WO2017219265A1 - 通道校正方法及装置 - Google Patents

通道校正方法及装置 Download PDF

Info

Publication number
WO2017219265A1
WO2017219265A1 PCT/CN2016/086685 CN2016086685W WO2017219265A1 WO 2017219265 A1 WO2017219265 A1 WO 2017219265A1 CN 2016086685 W CN2016086685 W CN 2016086685W WO 2017219265 A1 WO2017219265 A1 WO 2017219265A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction coefficient
coefficient value
performance parameter
channel
value
Prior art date
Application number
PCT/CN2016/086685
Other languages
English (en)
French (fr)
Inventor
樊兆宾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/086685 priority Critical patent/WO2017219265A1/zh
Publication of WO2017219265A1 publication Critical patent/WO2017219265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel calibration method and apparatus.
  • the multi-antenna communication system includes a baseband unit (BBU), a remote radio unit (RRU), and an antenna unit.
  • the RRU includes a transmitting channel and a receiving channel, and the BBU can pass through the channel and the antenna in the RRU.
  • the unit performs signal transmission.
  • BBU baseband unit
  • RRU remote radio unit
  • the unit performs signal transmission.
  • one transmitting channel in the RRU is used as a reference transmitting channel, and each receiving channel shares the reference transmitting channel, and the BBU transmits a known correction signal on the reference transmitting channel of the RRU, and the correction signal passes through the splitter. Coupled to each of the receiving channels, the BBU receives the signal after the correction signal is transmitted through the respective receiving channels. In the process of signal transmission, the amplitude, phase and other parameters will change. The BBU can measure the amplitude, phase and other parameters according to the received signal, and calculate the correction coefficient corresponding to each receiving channel according to the measured parameters. The correction coefficients correct the corresponding receiving channels.
  • the accuracy of the above calibration process depends entirely on the measurement accuracy.
  • the correction coefficient may be inaccurately calculated, which may affect the accuracy of the calibration and affect the system performance.
  • sending a correction signal consumes additional time-frequency resources, which easily affects the processing of normal services.
  • the embodiment of the invention provides a channel correction method and device.
  • the technical solution is as follows:
  • a channel correction method comprising:
  • the current correction coefficient value is adjusted according to the preset step size, and the test correction is continued according to the adjusted correction coefficient value, and the corresponding performance parameter value is obtained until the acquisition is performed.
  • the preferred performance parameter value is selected from the plurality of obtained performance parameter values, and the correction coefficient value corresponding to the preferred performance parameter value is determined;
  • the channel is corrected based on the determined correction coefficient value.
  • the channel to be corrected is a receiving channel
  • the method further includes:
  • the product of the correction coefficient value corresponding to the channel to be corrected and the determined compensation value is used as an initial correction coefficient value of the channel to be corrected.
  • the channel to be corrected is a transmitting channel
  • the method further includes:
  • the product of the correction coefficient value corresponding to the channel to be corrected and the determined compensation value is used as an initial correction coefficient value of the channel to be corrected.
  • the correction coefficient value includes an amplitude correction coefficient value and a phase correction coefficient value
  • the step of adjusting the current correction coefficient according to the preset step size, continuing the test correction according to the adjusted correction coefficient value, and obtaining the corresponding performance parameter value until the obtained performance parameter value satisfies the preset stop condition The preferred performance parameter value is selected from the plurality of obtained performance parameter values, and the correction coefficient value corresponding to the preferred performance parameter value is determined, including:
  • the current amplitude correction coefficient value is adjusted, and the test correction is continued according to the adjusted amplitude correction coefficient value, and the corresponding performance parameter value is obtained until the obtained performance is obtained.
  • the preferred performance parameter value is selected from the plurality of acquired performance parameter values, and the amplitude correction coefficient value corresponding to the preferred performance parameter value is determined;
  • the current phase correction coefficient value is adjusted, and the test correction is continued according to the adjusted phase correction coefficient value, and the corresponding performance parameter value is obtained until the obtained performance parameter value satisfies the preset
  • the preferred performance parameter value is selected from the plurality of obtained performance parameter values, and the phase correction coefficient value corresponding to the preferred performance parameter value is determined.
  • the selecting the preferred performance parameter value from the multiple obtained performance parameter values includes:
  • the maximum performance parameter value of any one of the performance parameters is selected as the preferred performance parameter value.
  • the correction coefficient value includes an amplitude correction coefficient value and a phase correction coefficient value; the method further includes:
  • a preset amplitude correction range Determining, according to a deviation range of the power amplifier coefficients of the channel, a preset amplitude correction range, where the preset amplitude correction range is used to indicate a range in which the amplitude correction coefficient value should be;
  • the adjusting the current correction coefficient value according to the preset step size includes:
  • the current phase correction coefficient value is adjusted according to the second preset step size, so that the adjusted phase correction coefficient value belongs to the preset phase correction range.
  • the preset stop condition is that the acquired performance parameter value is smaller than the last acquired performance parameter value.
  • the performance parameter value includes a system throughput rate, a channel quality indicator of the demodulation reference signal, a DMRS CQI, and a modulation and coding scheme. At least one of the MCS.
  • the channel includes a plurality of resource blocks
  • the method further includes:
  • the method further includes: periodically correcting the channel.
  • a channel correction apparatus comprising: a first acquisition module, a correction module, a second acquisition module, a search module, and the apparatus is configured to perform the channel correction method provided by the first aspect.
  • the method and the device provided by the embodiment of the present invention use the search algorithm to perform multiple adjustments on the correction coefficient value, and use the system performance as feedback to obtain the performance parameter value corresponding to the adjusted correction coefficient value, and obtain the performance parameter value multiple times.
  • the preferred performance parameter values are selected from the performance parameter values, the correction coefficient values corresponding to the preferred performance parameter values are determined, the channels are corrected according to the determined correction coefficient values, the accuracy of the correction coefficients is improved, and the correction coefficients are performed on the system performance. Closed loop improves system performance.
  • it can be implemented based on the processing process of the normal service, and does not need to specifically send the correction signal, and does not need to occupy additional time-frequency resources, and does not affect the processing of normal services.
  • FIG. 1 is a schematic structural diagram of a multi-antenna communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another multi-antenna communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a BBU according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a channel calibration apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a channel correction method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an operation flow provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a variation rule of performance parameters according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a compensation range according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a multi-antenna communication system according to an embodiment of the present invention.
  • the system includes: a BBU, an RRU, and multiple antenna units.
  • the RRU includes multiple receiving channels and multiple transmitting channels.
  • the BBU is connected to the RRU through an optical fiber, and is connected to the antenna unit through a channel of the RRU.
  • the BBU can transmit signals through the RRU channel, transmit signals on the RRU's transmit channel, or receive signals from the RRU's receive channel.
  • the multi-antenna communication system may also deploy multiple RRUs in a distributed manner, and multiple RRUs may be deployed in different geographical locations.
  • the BBU may be connected to each RRU through optical fibers, and transmit signals through any RRU channel. .
  • FIG. 3 is a schematic structural diagram of a BBU according to an embodiment of the present invention.
  • the BBU includes: a receiver 301, a transmitter 302, a memory 303, and a processor 304.
  • the receiver 301, the transmitter 302, and the The memory 303 is respectively connected to the processor 304.
  • the memory 303 stores program code.
  • the processor 304 is used to call the program code to execute a channel correction method. For details, refer to the following method embodiments.
  • the channel calibration apparatus includes:
  • the first obtaining module 401 is configured to obtain a current correction coefficient value of the channel to be corrected
  • the calibration module 402 is configured to perform test calibration on the channel according to the current correction coefficient value
  • a second obtaining module 403 configured to obtain a corrected performance parameter value, where the performance parameter value is used in a table Show system performance;
  • the search module 404 is configured to adjust the current correction coefficient value according to the preset step size if the performance parameter value does not satisfy the preset stop condition, and continue to perform test calibration according to the adjusted correction coefficient value to obtain a corresponding a performance parameter value, until the obtained performance parameter value satisfies the preset stop condition, selecting a preferred performance parameter value from the plurality of obtained performance parameter values, and determining a correction coefficient value corresponding to the preferred performance parameter value;
  • the calibration module 402 is configured to correct the channel according to the determined correction coefficient value.
  • the device provided by the embodiment of the present invention adjusts the value of the correction coefficient by using a search algorithm, and uses the system performance as feedback to obtain the performance parameter value corresponding to the adjusted coefficient value after each adjustment, which is obtained from multiple times.
  • the preferred performance parameter value is selected from the performance parameter values, the correction coefficient value corresponding to the preferred performance parameter value is determined, the channel is corrected according to the determined correction coefficient value, the accuracy of the correction coefficient is improved, and the closed loop of the correction coefficient to the system performance is realized.
  • Improved system performance can be implemented based on the processing process of the normal service, and does not need to specifically send the correction signal, and does not need to occupy additional time-frequency resources, and does not affect the processing of normal services.
  • the channel to be corrected is a receiving channel
  • the device further includes:
  • An initial module configured to send a correction signal on the reference transmission channel; receive a response signal of the correction signal from the channel to be corrected; and calculate a correction coefficient corresponding to the channel to be corrected according to the response signal received from the channel to be corrected a value; a product of the correction coefficient value corresponding to the channel to be corrected and the determined compensation value is used as an initial correction coefficient value of the channel to be corrected.
  • the channel to be corrected is a transmitting channel
  • the device further includes:
  • An initial module configured to send a correction signal on the channel to be corrected; receive a response signal of the correction signal from the reference receiving channel; and calculate a correction coefficient corresponding to the channel to be corrected according to the response signal received from the reference receiving channel a value; a product of the correction coefficient value corresponding to the channel to be corrected and the determined compensation value is used as an initial correction coefficient value of the channel to be corrected.
  • the correction coefficient value includes an amplitude correction coefficient value and a phase correction coefficient value
  • the search module 404 is configured to adjust the current amplitude correction coefficient value according to the first preset step size, and correct the coefficient value according to the adjusted amplitude. Continuing the test calibration, and obtaining the corresponding performance parameter value, until the obtained performance parameter value satisfies the preset stop condition, selecting a preferred performance parameter value from the plurality of obtained performance parameter values, and determining that the preferred performance parameter value corresponds to Amplitude correction factor value;
  • the search module 404 is configured to adjust the current phase correction coefficient value according to the second preset step size, continue to perform test calibration according to the adjusted phase correction coefficient value, and obtain a corresponding performance parameter value.
  • the preferred performance parameter value is selected from the plurality of acquired performance parameter values, and the phase correction coefficient value corresponding to the preferred performance parameter value is determined.
  • the search module 404 is configured to select a maximum performance parameter value of any one of the performance parameter values obtained as the preferred performance parameter value.
  • the correction coefficient value includes an amplitude correction coefficient value and a phase correction coefficient value; the device further includes:
  • a range determining module configured to determine a preset amplitude correction range according to a deviation range of the power amplifier coefficient of the channel, where the preset amplitude correction range is used to indicate a range in which the amplitude correction coefficient value should be; according to the delay parameter range of the channel, A preset phase correction range is determined, the preset phase correction range being used to indicate a range in which the phase correction coefficient value should be.
  • the searching module 404 is configured to adjust the current amplitude correction coefficient value according to the first preset step size within the preset amplitude correction range, so that the adjusted amplitude correction coefficient value belongs to the preset. Amplitude correction range;
  • the search module is further configured to adjust the current phase correction coefficient value according to the second preset step within the preset phase correction range, so that the adjusted phase correction coefficient value belongs to the preset phase correction range.
  • the preset stop condition is that the obtained performance parameter value is smaller than the last acquired performance parameter value.
  • the system throughput performance parameter values include, demodulation reference signal (DeModulation Reference Signal, DMRS) channel quality indicator (Channel Quality Indicator, CQI), the modulation coding scheme (Modulation and C o ding Scheme, MCS) of At least one.
  • demodulation reference signal DeModulation Reference Signal, DMRS
  • CQI Channel Quality Indicator
  • MCS Modulation and C o ding Scheme
  • FIG. 5 is a flowchart of a channel correction method according to an embodiment of the present invention.
  • the execution subject of the embodiment of the present invention is a BBU. Referring to FIG. 5, the method includes:
  • the embodiment of the present invention adopts a search algorithm, and uses the system performance as feedback to adjust the correction coefficient multiple times to obtain a plurality of correction coefficient values, thereby performing test correction based on the correction coefficient values obtained each time.
  • the preferred correction coefficient value is selected according to the feedback system performance, and the channel is corrected according to the preferred correction coefficient value.
  • the operation flow chart is as shown in FIG. 6. After the BBU adjusts the correction coefficient value, after the signal passes through the RRU, the antenna (ANT), and the terminal (UE), the BBU can obtain the performance parameter value used to feed back the overall performance of the current system, and the BBU according to the performance. The parameter value continues to adjust the correction coefficient value until the system reaches optimal performance, and the preferred correction coefficient value is obtained.
  • the BBU obtains an initial correction coefficient value of the channel to be corrected to perform a search based on the initial correction coefficient value.
  • the initial correction coefficient value may be determined by a technician in advance, or may be determined by the BBU according to a preset calibration range or determined by measurement, which is not limited by the embodiment of the present invention.
  • the BBU may first determine a preset correction range according to the configuration parameter of the channel, and the preset correction range is used to indicate the correction.
  • the range in which the coefficient value should be, that is, the actual correction coefficient value does not normally exceed the preset correction range. Then the BBU can determine the initial correction coefficient value according to the preset correction range.
  • the preset correction range may be determined by the lower limit correction coefficient value and the upper limit correction coefficient value, and the BBU may use the lower limit correction coefficient value as the initial correction coefficient value or the upper limit correction coefficient value as the initial correction coefficient value.
  • the correction coefficient value may include at least one of an amplitude correction coefficient value and a phase correction coefficient value, and accordingly, the BBU may determine two correction ranges for the amplitude and phase correction coefficients: a preset amplitude correction range and a preset phase correction Range, the preset amplitude correction range is used to indicate a range in which the amplitude correction coefficient value should be used, and the preset phase correction range is used to indicate a range in which the phase correction coefficient value should be.
  • the BBU can determine the deviation range of the power amplifier coefficient of the channel, according to the power amplifier coefficient.
  • the deviation range determines the preset amplitude correction range.
  • the BBU can determine the delay parameter range of the channel, according to the time
  • the delay parameter range determines the preset phase correction range.
  • the BBU After determining the preset amplitude correction range and the preset phase correction range, the BBU determines an initial amplitude correction coefficient value and an initial phase correction coefficient value, and determines an initial correction coefficient value according to the initial amplitude correction coefficient value and the initial phase correction coefficient value.
  • the preset amplitude correction range is determined to be [-0.5dB, 0.5dB], and the preset phase is The calibration range is [-15°, +15°].
  • the initial amplitude correction coefficient value is -0.5dB, and the initial phase correction coefficient value is -15°.
  • the BBU can perform test calibration on the channel according to the initial correction coefficient value.
  • the current performance parameter value can be obtained, and the performance parameter value is used to indicate communication.
  • the overall system performance of the system can reflect the impact of the correction coefficient value on system performance.
  • the BBU can perform the test calibration by adjusting the correction coefficient value.
  • the embodiment of the present invention is only for the test calibration process of the current correction coefficient value, and the current correction coefficient value may be the initial correction coefficient value.
  • the correction coefficient value obtained after one or more adjustments to the initial correction coefficient value may also be used in the embodiment of the present invention.
  • the test calibration of the channel according to the current correction coefficient value means that when the BBU wants to send a signal through the channel, the signal to be sent is corrected according to the current correction coefficient value, and the corrected signal is sent. Further, the calibration process may be performed in the process of processing normal services, that is, the BBU does not need to send a special correction signal, and directly sends a signal for processing of a normal service, and does not occupy additional time-frequency resources. For example, if the amplitude of the signal to be transmitted is x and the amplitude correction coefficient is 2, the amplitude of the transmitted signal is 2x after the signal to be transmitted is corrected.
  • the performance parameter value includes at least one of a system throughput rate, a DMRS CQI, and an MCS, or may also include other types of performance parameters, and the BBU may detect the signal fed back to the BBU by the terminal or obtain performance by using other methods.
  • the parameter value is not limited in this embodiment of the present invention.
  • the terminal may be a dedicated deployment terminal, and is specifically applied to the correction of the channel.
  • the terminal may also be a terminal involved in the normal service.
  • the BBU may send a signal to the terminal when the service is normally processed. limited.
  • step 502 If the performance parameter value does not meet the preset stop condition, adjust the current correction coefficient value according to the preset step size, and repeat step 502 according to the adjusted correction coefficient value to obtain the next performance parameter value. Stop when the obtained performance parameter value meets the preset stop condition.
  • the BBU performs a plurality of adjustments on the correction coefficient value, and performs a search based on the adjusted coefficient value after each adjustment, and the preset stop condition is used to specify the timing of stopping the search, and when the obtained performance parameter value is satisfied,
  • the search can be stopped when the stop condition is preset, and it is no longer necessary to adjust and test the current correction coefficient value.
  • the variation of the performance parameter value is first increased and then decreased.
  • the performance parameter value gradually increases as the correction coefficient value increases, and when the correction coefficient value is greater than the "preferred correction coefficient value", the performance parameter increases as the correction coefficient value increases. The value gradually decreases.
  • the performance parameter value gradually increases as the correction coefficient value decreases, and when the correction coefficient value is smaller than the "preferred correction coefficient value", as the correction coefficient value decreases, The performance parameter values are gradually reduced.
  • the preset stop condition may be that the obtained performance parameter value is smaller than the last acquired performance parameter value, and once the acquired performance parameter value is smaller than the last acquired performance parameter value, the performance parameter value has begun to decrease.
  • the previously searched multiple correction coefficient values already contain the preferred correction system values and there is no need to continue searching.
  • the BBU applies the current correction coefficient value to perform the test calibration and obtains the performance parameter value, it is determined whether the performance parameter value is smaller than the last obtained performance parameter value, and when the performance parameter value is not less than the last acquired performance parameter value, Indicates that the performance parameter value continues to increase as the adjustment of the correction coefficient value is gradually increased.
  • the performance parameter value is smaller than the performance parameter value obtained last time, it indicates that the performance parameter value is gradually decreased as the adjustment coefficient value is adjusted, and the search is stopped.
  • Step 502 Obtain a first performance parameter value, determine whether the first performance parameter value is less than an initial performance parameter value, and if the first performance parameter value is not less than the initial performance parameter value, correct the first correction coefficient according to a preset step size.
  • the value is adjusted to obtain a second correction coefficient value, and step 502 is performed according to the second correction coefficient value, and the second performance parameter value is obtained, determining whether the second performance parameter value is smaller than the first performance parameter value, and so on.
  • the performance parameter value obtained once is less than the performance parameter value obtained last time.
  • the preset step size may be determined by a technician, or may be determined by default by the BBU, which is not limited by the embodiment of the present invention.
  • the correction coefficient value when the BBU determines a smaller initial correction coefficient value, the correction coefficient value may be increased according to the preset step size, thereby obtaining a plurality of correction coefficient values. .
  • the correction coefficient value when the BBU determines a larger initial correction coefficient value, the correction coefficient value may be decreased by a preset step size each time, thereby obtaining a plurality of correction coefficient values.
  • FIG. 7 is only an example in which the initial correction coefficient value is small as an example.
  • the calibration is performed each time.
  • the current correction coefficient value is adjusted according to the preset step size within the preset correction range.
  • the search is stopped so that the adjusted correction coefficient value belongs to the preset correction range.
  • the BBU uses the lower limit correction coefficient value as the initial correction coefficient value
  • each time the correction coefficient value is increased according to the preset step size a plurality of correction coefficient values are obtained.
  • the correction coefficient value is decreased each time according to the preset step size, thereby obtaining a plurality of correction coefficient values.
  • the BBU may separately search for the amplitude correction coefficient value and the phase correction coefficient value, that is, the step 503 may include at least one of the following:
  • the performance parameter value does not satisfy the preset stop condition, within the preset amplitude correction range, the current amplitude correction coefficient value is adjusted according to the first preset step size, so that the adjusted amplitude correction coefficient is adjusted.
  • the value belongs to the preset amplitude correction range, and the test correction is continued according to the adjusted amplitude correction coefficient value, and the corresponding performance parameter value is obtained, until the obtained performance parameter value satisfies the preset stop condition, and is acquired from multiple times.
  • the preferred performance parameter value is selected from the performance parameter values, and the amplitude correction coefficient value corresponding to the preferred performance parameter value is determined.
  • the performance parameter value does not satisfy the preset stop condition, adjust the current phase correction coefficient value according to the second preset step size in the preset phase correction range, so as to adjust the phase correction coefficient.
  • the value belongs to the preset phase correction range, and the test correction is continued according to the adjusted phase correction coefficient value, and the corresponding performance parameter value is obtained, until the obtained performance parameter value satisfies the preset stop condition, and is obtained from multiple times.
  • the preferred performance parameter value is selected from the performance parameter values, and the phase correction coefficient value corresponding to the preferred performance parameter value is determined.
  • the BBU may determine a first preset step and a second preset step for the amplitude correction coefficient and the phase correction coefficient respectively.
  • For the amplitude correction coefficient perform a search by performing step 5031 multiple times to determine a preferred amplitude correction coefficient value for the phase.
  • the correction coefficient is searched by performing step 5032 a plurality of times to determine a preferred phase correction coefficient value, thereby determining a preferred correction coefficient value.
  • steps 5031 and 5032 may be performed in parallel, or may be performed one after the other, which is not limited by the embodiment of the present invention.
  • the step 5032 is performed a plurality of times to determine the phase correction coefficient value.
  • the initial amplitude correction coefficient value is -0.5 dB
  • the initial phase correction coefficient value is -15°
  • the system throughput obtained when the initial correction coefficient value is applied is obtained.
  • the rate is C0.
  • the amplitude correction coefficient value adjusted according to the first preset step size is -0.4dB
  • the phase correction coefficient value is still -15°
  • the system throughput rate obtained by applying the correction coefficient value is C1. It is judged whether C1 is smaller than C0.
  • the BBU can compare the obtained performance parameter values, and select the largest performance parameter value from the multiple obtained performance parameter values as the preferred performance parameter value.
  • the BBU may select the maximum performance parameter value of any one of the performance parameter values obtained as the preferred performance parameter value.
  • the selected performance parameter may be a system throughput rate, a DMRS CQI or an MCS, which is not limited in this embodiment of the present invention.
  • the BBU determines the correction coefficient value corresponding to the preferred performance parameter value. It can be considered that when the channel is corrected according to the determined correction coefficient value, the performance of the channel can be guaranteed to be optimal. Therefore, the BBU takes the determined correction coefficient value as the final correction coefficient value, and corrects the channel based on the correction coefficient value.
  • test calibration process refers to performing temporary correction according to the correction coefficient value adjusted in the search process, and obtaining a corresponding performance parameter value, so as to select a preferred performance parameter value.
  • the calibration process refers to correcting the value of the correction coefficient corresponding to the preferred performance parameter value after a plurality of test corrections and determining the preferred performance parameter value, and the calibration process can be considered to ensure optimal system performance.
  • the embodiment of the present invention is only for correcting a channel.
  • the channel includes multiple resource blocks, and the BBU can perform correction for each resource block by using a resource block as a granularity, thereby obtaining a correction. After the passage.
  • an initial correction coefficient value of the resource block is obtained, and the resource block is tested and corrected according to the current correction coefficient value of the resource block, and a signal is sent to the terminal based on the channel, when receiving the When the response signal fed back by the terminal is obtained, the current state of the channel is obtained according to the response signal.
  • the parameter value if the performance parameter value does not meet the preset stop condition, the current correction coefficient value is adjusted according to the preset step size, and the test correction is continued according to the adjusted correction coefficient value, and the corresponding performance parameter value is obtained.
  • the preferred performance parameter value is selected from the plurality of acquired performance parameter values, and the correction coefficient value corresponding to the preferred performance parameter value is determined as the correction of the resource block. Coefficient value.
  • the channel is corrected based on the determined correction coefficient value for each resource block.
  • the BBU can search multiple resource blocks in parallel to speed up the convergence and improve the search efficiency.
  • the embodiment of the present invention is only an example in which the channel is corrected once.
  • the BBU can use the above method to correct the channel multiple times.
  • the BBU periodically corrects the channel using the above method.
  • the BBU may re-adjust the correction coefficient value by using the correction coefficient value determined by the last correction period as the initial correction coefficient value, and the preset correction range may be unchanged.
  • the channel correction method provided by the embodiment of the present invention can be executed at any time of the normal processing service without being restricted. Therefore, the calibration period adopted by the BBU can be determined according to requirements, and can be a slot level or a sub- The frame level is not limited in this embodiment of the present invention.
  • the embodiment of the present invention is only described by taking one channel as an example.
  • the BBU can correct multiple channels by using the method provided by the embodiment of the present invention. Since the performance parameter values obtained by the BBU are used to reflect the overall performance of the system, the correction of different channels will affect the overall performance of the system. Therefore, the BBU can correct one of the channels first, and then correct the calibration to another. The channel is calibrated to avoid correcting multiple channels at the same time to ensure calibration accuracy.
  • the BBU can correct multiple channels of the RRU to ensure that the amplitude, phase, and other parameters of multiple channels are consistent, or one reference channel can be selected from multiple channels to perform multiple channels other than the reference channel. The correction is performed to ensure that the parameters of the multiple channels are consistent with the parameters of the reference channel.
  • the embodiment of the present invention does not limit the calibration mode.
  • the correction coefficient value is adjusted multiple times by using a search algorithm, and the performance parameter value corresponding to the adjusted correction coefficient value is obtained, and the performance parameter value obtained from multiple times is selected and selected.
  • the performance parameter value determines the correction coefficient value corresponding to the preferred performance parameter value, and corrects the channel according to the determined correction coefficient value, improves the accuracy of the correction coefficient, and improves system performance.
  • the BBU can determine by measurement when determining the initial correction coefficient value. That is, the step 501 can include the following steps 5011 and 5012:
  • the channel to be corrected is a receiving channel
  • send a correction signal on the reference transmitting channel receive a response signal of the correction signal from the channel to be corrected, and calculate the to-be-corrected according to the response signal received from the channel to be corrected.
  • the correction coefficient value corresponding to the channel, the product of the correction coefficient value corresponding to the channel to be corrected and the compensation value is used as the initial correction coefficient value of the channel to be corrected.
  • the BBU can simultaneously acquire initial correction coefficient values of a plurality of receiving channels.
  • the correction signal is transmitted on the reference transmission channel, the response signal of the correction signal is received from each receiving channel, and the correction coefficient value corresponding to each receiving channel is calculated according to the response signal received from each receiving channel, The product of the correction coefficient value corresponding to each receiving channel and the compensation value is taken as the initial correction coefficient value of the corresponding receiving channel.
  • Each receiving channel shares a reference transmitting channel, and the BBU transmits a known correction signal on the reference transmitting channel, and the signal is coupled to each receiving channel through a splitter, and changes in amplitude, phase, and the like occur.
  • the BBU can receive the feedback response signal from each receiving channel, extract parameters such as amplitude and phase from the received response signal, and calculate a correction coefficient value corresponding to each receiving channel according to the extracted parameters.
  • the correction signal is sent on the channel to be corrected; the response signal of the correction signal is received from the reference receiving channel; and the channel to be corrected is calculated according to the response signal received from the reference receiving channel.
  • Corresponding correction coefficient value; the product of the correction coefficient value corresponding to the channel to be corrected and the determined compensation value is used as the initial correction coefficient value of the channel to be corrected.
  • the BBU can acquire the initial correction coefficient values of the plurality of transmission channels simultaneously. Specifically, a correction signal is transmitted on each of the transmission channels, and a response signal of the correction signal is received from the reference receiving channel, and a correction coefficient value corresponding to each of the transmission channels is calculated according to the response signal received from the reference receiving channel. The product of the correction coefficient value corresponding to each transmission channel and the compensation value is taken as the initial correction coefficient value of the corresponding transmission channel.
  • Each of the transmitting channels shares a reference receiving channel
  • the BBU transmits a known correction signal on each of the transmitting channels
  • the correction signal is coupled to the reference receiving channel through the combiner, and changes in parameters such as amplitude and phase occur, and the BBU passes the Referring to the response signal received by the receiving channel, parameters such as amplitude and phase are extracted from the received response signal, and the correction coefficient value corresponding to each transmitting channel is calculated as the initial correction coefficient value according to the extracted parameters.
  • the channel can correspond to the channel.
  • the product of the correction coefficient value and the compensation value is used as the initial correction coefficient value of the channel.
  • the measured correction coefficient value is finely adjusted by the compensation value to improve the accuracy.
  • the BBU may determine a smaller compensation range according to the determined preset correction range, and the compensation range belongs to the preset correction range.
  • the compensation range is determined by the lower limit compensation value and the upper limit compensation value.
  • the BBU can use the sum of the measured correction coefficient value and the lower limit compensation value as the initial correction coefficient value, each search.
  • the correction coefficient value is increased according to the preset step size, thereby obtaining a plurality of correction coefficient values, or the sum of the correction coefficient value and the upper limit compensation value is used as an initial correction coefficient value, and the compensation range is used every time the search is performed.
  • the correction coefficient value is decreased to obtain a plurality of correction coefficient values.
  • FIG. 8 is only an example in which the sum of the measured correction coefficient value and the lower limit compensation value measured by the BBU is taken as the initial correction coefficient value.
  • the BBU may determine two compensation ranges for the amplitude and phase correction coefficients: an amplitude compensation range and a phase compensation range, the amplitude compensation range is used to determine a compensation value and an adjustment range of the amplitude correction coefficient value, and the phase compensation range is used.
  • the compensation value and the adjustment range of the phase correction coefficient value are determined.
  • the amplitude compensation range and the phase compensation range may be determined according to the requirements of the BBU for the accuracy or the requirement for the calibration efficiency, which is not limited by the embodiment of the present invention.
  • the initial amplitude correction coefficient value measured by the BBU is -0.5dB, and the initial phase correction coefficient value is -15°.
  • the measurement is performed only by transmitting a known correction signal, and the correction coefficient value is substantially a measurement process. Regardless of the system performance, the accuracy of the calibration process is completed depending on the measurement accuracy, and correction may occur. The coefficient calculation is not accurate. Moreover, the transmission of the correction signal will occupy additional time-frequency resources, which is easy to affect the processing of normal services. Since the measurement process includes transmitting a correction signal, receiving a feedback signal, extracting parameters, performing calculations, and the like, it takes a certain time to complete, and in order not to affect the processing of normal services, it is necessary to transmit a correction signal at idle time slot intervals. This will result in a long measurement cycle and a rapid adjustment of the correction factor.
  • the correction signal transmitted by the BBU on the reference transmission channel reaches one of the RRUs, it is transmitted to the air interface through the RRU, and then forwarded to other RRUs through the air interface.
  • the BBU is in each receiving channel of other RRUs.
  • the feedback signal is received, the correction coefficient is calculated and corrected, so that the channel parameters between different RRUs are consistent after the correction.
  • many RRUs are invisible to each other when deployed in a distributed manner, there are many obstructions in the middle, and it is difficult to meet the requirement of transmitting signals through the air interface, which may cause the calibration process to be impossible.
  • the GP resource needs to be occupied during the transmission process, which reduces the network anti-interference ability, wastes additional spectrum efficiency and power, and the signal is easily interfered by the air interface, resulting in calculation of the correction coefficient. Inaccurate, resulting in a significant reduction in channel performance.
  • the preferred performance parameter values are selected, and then the correction coefficient values corresponding to the preferred performance parameter values are determined.
  • the performance of the channel is optimized.
  • the correction coefficient value is adjusted to the optimal, the accuracy of the correction coefficient is improved, the closed loop of the correction coefficient to the system performance is realized, and the system performance is improved.
  • the correction period can be greatly shortened, and the correction coefficient can be tracked and adjusted at the sub-frame level. Achieve fast corrections.
  • the correction coefficient value is obtained by applying the measurement technique
  • the correction coefficient value is finely adjusted
  • the correction is further performed by using the method provided by the present invention. Even when a large error occurs in the measurement, the system performance feedback can be utilized to fine tune the correction coefficient value to optimize the system performance and improve the system robustness.
  • the embodiments of the present invention can be applied to a centralized multiple-input multiple-output (MIMO) system, and can also be applied to a distributed MIMO system.
  • the selected preferred performance parameter value is the performance parameter value when the amplitude and phase of the multiple RRUs are the same, that is, the correction is performed by using the embodiment of the present invention between different RRUs to achieve the amplitude and The phase is consistent, and there is no need to send signals through the air interface, and it will not be interfered by the air interface, which improves the anti-interference performance and improves the reliability.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例提供了一种通道校正方法及装置,涉及通信技术领域,该方法包括:获取通道的初始校正系数值;根据当前的校正系数值,对该通道进行校正,并获取性能参数值;如果该性能参数值不满足预设停止条件,则按照预设步长进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至满足该预设停止条件时选取优选性能参数值,确定该优选性能参数值对应的校正系数值;根据确定的校正系数值对该通道进行校正。本发明通过以系统性能作为反馈,确定优选的校正系数值,提高了校正系数的准确性,提升了系统性能。而且能够基于正常业务的处理过程实现,无需占用额外的时频资源,不会对正常业务的处理造成影响。

Description

通道校正方法及装置 技术领域
本发明涉及通信技术领域,特别涉及一种通道校正方法及装置。
背景技术
多天线通信系统中包括基带处理单元(Base band Unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)和天线单元,RRU中包括发射通道和接收通道,BBU可以通过RRU中的通道以及天线单元进行信号传输。在多天线通信系统中,为了实现波束成形,需要保证RRU中各个通道的幅度和相位等参数一致,如果参数不一致就需要对通道进行校正。
以收校正为例,将RRU中的一个发射通道作为参考发射通道,各个接收通道共用该参考发射通道,BBU在RRU的参考发射通道上发射已知的校正信号,校正信号会经过分路器,耦合到各个接收通道中,BBU通过各个接收通道接收该校正信号经过传输之后的信号。在信号传输的过程中,幅度、相位等参数会发生变化,BBU可以根据接收到的信号测量幅度、相位等参数,并根据测量到的参数计算各个接收通道对应的校正系数,根据计算得到的多个校正系数对相应的接收通道进行校正。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
上述校正过程的准确率完全取决于测量精度,测量精度较低时可能会出现校正系数计算不准确的情况,影响校正准确率,从而影响系统性能。而且,发送校正信号会占用额外的时频资源,容易对正常业务的处理造成影响。
发明内容
为了提高校正准确率,提升系统性能,本发明实施例提供了一种通道校正方法及装置。所述技术方案如下:
第一方面,提供了一种通道校正方法,所述方法包括:
获取待校正通道当前的校正系数值;
根据当前的校正系数值,对所述通道进行测试校正;
获取校正后的性能参数值,所述性能参数值用于表示系统性能;
如果所述性能参数值不满足预设停止条件,则按照预设步长,对当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值;
根据确定的校正系数值,对所述通道进行校正。
结合第一方面,在第一方面的第一种可能实现方式中,所述待校正通道为接收通道,所述方法还包括:
在参考发射通道上发送校正信号;
从所述待校正通道上接收所述校正信号的响应信号;
根据从所述待校正通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;
将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
结合第一方面,在第一方面的第二种可能实现方式中,所述待校正通道为发射通道,所述方法还包括:
在所述待校正通道上发送校正信号;
从参考接收通道上接收所述校正信号的响应信号;
根据从所述参考接收通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;
将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
结合第一方面,在第一方面的第三种可能实现方式中,校正系数值包括幅度校正系数值和相位校正系数值;
所述按照预设步长,对当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值,包括:
按照第一预设步长,对当前的幅度校正系数值进行调整,根据调整后的幅度校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能 参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的幅度校正系数值;
按照第二预设步长,对当前的相位校正系数值进行调整,根据调整后的相位校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的相位校正系数值。
结合第一方面,在第一方面的第四种可能实现方式中,所述从多次获取到的性能参数值中选取优选性能参数值,包括:
从所述多次获取到的性能参数值中,选取任一种性能参数的最大性能参数值,作为优选性能参数值。
结合第一方面,在第一方面的第五种可能实现方式中,校正系数值包括幅度校正系数值和相位校正系数值;所述方法还包括:
根据所述通道的功放系数的偏差范围,确定预设幅度校正范围,所述预设幅度校正范围用于表示幅度校正系数值应处的范围;
根据所述通道的时延参数范围,确定预设相位校正范围,所述预设相位校正范围用于表示相位校正系数值应处的范围。
结合第一方面的第五种可能实现方式,在第一方面的第六种可能实现方式中,所述按照预设步长,对当前的校正系数值进行调整,包括:
在所述预设幅度校正范围内,按照第一预设步长,对当前的幅度校正系数值进行调整,以使调整后的幅度校正系数值属于所述预设幅度校正范围;
在所述预设相位校正范围内,按照第二预设步长,对当前的相位校正系数值进行调整,以使调整后的相位校正系数值属于所述预设相位校正范围。
结合第一方面的上述任一种可能实现方式,在第一方面的第七种可能实现方式中,所述预设停止条件为本次获取的性能参数值小于上一次获取的性能参数值。
结合第一方面的上述任一种可能实现方式,在第一方面的第八种可能实现方式中,所述性能参数值包括系统吞吐率、解调参考信号的信道质量指示DMRS CQI、调制编码方案MCS中的至少一种。
结合第一方面的上述任一种可能实现方式,在第一方面的第九种可能实现方式中,所述通道包括多个资源块,所述方法还包括:
以资源块为粒度,针对每个资源块,获取所述资源块的初始校正系数值, 根据所述资源块当前的校正系数值,对所述资源块进行校正,并基于所述通道向终端发送信号,当接收到所述终端反馈的响应信号时,根据所述响应信号获取所述通道当前的性能参数值,如果所述性能参数值不满足预设停止条件,则按照预设步长,对当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值,作为所述资源块的校正系数值。根据确定的每个资源块的校正系数值,对所述通道进行校正。
结合第一方面的上述任一种可能实现方式,在第一方面的第十种可能实现方式中,所述方法还包括:周期性地对所述通道进行校正。
第二方面,提供了一种通道校正装置,所述装置包括:第一获取模块、校正模块、第二获取模块、搜索模块,且所述装置用于执行上述第一方面提供的通道校正方法。
本发明实施例提供的技术方案的有益效果是:
本发明实施例提供的方法及装置,通过采用搜索算法,对校正系数值进行多次调整,并以系统性能作为反馈,获取每次调整后的校正系数值对应的性能参数值,从多次获取到的性能参数值中选取优选性能参数值,确定优选性能参数值对应的校正系数值,根据确定的校正系数值对通道进行校正,提高了校正系数的准确性,实现了校正系数对系统性能的闭环,提升了系统性能。而且能够基于正常业务的处理过程实现,无需专门发送校正信号,无需占用额外的时频资源,不会对正常业务的处理造成影响。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种多天线通信系统的结构示意图;
图2是本发明实施例提供的另一种多天线通信系统的结构示意图;
图3是本发明实施例提供的一种BBU的结构示意图;
图4是本发明实施例提供的一种通道校正装置的结构示意图;
图5是本发明实施例提供的一种通道校正方法的流程图;
图6是本发明实施例提供的操作流程示意图;
图7是本发明实施例提供的一种性能参数的变化规律示意图;
图8是本发明实施例提供的一种补偿范围示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种多天线通信系统的结构示意图,参见图1,该系统包括:BBU、RRU、多个天线单元。
其中,RRU包括多个接收通道以及多个发射通道,BBU通过光纤与RRU连接,通过RRU的通道与天线单元连接。BBU可以通过RRU的通道进行信号传输,在RRU的发射通道上发射信号,也可以从RRU的接收通道上接收信号。
进一步地,参见图2,多天线通信系统还可以分布式部署多个RRU,多个RRU可以部署在不同的地理位置,BBU可以通过光纤与每个RRU连接,通过任一RRU的通道进行信号传输。
图3是本发明实施例提供的一种BBU的结构示意图,参见图3,该BBU包括:接收器301、发射器302、存储器303和处理器304,该接收器301、该发射器302和该存储器303分别与该处理器304连接,该存储器303存储有程序代码,该处理器304用于调用该程序代码,执行通道校正方法,具体过程详见下述方法实施例。
图4是本发明实施例提供的一种通道校正装置的结构示意图,参见图4,该通道校正装置包括:
第一获取模块401,用于获取待校正通道当前的校正系数值;
校正模块402,用于根据当前的校正系数值,对该通道进行测试校正;
第二获取模块403,用于获取校正后的性能参数值,该性能参数值用于表 示系统性能;
搜索模块404,用于如果该性能参数值不满足预设停止条件,则按照预设步长,对该当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的校正系数值;
该校正模块402,用于根据确定的校正系数值,对该通道进行校正。
本发明实施例提供的装置,通过采用搜索算法,对校正系数值进行多次调整,并以系统性能作为反馈,获取每次调整后的校正系数值对应的性能参数值,从多次获取到的性能参数值中选取优选性能参数值,确定优选性能参数值对应的校正系数值,根据确定的校正系数值对通道进行校正,提高了校正系数的准确性,实现了校正系数对系统性能的闭环,提升了系统性能。而且能够基于正常业务的处理过程实现,无需专门发送校正信号,无需占用额外的时频资源,不会对正常业务的处理造成影响。
可选地,该待校正通道为接收通道,该装置还包括:
初始模块,用于在参考发射通道上发送校正信号;从该待校正通道上接收该校正信号的响应信号;根据从该待校正通道上接收到的响应信号,计算该待校正通道对应的校正系数值;将该待校正通道对应的校正系数值与已确定的补偿值的乘积作为该待校正通道的初始校正系数值。
可选地,该待校正通道为发射通道,该装置还包括:
初始模块,用于在该待校正通道上发送校正信号;从参考接收通道上接收该校正信号的响应信号;根据从该参考接收通道上接收到的响应信号,计算该待校正通道对应的校正系数值;将该待校正通道对应的校正系数值与已确定的补偿值的乘积作为该待校正通道的初始校正系数值。
可选地,校正系数值包括幅度校正系数值和相位校正系数值;该搜索模块404用于按照第一预设步长,对当前的幅度校正系数值进行调整,根据调整后的幅度校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的幅度校正系数值;
该搜索模块404用于按照第二预设步长,对当前的相位校正系数值进行调整,根据调整后的相位校正系数值继续进行测试校正,获取对应的性能参数值, 直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的相位校正系数值。
可选地,该搜索模块404用于从该多次获取到的性能参数值中,选取任一种性能参数的最大性能参数值,作为优选性能参数值。
可选地,校正系数值包括幅度校正系数值和相位校正系数值;该装置还包括:
范围确定模块,用于根据该通道的功放系数的偏差范围,确定预设幅度校正范围,该预设幅度校正范围用于表示幅度校正系数值应处的范围;根据该通道的时延参数范围,确定预设相位校正范围,该预设相位校正范围用于表示相位校正系数值应处的范围。
可选地,该搜索模块404用于在该预设幅度校正范围内,按照第一预设步长,对当前的幅度校正系数值进行调整,以使调整后的幅度校正系数值属于该预设幅度校正范围;
该搜索模块还用于在该预设相位校正范围内,按照第二预设步长,对当前的相位校正系数值进行调整,以使调整后的相位校正系数值属于该预设相位校正范围。
可选地,该预设停止条件为本次获取的性能参数值小于上一次获取的性能参数值。
可选地,该性能参数值包括系统吞吐率、解调参考信号(DeModulation Reference Signal,DMRS)信道质量指示(Channel Quality Indicator,CQI)、调制编码方案(Modulation and Coding Scheme,MCS)中的至少一种。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图5是本发明实施例提供的一种通道校正方法的流程图。本发明实施例的执行主体为BBU,参见图5,该方法包括:
501、获取待校正通道的初始校正系数值。
为了提高校正准确率,本发明实施例采用了搜索算法,以系统性能作为反馈,对校正系数进行多次调整,得到多个校正系数值,从而基于每次得到的校正系数值进行测试校正,多次测试校正之后,按照反馈的系统性能选取出优选的校正系数值,根据优选的校正系数值对通道进行校正。
操作流程图如图6所示,BBU调整校正系数值后,信号经过RRU、天线(ANT)和终端(UE)后,BBU可以获取到用于反馈当前系统整体性能的性能参数值,BBU根据性能参数值继续调整校正系数值,直至系统达到最优性能,获取优选的校正系数值。
首先,BBU获取待校正通道的初始校正系数值,以便在初始校正系数值的基础上进行搜索。其中,该初始校正系数值可以由技术人员预先确定,或者由BBU根据预设校正范围确定或者通过测量确定,本发明实施例对此不做限定。
进一步地,BBU根据预设校正范围确定初始校正系数值时,为了提高搜索效率,节省计算资源,BBU可以先根据该通道的配置参数,确定预设校正范围,该预设校正范围用于表示校正系数值应处的范围,也即是通常情况下实际的校正系数值不会超出该预设校正范围。则BBU可以根据该预设校正范围确定初始校正系数值。
其中,该预设校正范围可以由下限校正系数值和上限校正系数值确定,BBU可以将下限校正系数值作为初始校正系数值,也可以将上限校正系数值作为初始校正系数值。
该校正系数值可以包括幅度校正系数值和相位校正系数值中的至少一项,相应地,BBU可以针对幅度和相位两种校正系数确定两个校正范围:预设幅度校正范围和预设相位校正范围,该预设幅度校正范围用于表示幅度校正系数值应处的范围,该预设相位校正范围用于表示相位校正系数值应处的范围。
具体地,由于信号在通道中进行传输时,可能会被放大,其发生的幅度变化由该通道的功放系数的偏差确定,因此,BBU可以确定该通道的功放系数的偏差范围,根据该功放系数的偏差范围确定预设幅度校正范围。
由于信号在通道中进行传输时,会发生时延,导致相位发生变化,即信号发生的相位变化由该通道的时延参数确定,因此,BBU可以确定该通道的时延参数范围,根据该时延参数范围确定预设相位校正范围。
BBU确定预设幅度校正范围和预设相位校正范围之后,确定初始幅度校正系数值和初始相位校正系数值,根据该初始幅度校正系数值和该初始相位校正系数值确定初始校正系数值。
举例来说,BBU确定通道的功放幅度偏差为-0.5dB至0.5dB,相位偏差为-15°至+15°,则确定预设幅度校正范围为[-0.5dB,0.5dB],预设相位校正范围为[-15°,+15°]。选取初始幅度校正系数值为-0.5dB,初始相位校正系数值 为-15°,则初始校正系数值为β0=0.9119-0.2443j,表示该通道与参考通道之间的幅度之比为-0.5dB,相位之差为-15°。
502、根据当前的校正系数值,对该通道进行测试校正,并获取校正后的性能参数值。
确定该初始校正系数值之后,BBU可以根据该初始校正系数值对该通道进行测试校正,BBU基于校正后的通道进行信号传输时,可以获取当前的性能参数值,该性能参数值用于表示通信系统整体的系统性能,可以体现该校正系数值对系统性能的影响。BBU可以通过对校正系数值进行调整,进行多次测试校正,本发明实施例仅是针对当前的校正系数值的测试校正过程为例进行说明,该当前的校正系数值可以为初始校正系数值,也可以为对初始校正系数值进行了一次或多次调整之后得到的校正系数值,本发明实施例对此不做限定。
其中,根据当前的校正系数值对该通道进行测试校正是指,当BBU要通过该通道发送信号时,根据当前的校正系数值对待发送的信号进行校正,并发送校正后的信号。进一步地,该校正过程可以在处理正常业务的过程中执行,也即是,BBU无需发送专门的校正信号,直接针对正常业务的处理发送信号即可,不会占用额外的时频资源。例如,待发送的信号的幅度为x,幅度校正系数值为2,则对待发送的信号进行校正后,所发送的信号幅度为2x。
另外,该性能参数值包括系统吞吐率、DMRS CQI、MCS中的至少一种,或者也可以包括其他种类的性能参数,BBU可以通过对终端反馈给BBU的信号进行检测或者采用其他方式来获取性能参数值,本发明实施例对此不做限定。
该终端可以为专用部署终端,专门应用于通道的校正,或者,该终端也可以为正常业务所涉及的终端,BBU可以在正常处理业务时向该终端发送信号,本发明实施例对此不做限定。
503、如果该性能参数值不满足预设停止条件,则按照预设步长,对当前的校正系数值进行调整,根据调整后的校正系数值重复执行步骤502,获取下一性能参数值,直至获取到的性能参数值满足预设停止条件时停止。
本发明实施例中,BBU通过对校正系数值进行多次调整,基于每次调整后的校正系数值进行搜索,而该预设停止条件用于规定停止搜索的时机,当得到的性能参数值满足预设停止条件时可以停止搜索,无需再对当前的校正系数值进行调整和测试校正。
参见图7,随着对校正系数值的调整,性能参数值的变化规律为先增大再减小。当校正系数值小于“优选校正系数值”时,随着校正系数值的增加,性能参数值逐渐增加,当校正系数值大于“优选校正系数值”时,随着校正系数值的增加,性能参数值逐渐减小。当校正系数值大于“优选校正系数值”时,随着校正系数值的减小,性能参数值逐渐增加,当校正系数值小于“优选校正系数值”时,随着校正系数值的减小,性能参数值逐渐减小。
因此,该预设停止条件可以为本次获取的性能参数值小于上一次获取的性能参数值,一旦本次获取的性能参数值小于上一次获取的性能参数值,表示性能参数值已经开始减小,之前搜索到的多个校正系数值已经包含了优选的校正系统值,无需再继续搜索。
每当BBU应用当前的校正系数值进行测试校正获取到性能参数值时,判断该性能参数值是否小于上一次获取的性能参数值,当该性能参数值不小于上一次获取的性能参数值时,表示性能参数值随着对校正系数值的调整逐渐增加,则继续进行搜索。当该性能参数值小于上一次获取的性能参数值时,表示性能参数值随着对校正系数值的调整逐渐减小,则停止搜索。
实际的应用过程中,BBU根据初始校正系数值,获取到初始的性能参数值之后,按照预设步长对初始校正系数值进行调整,得到第一校正系数值,根据该第一校正系数值执行步骤502,获取第一性能参数值,判断该第一性能参数值是否小于初始性能参数值,如果该第一性能参数值不小于该初始性能参数值,则按照预设步长对第一校正系数值进行调整,得到第二校正系数值,根据该第二校正系数值执行步骤502,获取第二性能参数值,判断该第二性能参数值是否小于第一性能参数值,以此类推,直至本次获取到的性能参数值小于上一次获取到的性能参数值时停止。
其中,该预设步长可以由技术人员确定,或者由BBU默认确定,本发明实施例对此不做限定。
本发明实施例中,在第一种可能的实现方式中,当BBU确定了较小的初始校正系数值时,每次可以按照预设步长,增加校正系数值,从而得到多个校正系数值。在第二种可能的实现方式中,当BBU确定了较大的初始校正系数值时,每次可以按照预设步长,减小校正系数值,从而得到多个校正系数值。图7仅是以初始校正系数值较小为例进行说明。
可选地,BBU根据该预设校正范围确定初始校正系数值时,在每次对校正 系数值进行调整时,在该预设校正范围内,按照预设步长对当前的校正系数值进行调整。一旦调整后的校正系数值超出了该预设校正范围,则停止搜索,以使调整后的校正系数值属于该预设校正范围。
其中,BBU将下限校正系数值作为初始校正系数值时,每次按照预设步长,增加校正系数值,从而得到多个校正系数值。BBU将上限校正系数值作为初始校正系数值时,每次按照预设步长,减小校正系数值,从而得到多个校正系数值。
进一步地,BBU可以针对幅度校正系数值和相位校正系数值分别进行搜索,也即是,该步骤503可以包括以下至少一项:
5031、如果该性能参数值不满足预设停止条件,则在该预设幅度校正范围内,按照第一预设步长,对当前的幅度校正系数值进行调整,以使调整后的幅度校正系数值属于该预设幅度校正范围,根据调整后的幅度校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的幅度校正系数值。
5032、如果该性能参数值不满足预设停止条件,则在该预设相位校正范围内,按照第二预设步长,对当前的相位校正系数值进行调整,以使调整后的相位校正系数值属于该预设相位校正范围,根据调整后的相位校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的相位校正系数值。
BBU可以为幅度校正系数和相位校正系数分别确定第一预设步长和第二预设步长,针对幅度校正系数,通过多次执行步骤5031进行搜索,确定优选的幅度校正系数值,针对相位校正系数,通过多次执行步骤5032进行搜索,确定优选的相位校正系数值,从而确定了优选的校正系数值。
需要说明的是,上述步骤5031和5032可以并行执行,也可以一前一后执行,本发明实施例对此不做限定。优选地,BBU先多次执行步骤5031确定幅度校正系数值之后,再多次执行步骤5032确定相位校正系数值。
基于步骤501的举例,初始幅度校正系数值为-0.5dB,初始相位校正系数值为-15°,初始校正系数值为β0=0.9119-0.2443j,应用该初始校正系数值时得到的系统吞吐率为C0。以0.1dB作为第一预设步长,按照第一预设步长调整 后的幅度校正系数值为-0.4dB,相位校正系数值仍为-15°,则调整后的第二校正系数值为β1=0.9225-0.2472j,应用该校正系数值后得到的系统吞吐率为C1。判断C1是否小于C0,如果C1大于C0,则继续按照第一预设步长调整幅度校正系数值,进而得到第二校正系数值β2=0.9331-0.25j,以此类推。如果C1小于C0,则停止对幅度校正系数值的搜索,获取搜索到的多个幅度校正系数值。之后,采用类似的方法对相位校正系数值进行搜索,获取搜索到的多个相位校正系数值。
504、从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的校正系数值,根据确定的校正系数值,对该通道进行校正。
停止搜索之后,BBU可以对多次获取到的性能参数值进行比较,从该多次获取到的性能参数值中,选取最大的性能参数值,作为优选性能参数值。
如果每次获取到多种性能参数值时,BBU可以从该多次获取到的性能参数值中,选取任一种性能参数的最大性能参数值,作为优选性能参数值。所选取的性能参数可以为系统吞吐率、DMRS CQI或者MCS,本发明实施例对此不做限定。
选取优选性能参数值之后,BBU确定该优选性能参数值对应的校正系数值,可以认为根据该确定的校正系数值对该通道进行校正时,能够保证该通道的性能最优。因此,BBU将该确定的校正系数值作为最终的校正系数值,根据该校正系数值对该通道进行校正。
其中,该校正过程与上述测试校正过程的区别在于:测试校正过程是指根据搜索过程中调整得到的校正系数值进行临时性的校正,得到对应的性能参数值,以便选出优选性能参数值,每次的测试校正并不能保证系统性能的好坏。而校正过程是指在经过多次测试校正、确定优选性能参数值之后,根据该优选性能参数值对应的校正系数值进行校正,可以认为该校正过程可以保证系统性能最优。
需要说明的一点是,本发明实施例仅是以对通道进行校正为例,实际上,通道包括多个资源块,BBU可以以资源块为粒度,针对每个资源块分别进行校正,从而得到校正后的通道。
具体地,针对每个资源块,获取该资源块的初始校正系数值,根据该资源块当前的校正系数值,对该资源块进行测试校正,并基于该通道向终端发送信号,当接收到该终端反馈的响应信号时,根据该响应信号获取该通道当前的性 能参数值,如果该性能参数值不满足预设停止条件,则按照预设步长,对当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足该预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定该优选性能参数值对应的校正系数值,作为该资源块的校正系数值。根据确定的每个资源块的校正系数值,对该通道进行校正。
其中,BBU可以并行地对多个资源块进行搜索,以加快收敛的速度,提高搜索效率。
需要说明的另一点是,本发明实施例仅是以对通道进行了一次校正为例,而在实际应用中,BBU可以多次采用上述方法对通道进行校正。可选地,BBU周期性地采用上述方法对通道进行校正。进一步地,BBU可以将上个校正周期所确定的校正系数值作为初始校正系数值,重新调整校正系数值,调整时的预设校正范围可以不变。
其中,本发明实施例提供的通道校正方法可以在正常处理业务的任一时刻执行,而不会受到限制,因此,BBU采用的校正周期可以根据需求确定,可以为时隙级,也可以为子帧级,本发明实施例对此不做限定。
需要说明的再一点是,本发明实施例仅是以一个通道为例进行说明,而在实际应用中,BBU可以采用本发明实施例提供的方法对多个通道进行校正。由于BBU获取到的性能参数值用于体现系统的整体性能,不同的通道进行校正均会对系统的整体性能造成影响,因此,BBU可以先对其中一个通道进行校正,校正完成后再对另一个通道进行校正,避免同时对多个通道进行校正,以保证校正准确率。校正时,BBU可以对RRU的多个通道进行校正,保证多个通道的幅度、相位等参数一致,或者也可以从多个通道中选取一个参考通道,对除参考通道之外的多个通道进行校正,以保证多个通道的参数均与参考通道的参数一致,本发明实施例对校正方式不做限定。
本发明实施例提供的方法,通过采用搜索算法,对校正系数值进行多次调整,并获取每次调整后的校正系数值对应的性能参数值,从多次获取到的性能参数值中选取优选性能参数值,确定优选性能参数值对应的校正系数值,根据确定的校正系数值对通道进行校正,提高了校正系数的准确性,提升了系统性能。
在图5所示实施例的基础上,BBU在确定初始校正系数值时,可以通过测量确定。也即是,该步骤501可以包括以下步骤5011和5012:
5011、待校正通道为接收通道时,在参考发射通道上发送校正信号,从该待校正通道上接收该校正信号的响应信号,根据从该待校正通道上接收到的响应信号,计算该待校正通道对应的校正系数值,将该待校正通道对应的校正系数值与补偿值的乘积作为该待校正通道的初始校正系数值。
实际上,在执行步骤5011时,BBU可以同时获取多个接收通道的初始校正系数值。具体地,在参考发射通道上发送校正信号,从各个接收通道上接收该校正信号的响应信号,根据从每个接收通道上接收到的响应信号,计算每个接收通道对应的校正系数值,将每个接收通道对应的校正系数值与补偿值的乘积作为对应接收通道的初始校正系数值。
每个接收通道共用一个参考发射通道,BBU在参考发射通道上发射已知的校正信号,该信号会经过分路器耦合到每个接收通道中,并发生幅度、相位等参数的变化。BBU可以从每个接收通道接收反馈的响应信号,从接收到的响应信号中提取幅度和相位等参数,根据提取到的参数计算每个接收通道对应的校正系数值。
5012、待校正通道为发射通道时,在待校正通道上发送校正信号;从参考接收通道上接收该校正信号的响应信号;根据从该参考接收通道上接收到的响应信号,计算该待校正通道对应的校正系数值;将该待校正通道对应的校正系数值与已确定的补偿值的乘积作为该待校正通道的初始校正系数值。
实际上,在执行步骤5012时,BBU可以同时获取多个发射通道的初始校正系数值。具体地,在每个发射通道上发送校正信号,从参考接收通道上接收该校正信号的响应信号,根据从该参考接收通道上接收到的响应信号,计算每个发射通道对应的校正系数值,将每个发射通道对应的校正系数值与补偿值的乘积作为对应发射通道的初始校正系数值。
每个发射通道共用一个参考接收通道,BBU在每个发射通道上发射已知的校正信号,校正信号经过合路器耦合到参考接收通道中,并发生幅度、相位等参数的变化,BBU通过该参考接收通道接收反馈的响应信号,从接收到的响应信号中提取幅度和相位等参数,并根据提取到的参数计算每个发射通道对应的校正系数值,作为初始校正系数值。
对于每个通道,BBU测量得到该通道的校正系数值后,可以将该通道对应 的校正系数值与补偿值的乘积作为该通道的初始校正系数值。通过补偿值对测量的校正系数值进行微调,以提高准确率。
具体地,参见图8,BBU可以以测量的校正系数值为中心,根据确定的预设校正范围,确定一个较小的补偿范围,该补偿范围属于该预设校正范围。该补偿范围由下限补偿值和上限补偿值确定,下限补偿值为负数,上限补偿值为正数,则BBU可以将测量的校正系数值与下限补偿值的和作为初始校正系数值,每次搜索时在该补偿范围内,按照预设步长增加校正系数值,从而得到多个校正系数值,或者将校正系数值与上限补偿值的和作为初始校正系数值,每次搜索时在该补偿范围内,按照预设步长减小校正系数值,从而得到多个校正系数值。图8仅是以BBU将测量的校正系数值与下限补偿值的和作为初始校正系数值为例。
进一步地,BBU可以针对幅度和相位两种校正系数确定两个补偿范围:幅度补偿范围和相位补偿范围,该幅度补偿范围用于确定幅度校正系数值的补偿值和调整范围,该相位补偿范围用于确定相位校正系数值的补偿值和调整范围。其中,该幅度补偿范围和相位补偿范围可以根据BBU对精确度的需求或者对校正效率的需求确定,本发明实施例对此不做限定。
举例来说,BBU测量的初始幅度校正系数值为-0.5dB,初始相位校正系数值为-15°,则初始校正系数值为β0=0.9119-0.2443j,确定的幅度补偿范围为[-0.2dB,0.2dB],相位补偿范围为[-5°,5°],则确定幅度补偿值为-0.2dB,相位补偿值为-5°,初始校正系数值即为β1=(0.9735-0.0852j)*β0
相关技术中,仅是通过发射已知的校正信号来进行测量,确定校正系数值,实质上是一个测量过程,与系统性能无关,校正过程的准确率完成取决于测量精度,很可能会出现校正系数计算不准确的情况。而且,发射校正信号会占用额外的时频资源,容易对正常业务的处理造成影响。由于测量过程包括发射校正信号、接收反馈信号、提取参数、进行计算等多个过程,需要耗费一定的时间才能完成,且为了不影响处理正常业务,需要在空闲的时隙间隔上发送校正信号,这都会导致测量周期较长,无法实现对校正系数的快速调整。
进一步地,如果多天线通信系统中分布式部署了多个RRU,BBU在参考发射通道上发射的校正信号到达其中一个RRU后,会经过该RRU发射到空口,从而通过空口转发至其他的RRU中,BBU从其他的RRU的各个接收通道中 接收反馈的信号,计算校正系数并进行校正,使得校正后可以保证不同RRU之间的通道参数一致。但是,由于很多RRU分布式部署时相互不可见,中间有较多的障碍物遮挡,很难满足通过空口发送信号的需求,导致校正过程无法实现。而且,即使RRU之间可以通过空口发送信号,发送过程中需要占用GP资源,降低了网络抗干扰能力,浪费了额外的频谱效率和功率,且该信号很容易受到空口的干扰,导致校正系数计算不准确,从而导致通道性能大幅降低。
而本发明实施例中,通过采用搜索算法,并以系统性能作为反馈,根据多次测试校正过程中反馈的性能参数值,选取优选性能参数值,进而确定优选性能参数值对应的校正系数值,以保证根据确定的校正系数值对通道进行校正时通道的性能达到最优。在系统正常处理业务时,可以实时监测系统性能,将校正系数值调整至最优,提高了校正系数的准确性,实现了校正系数对系统性能的闭环,提升了系统性能。而且,能够基于正常业务的处理过程实现,无需专门发送校正信号,无需占用额外的时频资源,不会对正常业务的处理造成影响,节省了功率开销。该校正过程中无需发送专门的校正信号,无需在空闲的时隙间隔上发送校正信号,不会受到时间限制,因此可以大大缩短校正周期,能够实现子帧级地对校正系数进行跟踪和调整,实现快速校正。
进一步地,可以应用测量技术获取到校正系数值后,对该校正系数值进行微调后,采用本发明提供的方法进一步进行校正。即使在测量发生较大误差时,也能够利用系统性能反馈,微调校正系数值,使系统性能达到最优,提高了系统鲁棒性。
进一步地,本发明实施例可以应用于集中式多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中,也可以应用于分布式MIMO系统中。即使应用于分布式MIMO系统中,选取到的优选性能参数值即为多个RRU的幅度和相位一致时的性能参数值,即不同RRU之间采用本发明实施例进行校正,即可实现幅度和相位的一致,而无需通过空口发送信号,也不会受到空口的干扰,提升了抗干扰性能,提高了可靠性。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种通道校正方法,其特征在于,所述方法包括:
    获取待校正通道当前的校正系数值;
    根据当前的校正系数值,对所述通道进行测试校正;
    获取本次校正后的性能参数值,所述性能参数值用于表示系统性能;
    如果所述性能参数值不满足预设停止条件,则按照预设步长,对所述当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值;
    根据确定的校正系数值,对所述通道进行校正。
  2. 根据权利要求1所述的方法,其特征在于,所述待校正通道为接收通道,所述方法还包括:
    在参考发射通道上发送校正信号;
    从所述待校正通道上接收所述校正信号的响应信号;
    根据从所述待校正通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;
    将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
  3. 根据权利要求1所述的方法,其特征在于,所述待校正通道为发射通道,所述方法还包括:
    在所述待校正通道上发送校正信号;
    从参考接收通道上接收所述校正信号的响应信号;
    根据从所述参考接收通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;
    将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
  4. 根据权利要求1所述的方法,其特征在于,校正系数值包括幅度校正系数值和相位校正系数值;
    所述按照预设步长,对所述当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值,包括:
    按照第一预设步长,对当前的幅度校正系数值进行调整,根据调整后的幅度校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的幅度校正系数值;
    按照第二预设步长,对当前的相位校正系数值进行调整,根据调整后的相位校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的相位校正系数值。
  5. 根据权利要求1所述的方法,其特征在于,所述从多次获取到的性能参数值中选取优选性能参数值,包括:
    从所述多次获取到的性能参数值中,选取任一种性能参数的最大性能参数值,作为优选性能参数值。
  6. 根据权利要求1所述的方法,其特征在于,校正系数值包括幅度校正系数值和相位校正系数值;所述方法还包括:
    根据所述通道的功放系数的偏差范围,确定预设幅度校正范围,所述预设幅度校正范围用于表示幅度校正系数值应处的范围;
    根据所述通道的时延参数范围,确定预设相位校正范围,所述预设相位校正范围用于表示相位校正系数值应处的范围。
  7. 根据权利要求6所述的方法,其特征在于,所述按照预设步长,对当前的校正系数值进行调整,包括:
    在所述预设幅度校正范围内,按照第一预设步长,对当前的幅度校正系数值进行调整,以使调整后的幅度校正系数值属于所述预设幅度校正范围;
    在所述预设相位校正范围内,按照第二预设步长,对当前的相位校正系数值进行调整,以使调整后的相位校正系数值属于所述预设相位校正范围。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述预设停止条件为本次获取的性能参数值小于上一次获取的性能参数值。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述性能参数值包括系统吞吐率、解调参考信号的信道质量指示DMRS CQI、调制编码方案MCS中的至少一种。
  10. 一种通道校正装置,其特征在于,所述装置包括:
    第一获取模块,用于获取待校正通道当前的校正系数值;
    校正模块,用于根据当前的校正系数值,对所述通道进行测试校正;
    第二获取模块,用于获取校正后的性能参数值,所述性能参数值用于表示系统性能;
    搜索模块,用于如果所述性能参数值不满足预设停止条件,则按照预设步长,对所述当前的校正系数值进行调整,根据调整后的校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的校正系数值;
    所述校正模块,用于根据确定的校正系数值,对所述通道进行校正。
  11. 根据权利要求10所述的装置,其特征在于,所述待校正通道为接收通道,所述装置还包括:
    初始模块,用于在参考发射通道上发送校正信号;从所述待校正通道上接收所述校正信号的响应信号;根据从所述待校正通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
  12. 根据权利要求10所述的装置,其特征在于,所述待校正通道为发射通道,所述装置还包括:
    初始模块,用于在所述待校正通道上发送校正信号;从参考接收通道上接收所述校正信号的响应信号;根据从所述参考接收通道上接收到的响应信号,计算所述待校正通道对应的校正系数值;将所述待校正通道对应的校正系数值与已确定的补偿值的乘积作为所述待校正通道的初始校正系数值。
  13. 根据权利要求10所述的装置,其特征在于,校正系数值包括幅度校正系数值和相位校正系数值;所述搜索模块用于按照第一预设步长,对当前的幅度校正系数值进行调整,根据调整后的幅度校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的幅度校正系数值;
    所述搜索模块用于按照第二预设步长,对当前的相位校正系数值进行调整,根据调整后的相位校正系数值继续进行测试校正,获取对应的性能参数值,直至获取到的性能参数值满足所述预设停止条件时,从多次获取到的性能参数值中选取优选性能参数值,确定所述优选性能参数值对应的相位校正系数值。
  14. 根据权利要求10所述的装置,其特征在于,所述搜索模块用于从所述多次获取到的性能参数值中,选取任一种性能参数的最大性能参数值,作为优选性能参数值。
  15. 根据权利要求10所述的装置,其特征在于,校正系数值包括幅度校正系数值和相位校正系数值;所述装置还包括:
    范围确定模块,用于根据所述通道的功放系数的偏差范围,确定预设幅度校正范围,所述预设幅度校正范围用于表示幅度校正系数值应处的范围;根据所述通道的时延参数范围,确定预设相位校正范围,所述预设相位校正范围用于表示相位校正系数值应处的范围。
  16. 根据权利要求15所述的装置,其特征在于,所述搜索模块用于在所述预设幅度校正范围内,按照第一预设步长,对当前的幅度校正系数值进行调整,以使调整后的幅度校正系数值属于所述预设幅度校正范围;
    所述搜索模块还用于在所述预设相位校正范围内,按照第二预设步长,对 当前的相位校正系数值进行调整,以使调整后的相位校正系数值属于所述预设相位校正范围。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,所述预设停止条件为本次获取的性能参数值小于上一次获取的性能参数值。
  18. 根据权利要求10-16任一项所述的装置,其特征在于,所述性能参数值包括系统吞吐率、解调参考信号的信道质量指示DMRS CQI、调制编码方案MCS中的至少一种。
PCT/CN2016/086685 2016-06-22 2016-06-22 通道校正方法及装置 WO2017219265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086685 WO2017219265A1 (zh) 2016-06-22 2016-06-22 通道校正方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086685 WO2017219265A1 (zh) 2016-06-22 2016-06-22 通道校正方法及装置

Publications (1)

Publication Number Publication Date
WO2017219265A1 true WO2017219265A1 (zh) 2017-12-28

Family

ID=60783665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086685 WO2017219265A1 (zh) 2016-06-22 2016-06-22 通道校正方法及装置

Country Status (1)

Country Link
WO (1) WO2017219265A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001819A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 一种校正装置以及校正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716075A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
CN104159282A (zh) * 2013-05-15 2014-11-19 华为技术有限公司 一种信号调整方法及装置、小区
US20150016571A1 (en) * 2013-07-15 2015-01-15 National Instruments Corporation Blind Mechanism for Estimation and Correction of I/Q Impairments
CN105656815A (zh) * 2014-11-11 2016-06-08 华为技术有限公司 一种射频通道的校正方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716075A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
CN104159282A (zh) * 2013-05-15 2014-11-19 华为技术有限公司 一种信号调整方法及装置、小区
US20150016571A1 (en) * 2013-07-15 2015-01-15 National Instruments Corporation Blind Mechanism for Estimation and Correction of I/Q Impairments
CN105656815A (zh) * 2014-11-11 2016-06-08 华为技术有限公司 一种射频通道的校正方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001819A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 一种校正装置以及校正方法

Similar Documents

Publication Publication Date Title
US8139518B2 (en) System for measuring a rise-over-thermal characteristic in a communication network
US8824973B2 (en) Filtering of a measurement quantity in a mobile communication network
KR101751630B1 (ko) 신호 조절 방법, 장치, 및 셀
WO2013139036A1 (en) Method and apparatus for scheduling user equipment
US20090147732A1 (en) Method for adjusting transmission speed of wireless network
US20150139003A1 (en) Mobile station device, path loss calculation method, program, and integrated circuit
US11223401B2 (en) Technique for selecting a MIMO transport format
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
WO2015196589A1 (zh) 终端能力指示参数的反馈、反馈处理方法及装置
US11191030B2 (en) Terminal, base station, transmission method, and reception method
US9629013B2 (en) Channel quality indication with filtered interference
WO2017219265A1 (zh) 通道校正方法及装置
US8437704B2 (en) System and method for resuming power control after interruption
US9549377B1 (en) Power control method and device
US9942827B2 (en) Dynamic crossband link method and wireless extender
CN102547953B (zh) 一种获得波束赋形增益的方法
US20090117904A1 (en) Mobile station and handover control method
US11394450B2 (en) Input data value and beam index filtering in LTE and 5G base stations
WO2016066031A1 (zh) 一种确定终端调制编码方式mcs的方法、终端和基站
US20210083729A1 (en) Signal Strength Scaling of an Uplink Measurement Signal and Corresponding Uplink Transmission Beam According to an Estimated Interference Level
WO2024002003A1 (zh) 信道反馈模型确定方法、终端及网络侧设备
US9301262B2 (en) Power control method and mobile communication terminal
KR20170004416A (ko) RRH(Remote Radio Head)의 전압 정재파비(VSWR)를 고려한 단말 전력 제어 방법 및 그를 위한 장치 및 시스템
WO2023249517A1 (en) Estimating expected downlink (dl) channel quality and associated uncertainty for use in link adaptation
WO2012093675A1 (ja) 移動体通信装置およびチャネル品質指標推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905807

Country of ref document: EP

Kind code of ref document: A1