WO2011095061A1 - 一种下行子帧的调度方法和设备 - Google Patents

一种下行子帧的调度方法和设备 Download PDF

Info

Publication number
WO2011095061A1
WO2011095061A1 PCT/CN2011/000187 CN2011000187W WO2011095061A1 WO 2011095061 A1 WO2011095061 A1 WO 2011095061A1 CN 2011000187 W CN2011000187 W CN 2011000187W WO 2011095061 A1 WO2011095061 A1 WO 2011095061A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink subframe
downlink
terminal device
subframes
data
Prior art date
Application number
PCT/CN2011/000187
Other languages
English (en)
French (fr)
Inventor
姜大洁
刘光毅
张勇
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010101050368A external-priority patent/CN102142886A/zh
Priority claimed from CN2010101050298A external-priority patent/CN102142885A/zh
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to EP11739340.5A priority Critical patent/EP2533452B1/en
Priority to US13/576,628 priority patent/US8937892B2/en
Priority to RU2012136265/08A priority patent/RU2543562C2/ru
Priority to KR1020127022749A priority patent/KR101468790B1/ko
Priority to JP2012551477A priority patent/JP5509343B2/ja
Publication of WO2011095061A1 publication Critical patent/WO2011095061A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a downlink subframe scheduling method and device. Background technique
  • the length of a downlink subframe is lms, including control.
  • the control area PDCCH (Physical Downlink Control Channel) and the data area PDSCH (Physical Downlink Shared Channel) are shown in FIG. 1 .
  • the control region of the downlink subframe PDCCH schedules the data region PDSCH of the subframe, that is, the control information such as the frequency domain resource used in the data transmission of the subframe and the modulation and coding mode in the PDCCH of the downlink subframe.
  • the prior art has at least the following problems:
  • the prior art has the disadvantage that the control region of one subframe can only schedule the subframe data region, and is not flexible in some special cases.
  • the embodiment of the present invention provides a scheduling method and a device for scheduling a downlink subframe, and scheduling a data region of one or more subframes by using a control region of one subframe, which can save a large amount of control signaling compared with the traditional downlink single subframe scheduling. Overhead, so there are more resources to transfer data and improve system performance.
  • an embodiment of the present invention provides a scheduling method for a downlink subframe, which specifically includes the following steps:
  • Data is transmitted to the terminal device by a data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time.
  • the downlink subframe set includes at least two downlink subframes; and the data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time transmits data to the terminal device,
  • the method includes: performing channel coding on the same payload payload to obtain at least two redundancy versions; and transmitting, by using the data area of the at least two downlink subframes, the at least two redundancy versions to the terminal device.
  • the downlink subframe that carries the control information is a downlink subframe that is outside the at least two downlink subframes.
  • the downlink subframe that carries the control information is a downlink subframe in the at least two downlink subframes.
  • the method is applied to an FDD system, and the at least two downlink subframes are consecutive downlink subframes.
  • the method is applied to a TDD system, and the at least two downlink subframes are discontinuous downlink subframes.
  • the method further includes: receiving, by the receiving end, the measurement result of the signal quality of the cell by the receiving end; and determining the required measurement result by using the received measurement result
  • the receiving end transmits at least two redundancy versions corresponding to the payload.
  • control information of the downlink subframe carries control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time, specifically:
  • the control area of the downlink subframe carries detailed indication information of a data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time.
  • control area of the downlink subframe carries detailed indication information of a data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time, specifically:
  • the payloads transmitted by the data areas of the downlink subframes in the downlink subframe set that the terminal device needs to receive at one time are different from each other.
  • the method further includes: receiving, by the terminal device, the downlink subframe, and acquiring the terminal device in the control region of the downlink subframe The control information of each downlink subframe in the received downlink subframe set; the terminal device, according to the control information of each downlink subframe in the downlink subframe set, by corresponding to each downlink subframe in the downlink subframe set
  • the data area receives data.
  • an embodiment of the present invention further provides a base station, which specifically includes:
  • a scheduling module configured to determine a downlink subframe set that each terminal device needs to receive at one time
  • a transmission module connected to the scheduling module, configured to send a downlink subframe to the terminal device, where the downlink subframe And the control information of the downlink subframes in the downlink subframe set that the terminal device needs to receive at one time, and the downlink subframe that needs to be received by the terminal device at one time.
  • the data area of each downlink subframe in the set transmits data to the terminal device.
  • the downlink subframe set includes at least two downlink subframes
  • the transmission module specifically includes:
  • a first transmission sub-module configured to send, to the terminal device, a downlink subframe, where the control region of the downlink subframe carries the at least one that the terminal device that is determined by the scheduling module needs to receive at least once Control information of two downlink subframes;
  • a coding sub-module configured to perform channel coding on the same payload, to obtain at least two redundancy versions
  • a second transmission sub-module configured to transmit, by using the data area of the at least two downlink subframes, the coding to the terminal device The at least two redundancy versions obtained by the submodule.
  • the downlink subframe carrying the control information is a downlink subframe other than the at least two downlink subframes.
  • the downlink subframe that carries the control information is a downlink subframe among the at least two downlink subframes.
  • the base station further includes:
  • a receiving module configured to receive, by the receiving end that receives the payload, a measurement result of a cell signal shield; and a determining module, configured to determine, according to the measurement result received by the receiving module, whether it is required to transmit to the receiving end And at least two redundancy versions corresponding to the payload, when the determination result is yes, notifying the coding sub-module to perform channel coding on the payload.
  • control information of the downlink subframe carries control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time, specifically:
  • the control area of the downlink subframe carries detailed indication information of a data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time.
  • control area of the downlink subframe carries detailed indication information of a data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time, specifically:
  • the payloads transmitted by the data areas of the downlink subframes in the downlink subframe set that the terminal device needs to receive at one time are different from each other.
  • an embodiment of the present invention further provides a terminal device, including:
  • An acquiring module configured to acquire control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time in the control region of the downlink subframe that is sent by the received base station;
  • the receiving module is connected to the acquiring module, and is configured to receive a downlink subframe that is sent by the base station, and is further configured to: according to the control information of each downlink subframe in the downlink subframe set acquired by the acquiring module, Data is received corresponding to a data region of each downlink subframe in the downlink subframe set.
  • the embodiment of the present invention further provides a signal transmission system, including a transmitting end and a receiving end, where: the sending end is configured to perform channel coding on the same payload, and extract at least two redundancy And transmitting the at least two redundancy versions on the at least two downlink subframes, and scheduling the at least two downlink subframes by using one downlink grant signaling, and carrying signals by using the at least two downlink subframes;
  • the receiving end is configured to receive at least two downlink subframes from the sending end, and obtain at least two redundancy versions carried by the at least two downlink subframes.
  • the receiving end is further configured to use another redundancy version of the at least two redundancy versions when the payload is failed to be decoded by using one of the at least two redundancy versions.
  • the payload is decoded.
  • the receiving end is further configured to measure a cell signal quality, obtain a measurement result, and send the measurement result to the sending end;
  • the sending end is further configured to: Before the transmission on the at least two downlink subframes, the measurement result from the receiving end is received, and according to the measurement result, it is determined that at least two redundancy versions corresponding to the payload are required to be transmitted to the receiving end.
  • the embodiment of the invention has the following advantages:
  • the data area of one or more subframes is scheduled by using the control area of one subframe, which can save a lot of control signaling overhead compared to the traditional downlink single subframe scheduling. More resources transfer data to improve system performance.
  • FIG. 1 is a schematic structural diagram of a subframe in the prior art
  • FIG. 2 is a schematic flowchart of a downlink subframe scheduling method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a downlink subframe bundling according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another downlink subframe bundling according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another signal transmission method according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a scheduling method of a downlink subframe in a specific application scenario according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a scheduling method of a downlink subframe in a specific application scenario according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a scheduling method of a downlink subframe in a specific application scenario according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a signal transmission system according to an embodiment of the present invention. detailed description
  • a downlink subframe scheduling method has a basic idea that a control region of a downlink subframe can schedule data regions of multiple downlink subframes, each downlink.
  • the payload of a sub-frame transmission may be the same or different from each other.
  • the downlink subframes are bundled, and the N RVs (Redundancy Versions) of the same payload (the payload) after channel coding are respectively transmitted on the bundled N downlink subframes, and A downlink grant signaling is used to schedule the transmission of the bundled N subframes.
  • the frequency domain resources used in the bundled N subframes may be the same or different.
  • FIG. 2 is a schematic flowchart of a method for scheduling a downlink subframe according to an embodiment of the present disclosure, which specifically includes the following steps: Step S201: Determine a downlink subframe set that each terminal device needs to receive at one time.
  • Step S202 Send a downlink subframe to the terminal device.
  • the control area of the downlink subframe carries control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time.
  • control information is specifically: the detailed indication information of the data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time in the control area of the downlink subframe, which specifically includes:
  • the downlink device in the downlink subframe set that the terminal device needs to receive at one time is specifically a continuous downlink subframe or a discontinuous downlink subframe.
  • the payloads transmitted by the data areas of the downlink subframes in the downlink subframe set that the terminal device needs to receive at one time are different from each other.
  • Step S203 The data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time transmits data to the terminal device.
  • the technical solution of the present invention further includes a processing flow on the terminal device side, which is specifically as follows:
  • the terminal device receives the downlink subframe, and acquires control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time in the control region of the downlink subframe;
  • the terminal device receives data according to the data region of each downlink subframe in the corresponding downlink subframe set according to the control information of each downlink subframe in the downlink subframe set.
  • step S203 the payloads of each downlink subframe transmission may be the same or different from each other.
  • step S203 can be implemented by the following steps:
  • channel coding the same payload to obtain at least two redundancy versions.
  • the judgment result is yes, the same payload is channel coded according to the same coding rule, and at least two redundancy versions are obtained.
  • the data area of the at least two downlink subframes is used to transmit the at least two redundancy versions to the terminal device.
  • the at least two downlink subframes may be consecutive downlink subframes, or may be discontinuous downlink subframes. Each subframe has no separate control signaling and transmits different redundancy versions corresponding to the same payload.
  • the downlink subframe that carries the foregoing control information may be a downlink subframe other than the at least two downlink subframes, or may be a downlink subframe among the at least two downlink subframes.
  • At least two downlink subframes are scheduled by using one downlink subframe, which can save control signaling overhead and improve flexibility of subframe scheduling; and can be enhanced by transmitting at least two redundancy versions corresponding to the same payload.
  • the reliability of downlink transmission can be used.
  • the technical effects that the at least two downlink versions corresponding to the same payload are transmitted by the bundled at least two downlink subframes in the embodiment of the present invention include: when HARQ (Hybrid Auto Repeat Request, hybrid automatic repeat request) The receiving end of the mechanism cannot correct errors according to one of the at least two redundant versions received, and can perform error correction according to other redundant versions corresponding to the same payload, which is suitable for system SNR (Signal to Noise Ratio, signal-to-noise ratio) is relatively low and the cell edge signal is poor.
  • HARQ Hybrid Auto Repeat Request, hybrid automatic repeat request
  • the application scenarios of the embodiment of the present invention include, but are not limited to, the following two situations:
  • the control part schedules the bundled N downlink subframes.
  • the control part of the subframes schedules the bundled N downlink subframes.
  • FIG. 3 it is a schematic diagram of a downlink subframe binding in an embodiment of the present invention, where M+1 consecutive or non-contiguous downlink subframes are bundled together, and the M+1 downlink subframes are used.
  • the control portion of the subframe outside the frame schedules the M+1 downlink subframes.
  • FIG. 4 it is a flowchart of a signal transmission method according to an embodiment of the present invention, which specifically includes the following steps:
  • Step 401 The receiving end of the payload measures the signal quality of the cell, and obtains the measurement result.
  • the measurement results include information such as cell signal strength and system SN.
  • Step 402 The receiving end of the payload sends a measurement result of the signal shield of the cell to the transmitting end.
  • Step 403 The sender receives the measurement result of the signal quality of the cell by the receiving end of the payload.
  • Step 404 The sending end determines, according to the received measurement result, whether at least two redundancy versions corresponding to the payload need to be transmitted to the receiving end. If the result of the determination is yes, step 405 is performed; if the result of the determination is no, the flow is ended.
  • the sending end may determine whether the cell signal strength in the measurement result is less than a preset value. If the cell signal strength is less than the preset value, determine that the signal quality of the cell where the receiving end is located is poor, and the same payload needs to be transmitted to the receiving end. Corresponding at least two redundant versions.
  • the sender can also determine whether the system SNR in the measurement result is less than a preset value, if the system
  • the SNR is smaller than the preset value, it is determined that the signal quality of the cell where the receiving end is located is poor, and at least two redundancy versions corresponding to the same payload are transmitted to the receiving end.
  • Step 405 The sender performs channel coding on the same payload, and obtains at least two redundancy versions.
  • the bundled downlink subframe may be a continuous downlink subframe or a discontinuous downlink subframe.
  • Each bundled sub-frame has no separate control signaling and transmits different redundancy versions corresponding to the same payload.
  • Step 407 The receiving end receives at least two redundancy versions from the sending end, and uses at least two When a redundancy version of a redundancy version fails to decode the payload, the payload is decoded using other redundancy versions of the at least two redundancy versions.
  • the embodiment of the present invention schedules at least two downlink subframes by using one downlink authorization signaling, which can save control signaling overhead and improve flexibility of subframe scheduling; At least two redundancy versions can enhance the reliability of downlink transmission.
  • FIG. 5 is a schematic diagram of another downlink subframe binding in the embodiment of the present invention, where N+1 consecutive or non-contiguous downlink subframes are bundled together, and the N+1 downlinks are used.
  • the control portion of the first subframe among the subframes schedules the N+1 downlink subframes.
  • FIG. 6 a flowchart of another signal transmission method in the embodiment of the present invention specifically includes the following steps:
  • Step 601 The user equipment measures a cell signal quality, and obtains a measurement result.
  • the measurement result includes information such as cell signal strength and system SNR.
  • Step 602 The user equipment sends a measurement result of the cell signal quality to the base station device.
  • Step 603 The base station device receives a measurement result of the signal quality of the cell by the user equipment.
  • Step 604 The base station device determines, according to the received measurement result from the user equipment, whether it is required to transmit at least two redundancy versions of the same payload to the receiving end. If the result of the determination is YES, step 605 is performed; if the result of the determination is no, the flow is ended.
  • the base station device can determine whether the cell signal strength in the measurement result is d or not, and if the cell signal strength is less than the preset value, determine that the signal quality of the cell where the user equipment is located is poor, and the same payload needs to be transmitted. At least two redundant versions.
  • the base station device can also determine whether the system SNR in the measurement result is less than a preset value, if the system
  • the SNR is smaller than the preset value, it is determined that the signal quality of the cell where the user equipment is located is poor, and at least two redundancy versions of the same payload are required to be transmitted.
  • Step 605 The base station device performs channel coding on the same payload to obtain at least two redundancy versions.
  • the subframe is transmitted, and the N+1 downlink subframes are scheduled by the control portion of the first subframe of the N+1 downlink subframes.
  • the bundled downlink subframe may be a continuous downlink subframe or a discontinuous downlink subframe.
  • Each bundled sub-frame has no separate control signaling and transmits different redundancy versions corresponding to the same payload.
  • Step 607 The user equipment receives at least two redundancy versions from the base station device, and when using one of the at least two redundancy versions to decode the payload fails, using the other one of the at least two redundancy versions The redundancy version decodes the payload.
  • the embodiment of the present invention schedules at least two downlink subframes by using one downlink authorization signaling, which can save control signaling overhead and improve flexibility of subframe scheduling; At least two redundancy versions can enhance the reliability of downlink transmission.
  • the foregoing solution provided by the embodiment of the present invention has the following advantages:
  • data of one or more other subframes is scheduled by using a control region of one subframe.
  • the area can save a lot of control signaling overhead, so that more resources can transmit data and improve system performance.
  • Example 1 The control region of one downlink subframe can schedule the data region of another downlink subframe. As shown in FIG. 7, the control region of the i-th subframe controls the data region of the i+N subframes, so that the i-th can be scheduled. Data area of +N subframes for data transmission.
  • the control region of the subframe is detected, and the subframe indicated by the corresponding control identifier is found to be the data region of the i+Nth subframe.
  • Example 2 A control region of one downlink subframe may simultaneously schedule data regions of another plurality of downlink subframes.
  • control region of the i-th subframe controls the data regions of the i+Nth and i+thth subframes, so that the data regions of the i+Nth and i+Mth subframes can be scheduled. data transmission.
  • the subframe indicated by the corresponding control identifier is the data region of the i+Nth and i+Mth subframes.
  • the data regions of other subframes may be further controlled. Therefore, the change in the number of subframes does not affect the protection scope of the present invention.
  • a control region of a downlink subframe may simultaneously schedule a data region of the downlink subframe and a data region of another multiple or one downlink subframe.
  • control region of the i-th subframe controls the data region of the subframe and the data region of the i+Nth subframe, so that the data region of itself and the i+Nth subframe can be scheduled for data transmission.
  • the control region of the subframe is detected, and the subframe indicated by the corresponding control identifier is the data region of the subframe and the i+N subframe.
  • the data regions of other subframes may be further controlled. Therefore, the change in the number of subframes does not affect the protection scope of the present invention.
  • a new bit is defined to indicate a specific scheduled subframe.
  • the embodiment of the invention has the following advantages:
  • the data area of one or more subframes is scheduled by using the control area of one subframe, which can save a lot of control signaling overhead compared to the traditional downlink single subframe scheduling. More resources transfer data to improve system performance.
  • the embodiment of the present invention further provides a base station, and the special structure diagram thereof is shown in FIG. 10, and specifically includes:
  • the scheduling module 101 is configured to determine a downlink subframe set that each terminal device needs to receive at one time; the transmission module 102 is connected to the scheduling module 101, and is configured to send a downlink subframe to the terminal device, where the control region of the downlink subframe.
  • the control information of each downlink subframe in the downlink subframe set that the terminal device that is determined by the scheduling module 101 needs to be received at one time is also used for each downlink subframe in the downlink subframe set that needs to be received by the terminal device at one time.
  • the data area transmits data to the terminal device.
  • the transmission module 102 can be specifically divided into the following sub-modules, including:
  • a first transmission sub-module configured to send, to the terminal device, a downlink subframe, where the control region of the downlink subframe carries control information of at least two downlink subframes that the terminal device that is determined by the scheduling module 101 needs to receive at one time;
  • An encoding submodule configured to perform channel coding on the same payload, to obtain at least two redundancy versions
  • a second transmission submodule configured to transmit, by using the data area of the at least two downlink subframes, an encoding submodule to the terminal device The at least two redundant versions obtained.
  • the downlink subframe that carries the control information is a lower subframe that is outside or among the at least two downlink subframes.
  • the foregoing base station may further include:
  • a receiving module configured to receive, by the receiving end that receives the payload, a measurement result of a cell signal quality
  • the determining module is configured to determine, according to the measurement result received by the receiving module, whether to transmit at least two redundancy versions corresponding to the payload to the receiving end, and when the determination result is yes, notify the encoding sub-module to perform channel coding on the payload.
  • control information is specifically: the detailed indication information of the data area of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time in the control area of the downlink subframe, which specifically includes:
  • the downlink device in the downlink subframe set that the terminal device needs to receive at one time is specifically a continuous downlink subframe or a discontinuous downlink subframe.
  • the payloads transmitted by the data areas of the downlink subframes in the downlink subframe set that the terminal device needs to receive at one time are different from each other.
  • an embodiment of the present invention further provides a terminal design.
  • the structure is shown in Figure 11, which specifically includes:
  • the obtaining module 111 is configured to obtain control information of each downlink subframe in the downlink subframe set that the terminal device needs to receive at one time in the control region of the downlink subframe that is sent by the received base station;
  • the receiving module 112 is connected to the acquiring module 111 and configured to receive the downlink subframe sent by the base station, and is further configured to: according to the control information of each downlink subframe in the downlink subframe set acquired by the obtaining module 111, by using a corresponding downlink The data area of each downlink subframe in the frame set receives data.
  • the embodiment of the invention has the following advantages:
  • the data area of one or more subframes is scheduled by using the control area of one subframe, which can save a lot of control signaling overhead compared to the traditional downlink single subframe scheduling. More resources transfer data to improve system performance.
  • FIG. 12 it is a schematic structural diagram of a signal transmission system according to an embodiment of the present invention, which includes a transmitting end 1210 and a receiving end 1220, where
  • the transmitting end 1210 is configured to perform channel coding on the same payload, acquire at least two redundancy versions, transmit the at least two redundancy versions on at least two downlink subframes, and use a downlink authorization signaling scheduling station. Deriving at least two downlink subframes, carrying signals by the at least two downlink subframes.
  • the transmitting end 1210 is specifically configured to perform channel coding on the same payload, and obtain a control region of at least two downlink subframes other than at least two downlink subframes to schedule the at least two downlink subframes.
  • the transmitting end 1210 is further configured to perform channel coding on the same payload to obtain at least two redundancy versions, and transmit the at least two redundancy versions on the at least two downlink subframes by using the at least two The control region of the downlink subframe among the downlink subframes schedules the at least two downlink subframes.
  • the receiving end 1220 is configured to receive at least two downlink subframes from the transmitting end 1210, and obtain at least two redundancy versions carried by the at least two downlink subframes.
  • the receiving end 1220 is further configured to use another redundancy version of the at least two redundancy versions when the decoding of the payload is failed by using one of the at least two redundancy versions.
  • the net load is decoded.
  • the receiving end 1220 is further configured to measure a cell signal quality, obtain a measurement result, and send a measurement result of the cell signal quality to the transmitting end 1210.
  • the measurement result includes information such as cell signal strength and system SNR.
  • the transmitting end 1210 is further configured to receive the measurement result from the receiving end 1220, and determine, according to the received measurement result from the receiving end 1220, whether to transmit at least two redundancy versions corresponding to the same payload to the receiving end 1220. . If the judgment result is yes, channel coding is performed on the same payload, and at least two redundancy versions corresponding to the same payload are acquired and transmitted.
  • the sending end 1210 can determine whether the cell signal strength in the measurement result is less than a preset value. If the cell signal strength is less than the preset value, it is determined that the signal quality of the cell where the receiving end 1220 is located is poor, and the same payload needs to be transmitted. At least two redundant versions.
  • the transmitting end 1210 may also determine whether the system SNR in the measurement node is less than a preset value. If the system SNR is less than the preset value, it is determined that the signal quality of the cell where the receiving end 1220 is located is poor, and at least two corresponding to the same payload are required to be transmitted. Redundant version.
  • the embodiment of the present invention schedules at least two downlink subframes by using one downlink 4 authorized signaling, which can save control signaling overhead and improve subframe scheduling flexibility; Corresponding at least two redundancy versions can enhance the reliability of downlink transmission.
  • the embodiments of the present invention can be implemented by hardware, or can be implemented by means of software plus necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium shield (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • the method includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various implementation scenarios of the embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed to be different from the implementation.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.
  • serial numbers of the foregoing embodiments of the present invention are merely for description, and do not represent the advantages and disadvantages of the implementation scenarios.

Description

一种下行子帧的调度方法和设备 技术领域
本发明实施例涉及通信技术领域, 特别涉及一种下行子帧的调度方法和 设备。 背景技术
在 3GPP ( 3rd Generation Partnership Project, 第三代合作伙伴计划) LTE ( Long Term Evolution, 长期演进) R8 ( Release 8, 版本 8 )规范中, 一个 下行子帧 (downlink subframe ) 的长度是 lms, 包括控制控制区域 PDCCH ( Physical Downlink Control Channel,物理下行控制信道 )和数据区域 PDSCH ( Physical Downlink Shared Channel,物理下行共享信道),其结构如图 1所示。
其中, 下行子帧的控制区域 PDCCH调度该子帧的数据区域 PDSCH, 即 下行子帧的 PDCCH 中规定该子帧的数据传输使用的频域资源和调制编码方 式等控制信息。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 现有技术的缺点在于一个子帧的控制区域只能调度该子帧数据区域, 在 某些特殊情况下不是 灵活, 发明内容
本发明实施例提供一种下行子帧的调度方法和设备, 通过一个子帧的控 制区域调度其他一个或多个子帧的数据区域, 相比传统的下行单子帧调度, 可以大量节省控制信令的开销, 从而有更多的资源传输数据, 提高系统性能。 为达到上述目的, 本发明实施例一方面提供了一种下行子帧的调度方法, 具 体包括以下步骤:
确定各终端设备需要一次性接收的下行子帧集合;
向所述终端设备发送一个下行子帧, 其中, 所述下行子帧的控制区域中 携带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信 息;
通过所述终端设备需要一次性接收的下行子帧集合中的各下行子帧的数 据区域向所述终端设备传输数据。
优选的, 所述下行子帧集合中包含至少两个下行子帧; 以及通过所述终 端设备需要一次性接收的下行子帧集合中的各下行子帧的数据区域向所述终 端设备传输数据, 具体包括: 对同一净负荷 payload进行信道编码, 获取至少 两个冗余版本; 通过所述至少两个下行子帧的数据区域, 向所述终端设备传 输所述至少两个冗余版本。
优选的, 携带所述控制信息的所述下行子帧为所述至少两个下行子帧之 外的下行子帧。
优选地, 携带所述控制信息的所述下行子帧为所述至少两个下行子帧之 中的下行子帧。
优选的, 该方法应用于 FDD 系统中, 所述至少两个下行子帧为连续的下 行子帧。
优选的,该方法应用于 TDD系统中,所述至少两个下行子帧为不连续的下 行子帧。
优选的, 所述终端设备传输所述至少两个冗余版本之前, 还包括: 接收所述净负荷的接收端对小区信号质量的测量结果; 居所述接收到的 测量结果, 判断出需要向所述接收端传输所述净负荷对应的至少两个冗余版本。
优选的, 所述下行子帧的控制区域中携带所述终端设备需要一次性接收 的下行子帧集合中各下行子帧的控制信息, 具体为:
所述下行子帧的控制区域中携带所述终端设备需要一次性接收的下行子 帧集合中各下行子帧的数据区域的详细指示信息。
优选的, 所述下行子帧的控制区域中携带所述终端设备需要一次性接收 的下行子帧集合中各下行子帧的数据区域的详细指示信息, 具体为:
所述下行子帧之后的一个下行子帧的数据区域; 或, 所述下行子帧之后的多个下行子帧的数据区域; 或,
所述下行子帧自身的数据区域和所述下行子帧之后的一个或多个下行子 帧的数据区域。
优选的, 所述终端设备需要一次性接收的下行子帧集合中各下行子帧的 数据区域所传输的净负荷互不相同。
优选的, 所述向所述终端设备发送一个下行子帧之后, 还包括: 所述终端设备接收所述下行子帧, 并获取所述下行子帧的控制区域中携 带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息; 所述终端设备根据所述下行子帧集合中各下行子帧的控制信息, 通过相 对应所述下行子帧集合中各下行子帧的数据区域接收数据。
另一方面, 本发明实施例还提供了一种基站, 具体包括:
调度模块, 用于确定各终端设备需要一次性接收的下行子帧集合; 传输模块, 与所述调度模块相连接, 用于向所述终端设备发送一个下行 子帧, 其中, 所述下行子帧的控制区域中携带所述调度模块所确定的所述终 端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息, 还用于通 过所述终端设备需要一次性接收的下行子帧集合中的各下行子帧的数据区域 向所述终端设备传输数据。
所述下行子帧集合中至少包含至少两个下行子帧; 以及
所述传输模块具体包括:
第一传输子模块, 用于向所述终端设备发送一个下行子帧, 其中, 所述下 行子帧的控制区域中携带所述调度模块所确定的所述终端设备需要一次性接 收的所述至少两个下行子帧的控制信息;
编码子模块, 用于对同一净负荷进行信道编码, 获取至少两个冗余版本; 第二传输子模块, 用于通过所述至少两个下行子帧的数据区域, 向所述终 端设备传输编码子模块获取的所述至少两个冗余版本。
优选的, 携带所述控制信息的所述下行子帧为所述至少两个下行子帧之 外的下行子帧。 优选的, 携带所述控制信息的所述下行子帧为所述至少两个下行子帧之 中的下行子帧。
优选的, 该基站还包括:
接收模块, 用于对接收所述净负荷的接收端对小区信号盾量的测量结果进 行接收; 判断模块, 用于根据所述接收模块接收到的测量结果, 判断是否需要 向所述接收端传输所述净负荷对应的至少两个冗余版本, 在判断结果为是时, 通知所述编码子模块对所述净负荷进行信道编码。
优选的, 所述下行子帧的控制区域中携带所述终端设备需要一次性接收 的下行子帧集合中各下行子帧的控制信息, 具体为:
所述下行子帧的控制区域中携带所述终端设备需要一次性接收的下行子 帧集合中各下行子帧的数据区域的详细指示信息。
优选的, 所述下行子帧的控制区域中携带所述终端设备需要一次性接收 的下行子帧集合中各下行子帧的数据区域的详细指示信息, 具体为:
所述下行子帧之后的一个下行子帧的数据区域; 或,
所述下行子帧之后的多个下行子帧的数据区域; 或,
所述下行子帧自身的数据区域和所述下行子帧之后的一个或多个下行子 帧的数据区域。
优选的, 所述终端设备需要一次性接收的下行子帧集合中各下行子帧的 数据区域所传输的净负荷互不相同。
另一方面, 本发明实施例还提供了一种终端设备, 包括:
获取模块, 用于获取接收到的基站发送的下行子帧的控制区域中携带所 述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息;
接收模块, 与所述获取模块相连接, 用于接收所述基站发送的下行子帧, 还用于根据所述获取模块所获取到的下行子帧集合中各下行子帧的控制信 息, 通过相对应所述下行子帧集合中各下行子帧的数据区域接收数据。
另一方面, 本发明实施例还提供了一种信号传输系统, 包括发送端和接收 端, 其中: 所述发送端, 用于对同一净负荷进行信道编码, 荻取至少两个冗余 版本; 将所述至少两个冗余版本在至少两个下行子帧上传输, 并通过一条下行 授权信令调度所述至少两个下行子帧, 通过所述至少两个下行子帧承载信号; 所述接收端, 用于接收来自所述发送端的至少两个下行子帧, 获取所述至少两 个下行子帧携带的至少两个冗余版本。
优选的, 所述接收端还用于在使用所述至少两个冗余版本中的一个冗余版 本对所述净负荷解码失败时, 使用所述至少两个冗余版本中的其他冗余版本对 所述净负荷进行解码。
优选的, 所述接收端还用于测量小区信号质量, 获取测量结果, 并将所述 测量结果发送到所述发送端; 所述发送端, 还用于在将所述两个冗余版本在至 少两个下行子帧上传输前, 接收来自所述接收端的测量结果, 并根据所述测量 结果判断出需要向所述接收端传输所述净负荷对应的至少两个冗余版本。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例所提出的技术方案, 通过一个子帧的控制区域调 度其他一个或多个子帧的数据区域, 相比传统的下行单子帧调度, 可以大量 节省控制信令的开销, 从而有更多的资源传输数据, 提高系统性能。 附图说明
为了更清楚地说明本发明或现有技术中的技术方案, 下面将对本发明或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中的一种子帧的结构示意图;
图 2为本发明实施例提出的一种下行子帧的调度方法的流程示意图; 图 3为本发明实施例中的一种下行子帧捆绑示意图;
图 4为本发明实施例中的一种信号传输方法流程图;
图 5为本发明实施例中的另一种下行子帧捆绑示意图;
图 6为本发明实施例中的另一种信号传输方法流程图; 图 7 为本发明实施例提出的一种具体应用场景下的下行子帧的调度方法 的示意图;
图 8 为本发明实施例提出的一种具体应用场景下的下行子帧的调度方法 的示意图;
图 9为本发明实施例提出的一种具体应用场景下的下行子帧的调度方法 的示意图;
图 10为本发明实施例提出的一种基站的结构示意图;
图 11为本发明实施例提出的一种终端设备的结构示意图;
图 12为本发明实施例中的一种信号传输系统结构示意图。 具体实施方式
为了解决现有技术中存在的问题, 本发明实施例提出的一种下行子帧的 调度方法, 其基本思想是一个下行子帧的控制区域可以调度多个下行子帧的 数据区域, 每个下行子帧传输的净负荷(payload )可以相同也可以互不相同。 比如, 针对 FDD ( Frequency Division Duplex, 频分双工)模式将连续的 N ( N>=2 )个下行子帧进行捆绑,针对 TDD ( Time Division Duplex, 时分双工) 模式将不连续的 N ( N>=2 )个下行子帧进行捆绑, 将经过信道编码后的同一 净负荷( payload ) 的 N个 RV ( Redundancy Version, 冗余版本)分别在捆绑 的 N个下行子帧上传输, 而且由一条下行授权信令来调度捆绑的 N个子帧的 传输, 上述捆绑的 N个子帧所用的频域资源可以是一样的, 也可以是不一样 的。
下面将结合本发明实施例中的附图, 对本发明实施例的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全 部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 2所示, 为本发明实施例提出的一种下行子帧的调度方法的流程示 意图, 具体包括以下步骤: 步骤 S201、 确定各终端设备需要一次性接收的下行子帧集合。
步骤 S202、 向该终端设备发送一个下行子帧。
其中, 下行子帧的控制区域中携带该终端设备需要一次性接收的下行子 帧集合中各下行子帧的控制信息。
需要进一步说明的是, 上述控制信息具体为下行子帧的控制区域中携带 终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区域的详细指 示信息, 具体包括:
下行子帧之后的一个下行子帧的数据区域; 或,
下行子帧之后的多个下行子帧的数据区域; 或,
下行子帧自身的数据区域和下行子帧之后的一个或多个下行子帧的数据 区域。
另一方面, 终端设备需要一次性接收的下行子帧集合中各下行子帧, 具 体为连续的下行子帧或不连续的下行子帧。
并且, 终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区 域所传输的净负荷互不相同。
步骤 S203、 通过该终端设备需要一次性接收的下行子帧集合中的各下行 子帧的数据区域向终端设备传输数据。
需要说明的是, 在步骤 s202和步骤 S203完成之后, 本发明的技术方案 还包括终端设备侧的处理流程, 具体如下:
终端设备接收下行子帧, 并获取下行子帧的控制区域中携带终端设备需 要一次性接收的下行子帧集合中各下行子帧的控制信息;
终端设备根据下行子帧集合中各下行子帧的控制信息, 通过相对应下行 子帧集合中各下行子帧的数据区域接收数据。
在上述步骤 S203中, 每个下行子帧传输的净负荷(payload )可以相同也 可以互不相同。 特别地, 当下行子帧各中包含至少两个下行子帧, 且所述两 个下行子帧传输同一 payload时, 步骤 S203又可以通过下述步骤实现:
首先, 对同一净负荷进行信道编码, 获取至少两个冗余版本。 具体地, 可以接收净负荷的接收端对小区信号盾量的测量结果, 并根据所述接收到的 测量结果, 判断是否需要向所述接收端传输所述净负荷对应的至少两个冗余 版本。 当判断结果为是时, 按照同一编码规则对同一净负荷进行信道编码, 获取至少两个冗余版本。
然后, 再利用所述至少两个下行子帧的数据区域, 向终端设备传输所述 至少两个冗余版本。 其中, 上述至少两个下行子帧可以为连续的下行子帧, 也可以为不连续的下行子帧。 各个子帧没有单独的控制信令, 且传输同一净 负荷对应的不同的冗余版本。
在本发明实施例中, 携带上述控制信息的下行子帧可以为所述至少两个 下行子帧之外的下行子帧, 也可以为所述至少两个下行子帧之中的下行子帧。
本发明实施例通过一个下行子帧调度至少两个下行子帧, 能够节省控制 信令的开销, 并提高子帧调度的灵活性; 通过传输同一净负荷对应的至少两 个冗余版本, 能够增强下行传输的可靠性。 此外, 本发明实施例通过捆绑后 的至少两个下行子帧传输同一净负荷对应的至少两个冗余版本所能达到的技 术效果还包括: 当 HARQ ( Hybrid Auto Repeat Request, 混合自动重传请求) 机制中的接收端无法根据接收到的至少两个冗余版本中的一个冗余版本纠错 时, 可以根据同一净负荷对应的其他冗余版本进行纠错, 适合于系统 SNR ( Signal to Noise Ratio, 信噪比) 比较低和小区边缘信号比较差的情况。
本发明实施例的应用场景具体包括但不限于以下两种情况:
( 1 ) N ( N>=2 )个连续或者非连续的下行子帧被捆绑在一起, 用于传输 同一净负荷对应的至少两个冗余版本, 并由该 N个子帧之外的子帧的控制部 分调度捆绑后的 N个下行子帧。
( 2 ) N ( N>=2 )个连续或者非连续的下行子帧被捆绑在一起, 用于传输 同一净负荷对应的至少两个冗余版本, 并由该 N个子帧之中的第一个子帧的 控制部分调度捆绑后的 N个下行子帧。
以下结合上述应用场景对本发明实施例中的下行子帧传输方法进行详 细、 具体的描述。 如图 3所示, 为本发明实施例中的一种下行子帧梱绑示意图, 其中, M+1 个连续或者非连续的下行子帧被捆绑在一起, 并由该 M+1个下行子帧之外的 子帧的控制部分调度该 M+1个下行子帧。
如图 4所示, 为本发明实施例中的一种信号传输方法流程图, 具体包括 以下步骤:
步骤 401, 净负荷的接收端测量小区的信号质量, 获取测量结果。
其中, 测量结果包括小区信号强度、 系统 SN 等信息。
步骤 402, 净负荷的接收端将对小区的信号盾量的测量结果发送给发送 端。
步骤 403, 发送端接收净负荷的接收端对小区信号质量的测量结果。
步骤 404, 发送端根据接收到的测量结果, 判断是否需要向接收端传输净 负荷对应的至少两个冗余版本。 如果判断结果为是, 则执行步骤 405; 如果判 断结果为否, 则结束流程。
具体地, 发送端可以判断测量结果中的小区信号强度是否小于预设值, 如果小区信号强度小于预设值, 则判断接收端所在的小区的信号质量较差, 需要向接收端传输同一净负荷对应的至少两个冗余版本。
发送端也可以判断测量结果中的系统 SNR是否小于预设值, 如果系统
SNR小于预设值, 则判断接收端所在的小区的信号质量较差, 需要向接收端 传输同一净负荷对应的至少两个冗余版本。
步骤 405, 发送端对同一净负荷进行信道编码, 获取至少两个冗余版本。 步骤 406, 发送端将获取的至少两个冗余版本在捆绑后的 M+1个下行子 帧上传输,并由该 M+1个下行子帧之外的子帧的控制部分调度该 M+1个下行 子帧。
其中, 上述捆绑后的下行子帧可以为连续的下行子帧, 也可以为不连续 的下行子帧。 捆绑后的各个子帧没有单独的控制信令, 且传输同一净负荷对 应的不同的冗余版本。
步骤 407,接收端接收来自发送端的至少两个冗余版本,在使用该至少两 个冗余版本中的一个冗余版本对净负荷解码失败时, 使用该至少两个冗余版 本中的其他冗余版本对该净负荷进行解码。
相比传统的下行单子帧传输, 本发明实施例通过一条下行授权信令调度 至少两个下行子帧, 能够节省控制信令的开销, 并提高子帧调度的灵活性; 通过传输同一净负荷对应的至少两个冗余版本, 能够增强下行传输的可靠性。
如图 5 所示, 为本发明实施例中的另一种下行子帧梱绑示意图, 其中, N+1个连续或者非连续的下行子帧被捆绑在一起, 并由该 N+1个下行子帧之 中的第一个子帧的控制部分来调度该 N+1个下行子帧。
以下结合上述应用场景对本发明实施例中的信号传输方法进行详细、 具 体的描述。
如图 6所示, 为本发明实施例中的另一种信号传输方法流程图, 具体包 括以下步骤:
步骤 601, 用户设备测量小区信号质量, 获取测量结果。
其中, 测量结果包括小区信号强度、 系统 SNR等信息。
步骤 602, 用户设备将对小区信号质量的测量结果发送给基站设备。
步骤 603, 基站设备接收用户设备对小区信号质量的测量结果。
步骤 604, 基站设备根据接收到的来自用户设备的测量结果, 判断是否需 要向接收端传输同一净负荷的至少两个冗余版本。 如果判断结果为是, 则执 行步骤 605; 如果判断结果为否, 则结束流程。
具体地, 基站设备可以判断测量结果中的小区信号强度是否 d、于预设值, 如果小区信号强度小于预设值, 则判断用户设备所在的小区的信号质量较差, 需要传输同一净负荷的至少两个冗余版本。
基站设备也可以判断测量结果中的系统 SNR是否小于预设值, 如果系统
SNR小于预设值, 则判断用户设备所在的小区的信号质量较差, 需要传输同 一净负荷的至少两个冗余版本。
步骤 605,基站设备对同一净负荷进行信道编码,获取至少两个冗余版本。 步骤 606, 基站设备将获取的至少两个冗余版本在捆绑后的 N+1个下行 子帧上传输, 并由该 N+1 个下行子帧之中的第一个子帧的控制部分调度该 N+1个下行子帧。
其中, 上述捆绑后的下行子帧可以为连续的下行子帧, 也可以为不连续 的下行子帧。 捆绑后的各个子帧没有单独的控制信令, 且传输同一净负荷对 应的不同的冗余版本。
步骤 607, 用户设备接收来自基站设备的至少两个冗余版本, 在使用该至 少两个冗余版本中的一个冗余版本对净负荷解码失败时, 使用该至少两个冗 余版本中的其他冗余版本对该净负荷进行解码。
相比传统的下行单子帧传输, 本发明实施例通过一条下行授权信令调度 至少两个下行子帧, 能够节省控制信令的开销, 并提高子帧调度的灵活性; 通过传输同一净负荷对应的至少两个冗余版本, 能够增强下行传输的可靠性。
此外, 与现有技术相比, 本发明实施例提供的上述方案还具有以下优点: 通过应用本发明实施例所提出的技术方案, 通过一个子帧的控制区域调 度其他一个或多个子帧的数据区域, 相比传统的下行单子帧调度, 可以大量 节省控制信令的开销, 从而有更多的资源传输数据, 提高系统性能。
下面进一步结合具体的示例, 对本发明实施例的技术方案进行说明。 在具体的应用场景中, 分别通过以下几种示例进行说明:
示例一、 一个下行子帧的控制区域可以调度另一个下行子帧的数据区域 如图 7所示, 第 i个子帧的控制区域控制了第 i+N个子帧的数据区域,从 而可以调度第 i+N个子帧的数据区域进行数据传输。
因此, 当接收到第 i个子帧时, 对该子帧的控制区域进行检测, 可以发现 相应的控制标识所指示的子帧为第 i+N个子帧的数据区域。
示例二、 一个下行子帧的控制区域可以同时调度另外多个下行子帧的数 据区域。
如图 8所示, 第 i个子帧的控制区域控制了第 i+N个和第 i+M个子帧的 数据区域,从而可以调度第 i+N个和第 i+M个子帧的数据区域进行数据传输。
因此, 当接收到第 i个子帧时, 对该子帧的控制区域进行检测, 可以发现 相应的控制标识所指示的子帧为第 i+N个和第 i+M个子帧的数据区域。
在具体的应用场景中, 可以进一步控制其他子帧的数据区域, 因此, 子 帧数量的变化并不影响本发明的保护范围。
示例三、 一个下行子帧的控制区域可以同时调度该下行子帧的数据区域 和另外多个或者一个下行子帧的数据区域。
如图 9所示,第 i个子帧的控制区域控制了子帧的数据区域以及第 i+N个 子帧的数据区域, 从而可以调度自身和第 i+N个子帧的数据区域进行数据传 输。
因此, 当接收到第 i个子帧时, 对该子帧的控制区域进行检测, 可以发现 相应的控制标识所指示的子帧为子帧和第 i+N个子帧的数据区域。
在具体的应用场景中, 可以进一步控制其他子帧的数据区域, 因此, 子 帧数量的变化并不影响本发明的保护范围。
为了实现上述的技术方案, 在支持下行多子帧调度的控制信令里, 定义 新的比特来指示具体的被调度子帧的情况。 1
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例所提出的技术方案, 通过一个子帧的控制区域调 度其他一个或多个子帧的数据区域, 相比传统的下行单子帧调度, 可以大量 节省控制信令的开销, 从而有更多的资源传输数据, 提高系统性能。
为了实现本发明实施例的技术方案, 本发明实施例还提出了一种基站, 其特结构示意图如图 10所示, 具体包括:
调度模块 101, 用于确定各终端设备需要一次性接收的下行子帧集合; 传输模块 102, 与调度模块 101相连接, 用于向终端设备发送一个下行子 帧, 其中, 下行子帧的控制区域中携带调度模块 101 所确定的终端设备需要 一次性接收的下行子帧集合中各下行子帧的控制信息, 还用于通过终端设备 需要一次性接收的下行子帧集合中的各下行子帧的数据区域向终端设备传输 数据。
当所述下行子帧集合中至少包含至少两个下行子帧时, 在一个较佳的实 施例中, 传输模块 102具体可以划分为以下子模块, 包括:
第一传输子模块, 用于向终端设备发送一个下行子帧, 其中, 下行子帧的 控制区域中携带调度模块 101 所确定的终端设备需要一次性接收的至少两个 下行子帧的控制信息;
编码子模块, 用于对同一净负荷进行信道编码, 获取至少两个冗余版本; 第二传输子模块, 用于通过所述至少两个下行子帧的数据区域, 向终端设 备传输编码子模块获取的所述至少两个冗余版本。
其中,携带所述控制信息的所述下行子帧为所述至少两个下行子帧之外或 之中的下^"子帧。
在一个较佳的实施例中, 上述基站还可以包括:
接收模块, 用于对接收所述净负荷的接收端对小区信号质量的测量结果进 行接收;
判断模块, 用于根据接收模块接收到的测量结果, 判断是否需要向接收端 传输净负荷对应的至少两个冗余版本, 在判断结果为是时, 通知编码子模块对 净负荷进行信道编码。
需要进一步说明的是, 上述控制信息具体为下行子帧的控制区域中携带 终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区域的详细指 示信息, 具体包括:
下行子帧之后的一个下行子帧的数据区域; 或,
下行子帧之后的多个下行子帧的数据区域; 或,
下行子帧自身的数据区域和下行子帧之后的一个或多个下行子帧的数据 区域。
另一方面, 终端设备需要一次性接收的下行子帧集合中各下行子帧, 具 体为连续的下行子帧或不连续的下行子帧。
并且, 终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区 域所传输的净负荷互不相同。
为了实现本发明实施例的技术方案, 本发明实施例还提出了一种终端设 备, 其结构示意图如图 11所示, 具体包括:
获取模块 111,用于获取接收到的基站发送的下行子帧的控制区域中携带 终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息;
接收模块 112, 与获取模块 111相连接, 用于接收基站发送的下行子帧, 还用于根据获取模块 111所获取到的下行子帧集合中各下行子帧的控制信息, 通过相对应下行子帧集合中各下行子帧的数据区域接收数据。
与现有技术相比, 本发明实施例具有以下优点:
通过应用本发明实施例所提出的技术方案, 通过一个子帧的控制区域调 度其他一个或多个子帧的数据区域, 相比传统的下行单子帧调度, 可以大量 节省控制信令的开销, 从而有更多的资源传输数据, 提高系统性能。
如图 12所示, 为本发明实施例中的一种信号传输系统结构示意图, 包括 发送端 1210和接收端 1220, 其中,
发送端 1210, 用于对同一净负荷进行信道编码, 获取至少两个冗余版本; 将所述至少两个冗余版本在至少两个下行子帧上传输, 并通过一条下行授权 信令调度所述至少两个下行子帧, 通过所述至少两个下行子帧承载信号。
上述发送端 1210, 具体用于对同一净负荷进行信道编码, 获取至少两个 至少两个下行子帧之外的下行子帧的控制区域调度所述至少两个下行子帧。
上述发送端 1210, 还具体用于对同一净负荷进行信道编码, 获取至少两 个冗余版本; 将所述至少两个冗余版本在至少两个下行子帧上传输, 通过所 述至少两个下行子帧之中的下行子帧的控制区域调度所述至少两个下行子 帧。
接收端 1220, 用于接收来自发送端 1210的至少两个下行子帧, 获取所述 至少两个下行子帧携带的至少两个冗余版本。
上述接收端 1220, 还用于在使用所述至少两个冗余版本中的一个冗余版 本对所述净负荷解码失败时, 使用所述至少两个冗余版本中的其他冗余版本 对所述净负荷进行解码。 上述接收端 1220, 还用于测量小区信号质量, 获取测量结果, 将对小区 信号质量的测量结果发送到发送端 1210。
其中, 测量结果包括小区信号强度、 系统 SNR等信息。
相应地, 发送端 1210, 还用于接收来自接收端 1220的测量结果, 根据接 收到的来自接收端 1220的测量结果, 判断是否需要向接收端 1220传输同一 净负荷对应的至少两个冗余版本。 如果判断结果为是, 则对同一净负荷进行 信道编码, 获取并传输同一净负荷对应的至少两个冗余版本。
具体地, 发送端 1210可以判断测量结果中的小区信号强度是否小于预设 值, 如果小区信号强度小于预设值, 则判断接收端 1220所在的小区的信号质 量较差, 需要传输同一净负荷对应的至少两个冗余版本。
发送端 1210也可以判断测量结杲中的系统 SNR是否小于预设值, 如果 系统 SNR小于预设值, 则判断接收端 1220所在的小区的信号质量较差, 需 要传输同一净负荷对应的至少两个冗余版本。
相比传统的下行单子帧传输, 本发明实施例通过一条下行 4受权信令调度 至少两个下行子帧, 能够节省控制信令的开销, 并提高子帧调度的灵活性; 通过传输同一净负荷对应的至少两个冗余版本, 能够增强下行传输的可靠性。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明实施例可以通过硬件实现, 也可以借助软件加必要的通用硬件平台的方式 来实现。 基于这样的理解, 本发明实施例的技术方案可以以软件产品的形式 体现出来, 该软件产品可以存储在一个非易失性存储介盾(可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机设备(可以是个 人计算机, 服务器, 或者网络设备等)执行本发明实施例各个实施场景所述 的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中 的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景 描述进行分布于实施场景的装置中, 也可以进行相应变化位于不同于本实施 场景的一个或多个装置中。 上述实施场景的模块可以合并为一个模块, 也可 以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。
以上公开的仅为本发明实施例的几个具体实施场景, 但是, 本发明实施 例并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明实施 例的保护范围。

Claims

权 利 要 求
1、 一种下行子帧的调度方法, 其特征在于, 具体包括以下步骤: 确定各终端设备需要一次性接收的下行子帧集合;
向所述终端设备发送一个下行子帧, 其中, 所述下行子帧的控制区域携 带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息; 通过所述终端设备需要一次性接收的下行子帧集合中的各下行子帧的数 据区域向所述终端设备传输数据„
2、 如权利要求 1所述的方法, 其特征在于, 所述下行子帧集合中包含至 少两个下行子帧; 以及
通过所述终端设备需要一次性接收的下行子帧集合中的各下行子帧的数 据区域向所述终端设备传输数据, 具体包括:
对同一净负荷 payload进行信道编码, 获取至少两个冗余版本; 通过所述至少两个下行子帧的数据区域, 向所述终端设备传输所述至少 两个冗余版本。
3、 如权利要求 2所述的方法, 其特征在于, 携带所述控制信息的所述下 行子帧为所述至少两个下行子帧之外的下行子帧。
4、 如权利要求 2所述的方法, 其特征在于, 携带所述控制信息的所述下 行子帧为所述至少两个下行子帧之中的下行子帧。
5、 如权利要求 2所述的方法, 其特征在于, 应用于 FDD系统中, 所述至 少两个下行子帧为连续的下行子帧。
6、 如权利要求 2所述的方法, 其特征在于, 应用于 TDD系统中, 所述至 少两个下行子帧为不连续的下行子帧。
7、 如权利要求 2所述的方法, 其特征在于, 所述终端设备传输所述至少 两个冗余版本之前, 还包括:
接收所述净负荷的接收端对小区信号质量的测量结果;
根据所述接收到的测量结果, 判断出需要向所述接收端传输所述净负荷对 应的至少两个冗余版本。
8、 如权利要求 1所述的方法, 其特征在于, 所述下行子帧的控制区域中 携带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信 息, 具体为:
所述下行子帧的控制区域中携带所述终端设备需要一次性接收的下行子 帧集合中各下行子帧的数据区域的详细指示信息。
9、 如权利要求 8所述的方法, 其特征在于, 所述下行子帧的控制区域中 携带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区域 的详细指示信息, 具体为:
所述下行子帧之后的一个下行子帧的数据区域; 或,
所述下行子帧之后的多个下行子帧的数据区域; 或,
所述下行子帧自身的数据区域和所述下行子帧之后的一个或多个下行子 帧的数据区域。
10、 如权利要求 8所述的方法, 其特征在于, 所述终端设备需要一次性 接收的下行子帧集合中各下行子帧的数据区域所传输的净负荷互不相同。
11、 如权利要求 1 所述的方法, 其特征在于, 所述向所述终端设备发送 一个下行子帧之后, 还包括:
所述终端设备接收所述下行子帧, 并获取所述下行子帧的控制区域中携 带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息; 所述终端设备根据所迷下行子帧集合中各下行子帧的控制信息, 通过相 对应所述下行子帧集合中各下行子帧的数据区域接收数据。
12、 一种基站, 其特征在于, 具体包括:
调度模块, 用于确定各终端设备需要一次性接收的下行子帧集合; 传输模块, 与所述调度模块相连接, 用于向所述终端设备发送一个下行 子帧, 其中, 所述下行子帧的控制区域中携带所述调度模块所确定的所述终 端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息, 还用于通 过所述终端设备需要一次性接收的下行子帧集合中的各下行子帧的数据区域 向所述终端设备传输数据。
13、如权利要求 12所述的基站, 其特征在于, 所述下行子帧集合中至少包 含至少两个下行子帧; 以及
所述传输模块具体包括:
第一传输子模块, 用于向所述终端设备发送一个下行子帧, 其中, 所述下 行子帧的控制区域中携带所述调度模块所确定的所述终端设备需要一次性接 收的所述至少两个下行子帧的控制信息;
编码子模块, 用于对同一净负荷进行信道编码, 获取至少两个冗余版本; 第二传输子模块, 用于通过所述至少两个下行子帧的数据区域, 向所述终 端设备传输编码子模块获取的所述至少两个冗余版本。
14、如权利要求 13所迷的基站, 其特征在于,携带所述控制信息的所述下 行子帧为所述至少两个下行子帧之外的下行子帧。
15、 如权利要求 13 所述的基站, 其特征在于, 携带所述控制信息的所述 下行子帧为所述至少两个下行子帧之中的下行子帧。
16、 如权利要求 13所述的基站, 其特征在于, 还包括:
接收模块, 用于对接收所述净负荷的接收端对小区信号质量的测量结果进 行接收;
判断模块, 用于根据所述接收模块接收到的测量结果, 判断是否需要向所 述接收端传输所述净负荷对应的至少两个冗余版本, 在判断结果为是时, 通知 所述编码子模块对所述净负荷进行信道编码。
17、 如权利要求 12所述的基站, 其特征在于, 所述下行子帧的控制区域 中携带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信 息, 具体为:
所述下行子帧的控制区域中携带所述终端设备需要一次性接收的下行子 帧集合中各下行子帧的数据区域的详细指示信息。
18、 如权利要求 17所述的基站, 其特征在于, 所述下行子帧的控制区域 中携带所述终端设备需要一次性接收的下行子帧集合中各下行子帧的数据区 域的详细指示信息, 具体为:
所述下行子帧之后的一个下行子帧的数据区域; 或,
所述下行子帧之后的多个下行子帧的数据区域; 或,
所述下行子帧自身的数据区域和所述下行子帧之后的一个或多个下行子 帧的数据区域。
19、 如权利要求 8所述的基站, 其特征在于, 所述终端设备需要一次性 接收的下行子帧集合中各 17下行子帧的数据区域所传输的净负荷互不相同。
20、 一种终端设备, 其特征在于, 包括:
获取模块, 用于获取接收到的基站发送的下行子帧的控制区域中携带所 述终端设备需要一次性接收的下行子帧集合中各下行子帧的控制信息;
接收模块, 与所述获取模块相连接, 用于接收所述基站发送的下行子帧, 还用于根据所述获取模块所获取到的下行子帧集合中各下行子帧的控制信 息, 通过相对应所述下行子帧集合中各下行子帧的数据区域接收数据。
21、 一种信号传输系统, 包括发送端和接收端, 其特征在于,
所述发送端, 用于对同一净负荷进行信道编码, 获取至少两个冗余版本; 将所述至少两个冗余版本在至少两个下行子帧上传输, 并通过一条下行授权信 令调度所述至少两个下行子帧, 通过所述至少两个下行子帧承载信号;
所述接收端, 用于接收来自所述发送端的至少两个下行子帧, 获取所述至 少两个下行子帧携带的至少两个冗余版本。
22、 如权利要求 21所述的系统, 其特征在于,
所述接收端, 还用于在使用所述至少两个冗余版本中的一个冗余版本对所 述净负荷解码失败时, 使用所述至少两个冗余版本中的其他冗余版本对所述净 负荷进行解码。
23、 如权利要求 21所述的系统, 其特征在于,
所述接收端, 还用于测量小区信号质量, 获取测量结果, 并将所述测量结 果发送到所述发送端;
所述发送端, 还用于在将所述两个冗余版本在至少两个下行子帧上传输前, 接收来自所述接收端的测量结果, 并根据所述测量结果判断出需要向所述接收 端传输所述净负荷对应的至少两个冗余版本。
PCT/CN2011/000187 2010-02-02 2011-01-31 一种下行子帧的调度方法和设备 WO2011095061A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11739340.5A EP2533452B1 (en) 2010-02-02 2011-01-31 Method and device for scheduling downlink subframes
US13/576,628 US8937892B2 (en) 2010-02-02 2011-01-31 Method and device for scheduling downlink subframes
RU2012136265/08A RU2543562C2 (ru) 2010-02-02 2011-01-31 Способ и устройство распределения субфреймов (субкадров) нисходящего канала
KR1020127022749A KR101468790B1 (ko) 2010-02-02 2011-01-31 다운링크 서브 프레임의 스케쥴링 방법 및 장치
JP2012551477A JP5509343B2 (ja) 2010-02-02 2011-01-31 ダウンリンクサブフレームのスケジューリング方法および設備

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2010101050368A CN102142886A (zh) 2010-02-02 2010-02-02 一种下行子帧的调度方法和设备
CN2010101050298A CN102142885A (zh) 2010-02-02 2010-02-02 一种信号传输方法、装置和系统
CN201010105036.8 2010-02-02
CN201010105029.8 2010-02-02

Publications (1)

Publication Number Publication Date
WO2011095061A1 true WO2011095061A1 (zh) 2011-08-11

Family

ID=44354945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000187 WO2011095061A1 (zh) 2010-02-02 2011-01-31 一种下行子帧的调度方法和设备

Country Status (6)

Country Link
US (1) US8937892B2 (zh)
EP (1) EP2533452B1 (zh)
JP (1) JP5509343B2 (zh)
KR (1) KR101468790B1 (zh)
RU (1) RU2543562C2 (zh)
WO (1) WO2011095061A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042272A (ja) * 2011-08-12 2013-02-28 Kddi Corp 無線リソース割当装置、及び無線リソース割当プログラム
CN103220027A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 数据传输方法及装置
CN103326756A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 正交频分多址接入系统中的编码传输方法和系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2440170B1 (es) * 2012-07-27 2015-03-11 Telefonica Sa Metodo para implementar un mecanismo de equilibrado de carga de celula en redes inalambricas
KR101941996B1 (ko) * 2012-10-31 2019-01-24 한국전자통신연구원 단말간 직접 통신 방법 및 이를 이용하는 모바일 디바이스
CN104885392B (zh) * 2013-03-01 2016-11-16 华为技术有限公司 一种前向纠错码码字同步的方法、设备与系统
US9736829B2 (en) 2013-10-14 2017-08-15 Qualcomm Incorporated Downlink control management in an unlicensed or shared spectrum
US9930423B1 (en) * 2014-10-02 2018-03-27 Sprint Spectrum L.P. Dynamic transmission time interval bundling for multicast video
CN107155400B (zh) 2015-04-03 2020-01-17 华为技术有限公司 一种数据传输方法、设备及系统
CN107295676B (zh) 2016-03-31 2019-07-23 中兴通讯股份有限公司 数据传输方法及装置
CN112152686B (zh) * 2019-06-27 2023-09-26 中兴通讯股份有限公司 一种实现波束扫描与通信的方法、装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282280A (zh) * 2007-04-05 2008-10-08 大唐移动通信设备有限公司 一种高速共享控制信道上发送控制信息的方法
CN101399651A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 一种业务数据在hsdpa中传输的方法、装置及系统
CN101631007A (zh) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 一种数据传输方法、装置和系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2354063C2 (ru) * 2003-12-15 2009-04-27 Телефонактиеболагет Л М Эрикссон (Пабл) Распределенное управление доступом к среде передачи для систем широкополосного доступа
JP4562575B2 (ja) * 2005-03-30 2010-10-13 京セラ株式会社 通信システム、通信装置、通信方法及び通信制御プログラム
US20070058595A1 (en) * 2005-03-30 2007-03-15 Motorola, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
KR100830163B1 (ko) * 2005-04-20 2008-05-20 삼성전자주식회사 주파수 오버레이 통신 시스템에서 신호 송수신 장치 및 방법
KR100800794B1 (ko) * 2005-07-01 2008-02-04 삼성전자주식회사 패킷망을 통해 음성 서비스를 지원하는 이동통신시스템에서 음성 서비스의 전송률을 제어하는 방법 및 장치
JP4891345B2 (ja) * 2006-02-03 2012-03-07 ノキア コーポレイション 継続的なアップリンクおよびダウンリンク・リソース割り当てを提供する装置、方法、およびコンピュータ・プログラム
US9143288B2 (en) * 2006-07-24 2015-09-22 Qualcomm Incorporated Variable control channel for a wireless communication system
US8077596B2 (en) * 2007-03-12 2011-12-13 Qualcomm Incorporated Signaling transmission and reception in wireless communication systems
KR20080092222A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
MX2009012102A (es) * 2007-05-09 2009-11-25 Samsung Electronics Co Ltd Metodo de transmision/recepcion de cuadro en sistema de comunicacion movil.
KR20090012038A (ko) * 2007-07-26 2009-02-02 엘지전자 주식회사 슈퍼프레임 구조를 이용한 데이터 전송 방법 및 수신 방법
US20090046649A1 (en) * 2007-08-13 2009-02-19 Nokia Corporation Mapping of uplink ACK in TDD with asymmetric frame structure
KR101166421B1 (ko) * 2007-09-18 2012-07-19 가부시키가이샤 엔티티 도코모 알림정보 송신방법, 무선기지국 및 이동국
EP2383920B1 (en) * 2007-12-20 2014-07-30 Optis Wireless Technology, LLC Control channel signaling using a common signaling field for transport format and redundancy version
KR100905385B1 (ko) * 2008-03-16 2009-06-30 엘지전자 주식회사 무선통신 시스템에서 제어신호의 효율적인 전송방법
CN103957088B (zh) * 2008-03-16 2017-09-05 Lg电子株式会社 在无线通信系统中执行混合自动重传请求harq的方法
US8634333B2 (en) * 2008-05-07 2014-01-21 Qualcomm Incorporated Bundling of ACK information in a wireless communication system
US8483041B2 (en) * 2008-06-12 2013-07-09 Qualcomm Incorporated Methods and systems for sticky region allocation in OFDMA communication systems
KR20100011879A (ko) * 2008-07-25 2010-02-03 엘지전자 주식회사 무선 통신 시스템에서 데이터 수신 방법
EP2346295B1 (en) * 2008-10-22 2015-01-07 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, method and computer program
US8599782B2 (en) * 2008-11-10 2013-12-03 Lg Electronics Inc. Method for performing a HARQ operation in a radio communications system, and method and apparatus for allocation of subframes
JP5199223B2 (ja) * 2008-12-30 2013-05-15 創新音▲速▼股▲ふん▼有限公司 Ack/nackバンドリングを改善する方法及び通信装置
US8942208B2 (en) * 2009-06-22 2015-01-27 Qualcomm Incorporated Wireless communication having reduced feedback delay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282280A (zh) * 2007-04-05 2008-10-08 大唐移动通信设备有限公司 一种高速共享控制信道上发送控制信息的方法
CN101399651A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 一种业务数据在hsdpa中传输的方法、装置及系统
CN101631007A (zh) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 一种数据传输方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2533452A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042272A (ja) * 2011-08-12 2013-02-28 Kddi Corp 無線リソース割当装置、及び無線リソース割当プログラム
CN103220027A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 数据传输方法及装置
CN103220027B (zh) * 2012-01-20 2018-08-24 中兴通讯股份有限公司 数据传输方法及装置
CN103326756A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 正交频分多址接入系统中的编码传输方法和系统
WO2013139259A1 (zh) * 2012-03-19 2013-09-26 中兴通讯股份有限公司 正交频分多址接入系统中的编码传输方法和系统

Also Published As

Publication number Publication date
US8937892B2 (en) 2015-01-20
JP2013519270A (ja) 2013-05-23
KR101468790B1 (ko) 2014-12-03
EP2533452A4 (en) 2016-05-18
KR20120127630A (ko) 2012-11-22
JP5509343B2 (ja) 2014-06-04
US20120294210A1 (en) 2012-11-22
EP2533452B1 (en) 2021-03-10
RU2012136265A (ru) 2014-02-27
RU2543562C2 (ru) 2015-03-10
EP2533452A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2011095061A1 (zh) 一种下行子帧的调度方法和设备
KR102501669B1 (ko) 하이브리드 자동 반복 요청 피드백을 수행하는 방법 및 단말
JP5784645B2 (ja) 無線ネットワークにおいて、拡大された有効通信範囲を用いて、制御情報を送信するための方法および装置
JP5281696B2 (ja) ダウンリンクの物理的ダウンリンク制御チャネルを用いたアップリンクの半永続スケジューリングの明示的解放の指示
JP5009410B2 (ja) 移動局装置、無線通信方法および集積回路
US20130223356A1 (en) Allocating and determining resources for a device-to-device link
KR20170016349A (ko) 비직교 무선 통신들을 용이하게 하기 위한 디바이스들 및 방법들
TW201019644A (en) Method and apparatus for managing a new data indicator in a wireless communication system
JP2013509013A5 (zh)
WO2012136109A1 (zh) 一种调度和接收数据的方法、系统及设备
WO2012159496A1 (zh) 一种资源调度指示方法及装置
CN105634689A (zh) 一种harq确认信息的反馈方法及装置
JP2012512602A (ja) 無線中継ネットワークにおける自律結合のための装置および方法
WO2013120430A1 (zh) 上行数据传输方法和装置
WO2011026425A1 (zh) 发送和接收数据的方法、装置及系统
JP2020526137A (ja) 繰り返し送信のための方法および端末デバイス
CA3109733A1 (en) Harq feedback method and apparatus
JP7253625B2 (ja) ダウンリンクデータ送信方法、受信方法、装置及び記憶媒体
US20220086810A1 (en) Radio code block transmission based on dci extension
US9402201B2 (en) Method and apparatus for storing code block
CN114556832A (zh) 基于服务的上行链路重传
TW201832600A (zh) 用於增強型行動寬頻和低潛時通訊多工的混合指示方案
WO2010069249A1 (zh) 虚警校验方法、装置及用户设备
WO2014008818A1 (zh) 时分双工系统中的上行数据发送及接收方法和设备
US20220217753A1 (en) User equipments, base stations and methods for monitoring a control channel for pusch transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13576628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012551477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7222/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012136265

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2011739340

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127022749

Country of ref document: KR

Kind code of ref document: A