WO2011093356A1 - Rotary mold for imprinting and production method thereof - Google Patents

Rotary mold for imprinting and production method thereof Download PDF

Info

Publication number
WO2011093356A1
WO2011093356A1 PCT/JP2011/051548 JP2011051548W WO2011093356A1 WO 2011093356 A1 WO2011093356 A1 WO 2011093356A1 JP 2011051548 W JP2011051548 W JP 2011051548W WO 2011093356 A1 WO2011093356 A1 WO 2011093356A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
liquid reservoir
rotary
agent
end surface
Prior art date
Application number
PCT/JP2011/051548
Other languages
French (fr)
Japanese (ja)
Inventor
栄 中塚
勲 雨宮
生 木村
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2011551887A priority Critical patent/JP5707342B2/en
Publication of WO2011093356A1 publication Critical patent/WO2011093356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning

Definitions

  • the present invention relates to an imprint rotary mold and a manufacturing method thereof, and more particularly, to an imprint rotary mold for forming a fine pattern on the outer peripheral surface of a mold and a manufacturing method thereof.
  • stepper by using light and an electron beam having a wavelength shorter than that of visible light from an ultraviolet laser or an extreme ultraviolet light source, processing from the micron order to several tens of nanometers becomes possible.
  • micron-order processing takes a considerable amount of time to form a pattern. For this reason, the time required for nano-order microfabrication further increases.
  • an ultraviolet laser or an extreme ultraviolet light source is used, the apparatus becomes large and the cost increases. Further, the technique of performing microfabrication by exposure / development with an electron beam is sequential processing, and the work efficiency is lowered.
  • nanoimprint technology is a method for transferring a fine pattern onto a material to be transferred like a stamp using a mold on which a fine pattern is formed.
  • nanoimprint technology a fine structure of several tens of nm level can be manufactured at a low cost with good reproducibility and in large quantities.
  • thermal imprinting is a method in which a mold on which a fine pattern is formed is pressed against a thermoplastic resin as a molding material while being heated, and then the molding material is cooled and released to transfer the fine pattern.
  • Optical imprinting is a method in which a mold on which a fine pattern is formed is pressed against a photocurable resin that is a molding material, irradiated with ultraviolet light, and then the molding material is released to transfer the fine pattern. is there.
  • a roller with a fine pattern provided in advance on the roller surface is used as a mold, a load is applied to the roller while heating the transfer material with this roller, and the roller surface is rotated to change the pattern on the roller surface.
  • a roller mold method for transferring images sequentially see, for example, Patent Documents 1 and 2).
  • this method is effective for pattern transfer onto a transfer material having a length of several meters or more.
  • the contact between the mold and the material to be transferred is a line contact, unlike the surface contact in the case of batch transfer or the step & repeat method. Therefore, there is an advantage that the parallel adjustment of the mold and the substrate and the temperature control of the heater can be easily performed. In addition, since the load is applied to the molded substrate by line contact, the transfer material can be pressed with a small load.
  • the mold used in this roller molding method is parallel to the surface of the transfer material and the mold itself is flat. There is a need.
  • FIG. (A-1) is a mold section perpendicular to the direction of the rotating shaft 13
  • (a-2) is a mold section in the direction of the rotating shaft 13 and the same applies to (b) and (c).
  • the mold outer peripheral surface 120 is brought into line contact with the flattening agent 160 as shown in FIG. 7 depicting the state of the conventional flattening agent applying process of the rotary mold 11 ( 7 (a-1) and (a-2)), a process of sequentially applying the planarizing agent 160 to the outer peripheral surface 120 of the mold by rotating the rotary mold 11 is used (FIG. 7 (b-1)). ) (B-2), (c-1) (c-2)).
  • the container containing the flattening agent 160 when this flattening agent 161 is applied to the entire mold outer peripheral surface 120, the container containing the flattening agent 160 must have a length larger than the length of the rotary mold 11 in the rotation axis direction (see FIG. 7 (a)). If it does so, the planarizing agent 161 will also adhere to the mold end surface 121 (FIG.7 (b)). The extra flattening agent adhering in this way is caused by centrifugal force generated by mold rotation, mold surface energy, dead weight of the flattening agent, surface tension, and the like.
  • the liquid reservoir 162 may be formed by the flattening agent 160 at the outer peripheral surface outer portion) (FIG. 7C).
  • the liquid reservoir 162 on the outer peripheral surface of the mold is solidified as it is, and this portion is swelled. Then, even if the fine pattern transfer to the transfer material is performed after forming the fine pattern on the mold outer peripheral surface 120, the parallelism of the rotary mold 11 is reduced due to the rise of the outer portion of the mold outer peripheral surface, and the mold center portion The fine pattern may not be transferred satisfactorily. Due to this hollow-out phenomenon, the final transfer accuracy may be lowered, and as a result, the quality and yield of the final product may be lowered.
  • An object of the present invention is to provide a rotary mold for imprinting having a good degree of parallelism and a method for producing the same, as a result of which swell in the outer peripheral surface of the mold is eliminated.
  • the rotary mold in the method for manufacturing a rotary mold used for imprinting, has a mold first and second end faces, and a mold outer peripheral face having an imprint pattern. Then, in the direction of the rotation axis for rotating the rotary mold, when the direction from the mold center to the mold end surface is the outside direction, and the direction from the mold end surface to the mold center is the inside direction, the outer direction of the first mold end surface Provided with a first liquid reservoir elimination section, a second liquid reservoir elimination section provided in the outer direction of the mold second end face, between the first liquid reservoir elimination section and the mold first end face, and the second Including a step of forming an opening for accommodating a leveling agent between the liquid pool eliminating portion and the mold second end surface, wherein the first and second liquid reservoir eliminating portions are smaller than the outer diameter of the rotary mold.
  • the opening hole for storing the leveling agent is a hole which is an open system at least until the liquid reservoir of the leveling agent is eliminated after the leveling agent and the entrance of the opening hole for storing the leveling agent come into contact. That's it.
  • a part of the outer peripheral surface of the mold and the first and second liquid pool eliminating portions A flattening agent application step of applying the flattening agent to the outer peripheral surface of the mold by rotating the mold in a state in which a part of the flattening agent and the liquid flattening agent are in contact with each other in parallel with the rotation axis direction.
  • at least one of the first and second liquid reservoir eliminating portions is integrally formed with the rotary mold.
  • the difference between the outer diameter of the first and second liquid pool eliminating portions and the outer diameter of the mold is greater than zero. It is 0.6 mm or less.
  • the rotary mold is a cylindrical shape or a columnar shape, and the first and second liquid reservoir eliminating portions are rings.
  • the flattening agent application step a part of the mold outer peripheral surface and the first and second liquid reservoirs are eliminated at an immersion depth of 0.2 mm or more and 0.5 mm or less from the leveling liquid surface A part of the portion is brought into contact with a flattening agent.
  • the opening for accommodating the flattening agent is a groove, and the first liquid reservoir eliminating portion in the groove
  • the distance between the first end surface of the mold and the distance between the second liquid pool eliminating portion and the second end surface of the mold is greater than 0 and 0.5 mm or less, and the depth of the groove is 1 in the radial direction. It is characterized by being not less than 7 mm and not more than the distance from the outer peripheral surface of the mold to the rotation axis.
  • 7th aspect of this invention is a rotary mold used for imprint, Comprising: The said rotary mold has a mold 1st and 2nd end surface, and the mold outer peripheral surface which has a pattern for imprint.
  • a first liquid reservoir eliminating portion is provided, a second liquid reservoir eliminating portion is provided in an outer direction of the mold second end surface, and the first and second liquid reservoir eliminating portions are smaller than the outer diameter of the rotary mold.
  • An opening for accommodating a coating agent is formed between the first liquid reservoir eliminating portion and the mold first end surface, and between the second liquid reservoir eliminating portion and the mold second end surface.
  • the rotary mold has a cylindrical shape or a columnar shape, and at least one of the first and second liquid pool eliminating portions is the The difference between the outer diameter of the first and second liquid pool eliminating portions and the outer diameter of the mold is integrally formed with the rotary mold, and is 0.6 mm or less, and the opening for accommodating the coating agent is a groove.
  • the groove the distance between the first liquid reservoir eliminating portion and the mold first end surface, and the distance between the second liquid reservoir eliminating portion and the mold second end surface is larger than 0 and 0.5 mm.
  • the depth of the groove is not less than 1.7 mm in the radial direction and not more than the distance from the outer peripheral surface of the mold to the rotating shaft.
  • the swell in the outer peripheral surface of the mold is eliminated, and as a result, a rotary mold for imprinting having a good parallelism and a method for manufacturing the same can be provided.
  • a minute gap (open hole) is provided in the immediate vicinity of the outer peripheral surface of the mold.
  • this gap serves as a capillary tube, and the excess liquid reservoir can be drawn into the gap.
  • the planarizing agent can be uniformly applied to the mold substrate.
  • “flatness (roundness or flatness)” is an index indicating the surface roughness of the mold substrate, and the deviation of the surface of the portion that should not have scratches from the geometrical plane. This is an index defined in JIS B 0182.
  • “Parallelity” indicates the magnitude of the displacement of the outer peripheral surface of the mold with respect to the rotation axis direction, and is an index defined in JIS B 0182. In the present embodiment, in particular, if the bulge in the outer peripheral surface of the mold is small, it is said that the parallelism is good.
  • FIG. 1 is a diagram schematically showing a manufacturing process of a rotary mold 1 for imprinting in the present embodiment.
  • FIG. 1A shows a rotary mold base 2
  • FIG. 1B shows a state in which a liquid pool eliminating portion 4 is provided on the mold base 2
  • FIG. A state where the leveling agent 61 is applied is shown in FIG.
  • FIG. 1 (d) shows that when the droplet elimination unit 4 is detachable, the droplet elimination unit 4 is removed and the adhesion layer 7 and the fine pattern forming layer 8 are formed on the flattening agent 61.
  • FIG. 1E shows a state in which a fine pattern is drawn and developed on the resist layer 9.
  • FIG. 1 (f) shows a state in which the fine pattern forming layer 8 has been etched
  • FIG. 1 (g) shows a state in which the rotary mold 1 is completed by cleaning after the etching. .
  • FIG. 2 shows a schematic diagram of the rotary mold 1 completed in this way.
  • 2A is a perspective view
  • FIG. 2B is a front view
  • FIG. 2C is a cross-sectional view taken along line A-A ′.
  • the rotary mold 1 for imprinting in this embodiment is preferably cylindrical, and includes mold first and second end surfaces 21 and 22 through which the rotary shaft 3 passes, and a mold outer peripheral surface 20 having an imprint pattern. Have.
  • the rotary mold 1 may be of a non-cylindrical shape or a polygonal shape such as a column, a triangular column, or a quadrangular column.
  • the column or cylinder is finer continuously and uniformly on the material to be transferred. It is more preferable because the pattern can be transferred.
  • first and second liquid reservoir eliminating portions 41 and 42 are provided in the immediate vicinity of the mold first and second end faces 21 and 22, respectively. ing. Thus, an open system gap is provided between the liquid reservoir eliminating portions 41 and 42 and the mold first and second end faces 21 and 22.
  • the rotating shaft 3 may be inserted into the hollow portion of the mold base 2 to form a material rotating shaft.
  • the rotating shaft 3 may be provided integrally with the mold base 2. Moreover, you may prepare the cylindrical mold base material 2 which is not hollow.
  • the rotating shaft 3 may be installed so as to hold the outer end face of the ring-shaped member 4 without providing the rotating shaft 3 penetrating the center of the hollow mold base 2. If the mold base 2 and the ring-shaped member 4 are hollow, they may be fixed to the rotating device on the donut-shaped outer peripheral surface of the ring-shaped member 4 (FIG. 5D described later). By doing so, it is not necessary to prepare a rotating shaft having a desired length penetrating the mold base 2 and the ring-shaped member 4, and the time required for the manufacturing process can be shortened. In this embodiment, when the rotating shaft 3 which penetrates the center of the hollow cylindrical mold base material 2 is provided (FIGS. 3 and 5), and when the mold base material 2 rotates, the rotating shaft 3 Both cases where the material does not exist physically (FIG. 2) will be described as needed.
  • a cylindrical mold substrate 2 having a mold outer peripheral surface 20 and a rotating shaft 3 which is not formed physically is prepared as a representative of a group of two mold end surfaces.
  • Examples of the material of the base material for manufacturing the cylindrical rotary mold 1 include an aluminum base material, an alloy base material such as stainless steel, and a quartz base material. In this embodiment, a stainless steel base material is used. Will be described.
  • the surface of the substrate is often rough, unlike using a stainless steel mold substrate 2. Therefore, before the fine pattern is formed on the substrate surface, an operation for flattening the substrate surface is required.
  • the step of providing the flattening agent accommodating opening 5 in the mold base 2 is performed before applying the flattening agent 61 to the surface of the base.
  • (a) is a view when the mold base 2 and the liquid reservoir eliminating part 41 and the flattening agent 61 are brought into contact at the point x
  • (b) is a mold base further from (a). It is a figure at the time of rotating the material 2
  • (c) is a figure at the time of rotating the mold base material 2 further from (b).
  • (A-1), (b-1), and (c-1) are schematic cross-sectional views of a portion of the mold base 2 that is in contact with the planarizing agent in the cross-sectional view perpendicular to the rotation axis direction.
  • (A-2), (b-2), and (c-2) are cross-sectional views of the mold base 2 in the direction of the rotation axis.
  • the opening 5 for accommodating the leveling agent is specifically provided as shown in FIG. That is, in the direction of the rotary shaft 3, the direction from the mold center to the mold first and second end faces 21, 22 is the outer direction, and the direction from the mold first and second end faces 21, 22 to the mold center is the inner side.
  • the first liquid reservoir eliminating portion 41 is provided on the outer side of the mold first end surface 21, and the second liquid reservoir eliminating portion 42 is provided on the outer side of the mold second end surface 22, thereby eliminating the first liquid reservoir.
  • the flattening agent accommodating open hole 5 is formed between the portion 41 and the mold first end surface 21 and between the second liquid reservoir eliminating portion 42 and the mold second end surface 22 (hereinafter, The flattening agent accommodating open hole 5 is also simply referred to as an open hole 5.
  • the first and second liquid reservoir eliminating parts are also collectively referred to as a liquid reservoir eliminating part 4).
  • FIG. 3 by providing this open hole 5 in the outer part of the outer peripheral surface of the mold (FIGS. 3 (a-1) and (a-2)), a liquid reservoir 62 of the flattening agent 61 is generated in the outer part of the outer peripheral surface of the mold. (FIGS. 3 (b-1) and (b-2)), the open hole 5 formed near the liquid reservoir 62 on the outer peripheral surface of the mold serves as a capillary, and the excess liquid reservoir 62 is placed in the gap. It can be pulled in (FIGS. 3 (c-1) and (c-2)).
  • the liquid reservoir eliminating unit 4 may be a conventional material as long as it can withstand subsequent processes, but is preferably the same material as the mold base 2 in order to facilitate process management. Further, the liquid reservoir eliminating unit 4 may be a member prepared separately from the mold base 2 or may be provided integrally with the mold base 2 and / or the rotary shaft 3 (see FIG. 5 (a)). The member prepared separately is preferable in that it can be used for other rotary molds, the size of the open hole 5 can be adjusted, and the flattening agent accommodated in the open hole 5 can be easily removed by washing. . On the other hand, it is preferable that the liquid reservoir eliminating unit 4 is integrally provided in that the member need not be prepared.
  • first liquid reservoir elimination section may be provided separately from the mold base 2 and the second liquid reservoir elimination section may be provided integrally with the mold base 2.
  • first and second liquid pool eliminating portions 41 and 42 are members prepared separately from the mold base 2.
  • the liquid pool elimination unit 4 has an outer diameter smaller than the outer diameter of the rotary mold 1 (that is, the outer diameter of the cylindrical mold base 2). By doing so, even if the flattening agent 61 adheres to the outer peripheral portion of the mold end surface 21 due to the difference in outer diameter between the cylindrical mold base 2 and the liquid reservoir eliminating portion 4, the attached flattening agent 61 In the immediate vicinity, there is an open hole 5 that becomes a capillary tube. As a result, the leveling agent 61 that should form the liquid reservoir 62 can be efficiently accommodated in the open hole 5. In addition, if it is a closed hole, capillary action cannot be caused. For this reason, in this embodiment, at least the flattening agent 61 and the hole come into contact with each other and the liquid reservoir 62 is eliminated so that the hole becomes an open system.
  • the difference between the outer diameter of the cylindrical mold base material 2 and the outer diameter of the liquid pool elimination part 4 is larger than 0 and 0.6 mm or less.
  • the difference between the radius of the cylindrical mold base 2 and the maximum radius of the liquid pool elimination portion 4 is preferably greater than 0 and 0.3 mm or less. This is because, if the radius difference is within this range, the amount of the leveling agent 62 adhering to the mold end surface 21 is not excessive, and the leveling agent 61 can be accommodated in the open hole 5 without difficulty.
  • the separate liquid reservoir eliminating portion 4 may be a detachable ring-shaped member (hereinafter, reference numeral 4 is also given to the ring-shaped member).
  • reference numeral 4 is also given to the ring-shaped member.
  • the separate liquid reservoir eliminating portion 4 is the ring-shaped member 4
  • a plurality of thin ring-shaped members 4 having the same diameter may be provided, and a clearance may be provided between them, thereby forming the liquid reservoir eliminating portion (see FIG. 5 (b)).
  • the flattening agent 61 adhering to the mold end surface 21 cannot be accommodated in the gap between the mold end surface 21 and the ring-shaped member 4, the flattening agent 61 is accommodated in another gap provided in the liquid reservoir eliminating portion 4. It is because it can do.
  • This “other gap” is preferably formed as close as possible to the outer portion of the outer peripheral surface of the mold.
  • each ring-shaped member 4 may be gradually increased from the inner side to the outer side.
  • the separate liquid reservoir eliminating portion 4 is a ring-shaped member
  • a plurality of thin ring-shaped members 4 having different diameters may be provided as the liquid reservoir eliminating portion (FIG. 5C).
  • the small-diameter ring-shaped member 4a is fitted into the rotary shaft 3 so as to be closely fixed to the mold end surface 21, and then the large-diameter ring-shaped member 4b is closely fixed to the small-diameter ring-shaped member 4a. Fit into the rotating shaft 3.
  • the grooves 5 are formed due to the difference in diameter.
  • the groove 5 having a desired width and a desired depth can be formed, and the accommodation amount of the leveling agent 61 can be adjusted.
  • the width of the groove 5 may be changed in a multistage manner by using three or more ring-shaped members 4.
  • the grooves 5 are formed by the plurality of ring-shaped members 4, but a single ring-shaped member 4 having portions having different diameters may be tightly fixed to the mold end surface 21.
  • the rotation device 3a may be installed so as to hold the outer peripheral surface of the ring-shaped member 4 in the outer direction. If the mold base 2 and the ring-shaped member 4 are hollow, the doughnut-shaped outer peripheral surface of the ring-shaped member 4 may be fixed to the rotating device 3a.
  • the outer diameter may be reduced toward the outer side of the mold (FIG. 5 (e)).
  • the portion of the ring-shaped member 4 with which the flattening agent 61 contacts is only in the vicinity of the mold end surface 21. If it becomes so, the total amount of the planarizing agent 61 adhering to the ring-shaped member 4 can be reduced.
  • the open hole 5 has a groove shape.
  • the ring-shaped member 4 it is preferable to use the ring-shaped member 4 as the liquid reservoir eliminating portion 4, and it is also preferable that the open hole 5 has a groove shape. This is because the accommodation amount of the flattening agent 61 is increased if the groove shape is formed in comparison with the simple hole shape.
  • the distance between the first liquid reservoir eliminating portion 41 and the mold first end surface 21 and the distance between the second liquid reservoir eliminating portion 42 and the mold second end surface 22 are 0.5 mm. Or less, more preferably 0.2 mm or less. Further, the depth of the groove 5 when viewed from the outer periphery of the droplet elimination portion 4 is 1.7 mm or more and less than the distance from the outer peripheral surface of the resist layer 9 to the rotating shaft 3. It is 7 mm or more and 1.9 mm or less.
  • the open hole 5 has a groove shape
  • various groove shapes can be considered. Specifically, it is preferable not to provide the groove 5 in a portion corresponding to the entire surface of the mold end surface 21 other than the rotary shaft 3 portion, but to provide the open-type groove 5 only in a part thereof (FIG. 4A).
  • the width of the groove 5 may be changed continuously or stepwise from the outer peripheral surface side of the mold gradually toward the rotating shaft side (FIGS. 5F and 5G).
  • the end of the liquid reservoir eliminating part 4 facing the mold end surface 21 may be rounded (FIG. 5 (h)), or conversely, the vicinity of the opening of the open hole 5 may be made acute (FIG. 5 (e)).
  • the shape of the open hole 5 other than the groove 5 may be a linear through hole when the rotary shaft 3 and the mold base 2 are integrated (FIG. 4B). However, in order to accommodate the flattening agent 61 evenly while rotating the mold base 2, it is preferable to provide the plurality of open holes 5 evenly when the holes are hole-shaped. On the other hand, when the rotating shaft 3 and the mold base 2 are separate, that is, in the case of the hollow mold base 2, the open holes 5 are provided circumferentially along the hollow portion, and the circumferential shape thereof is further provided. It is also preferable to provide through holes radially from the open hole 5 toward the outer periphery.
  • the leveling agent 60 is selected.
  • the flattening agent 60 include conventionally used liquid flattening film forming agents, and specific examples thereof include polysilazane, methylsiloxane, and metal alkoxide.
  • the viscosity of the leveling agent 60 is within a preferable range, the viscosity is too low and the leveling agent 60 is less likely to foam, and the viscosity is too high to be not accommodated in the open holes 5.
  • the inventor is intensively studying the range of this viscosity.
  • the mold base 2 is held in a state where the rotary shaft 3 is horizontal, and a container containing the flattening agent 60 is prepared below the mold base 2. Thereafter, the mold base material 2 is lowered, and the mold base material 2 and part of the outer peripheral surface of the liquid reservoir eliminating portion 4 are brought into contact with the planarizing agent 60. At this time, not only the mold base 2 is brought into contact with the flattening agent 60 but also the liquid reservoir eliminating portion 4 is brought into contact with the flattening agent 60. Then, a part of the mold base 2 and the liquid reservoir eliminating part 4 is immersed in the flattening agent 60.
  • the mold base material 2 By immersing the mold base material 2 in the flattening agent 60 to such an extent that the flattening agent 61 adheres to the outer periphery of the liquid pool elimination unit 4, the mold base material 2 is separated from the flattening agent 60 by the rotation of the mold base material 2. Even after this, the flattening agent 60 is in contact with the open hole 5. Therefore, the flattening agent 60 can be efficiently accommodated in the open hole 5 as compared with the case where the flattening agent 60 is not in contact with the open hole 5. Further, the immersion depth in the leveling agent 60 in the mold base 2 is particularly preferably 0.2 mm to 0.3 mm.
  • the flattening agent 60 does not come into contact with the opening 5 because the immersion is too shallow, and the flattening agent 61 is accommodated before the immersion is so deep that the liquid reservoir 62 is eliminated. The amount does not exceed.
  • the mold base 2 and the liquid reservoir eliminating portion 4 are brought into contact with the planarizing agent 60 in parallel to the rotation axis direction. By making it contact in parallel, it can prevent that the immersion part in the mold base material 2 and the liquid reservoir elimination part 4 differs in the mold 1st end surface 21 side and the mold 2nd end surface 22 side. As a result, unevenness is not generated in the application of the leveling agent 61.
  • the mold base 2 is rotated in a state in which the leveling agent 60, the mold base 2, and further the liquid pool elimination portion 4 are in contact with each other in the direction of the rotation axis 3,
  • the planarizing agent 61 is applied to the outer peripheral surface 20 of the mold.
  • the rotation speed and rotation speed at this time are flat while being filled with the flattening agent 61 to such an extent that the flattening agent 61 can be sufficiently applied to the mold substrate 2 and the open holes 5 can exhibit capillary action. It sets so that accommodation of the agent 61 can be performed.
  • liquid level of the leveling agent 60 and the mold base 2 are parallel.
  • the liquid reservoir eliminating unit 4 is provided before the flattening agent 60 and the mold base 2 are brought into contact with each other so as not to cause unnecessary fluctuation of the liquid surface.
  • the liquid reservoir 62 on the outer peripheral surface of the mold is accommodated in the flattening agent accommodating opening 5 (FIGS. 3 (c-1) and 3 (c-2)).
  • the open holes 5 by providing the open holes 5 in this manner, the flattening agent 61 adheres to the outer peripheral portion of the mold end surface 21, and centrifugal force, gravity, the surface energy of the base material, and the surface tension of the flattening agent 61 are obtained.
  • the open hole 5 serves as a capillary tube, and the excess liquid reservoir 62 can be accommodated in the open hole 5.
  • the mold base 2 is separated from the flattening agent 61. Then, the planarizing agent 61 is dried while rotating the mold base 2. The flattening agent 61 continues to be accommodated in the open holes until the flattening agent 61 is dried (FIG. 1C).
  • the adhesion layer 7, the fine pattern forming layer 8, and the resist layer 9 are laminated in this order on the planarizing agent 61 applied as described above (FIG. 1D). Thereafter, the resist layer 9 is subjected to electron beam exposure and etching is performed (FIGS. 1E and 1F). Thus, a fine pattern is formed on the fine pattern forming layer 8 on the mold base 2 (FIG. 1G).
  • the adhesion layer 7 provided on the flattening agent 61 this is for bonding the fine pattern forming layer 8 and the layer made of the flattening agent, and thus the mold substrate 2.
  • Any material can be used as long as it is used as the adhesion layer 7, but an amorphous silicon layer is preferable.
  • the adhesion layer 7 may not be provided as long as the fine pattern forming layer 8 can be satisfactorily adhered on the planarizing agent 61. In the present embodiment, a case where the adhesion layer 7 is provided on the planarizing agent 61 will be described.
  • any substance may be used as long as it can be used as the fine pattern forming layer 8.
  • a chromium oxide layer (CrOx) is preferable from the viewpoint of etching processability and ease of autofocus control.
  • an amorphous carbon layer may be provided in place of the CrO layer in order to improve the autofocus controllability. Since the amorphous carbon layer is not as transparent as the chromium oxide layer, it is possible to prevent the mold base 2 from being in focus when drawing a fine pattern on the resist layer 9. it can.
  • a resist layer 9 for electron beam exposure is applied to the fine pattern forming layer 8.
  • the resist layer 9 for electron beam exposure may be a heat-sensitive material whose state changes due to a heat change, and may be suitable for the subsequent etching process. Further, a photosensitive material may be used. At this time, an inorganic resist layer made of tungsten oxide (WOx) having a composition gradient is still preferable from the viewpoint of improving the resolution.
  • WOx tungsten oxide
  • the mold base 2 having the drawn resist layer 9 is exposed and developed to form a desired fine pattern (that is, a finally obtained product) as shown in FIG.
  • a resist layer 9 having a pattern reversed with respect to the fine pattern is obtained.
  • the fine pattern forming layer 8 is etched using the resist layer 9 as an etching mask. Thereby, the fine pattern forming layer 8 on which the fine pattern is formed can be formed on the cylindrical mold base 2.
  • This etching process may use a conventional method. For example, dry etching with chlorine gas and oxygen gas can be mentioned. By this etching process, as shown in FIG.1 (f), the mold base material 2 with the resist layer 9 which has a desired fine pattern is obtained.
  • the resist substrate 9 with the resist layer 9 is subjected to pure water washing and vapor drying with isopropanol to remove the resist layer 9.
  • the rotary mold 1 in which a desired fine pattern is transferred to the outer peripheral surface 20 of the mold can be produced.
  • the fine pattern at this time may be a pattern in a range from nano-order to micro-order, but more preferably a nano-order periodic structure of several nm to several hundred nm.
  • Specific examples are a line-and-space pattern and a fine protrusion structure composed of a plurality of fine irregularities.
  • Examples of the cross-sectional shape include a triangle, a trapezoid, and a square in the case of a one-dimensional periodic structure.
  • the shape of the fine protrusions is not limited to an accurate cone (bus line is straight) or pyramid (ridge line is straight), as long as it is tapered in consideration of extraction after imprinting.
  • the ridgeline shape may be a curved surface with a side surface bulging outward. Specific examples include a bell, a cone, a truncated cone, and a cylinder.
  • the period in this periodic structure is also referred to as a pitch, and indicates the distance between the fine protrusion vertices.
  • the tip portion may be flattened or rounded in consideration of moldability and breakage resistance.
  • this fine protrusion may produce a continuous fine protrusion with respect to one direction.
  • the imprint rotary mold according to the present embodiment is configured, the following effects can be obtained according to the above embodiment.
  • a minute open hole is provided in the immediate vicinity of the mold end face. By doing so, even if a liquid reservoir of the flattening agent is generated in the outer peripheral surface of the mold, this gap located in the immediate vicinity of the liquid reservoir serves as a capillary tube, and the excess liquid reservoir can be drawn into the gap. .
  • the occurrence of swell due to an excessive liquid reservoir can be prevented, and the swell at the outer peripheral surface of the mold is eliminated.
  • an imprint rotary mold having good parallelism can be manufactured.
  • the above-described technique can be applied to the case where a liquid reservoir is generated on the outer peripheral surface of the mold.
  • a general coating agent for forming a resist layer can be applied.
  • a method for producing the rotary mold 1 by direct drawing on the amorphous carbon layer will be described separately from the method for producing the rotary mold 1 by using the resist layer 9 of the first embodiment.
  • a fine pattern for example, a convex portion
  • a predetermined fine pattern is obtained by a laser drawing apparatus or an electron beam drawing apparatus. Draw a pattern.
  • the condenser lens or the mold base 2 itself having an amorphous carbon layer on the outermost surface is moved, and the laser is focused on the surface of the amorphous carbon layer.
  • a laser is irradiated to process a recess that is a non-through hole for a fine protrusion provided on the surface of the transfer object.
  • a recess that finally becomes a fine protrusion on the surface of the transfer object can be produced.
  • the position of the condenser lens and the surface of the amorphous carbon layer are relatively moved so that the focal position of the laser coincides with the bottom of the recess, or Processing may be performed by irradiating the laser again using a condensing lens having a different focal length while being fixed to the bottom of the recess.
  • Processing may be performed by irradiating the laser again using a condensing lens having a different focal length while being fixed to the bottom of the recess.
  • the shape of the ring-shaped member 4 is a radius of a small-diameter portion for the groove 5 in contact with the mold end surface 21 (a portion having a distance of 0.2 mm from the end surface on the mold inner side to the mold outer side in the ring-shaped member).
  • the groove 5 as a hole for accommodating the leveling agent was formed with a width of 0.2 mm and a depth of 1.8 mm (a depth viewed from the outer periphery of the large diameter portion of the ring-shaped member).
  • a leveling agent was prepared.
  • polysilazane was dissolved in a dibutyl ether (20%) solvent.
  • the leveling agent container containing the polysilazane solution was disposed below the mold base 2.
  • the mold base 2 was brought into contact with the polysilazane solution together with the ring-shaped member 4.
  • a part of the mold outer peripheral surface 20 and a part of the ring-shaped member 4 were immersed in the planarizing agent 60 at a depth of 0.3 mm or less from the liquid surface of the planarizing agent 60.
  • the mold was rotated three times at a rotational speed of 32 r / min by a separately provided rotating shaft 3, and the polysilazane solution was applied to the entire outer peripheral surface 20 of the mold.
  • the polysilazane solution was also applied to the outer peripheral surface of the ring-shaped member 4 in contact with the flattening agent 60 at the same time.
  • the polysilazane solution was applied in a thickness of 4 ⁇ m.
  • the mold base 2 and the flattening agent 60 were pulled apart, and the mold base 2 was dried while being rotated.
  • the liquid reservoir 62 on the outer peripheral surface of the mold is kept in the groove 5 until the leveling agent 61 on the mold base 2 is dried.
  • the adhesion layer 7, the fine pattern forming layer 8, and the inorganic resist layer 9 were laminated in this order on the applied leveling agent 61.
  • an amorphous silicon layer, an amorphous carbon layer as the fine pattern forming layer 8, and a tungsten oxide (WOx) layer as the inorganic resist layer 9 were formed by sputtering.
  • a film was formed so as to be.
  • the inorganic resist layer 9 was formed by ion beam sputtering, and the oxygen concentration in the inorganic resist layer 9 was inclined by continuously changing the oxygen concentration during film formation. Further, Rutherford Back Scattering Spectroscopy (RBS) was used for the composition analysis in the inorganic resist layer 9.
  • a fine pattern was drawn on the inorganic resist layer 9 using a blue laser drawing apparatus (wavelength 405 nm, output 12 mW). After drawing, an etching process and a cleaning process were performed to produce a rotary mold 1 provided with a desired transfer pattern.
  • FIG. 6 (a) shows the rising distance from the outer peripheral surface of the rotary mold in the rotary mold 11 of this embodiment
  • FIG. 6 (b) shows the distance from the outer peripheral surface of the rotary mold.
  • the angle of the measurement position indicates the horizontal / vertical direction portion in the mold cross section in the direction perpendicular to the rotation axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

In a production method of a rotary mold used for imprinting, the rotary mold comprises first and second mold end surfaces, and a mold peripheral surface having a pattern for imprinting, wherein fluid gathering prevention units are respectively provided on the end surfaces in the external direction, and opening holes for storing a flattening agent are respectively formed between the fluid gathering prevention units and the mold end surfaces. The fluid gathering prevention unit has an outer diameter smaller than the outer diameter of the rotary mold.

Description

インプリント用回転式モールド及びその製造方法Imprint rotary mold and manufacturing method thereof
 本発明は、インプリント用回転式モールド及びその製造方法に関し、特に、モールド外周面に微細パターンを形成するインプリント用回転式モールド及びその製造方法に関する。 The present invention relates to an imprint rotary mold and a manufacturing method thereof, and more particularly, to an imprint rotary mold for forming a fine pattern on the outer peripheral surface of a mold and a manufacturing method thereof.
 従来、機械加工の分野や電子回路の分野では、ミクロンオーダーの加工がなされているが、従来はその加工の制御等の際に可視光を用いるのが一般的であった。しかし可視光ではミクロンオーダーの制御しかできないという限界があった。 Conventionally, processing in the micron order has been performed in the field of machining and electronic circuit, but conventionally, it has been common to use visible light when controlling the processing. However, there was a limit that visible light can only be controlled in the micron order.
 これに対し、ステッパと呼ばれる装置において、紫外線レーザーや極紫外線光源可視光より短い波長の光や電子線を用いることにより、ミクロンオーダーから数10nmのナノオーダーの加工が可能になった。 On the other hand, in an apparatus called a stepper, by using light and an electron beam having a wavelength shorter than that of visible light from an ultraviolet laser or an extreme ultraviolet light source, processing from the micron order to several tens of nanometers becomes possible.
 その一方で、ミクロンオーダーの加工ですら、パターンを形成するのに相当の時間を要する。そのため、ナノオーダーの微細加工ではさらに要する時間が増加する。しかも、紫外線レーザーや極紫外線光源を用いる場合、装置も大掛かりになり、コストも増大する。また、電子線で露光・現像して微細加工を行う手法は逐次加工であり、作業効率が下がってしまう。 On the other hand, even micron-order processing takes a considerable amount of time to form a pattern. For this reason, the time required for nano-order microfabrication further increases. In addition, when an ultraviolet laser or an extreme ultraviolet light source is used, the apparatus becomes large and the cost increases. Further, the technique of performing microfabrication by exposure / development with an electron beam is sequential processing, and the work efficiency is lowered.
 その一方で、通常の微細なパターン転写として、通常光を用いてガラス板上に形成されたマスクパターンを露光により転写する手法、すなわちフォトリソグラフィー法が従来の手法として存在する。しかしながら、フォトリソグラフィーを用いても、光の解像度に依存することになり、ナノオーダーの微細パターンを形成する際には限界がある。 On the other hand, as a conventional fine pattern transfer, there is a conventional technique that transfers a mask pattern formed on a glass plate by exposure using normal light, that is, a photolithography method. However, even if photolithography is used, it depends on the resolution of light, and there is a limit in forming a nano-order fine pattern.
 この問題に対し、近年、微細パターンが形成されたモールドを用いて、被転写材に微細パターンを判子のように転写する方法であるナノインプリント技術に注目が集まっている。このナノインプリント技術により、数10nmレベルという微細構造を安価に再現性良くしかも大量に作製できる。 In response to this problem, in recent years, attention has been focused on nanoimprint technology, which is a method for transferring a fine pattern onto a material to be transferred like a stamp using a mold on which a fine pattern is formed. By this nanoimprint technology, a fine structure of several tens of nm level can be manufactured at a low cost with good reproducibility and in large quantities.
 なお、インプリント技術は大きく分けて2種類あり、熱インプリントと光インプリントとがある。熱インプリントは、微細パターンが形成されたモールドを被成形材料である熱可塑性樹脂に加熱しながら押し付け、その後で被成形材料を冷却・離型し、微細パターンを転写する方法である。また、光インプリントは、微細パターンが形成されたモールドを被成形材料である光硬化性樹脂に押し付けて紫外光を照射し、その後で被成形材料を離型し、微細パターンを転写する方法である。 There are two main types of imprint technology, thermal imprint and optical imprint. Thermal imprinting is a method in which a mold on which a fine pattern is formed is pressed against a thermoplastic resin as a molding material while being heated, and then the molding material is cooled and released to transfer the fine pattern. Optical imprinting is a method in which a mold on which a fine pattern is formed is pressed against a photocurable resin that is a molding material, irradiated with ultraviolet light, and then the molding material is released to transfer the fine pattern. is there.
 どちらのインプリント法を用いるにしても、より細かいパターンを、より大きな被成形材料上に転写することが必要となる。これを行うために用いられる方式としては、モールドと被成形材料とを一度にプレスする一括転写方式や、平板モールドを使用して上記のインプリント法を繰り返し行って最終的に大面積の基板に微細パターンを転写するステップ&リピート方式などが挙げられる。 Whichever imprinting method is used, it is necessary to transfer a finer pattern onto a larger molding material. As a method used to do this, a batch transfer method in which the mold and the material to be molded are pressed at once, or the above imprint method is repeatedly performed using a flat plate mold to finally form a large-area substrate. For example, a step & repeat method for transferring a fine pattern may be used.
 その一方で、ローラー表面にあらかじめ微細パターンを設けたローラーをモールドとして用い、このローラーで被転写材を加熱しながらローラーに荷重を加え、そしてこのローラーを回転させ、ローラー表面のパターンを被転写材に順次転写するローラーモールド方法がある(例えば特許文献1および2参照)。 On the other hand, a roller with a fine pattern provided in advance on the roller surface is used as a mold, a load is applied to the roller while heating the transfer material with this roller, and the roller surface is rotated to change the pattern on the roller surface. There is a roller mold method for transferring images sequentially (see, for example, Patent Documents 1 and 2).
 この方法だと、ローラーの繰り返し回転によって切れ目なく連続して被転写材にパターン転写することができる。そのためこの方法は、長さが数m以上もあるような被転写材へのパターン転写に対して有効な方法である。 With this method, the pattern can be transferred onto the transfer material continuously without interruption by repeated rotation of the roller. Therefore, this method is effective for pattern transfer onto a transfer material having a length of several meters or more.
 さらに、このローラーモールド方法では、一括転写やステップ&リピート方式の場合の面接触と異なり、モールドと被転写材との接触が線接触となる。そのため、型と基板との平行調整やヒータの温度制御がしやすくなるという利点がある。また、線接触で荷重を成型基板に与えることにあるので、少ない荷重で被転写材への押圧を行うことができる。 Furthermore, in this roller molding method, the contact between the mold and the material to be transferred is a line contact, unlike the surface contact in the case of batch transfer or the step & repeat method. Therefore, there is an advantage that the parallel adjustment of the mold and the substrate and the temperature control of the heater can be easily performed. In addition, since the load is applied to the molded substrate by line contact, the transfer material can be pressed with a small load.
特開2005-5284号公報Japanese Patent Laying-Open No. 2005-5284 特開2008-73902号公報JP 2008-73902 A
 上述のように、被転写材上にてローラーモールドを転がすことにより微細パターンを転写するという性質上、このローラーモールド方法で使用するモールドは被転写材表面に対して平行かつモールド自身が平坦である必要がある。 As described above, due to the property of transferring a fine pattern by rolling a roller mold on a transfer material, the mold used in this roller molding method is parallel to the surface of the transfer material and the mold itself is flat. There is a need.
 モールド自身を平坦とするため、まず、ローラーモールドに平坦化剤を塗布する必要がある。この従来の塗布方法を図7に示す。(a-1)は回転軸13の方向に垂直なモールド断面、(a-2)は回転軸13方向モールド断面を示し、(b)(c)についても同様である。 ¡To flatten the mold itself, it is necessary to apply a leveling agent to the roller mold first. This conventional coating method is shown in FIG. (A-1) is a mold section perpendicular to the direction of the rotating shaft 13, (a-2) is a mold section in the direction of the rotating shaft 13, and the same applies to (b) and (c).
 この塗布においては塗布の均一性という観点から、従来の回転式モールド11の平坦化剤塗布工程の様子を描いた図7に示すように、モールド外周面120を平坦化剤160に線接触させ(図7(a-1)(a-2))、回転式モールド11を回転させることによりモールド外周面120に平坦化剤160を順次塗布するという工程が用いられている(図7(b-1)(b-2)、(c-1)(c-2))。 In this application, from the viewpoint of application uniformity, the mold outer peripheral surface 120 is brought into line contact with the flattening agent 160 as shown in FIG. 7 depicting the state of the conventional flattening agent applying process of the rotary mold 11 ( 7 (a-1) and (a-2)), a process of sequentially applying the planarizing agent 160 to the outer peripheral surface 120 of the mold by rotating the rotary mold 11 is used (FIG. 7 (b-1)). ) (B-2), (c-1) (c-2)).
 しかしながら、この平坦化剤161をモールド外周面120全面に塗布する際、平坦化剤160入り容器において、回転式モールド11の回転軸方向の長さよりも大きな長さを有するようにしなければならない(図7(a))。そうすると、モールド端面121にも平坦化剤161が付着することになる(図7(b))。このように付着した余分な平坦化剤は、モールド回転による遠心力、モールドの表面エネルギー、平坦化剤の自重や表面張力などにより、モールド外周面120とモールド端面121とが接するモールド端部(モールド外周面外側部分ともいう)にて平坦化剤160による液溜162を形成してしまうおそれがある(図7(c))。 However, when this flattening agent 161 is applied to the entire mold outer peripheral surface 120, the container containing the flattening agent 160 must have a length larger than the length of the rotary mold 11 in the rotation axis direction (see FIG. 7 (a)). If it does so, the planarizing agent 161 will also adhere to the mold end surface 121 (FIG.7 (b)). The extra flattening agent adhering in this way is caused by centrifugal force generated by mold rotation, mold surface energy, dead weight of the flattening agent, surface tension, and the like. The liquid reservoir 162 may be formed by the flattening agent 160 at the outer peripheral surface outer portion) (FIG. 7C).
 その結果、以後の乾燥工程において、モールド外周面外側部分の液溜162がそのまま固化し、この部分が盛り上がることとなってしまう。そうなると、モールド外周面120への微細パターン形成後に被転写材への微細パターン転写を行おうとしても、モールド外周面外側部分の盛り上がりにより回転式モールド11の平行度が低下してしまい、モールド中央部の微細パターンが良好に転写されない、すなわち判子でいうところの中抜け現象が生じるおそれがある。この中抜け現象により最終的な転写精度が低下し、ひいては最終製品の品質低下・歩留まり低下を引き起こすおそれがある。 As a result, in the subsequent drying process, the liquid reservoir 162 on the outer peripheral surface of the mold is solidified as it is, and this portion is swelled. Then, even if the fine pattern transfer to the transfer material is performed after forming the fine pattern on the mold outer peripheral surface 120, the parallelism of the rotary mold 11 is reduced due to the rise of the outer portion of the mold outer peripheral surface, and the mold center portion The fine pattern may not be transferred satisfactorily. Due to this hollow-out phenomenon, the final transfer accuracy may be lowered, and as a result, the quality and yield of the final product may be lowered.
 本発明の目的は、モールド外周面外側部分における盛り上がりが解消され、その結果、良好な平行度を有するインプリント用回転式モールドおよびその製造方法を提供することにある。 An object of the present invention is to provide a rotary mold for imprinting having a good degree of parallelism and a method for producing the same, as a result of which swell in the outer peripheral surface of the mold is eliminated.
 本発明の第一の態様は、インプリントに用いられる回転式モールドの製造方法において、前記回転式モールドは、モールド第1および第2端面と、インプリント用パターンを有するモールド外周面と、を有し、回転式モールドを回転させる回転軸の方向において、モールド中央部からモールド端面へ向かう方向を外側方向、モールド端面からモールド中央部へ向かう方向を内側方向とすると、前記モールド第1端面の外側方向に第1液溜解消部を設け、前記モールド第2端面の外側方向に第2液溜解消部を設け、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間に平坦化剤収容用開放孔を形成する工程を含み、前記第1および第2液溜解消部は、回転式モールド外径よりも小さな外径を有することを特徴とする。
 ただし、平坦化剤収容用開放孔とは、平坦化剤と平坦化剤収容用開放孔の入り口とが接触した後、少なくとも平坦化剤の液溜を解消するまでは開放系となっている孔のことである。
 本発明の第二の態様は、第一の態様に記載の発明において、前記平坦化剤収容用開放孔を形成した後、前記モールド外周面の一部ならびに前記第1および第2液溜解消部の一部と液状の平坦化剤とを、前記回転軸方向に対して平行に接触させた状態で前記モールドを回転して、前記モールド外周面に前記平坦化剤を塗布する平坦化剤塗布工程と、前記塗布工程開始後、モールド外周面外側部分の液溜を前記平坦化剤収容用開放孔に収容する平坦化剤収容工程と、前記塗布工程および平坦化剤収容工程後、微細パターンを前記モールド外周面に形成する工程と、を含むことを特徴とする。
 本発明の第三の態様は、第一または第二の態様に記載の発明において、第1および第2液溜解消部のうちの少なくとも一つが、回転式モールドと一体形成されていることを特徴とする。
 本発明の第四の態様は、第一ないし第三のいずれかの態様に記載の発明において、前記第1および第2液溜解消部の外径とモールド外径との差は、0より大きく0.6mm以下であることを特徴とする。
 本発明の第五の態様は、第一、第二または第四の態様に記載の発明において、前記回転式モールドは円筒形または円柱形であり、前記第1および第2液溜解消部はリング形状部材であり、前記平坦化剤塗布工程において、平坦化剤液面から0.2mm以上0.5mm以下の浸漬深さで、前記モールド外周面の一部と前記第1および第2液溜解消部の一部とを平坦化剤に接触させることを特徴とする。
 本発明の第六の態様は、第一ないし第五のいずれかの態様に記載の発明において、前記平坦化剤収容用開放孔は溝であり、前記溝における、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間の距離は0より大きく0.5mm以下であり、前記溝の深さは半径方向において1.7mm以上かつ前記モールド外周面から前記回転軸までの距離以下であることを特徴とする。
 本発明の第七の態様は、インプリントに用いられる回転式モールドであって、前記回転式モールドは、モールド第1および第2端面と、インプリント用パターンを有するモールド外周面と、を有し、回転式モールドを回転させる回転軸の方向において、モールド中央部からモールド端面へ向かう方向を外側方向、モールド端面からモールド中央部へ向かう方向を内側方向とすると、前記モールド第1端面の外側方向に第1液溜解消部が設けられ、前記モールド第2端面の外側方向に第2液溜解消部が設けられ、前記第1および第2液溜解消部は、回転式モールド外径よりも小さな外径を有し、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間に塗布剤収容用開放孔が形成されたことを特徴とするインプリント用回転式モールドである。
 本発明の第八の態様は、第七の態様に記載の発明において、前記回転式モールドは円筒形または円柱形であり、前記第1および第2液溜解消部のうちの少なくとも一つは前記回転式モールドと一体形成され、前記第1および第2液溜解消部の外径とモールド外径との差は、0より大きく0.6mm以下であり、前記塗布剤収容用開放孔は溝であり、前記溝における、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間の距離は0より大きく0.5mm以下であり、前記溝の深さは半径方向において1.7mm以上かつ、前記モールド外周面から前記回転軸までの距離以下であることを特徴とする。
According to a first aspect of the present invention, in the method for manufacturing a rotary mold used for imprinting, the rotary mold has a mold first and second end faces, and a mold outer peripheral face having an imprint pattern. Then, in the direction of the rotation axis for rotating the rotary mold, when the direction from the mold center to the mold end surface is the outside direction, and the direction from the mold end surface to the mold center is the inside direction, the outer direction of the first mold end surface Provided with a first liquid reservoir elimination section, a second liquid reservoir elimination section provided in the outer direction of the mold second end face, between the first liquid reservoir elimination section and the mold first end face, and the second Including a step of forming an opening for accommodating a leveling agent between the liquid pool eliminating portion and the mold second end surface, wherein the first and second liquid reservoir eliminating portions are smaller than the outer diameter of the rotary mold. And having an outer diameter.
However, the opening hole for storing the leveling agent is a hole which is an open system at least until the liquid reservoir of the leveling agent is eliminated after the leveling agent and the entrance of the opening hole for storing the leveling agent come into contact. That's it.
According to a second aspect of the present invention, in the invention according to the first aspect, after forming the opening for accommodating the flattening agent, a part of the outer peripheral surface of the mold and the first and second liquid pool eliminating portions A flattening agent application step of applying the flattening agent to the outer peripheral surface of the mold by rotating the mold in a state in which a part of the flattening agent and the liquid flattening agent are in contact with each other in parallel with the rotation axis direction. And after the start of the coating step, a flattening agent storage step of storing the liquid reservoir on the outer peripheral surface of the mold in the opening for accommodating the flattening agent; and after the coating step and the flattening agent storage step, Forming on the outer peripheral surface of the mold.
According to a third aspect of the present invention, in the invention according to the first or second aspect, at least one of the first and second liquid reservoir eliminating portions is integrally formed with the rotary mold. And
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the difference between the outer diameter of the first and second liquid pool eliminating portions and the outer diameter of the mold is greater than zero. It is 0.6 mm or less.
According to a fifth aspect of the present invention, in the invention according to the first, second or fourth aspect, the rotary mold is a cylindrical shape or a columnar shape, and the first and second liquid reservoir eliminating portions are rings. In the flattening agent application step, a part of the mold outer peripheral surface and the first and second liquid reservoirs are eliminated at an immersion depth of 0.2 mm or more and 0.5 mm or less from the leveling liquid surface A part of the portion is brought into contact with a flattening agent.
According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the opening for accommodating the flattening agent is a groove, and the first liquid reservoir eliminating portion in the groove The distance between the first end surface of the mold and the distance between the second liquid pool eliminating portion and the second end surface of the mold is greater than 0 and 0.5 mm or less, and the depth of the groove is 1 in the radial direction. It is characterized by being not less than 7 mm and not more than the distance from the outer peripheral surface of the mold to the rotation axis.
7th aspect of this invention is a rotary mold used for imprint, Comprising: The said rotary mold has a mold 1st and 2nd end surface, and the mold outer peripheral surface which has a pattern for imprint. In the direction of the rotation axis for rotating the rotary mold, when the direction from the mold center to the mold end surface is the outer direction, and the direction from the mold end surface to the mold center is the inner direction, the direction toward the outer side of the mold first end surface A first liquid reservoir eliminating portion is provided, a second liquid reservoir eliminating portion is provided in an outer direction of the mold second end surface, and the first and second liquid reservoir eliminating portions are smaller than the outer diameter of the rotary mold. An opening for accommodating a coating agent is formed between the first liquid reservoir eliminating portion and the mold first end surface, and between the second liquid reservoir eliminating portion and the mold second end surface. The Preparative a imprinting rotating mold, characterized in.
According to an eighth aspect of the present invention, in the invention according to the seventh aspect, the rotary mold has a cylindrical shape or a columnar shape, and at least one of the first and second liquid pool eliminating portions is the The difference between the outer diameter of the first and second liquid pool eliminating portions and the outer diameter of the mold is integrally formed with the rotary mold, and is 0.6 mm or less, and the opening for accommodating the coating agent is a groove. Yes, in the groove, the distance between the first liquid reservoir eliminating portion and the mold first end surface, and the distance between the second liquid reservoir eliminating portion and the mold second end surface is larger than 0 and 0.5 mm. The depth of the groove is not less than 1.7 mm in the radial direction and not more than the distance from the outer peripheral surface of the mold to the rotating shaft.
 本発明によれば、モールド外周面外側部分における盛り上がりが解消され、その結果、良好な平行度を有するインプリント用回転式モールドおよびその製造方法を提供できる。 According to the present invention, the swell in the outer peripheral surface of the mold is eliminated, and as a result, a rotary mold for imprinting having a good parallelism and a method for manufacturing the same can be provided.
本実施形態におけるインプリント用回転式モールドの製造工程を概略的に示す図である。It is a figure which shows roughly the manufacturing process of the rotary mold for imprint in this embodiment. 本実施形態におけるインプリント用回転式モールドの概略図であり、(a)は斜視図、(b)は正面図、(c)は(b)のA-A’部分の断面図である。It is the schematic of the rotary mold for imprint in this embodiment, (a) is a perspective view, (b) is a front view, (c) is sectional drawing of the A-A 'part of (b). 本実施形態におけるインプリント用回転式モールドの平坦化剤塗布工程および平坦化剤収容工程の様子を示す図である。It is a figure which shows the mode of the planarization agent application | coating process and planarization agent accommodation process of the rotary mold for imprint in this embodiment. 本実施形態における液溜解消部および平坦化剤収容用開放孔の変形例を示す図である。It is a figure which shows the modification of the liquid reservoir elimination part and flattening agent accommodation open hole in this embodiment. 本実施形態における液溜解消部変形例を示す図である。It is a figure which shows the liquid reservoir cancellation part modification in this embodiment. 本実施例および比較例におけるインプリント用回転式モールドの平行度を示す図である。It is a figure which shows the parallel degree of the rotary mold for imprint in a present Example and a comparative example. 比較例における回転式モールドの平坦化剤塗布工程の様子を示す図である。It is a figure which shows the mode of the planarizing agent application | coating process of the rotary mold in a comparative example.
 回転式モールドを用いたインプリントにおいては、回転式モールドにおける平坦度及び平行度が特に重要となる。一方、平坦度を向上させようと平坦化剤をモールド基材に塗布した後、モールド外周面外側部分において平坦化剤による液溜が発生してしまう。その結果、平坦度が向上したとしても、平行度が失われてしまうことになってしまう。 In imprinting using a rotary mold, flatness and parallelism in the rotary mold are particularly important. On the other hand, after applying a flattening agent to the mold base material to improve the flatness, a liquid reservoir due to the flattening agent is generated at the outer peripheral surface of the mold. As a result, even if the flatness is improved, the parallelism is lost.
 このような状況下において本発明者は、以下のことを見出した。すなわち、モールド外周面外側部分の直近に微小な隙間(開放孔)を設けておく。そうすることにより、平坦化剤の液溜がモールド外周面外側部分に発生したとしても、この隙間が毛細管の役割を果たし、余分な液溜を隙間内に引き込むことができる。これにより、余分な液溜による盛り上がりの発生を防止でき、平坦化剤を均一にモールド基材に塗布することができることを見出した。 Under such circumstances, the present inventor has found the following. That is, a minute gap (open hole) is provided in the immediate vicinity of the outer peripheral surface of the mold. By doing so, even if a liquid reservoir of the flattening agent is generated in the outer portion of the outer peripheral surface of the mold, this gap serves as a capillary tube, and the excess liquid reservoir can be drawn into the gap. As a result, it has been found that the occurrence of swelling due to an excessive liquid reservoir can be prevented, and the planarizing agent can be uniformly applied to the mold substrate.
 なお、本実施形態において、「平坦度(真円度又は平面度)」はモールド基材の表面粗さを示す指標であり、キズ等がないはずの部分の表面の幾何学的平面からのずれの大きさを示すものであり、JIS B 0182にて定義される指標である。また「平行度」はモールド外周面における回転軸方向に対するずれの大小を示すものであり、JIS B 0182にて定義される指標である。本実施形態では特に、モールド外周面外側部分における盛り上がりが小さければ、平行度が良好ともいう。 In the present embodiment, “flatness (roundness or flatness)” is an index indicating the surface roughness of the mold substrate, and the deviation of the surface of the portion that should not have scratches from the geometrical plane. This is an index defined in JIS B 0182. “Parallelity” indicates the magnitude of the displacement of the outer peripheral surface of the mold with respect to the rotation axis direction, and is an index defined in JIS B 0182. In the present embodiment, in particular, if the bulge in the outer peripheral surface of the mold is small, it is said that the parallelism is good.
<実施の形態1>
 以下、本発明を実施するための形態を、図1に基づき説明する。
 図1は、本実施形態におけるインプリント用の回転式モールド1の製造工程を概略的に示す図である。図1(a)は回転式モールド基材2を示し、図1(b)はモールド基材2に対して液溜解消部4を設けた様子を示し、図1(c)はモールド基材2に平坦化剤61を塗布した様子を示す。さらに、図1(d)は、液滴解消部4が着脱自在であるときには液滴解消部4を外した上で、その平坦化剤61の上に、密着層7、微細パターン形成用層8、レジスト層9をこの順に積層した様子を示し、図1(e)はこのレジスト層9に対して微細パターンを描画・現像した様子を示す。そして図1(f)は微細パターン形成用層8に対してエッチングを行った様子を示し、図1(g)はエッチング後に洗浄を行い、回転式モールド1を完成させた様子を示す図である。
<Embodiment 1>
Hereinafter, the form for implementing this invention is demonstrated based on FIG.
FIG. 1 is a diagram schematically showing a manufacturing process of a rotary mold 1 for imprinting in the present embodiment. FIG. 1A shows a rotary mold base 2, FIG. 1B shows a state in which a liquid pool eliminating portion 4 is provided on the mold base 2, and FIG. A state where the leveling agent 61 is applied is shown in FIG. Further, FIG. 1 (d) shows that when the droplet elimination unit 4 is detachable, the droplet elimination unit 4 is removed and the adhesion layer 7 and the fine pattern forming layer 8 are formed on the flattening agent 61. FIG. 1E shows a state in which a fine pattern is drawn and developed on the resist layer 9. FIG. 1 (f) shows a state in which the fine pattern forming layer 8 has been etched, and FIG. 1 (g) shows a state in which the rotary mold 1 is completed by cleaning after the etching. .
 また、このようにして完成した回転式モールド1の概略図を図2に示す。図2(a)は斜視図、(b)は正面図、(c)はA-A’の断面図である。 FIG. 2 shows a schematic diagram of the rotary mold 1 completed in this way. 2A is a perspective view, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view taken along line A-A ′.
 本実施形態におけるインプリント用の回転式モールド1は好ましくは円筒形であり、回転軸3が通過するモールド第1および第2端面21,22と、インプリント用パターンを有するモールド外周面20とを有している。 The rotary mold 1 for imprinting in this embodiment is preferably cylindrical, and includes mold first and second end surfaces 21 and 22 through which the rotary shaft 3 passes, and a mold outer peripheral surface 20 having an imprint pattern. Have.
 なお、回転式モールド1は円筒形以外であっても円柱や三角柱や四角柱のような多角形形状であってもよいが、円柱または円筒形の方が連続的かつ均一に被転写材に微細パターンを転写できるため、より好ましい。 The rotary mold 1 may be of a non-cylindrical shape or a polygonal shape such as a column, a triangular column, or a quadrangular column. However, the column or cylinder is finer continuously and uniformly on the material to be transferred. It is more preferable because the pattern can be transferred.
 また、モールド第1および第2端面21,22各々の直近には、図2(b)に示すように、第1及び第2液溜解消部41,42(後で詳述)が各々設けられている。これにより、液溜解消部41,42とモールド第1および第2端面21,22との間に開放系の隙間を設けている。 Further, as shown in FIG. 2 (b), first and second liquid reservoir eliminating portions 41 and 42 (detailed later) are provided in the immediate vicinity of the mold first and second end faces 21 and 22, respectively. ing. Thus, an open system gap is provided between the liquid reservoir eliminating portions 41 and 42 and the mold first and second end faces 21 and 22.
 また、回転軸3をモールド基材2の中空部分に挿入して物質的な回転軸としてもよい。前記回転軸3はモールド基材2と一体として設けられていてもよい。また、中空でない円柱形モールド基材2を用意してもよい。 Alternatively, the rotating shaft 3 may be inserted into the hollow portion of the mold base 2 to form a material rotating shaft. The rotating shaft 3 may be provided integrally with the mold base 2. Moreover, you may prepare the cylindrical mold base material 2 which is not hollow.
 また、中空のモールド基材2の中心を貫通するような回転軸3を設けずとも、リング形状部材4の外側方向端面を保持するように回転軸3が設置されていてもよい。仮に、モールド基材2とリング形状部材4が中空である場合、リング形状部材4のドーナツ状外周面にて、これらを回転装置と固定してもよい(後述する図5(d))。こうすることにより、モールド基材2およびリング形状部材4を貫通する所望の長さの回転軸をわざわざ用意しなくとも済み、製造工程に要する時間の短縮化が図れる。本実施形態においては、中空の円筒形モールド基材2の中心を貫通するような回転軸3を設けた場合(図3および図5)、および、モールド基材2が回転する際に回転軸3が物質的に存在していない場合(図2)の両方の場合について随時説明する。 Further, the rotating shaft 3 may be installed so as to hold the outer end face of the ring-shaped member 4 without providing the rotating shaft 3 penetrating the center of the hollow mold base 2. If the mold base 2 and the ring-shaped member 4 are hollow, they may be fixed to the rotating device on the donut-shaped outer peripheral surface of the ring-shaped member 4 (FIG. 5D described later). By doing so, it is not necessary to prepare a rotating shaft having a desired length penetrating the mold base 2 and the ring-shaped member 4, and the time required for the manufacturing process can be shortened. In this embodiment, when the rotating shaft 3 which penetrates the center of the hollow cylindrical mold base material 2 is provided (FIGS. 3 and 5), and when the mold base material 2 rotates, the rotating shaft 3 Both cases where the material does not exist physically (FIG. 2) will be described as needed.
(モールド基材の準備)
 以上の形態を有するインプリント用の回転式モールド1を形成するために、本実施形態に係るモールド製造方法においてはまず、例えば図2に示すように、2つのモールド端面21,22(以降、2つのモールド端面をまとめたものを代表してモールド端面21ともいう)、モールド外周面20、物質的には形成されていない回転軸3を有する円筒形モールド基材2を用意する。
(Preparation of mold substrate)
In order to form the imprint rotary mold 1 having the above configuration, in the mold manufacturing method according to the present embodiment, first, as shown in FIG. A cylindrical mold substrate 2 having a mold outer peripheral surface 20 and a rotating shaft 3 which is not formed physically is prepared as a representative of a group of two mold end surfaces.
 この円筒形回転式モールド1を製造するための基材の材質としてはアルミニウム基材、ステンレスのような合金基材や石英基材が挙げられるが、本実施形態においてはステンレス基材を用いた場合について説明する。 Examples of the material of the base material for manufacturing the cylindrical rotary mold 1 include an aluminum base material, an alloy base material such as stainless steel, and a quartz base material. In this embodiment, a stainless steel base material is used. Will be described.
 円筒形のステンレス基材を用いる場合、ステンレスのモールド基材2を用いる場合とは異なり、基材表面が粗い状態の場合が多い。そのため、基材表面に微細パターンを形成する前に、基材表面を平坦化する作業が必要となる。 When using a cylindrical stainless steel substrate, the surface of the substrate is often rough, unlike using a stainless steel mold substrate 2. Therefore, before the fine pattern is formed on the substrate surface, an operation for flattening the substrate surface is required.
 平坦化剤が液体である場合、図7に示されるような通常のやり方で平坦化剤160を塗布すると、上述の通り、モールド外周面外側部分に平坦化剤161の液溜162が発生してしまう。そしてモールド外周面120の平坦化が確保されたとしても、今度は回転式モールド11全体の平行度が失われてしまうことになる。 When the flattening agent is liquid, when the flattening agent 160 is applied in a normal manner as shown in FIG. 7, a liquid reservoir 162 of the flattening agent 161 is generated on the outer peripheral surface of the mold as described above. End up. And even if the flatness of the mold outer peripheral surface 120 is ensured, the parallelism of the entire rotary mold 11 will be lost.
(平坦化剤収容用孔の形成) 
 そこで本実施形態においては、図3に示されるように、平坦化剤61を基材表面に塗布する前に、モールド基材2に平坦化剤収容用開放孔5を設ける工程を行う。なお、図3において(a)はモールド基材2および液溜解消部41と平坦化剤61とを×点にて接触させた際の図であり、(b)は(a)からさらにモールド基材2を回転させた際の図であり、(c)は(b)からさらにモールド基材2を回転させた際の図である。また、(a-1)(b-1)(c-1)はモールド基材2の、回転軸方向に垂直な断面図のうち、平坦化剤と接触している部分の概略断面図であり、(a-2)(b-2)(c-2)はモールド基材2の回転軸方向断面図である。
(Formation of flattening agent accommodation hole)
Therefore, in the present embodiment, as shown in FIG. 3, the step of providing the flattening agent accommodating opening 5 in the mold base 2 is performed before applying the flattening agent 61 to the surface of the base. In FIG. 3, (a) is a view when the mold base 2 and the liquid reservoir eliminating part 41 and the flattening agent 61 are brought into contact at the point x, and (b) is a mold base further from (a). It is a figure at the time of rotating the material 2, (c) is a figure at the time of rotating the mold base material 2 further from (b). (A-1), (b-1), and (c-1) are schematic cross-sectional views of a portion of the mold base 2 that is in contact with the planarizing agent in the cross-sectional view perpendicular to the rotation axis direction. (A-2), (b-2), and (c-2) are cross-sectional views of the mold base 2 in the direction of the rotation axis.
 この平坦化剤収容用開放孔5は、具体的には図2に示されるように設けられている。すなわち、前記回転軸3の方向において、モールド中央部からモールド第1および第2端面21,22へ向かう方向を外側方向、モールド第1および第2端面21,22からモールド中央部へ向かう方向を内側方向とすると、前記モールド第1端面21の外側方向に第1液溜解消部41を設け、前記モールド第2端面22の外側方向に第2液溜解消部42を設け、前記第1液溜解消部41と前記モールド第1端面21との間、および、前記第2液溜解消部42と前記モールド第2端面22との間に平坦化剤収容用開放孔5を形成している(以降、平坦化剤収容用開放孔5のことを単に開放孔5ともいう。また、第1および第2液溜解消部をまとめて液溜解消部4ともいう)。 The opening 5 for accommodating the leveling agent is specifically provided as shown in FIG. That is, in the direction of the rotary shaft 3, the direction from the mold center to the mold first and second end faces 21, 22 is the outer direction, and the direction from the mold first and second end faces 21, 22 to the mold center is the inner side. Direction, the first liquid reservoir eliminating portion 41 is provided on the outer side of the mold first end surface 21, and the second liquid reservoir eliminating portion 42 is provided on the outer side of the mold second end surface 22, thereby eliminating the first liquid reservoir. The flattening agent accommodating open hole 5 is formed between the portion 41 and the mold first end surface 21 and between the second liquid reservoir eliminating portion 42 and the mold second end surface 22 (hereinafter, The flattening agent accommodating open hole 5 is also simply referred to as an open hole 5. The first and second liquid reservoir eliminating parts are also collectively referred to as a liquid reservoir eliminating part 4).
 図3において、この開放孔5をモールド外周面外側部分に設けることにより(図3(a-1)(a-2))、平坦化剤61の液溜62がモールド外周面外側部分に発生したとしても(図3(b-1)(b-2))、モールド外周面外側部分の液溜62直近に形成された開放孔5が毛細管の役割を果たし、余分な液溜62を隙間内に引き込むことができる(図3(c-1)(c-2))。 In FIG. 3, by providing this open hole 5 in the outer part of the outer peripheral surface of the mold (FIGS. 3 (a-1) and (a-2)), a liquid reservoir 62 of the flattening agent 61 is generated in the outer part of the outer peripheral surface of the mold. (FIGS. 3 (b-1) and (b-2)), the open hole 5 formed near the liquid reservoir 62 on the outer peripheral surface of the mold serves as a capillary, and the excess liquid reservoir 62 is placed in the gap. It can be pulled in (FIGS. 3 (c-1) and (c-2)).
 この時、前記液溜解消部4は、その後の工程に耐えられる素材であれば従来のものでも良いが、工程管理を容易にするためにはモールド基材2と同一材料であることが好ましい。
 また前記液溜解消部4は、前記モールド基材2とは別に用意した部材であってもよいし、モールド基材2および/または回転軸3に対して一体に設けられていてもよい(図5(a))。別に用意した部材の方が、他の回転式モールドに使用できる点、前記開放孔5の大きさを調節できる点、前記開放孔5に収容した平坦化剤を洗浄により除去しやすいという点では好ましい。一方、液溜解消部4の部材をわざわざ準備しなくとも済むという点では、一体に設けられていた方が好ましい。なお、第1液溜解消部をモールド基材2と別体、第2液溜解消部をモールド基材2と一体として設けてもよい。本実施形態においては、前記第1および第2液溜解消部41,42両方がモールド基材2とは別に用意した部材である場合について説明する。
At this time, the liquid reservoir eliminating unit 4 may be a conventional material as long as it can withstand subsequent processes, but is preferably the same material as the mold base 2 in order to facilitate process management.
Further, the liquid reservoir eliminating unit 4 may be a member prepared separately from the mold base 2 or may be provided integrally with the mold base 2 and / or the rotary shaft 3 (see FIG. 5 (a)). The member prepared separately is preferable in that it can be used for other rotary molds, the size of the open hole 5 can be adjusted, and the flattening agent accommodated in the open hole 5 can be easily removed by washing. . On the other hand, it is preferable that the liquid reservoir eliminating unit 4 is integrally provided in that the member need not be prepared. Note that the first liquid reservoir elimination section may be provided separately from the mold base 2 and the second liquid reservoir elimination section may be provided integrally with the mold base 2. In the present embodiment, a case will be described in which both the first and second liquid pool eliminating portions 41 and 42 are members prepared separately from the mold base 2.
 また、前記液溜解消部4は、回転式モールド1の外径(すなわち円筒形モールド基材2の外径)よりも小さな外径を有する。こうすることにより、円筒形モールド基材2と液溜解消部4との外径差に起因して、モールド端面21の外周部分に平坦化剤61が付着したとしても、付着した平坦化剤61の直近にはいわば毛細管となる開放孔5が存在することになる。その結果、液溜62を形成するはずの平坦化剤61を効率よく開放孔5に収容することができる。なお、閉孔だと毛細管現象を引き起こすことができない。そのため本実施形態では、少なくとも平坦化剤61と孔とが接触して液溜62を解消するまでは開放系の孔となるようにしている。 Further, the liquid pool elimination unit 4 has an outer diameter smaller than the outer diameter of the rotary mold 1 (that is, the outer diameter of the cylindrical mold base 2). By doing so, even if the flattening agent 61 adheres to the outer peripheral portion of the mold end surface 21 due to the difference in outer diameter between the cylindrical mold base 2 and the liquid reservoir eliminating portion 4, the attached flattening agent 61 In the immediate vicinity, there is an open hole 5 that becomes a capillary tube. As a result, the leveling agent 61 that should form the liquid reservoir 62 can be efficiently accommodated in the open hole 5. In addition, if it is a closed hole, capillary action cannot be caused. For this reason, in this embodiment, at least the flattening agent 61 and the hole come into contact with each other and the liquid reservoir 62 is eliminated so that the hole becomes an open system.
 なお、円筒形モールド基材2の外径と液溜解消部4の外径との差は、0より大きく0.6mm以下であることが好ましい。半径ベースとすると、円筒形モールド基材2の半径と液溜解消部4の最大半径との差は、0より大きく0.3mm以下であることが好ましい。半径差がこの範囲にあれば、モールド端面21に付着する平坦化剤62の量を必要以上とすることがなく、平坦化剤61を無理なく開放孔5に収容することができるためである。  In addition, it is preferable that the difference between the outer diameter of the cylindrical mold base material 2 and the outer diameter of the liquid pool elimination part 4 is larger than 0 and 0.6 mm or less. When the radius is based, the difference between the radius of the cylindrical mold base 2 and the maximum radius of the liquid pool elimination portion 4 is preferably greater than 0 and 0.3 mm or less. This is because, if the radius difference is within this range, the amount of the leveling agent 62 adhering to the mold end surface 21 is not excessive, and the leveling agent 61 can be accommodated in the open hole 5 without difficulty. *
 さらに、別体の液溜解消部4を着脱自在なリング形状部材としてもよい(以降、リング形状部材についても符号4を付与する)。こうすることによって、このリング形状部材4を回転軸3に嵌め込み、回転軸3方向の開放孔5の幅を調節するだけで、所望の平坦化剤収容用開放孔5を形成することができる(以降、この平坦化剤収容用開放孔5の具体例として、溝を用いた場合について説明する関係上、この溝にも符号5を付与する)。 Furthermore, the separate liquid reservoir eliminating portion 4 may be a detachable ring-shaped member (hereinafter, reference numeral 4 is also given to the ring-shaped member). By doing so, it is possible to form the desired flattening agent accommodating opening hole 5 simply by fitting the ring-shaped member 4 into the rotating shaft 3 and adjusting the width of the opening hole 5 in the direction of the rotating shaft 3 ( Hereinafter, as a specific example of the flattening agent-accommodating open hole 5, a reference numeral 5 is also given to this groove for the purpose of explaining the case where the groove is used).
 これに加え、別体の液溜解消部4がリング形状部材4の場合、同径の薄厚リング形状部材4を複数設け、各々の間に隙間を設けつつ、液溜解消部としてもよい(図5(b))。これにより、例えモールド端面21に付着した平坦化剤61を、モールド端面21とリング形状部材4との隙間に収容しきれなくとも、液溜解消部4に設けられた他の隙間に収容することができるためである。この「他の隙間」は、できるだけモールド外周面外側部分の近くに形成されるのが好ましい。つまり、厚みが小さいリング形状部材4を内側方向には数多く重ね、厚みが大きいリング形状部材4を外側方向に少数重ねるのが好ましい。つまり、モールド端面21に近い場所に、毛細管となる隙間を数多く形成するのが好ましい。この際、各々のリング形状部材4の厚みを内側方向から外側方向に徐々に増やしてもよい。 In addition to this, when the separate liquid reservoir eliminating portion 4 is the ring-shaped member 4, a plurality of thin ring-shaped members 4 having the same diameter may be provided, and a clearance may be provided between them, thereby forming the liquid reservoir eliminating portion (see FIG. 5 (b)). Thereby, even if the flattening agent 61 adhering to the mold end surface 21 cannot be accommodated in the gap between the mold end surface 21 and the ring-shaped member 4, the flattening agent 61 is accommodated in another gap provided in the liquid reservoir eliminating portion 4. It is because it can do. This “other gap” is preferably formed as close as possible to the outer portion of the outer peripheral surface of the mold. That is, it is preferable that a large number of ring-shaped members 4 having a small thickness are stacked in the inner direction and a small number of ring-shaped members 4 having a large thickness are stacked in the outer direction. That is, it is preferable to form a large number of gaps that become capillaries at a location close to the mold end surface 21. At this time, the thickness of each ring-shaped member 4 may be gradually increased from the inner side to the outer side.
 一方、別体の液溜解消部4がリング形状部材の場合、異なる径の薄厚リング形状部材4を複数設けて液溜解消部としてもよい(図5(c))。具体的には、モールド端面21と密着固定させるように小径のリング形状部材4aを回転軸3に嵌め込み、次に、小径のリング形状部材4aと密着固定させるように大径のリング形状部材4bを回転軸3に嵌め込む。こうすることにより、径の差に起因して溝5が形成される。その結果、所望の幅かつ所望の深さの溝5を形成することができ、ひいては平坦化剤61の収容量を調整することができる。さらには、3個以上のリング形状部材4を用いて、溝5の幅を多段式に変化させても構わない。
 なお、上記では複数のリング形状部材4によって溝5を形成しているが、径が異なる部分を有する単一のリング形状部材4をモールド端面21に密着固定させても構わない。
On the other hand, when the separate liquid reservoir eliminating portion 4 is a ring-shaped member, a plurality of thin ring-shaped members 4 having different diameters may be provided as the liquid reservoir eliminating portion (FIG. 5C). Specifically, the small-diameter ring-shaped member 4a is fitted into the rotary shaft 3 so as to be closely fixed to the mold end surface 21, and then the large-diameter ring-shaped member 4b is closely fixed to the small-diameter ring-shaped member 4a. Fit into the rotating shaft 3. By doing so, the grooves 5 are formed due to the difference in diameter. As a result, the groove 5 having a desired width and a desired depth can be formed, and the accommodation amount of the leveling agent 61 can be adjusted. Furthermore, the width of the groove 5 may be changed in a multistage manner by using three or more ring-shaped members 4.
In the above description, the grooves 5 are formed by the plurality of ring-shaped members 4, but a single ring-shaped member 4 having portions having different diameters may be tightly fixed to the mold end surface 21.
 また、ここまでの説明においては中空の円筒形モールドを貫通するように回転軸3を設置する場合、そして回転軸3が円筒形モールドと一体となった場合について記載した。その一方で、回転軸の項目で先述したのと同様、図5(d)に示すように、リング形状部材4の外側方向外周面を保持するように回転装置3aが設置されていてもよい。仮に、モールド基材2とリング形状部材4が中空である場合、リング形状部材4のドーナツ状外周面において、回転装置3aと固定してもよい。 In the description so far, the case where the rotary shaft 3 is installed so as to penetrate the hollow cylindrical mold and the case where the rotary shaft 3 is integrated with the cylindrical mold have been described. On the other hand, as described above in the item of the rotation axis, as shown in FIG. 5D, the rotation device 3a may be installed so as to hold the outer peripheral surface of the ring-shaped member 4 in the outer direction. If the mold base 2 and the ring-shaped member 4 are hollow, the doughnut-shaped outer peripheral surface of the ring-shaped member 4 may be fixed to the rotating device 3a.
 これ以外のリング形状部材4としては、モールド外側方向に向けて外径を小さくしてもよい(図5(e))。こうすることにより、リング形状部材4において平坦化剤61が接触する部分はモールド端面21付近のみになる。そうなれば、リング形状部材4に付着する平坦化剤61の総量を減らすことができる。その結果、リング形状部材4に付着した平坦化剤61によって開放孔5の収容量をオーバーしてしまうこともなく、モールド外周面外側部分の液溜62のみを開放孔5に効率よく収容することができる。 As other ring-shaped members 4, the outer diameter may be reduced toward the outer side of the mold (FIG. 5 (e)). By doing so, the portion of the ring-shaped member 4 with which the flattening agent 61 contacts is only in the vicinity of the mold end surface 21. If it becomes so, the total amount of the planarizing agent 61 adhering to the ring-shaped member 4 can be reduced. As a result, it is possible to efficiently accommodate only the liquid reservoir 62 on the outer peripheral surface of the mold in the open hole 5 without causing the capacity of the open hole 5 to be exceeded by the leveling agent 61 attached to the ring-shaped member 4. Can do.
 次に、開放孔5について述べる。上述のように、液溜解消部4としてリング形状部材4を用いると、開放孔5は溝形状となる。本実施形態においては、液溜解消部4としてリング形状部材4を用いるのが好ましいと同時に、開放孔5が溝形状であることもまた好ましい。単なる穴形状に比べて溝形状であれば、平坦化剤61の収容量が多くなるためである。 Next, the opening hole 5 will be described. As described above, when the ring-shaped member 4 is used as the liquid reservoir eliminating portion 4, the open hole 5 has a groove shape. In the present embodiment, it is preferable to use the ring-shaped member 4 as the liquid reservoir eliminating portion 4, and it is also preferable that the open hole 5 has a groove shape. This is because the accommodation amount of the flattening agent 61 is increased if the groove shape is formed in comparison with the simple hole shape.
 この溝5における、前記第1液溜解消部41と前記モールド第1端面21との間、および、前記第2液溜解消部42と前記モールド第2端面22との間の距離は0.5mm以下であるのが好ましく、さらに好ましくは0.2mm以下である。
 さらに、液滴解消部4の外周から見たときの前記溝5の深さは1.7mm以上かつ前記レジスト層9外周面から前記回転軸3までの距離未満、さらに実績として好ましいのは1.7mm以上1.9mm以下である。
In this groove 5, the distance between the first liquid reservoir eliminating portion 41 and the mold first end surface 21 and the distance between the second liquid reservoir eliminating portion 42 and the mold second end surface 22 are 0.5 mm. Or less, more preferably 0.2 mm or less.
Further, the depth of the groove 5 when viewed from the outer periphery of the droplet elimination portion 4 is 1.7 mm or more and less than the distance from the outer peripheral surface of the resist layer 9 to the rotating shaft 3. It is 7 mm or more and 1.9 mm or less.
 また、開放孔5が溝形状の場合、具体的には様々な溝形状が考えられる。具体的には、回転軸3部分以外のモールド端面21全面に対応する部分に溝5を設けるのではなく、その一部にのみ開放系の溝5を設けることも好ましい(図4(a))。さらには、溝5の幅をモールド外周面側から徐々に回転軸側に向けて、連続的または段差的に変化させても良い(図5(f)(g))。さらに、モールド端面21と対向する液溜解消部4の端部に丸みをつけたり(図5(h))、逆に開放孔5入り口付近を鋭角にしたりしてもよい(図5(e))。 Further, when the open hole 5 has a groove shape, various groove shapes can be considered. Specifically, it is preferable not to provide the groove 5 in a portion corresponding to the entire surface of the mold end surface 21 other than the rotary shaft 3 portion, but to provide the open-type groove 5 only in a part thereof (FIG. 4A). . Furthermore, the width of the groove 5 may be changed continuously or stepwise from the outer peripheral surface side of the mold gradually toward the rotating shaft side (FIGS. 5F and 5G). Furthermore, the end of the liquid reservoir eliminating part 4 facing the mold end surface 21 may be rounded (FIG. 5 (h)), or conversely, the vicinity of the opening of the open hole 5 may be made acute (FIG. 5 (e)). .
 なお、溝5以外の開放孔5の形状としては、回転軸3とモールド基材2が一体になっている場合は、直線状の貫通孔であってもよい(図4(b))。ただ、モールド基材2を回転させている間に平坦化剤61をムラ無く収容するために、孔が穴形状の場合は、複数の開放孔5を均等に設けるのが好ましい。一方、回転軸3とモールド基材2が別体になっている場合、すなわち中空のモールド基材2の場合は、中空部分に沿って円周状に開放孔5を設け、さらにその円周状の開放孔5から放射状に外周に向けて貫通孔を設けるのも好ましい。 The shape of the open hole 5 other than the groove 5 may be a linear through hole when the rotary shaft 3 and the mold base 2 are integrated (FIG. 4B). However, in order to accommodate the flattening agent 61 evenly while rotating the mold base 2, it is preferable to provide the plurality of open holes 5 evenly when the holes are hole-shaped. On the other hand, when the rotating shaft 3 and the mold base 2 are separate, that is, in the case of the hollow mold base 2, the open holes 5 are provided circumferentially along the hollow portion, and the circumferential shape thereof is further provided. It is also preferable to provide through holes radially from the open hole 5 toward the outer periphery.
(平坦化剤の塗布) 
 本実施形態においては、前記平坦化剤収容用開放孔5を形成した後、図1(b)や図2,図3に示すように、前記モールド外周面20の一部ならびに前記第1および第2液溜解消部41,42の一部に前記平坦化剤60を塗布する。以下、この工程について詳述する。
(Application of leveling agent)
In this embodiment, after forming the flattening agent accommodating opening 5, as shown in FIG. 1B, FIG. 2, and FIG. 3, a part of the mold outer peripheral surface 20 and the first and first The flattening agent 60 is applied to a part of the two liquid reservoir eliminating portions 41 and 42. Hereinafter, this process will be described in detail.
 まず、平坦化剤60の選定を行う。この平坦化剤60としては、従来使用される液体状の平坦化膜化剤が挙げられるが、具体的にはポリシラザン、メチルシロキサン、金属アルコキシドなどが挙げられる。 First, the leveling agent 60 is selected. Examples of the flattening agent 60 include conventionally used liquid flattening film forming agents, and specific examples thereof include polysilazane, methylsiloxane, and metal alkoxide.
 さらに、平坦化剤60の粘度が好ましい範囲にあれば、粘度が低すぎて平坦化剤60が泡立つ事も少なく、粘度が高すぎて開放孔5に収容されないことも少なくなる。この粘度の範囲については、本発明者が鋭意検討中である。 Furthermore, if the viscosity of the leveling agent 60 is within a preferable range, the viscosity is too low and the leveling agent 60 is less likely to foam, and the viscosity is too high to be not accommodated in the open holes 5. The inventor is intensively studying the range of this viscosity.
 次に、本実施形態においては、回転軸3を水平にした状態でモールド基材2を保持し、モールド基材2下方に平坦化剤60入り容器を用意する。その後、モールド基材2を下方に降ろし、前記モールド基材2および前記液溜解消部4の外周面の一部と平坦化剤60とを接触させる。このとき、モールド基材2のみを平坦化剤60に接触させるのではなく、液溜解消部4についても平坦化剤60に接触させる。そしてモールド基材2および液溜解消部4の一部を平坦化剤60に浸漬させる。液溜解消部4の外周に平坦化剤61が付着する程度にモールド基材2を平坦化剤60に浸漬させることによって、モールド基材2の回転により平坦化剤60からモールド基材2が離れた後でも開放孔5に平坦化剤60が接触していることになる。そのため、開放孔5に平坦化剤60が接触していない場合に比べて、効率よく平坦化剤60を開放孔5に収容することができる。また、モールド基材2における平坦化剤60への浸漬の深さは、0.2mm~0.3mmが特に好ましい。この範囲の深さで浸漬すれば、浸漬が浅すぎて開放孔5に平坦化剤60が接触しないこともなく、また浸漬が深すぎて液溜62を解消する前に平坦化剤61の収容量がオーバーしてしまうこともない。 Next, in this embodiment, the mold base 2 is held in a state where the rotary shaft 3 is horizontal, and a container containing the flattening agent 60 is prepared below the mold base 2. Thereafter, the mold base material 2 is lowered, and the mold base material 2 and part of the outer peripheral surface of the liquid reservoir eliminating portion 4 are brought into contact with the planarizing agent 60. At this time, not only the mold base 2 is brought into contact with the flattening agent 60 but also the liquid reservoir eliminating portion 4 is brought into contact with the flattening agent 60. Then, a part of the mold base 2 and the liquid reservoir eliminating part 4 is immersed in the flattening agent 60. By immersing the mold base material 2 in the flattening agent 60 to such an extent that the flattening agent 61 adheres to the outer periphery of the liquid pool elimination unit 4, the mold base material 2 is separated from the flattening agent 60 by the rotation of the mold base material 2. Even after this, the flattening agent 60 is in contact with the open hole 5. Therefore, the flattening agent 60 can be efficiently accommodated in the open hole 5 as compared with the case where the flattening agent 60 is not in contact with the open hole 5. Further, the immersion depth in the leveling agent 60 in the mold base 2 is particularly preferably 0.2 mm to 0.3 mm. If immersed in a depth within this range, the flattening agent 60 does not come into contact with the opening 5 because the immersion is too shallow, and the flattening agent 61 is accommodated before the immersion is so deep that the liquid reservoir 62 is eliminated. The amount does not exceed.
 ここで、平坦化剤60に対して、モールド基材2および液溜解消部4を回転軸方向に対して平行に接触させている。平行に接触させることにより、モールド基材2および液溜解消部4における浸漬部分がモールド第1端面21側とモールド第2端面22側とで相違することを防止することができる。その結果、平坦化剤61の塗布にムラを生じさせないことになる。 Here, the mold base 2 and the liquid reservoir eliminating portion 4 are brought into contact with the planarizing agent 60 in parallel to the rotation axis direction. By making it contact in parallel, it can prevent that the immersion part in the mold base material 2 and the liquid reservoir elimination part 4 differs in the mold 1st end surface 21 side and the mold 2nd end surface 22 side. As a result, unevenness is not generated in the application of the leveling agent 61.
 このように、平坦化剤60とモールド基材2と、さらには液溜解消部4とを前記回転軸3方向に対して平行に接触させた状態で前記モールド基材2を回転して、前記モールド外周面20に前記平坦化剤61を塗布する。
 このときの回転速度および回転数は、平坦化剤61をモールド基材2に十分塗布することができ、また、開放孔5が毛細管現象を発揮できる程度に、平坦化剤61によって充填されつつ平坦化剤61の収容を行うことができるように設定する。
As described above, the mold base 2 is rotated in a state in which the leveling agent 60, the mold base 2, and further the liquid pool elimination portion 4 are in contact with each other in the direction of the rotation axis 3, The planarizing agent 61 is applied to the outer peripheral surface 20 of the mold.
The rotation speed and rotation speed at this time are flat while being filled with the flattening agent 61 to such an extent that the flattening agent 61 can be sufficiently applied to the mold substrate 2 and the open holes 5 can exhibit capillary action. It sets so that accommodation of the agent 61 can be performed.
 なお、平坦化剤60の液面とモールド基材2とは平行であるのが好ましい。そのため、平坦化剤60とモールド基材2とを接触させる前に、液溜解消部4を設けておき、不要な液面の揺動を起こさないのが好ましい。 In addition, it is preferable that the liquid level of the leveling agent 60 and the mold base 2 are parallel. For this reason, it is preferable that the liquid reservoir eliminating unit 4 is provided before the flattening agent 60 and the mold base 2 are brought into contact with each other so as not to cause unnecessary fluctuation of the liquid surface.
(開放孔への平坦化剤の収容) 
 そして前記塗布工程開始後、上述のように、モールド外周面外側部分の液溜62を前記平坦化剤収容用開放孔5に収容する(図3(c-1)(c-2))。繰り返しになるが、このように開放孔5を設けることにより、モールド端面21の外周部分に平坦化剤61が付着して遠心力、重力、基材の表面エネルギーさらには平坦化剤61の表面張力によりモールド外周面外側部分に液溜62が形成されたとしても、この開放孔5が毛細管としての役割を果たし、開放孔5内に余分な液溜62を収容することができる。
(Accommodating flattening agent in open hole)
After the application step is started, as described above, the liquid reservoir 62 on the outer peripheral surface of the mold is accommodated in the flattening agent accommodating opening 5 (FIGS. 3 (c-1) and 3 (c-2)). Again, by providing the open holes 5 in this manner, the flattening agent 61 adheres to the outer peripheral portion of the mold end surface 21, and centrifugal force, gravity, the surface energy of the base material, and the surface tension of the flattening agent 61 are obtained. Thus, even if the liquid reservoir 62 is formed on the outer peripheral surface of the mold, the open hole 5 serves as a capillary tube, and the excess liquid reservoir 62 can be accommodated in the open hole 5.
 なお、上記のような平坦化剤61の塗布が終われば、モールド基材2を平坦化剤61から離す。そして、モールド基材2を回転させながら平坦化剤61を乾燥させる。こうして平坦化剤61が乾燥するまで、開放孔への平坦化剤61の収容は続く(図1(c))。 In addition, when the application of the flattening agent 61 as described above is finished, the mold base 2 is separated from the flattening agent 61. Then, the planarizing agent 61 is dried while rotating the mold base 2. The flattening agent 61 continues to be accommodated in the open holes until the flattening agent 61 is dried (FIG. 1C).
(微細パターンの形成) 
 本実施形態においては、上述のように塗布された平坦化剤61の上に、密着層7、微細パターン形成用層8、レジスト層9をこの順に積層する(図1(d))。その後、レジスト層9に対して電子ビーム露光を行い、エッチング処理を行う(図1(e)(f))。これにより、モールド基材2上にある微細パターン形成用層8に対して微細パターンを形成する(図1(g))。
(Formation of fine pattern)
In the present embodiment, the adhesion layer 7, the fine pattern forming layer 8, and the resist layer 9 are laminated in this order on the planarizing agent 61 applied as described above (FIG. 1D). Thereafter, the resist layer 9 is subjected to electron beam exposure and etching is performed (FIGS. 1E and 1F). Thus, a fine pattern is formed on the fine pattern forming layer 8 on the mold base 2 (FIG. 1G).
 まず、平坦化剤61の上に設けられる密着層7についてであるが、これは、微細パターン形成用層8と、平坦化剤からなる層ひいてはモールド基材2とを接着させるためのものである。密着層7として用いられるものならばどのような物質でもよいが、好ましくはアモルファスシリコン層である。なお、平坦化剤61上に微細パターン形成用層8を形成する際に良好に接着することができるならば、密着層7を設けなくともよい。本実施形態においては、平坦化剤61の上に密着層7を設けた場合について説明する。 First, regarding the adhesion layer 7 provided on the flattening agent 61, this is for bonding the fine pattern forming layer 8 and the layer made of the flattening agent, and thus the mold substrate 2. . Any material can be used as long as it is used as the adhesion layer 7, but an amorphous silicon layer is preferable. Note that the adhesion layer 7 may not be provided as long as the fine pattern forming layer 8 can be satisfactorily adhered on the planarizing agent 61. In the present embodiment, a case where the adhesion layer 7 is provided on the planarizing agent 61 will be described.
 次に、密着層7の上に設けられる微細パターン形成用層8についてであるが、微細パターン形成用層8として用いられるものならばどのような物質でもよい。その中でも、エッチング加工性およびオートフォーカス制御のしやすさから、酸化クロム層(CrOx)であることが好ましい。
 さらには、オートフォーカスの制御性を高めるため、CrO層の代わりにアモルファスカーボン層を設けてもよい。アモルファスカーボン層だと、酸化クロム層ほど高い透明性を有さないが故に、レジスト層9への微細パターンの描画の際に、モールド基材2に焦点が合ってしまうということを防止することができる。
Next, regarding the fine pattern forming layer 8 provided on the adhesion layer 7, any substance may be used as long as it can be used as the fine pattern forming layer 8. Among them, a chromium oxide layer (CrOx) is preferable from the viewpoint of etching processability and ease of autofocus control.
Furthermore, an amorphous carbon layer may be provided in place of the CrO layer in order to improve the autofocus controllability. Since the amorphous carbon layer is not as transparent as the chromium oxide layer, it is possible to prevent the mold base 2 from being in focus when drawing a fine pattern on the resist layer 9. it can.
 その後、図1(d)に示すように、微細パターン形成用層8に電子ビーム露光用のレジスト層9を塗布する。電子ビーム露光用のレジスト層9としては、熱変化によって状態変化する感熱材料であって、その後のエッチング工程に適するものであってもよい。また、感光材料であってもよい。このとき、組成傾斜させた酸化タングステン(WOx)からなる無機レジスト層であれば、解像度向上という点からなお好ましい。 Thereafter, as shown in FIG. 1D, a resist layer 9 for electron beam exposure is applied to the fine pattern forming layer 8. The resist layer 9 for electron beam exposure may be a heat-sensitive material whose state changes due to a heat change, and may be suitable for the subsequent etching process. Further, a photosensitive material may be used. At this time, an inorganic resist layer made of tungsten oxide (WOx) having a composition gradient is still preferable from the viewpoint of improving the resolution.
 その後、描画済みのレジスト層9を有するモールド基材2に対して露光・現像を行うことにより、図1(e)に示すように、所望の微細パターン(すなわち最終的に得られる製品に形成された微細パターンに対して反転したパターン)を有するレジスト層9が得られる。 Thereafter, the mold base 2 having the drawn resist layer 9 is exposed and developed to form a desired fine pattern (that is, a finally obtained product) as shown in FIG. A resist layer 9 having a pattern reversed with respect to the fine pattern is obtained.
 上述のようにレジスト層9に微細パターンを施した後、このレジスト層9をエッチングマスクとして、微細パターン形成用層8に対してエッチング加工を行う。これにより、円筒形モールド基材2に対して、微細パターンが形成された微細パターン形成用層8を形成することができる。このエッチング加工は従来の手法を用いればよい。たとえば、塩素ガスおよび酸素ガスによるドライエッチングが挙げられる。
 このエッチング加工により、図1(f)に示すように、所望の微細パターンを有するレジスト層9付きモールド基材2が得られる。
After applying a fine pattern to the resist layer 9 as described above, the fine pattern forming layer 8 is etched using the resist layer 9 as an etching mask. Thereby, the fine pattern forming layer 8 on which the fine pattern is formed can be formed on the cylindrical mold base 2. This etching process may use a conventional method. For example, dry etching with chlorine gas and oxygen gas can be mentioned.
By this etching process, as shown in FIG.1 (f), the mold base material 2 with the resist layer 9 which has a desired fine pattern is obtained.
 このレジスト層9付きモールド基材2に対し、純水洗浄、イソプロパノールによる蒸気乾燥を行ってレジスト層9を除去する。これにより、図1(g)に示すように、モールド外周面20に所望の微細パターンが転写された回転式モールド1を作製することができる。 The resist substrate 9 with the resist layer 9 is subjected to pure water washing and vapor drying with isopropanol to remove the resist layer 9. As a result, as shown in FIG. 1G, the rotary mold 1 in which a desired fine pattern is transferred to the outer peripheral surface 20 of the mold can be produced.
 なお、このときの微細パターンとは、ナノオーダーからマイクロオーダーまでの範囲のパターンであってもよいが、数nm~数100nmのナノオーダーの周期構造であれば、なおよい。具体的な例を挙げるとすれば、ライン・アンド・スペースのパターンや、複数の微細な凹凸からなっている微細突起構造である。その断面形状としては、1次元周期構造の場合、三角、台形、四角等が挙げられる。2次元周期構造の場合、微細突起の形状は、正確な円錐(母線が直線)や角錐(稜線が直線)のみならず、インプリント後の抜き取りを考慮して先細りとなっている限り、母線や稜線形状が曲線をなし、側面が外側に膨らんだ曲面であるものであってもよい。具体的な形状としては、釣り鐘、円錐、円錐台、円柱等が挙げられる。以降、この周期構造における周期をピッチともいい、微細突起頂点間の距離を示す。
 さらには、成形性や耐破損性を考慮して、先端部を平坦にしたり、丸みをつけたりしてもよい。さらに、この微細突起は一方向に対して連続的な微細突起を作製してもよい。
Note that the fine pattern at this time may be a pattern in a range from nano-order to micro-order, but more preferably a nano-order periodic structure of several nm to several hundred nm. Specific examples are a line-and-space pattern and a fine protrusion structure composed of a plurality of fine irregularities. Examples of the cross-sectional shape include a triangle, a trapezoid, and a square in the case of a one-dimensional periodic structure. In the case of a two-dimensional periodic structure, the shape of the fine protrusions is not limited to an accurate cone (bus line is straight) or pyramid (ridge line is straight), as long as it is tapered in consideration of extraction after imprinting. The ridgeline shape may be a curved surface with a side surface bulging outward. Specific examples include a bell, a cone, a truncated cone, and a cylinder. Hereinafter, the period in this periodic structure is also referred to as a pitch, and indicates the distance between the fine protrusion vertices.
Furthermore, the tip portion may be flattened or rounded in consideration of moldability and breakage resistance. Furthermore, this fine protrusion may produce a continuous fine protrusion with respect to one direction.
 以上のように、本実施形態に係るインプリント用回転式モールドが構成されたことから、上記実施の形態によれば次の効果を奏する。
 モールド端面直近に微小な開放孔を設けておく。そうすることにより、平坦化剤の液溜がモールド外周面外側部分に発生したとしても、液溜直近に位置するこの隙間が毛細管の役割を果たし、余分な液溜を隙間内に引き込むことができる。これにより、余分な液溜による盛り上がりの発生を防止でき、モールド外周面外側部分における盛り上がりが解消される。その結果、良好な平行度を有するインプリント用回転式モールドを製造することができる。
As described above, since the imprint rotary mold according to the present embodiment is configured, the following effects can be obtained according to the above embodiment.
A minute open hole is provided in the immediate vicinity of the mold end face. By doing so, even if a liquid reservoir of the flattening agent is generated in the outer peripheral surface of the mold, this gap located in the immediate vicinity of the liquid reservoir serves as a capillary tube, and the excess liquid reservoir can be drawn into the gap. . As a result, the occurrence of swell due to an excessive liquid reservoir can be prevented, and the swell at the outer peripheral surface of the mold is eliminated. As a result, an imprint rotary mold having good parallelism can be manufactured.
 なお、発明の技術的思想から逸脱しない範囲であれば、上述の技術はモールド外周面外側部分に液溜が発生するものについて応用できる。具体的には、平坦化剤以外でもレジスト層形成のためなどの一般的な塗布剤についても応用できる。 In addition, as long as it does not deviate from the technical idea of the invention, the above-described technique can be applied to the case where a liquid reservoir is generated on the outer peripheral surface of the mold. Specifically, in addition to the flattening agent, a general coating agent for forming a resist layer can be applied.
<実施の形態2>
 本実施形態においては、実施の形態1のレジスト層9の利用により回転式モールド1を作製する方法とは別に、アモルファスカーボン層に対する直接描画により回転式モールド1を作製する方法について述べる。この方法においては、被転写材に最終的に微細パターン(例えば凸部)を設け、かつ回転式モールド1に対しては凹部を設けるために、レーザー描画装置や電子ビーム描画装置などで所定の微細パターンを描画する。
<Embodiment 2>
In the present embodiment, a method for producing the rotary mold 1 by direct drawing on the amorphous carbon layer will be described separately from the method for producing the rotary mold 1 by using the resist layer 9 of the first embodiment. In this method, in order to finally provide a fine pattern (for example, a convex portion) on the material to be transferred and to provide a concave portion for the rotary mold 1, a predetermined fine pattern is obtained by a laser drawing apparatus or an electron beam drawing apparatus. Draw a pattern.
 本実施形態において回転式モールド1を作製する具体的な手順としては、集光レンズ、または最表面にアモルファスカーボン層を有するモールド基材2そのものを移動させ、アモルファスカーボン層表面にレーザーの焦点を合わせた状態でレーザーを照射し、被転写物表面に設ける微細突起用の未貫通穴である凹部の加工を行う。これにより、最終的には被転写物表面の微細突起となる凹部を作製することができる。それに加え、アスペクト比の高い針状体を作製する場合には、凹部の底部にレーザーの焦点位置が一致するように、集光レンズとアモルファスカーボン層表面との位置を相対的に移動させ、あるいは凹部の底部に固定しつつ、焦点距離の異なる集光レンズを用いて再度レーザーを照射し加工を行ってもよい。このように、焦点位置を変更し、2段階の加工を行うことで、より穴の深さと径とのアスペクト比が高い順テーパ形状の凹部を作製することができる。
 さらに、レーザーを照射した際にアモルファスカーボン層表面に付着する石英のカケラを除去するために洗浄を行うのが好ましい。
In this embodiment, as a specific procedure for producing the rotary mold 1, the condenser lens or the mold base 2 itself having an amorphous carbon layer on the outermost surface is moved, and the laser is focused on the surface of the amorphous carbon layer. In this state, a laser is irradiated to process a recess that is a non-through hole for a fine protrusion provided on the surface of the transfer object. As a result, a recess that finally becomes a fine protrusion on the surface of the transfer object can be produced. In addition, when producing a needle having a high aspect ratio, the position of the condenser lens and the surface of the amorphous carbon layer are relatively moved so that the focal position of the laser coincides with the bottom of the recess, or Processing may be performed by irradiating the laser again using a condensing lens having a different focal length while being fixed to the bottom of the recess. In this way, by changing the focal position and performing two-stage processing, it is possible to produce a forward tapered recess having a higher aspect ratio between the hole depth and the diameter.
Furthermore, it is preferable to perform washing in order to remove quartz chips adhering to the surface of the amorphous carbon layer when the laser is irradiated.
<実施例>
 次に実施例を示し、本発明について具体的に説明する。
 ステンレス製の円筒形の中空モールド基材2(SUS304、直径100mmすなわち半径50mm、そのうち中空部分の直径84mm、モールド端面間距離300mm)を用意した。
 次に、液溜解消部4としてステンレス製(SUS304)のリング形状部材4を用意した。この時、リング形状部材4の形状は、モールド端面21と接する溝5用の小径部分(リング形状部材におけるモールド内側方向側の端面から、モールド外側方向に向けて距離0.2mmの部分)の半径を48mm、それ以外の大径部分の半径を49.8mmであった。モールド基材2およびリング形状部材4全体として、回転軸方向の長さは360mmであった。
 そして、モールド第1および第2端面21,22の外側方向にこのリング形状部材4を各々設けた。その結果、平坦化剤収容用孔としての溝5が、0.2mmの幅かつ1.8mmの深さ(リング形状部材の大径部分外周から見た深さ)で形成された。
<Example>
Next, an Example is shown and this invention is demonstrated concretely.
A cylindrical hollow mold base material 2 made of stainless steel (SUS304, diameter 100 mm, that is, radius 50 mm, of which the diameter of the hollow portion is 84 mm and the distance between mold end faces is 300 mm) was prepared.
Next, a ring-shaped member 4 made of stainless steel (SUS304) was prepared as the liquid reservoir eliminating portion 4. At this time, the shape of the ring-shaped member 4 is a radius of a small-diameter portion for the groove 5 in contact with the mold end surface 21 (a portion having a distance of 0.2 mm from the end surface on the mold inner side to the mold outer side in the ring-shaped member). Was 48 mm, and the radius of the other large diameter portion was 49.8 mm. The entire length of the mold base 2 and the ring-shaped member 4 in the rotation axis direction was 360 mm.
And this ring-shaped member 4 was provided in the outer side direction of the mold 1st and 2nd end surfaces 21 and 22, respectively. As a result, the groove 5 as a hole for accommodating the leveling agent was formed with a width of 0.2 mm and a depth of 1.8 mm (a depth viewed from the outer periphery of the large diameter portion of the ring-shaped member).
 次に、平坦化剤を用意した。平坦化剤には、ジブチルエーテル(20%)溶媒中にポリシラザンを溶解させた。このポリシラザン溶液が入った平坦化剤容器をモールド基材2下方に配置した。 Next, a leveling agent was prepared. For the leveling agent, polysilazane was dissolved in a dibutyl ether (20%) solvent. The leveling agent container containing the polysilazane solution was disposed below the mold base 2.
 その後、モールド基材2をリング形状部材4ごと、ポリシラザン溶液に接触させた。このとき、平坦化剤60の液面から0.3mm以下の距離の深さで、モールド外周面20の一部とリング形状部材4の一部とを平坦化剤60に浸漬させた。 Thereafter, the mold base 2 was brought into contact with the polysilazane solution together with the ring-shaped member 4. At this time, a part of the mold outer peripheral surface 20 and a part of the ring-shaped member 4 were immersed in the planarizing agent 60 at a depth of 0.3 mm or less from the liquid surface of the planarizing agent 60.
 その状態で、別途設けられた回転軸3によりモールドを回転速度32r/minで3回転させ、モールド外周面20全面にポリシラザン溶液を塗布した。この時、平坦化剤60と接しているリング形状部材4外周面も同時にポリシラザン溶液が塗布された。この際、ポリシラザン溶液を4μmの厚さで塗布した。
 その後、モールド基材2と平坦化剤60とを引き離し、モールド基材2を回転させながら乾燥させた。
 上記工程の間、モールド基材2上の平坦化剤61が乾燥するまで、モールド外周面外側部分の液溜62を前記溝5に収容し続けることになる。
In this state, the mold was rotated three times at a rotational speed of 32 r / min by a separately provided rotating shaft 3, and the polysilazane solution was applied to the entire outer peripheral surface 20 of the mold. At this time, the polysilazane solution was also applied to the outer peripheral surface of the ring-shaped member 4 in contact with the flattening agent 60 at the same time. At this time, the polysilazane solution was applied in a thickness of 4 μm.
Thereafter, the mold base 2 and the flattening agent 60 were pulled apart, and the mold base 2 was dried while being rotated.
During the above process, the liquid reservoir 62 on the outer peripheral surface of the mold is kept in the groove 5 until the leveling agent 61 on the mold base 2 is dried.
 次に、塗布された平坦化剤61の上に、密着層7、微細パターン形成用層8、無機レジスト層9をこの順に積層した。密着層7としてはアモルファスシリコン層を、微細パターン形成用層8としてはアモルファスカーボン層を、無機レジスト層9としては酸化タングステン(WOx)層をスパッタ法により成膜した。 Next, the adhesion layer 7, the fine pattern forming layer 8, and the inorganic resist layer 9 were laminated in this order on the applied leveling agent 61. As the adhesion layer 7, an amorphous silicon layer, an amorphous carbon layer as the fine pattern forming layer 8, and a tungsten oxide (WOx) layer as the inorganic resist layer 9 were formed by sputtering.
 組成傾斜させた酸化タングステン(WOx)からなるレジスト(深さ方向への組成変化については、モールド基材側x=0.95、レジスト最表面側x=1.60の傾斜組成)を20nmの厚さになるように成膜した。なお、無機レジスト層9の形成にはイオンビームスパッタ法を用いて、成膜中の酸素濃度を連続的に変化させて無機レジスト層9中の酸素濃度を傾斜させた。また、無機レジスト層9中の組成分析にはラザフォード後方散乱分光法(Rutherford Back Scattering Spectroscopy:RBS)を使用した。 A resist composed of tungsten oxide (WOx) having a composition gradient (with a gradient composition of mold base side x = 0.95 and resist outermost surface side x = 1.60 for composition change in the depth direction) with a thickness of 20 nm. A film was formed so as to be. The inorganic resist layer 9 was formed by ion beam sputtering, and the oxygen concentration in the inorganic resist layer 9 was inclined by continuously changing the oxygen concentration during film formation. Further, Rutherford Back Scattering Spectroscopy (RBS) was used for the composition analysis in the inorganic resist layer 9.
 この無機レジスト層9上に青色レーザー描画装置(波長405nm、出力12mW)を用いて微細パターンを描画した。描画後、エッチング処理・洗浄処理を行い、所望の転写パターンが設けられた回転式モールド1を作製した。 A fine pattern was drawn on the inorganic resist layer 9 using a blue laser drawing apparatus (wavelength 405 nm, output 12 mW). After drawing, an etching process and a cleaning process were performed to produce a rotary mold 1 provided with a desired transfer pattern.
 <比較例>
 比較例として、図7に示されるような、リング形状部材4を設けなかった場合の回転式モールド11を作製した。リング形状部材4を設けなかったこと以外は、実施例と同じ条件で回転式モールド11を作製した。
<Comparative example>
As a comparative example, as shown in FIG. 7, a rotary mold 11 in the case where the ring-shaped member 4 was not provided was produced. Except that the ring-shaped member 4 was not provided, the rotary mold 11 was produced under the same conditions as in the example.
 <平行度の検討>
 本実施例及び比較例にて製造した回転式モールドにおけるモールド外周面外側部分の盛り上がりについて測定した。その結果を図6に示す。図6(a)は本実施例、図6(b)は比較例の回転式モールド11における、回転式モールド外周面からの盛り上がりの距離を示している。なお、測定位置の角度は、回転軸垂直方向のモールド断面における水平線・垂直線方向部分を示している。
 図6を見ると、比較例においては10μm以上の盛り上がり(フリンジ高さ)が発生していた一方、本実施例においてはモールド外周面外側部分には盛り上がりはほとんど発生しておらず、良好な平行度が得られた。これは、液溜解消部4により、平坦化剤6の液溜62が開放孔5に収容されたためである。その結果、モールド外周面外側部分に盛り上がりが発生しなかったものと思われる。
<Examination of parallelism>
It measured about the swelling of the mold outer peripheral surface outer part in the rotary mold manufactured by the present Example and the comparative example. The result is shown in FIG. FIG. 6 (a) shows the rising distance from the outer peripheral surface of the rotary mold in the rotary mold 11 of this embodiment, and FIG. 6 (b) shows the distance from the outer peripheral surface of the rotary mold. The angle of the measurement position indicates the horizontal / vertical direction portion in the mold cross section in the direction perpendicular to the rotation axis.
As shown in FIG. 6, in the comparative example, a bulge (fringe height) of 10 μm or more was generated, whereas in this example, there was almost no bulge in the outer part of the outer peripheral surface of the mold, and the parallelism was good. The degree was obtained. This is because the liquid reservoir 62 of the flattening agent 6 is accommodated in the open hole 5 by the liquid reservoir elimination unit 4. As a result, it seems that the swell did not occur on the outer peripheral surface of the mold.
1   回転式モールド
2   モールド基材
20  モールド外周面
21  モールド第1端面
22  モールド第2端面
3   回転軸
3a  回転装置
4   液溜解消部(リング形状部材)
4a  小径のリング形状部材
4b  大径のリング形状部材
41  第1液溜解消部
42  第2液溜解消部
5   平坦化剤収容用開放孔(溝)
60  平坦化剤
61  モールド基材に塗布された平坦化剤
62  平坦化剤の液溜
7   密着層
8   微細パターン形成用層
9   レジスト層
11  回転式モールド
12  モールド基材
120 モールド外周面
121 モールド第1端面
13  回転軸
160 平坦化剤
161 モールド基材に塗布された平坦化剤
162 平坦化剤の液溜
107 ローラー 
DESCRIPTION OF SYMBOLS 1 Rotating mold 2 Mold base material 20 Mold outer peripheral surface 21 Mold 1st end surface 22 Mold 2nd end surface 3 Rotating shaft 3a Rotating device 4 Liquid reservoir elimination part (ring-shaped member)
4a Small-diameter ring-shaped member 4b Large-diameter ring-shaped member 41 First liquid reservoir eliminating portion 42 Second liquid reservoir eliminating portion 5 Flattening agent accommodating open hole (groove)
60 flattening agent 61 flattening agent applied to mold substrate 62 flattening agent reservoir 7 adhesion layer 8 fine pattern forming layer 9 resist layer 11 rotary mold 12 mold substrate 120 mold outer peripheral surface 121 mold first End surface 13 Rotating shaft 160 Flattening agent 161 Flattening agent 162 applied to the mold substrate Flattening agent reservoir 107 Roller

Claims (8)

  1.  インプリントに用いられる回転式モールドの製造方法において、
     前記回転式モールドは、モールド第1および第2端面と、インプリント用パターンを有するモールド外周面と、を有し、
     回転式モールドを回転させる回転軸の方向において、モールド中央部からモールド端面へ向かう方向を外側方向、モールド端面からモールド中央部へ向かう方向を内側方向とすると、前記モールド第1端面の外側方向に第1液溜解消部を設け、前記モールド第2端面の外側方向に第2液溜解消部を設け、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間に平坦化剤収容用開放孔を形成する工程を含み、
     前記第1および第2液溜解消部は、回転式モールド外径よりも小さな外径を有することを特徴とするインプリント用回転式モールドの製造方法。
     ただし、平坦化剤収容用開放孔とは、平坦化剤と平坦化剤収容用開放孔の入り口とが接触した後、少なくとも平坦化剤の液溜を解消するまでは開放系となっている孔のことである。
    In the manufacturing method of the rotary mold used for imprinting,
    The rotary mold has mold first and second end surfaces, and a mold outer peripheral surface having an imprint pattern,
    In the direction of the rotation axis for rotating the rotary mold, when the direction from the mold center to the mold end surface is the outside direction, and the direction from the mold end surface to the mold center is the inside direction, the direction toward the outside of the first end surface of the mold is 1 liquid reservoir elimination part is provided, a 2nd liquid reservoir elimination part is provided in the outer side direction of the said mold 2nd end surface, between the said 1st liquid reservoir elimination part and the said mold 1st end surface, and the said 2nd liquid reservoir Including a step of forming an opening for accommodating a flattening agent between the elimination part and the second end surface of the mold,
    The method for manufacturing a rotary mold for imprinting, wherein the first and second liquid pool eliminating portions have an outer diameter smaller than an outer diameter of the rotary mold.
    However, the opening hole for storing the leveling agent is a hole which is an open system at least until the liquid reservoir of the leveling agent is eliminated after the leveling agent and the entrance of the opening hole for storing the leveling agent come into contact. That is.
  2.  前記平坦化剤収容用開放孔を形成した後、前記モールド外周面の一部ならびに前記第1および第2液溜解消部の一部と液状の平坦化剤とを、前記回転軸方向に対して平行に接触させた状態で前記モールドを回転して、前記モールド外周面に前記平坦化剤を塗布する平坦化剤塗布工程と、
     前記塗布工程開始後、モールド外周面外側部分の液溜を前記平坦化剤収容用開放孔に収容する平坦化剤収容工程と、
     前記塗布工程および平坦化剤収容工程後、微細パターンを前記モールド外周面に形成する工程と、
    を含むことを特徴とする請求項1に記載のインプリント用回転式モールドの製造方法。
    After forming the opening for accommodating the flattening agent, a part of the outer peripheral surface of the mold, a part of the first and second liquid reservoir eliminating portions, and the liquid flattening agent are moved with respect to the rotation axis direction. A planarizing agent applying step of rotating the mold in a state of contact in parallel and applying the planarizing agent to the outer peripheral surface of the mold;
    After the application step starts, a leveling agent accommodation step of accommodating a liquid reservoir in the outer peripheral surface of the mold in the opening for accommodating the leveling agent;
    A step of forming a fine pattern on the outer peripheral surface of the mold after the coating step and the flattening agent accommodation step;
    The manufacturing method of the rotary mold for imprints of Claim 1 characterized by the above-mentioned.
  3.  前記第1および第2液溜解消部のうちの少なくとも一つが、回転式モールドと一体形成されていることを特徴とする請求項1または2に記載のインプリント用回転式モールドの製造方法。 3. The method for producing a rotary mold for imprinting according to claim 1 or 2, wherein at least one of the first and second liquid reservoir eliminating portions is integrally formed with the rotary mold.
  4.  前記第1および第2液溜解消部の外径とモールド外径との差は、0より大きく0.6mm以下であることを特徴とする請求項1ないし3のいずれかに記載のインプリント用回転式モールドの製造方法。 4. The imprint according to claim 1, wherein a difference between an outer diameter of the first and second liquid pool elimination portions and an outer diameter of the mold is greater than 0 and equal to or less than 0.6 mm. A manufacturing method of a rotary mold.
  5.  前記回転式モールドは円筒形または円柱形であり、
     前記第1および第2液溜解消部はリング形状部材であり、
     前記平坦化剤塗布工程において、平坦化剤液面から0.2mm以上0.5mm以下の浸漬深さで、前記モールド外周面の一部と前記第1および第2液溜解消部の一部とを平坦化剤に接触させることを特徴とする請求項1,2または4に記載のインプリント用回転式モールドの製造方法。
    The rotary mold is cylindrical or columnar,
    The first and second liquid pool eliminating portions are ring-shaped members,
    In the flattening agent application step, a part of the outer peripheral surface of the mold and a part of the first and second liquid pool eliminating portions at an immersion depth of 0.2 mm or more and 0.5 mm or less from the leveling liquid surface The method for producing a rotary mold for imprinting according to claim 1, 2 or 4, wherein the step is brought into contact with a flattening agent.
  6.  前記平坦化剤収容用開放孔は溝であり、前記溝における、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間の距離は0より大きく0.5mm以下であり、前記溝の深さは半径方向において1.7mm以上かつ前記モールド外周面から前記回転軸までの距離以下であることを特徴とする請求項1ないし5のいずれかに記載のインプリント用回転式モールドの製造方法。 The opening for accommodating the leveling agent is a groove, and in the groove, between the first liquid pool eliminating portion and the mold first end surface, and between the second liquid reservoir eliminating portion and the mold second end surface. And the depth of the groove is not less than 1.7 mm in the radial direction and not more than a distance from the outer peripheral surface of the mold to the rotation axis. The manufacturing method of the rotary mold for imprints in any one of 1 thru | or 5.
  7.  インプリントに用いられる回転式モールドであって、前記回転式モールドは、
     モールド第1および第2端面と、
     インプリント用パターンを有するモールド外周面と、
    を有し、
     回転式モールドを回転させる回転軸の方向において、モールド中央部からモールド端面へ向かう方向を外側方向、モールド端面からモールド中央部へ向かう方向を内側方向とすると、前記モールド第1端面の外側方向に第1液溜解消部が設けられ、前記モールド第2端面の外側方向に第2液溜解消部が設けられ、
     前記第1および第2液溜解消部は、回転式モールド外径よりも小さな外径を有し、
     前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間に塗布剤収容用開放孔が形成されたことを特徴とするインプリント用回転式モールド。
     ただし、平坦化剤収容用開放孔とは、平坦化剤と平坦化剤収容用開放孔の入り口とが接触した後、少なくとも平坦化剤の液溜を解消するまでは開放系となっている孔のことである。
    A rotary mold used for imprinting, wherein the rotary mold is
    Mold first and second end faces;
    A mold outer peripheral surface having an imprint pattern;
    Have
    In the direction of the rotation axis for rotating the rotary mold, when the direction from the mold center to the mold end surface is the outside direction, and the direction from the mold end surface to the mold center is the inside direction, the direction toward the outside of the first end surface of the mold is 1 liquid reservoir elimination part is provided, and a second liquid reservoir elimination part is provided in the outer side direction of the mold second end surface,
    The first and second liquid pool elimination portions have an outer diameter smaller than the rotary mold outer diameter,
    An opening for accommodating a coating agent is formed between the first liquid reservoir eliminating portion and the mold first end surface, and between the second liquid reservoir eliminating portion and the mold second end surface. Imprint rotary mold.
    However, the opening hole for storing the leveling agent is a hole which is an open system at least until the liquid reservoir of the leveling agent is eliminated after the leveling agent and the entrance of the opening hole for storing the leveling agent come into contact. That is.
  8.  前記回転式モールドは円筒形または円柱形であり、
     前記第1および第2液溜解消部のうちの少なくとも一つは前記回転式モールドと一体形成され、
     前記第1および第2液溜解消部の外径とモールド外径との差は、0より大きく0.6mm以下であり、
     前記塗布剤収容用開放孔は溝であり、
     前記溝における、前記第1液溜解消部と前記モールド第1端面との間、および、前記第2液溜解消部と前記モールド第2端面との間の距離は0より大きく0.5mm以下であり、
     前記溝の深さは半径方向において1.7mm以上かつ、前記モールド外周面から前記回転軸までの距離以下であることを特徴とする請求項7に記載のインプリント用回転式モールド。 
    The rotary mold is cylindrical or columnar,
    At least one of the first and second liquid pool eliminating portions is integrally formed with the rotary mold,
    The difference between the outer diameter of the first and second liquid pool elimination portions and the outer diameter of the mold is greater than 0 and 0.6 mm or less,
    The opening for accommodating the coating agent is a groove,
    In the groove, the distance between the first liquid pool eliminating portion and the mold first end surface, and the distance between the second liquid reservoir eliminating portion and the mold second end surface are greater than 0 and 0.5 mm or less. Yes,
    8. The imprint rotary mold according to claim 7, wherein a depth of the groove is 1.7 mm or more in a radial direction and not more than a distance from the outer peripheral surface of the mold to the rotation shaft. 9.
PCT/JP2011/051548 2010-01-29 2011-01-27 Rotary mold for imprinting and production method thereof WO2011093356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551887A JP5707342B2 (en) 2010-01-29 2011-01-27 Imprint rotary mold and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019661 2010-01-29
JP2010019661 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093356A1 true WO2011093356A1 (en) 2011-08-04

Family

ID=44319339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051548 WO2011093356A1 (en) 2010-01-29 2011-01-27 Rotary mold for imprinting and production method thereof

Country Status (2)

Country Link
JP (1) JP5707342B2 (en)
WO (1) WO2011093356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077066A1 (en) * 2011-11-25 2013-05-30 Hoya株式会社 Imprinting mold and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309848A (en) * 1995-05-19 1996-11-26 Sekisui Chem Co Ltd Production of embossing roll
JP2004261963A (en) * 2003-01-14 2004-09-24 Bridgestone Corp Method for forming groove line to sheetlike member
JP2009119695A (en) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp Nanoimprint resin stamper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309848A (en) * 1995-05-19 1996-11-26 Sekisui Chem Co Ltd Production of embossing roll
JP2004261963A (en) * 2003-01-14 2004-09-24 Bridgestone Corp Method for forming groove line to sheetlike member
JP2009119695A (en) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp Nanoimprint resin stamper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077066A1 (en) * 2011-11-25 2013-05-30 Hoya株式会社 Imprinting mold and manufacturing method therefor
JP2013111763A (en) * 2011-11-25 2013-06-10 Hoya Corp Imprinting mold and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2011093356A1 (en) 2013-06-06
JP5707342B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5677987B2 (en) Imprint mold, method for producing the same, and imprint mold substrate
TWI417181B (en) The manufacturing method of seamless mold
TWI549832B (en) Production method of transfer die and transfer die
JP5935385B2 (en) Method of manufacturing replica template for nanoimprint and replica template
TW201224642A (en) Mask for near-field lithography and fabrication the same
JP5441991B2 (en) Imprint mold and manufacturing method thereof
JP2013035243A (en) Roller mold, base material for roller mold, and pattern transfer method
JP5707342B2 (en) Imprint rotary mold and manufacturing method thereof
JP5408649B2 (en) Method for producing endless pattern
JP5150926B2 (en) Manufacturing method of imprint mold
JP5884555B2 (en) Imprint mold and method for forming fine structure
JP2005153271A (en) Manufacturing method of mold for optical part
KR20110055630A (en) Method and device for the production of a structured object and structured object
JP7051256B2 (en) A method for manufacturing a filler-filled film, a sheet-fed film, a laminated film, a laminated film, and a filler-filled film.
TWI819231B (en) Embossed film, sheet film, transfer material, and manufacturing method of embossed film
Zhu et al. Free-Form Micro-Lens Array Fabrication via Laser Micro-Lens Array Lithography.
JP6996333B2 (en) Blanks base material, imprint mold, imprint mold manufacturing method and imprint method
CN106547044B (en) A kind of process equipment and manufacturing method of polaroid
JP2015005678A (en) Cylindrical medium exposure apparatus
TW202330233A (en) Mold, method for manufacturing mold and method for manufacturing micro concave and convex structure body
Chen et al. Self-organization of microlens arrays caused by the spin-coating-assisted hydrophobic effect
JP2023146116A (en) Base material, manufacturing method of base material, master plate and manufacturing method of master plate
JP2017019149A (en) Mold for imprint and release treatment method thereof
KR20190026674A (en) Systems and methods for making optical masks for surface micro-texturing, and surface micro-texturing equipment and methods
WO2016068171A1 (en) Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551887

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737068

Country of ref document: EP

Kind code of ref document: A1