WO2011093296A1 - Ion exchange film, ion exchange body, ion exchange unit, ion exchange device, and water treatment device using ion exchange device - Google Patents

Ion exchange film, ion exchange body, ion exchange unit, ion exchange device, and water treatment device using ion exchange device Download PDF

Info

Publication number
WO2011093296A1
WO2011093296A1 PCT/JP2011/051397 JP2011051397W WO2011093296A1 WO 2011093296 A1 WO2011093296 A1 WO 2011093296A1 JP 2011051397 W JP2011051397 W JP 2011051397W WO 2011093296 A1 WO2011093296 A1 WO 2011093296A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
water
membrane
ion
exchange membrane
Prior art date
Application number
PCT/JP2011/051397
Other languages
French (fr)
Japanese (ja)
Inventor
利明 平井
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011093296A1 publication Critical patent/WO2011093296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the present invention relates to an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device.
  • an object of the present invention is to obtain an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device, which can be assembled more easily.
  • the main feature of the present invention is to use an ion exchange membrane which has an ion exchange function and is hardly swellable to water.
  • the ion exchange membrane is hardly swellable in water, even if the ion exchange membrane is assembled in a dry state and then the water is impregnated in the ion exchange membrane, the ion exchange is performed. It is possible to prevent the membrane from being deformed. Therefore, it is not necessary to impregnate the ion exchange membrane with water, and the ion exchange membrane can be more easily assembled into the apparatus.
  • FIG. 1 is an explanatory view schematically showing a water treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an ion exchange apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view schematically showing an ion exchange membrane, a cathode and an anode according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a modification of the ion exchange apparatus according to the embodiment of the present invention.
  • the water treatment apparatus 10 includes a water passage 11. As shown in FIG. 1, the water passage 11 is connected to a water pipe (not shown) or the like via a water supply valve 12.
  • the pre-filter 13, the secondary filter 15, the adsorption filter 16, the ion exchange device 18 and the post filter 19 are arranged in the water flow passage 11 sequentially from the upstream side (arrangement side of the water supply valve 12) to the downstream side. It is arranged in series.
  • the pressure rising pump 14 is arrange
  • the water introduced into the water treatment apparatus 10 through the water supply valve 12 is first introduced into the prefilter 13.
  • the pre-filter 13 is, for example, a sponge-like filter (not shown) or the like for capturing and removing relatively large foreign matter mixed in water.
  • this pre-filter 13 is for preventing the decrease of the pump capacity due to the mixing of the fine particles into the inside of the pressure rising pump 14, it is not necessary to provide it in particular.
  • the water that has passed through the pre-filter 13 and reached the pressure rising pump 14 is pressure-increased by the pressure rising pump 14 and introduced into the secondary filter 15 and the adsorption filter 16.
  • a hollow fiber membrane (not shown) or the like is used as the secondary filter 15, and when water passes through the hollow fiber membrane, fine particle components (turbidity components) which are foreign substances mixed in water are Capture and filter.
  • the secondary filter 15 can also be configured using a reverse osmosis membrane such as an NF membrane or an RO membrane, or a filtration membrane such as a UF membrane, an MF membrane, etc. When a membrane filter unit of a reverse osmosis membrane is used And a discharge pipe for discharging the concentrated water.
  • prefilter 13 and the secondary filter 15 in multiple places, respectively. In that case, it is preferable to dispose the filter so that the pore size decreases from the upstream toward the downstream.
  • the adsorption filter 16 contains, for example, activated carbon, and removes components dissolved in water, particularly off-flavors and off-flavors, or halogenated carbon such as trihalomethane.
  • a heavy metal removing agent for removing heavy metals into the inside of the adsorption filter 16
  • harmful heavy metals such as lead may be adsorbed and removed.
  • an antibacterial agent containing an antibacterial metal such as silver in the adsorption filter 16.
  • the water that has passed through the adsorption filter 16 is introduced into the ion exchange device 18 via the check valve 17.
  • the water introduced into the post filter 19 is discharged to the outside from the downstream end of the water passage 11 in a state where the taste and odor component in the water are finally removed by the post filter 19 and the taste is adjusted. Be done.
  • the downstream end of the water passage 11 is connected to a faucet or the like, and treated water is supplied via the faucet or the like.
  • the post filter 19 also has a function of suppressing the mixing of the filter material or the like into the supplied treated water even if the filter material or the like leaks.
  • the non-return valve 17 remains from the downstream side including the ion exchange device 18 when the pressure rising pump 14 is stopped, or when the water supply valve 12 is closed or when the water pressure of the water pipe drops to a predetermined pressure or less.
  • the pressure prevents the backflow of water, and the foreign substances accumulated and accumulated in the filter such as the prefilter 13 are prevented from flowing back to the water pipe.
  • a water treatment apparatus is not limited to the said structure.
  • a pressure sensor is provided, and when the water passage 11 is pressurized to a predetermined pressure or more, the pressure sensor sends a signal to a control unit (not shown) that controls the pressure pump 14 and the water supply valve 12 to stop the pressure pump 14
  • the water supply valve 12 may be configured to be closed. In this way, it is possible to prevent water leakage and damage due to abnormal pressure increase inside the water passage 11.
  • the convenience of the user may be improved by storing and fixing the water treatment device 10 in a housing so that the housing can be installed in the vicinity of the treated water use location.
  • the pre-filter 13 is disposed upstream of the pressure pump 14, but the pre-filter 13 does not have to be disposed upstream of the pressure pump 14, and the downstream of the pressure pump 14 is not required. It may be arranged on the side. Furthermore, if there is a possibility that particles that may interfere with the operation of the water supply valve 12 may be mixed, the pre-filter 13 may be disposed upstream of the water supply valve 12.
  • the mounting position of the check valve 17 is not limited, and if there is a case where the operation of the pressure pump 14 and the water supply valve 12 may be disturbed by the back pressure generated at the time of water stop, a place necessary for the avoidance. It should be placed in
  • the ion exchange device 18 is formed by arranging the ion exchange unit 20 having an ion exchange function in the casing 30, and can be detachably attached to the water treatment device 10. It can be worn.
  • the casing 30 has a substantially cylindrical shape, and a suction port 31 a for introducing water into the casing 30 is formed in a substantially central portion of the bottom wall portion 31.
  • the top wall portion 32 is provided with a concentrated water discharge port 32b substantially at the center and a concentrated water discharge port 32a at the outer peripheral portion.
  • An outlet 32c is provided.
  • the casing 30 attaches the top wall part 32 grade
  • the ion exchange unit 20 includes the substantially cylindrical ion exchanger 21, and the anode 27 is provided radially inward (in one direction) on the radially inner side of the ion exchanger 21 (in one direction).
  • the cathode 28 is disposed on the outer peripheral side.
  • the ion exchange unit 20 is formed by arranging the anode 27 and the cathode 28 at both ends in the radial direction (one direction) of the ion exchanger 21 so as to sandwich the ion exchanger 21. ing.
  • the ion exchanger 21 includes an ion exchange layer (ion exchange portion having an ion exchange function) 22 obtained by forming at least a mixture of cation exchange fibers and anion exchange fibers in a substantially cylindrical shape. . Then, the anion exchange thin layer (ion exchange membrane) 23 is laminated on the radially inner peripheral side of the ion exchange layer 22 and the cation exchange thin layer (ion exchange membrane) 24 is laminated on the radial outer peripheral side. ing.
  • an ion exchange layer (ion exchange portion having an ion exchange function) 22 obtained by forming at least a mixture of cation exchange fibers and anion exchange fibers in a substantially cylindrical shape. . Then, the anion exchange thin layer (ion exchange membrane) 23 is laminated on the radially inner peripheral side of the ion exchange layer 22 and the cation exchange thin layer (ion exchange membrane) 24 is laminated on the radial outer peripheral side. ing.
  • the ion exchanger 21 comprises an ion exchange layer (ion exchange portion having an ion exchange function) 22, an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) 24. It is formed by sandwiching from the radially inner and outer peripheral side.
  • the permeable reinforcing material 25 for maintaining the shape of the anion exchange thin layer (ion exchange membrane) 23 is provided on the radially inner peripheral side of the anion exchange thin layer (ion exchange membrane) 23. It is stacked.
  • a permeable reinforcing material 26 for maintaining the shape of the cation exchange thin layer (ion exchange membrane) 24 is laminated on the radially outer peripheral side of the cation exchange thin layer (ion exchange membrane) 24.
  • the anode 27 and the cathode 28 described above are respectively laminated on the radially inner peripheral side of the reinforcing material 25 and the radial outer peripheral side of the reinforcing material 26.
  • both ends in the axial direction (vertical direction in FIG. 2) of the ion exchange unit 20 are covered with end caps 40 and 41.
  • a plurality of suction ports 40 b for introducing water into the ion exchange unit 20 are formed in the circumferential direction.
  • a groove 41b is formed along the circumferential direction on the lower surface side of the top wall 41a of the end cap 41, and a part of the groove 41b penetrates to communicate with the deionized water discharge port 32c. 41c is formed.
  • the diameter and axial length of the casing 30 are made longer than the diameter and axial length of the ion exchange unit 20. Then, the central hollow portion of the ion exchange unit 20 communicates with the concentrated water discharge port 32b of the top wall 32 of the casing 30, and the communication port 41c communicates with the deionized water discharge port 32c.
  • the wall 41 a is attached to the top wall 32 of the casing 30.
  • the concentrated water passage 30 a is formed on the outer peripheral side than the ion exchange unit 20 of the casing 30, and the concentrated water passage 30 b is formed on the inner peripheral side of the ion exchange unit 20 of the casing 30.
  • the concentrated water passages 30a and 30b respectively communicate with the concentrated water discharge ports 32a and 32b.
  • the communication port 41 c and the deionized water discharge port 32 c be in fluid tight communication.
  • an ion exchange membrane having an ion exchange function and being hardly swellable with water, an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) ) Is used.
  • a very fine fiber (a fiber having an ion exchange function on at least the surface) coated with a polymer having a functional group having an ion exchange function branched from the main chain on the outer surface of a water-swellable polymer.
  • the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 are formed by laminating 23a and 24a in a non-woven fabric state (see FIG. 3).
  • anion exchange thin layer (ion exchange membrane) 23 When the anion exchange thin layer (ion exchange membrane) 23 is formed, a polymer having a basic functional group such as dimethylaminoethyl group is used. Moreover, when forming the cation exchange thin layer (ion exchange membrane) 24, the polymer which has acidic functional groups, such as a carboxyl group, is used.
  • fibers having an average fiber diameter of less than 1 ⁇ m, more preferably 100 nm or less are used as the fibers 23a and 24a. Then, by laminating the fibers so that the fiber density is 10 mg / cm 2 or more, the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 are formed in a non-woven fabric shape doing.
  • the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 according to the present embodiment are formed of fibers with an extremely small fiber diameter, the fiber gap is also formed. It is a porous membrane provided with a large number of fine pores having a fiber diameter or less.
  • this fibrous film has an extremely thin diameter, it has flexibility, and the fiber layer can be easily formed on the surface of another material serving as a base material. Therefore, when the fiber membrane is laminated on the surface of the porous filter medium, it is possible to capture the fine particles having the opposite charge and prevent the surface of the filter medium from being contaminated by the fine particles. Moreover, if the metal film (for example, Ag etc.) which has antimicrobial property is carry
  • the metal film for example, Ag etc.
  • an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) are laminated in a non-woven fabric state in which fibrous polymers of poorly swellable polymers with respect to water are made. And 24). Therefore, the deformation of the fiber itself is extremely small in the dry state and in the state of being impregnated with water, and the ion exchange membrane itself becomes hardly swellable with water.
  • the non-woven fabric is laminated, even if the fibers swell, it is possible to suppress the swelling of the film itself only by changing the free end position of the fibers.
  • the surface is coated with a polymer having a functional group having an ion exchange function, the poor swelling property to water can be further enhanced.
  • the material of the polymer hardly swellable to water can be arbitrarily selected from those which can be processed into fibers such as polyesters, amides, vinyls and acrylics.
  • the material of the polymer having a functional group having an ion exchange function can be arbitrarily selected from those having an ion exchange function, such as a cellulose type and a styrene type.
  • the fibers 23a and 24a for example, apply static electricity to the core material using a polymer that does not easily swell in water as the core material, and apply a reverse potential to the core material with a polymer having an ion exchange function from a fine diameter nozzle It is formed by spouting in the state.
  • the nozzle having a double tube structure is used to eject the hardly swellable polymer with respect to water from the center side and eject the polymer having an ion exchange function from the outer peripheral side.
  • the anode 27 and the cathode 28 are formed of the conductive fibers 27a and 28a.
  • the anode 27 and the cathode 28 are formed by laminating conductive fibers 27a and 28a in a non-woven cloth state. (See Figure 3).
  • the reinforcing materials 25 and 26 is illustrated for convenience.
  • the material of the conductive fibers 27a and 28a is metal fibers having corrosion resistance such as platinum and gold, various types of polymers containing carbon fibers and carbon as a filler, for example, polyamide based such as nylon, acrylic such as polymethyl methacrylic acid It can be widely selected from materials having conductivity, such as olefins such as polyesters, polyesters, vinyls and polyethylenes.
  • anode 27 and the cathode 28 with the conductive fibers 27a and 28a improves the degree of freedom in processing and shape as compared with the case of using a rod-like metal lump or a plate-like electrode.
  • the shape freedom of the ion exchange unit 20 can also be improved.
  • the conductive fibers 27a and 28a it becomes possible to coat the surface of the base material, and there is no need to fix the electrode itself, so that the configuration of the ion exchange unit 20 can be simplified.
  • a metal plate of stainless steel, titanium, platinum, iridium or the like provided with a hole may be used as an electrode (anode and cathode).
  • the water introduced into the casing 30 (ion exchange device 18) from the suction port 31a flows through the outer peripheral portion (concentrated water passage 30a) of the casing 30 and the inner peripheral portion of the casing 30 (concentrated water passage 30b) And water introduced into the inside of the ion exchange layer 22 from the suction port 40 b provided on the bottom wall 40 a of the end cap 40.
  • a plate or the like for dispersing the water introduced from the suction port 31a may be arranged to divert the water more evenly.
  • cations such as calcium, magnesium, sodium and potassium are adsorbed by ion exchange on the cation exchange fiber mixed in the ion exchange layer 22.
  • cations such as calcium, magnesium, sodium and potassium are adsorbed by ion exchange on the cation exchange fiber mixed in the ion exchange layer 22.
  • the cation adsorbed to the cation exchange fiber by ion exchange is electrically attracted to the cathode 28, it moves to the outer peripheral side of the ion exchange layer 22 while repeatedly attaching and detaching to the cation exchange fiber.
  • a cation exchange thin layer (ion exchange membrane) 24 composed of fibers 24a is present.
  • this cation exchange thin layer (ion exchange membrane) 24 is composed of microfibers 24a at least the surface of which has a diameter of less than a micron having anion exchange ability, and the gaps between the fibers are further reduced It has a water-permeable structure.
  • this cation exchange thin layer (ion exchange membrane) 24 is formed using the nano-sized fibers 24a, its specific surface area is remarkably wider than that of the same weight and the same material, and the reactivity is low. It is very expensive.
  • this cation exchange thin layer (ion exchange membrane) 24 also adsorbs cations quickly. Then, the cations adsorbed on the cation exchange thin layer (ion exchange membrane) 24 are attracted to the cathode 28 present on the outer periphery and move toward the cathode 28 through the relatively large through holes of the reinforcing material 26. Then, it is discharged as concentrated water from the concentrated water discharge port 32 b to the outside of the ion exchange device 18.
  • anions such as sulfate ion, chloride ion, nitrate ion, phosphate ion and the like which flow into the ion exchange layer 22 are also anion exchange fiber and anion exchange thin layer (ion exchange membrane) 23 inside the ion exchange layer 22.
  • anion exchange fiber and anion exchange thin layer (ion exchange membrane) 23 inside the ion exchange layer 22 Move while repeatedly removing and attaching. That is, the anions move to the side of the anode 27 which is in the opposite direction (radial direction inner circumferential side) to the above-mentioned cations, and are discharged as concentrated water from the concentrated water discharge port 32 b to the outside of the ion exchange device 18.
  • the deionized water from which the ion component in the water has been removed is discharged from the deionized water discharge port 32c through the communication port 41c formed in the groove 41b.
  • the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 form a layer of nano size fibers 23a and 24a, the pore diameter of the hole communicated on both sides Can also be very small holes of nano size. Therefore, the water flowing through the outer peripheral portion of the casing 30 and the water flowing through the inner peripheral portion of the casing 30 can be prevented from moving into the ion exchange layer 22.
  • the cation exchange thin layer 24 and the cathode 28 are provided on the radially outer peripheral side of each ion exchange layer 22, and the anion exchange thin layer 23 and the anode 27 are provided on the radially inner peripheral side of each ion exchange layer 22. Is provided.
  • a deionized water collecting channel 50 is provided to further connect the deionized water discharge ports 32c provided on the end cap 41 to which the ion exchange units 20 are integrally fixed.
  • deionized water generated through each of the ion exchange units 20 is discharged through the deionized water collecting channel 50.
  • the concentrated water generated at this time is also discharged to the outside of the ion exchange device 18 through the concentrated water collection channel 51.
  • the highly efficient ion exchange device 18 can be made more compact.
  • the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) have ion exchange function and are hardly swellable in water. It used as an ion exchange membrane) 24. Therefore, the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 assembled in a dry state can be prevented from being deformed when impregnated with water. . Thus, according to the present embodiment, the ion exchange membrane can be more easily assembled into the apparatus.
  • the ion exchanger 21, the ion exchange unit 20, the ion exchange apparatus 18, and the water treatment apparatus 10 which can be assembled more easily can be obtained by using such an ion exchange membrane.
  • the water treatment device may include at least an ion exchange device.
  • an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device which can be assembled more easily.

Abstract

Ion exchange fibers (23a, 24a) which have an ion exchange group on at least the surface are layered like a non-woven fabric, thus forming ion exchange films (23, 24) which have an ion exchange functionality and are resistant to swelling in water.

Description

イオン交換膜、イオン交換体、イオン交換ユニット、イオン交換装置および当該イオン交換装置を用いた水処理装置Ion exchange membrane, ion exchanger, ion exchange unit, ion exchange device, and water treatment device using the ion exchange device
 本発明は、イオン交換膜、イオン交換体、イオン交換ユニット、イオン交換装置および当該イオン交換装置を用いた水処理装置に関する。 The present invention relates to an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device.
 従来、陽極室と陰極室との間に、陰イオン交換膜と陽イオン交換膜を交互に配列した電気透析装置の脱塩室に、強酸性陽イオン交換繊維、強塩基性陰イオン交換繊維及び不活性の合成繊維の混合体からなる充填物を収容した純水製造装置が知られている(例えば、特許文献1参照)。 Conventionally, a strongly acidic cation exchange fiber, a strongly basic anion exchange fiber, and a desalting chamber of an electrodialysis apparatus in which an anion exchange membrane and a cation exchange membrane are alternately arranged between an anode chamber and a cathode chamber There is known a pure water production apparatus containing a filler made of a mixture of inert synthetic fibers (see, for example, Patent Document 1).
特開平7-236889号公報Japanese Patent Laid-Open No. 7-236889
 上記従来の技術では、陰イオン交換膜および陽イオン交換膜が用いられているが、これらのイオン交換膜は水に対する膨潤性が高いものである。このように、水に対する膨潤性が高いイオン交換膜を、乾燥した状態で装置に組み付けると、イオン交換膜が水に満たされた際に変形してしまうという問題がある。 In the above-mentioned prior art, although an anion exchange membrane and a cation exchange membrane are used, these ion exchange membranes have a high water-swelling property. As described above, when the ion exchange membrane having a high water-swelling property is assembled in a dry state, there is a problem that the ion exchange membrane is deformed when it is filled with water.
 そのため、水に対する膨潤性が高いイオン交換膜を用いる場合、水を含浸させた状態のイオン交換膜を装置に組み付ける必要があり、手間がかかってしまう。 Therefore, in the case of using an ion exchange membrane having high water-swelling property, it is necessary to assemble the ion exchange membrane in a state of being impregnated with water in the apparatus, which takes time and effort.
 そこで、本発明は、より容易に組み付けることのできるイオン交換膜、イオン交換体、イオン交換ユニット、イオン交換装置および当該イオン交換装置を用いた水処理装置を得ることを目的とする。 Then, an object of the present invention is to obtain an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device, which can be assembled more easily.
 本発明にあっては、イオン交換機能を有するとともに、水に対して難膨潤性であるイオン交換膜を用いることを主要な特徴とする。 The main feature of the present invention is to use an ion exchange membrane which has an ion exchange function and is hardly swellable to water.
 本発明によれば、イオン交換膜が水に対して難膨潤性であるため、乾燥した状態でイオン交換膜を装置に組みつけた後に当該イオン交換膜に水を含浸させたとしても、イオン交換膜が変形してしまうのを抑制することができる。そのため、イオン交換膜に水を含浸させる必要がなくなり、より容易にイオン交換膜を装置に組み付けることができる。 According to the present invention, since the ion exchange membrane is hardly swellable in water, even if the ion exchange membrane is assembled in a dry state and then the water is impregnated in the ion exchange membrane, the ion exchange is performed. It is possible to prevent the membrane from being deformed. Therefore, it is not necessary to impregnate the ion exchange membrane with water, and the ion exchange membrane can be more easily assembled into the apparatus.
図1は、本発明の一実施形態にかかる水処理装置を模式的に示す説明図である。FIG. 1 is an explanatory view schematically showing a water treatment apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態にかかるイオン交換装置を示す断面図である。FIG. 2 is a cross-sectional view showing an ion exchange apparatus according to an embodiment of the present invention. 図3は、本発明の一実施形態にかかるイオン交換膜、陰極および陽極を模式的に示す図である。FIG. 3 is a view schematically showing an ion exchange membrane, a cathode and an anode according to an embodiment of the present invention. 図4は、本発明の一実施形態にかかるイオン交換装置の変形例を示す断面図である。FIG. 4 is a cross-sectional view showing a modification of the ion exchange apparatus according to the embodiment of the present invention.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本実施形態にかかる水処理装置10は、通水路11を備えており、当該通水路11は、図1に示すように、図示せぬ水道配管などに給水弁12を介して接続されている。本実施形態では、通水路11に、上流側(給水弁12の配置側)から下流側に向かって順に、プレフィルター13、2次フィルター15、吸着フィルター16、イオン交換装置18およびポストフィルター19が直列に配置されている。そして、プレフィルター13と2次フィルター15との間に昇圧ポンプ14が配置されるとともに、吸着フィルター16とイオン交換装置18の間に逆止弁17が配置されている。 The water treatment apparatus 10 according to the present embodiment includes a water passage 11. As shown in FIG. 1, the water passage 11 is connected to a water pipe (not shown) or the like via a water supply valve 12. In this embodiment, the pre-filter 13, the secondary filter 15, the adsorption filter 16, the ion exchange device 18 and the post filter 19 are arranged in the water flow passage 11 sequentially from the upstream side (arrangement side of the water supply valve 12) to the downstream side. It is arranged in series. And while the pressure rising pump 14 is arrange | positioned between the pre filter 13 and the secondary filter 15, the non-return valve 17 is arrange | positioned between the adsorption filter 16 and the ion exchange apparatus 18. FIG.
 給水弁12を介して水処理装置10内に導入された水は、まず、プレフィルター13内に導入される。 The water introduced into the water treatment apparatus 10 through the water supply valve 12 is first introduced into the prefilter 13.
 プレフィルター13は、例えば、スポンジ状のフィルター(図示せず)等によって水に混入した比較的大きめの異物を捕捉して除去するものである。 The pre-filter 13 is, for example, a sponge-like filter (not shown) or the like for capturing and removing relatively large foreign matter mixed in water.
 なお、このプレフィルター13は、昇圧ポンプ14内部への微粒子の混入によるポンプ能力の低下を防止するためのものであるが、特に設けなくてもよい。 Although this pre-filter 13 is for preventing the decrease of the pump capacity due to the mixing of the fine particles into the inside of the pressure rising pump 14, it is not necessary to provide it in particular.
 プレフィルター13を通過して昇圧ポンプ14に到達した水は、昇圧ポンプ14で昇圧されて2次フィルター15、吸着フィルター16に導入される。 The water that has passed through the pre-filter 13 and reached the pressure rising pump 14 is pressure-increased by the pressure rising pump 14 and introduced into the secondary filter 15 and the adsorption filter 16.
 2次フィルター15は、例えば、中空糸膜(図示せず)などが用いられており、水が中空糸膜を通過する際に、水中に混入された異物である微粒子成分(濁度成分)を捕捉して濾過するものである。なお、2次フィルター15は、NF膜、RO膜などの逆浸透膜やUF膜、MF膜などの濾過膜を用いて構成することもでき、逆浸透膜の膜フィルターユニットを用いた場合には、濃縮水を排出する排出管が設けられる。 For example, a hollow fiber membrane (not shown) or the like is used as the secondary filter 15, and when water passes through the hollow fiber membrane, fine particle components (turbidity components) which are foreign substances mixed in water are Capture and filter. The secondary filter 15 can also be configured using a reverse osmosis membrane such as an NF membrane or an RO membrane, or a filtration membrane such as a UF membrane, an MF membrane, etc. When a membrane filter unit of a reverse osmosis membrane is used And a discharge pipe for discharging the concentrated water.
 なお、プレフィルター13や2次フィルター15は、それぞれ複数個所に配置することも可能である。その場合、上流から下流に向かって孔径が小さくなるようにフィルターを配置するのが好適である。 In addition, it is also possible to arrange the prefilter 13 and the secondary filter 15 in multiple places, respectively. In that case, it is preferable to dispose the filter so that the pore size decreases from the upstream toward the downstream.
 吸着フィルター16は、例えば、活性炭が収納されており、水に溶解した成分、特に異味や異臭、あるいは、トリハロメタンをはじめとしたハロゲン化炭素を除去するものである。また、吸着フィルター16の内部に重金属を除去するための重金属除去剤を混入することで、鉛などの有害重金属を吸着して除去できるようにしてもよい。また、吸着フィルター16で水中の残留塩素を分解除去するため、下流側に細菌が繁殖し易くなる。そこで、吸着フィルター16に銀などの抗菌性を有する金属を含む抗菌剤を混合しておくのが好適である。 The adsorption filter 16 contains, for example, activated carbon, and removes components dissolved in water, particularly off-flavors and off-flavors, or halogenated carbon such as trihalomethane. In addition, by mixing a heavy metal removing agent for removing heavy metals into the inside of the adsorption filter 16, harmful heavy metals such as lead may be adsorbed and removed. Further, since the residual chlorine in the water is decomposed and removed by the adsorption filter 16, bacteria are easily propagated downstream. Therefore, it is preferable to mix an antibacterial agent containing an antibacterial metal such as silver in the adsorption filter 16.
 そして、吸着フィルター16を通過した水は、逆止弁17を介してイオン交換装置18に導入される。 Then, the water that has passed through the adsorption filter 16 is introduced into the ion exchange device 18 via the check valve 17.
 そして、このイオン交換装置18で、水中の陽イオン、陰イオンが除去されて塩分の少ない水がポストフィルター19に導入される。また、陽イオン、陰イオンが濃縮された濃縮水は排水路32a,32bを介して装置外に排出される。 Then, cations and anions in the water are removed by the ion exchange device 18, and water with little salt content is introduced into the post filter 19. Further, the concentrated water in which the cation and the anion are concentrated is discharged to the outside of the apparatus through the drains 32a and 32b.
 なお、イオン交換装置18の詳細については、後述する。 The details of the ion exchange device 18 will be described later.
 そして、ポストフィルター19に導入された水は、当該ポストフィルター19によって、水中の味、臭い成分が最終的に除去され、味を調えられた状態で、通水路11の下流側末端から外部に吐出される。この通水路11の下流側末端は、蛇口等に接続されており、この蛇口等を介して処理水が供給されるようになっている。 Then, the water introduced into the post filter 19 is discharged to the outside from the downstream end of the water passage 11 in a state where the taste and odor component in the water are finally removed by the post filter 19 and the taste is adjusted. Be done. The downstream end of the water passage 11 is connected to a faucet or the like, and treated water is supplied via the faucet or the like.
 このポストフィルター19は、万一濾過材等が漏出した場合でも、供給される処理水に濾過材等が混入してしまうのを抑制する機能も有している。 The post filter 19 also has a function of suppressing the mixing of the filter material or the like into the supplied treated water even if the filter material or the like leaks.
 逆止弁17は、昇圧ポンプ14が停止した場合、または給水弁12が閉じたとき、さらには水道配管の水圧が所定圧以下に低下した場合に、イオン交換装置18を含む下流側からの残圧によって水が逆流し、プレフィルター13等のフィルター内に滞留、堆積した異物が水道配管に逆流してしまうのを防止するものである。 The non-return valve 17 remains from the downstream side including the ion exchange device 18 when the pressure rising pump 14 is stopped, or when the water supply valve 12 is closed or when the water pressure of the water pipe drops to a predetermined pressure or less. The pressure prevents the backflow of water, and the foreign substances accumulated and accumulated in the filter such as the prefilter 13 are prevented from flowing back to the water pipe.
 このような構成とすることで、高硬度の原水からも脱塩した飲用水を供給することができる水処理装置の小型化を図ることができる。 With such a configuration, it is possible to miniaturize the water treatment apparatus capable of supplying the drinking water desalted even from the raw water of high hardness.
 なお、水処理装置は上記構成に限定されるものではない。 In addition, a water treatment apparatus is not limited to the said structure.
 例えば、圧力センサを設け、通水路11内が所定圧以上に昇圧した場合に、圧力センサから昇圧ポンプ14や給水弁12を制御する図示せぬ制御ユニットに信号を送り、昇圧ポンプ14を停止するとともに、給水弁12を閉じるように構成してもよい。こうすれば、通水路11の内部の異常な昇圧による水漏れや破損を防止できるようになる。 For example, a pressure sensor is provided, and when the water passage 11 is pressurized to a predetermined pressure or more, the pressure sensor sends a signal to a control unit (not shown) that controls the pressure pump 14 and the water supply valve 12 to stop the pressure pump 14 In addition, the water supply valve 12 may be configured to be closed. In this way, it is possible to prevent water leakage and damage due to abnormal pressure increase inside the water passage 11.
 さらに、通水路11等に水質センサを設け、水質異常時に給水を停止するように構成することも可能である。 Furthermore, it is also possible to provide a water quality sensor in the water passage 11 or the like and to stop the water supply when the water quality is abnormal.
 また、水処理装置10を筺体に収納固定して、当該筺体を処理水使用箇所近傍に設置可能とすることで、使用者の利便性向上を図るようにしてもよい。 In addition, the convenience of the user may be improved by storing and fixing the water treatment device 10 in a housing so that the housing can be installed in the vicinity of the treated water use location.
 また、上記水処理装置10では、昇圧ポンプ14の上流側にプレフィルター13を配置しているが、プレフィルター13が昇圧ポンプ14の上流側に配置されている必要はなく、昇圧ポンプ14の下流側に配置されていてもよい。さらに、給水弁12の動作に支障をきたすような粒子が混入する可能性があれば、プレフィルター13を給水弁12の上流側に配置させてもよい。 In the water treatment apparatus 10, the pre-filter 13 is disposed upstream of the pressure pump 14, but the pre-filter 13 does not have to be disposed upstream of the pressure pump 14, and the downstream of the pressure pump 14 is not required. It may be arranged on the side. Furthermore, if there is a possibility that particles that may interfere with the operation of the water supply valve 12 may be mixed, the pre-filter 13 may be disposed upstream of the water supply valve 12.
 また、逆止弁17の取付位置も限定されるものでなく、止水時に生じる背圧によって昇圧ポンプ14や給水弁12の動作に支障をきたす場合があれば、その回避のために必要な場所に配置すればよい。 In addition, the mounting position of the check valve 17 is not limited, and if there is a case where the operation of the pressure pump 14 and the water supply valve 12 may be disturbed by the back pressure generated at the time of water stop, a place necessary for the avoidance. It should be placed in
 次に、イオン交換装置18について説明する。 Next, the ion exchange device 18 will be described.
 本実施形態にかかるイオン交換装置18は、図2に示すように、イオン交換機能を有するイオン交換ユニット20をケーシング30内に配置することで形成されており、水処理装置10内に着脱自在に装着できるようになっている。 As shown in FIG. 2, the ion exchange device 18 according to the present embodiment is formed by arranging the ion exchange unit 20 having an ion exchange function in the casing 30, and can be detachably attached to the water treatment device 10. It can be worn.
 ケーシング30は、略円筒状をしており、底壁部31の略中心部に、水をケーシング30内部に導入する吸入口31aが形成されている。そして、天壁部32には、略中心部に濃縮水吐出口32b、外周部に濃縮水吐出口32aが設けられており、天壁部32の径方向略中間部には、脱イオン水吐出口32cが設けられている。 The casing 30 has a substantially cylindrical shape, and a suction port 31 a for introducing water into the casing 30 is formed in a substantially central portion of the bottom wall portion 31. The top wall portion 32 is provided with a concentrated water discharge port 32b substantially at the center and a concentrated water discharge port 32a at the outer peripheral portion. An outlet 32c is provided.
 なお、ケーシング30は、天壁部32等を着脱可能に取り付けるようにすることで、イオン交換ユニット20を内部に配置できるようにしているが、図2ではそのような構造は省略している。 In addition, although the casing 30 attaches the top wall part 32 grade | etc., So that attachment or detachment is possible, the ion exchange unit 20 can be arrange | positioned inside, but such a structure is abbreviate | omitted in FIG.
 イオン交換ユニット20は、本実施形態では、略円筒状のイオン交換体21を備えており、当該イオン交換体21の径方向(一方向)内周側に陽極27が、径方向(一方向)外周側に陰極28が配置されている。このように、本実施形態では、イオン交換体21の径方向(一方向)両端に、当該イオン交換体21を挟むように陽極27および陰極28を配置することで、イオン交換ユニット20が形成されている。 In the present embodiment, the ion exchange unit 20 includes the substantially cylindrical ion exchanger 21, and the anode 27 is provided radially inward (in one direction) on the radially inner side of the ion exchanger 21 (in one direction). The cathode 28 is disposed on the outer peripheral side. As described above, in the present embodiment, the ion exchange unit 20 is formed by arranging the anode 27 and the cathode 28 at both ends in the radial direction (one direction) of the ion exchanger 21 so as to sandwich the ion exchanger 21. ing.
 イオン交換体21は、少なくとも陽イオン交換繊維と陰イオン交換繊維とを混合したものを略円筒状に形成することで得られるイオン交換層(イオン交換機能を有するイオン交換部)22を備えている。そして、イオン交換層22の径方向内周側に陰イオン交換薄層(イオン交換膜)23が積層されているとともに、径方向外周側に陽イオン交換薄層(イオン交換膜)24が積層されている。 The ion exchanger 21 includes an ion exchange layer (ion exchange portion having an ion exchange function) 22 obtained by forming at least a mixture of cation exchange fibers and anion exchange fibers in a substantially cylindrical shape. . Then, the anion exchange thin layer (ion exchange membrane) 23 is laminated on the radially inner peripheral side of the ion exchange layer 22 and the cation exchange thin layer (ion exchange membrane) 24 is laminated on the radial outer peripheral side. ing.
 すなわち、イオン交換体21は、イオン交換層(イオン交換機能を有するイオン交換部)22を、陰イオン交換薄層(イオン交換膜)23と陽イオン交換薄層(イオン交換膜)24とで、径方向内外周側から挟み込むことで形成されている。 That is, the ion exchanger 21 comprises an ion exchange layer (ion exchange portion having an ion exchange function) 22, an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) 24. It is formed by sandwiching from the radially inner and outer peripheral side.
 さらに、本実施形態では、陰イオン交換薄層(イオン交換膜)23の径方向内周側に、当該陰イオン交換薄層(イオン交換膜)23の形状を維持する透水性の補強材25が積層されている。そして、陽イオン交換薄層(イオン交換膜)24の径方向外周側に、当該陽イオン交換薄層(イオン交換膜)24の形状を維持する透水性の補強材26が積層されている。 Furthermore, in the present embodiment, the permeable reinforcing material 25 for maintaining the shape of the anion exchange thin layer (ion exchange membrane) 23 is provided on the radially inner peripheral side of the anion exchange thin layer (ion exchange membrane) 23. It is stacked. A permeable reinforcing material 26 for maintaining the shape of the cation exchange thin layer (ion exchange membrane) 24 is laminated on the radially outer peripheral side of the cation exchange thin layer (ion exchange membrane) 24.
 本実施形態では、上述した陽極27および陰極28が、補強材25の径方向内周側および補強材26の径方向外周側にそれぞれ積層されている。 In the present embodiment, the anode 27 and the cathode 28 described above are respectively laminated on the radially inner peripheral side of the reinforcing material 25 and the radial outer peripheral side of the reinforcing material 26.
 そして、イオン交換ユニット20の軸方向(図2中上下方向)両端は、エンドキャップ40,41で覆われている。 And both ends in the axial direction (vertical direction in FIG. 2) of the ion exchange unit 20 are covered with end caps 40 and 41.
 エンドキャップ40の底壁40aには、イオン交換ユニット20内に水を導入させる吸入口40bが、周方向に複数形成されている。 In the bottom wall 40 a of the end cap 40, a plurality of suction ports 40 b for introducing water into the ion exchange unit 20 are formed in the circumferential direction.
 そして、エンドキャップ41の天壁41aの下面側には、周方向に沿って溝41bが形成されており、溝41bの一部を貫通させることで、脱イオン水吐出口32cに連通する連通口41cが形成されている。 A groove 41b is formed along the circumferential direction on the lower surface side of the top wall 41a of the end cap 41, and a part of the groove 41b penetrates to communicate with the deionized water discharge port 32c. 41c is formed.
 本実施形態では、ケーシング30の径および軸方向長さを、イオン交換ユニット20の径および軸方向長さよりも長くしている。そして、イオン交換ユニット20の中心空洞部がケーシング30の天壁部32の濃縮水吐出口32bと連通するとともに、連通口41cが脱イオン水吐出口32cに連通するように、エンドキャップ41の天壁41aをケーシング30の天壁部32に取り付けている。このとき、ケーシング30のイオン交換ユニット20よりも外周側に濃縮水通路30aが形成されるとともに、ケーシング30のイオン交換ユニット20よりも内周側に濃縮水通路30bが形成される。この濃縮水通路30a,30bは、それぞれ、濃縮水吐出口32a,32bに連通している。 In the present embodiment, the diameter and axial length of the casing 30 are made longer than the diameter and axial length of the ion exchange unit 20. Then, the central hollow portion of the ion exchange unit 20 communicates with the concentrated water discharge port 32b of the top wall 32 of the casing 30, and the communication port 41c communicates with the deionized water discharge port 32c. The wall 41 a is attached to the top wall 32 of the casing 30. At this time, the concentrated water passage 30 a is formed on the outer peripheral side than the ion exchange unit 20 of the casing 30, and the concentrated water passage 30 b is formed on the inner peripheral side of the ion exchange unit 20 of the casing 30. The concentrated water passages 30a and 30b respectively communicate with the concentrated water discharge ports 32a and 32b.
 このとき、連通口41cと脱イオン水吐出口32cとが液密に連通するように構成するのが好適である。 At this time, it is preferable that the communication port 41 c and the deionized water discharge port 32 c be in fluid tight communication.
 ここで、本実施形態では、イオン交換機能を有するとともに、水に対して難膨潤性であるイオン交換膜を、陰イオン交換薄層(イオン交換膜)23と陽イオン交換薄層(イオン交換膜)24として用いている。 Here, in the present embodiment, an ion exchange membrane having an ion exchange function and being hardly swellable with water, an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) ) Is used.
 具体的には、主鎖から分岐したイオン交換機能を持つ官能基を有するポリマーを水に対して難膨潤性のポリマーの外表面にコーティングした極細の繊維(少なくとも表面にイオン交換機能を有する繊維)23a,24aを不織布状に積層することで、陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24を形成している(図3参照)。 Specifically, a very fine fiber (a fiber having an ion exchange function on at least the surface) coated with a polymer having a functional group having an ion exchange function branched from the main chain on the outer surface of a water-swellable polymer. The anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 are formed by laminating 23a and 24a in a non-woven fabric state (see FIG. 3).
 なお、陰イオン交換薄層(イオン交換膜)23を形成する際には、ジメチルアミノエチル基等の塩基性の官能基を有するポリマーが用いられる。また、陽イオン交換薄層(イオン交換膜)24を形成する際には、カルボキシル基等の酸性の官能基を有するポリマーが用いられる。 When the anion exchange thin layer (ion exchange membrane) 23 is formed, a polymer having a basic functional group such as dimethylaminoethyl group is used. Moreover, when forming the cation exchange thin layer (ion exchange membrane) 24, the polymer which has acidic functional groups, such as a carboxyl group, is used.
 本実施形態では、繊維23a,24aとして、平均繊維径が1μm未満、より好ましくは、100nm以下の繊維を用いている。そして、当該繊維を、繊維密度が10mg/cm2以上となるように積層することで、陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24を不織布状に形成している。 In the present embodiment, fibers having an average fiber diameter of less than 1 μm, more preferably 100 nm or less, are used as the fibers 23a and 24a. Then, by laminating the fibers so that the fiber density is 10 mg / cm 2 or more, the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 are formed in a non-woven fabric shape doing.
 このように、本実施形態にかかる陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24は、繊維径が極細の繊維で形成されているため、繊維間隙も繊維径もしくはそれ以下の極細径の細孔を多数備えた多孔質膜である。 As described above, since the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 according to the present embodiment are formed of fibers with an extremely small fiber diameter, the fiber gap is also formed. It is a porous membrane provided with a large number of fine pores having a fiber diameter or less.
 なお、この繊維状の膜は、極細径であるため柔軟性を有しており、基材となる別の素材の表面に当該繊維層を容易に形成することができる。このため、多孔質の濾過材表面に当該繊維膜を積層すれば、逆の電荷を有する微粒子を捕捉し、当該微粒子による濾過材表面の汚染を防止することができる。また、抗菌性を有する金属イオン(例えば、Agなど)を繊維膜に担持させれば、濾過材表面の微生物による汚染を抑制することができる。 In addition, since this fibrous film has an extremely thin diameter, it has flexibility, and the fiber layer can be easily formed on the surface of another material serving as a base material. Therefore, when the fiber membrane is laminated on the surface of the porous filter medium, it is possible to capture the fine particles having the opposite charge and prevent the surface of the filter medium from being contaminated by the fine particles. Moreover, if the metal film (for example, Ag etc.) which has antimicrobial property is carry | supported by a fiber membrane, the contamination by the microorganisms of the filter material surface can be suppressed.
 さらに、本実施形態では、水に対して難膨潤性のポリマーを繊維状にしたものを不織布状に積層して陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24を形成している。そのため、乾燥状態と水を含浸させた状態とで繊維自体の変形が極めて小さく、イオン交換膜そのものが水に対して難膨潤性となる。 Furthermore, in the present embodiment, an anion exchange thin layer (ion exchange membrane) 23 and a cation exchange thin layer (ion exchange membrane) are laminated in a non-woven fabric state in which fibrous polymers of poorly swellable polymers with respect to water are made. And 24). Therefore, the deformation of the fiber itself is extremely small in the dry state and in the state of being impregnated with water, and the ion exchange membrane itself becomes hardly swellable with water.
 また、不織布状に積層しているため、仮に、繊維が膨潤したとしても繊維の自由端位置が変化するだけで、膜そのものが膨潤してしまうのを抑制することができる。 Further, since the non-woven fabric is laminated, even if the fibers swell, it is possible to suppress the swelling of the film itself only by changing the free end position of the fibers.
 しかも、イオン交換機能を持つ官能基を有するポリマーで表面をコーティングしているため、水に対する難膨潤性をより一層高めることができる。 In addition, since the surface is coated with a polymer having a functional group having an ion exchange function, the poor swelling property to water can be further enhanced.
 なお、水に対して難膨潤性のポリマーの材料は、ポリエステル系、アミド系、ビニル系、アクリル系等繊維状に加工可能なものの中から任意に選択することができる。 The material of the polymer hardly swellable to water can be arbitrarily selected from those which can be processed into fibers such as polyesters, amides, vinyls and acrylics.
 また、イオン交換機能を持つ官能基を有するポリマーの材料は、セルロース系、スチレン系等イオン交換機能を持つものの中から任意に選択することができる。 In addition, the material of the polymer having a functional group having an ion exchange function can be arbitrarily selected from those having an ion exchange function, such as a cellulose type and a styrene type.
 この繊維23a,24aは、例えば、水に対して難膨潤性のポリマーを心材として当該心材に静電気を与え、この心材に対して、イオン交換機能を有するポリマーを微細径ノズルから逆電位を与えた状態で噴出させることで形成される。 The fibers 23a and 24a, for example, apply static electricity to the core material using a polymer that does not easily swell in water as the core material, and apply a reverse potential to the core material with a polymer having an ion exchange function from a fine diameter nozzle It is formed by spouting in the state.
 このとき、2重管構造のノズルを用い、中心側から水に対して難膨潤性のポリマーを噴出するとともに、外周側からイオン交換機能を有するポリマーを噴出させることで形成するのが好ましい。 At this time, it is preferable that the nozzle having a double tube structure is used to eject the hardly swellable polymer with respect to water from the center side and eject the polymer having an ion exchange function from the outer peripheral side.
 また、本実施形態では、陽極27および陰極28(陽極および陰極のうち少なくともいずれか一方)が、導電性繊維27a,28aにより形成されている。 Further, in the present embodiment, the anode 27 and the cathode 28 (at least one of the anode and the cathode) are formed of the conductive fibers 27a and 28a.
 この陽極27および陰極28は、陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24と同様に、導電性繊維27a,28aを不織布状に積層することで形成されている(図3参照)。なお、図3では、便宜上、補強材25,26を省略したものを図示している。 Like the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24, the anode 27 and the cathode 28 are formed by laminating conductive fibers 27a and 28a in a non-woven cloth state. (See Figure 3). In addition, in FIG. 3, what abbreviate | omitted the reinforcing materials 25 and 26 is illustrated for convenience.
 この導電性繊維27a,28aの材料は、プラチナ、金等耐腐食性を有する金属繊維、カーボン繊維やカーボンをフィラーとして含有する多種のポリマー、例えばナイロン等のポリアミド系、ポリメチルメタクリル酸等のアクリル系、ポリエステル系、ビニル系,ポリエチレン等のオレフィン系等、導電性を有する材料の中から幅広く選択することができる。 The material of the conductive fibers 27a and 28a is metal fibers having corrosion resistance such as platinum and gold, various types of polymers containing carbon fibers and carbon as a filler, for example, polyamide based such as nylon, acrylic such as polymethyl methacrylic acid It can be widely selected from materials having conductivity, such as olefins such as polyesters, polyesters, vinyls and polyethylenes.
 このように、陽極27および陰極28を、導電性繊維27a,28aで形成することで、棒状等の金属塊や板状の電極を用いた場合に比べて、加工自由度および形状自由度を向上させることができ、イオン交換ユニット20の形状自由度も向上させることができる。 Thus, forming the anode 27 and the cathode 28 with the conductive fibers 27a and 28a improves the degree of freedom in processing and shape as compared with the case of using a rod-like metal lump or a plate-like electrode. The shape freedom of the ion exchange unit 20 can also be improved.
 また、導電性繊維27a,28aで形成することで、基材表面にコーティングすることが可能となり、電極そのものを固定する必要がなくなるため、イオン交換ユニット20の構成の簡素化を図ることができる。 Further, by forming the conductive fibers 27a and 28a, it becomes possible to coat the surface of the base material, and there is no need to fix the electrode itself, so that the configuration of the ion exchange unit 20 can be simplified.
 なお、通常のように、ステンレス、チタン、プラチナ、イリジウム等の金属板に孔を設けたものを電極(陽極および陰極)として用いるようにしてもよい。 As usual, a metal plate of stainless steel, titanium, platinum, iridium or the like provided with a hole may be used as an electrode (anode and cathode).
 次に、イオン交換装置18の作用を説明する。 Next, the operation of the ion exchange device 18 will be described.
 まず、吸入口31aからケーシング30(イオン交換装置18)内部に導入された水は、ケーシング30の外周部(濃縮水通路30a)を流れる水と、ケーシング30の内周部(濃縮水通路30b)を流れる水と、エンドキャップ40の底壁40aに設けられた吸入口40bからイオン交換層22内部に導入される水と、に分流される。 First, the water introduced into the casing 30 (ion exchange device 18) from the suction port 31a flows through the outer peripheral portion (concentrated water passage 30a) of the casing 30 and the inner peripheral portion of the casing 30 (concentrated water passage 30b) And water introduced into the inside of the ion exchange layer 22 from the suction port 40 b provided on the bottom wall 40 a of the end cap 40.
 このとき、吸入口31aから導入された水を分散させる板等を配置して、より均等に水を分流させるようにしてもよい。 At this time, a plate or the like for dispersing the water introduced from the suction port 31a may be arranged to divert the water more evenly.
 そして、陽極27および陰極28に電圧(DC)が印加されると、逆の電荷を有するイオンがそれぞれの電極(陽極27および陰極28)に電気的にひき付けられる。 Then, when a voltage (DC) is applied to the anode 27 and the cathode 28, ions having opposite charges are electrically attracted to the respective electrodes (the anode 27 and the cathode 28).
 このとき、イオン交換層22内部に混合された陽イオン交換繊維にはカルシウム、マグネシウム、ナトリウム、カリウムなどの陽イオンがイオン交換により吸着される。ここで、イオン交換により陽イオン交換繊維に吸着された陽イオンは、陰極28に電気的にひきつけられるため、陽イオン交換繊維と着脱を繰り返しながら、イオン交換層22の外周側へ移動していく。 At this time, cations such as calcium, magnesium, sodium and potassium are adsorbed by ion exchange on the cation exchange fiber mixed in the ion exchange layer 22. Here, since the cation adsorbed to the cation exchange fiber by ion exchange is electrically attracted to the cathode 28, it moves to the outer peripheral side of the ion exchange layer 22 while repeatedly attaching and detaching to the cation exchange fiber. .
 このイオン交換層22の外周には、繊維24aからなる陽イオン交換薄層(イオン交換膜)24が存在する。この陽イオン交換薄層(イオン交換膜)24は、上述したように、少なくとも表面が陰イオン交換能を有するミクロン未満の直径である極細繊維24aからなり、その繊維間の間隙はさらに細い空隙を有する水透過性の構造を有している。 On the outer periphery of the ion exchange layer 22, a cation exchange thin layer (ion exchange membrane) 24 composed of fibers 24a is present. As described above, this cation exchange thin layer (ion exchange membrane) 24 is composed of microfibers 24a at least the surface of which has a diameter of less than a micron having anion exchange ability, and the gaps between the fibers are further reduced It has a water-permeable structure.
 この陽イオン交換薄層(イオン交換膜)24は、ナノサイズの繊維24aを用いて形成しているため、同重量、同材質のものに比べ、著しく比表面積が広くなっており、反応性が非常に高くなっている。 Since this cation exchange thin layer (ion exchange membrane) 24 is formed using the nano-sized fibers 24a, its specific surface area is remarkably wider than that of the same weight and the same material, and the reactivity is low. It is very expensive.
 したがって、この陽イオン交換薄層(イオン交換膜)24も陽イオンを素早く吸着する。そして、陽イオン交換薄層(イオン交換膜)24に吸着された陽イオンは、さらに外周に存在する陰極28にひき付けられ、補強材26の比較的大きな貫通孔を介して陰極28側へ移動し、濃縮水吐出口32bからイオン交換装置18の外に濃縮水として排出される。 Therefore, this cation exchange thin layer (ion exchange membrane) 24 also adsorbs cations quickly. Then, the cations adsorbed on the cation exchange thin layer (ion exchange membrane) 24 are attracted to the cathode 28 present on the outer periphery and move toward the cathode 28 through the relatively large through holes of the reinforcing material 26. Then, it is discharged as concentrated water from the concentrated water discharge port 32 b to the outside of the ion exchange device 18.
 また、イオン交換層22内部に流入した硫酸イオン、塩化物イオン、硝酸イオン、燐酸イオン等の陰イオンも、イオン交換層22内部の陰イオン交換繊維や陰イオン交換薄層(イオン交換膜)23と着脱を繰り返しながら移動する。すなわち、陰イオンは、上述の陽イオンとは逆方向(径方向内周側)である陽極27側に移動し、濃縮水吐出口32bからイオン交換装置18の外に濃縮水として排出される。 Further, anions such as sulfate ion, chloride ion, nitrate ion, phosphate ion and the like which flow into the ion exchange layer 22 are also anion exchange fiber and anion exchange thin layer (ion exchange membrane) 23 inside the ion exchange layer 22. Move while repeatedly removing and attaching. That is, the anions move to the side of the anode 27 which is in the opposite direction (radial direction inner circumferential side) to the above-mentioned cations, and are discharged as concentrated water from the concentrated water discharge port 32 b to the outside of the ion exchange device 18.
 こうして、水中のイオン成分が取り除かれた脱イオン水が、溝41bに形成した連通口41cを介して脱イオン水吐出口32cから吐出される。 Thus, the deionized water from which the ion component in the water has been removed is discharged from the deionized water discharge port 32c through the communication port 41c formed in the groove 41b.
 なお、陰イオン交換薄層(イオン交換膜)23および陽イオン交換薄層(イオン交換膜)24は、ナノサイズの繊維23a,24aで層を形成しているため、両面に連通する孔の孔径もナノサイズの極めて小さい孔とすることができる。したがって、ケーシング30の外周部を流れる水と、ケーシング30の内周部を流れる水が、イオン交換層22内に移動してしまうのを抑制することができる。 In addition, since the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 form a layer of nano size fibers 23a and 24a, the pore diameter of the hole communicated on both sides Can also be very small holes of nano size. Therefore, the water flowing through the outer peripheral portion of the casing 30 and the water flowing through the inner peripheral portion of the casing 30 can be prevented from moving into the ion exchange layer 22.
 なお、イオン交換装置18として、図4に示すように、イオン交換ユニット20を複数備えたものを用いることも可能である。 In addition, as shown in FIG. 4, it is also possible to use what was equipped with multiple ion exchange units 20 as the ion exchange apparatus 18. In FIG.
 図4では、3つのイオン交換ユニット20を同心状に配置させたものを示している。 In FIG. 4, what arrange | positioned three ion exchange units 20 concentrically is shown.
 そして、各々のイオン交換層22の径方向外周側に、陽イオン交換薄層24と陰極28を設け、各々のイオン交換層22の径方向内周側に、陰イオン交換薄層23と陽極27を設けている。また、各々のイオン交換ユニット20を一体的に固定するエンドキャップ41に設けた各々の脱イオン水吐出口32cをさらに連結する脱イオン水集水路50を設けた。 Then, the cation exchange thin layer 24 and the cathode 28 are provided on the radially outer peripheral side of each ion exchange layer 22, and the anion exchange thin layer 23 and the anode 27 are provided on the radially inner peripheral side of each ion exchange layer 22. Is provided. In addition, a deionized water collecting channel 50 is provided to further connect the deionized water discharge ports 32c provided on the end cap 41 to which the ion exchange units 20 are integrally fixed.
 そして、それぞれのイオン交換ユニット20を経て生成された脱イオン水が脱イオン水集水路50を介して吐出されるようになっている。また、このとき生成される濃縮水も濃縮水集水路51を介してイオン交換装置18の外に排出される。 Then, deionized water generated through each of the ion exchange units 20 is discharged through the deionized water collecting channel 50. In addition, the concentrated water generated at this time is also discharged to the outside of the ion exchange device 18 through the concentrated water collection channel 51.
 このような構成とすることで、高効率のイオン交換装置18をさらにコンパクトにすることができる。 With such a configuration, the highly efficient ion exchange device 18 can be made more compact.
 以上説明したように、本実施形態では、イオン交換機能を有するとともに、水に対して難膨潤性であるイオン交換膜を、陰イオン交換薄層(イオン交換膜)23と陽イオン交換薄層(イオン交換膜)24として用いた。したがって、乾燥した状態で組み付けた陰イオン交換薄層(イオン交換膜)23と陽イオン交換薄層(イオン交換膜)24が、水を含浸した際に変形してしまうのを抑制することができる。このように、本実施形態によれば、より容易にイオン交換膜を装置に組み付けることができる。 As described above, in the present embodiment, the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) have ion exchange function and are hardly swellable in water. It used as an ion exchange membrane) 24. Therefore, the anion exchange thin layer (ion exchange membrane) 23 and the cation exchange thin layer (ion exchange membrane) 24 assembled in a dry state can be prevented from being deformed when impregnated with water. . Thus, according to the present embodiment, the ion exchange membrane can be more easily assembled into the apparatus.
 また、このようなイオン交換膜を用いることで、より容易に組み立てることのできるイオン交換体21、イオン交換ユニット20、イオン交換装置18ならびに水処理装置10を得ることができる。 Moreover, the ion exchanger 21, the ion exchange unit 20, the ion exchange apparatus 18, and the water treatment apparatus 10 which can be assembled more easily can be obtained by using such an ion exchange membrane.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。 As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
 例えば、水処理装置は、少なくともイオン交換装置を備えていればよい。 For example, the water treatment device may include at least an ion exchange device.
 本発明によれば、より容易に組み付けることのできるイオン交換膜、イオン交換体、イオン交換ユニット、イオン交換装置および当該イオン交換装置を用いた水処理装置を得ることができる。 According to the present invention, it is possible to obtain an ion exchange membrane, an ion exchanger, an ion exchange unit, an ion exchange device, and a water treatment device using the ion exchange device, which can be assembled more easily.

Claims (8)

  1.  イオン交換機能を有するとともに、水に対して難膨潤性であることを特徴とするイオン交換膜。 An ion exchange membrane characterized by having an ion exchange function and being hardly swellable in water.
  2.  少なくとも表面にイオン交換基を有する繊維を不織布状に積層することで形成されていることを特徴とする請求項1に記載のイオン交換膜。 The ion exchange membrane according to claim 1, wherein the ion exchange membrane is formed by laminating fibers having an ion exchange group at least on the surface in a non-woven fabric state.
  3.  前記イオン交換膜が柔軟性を有していることを特徴とする請求項2に記載のイオン交換膜。 The ion exchange membrane according to claim 2, wherein the ion exchange membrane has flexibility.
  4.  請求項1~3のうちいずれか1項に記載のイオン交換膜が、イオン交換機能を有するイオン交換部を挟み込むように、当該イオン交換部の一方向両端に配置されていることを特徴とするイオン交換体。 The ion exchange membrane according to any one of claims 1 to 3 is disposed at both ends in one direction of the ion exchange portion so as to sandwich an ion exchange portion having an ion exchange function. Ion exchanger.
  5.  請求項4に記載のイオン交換体の前記一方向両端に、当該イオン交換体を挟むように陽極および陰極が配置されていることを特徴とするイオン交換ユニット。 An ion exchange unit, wherein an anode and a cathode are disposed on both sides of the ion exchanger according to claim 4 so as to sandwich the ion exchanger.
  6.  前記陽極および陰極のうち少なくともいずれか一方が、導電性繊維により形成されていることを特徴とする請求項5に記載のイオン交換ユニット。 The ion exchange unit according to claim 5, wherein at least one of the anode and the cathode is formed of a conductive fiber.
  7.  請求項5に記載のイオン交換ユニットを少なくとも1つ備えることを特徴とするイオン交換装置。 An ion exchange apparatus comprising at least one ion exchange unit according to claim 5.
  8.  請求項7に記載のイオン交換装置を備える水処理装置。 A water treatment device comprising the ion exchange device according to claim 7.
PCT/JP2011/051397 2010-01-26 2011-01-26 Ion exchange film, ion exchange body, ion exchange unit, ion exchange device, and water treatment device using ion exchange device WO2011093296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013944A JP2011152489A (en) 2010-01-26 2010-01-26 Ion exchange membrane, ion exchanger, ion exchange unit, ion exchange apparatus, and water treatment apparatus using the ion exchange apparatus
JP2010-013944 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011093296A1 true WO2011093296A1 (en) 2011-08-04

Family

ID=44319283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051397 WO2011093296A1 (en) 2010-01-26 2011-01-26 Ion exchange film, ion exchange body, ion exchange unit, ion exchange device, and water treatment device using ion exchange device

Country Status (2)

Country Link
JP (1) JP2011152489A (en)
WO (1) WO2011093296A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435142A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of granular ion crossover adsorbent, preparation and the application of absorption rubidium or lithium
CN108435143A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of high-hydrophilic adsorbent, preparation and the application of absorption rubidium ion or lithium ion
CN111087055A (en) * 2019-12-31 2020-05-01 佛山市云米电器科技有限公司 Method for preparing electric desalting device based on two-state low-deformation ion exchange membrane
CN113401988A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Separator and water treatment equipment thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640095B1 (en) * 2014-09-26 2016-07-18 전남대학교산학협력단 Anion exchange electrolyte membrane, method for preparing the same, energy storage and water treating apparatus comprising the same
JP2017121612A (en) 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Electromechanical cell, water treatment equipment comprising the same, and operation method for water treatment equipment
KR101728772B1 (en) 2016-02-11 2017-04-20 전남대학교산학협력단 Anion exchange electrolyte membrane, method for preparing the same, energy storage and water treating apparatus comprising the same
KR101691612B1 (en) * 2016-07-25 2017-01-02 (주) 시온텍 Apparatus for Generating Alkaline Hydrogen Water
CN108479719B (en) * 2018-04-23 2021-05-07 陕西省膜分离技术研究院有限公司 High-performance ion exchange type adsorbent, preparation and application for extracting rubidium/lithium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234428A (en) * 1988-03-14 1989-09-19 Japan Exlan Co Ltd Cation exchange fiber
JPH07236889A (en) * 1993-04-21 1995-09-12 Nippon Rensui Kk Pure water making apparatus
JP2001000976A (en) * 1999-06-21 2001-01-09 Asahi Glass Co Ltd Deionized water making apparatus having concentration chamber divided into two chambers
WO2005075500A1 (en) * 2004-02-03 2005-08-18 Kurume University Method for separating/refining cationic protein
JP2009007728A (en) * 2007-05-31 2009-01-15 Japan Exlan Co Ltd Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber
JP2009242523A (en) * 2008-03-31 2009-10-22 Asahi Kasei Corp Ion exchange nonwoven fabric
JP2009247996A (en) * 2008-04-07 2009-10-29 Asahi Kasei Fibers Corp Material for cation removal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234428A (en) * 1988-03-14 1989-09-19 Japan Exlan Co Ltd Cation exchange fiber
JPH07236889A (en) * 1993-04-21 1995-09-12 Nippon Rensui Kk Pure water making apparatus
JP2001000976A (en) * 1999-06-21 2001-01-09 Asahi Glass Co Ltd Deionized water making apparatus having concentration chamber divided into two chambers
WO2005075500A1 (en) * 2004-02-03 2005-08-18 Kurume University Method for separating/refining cationic protein
JP2009007728A (en) * 2007-05-31 2009-01-15 Japan Exlan Co Ltd Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber
JP2009242523A (en) * 2008-03-31 2009-10-22 Asahi Kasei Corp Ion exchange nonwoven fabric
JP2009247996A (en) * 2008-04-07 2009-10-29 Asahi Kasei Fibers Corp Material for cation removal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435142A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of granular ion crossover adsorbent, preparation and the application of absorption rubidium or lithium
CN108435143A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of high-hydrophilic adsorbent, preparation and the application of absorption rubidium ion or lithium ion
CN108435142B (en) * 2018-04-23 2020-11-13 陕西省膜分离技术研究院有限公司 Granular ion exchange type adsorbent, preparation and application of granular ion exchange type adsorbent in adsorbing rubidium or lithium
CN108435143B (en) * 2018-04-23 2020-11-13 陕西省膜分离技术研究院有限公司 High-hydrophilicity adsorbent, preparation and application of adsorbent in adsorbing rubidium ions or lithium ions
CN111087055A (en) * 2019-12-31 2020-05-01 佛山市云米电器科技有限公司 Method for preparing electric desalting device based on two-state low-deformation ion exchange membrane
CN113401988A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Separator and water treatment equipment thereof
CN113401988B (en) * 2020-03-16 2024-03-15 广东栗子科技有限公司 Separation device and water treatment equipment thereof

Also Published As

Publication number Publication date
JP2011152489A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
WO2011093296A1 (en) Ion exchange film, ion exchange body, ion exchange unit, ion exchange device, and water treatment device using ion exchange device
US6001244A (en) Performance water purification system
US20120085687A1 (en) Unihousing portable water filtration system
US20090008318A1 (en) Modular Water Purification and Delivery System
WO2008110167A1 (en) A fluid filtration device
CN106045099A (en) Multifunctional composite filter core
KR20160012011A (en) Filter system
EP3663266B1 (en) Water purifier and control method of the same
JP7441824B2 (en) Equipment for purifying drinking water in multiple stages
CN210915611U (en) Composite filter element and water purification system
US20140124428A1 (en) Unihousing portable water filtration system
JP2006281023A (en) Water cleaning system and method
CN215798781U (en) Water purification system
CN210915612U (en) Composite filter element and water purification system
RU83941U1 (en) LIQUID CLEANING CARTRIDGE (OPTIONS)
JP4480450B2 (en) Magnetic negative ion reduction water purifier
JP2002136966A (en) Water purifier
JP3143177U (en) Water purification reduction filter
KR20160053897A (en) Filter system
RU2795541C2 (en) Device for multi-stage purification of drinking water
CN214244048U (en) Novel 30 ton RO equipment
JP2009233566A (en) Water purifier
JP2004000956A (en) Water purification cartridge having built-in tap
CN214060095U (en) Water purifier
KR20180017797A (en) Filter system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737009

Country of ref document: EP

Kind code of ref document: A1