TX=k*Ti一 TX, 否则所述发射校准周期保持不变 Ti— TX=Ti— ΤΧ;
£TXAM!3dBInitial - £ TXAMPdB i xt 或 ^7 PHZdegIniital― £7^PHZdeg_ limit 时 , 如 果 ETXAMPdB < £rXAM JB imit和 ^TXPHZdeg < ^TXPHZdcg^ limit贝 |J所述发射校准周期保持不变
Ti—TX=Ti— TX, 否则所述发射校准周期更新为 TiJTX=Ti_TX/k, 其中,
£TXAMP BImtial 、 £7^PHZdegIniital 为更新 ^校准参数, ετΧΑΜΡάΒ 、 £7 PHZdeg 为更新后 为允许的校准参数最大门限值, k>=l,
Ti一 TX为上次使用的发射校准周期;
更新当前校准周期 T— i包含的接收校准周期:
8 RXAMPdBInitial ^ RXAMP B i it 且 ^TO PHZdeglniital < £^XPHZdeg— limit 时 , 如 果
"/ ^ j 且½0^^ < ½ PHZdegjimit, 则所述接收校准周期更新为 TiJ X-k*Ti_RX, 否则所述接收校准周期保持不变 Ti— RX=Ti—RX;
ε RXAMPdBInitial - 6 RXAMPdB Jimit 或 £RXPHZdegIniital - £RXPHZdeg_ limit 时 , 如 果 SRX細 B < 細」 imit和 ¾xPHZdeg < ^pH^g Jimit则所述接收校准周期保持不变
Ti_RX=Ti_RX, 否则所述接收校准周期更新为 Ti— RX=Ti— RX/k, 其中, eRXAMPdBJ ,ial 、 ^RXPHZdeglniital 为更新前校准参数, S圆 pdB 、 为更新后 权准参数, £ j}Jimit 、 ^RXPHZdeg, limit 为允许的校准参数最大门限值, k>=l。
相应的, 参阅图 4所示, 本发明实施例中, 用于天线校准的装置, 包 括:
获取模块 301 , 用于获取上一次天线校准后更新的校准周期 T— i;
计算模块 302, 用于计算校准周期 T— i内每个天线通道的校准序列; 校准模块 303, 用于根据所述每个天线通道的校准序列, 按照校准周 期 T— i对各天线进行校准, 并计算校准误差参数;
更新模块 304, 用于根据获得的校准误差参数对校准周期 T— i进行更 新, 更新后的校准周期 Tj用于下一次天线校准。
其中, 在步骤 S303 中, 校准模块 303对各天线进行校准包括发射校 准和接收校准, 所述校准周期 TJ包括发射校准周期和接收校准周期。
校准模块 303计算的所述校准误差参数包括校准系数, 校准后通道最 大幅度偏差以及校准后通道最大相位偏差: 所述校准系数包括发射校准系数 C^ (")和接收校准系数 °^ (") , " = 1,2,'",N, N为天线射频通道数; 所述校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差 eTXAMPdB和接收校准后通道最大幅度偏差 εΜΧΑ则 B;
所述校准后通道最大相位偏差包括发射校准后通道最大相位偏差 £DOWDEG和接收校准后通道最大相位偏差^ XPHZdeg。 在步骤 S303中, 校准模块 303进行发射校准包括: 每个天线通道分别发射各自的信号 ^ ^ 0^, 其中, c (^为上一 次校准周期得到的校准系数, 为校准序列;
所 述校 准 模 块 计 算 校 准 周 期 T— i 的 发 射 校 准 系 数
minfcax,'",^L)
C (") = CTXmo (") · Cm ("),其中, L™„ = ^ -, = max(h" ), h"为天线射频通道 n的信道特性; 所述校准模块通过发射校准系数 对天线射频通道 n进行发射校 准;
在步骤 S303中 , 校准模块 303进行接收校准包括: 每个天线通道分别接收各自的信号 C ^^ ' 1^ , 其中, CM (")为上一 次校准周期得到的校准系数, 为校准序列;
校 准 模 块 303 计 算校 准 周 期 T—i 的 接 收校 准 系 数
CRX (n) = C/?A-modify (") - RXJ (") , 其 中
Figure imgf000020_0001
Λ- = max(h") , h"为天线射频通道 η的信道特性; 校准模块 303通过接收校准系数 对天线射频通道 n进行接收校 准。
校准模块 303计算校准误差参数时, 包括:
Figure imgf000021_0001
( f, 、、 ( 、、
1 1
' RXAMPdB = max| 201g[ 一 mm| 201g
«A¾iodiiy
、 c 乂 c
Figure imgf000021_0002
在步骤 304中, 更新模块 304对校准周期 T—i进行更新, 包括: 更新当前校准周期 T—i包含的发射校准周期:
E TXAM dmnilial < £7 Jimit 且 e7XPHZdegIniital < e7XPHZdeg _ limit 时 , 如 果 ETXAMNB < εΓΑ"層 Wfl一 limit且 £7XPHZdeg < £7XPHZdeg _ limit, 贝!]所述发射校准周期更新为
Ti TX=k*Ti TX, 否则所述发射校准周期保持不变 Ti TX=Ti TX;
ETXAMPdBInitial ― £TXAMPdB limit erXPHZdeglniital― £rXPHZdeg_ limit
' TXAMl'dH < £rXAMl'dB i1mt和 £7XPHZdeg < ^TXPHZdeg , limit则所述发射校准周期保持不变
Ti_TX=Ti_TX, 否则所述发射校准周期更新为 Ti TX=Ti— TX/k, 其中,
£rXAMPdBImtial 、
Figure imgf000021_0003
、 ½(PHZdeg 为更新后 校准参数, 8TXAMpdB Jimlt 、 ¾PHZdegJimit 为允许的校准参数最大门限值, k>=l。
更新当前校准周期 T—i包含的接收校准周期:
当 HXAMPdBJnitial 〈 8 RXAMPdB Jimit 且 ^^XPHZdeglniital < ^/?XPHZdeg_ limit 时 , 口 果 ε RXA圆 B 〈 RXAMPdB \ l且 ^/?XPHZdeg < £/0(PHZdeg_ limit , 则所述接收校准周期更新为 Ti— RX=k*Ti— RX, 否则所述接收校准周期保持不变 Ti RX=Ti RX;
ε RXAMPdBInitial一 G RXAMPdB 或 ^RXPHZdeglniital ― ¾XPHZdeg_limit 时 , 如 果
^RXAMPdB < ^HXAMPdB im,t和 ¾xPHZdeg < ^^^一,^则所述接收校准周期保持不变
Ti_RX=Ti RX, 否则所述接收校准周期更新为 Ti RX=Ti RX/k, 其中, RXAMPdB,nmal 、 ^RXPHZdeglniital 为更新前校准参数, S國 PdB 、 ¾XPHZdeg 为更新后 校准参数, ^ Jimit 、 %χ画 egJimit 为允许的校准参数最大门限值, k>= l ,
Ti J X为上次使用的接收校准周期。
本发明提出的上述方案, 能够通过校准误差参数来实时监控射频通道 的差异变化, 并通过上报的校准误差参数实时反映出校准的精度。 此外, 本发明提出的上述方案, 能够根据校准误差参数来实时调整校准的周期, 在射频通道变化较快时缩短校准周期, 在射频通道相对緩变时拉长校准周 期,及时根据校准精度情况进行合理的天线校准。本发明提出的上述方案, 对现有系统的改动很小, 不会影响系统的兼容性, 而且实现简单、 高效。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分 步骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种 计算机可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或 其组合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软 件功能模块的形式实现。 所述集成的模块如果以软件功能模块的形式实现 并作为独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介 质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种天线校准的方法, 其特征在于, 包括以下步骤:
获取上一次天线校准后更新的校准周期 T—i, 以及计算校准周期 T— i 内每个天线通道的校准序列;
根据所述每个天线通道的校准序列, 按照校准周期 T— i对各天线进行 校准, 并计算校准误差参数;
根据获得的校准误差参数对校准周期 TJ进行更新, 更新后的校准周 期 T— i用于下一次天线校准。
2、 如权利要求 1所述的天线校准的方法, 其特征在于, 所述对各天线 进行校准包括发射校准和接收校准, 所述校准周期 T— i包括发射校准周期 和接收校准周期。
3、 如权利要求 2所述的天线校准的方法, 其特征在于, 所述校准误差 参数包括校准系数, 校准后通道最大幅度偏差以及校准后通道最大相位偏 差: 所述校准系数包括发射校准系数<:^ (")和接收校准系数 C ("), " = 1,2,"',N, N为天线射频通道数;
所述校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差 ε7 4Λ//¾β和接收校准后通道最大幅度偏差 εΛΧ ΜΑ/β;
所述校准后通道最大相位偏差包括发射校准后通道最大相位偏差 e™ deg和接收校准后通道最大相位偏差 ^ PHZdeg。
4、 如权利要求 3所述的天线校准的方法, 其特征在于,
所述发射校准包括: 每个天线通道分别发射各自的信号 C™("X, 其中, C™(")为上一 次校准周期得到的校准系数, 为校准序列;
计算校准周期 T— i的发射校准系数 C = CTXmo^ (") · Cr ("), 其中, min Λ,
c yVmodify
h , h = max(h"), h"为天线射频通道 n的信道特性; 通过发射校准系数 对天线射频通道 n进行发射校准 ^
所述接收校准包括: 每个天线通道分别接收各自的信号 C ")'01", 其中, C /(")为上一 次校准周期得到的校准系数, 为校准序列; 计算校准周期 T— i的接收校准系数^ = C^m。dify (") · ,其中, r min
^max , hmax =max(h )5 h"为天线射频通道 n的信道 特性;
通过接收校准系数 C (")对天线射频通道 n进行接收校准。
5、 如权利要求 4所述的天线校准的方法, 其特征在于, 计算校准误差 参数时, 包括:
■TXAMPd
TXPHZdeg
£ RXAMl'dB
RXPHZdeg
Figure imgf000024_0001
6、 如权利要求 4 所述的天线校准的方法, 其特征在于, 对校准周期 T— i进行更新, 包括:
更新当前校准周期 T— i包含的发射校准周期:
eTXAMl'dBImtial < £TXAMPi/B imit 且 e7XPHZdegIniital < ^r PHZdeg„ limit 时 , 如 果 εΤΧΑΜΡΜ < erXAMPdH _\x x\且 e7XPHZdeg < £7XPHZdeg— limit , 贝 'J所述发射校准周期更新为
Ti— TX=k*Ti一 TX, 否则所述发射校准周期保持不变 Ti— TX=Ti— ΤΧ;
eTXAMPdBlnitial ― STXAMPdB Jimit 或 £7XPHZdegIniital ― £7XPHZdeg_ limit 时 , : ^口 果 £TXAMPdB < £rXAMPJB JimX和 ^TXPHZdeg < £7XPHZdeg _ limit贝 |j所述发射校准周期保持不变
Ti_TX=Ti_TX, 否则所述发射校准周期更新为 Ti一 TX=Ti— TX/k, 其中, eTXAMPdBlnilial 、 e7XPHZdegIniital 为更新 ^权准参数, STXAMPdB 、 £7XPHZdeg 为更新后 校准参数, ¾^^—ιω 、 ^PHZdeg_limit 为允许的校准参数最大门限值, k>=l ; 更新当前校准周期 Tj包含的接收校准周期:
ε B!nitia! < 6 RXAMPdB _\ m\t 且 £/O PHZdegIniitaI £/?XPHZdeg_ limit 时 , : ¾口 果 ^RXAMPdB < ^RXAMPdB limit且 ½ PHZdeg < ½cPHZdeg Jimit, 则所述接收校准周期更新为
Ti_RX=k*Ti_RX, 否则所述接收校准周期保持不变 Ti— RX=Ti— RX;
ε RXAMPdBMtial ― £ RXAMPdB Jimit 或 ^RXPHZdeglniital - £RXPHZdeg _ limit 时 , ^口 果 SRXAMPdB < SRXAMPdB imit和 ^RXPHZdeg < ^RXPHZdeg , limit则所述接收校准周期保持不变
Ti RX=Ti__RX, 否则所述接收校准周期更新为 Ti— RX=Ti_RX/k, 其中,
^RXAMPdBInUial 、 eRXPHZdegIniital 为更新前校准参数, ^RXAMPdB 、 ^RXPHZdeg 为更新后 校准参数, ¾nUmit½XPHZdegJimit 为允许的校准参数最大门限值, k>=l。
7、 一种天线校准的装置, 其特征在于, 包括:
获取模块, 用于获取上一次天线校准后更新的校准周期 T— i;
计算模块, 用于计算校准周期 T_i内每个天线通道的校准序列; 校准模块,用于根据所述每个天线通道的校准序列,按照校准周期 T— i 对各天线进行校准, 并计算校准误差参数;
更新模块, 用于根据获得的校准误差参数对校准周期 T—i进行更新, 更新后的校准周期 T—i用于下一次天线校准。
8、 如权利要求 7所述的天线校准的装置, 其特征在于, 所述校准模块 对各天线进行校准包括发射校准和接收校准, 所述校准周期 T_i包括发射 校准周期和接收校准周期。
9、 如权利要求 8所述的天线校准的装置, 其特征在于, 所述校准模块 计算的所述校准误差参数包括校准系数, 校准后通道最大幅度偏差以及校 准后通道最大相位偏差: 所述校准系数包括发射校准系数 °^(")和接收校准系数 C^("), " = 1,2,"',N, N为天线射频通道数;
所述校准后通道最大幅度偏差包括发射校准后通道最大幅度偏差
STXAMPdB和接收校准后通道最大幅度偏差 MPdB;
所述校准后通道最大相位偏差包括发射校准后通道最大相位偏差 e-^ deg和接收校准后通道最大相位偏差 ^PHZdeg。
10、 如权利要求 9所述的天线校准的装置, 其特征在于,
所述校准模块进行发射校准包括: 每个天线通道分别发射各自的信号 ^^")'1^, 其中, C (")为上一 次校准周期得到的校准系数, 为校准序列;
所 述校 准 模 块 计 算校 准 周 期 T— i 的 发射 校 准 系 数
CTX (") = CCTmodjfy (") · Cm ("),其中, [n)
Figure imgf000026_0001
, = max(h" ), h"为天线射频通道 n的信道特性; 所述校准模块通过发射校准系数 ^7^")对天线射频通道 n进行发射校 准;
所述校准模块进行接收校准包括: 每个天线通道分别接收各自的信号 c^i")'3^, 其中, C (")为上一 次校准周期得到的校准系数, 为校准序列;
所 述校 准 模 块 计 算校 准 周 期 T i 的 接 收校 准 系 数
Figure imgf000027_0001
CRX (") = C/^modify (") · C RXI ( ") 其 中
h r max(h") h"为天线射频通道 n的信道特性; 所述校准模块通过接收校准系数 e (")对天线射频通道 n进行接收校 准。
1 1、 如权利要求 10所述的天线校准的装置, 其特征在于, 所述校准模 块计算校准误差参数时, 包括:
Ε RXAMP
Figure imgf000027_0002
12、 如权利要求 1 1所述的天线校准的装置, 其特征在于, 所述更新模 块对校准周期 T— i进行更新, 包括:
更新当前校准周期 T— i包含的发射校准周期:
当 且 时 , 如 果 < 且 , 贝' j所述发射校准周期更新为
Ti TX=k*Ti„_TX, 否则所述发射校准周期保持不变 Ti— TX=Ti„TX;
£TXAMPdBMtial -
Figure imgf000027_0003
e7 PHZdeg_ limit 时 , 口 果 和 则所述发射校准周期保持不变
TiJl X-Ti__TX , 否则所述发射校准周期更新为 Ti— TX=TiJTX/k , 其中,
ElXAMPdBlnitial
Figure imgf000027_0004
为更新前校准参数, ε丽 PdB erapHZdeg 为更新后 校准参数, ^腳 、 degJimit 为允许的校准参数最大门限值, k>=l; 更新当前校准周期 T— i包含的接收校准周期:
£RXAMPdBln"ial < 6 RXAMPdB Ji it 且 £«XPHZdegIniital < C«XPHZdeg_ limit 时 , 口 果 ε RXAMPdB E RXAMPdB im\l J -°L~s fc/iXPHZdeg <ε fc O PHZd ,eg_ , li·mit ,' 则 AJ所述接收校 I入准 P周 / 期更入新 l为 ,v
Ti_RX-k*Ti_RX, 否则所述接收校准周期保持不变 Ti— RX=Ti— RX;
£RXAMPdBI""iai - £ RXAMPdB imit 或 ^RXPHZdeglniital - £RXPHZdeg_ limit 时 , 如 果 e 聽 讓一、 imit和 x麵 eg "mit则所述接收校准周期保持不变 Ti__RX=Ti_RX, 否则所述接收校准周期更新为 Ti— RX=Ti_RX/k, 其中,
Figure imgf000028_0001
为更新后 校准参数, ^扁 flimit 、 ¾cPHZdegJimit 为允许的校准参数最大门限值, k>=l。
PCT/CN2011/000189 2010-02-05 2011-01-31 一种天线校准的方法及装置 WO2011095063A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/577,122 US8818291B2 (en) 2010-02-05 2011-01-31 Method and device for antenna calibration
EP11739342.1A EP2533360B1 (en) 2010-02-05 2011-01-31 Method and device for antenna calibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201019114057.3A CN102111202B (zh) 2010-02-05 2010-02-05 一种天线校准的方法及装置
CN201019114057.3 2010-02-05

Publications (1)

Publication Number Publication Date
WO2011095063A1 true WO2011095063A1 (zh) 2011-08-11

Family

ID=44175243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000189 WO2011095063A1 (zh) 2010-02-05 2011-01-31 一种天线校准的方法及装置

Country Status (4)

Country Link
US (1) US8818291B2 (zh)
EP (1) EP2533360B1 (zh)
CN (1) CN102111202B (zh)
WO (1) WO2011095063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684478A (zh) * 2020-12-21 2021-04-20 广东博智林机器人有限公司 基于双天线的参数标定方法、装置、存储介质及电子设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608454B2 (en) * 2012-12-03 2017-03-28 WIPQTUS Inc. Wireless power system with a self-regulating wireless power receiver
US9473183B2 (en) * 2012-12-14 2016-10-18 Bae Systems Plc Antenna system calibration
CN104348582B (zh) * 2013-08-07 2018-10-30 上海诺基亚贝尔股份有限公司 用于传输控制信息的方法和设备
US9331751B2 (en) * 2014-08-05 2016-05-03 Raytheon Company Method and system for characterizing an array antenna using near-field measurements
CN105763269B (zh) * 2014-12-17 2019-01-25 中国电信股份有限公司 用于校准天线的方法、校准信号处理装置和系统
US20160380852A1 (en) * 2015-06-26 2016-12-29 Seiko Epson Corporation Control Device, Network System, and Server
CN106936522B (zh) * 2017-02-13 2020-08-28 京信通信系统(中国)有限公司 一种智能天线通道校准方法及校准装置
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站
CN112804015B (zh) * 2019-10-28 2022-04-01 大唐移动通信设备有限公司 一种通道相位校准方法、设备、装置及存储介质
CN111953392B (zh) * 2020-08-14 2022-03-25 北京邮电大学 一种面向分布式mimo的天线校准序列发送方法及系统
US11777618B2 (en) * 2021-09-14 2023-10-03 Hughes Network Systems, Llc Amplitude and phase calibration for phased array antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140546A1 (en) * 2003-12-27 2005-06-30 Hyeong-Geun Park Transmitting and receiving apparatus and method in adaptive array antenna system capable of real-time error calibration
CN101060389A (zh) * 2006-04-20 2007-10-24 大唐移动通信设备有限公司 一种td-cdma系统的性能优化方法
CN101064902A (zh) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 实时校准智能天线的方法
CN101119147A (zh) * 2006-08-01 2008-02-06 中兴通讯股份有限公司 一种空间到达方向的估计方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260968A (en) * 1992-06-23 1993-11-09 The Regents Of The University Of California Method and apparatus for multiplexing communications signals through blind adaptive spatial filtering
GB2281660B (en) * 1993-09-03 1997-04-16 Matra Marconi Space Uk Ltd A digitally controlled beam former for a spacecraft
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
US6144652A (en) * 1996-11-08 2000-11-07 Lucent Technologies Inc. TDM-based fixed wireless loop system
US5936569A (en) * 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
US6615024B1 (en) * 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
JP3444270B2 (ja) * 2000-05-23 2003-09-08 日本電気株式会社 アレーアンテナ受信装置の校正システム
WO2002080382A1 (en) * 2001-03-30 2002-10-10 Science Applications International Corporation Multistage reception of code division multiple access transmissions
US6738020B1 (en) * 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
GB0130842D0 (en) * 2001-12-21 2002-02-06 Fizzle Holdings Ltd Antenna measurement system
CN1176555C (zh) * 2002-12-25 2004-11-17 大唐移动通信设备有限公司 一种对智能天线阵系统进行实时校准的方法
US7551699B2 (en) * 2003-06-04 2009-06-23 Ati Technologies, Inc. Method and apparatus for controlling a smart antenna using metrics derived from a single carrier digital signal
JP4905874B2 (ja) * 2005-04-27 2012-03-28 京セラ株式会社 無線通信装置および無線通信装置における制御方法
US8498669B2 (en) * 2005-06-16 2013-07-30 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US8280430B2 (en) * 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
US20090186590A1 (en) * 2008-01-18 2009-07-23 Nortel Netowrks Limited Method for Channel Calibration
EP2425539B1 (en) * 2009-04-28 2018-01-24 Huawei Technologies Co., Ltd. System and method for coordinating electronic devices in a wireless communications system
US8441966B2 (en) * 2010-03-31 2013-05-14 Ubidyne Inc. Active antenna array and method for calibration of receive paths in said array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140546A1 (en) * 2003-12-27 2005-06-30 Hyeong-Geun Park Transmitting and receiving apparatus and method in adaptive array antenna system capable of real-time error calibration
CN101060389A (zh) * 2006-04-20 2007-10-24 大唐移动通信设备有限公司 一种td-cdma系统的性能优化方法
CN101064902A (zh) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 实时校准智能天线的方法
CN101119147A (zh) * 2006-08-01 2008-02-06 中兴通讯股份有限公司 一种空间到达方向的估计方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684478A (zh) * 2020-12-21 2021-04-20 广东博智林机器人有限公司 基于双天线的参数标定方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
US20120299769A1 (en) 2012-11-29
EP2533360A4 (en) 2013-07-03
EP2533360B1 (en) 2015-09-09
EP2533360A1 (en) 2012-12-12
US8818291B2 (en) 2014-08-26
CN102111202A (zh) 2011-06-29
CN102111202B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2011095063A1 (zh) 一种天线校准的方法及装置
JP5958944B2 (ja) Mimoでの黙示的ビームフォーミングのためのアップリンクトレーニング
TW201713139A (zh) 無線網路中的功率控制
JP7001704B2 (ja) 通信方法およびデバイス
WO2014040354A1 (zh) 收发通道响应的校正方法、装置、系统及基带处理单元
WO2010034184A1 (zh) 天线校准方法及装置
US7113499B2 (en) Wireless communication
JP2002534935A (ja) 無線通信システム
WO2005067166A1 (fr) Appareil et procede d&#39;ajustement pour liaison de transmission d&#39;antenne reseau
CN101080031A (zh) 基带拉远技术的智能天线校准系统及其方法
JP2015156668A (ja) エネルギー効率のよい送信のためのビット・レートおよび送信電力を選択する方法
KR101357948B1 (ko) 다중 입출력 직교 주파수 분할 다중화 무선 네트워크에서안테나 맵핑을 선택하는 방법 및 장치
CN115378652A (zh) 一种ris辅助的wpcn系统物理层安全通信方法
WO2009097739A1 (zh) 一种基于双极化阵列天线的下行发射处理方法及装置
WO2021129171A1 (zh) 数据传输方法及装置、存储介质
WO2014202025A1 (zh) 多天线信道校正的方法、装置和基站系统
KR102585088B1 (ko) 송신 파워 확정 방법, 장치 및 통신 기기
WO2017054528A1 (zh) 一种校正信号确定方法及装置
WO2021169831A1 (zh) 一种波束赋形方法以及相关装置
WO2017219265A1 (zh) 通道校正方法及装置
CN113242074B (zh) 一种两步法2bit反馈迭代的协作波束形成相位同步方法
WO2021253916A1 (zh) 一种数据处理方法及相关设备
KR101301825B1 (ko) 스마트 안테나를 위한 온라인 무선 처리 교정 장치 및 방법
JPWO2022130821A5 (ja) 無線通信装置、無線通信装置の方法、及びプログラム
CN116633730A (zh) Irs辅助c-ran簇内信道估计量化比特优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13577122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011739342

Country of ref document: EP