JP2004000956A - Water purification cartridge having built-in tap - Google Patents

Water purification cartridge having built-in tap Download PDF

Info

Publication number
JP2004000956A
JP2004000956A JP2003117570A JP2003117570A JP2004000956A JP 2004000956 A JP2004000956 A JP 2004000956A JP 2003117570 A JP2003117570 A JP 2003117570A JP 2003117570 A JP2003117570 A JP 2003117570A JP 2004000956 A JP2004000956 A JP 2004000956A
Authority
JP
Japan
Prior art keywords
activated carbon
hollow fiber
water
built
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117570A
Other languages
Japanese (ja)
Inventor
Takashi Monzen
門前 孝志
Eiji Suda
須田 栄司
Takashi Kosaka
小阪 毅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to JP2003117570A priority Critical patent/JP2004000956A/en
Publication of JP2004000956A publication Critical patent/JP2004000956A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-life water purification cartridge having a built-in tap capable of retaining a filtration ability for prescribed turbidity in a hollow fiber membrane part, increasing the filtration performance compared with the past and maintaining the high-filtration performance for a long period. <P>SOLUTION: A water purification cartridge having a built-in tap is constituted of a cylindrical shape cartridge body 20 capable of having the built-in tap with a serial-connected hollow fiber membrane part 1 and an active carbon part 13, the outer circumference of the hollow fiber membrane part 1 is at least surrounded by a cylindrical body 4 and the filtration ability of the hollow fiber membrane part 1 is the same as or more than that of the active carbon part 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水栓流路を切り換えることによって水道水(原水)、又は浄水を吐出するシャワーノズル等を水栓内に着脱可能に内蔵した水栓内蔵型浄水カートリッジに関する。
【0002】
【従来の技術】
従来、原水内に含有される残留塩素成分を除去あるいは塩素イオンに分解でき、原水と浄水とを切り換え可能に設けたシャワーヘッドは各種提供されているが、例えば、浄水機能付きシャワーヘッドに設けられた流路切換弁を切り換えて浄水又は原水を吐出させるようにしたものが知られている(例えば、特許文献1参照)。
このシャワーヘッド内には、筒状の水質浄化用カートリッジが装着されており、通常はこのカートリッジの外周に原水を流し、一方、ろ過時にはカートリッジの外周からカートリッジ内部の中空部に浄水流路を構成してろ過を行っている。
【0003】
この水質浄化用カートリッジは、筒状に形成した活性炭を主成分とする水質浄化材の外周面に不織布、スポンジ又は網などからなるフィルタを周設し、このフィルタは通常時においても原水と接するような構造となっている。
【0004】
ろ過時においては、流路切換弁を切り換えて流路を浄水側にした場合、原水が水質浄化用カートリッジの外周側流路からフィルタ、水質浄化材を通過して水質浄化材の中央に形成した中央空間部に浄水が流出するようにしている。
【0005】
一方、筒状のろ材を内部に装着した浄水シャワーとして、通常は、筒状カートリッジの中空部に原水を流すようにしておき、浄水使用時には、筒状カートリッジの外周から前記中空部(中央部)に向けて浄水流路を構成するようにしたものも提案されている。
【0006】
この浄水シャワーを浄水側に切り換えると、筒状カートリッジの外周側から圧力が中央部に向けて加わるため、この耐圧手段として筒状カートリッジの中央部に多孔質プラスチックや、側面に多数の穴が設けられているプラスチックの円筒などからなる筒状の補強材を配置するのが一般的である。
【0007】
【特許文献1】
特開2001−303635号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述した水質浄化用カートリッジの水質浄化材としては、遊離残留塩素を除去するために繊維状活性炭が用いられているが、この活性炭によるとバクテリアや微粒子などを除去・分解することはできない。
【0009】
また、上記のカートリッジは、何れもシャワーヘッドに内蔵したときに、原水と浄水との切り換えに拘わらず常にフィルタやろ材である水質浄化材が原水に接している構造となるため、たとえシャワーを原水のみで使用した場合であっても浄水カートリッジのろ過性能が大きく落ちてしまい、浄水カートリッジの寿命を短くすることになるが、この構造は、水栓に内蔵するタイプの水栓内蔵用カートリッジの場合には何れも同様であり、構造上避けられないものとなっている。
【0010】
また、筒状カートリッジの中央部に多孔質プラスチックを補強材として設ける場合には、この補強材の目詰まり等によってろ過流量が低下するおそれがあり、単に穴を有するプラスチック製補強材を活性炭層の保護部材として用いた場合には、穴の近傍の繊維状活性炭層のみがろ過に寄与するだけで活性炭層全体を効率的に利用することが困難であった。
【0011】
また、水栓内蔵型の浄水カートリッジは、水栓に設けたシャワーヘッドの筒部に有する内蔵スペースに限界があるため、この内蔵スペースに収納するための浄水カートリッジの全長と容積にも自ずから限界があり、その上、中空糸膜部と活性炭部の長さや容積等にも制限がある。そのため、中空糸膜部と活性炭部の何れかが先行して目詰まりを起こすなど、浄水カートリッジ自体の寿命が不安定であり、その点における改良の必要性があった。
【0012】
一方、粒径が約1.0μm以下の微粒子を多く含む水質の水道水をろ過する場合、表1に記載のA市水道水の例に示すように、粒径が0.5〜0.7μmの微粒子を多く含む場合は、微粒子が活性炭層を通過して中空糸膜部により捕捉される割合が多くなるため、中空糸膜部の早期の目詰まりを生じ易くなり、浄水カートリッジ自体の寿命が短くなり、この点のおける改善も要求されている。
【0013】
【表1】

Figure 2004000956
【0014】
本発明は、上述の実情に鑑みて開発したものであり、その目的とするところは、中空糸膜部における所定の濁度ろ過能力を確保し、従来に比して、そのろ過性能を向上させることが可能な水栓内蔵型浄水カートリッジであり、高いろ過性能を長期間に亘って維持できるようにした長寿命の水栓内蔵型浄水カートリッジを提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に係る発明は、中空糸膜部と活性炭部を直列配置して水栓に内蔵可能な筒形のカートリッジ本体を構成し、少なくとも中空糸膜部の外周囲を筒形ボデーで包囲した水栓内蔵型浄水カートリッジである。
【0016】
請求項2に係る発明は、前記中空糸膜部のろ過能力を前記活性炭部のろ過能力と同等以上とした水栓内蔵型浄水カートリッジである。
【0017】
請求項3に係る発明は、活性炭部の容積を規定の残留塩素ろ過能力を10%以上、上回る容量とし、残りの容量を中空糸膜部とした水栓内蔵型浄水カートリッジである。
【0018】
請求項4に係る発明は、前記活性炭部は、繊維状活性炭と粒状活性炭より成り、繊維状活性炭を粒状活性炭より多く含有させた水栓内蔵型浄水カートリッジである。
【0019】
請求項5に係る発明は、前記活性炭部に鉛吸着剤を含有させた水栓内蔵型浄水カートリッジである。
【0020】
請求項6に係る発明は、水栓本体に設けたシャワーヘッドの筒部内に、前記カートリッジ本体を着脱可能に内蔵させ、水栓本体の基部より前記シャワーヘッドをホースを介して引出し自在に設けた水栓内蔵型浄水カートリッジである。
【0021】
【発明の実施の形態】
本発明における水栓内蔵型浄水カートリッジの実施形態を図に基づいて説明する。
図1は、本発明における浄水カートリッジでの一例を示した縦断面図であり、図2は、図1のカートリッジを分離して示した半截断面図である。図1及び図2において、1は、水道水中のバクテリアや微粒子等の濁り成分を除去することが可能な中空糸膜部であり、本例の中空糸膜部1は、PES(ポリエーテルサルフォン)、PP(ポリプロピレン)、PS(ポリサルフォン)製等の中空糸膜2を用い、これを略U字形状に折返して結束し、端部をポリウレタンやエポキシ樹脂等のポッティング部3で中空糸膜2とABS樹脂等の筒形ボデー4を密封固着し、ポッティング部3の中空糸膜の端部を開口させている。微粒子の粒径が0.5〜0.7μmのものを多く含む水道水をろ過する場合において、中空糸膜2の早期の目詰まりを防止するためには、PPより、透過流量の多い中空糸膜、例えばPES製中空糸膜が好ましい。
【0022】
また、筒形ボデー4のポッティング部3が位置している一側の外周囲の外周溝5にOリング6を装着し、筒形ボデー4の他側を開口7させている。次いで、この開口7にキャップ8を超音波溶着により連結しており、このキャップ8は、一方側の中央に連通筒9を有する蓋部10と外周囲に複数の開口窓11を有し、他方側を開口にさせている。なお、上記超音波溶着により、中空糸膜2が膜切れを生じないよう、図1に示すように、中空糸膜2とキャップ8の蓋部10との間に隙間を設けている。
【0023】
図1及び図2において、13は活性炭部であり、この活性炭部13は、繊維状活性炭と粒状活性炭より成り、繊維状活性炭を粒状活性炭より多く含有させて活性炭部13の目詰まりを防いでいる。本例では、繊維状活性炭:粒状活性炭=40〜60:20〜40とし、更に、これに鉛吸着剤を含有させている。
【0024】
この鉛吸着剤は、ケイ酸チタニウム塩(ゼオライト構造物質)(例えば20%)、アパタイト(例えば25%)等のセラミック系或は、イオン交換繊維(例えば15%)を実施に応じて適宜量含有させている。この活性炭部13により、遊離残留塩素、溶解性鉛及びがび臭の元となる2−MIB(メチルイソボルネオール)を分離・吸着することが可能となる。
【0025】
図2において、活性炭部13の一例を示すと、円柱状の活性炭部13の中空部に、網状、多孔状の連通筒14(本例ではアクリル繊維製)を挿入し、外周囲にプレフィルター機能を有する不織布15(本例ではポリエステル製)を被覆し、この不織布15は、活性炭部13の両側面まで折返して被覆している。そして、この活性炭部13の一側を、キャップ8の内側面に形成した溝8aに溶融樹脂を充填して液密に連結すると共に、連通筒9に活性炭部13の連通筒14を嵌合して取付けている。なお、活性炭部13の両側面を不織布で被覆し、溶融樹脂が活性炭部に滲み込まないようにし、溶融樹脂が活性炭部13内の通水を妨げないようにしている。活性炭部13の他側には、樹脂製の筒部16aを有するエンドキャップ16を上記と同じ溶融樹脂により液密に連結させて、図1に示すカートリッジ本体20を構成している。このエンドキャップ16は、活性炭部13の端部側からの原水の侵入を防ぎ、かつ原水が放射状にシャワーヘッド内に流入するようにしている。なお、連通筒9や筒部16aは、その長さを連通筒14の内径寸法の約2倍として、連通筒14を支持可能な必要最小限の長さとすると共に略U字形の切欠部を複数設けることにより、連通筒9や筒部16aが活性炭部13内の通水を妨げないようにしている。
【0026】
また、中空糸膜部1のろ過能力を活性炭部13のろ過能力と同等以上とし、活性炭部13の容積を、規定の残留塩素ろ過能力を10%以上、上回るろ過能力を確保できる容量とし、残りの容量を中空糸膜部1としている。中空糸膜部1のろ過寿命が短いと、活性炭部13のろ過能力が残っているにも拘わらず、中空糸膜部1の目詰まりによりろ過流量が低下してカートリッジの寿命が短くなってしまう。また、活性炭部13のろ過寿命が短いと、中空糸膜部1のろ過能力が残っているにも拘わらず、活性炭部13のろ過性能が低下してカートリッジの寿命が短くなってしまう。本例によると、中空糸膜部1のろ過性能を最大限に生かした浄水カートリッジを得ることができる。ここで規定の残留塩素ろ過能力とは、遊離残留塩素の除去率が100%から80%に滞るまでの総ろ過水量をいい、本例においては1200L(10L/日×30日×4ヶ月)としている。
【0027】
図4及び図5において、17は、キッチンに設置されたキャビネットのシンク、18はカウンターで、このカウンター18上にレバー式の水栓本体19が設置されている。この水栓本体19に設けたシャワーヘッド21の筒部22内に、カートリッジ本体20を着脱可能に内蔵させ、水栓本体19の基部23よりシャワーヘッド21をホース24を介して引き出し自在に設け、浄水の使用可能なハンドシャワーとして、離れた場所に注水することができる。このシャワーヘッド21には、原水、シャワー、浄水に切換可能な切換え操作部25を設けている。
【0028】
一方、カートリッジ本体20の交換時には、シャワーヘッド21から筒部22を取り外すことで、カートリッジ本体20が着脱可能となり、新しいカートリッジ本体20をノズルヘッド21に挿入するように取付けると、Oリング6を介して密封状態に取付けられ、簡単にカートリッジ本体20を交換することができる。
【0029】
次に上記実施形態の作用を説明する。
本発明の水栓内蔵型浄水カートリッジは、中空糸膜部1と活性炭層13を直列配置してカートリッジ本体20を構成しているので、水栓9内の狭いスペース内に中空糸膜部1とその前段階のろ過部材である活性炭部13を所定のろ過機能を発揮するように機能的に配置できると共に、この活性炭部13が中空糸膜部1と組み合わせることによってバクテリアや微粒子などを除去・分解することができ、高いろ過性能を長期的に発揮することができる。
【0030】
図3は、本発明における水栓内蔵型浄水カートリッジの他例を示した一部切欠き側面図である。図3におけるカートリッジ本体26は、中空糸膜27aで形成された中空糸膜部27と活性炭部28を配置し、筒形ボデー29で中空糸膜部27の外周囲を包囲し、また、エンドキャップ34でカバーした活性炭部28は露出させるようにしている。活性炭部28には、先の例のように、網状・多孔状の連通筒14を用いてもよい。この筒形ボデー29には、Oリング30を装着した縮径した装着部31を有するキャップ32を固着しているので、ポッティング部33の開口面を常に清浄にしておく利点がある。
【0031】
【実施例】
ここで、カートリッジ本体20、26に対してそれぞれJIS S3201 家庭用浄水器試験方法に基づいて試験を行なった。その結果及び評価結果を示す。
本例は、前述の表1に示すように、粒径が0.5〜0.7μmの微粒子を多く含む水道水に、浄水カートリッジを用いた場合に、微粒子が容易に活性炭部を通過して中空糸膜部により捕捉される割合が多くなり、目詰まりを生じ易くなるという課題を解決した浄水カートリッジである。
以下に示す表中の値は、総ろ過流量(L)を示しており、遊離残留塩素、溶解性鉛、及び2−MIBの項目は、これらの除去率がそれぞれ100%から80%に落ちるまでの総ろ過水量、濁度(濁り)の項目は総ろ過量が100%から50%に落ちるまでの総ろ過水量を表している。
【0032】
図6は、活性炭部13の長さによるろ過能力の評価を示したグラフであり、同グラフは、A,Bのろ過能力の判定基準を1200Lとし、Cのろ過能力の判定基準をBの3倍の3600Lとしている。A,B,Cの全て合格基準とするのは、A,Bの合否判定基準である1200L及びB,Cの直線で囲まれる同グラフの斜線領域であり、このグラフから明らかなように、活性炭部13の長さは46〜54mmが最適となることが確認された。なお、活性炭部の仕様や鉛吸着剤等を調整することにより、溶解性鉛ろ過能力や、2−MIBろ過能力も所定の基準1200Lを満たすものとしている。
すなわち、活性炭と中空糸膜モジュールからなる浄水カートリッジの濁度ろ過能力をカートリッジ全体にて評価すると、活性炭の透水性の影響を受けた状態で中空糸膜の濁度ろ過能力を評価することとなる。図6において、活性炭部の長さが長くなるにつれて、Aの残留塩素ろ過能力値の変化に沿うようにBの濁度ろ過能力値が高くなるのはこのためである。
しかし、小さい微粒子を多く含む水道水をろ過する場合は、微粒子が活性炭層を通過して中空糸膜に捕捉される割合が多くなることから、浄水カートリッジ全体として濁度ろ過能力を満たしているにも拘わらず、早期流量低下を生ずる恐れがある。
従って、中空糸膜部のみでの濁度ろ過能力の評価も行い、図6に示すように、浄水カートリッジ全体の濁度ろ過能力(B)が規定値(ここでは1200L)を満足することに加えて、中空糸膜部のみの濁度ろ過能力(C)規定値(ここでは1200L×3=3600L)を満足することにより、小さい微粒子を多く含む水道水をろ過する場合であっても、早期の流量下を生ずることなく、規定の濁度ろ過能力を満たすことのできる浄水カートリッジを得ることができる。
【0033】
図7及び図8は、中空糸膜での目詰まりを防止する手段としてPES膜を用いる例を、「濁度(濁り)ろ過能力評価試験結果JIS及び水道水」に基づいて示す。
図7において、活性炭部の形状や容積は同じであり、PPとPESの膜材質の違いによるが、濁度ろ過能力の差はわずかである。
図8における水道水は、粒径0.5〜0.7μmの微粒子を多く含んでいる例であり、PP膜より外径の大きいPES膜を用いることにより、濁度ろ過能力は、基準の1200Lを満たしていることが確認された。
本例におけるPP膜は、公称孔径0.1μm、外径φ360μmであり、PES膜は、公称孔径0.1μm、外径φ460μmである。
PES膜は、膜構造の違いや糸径による違いにより、単位面積あたりの透過水量がPP膜より多いことが確認された。
【0034】
また、活性炭部13の容積を、1200L通水後の残留塩素ろ過能力を10%以上残す容量とし、残りの容積を中空糸膜部1とした水栓内蔵型浄水カートリッジを得た。これは、表2(浄水カートリッジの寸法)と表3に示すろ過能力を本例の供試品(No.1,No.2)と比較例(No.3,No.4)に従って評価できる。
【0035】
【表2】
Figure 2004000956
【0036】
【表3】
Figure 2004000956
【0037】
表2及び表3によると、供試品No.1とNo.2において、規定の残留塩素ろ過能力1200Lに対し、10〜63%の残留塩素ろ過能力を残していることが理解できる。また、供試品No.3は、残留塩素ろ過能力は規定の1200Lを満たしているが、濁度(濁り)ろ過能力が規定の1200Lを下回っており、更に、供試品No.4は、残留塩素ろ過能力、濁度(濁り)ろ過能力共に規定の1200Lを下回っているため、比較例としている。なお、活性炭部と中空糸膜部との容積比は、1:1〜1:4が好適であることも確認された。
【0038】
図9及び図10は他例を示したものであり、同図は、筒形ボデー35に連設して筒形ボデー35と略同径の保護筒36で活性炭部37を被覆することにより、外部通水を可能とし、保護筒36にサイドフロー用の流入孔38を設けた例である。なお、図中39は中空糸膜部、40は隙間である。
同図において、保護筒36の内周と活性炭部37の外周との間には流路確保用の隙間40を設けている。この隙間40は、仮に0.5mmを下回る場合には原水は隙間40を流れることなく流入孔38の周辺の活性炭部しかろ過に寄与できず、一方、隙間が2.0mmを上回ると活性炭部の容積が10〜15%程度低下することになってしまい、所定のろ過能力を発揮できない。
従って、この空隙40は、0.5〜2.0mm程度にするのがよい。
また、流入孔38は、円筒状である保護筒36の弦方向に断面円形の図示しない穿孔治具により穿孔することにより、一回の穿孔工程で保護筒36の円周方向に長い液滴状の流入孔38を一度に2ケ所形成することができる。この場合、単に丸孔を保護筒36の中心線方向に向けて開けた場合に比べて、円周方向に長くしかも開口面積の大きい流入孔を設けることができるので活性炭部37の円周方向に沿った方向に原水が流れやすくなり、空隙40とも相俟って、活性炭部37の側面全周に渡って原水を行き渡らせ、活性炭部の側面から半径方向へのろ過、すなわちサイドフローによるろ過を効果的に行うことができる。
【0039】
【発明の効果】
以上のことから明らかなように、本発明によると、水栓の内部に着脱自在に装着でき、しかも水栓内のように狭く、限られた空間であっても、ろ過性能を著しく向上させることができる。
【0040】
請求項2及び請求項3に係る発明によると、活性炭部を通過し、中空糸膜部により捕捉される大きさの微粒子を多く含む水質の水道水でろ過する場合であっても、中空糸膜部での早期の目詰まり現象を防ぐことができる。
【0041】
請求項4に係る発明によると、活性炭部の早期の目詰まりを防ぐことができ、長期の使用を可能とし、長寿命の製品を提供できる。
【0042】
請求項5に係る発明によると、水道水に含まれている溶解性鉛を吸着でき、浄水を可能とし、長寿命のカートリッジを提供できる。
【0043】
請求項6に係る発明によると、活性炭部を通過し、中空糸膜により捕捉される大きさの微粒子を多く含む水質の水道水でろ過する場合であっても、中空糸膜での目詰まり現象を低減することができ、即ち、微粒子径が小さく、中空糸膜での早期の目詰まりのおそれがある水道水のろ過に適しており、長期間の使用に耐え得ることができる。
【図面の簡単な説明】
【図1】本発明における水栓内蔵型浄水カートリッジの一例を示す縦断面図である。
【図2】図1のカートリッジを分離して示した半截断面図である。
【図3】本発明における水栓内蔵型浄水カートリッジの他例を示す半截断面図である。
【図4】図1の水栓内蔵型浄水カートリッジを水栓に内蔵した状態を示す一部切欠き側面図である。
【図5】図4の水栓からシャワーヘッドを引き出した状態を示す斜視図である。
【図6】活性炭部長さによる、ろ過能力評価を示したグラフである。
【図7】濁度(濁り)ろ過能力評価試験(JIS S3201:原水濁り カオリン2度)を示すグラフである。
【図8】濁度(濁り)ろ過能力評価試験(水道水)を示すグラフである。
【図9】本発明における浄水カートリッジでの他例を示す正面図である。
【図10】図9の縦断面図である。
【符号の説明】
1  中空糸膜部
4  筒形ボデー
13 活性炭部
19 水栓本体
20 カートリッジ本体
21 シャワーヘッド
22 筒部
23 基部
24 ホース
26 カートリッジ本体
27 中空糸膜部
28 活性炭部
29 筒形ボデー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a faucet built-in type water purifying cartridge in which a shower nozzle or the like that discharges tap water (raw water) or purified water by detaching a faucet by switching a faucet flow path.
[0002]
[Prior art]
Conventionally, various shower heads that can remove residual chlorine components contained in raw water or decompose them into chlorine ions and can switch between raw water and purified water are provided in various types.For example, shower heads with a water purification function are provided. There is known an apparatus in which a flow path switching valve is switched to discharge purified water or raw water (for example, see Patent Document 1).
Inside the shower head, a cylindrical water purification cartridge is mounted, and usually, raw water flows around the outer periphery of the cartridge, while a water purification channel is formed from the outer periphery of the cartridge to a hollow portion inside the cartridge during filtration. And filtering.
[0003]
In this water purification cartridge, a filter made of nonwoven fabric, sponge or net is provided around the outer surface of a water purification material mainly composed of activated carbon formed in a cylindrical shape, and this filter is in contact with raw water even in normal times. It has a simple structure.
[0004]
At the time of filtration, when the flow path switching valve is switched to set the flow path to the purified water side, the raw water passes through the filter and the water purification material from the outer flow path of the water purification cartridge and is formed at the center of the water purification material. Clean water is allowed to flow into the central space.
[0005]
On the other hand, as a purified water shower having a cylindrical filter medium mounted therein, usually, raw water is allowed to flow through the hollow portion of the cylindrical cartridge. When using purified water, the hollow portion (central portion) extends from the outer periphery of the cylindrical cartridge. There is also proposed a configuration in which a purified water flow path is configured.
[0006]
When this water purifying shower is switched to the water purifying side, pressure is applied from the outer peripheral side of the cylindrical cartridge toward the central part. Therefore, porous plastic is provided in the central part of the cylindrical cartridge as this pressure-resistant means, and a number of holes are provided on the side surface. It is common to arrange a cylindrical reinforcing member made of a plastic cylinder or the like.
[0007]
[Patent Document 1]
JP 2001-303635 A
[Problems to be solved by the invention]
However, fibrous activated carbon is used as a water purification material of the above-mentioned water purification cartridge to remove free residual chlorine. However, this activated carbon cannot remove and decompose bacteria and fine particles.
[0009]
In addition, when the above-mentioned cartridge is incorporated in the shower head, the water purification material, which is a filter or a filter, is always in contact with the raw water regardless of the switching between the raw water and the purified water. Even when used only with water, the filtration performance of the water purification cartridge is greatly reduced, and the life of the water purification cartridge is shortened. Are the same, and are unavoidable in structure.
[0010]
When a porous plastic is provided as a reinforcing material at the center of the cylindrical cartridge, there is a possibility that the filtration flow rate may be reduced due to clogging of the reinforcing material or the like. When used as a protective member, only the fibrous activated carbon layer in the vicinity of the hole only contributes to filtration, making it difficult to efficiently use the entire activated carbon layer.
[0011]
In addition, the built-in faucet type water purification cartridge has a limit in the built-in space in the tubular part of the shower head provided in the faucet, so the total length and volume of the water purifier cartridge to be stored in this built-in space naturally has a limit. In addition, the length and volume of the hollow fiber membrane and the activated carbon are limited. Therefore, the life of the water purification cartridge itself is unstable, for example, either the hollow fiber membrane portion or the activated carbon portion is clogged beforehand, and there is a need for improvement in that respect.
[0012]
On the other hand, when filtering tap water having a particle size of about 1.0 μm or less and containing a large amount of fine particles, as shown in the example of City A tap water described in Table 1, the particle size is 0.5 to 0.7 μm. When a large amount of fine particles are contained, the ratio of the fine particles passing through the activated carbon layer and being caught by the hollow fiber membrane portion increases, so that the hollow fiber membrane portion is easily clogged early, and the life of the water purification cartridge itself is reduced. It is getting shorter and improvements in this regard are also required.
[0013]
[Table 1]
Figure 2004000956
[0014]
The present invention has been developed in view of the above-described circumstances, and its purpose is to secure a predetermined turbidity filtration capability in the hollow fiber membrane portion and to improve its filtration performance as compared with the related art. It is an object of the present invention to provide a water purification cartridge with a built-in faucet, which is capable of maintaining high filtration performance over a long period of time.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 constitutes a cylindrical cartridge main body that can be built in a water faucet by arranging a hollow fiber membrane portion and an activated carbon portion in series, and at least outside the hollow fiber membrane portion. This is a water purification cartridge with a built-in faucet that is surrounded by a cylindrical body.
[0016]
The invention according to claim 2 is a water purification cartridge with a built-in faucet, wherein the filtration capacity of the hollow fiber membrane part is equal to or higher than the filtration capacity of the activated carbon part.
[0017]
The invention according to claim 3 is a water purifier built-in water purifying cartridge in which the volume of the activated carbon part exceeds the prescribed residual chlorine filtration capacity by 10% or more, and the remaining capacity is the hollow fiber membrane part.
[0018]
The invention according to claim 4 is a water purification cartridge with a built-in faucet, wherein the activated carbon portion is made of fibrous activated carbon and granular activated carbon, and contains more fibrous activated carbon than granular activated carbon.
[0019]
The invention according to claim 5 is a water purification cartridge with a built-in faucet, wherein the activated carbon portion contains a lead adsorbent.
[0020]
The invention according to claim 6 is such that the cartridge body is detachably incorporated in the tubular portion of the shower head provided on the faucet body, and the shower head is provided so as to be able to be pulled out from the base of the faucet body via a hose. It is a water purification cartridge with a built-in faucet.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a water tap cartridge with a built-in faucet according to the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an example of a water purification cartridge according to the present invention, and FIG. 2 is a half sectional view showing the cartridge of FIG. 1 separately. 1 and 2, reference numeral 1 denotes a hollow fiber membrane portion capable of removing turbid components such as bacteria and fine particles in tap water. The hollow fiber membrane portion 1 of this example is made of PES (polyether sulfone). ), PP (polypropylene), PS (polysulfone) or other hollow fiber membrane 2 which is folded into a substantially U-shape and bound, and the end of the hollow fiber membrane 2 is formed by a potting portion 3 made of polyurethane or epoxy resin. And a cylindrical body 4 made of ABS resin or the like are hermetically sealed and an end of the hollow fiber membrane of the potting portion 3 is opened. In order to prevent early clogging of the hollow fiber membrane 2 when filtering tap water containing a large amount of fine particles having a particle diameter of 0.5 to 0.7 μm, a hollow fiber having a larger permeation flow rate than PP is used. Preference is given to membranes, for example hollow fiber membranes made of PES.
[0022]
In addition, an O-ring 6 is mounted in an outer peripheral groove 5 on one side where the potting portion 3 of the cylindrical body 4 is located, and the other side of the cylindrical body 4 is opened. Next, a cap 8 is connected to the opening 7 by ultrasonic welding. The cap 8 has a lid portion 10 having a communication tube 9 at the center on one side and a plurality of opening windows 11 on the outer periphery. The side is open. As shown in FIG. 1, a gap is provided between the hollow fiber membrane 2 and the lid 10 of the cap 8 so that the ultrasonic welding does not cause the hollow fiber membrane 2 to break.
[0023]
1 and 2, reference numeral 13 denotes an activated carbon portion. The activated carbon portion 13 is made of fibrous activated carbon and granular activated carbon, and contains more fibrous activated carbon than granular activated carbon to prevent clogging of the activated carbon portion 13. . In the present example, fibrous activated carbon: granular activated carbon = 40-60: 20-40, and further contains a lead adsorbent.
[0024]
The lead adsorbent contains a ceramic material such as a titanium silicate (a zeolite structural material) (for example, 20%), apatite (for example, 25%), or an ion exchange fiber (for example, 15%) in an appropriate amount depending on the implementation. Let me. The activated carbon 13 makes it possible to separate and adsorb 2-MIB (methyl isoborneol), which is a source of free residual chlorine, soluble lead and odor.
[0025]
In FIG. 2, an example of the activated carbon portion 13 is shown. A mesh-shaped, porous communication tube 14 (made of acrylic fiber in this example) is inserted into a hollow portion of the columnar activated carbon portion 13, and a pre-filter function is provided around the outside. (In this example, made of polyester), and the nonwoven fabric 15 is folded back to cover both sides of the activated carbon portion 13. One side of the activated carbon portion 13 is filled with a molten resin in a groove 8 a formed on the inner surface of the cap 8 and liquid-tightly connected, and the communication tube 14 of the activated carbon portion 13 is fitted into the communication tube 9. Mounted. In addition, both sides of the activated carbon portion 13 are covered with a nonwoven fabric so that the molten resin does not seep into the activated carbon portion, and the molten resin does not hinder water flow in the activated carbon portion 13. On the other side of the activated carbon portion 13, an end cap 16 having a cylindrical portion 16a made of resin is connected in a liquid-tight manner by the same molten resin as described above to form a cartridge body 20 shown in FIG. The end cap 16 prevents raw water from entering the end portion of the activated carbon portion 13 and allows the raw water to radially flow into the shower head. The communication tube 9 and the tube portion 16a have a length approximately twice as large as the inner diameter of the communication tube 14 so that the communication tube 9 and the tube portion 16a have a minimum length necessary to support the communication tube 14 and a plurality of substantially U-shaped cutouts. By providing, the communication tube 9 and the tube portion 16a do not hinder water flow in the activated carbon portion 13.
[0026]
Further, the filtration capacity of the hollow fiber membrane unit 1 is set to be equal to or more than the filtration capacity of the activated carbon unit 13, and the volume of the activated carbon unit 13 is set to a capacity capable of securing the filtration capacity exceeding the specified residual chlorine filtration capacity by 10% or more. Is the hollow fiber membrane portion 1. If the filtration life of the hollow fiber membrane section 1 is short, the filtration flow rate is reduced due to clogging of the hollow fiber membrane section 1 and the life of the cartridge is shortened, despite the fact that the filtration capacity of the activated carbon section 13 remains. . Further, when the filtration life of the activated carbon portion 13 is short, the filtration performance of the activated carbon portion 13 is reduced and the life of the cartridge is shortened even though the filtration ability of the hollow fiber membrane portion 1 remains. According to this example, it is possible to obtain a water purification cartridge that maximizes the filtration performance of the hollow fiber membrane unit 1. Here, the specified residual chlorine filtration capacity refers to the total amount of filtered water until the removal rate of free residual chlorine drops from 100% to 80%. In this example, it is 1200 L (10 L / day × 30 days × 4 months). I have.
[0027]
4 and 5, reference numeral 17 denotes a sink of a cabinet installed in a kitchen, and reference numeral 18 denotes a counter, on which a lever-type faucet main body 19 is installed. The cartridge main body 20 is detachably incorporated in the cylindrical portion 22 of the shower head 21 provided on the faucet main body 19, and the shower head 21 is provided so as to be able to be pulled out from the base 23 of the faucet main body 19 via a hose 24, As a hand shower that can be used for clean water, water can be injected into a remote place. The shower head 21 is provided with a switching operation unit 25 capable of switching between raw water, shower, and purified water.
[0028]
On the other hand, when replacing the cartridge body 20, the cartridge body 20 can be detached by removing the cylindrical portion 22 from the shower head 21, and when a new cartridge body 20 is attached so as to be inserted into the nozzle head 21, the cartridge body 20 is inserted through the O-ring 6. And the cartridge body 20 can be easily replaced.
[0029]
Next, the operation of the above embodiment will be described.
In the water purification cartridge with a built-in faucet of the present invention, the hollow fiber membrane part 1 and the activated carbon layer 13 are arranged in series to constitute the cartridge main body 20. The activated carbon part 13 as a filtration member in the preceding stage can be functionally arranged so as to exhibit a predetermined filtration function, and the activated carbon part 13 is combined with the hollow fiber membrane part 1 to remove and decompose bacteria and fine particles. And high filtration performance can be exhibited for a long period of time.
[0030]
FIG. 3 is a partially cutaway side view showing another example of a water purification cartridge with a built-in faucet according to the present invention. The cartridge body 26 in FIG. 3 includes a hollow fiber membrane 27 formed of a hollow fiber membrane 27a and an activated carbon part 28, and a cylindrical body 29 surrounds the outer periphery of the hollow fiber membrane 27. The activated carbon portion 28 covered by 34 is exposed. As the activated carbon portion 28, a mesh-like / porous communication tube 14 may be used as in the above example. Since the cap 32 having the reduced mounting portion 31 to which the O-ring 30 is mounted is fixed to the cylindrical body 29, there is an advantage that the opening surface of the potting portion 33 is always kept clean.
[0031]
【Example】
Here, tests were performed on the cartridge bodies 20 and 26, respectively, based on the JIS S3201 household water purifier test method. The results and evaluation results are shown.
In this example, as shown in Table 1 above, when tap water containing a large amount of fine particles having a particle size of 0.5 to 0.7 μm is used with a water purification cartridge, the fine particles easily pass through the activated carbon part. This is a water purification cartridge that solves the problem that the ratio of being caught by the hollow fiber membrane portion increases and clogging is likely to occur.
The values in the table below indicate the total filtration flow rate (L), and the items of free residual chlorine, soluble lead, and 2-MIB are used until the removal rate of each decreases from 100% to 80%. The items of the total filtered water amount and the turbidity (turbidity) indicate the total filtered water amount until the total filtered amount falls from 100% to 50%.
[0032]
FIG. 6 is a graph showing the evaluation of the filtration capacity according to the length of the activated carbon portion 13. In this graph, the criterion for the filtration capacity of A and B is 1200L, and the criterion for the filtration capacity of C is 3 for B. 3600L. The acceptance criteria for all of A, B, and C are the hatched areas of the graph surrounded by straight lines 1200L and B and C, which are the acceptance criteria for A and B. As is clear from this graph, activated carbon It was confirmed that the length of the portion 13 was optimally 46 to 54 mm. In addition, by adjusting the specification of the activated carbon part, the lead adsorbent, and the like, the soluble lead filtration ability and the 2-MIB filtration ability also satisfy the predetermined standard 1200L.
That is, when the turbidity filtration ability of the water purification cartridge including the activated carbon and the hollow fiber membrane module is evaluated for the entire cartridge, the turbidity filtration ability of the hollow fiber membrane is evaluated under the influence of the water permeability of the activated carbon. . In FIG. 6, it is for this reason that the turbidity filtration capacity value of B increases along with the change of the residual chlorine filtration capacity value of A as the length of the activated carbon portion increases.
However, when filtering tap water containing many small particles, the ratio of the particles passing through the activated carbon layer and being captured by the hollow fiber membrane increases, so that the water purification cartridge as a whole satisfies the turbidity filtration ability. Nevertheless, there is a risk that the flow rate will drop early.
Therefore, the turbidity filtration capacity of only the hollow fiber membrane was evaluated, and as shown in FIG. 6, the turbidity filtration capacity (B) of the whole water purification cartridge satisfied the specified value (1200 L in this case). Therefore, by satisfying the turbidity filtration capacity (C) specified value (here, 1200 L × 3 = 3600 L) of only the hollow fiber membrane portion, even if tap water containing many small fine particles is filtered, It is possible to obtain a water purification cartridge that can satisfy the specified turbidity filtration ability without causing a decrease in the flow rate.
[0033]
FIGS. 7 and 8 show an example of using a PES membrane as a means for preventing clogging in the hollow fiber membrane, based on "turbidity (turbidity) filtration ability evaluation test results JIS and tap water".
In FIG. 7, the shape and volume of the activated carbon part are the same, and the difference in the turbidity filtration capacity is slight, depending on the difference in the membrane material between PP and PES.
The tap water in FIG. 8 is an example containing a large amount of fine particles having a particle size of 0.5 to 0.7 μm. By using a PES membrane having an outer diameter larger than that of the PP membrane, the turbidity filtration capacity is equal to the standard 1200 L. It was confirmed that the above was satisfied.
The PP film in this example has a nominal pore diameter of 0.1 μm and an outer diameter of 360 μm, and the PES film has a nominal pore diameter of 0.1 μm and an outer diameter of 460 μm.
It was confirmed that the PES membrane had a larger permeate water amount per unit area than the PP membrane due to differences in membrane structure and yarn diameter.
[0034]
Further, a water purifying cartridge with a built-in faucet was prepared, in which the volume of the activated carbon portion 13 was set to a volume that left 10% or more of the residual chlorine filtration capacity after passing 1200 L of water, and the remaining volume was the hollow fiber membrane portion 1. This can be evaluated according to the test products (No. 1 and No. 2) of this example and the comparative examples (No. 3 and No. 4) in terms of the filtration capacity shown in Table 2 (dimensions of the water purification cartridge) and Table 3.
[0035]
[Table 2]
Figure 2004000956
[0036]
[Table 3]
Figure 2004000956
[0037]
According to Tables 2 and 3, the specimen No. 1 and No. 2, it can be understood that a residual chlorine filtration capacity of 10 to 63% is left with respect to a specified residual chlorine filtration capacity of 1200 L. In addition, the sample No. Sample No. 3 satisfies the specified 1200 L of residual chlorine filtration capacity, but has a turbidity (turbidity) filtration capacity lower than the specified 1200 L. Sample No. 4 is a comparative example because both the residual chlorine filtration capacity and the turbidity (turbidity) filtration capacity are lower than the specified 1200 L. It was also confirmed that the volume ratio between the activated carbon part and the hollow fiber membrane part was preferably from 1: 1 to 1: 4.
[0038]
FIGS. 9 and 10 show another example. FIG. 9 shows a case where the activated carbon portion 37 is covered with a protective cylinder 36 which is connected to the cylindrical body 35 and has substantially the same diameter as the cylindrical body 35. This is an example in which external water is allowed to flow, and a protection tube 36 is provided with an inflow hole 38 for side flow. In the figure, 39 is a hollow fiber membrane portion, and 40 is a gap.
In the figure, a gap 40 for securing a flow path is provided between the inner periphery of the protection cylinder 36 and the outer periphery of the activated carbon part 37. If the gap 40 is smaller than 0.5 mm, the raw water does not flow through the gap 40 and only the activated carbon part around the inflow hole 38 can contribute to the filtration. As a result, the volume is reduced by about 10 to 15%, and the predetermined filtration ability cannot be exhibited.
Therefore, the gap 40 is preferably set to about 0.5 to 2.0 mm.
The inflow hole 38 is formed by drilling a cylindrical jig (not shown) in a chord direction with a circular jig (not shown) in the chord direction so as to form a long droplet in the circumferential direction of the protective cylinder 36 in a single drilling step. Can be formed at two places at a time. In this case, an inflow hole that is longer in the circumferential direction and has a larger opening area can be provided as compared with the case where the round hole is simply opened toward the center line direction of the protective cylinder 36, so that the inflow hole in the circumferential direction of the activated carbon portion 37 can be provided. The raw water easily flows in the direction along with the raw water, and the raw water spreads over the entire side surface of the activated carbon portion 37 in combination with the void 40, and the filtration in the radial direction from the side surface of the activated carbon portion, that is, the filtration by the side flow is performed. It can be done effectively.
[0039]
【The invention's effect】
As is apparent from the above, according to the present invention, the filter can be removably mounted inside the faucet, and even if the space is narrow and limited as in the faucet, the filtration performance is significantly improved. Can be.
[0040]
According to the second and third aspects of the present invention, the hollow fiber membrane is used even when the water is filtered with water-quality tap water containing a large amount of fine particles having a size captured by the hollow fiber membrane through the activated carbon part. The early clogging phenomenon in the section can be prevented.
[0041]
According to the fourth aspect of the invention, it is possible to prevent the activated carbon portion from being clogged at an early stage, to be able to use for a long time, and to provide a product having a long life.
[0042]
According to the invention of claim 5, soluble lead contained in tap water can be adsorbed, water can be purified, and a long-life cartridge can be provided.
[0043]
According to the invention according to claim 6, even in the case of filtration with water-quality tap water containing a large amount of fine particles having a size captured by the hollow fiber membrane after passing through the activated carbon part, the hollow fiber membrane is clogged. That is, it is suitable for filtration of tap water which has a small particle diameter and may cause early clogging in the hollow fiber membrane, and can withstand long-term use.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a water purification cartridge with a built-in faucet according to the present invention.
FIG. 2 is a half sectional view showing the cartridge of FIG. 1 separately.
FIG. 3 is a half sectional view showing another example of a water purifying type water purifying cartridge according to the present invention.
FIG. 4 is a partially cutaway side view showing a state in which the water purification cartridge with a built-in water faucet of FIG. 1 is built in the water faucet.
FIG. 5 is a perspective view showing a state where a shower head is pulled out from the faucet of FIG. 4;
FIG. 6 is a graph showing the evaluation of filtration performance according to the length of an activated carbon part.
FIG. 7 is a graph showing a turbidity (turbidity) filtration ability evaluation test (JIS S3201: raw water turbidity kaolin 2 degrees).
FIG. 8 is a graph showing a turbidity (turbidity) filtration ability evaluation test (tap water).
FIG. 9 is a front view showing another example of the water purification cartridge of the present invention.
FIG. 10 is a longitudinal sectional view of FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane part 4 Cylindrical body 13 Activated carbon part 19 Water faucet main body 20 Cartridge main body 21 Shower head 22 Cylindrical part 23 Base 24 Hose 26 Cartridge main body 27 Hollow fiber membrane part 28 Activated carbon part 29 Cylindrical body

Claims (6)

中空糸膜部と活性炭部を直列配置して水栓に内蔵可能な筒形のカートリッジ本体を構成し、少なくとも中空糸膜部の外周囲を筒形ボデーで包囲したことを特徴とする水栓内蔵型浄水カートリッジ。A built-in water faucet, wherein the hollow fiber membrane part and the activated carbon part are arranged in series to constitute a cylindrical cartridge main body that can be built into the faucet, and at least the outer periphery of the hollow fiber membrane part is surrounded by a cylindrical body. Type water purification cartridge. 前記中空糸膜部のろ過能力を前記活性炭部のろ過能力と同等以上とした請求項1に記載の水栓内蔵型浄水カートリッジ。The water purification cartridge with a built-in faucet according to claim 1, wherein the filtration capacity of the hollow fiber membrane part is equal to or greater than the filtration capacity of the activated carbon part. 請求項2における活性炭部の容積を規定の残留塩素ろ過能力を10%以上、上回る容量とし、残りの容量を中空糸膜部とした水栓内蔵型浄水カートリッジ。3. A water tap built-in type water purifying cartridge according to claim 2, wherein the volume of the activated carbon part is more than a specified residual chlorine filtration capacity by 10% or more, and the remaining capacity is a hollow fiber membrane part. 前記活性炭部は、繊維状活性炭と粒状活性炭より成り、繊維状活性炭を粒状活性炭より多く含有させた請求項1乃至3の何れか1項に記載の水栓内蔵型浄水カートリッジ。The water tap built-in water purifying cartridge according to any one of claims 1 to 3, wherein the activated carbon part is made of fibrous activated carbon and granular activated carbon, and contains more fibrous activated carbon than granular activated carbon. 前記活性炭部に鉛吸着剤を含有させた請求項4に記載の水栓内蔵型浄水カートリッジ。The water purification cartridge with a built-in faucet according to claim 4, wherein the activated carbon part contains a lead adsorbent. 水栓本体に設けたシャワーヘッドの筒部内に、前記カートリッジ本体を着脱可能に内蔵させ、水栓本体の基部より前記シャワーヘッドをホースを介して引出し自在に設けた請求項1に記載の水栓内蔵型浄水カートリッジ。2. The faucet according to claim 1, wherein the cartridge body is detachably incorporated in a tubular portion of the shower head provided on the faucet body, and the shower head is provided so as to be able to be pulled out from a base of the faucet body via a hose. Built-in water purification cartridge.
JP2003117570A 2002-04-22 2003-04-22 Water purification cartridge having built-in tap Pending JP2004000956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117570A JP2004000956A (en) 2002-04-22 2003-04-22 Water purification cartridge having built-in tap

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002118668 2002-04-22
JP2003117570A JP2004000956A (en) 2002-04-22 2003-04-22 Water purification cartridge having built-in tap

Publications (1)

Publication Number Publication Date
JP2004000956A true JP2004000956A (en) 2004-01-08

Family

ID=30447246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117570A Pending JP2004000956A (en) 2002-04-22 2003-04-22 Water purification cartridge having built-in tap

Country Status (1)

Country Link
JP (1) JP2004000956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527253A (en) * 2007-05-15 2010-08-12 ジーヴイエス ソシエタ ペル アチオニ Filtration unit manufacturing method and related apparatus
JP2016159254A (en) * 2015-03-03 2016-09-05 トクラス株式会社 Water purification cartridge and water faucet
JP2016159255A (en) * 2015-03-03 2016-09-05 トクラス株式会社 Water purification cartridge and water faucet
WO2017142059A1 (en) * 2016-02-19 2017-08-24 東レ株式会社 Cartridge for water purifier, and water purifier
JP2022002840A (en) * 2020-06-23 2022-01-11 ポール・コーポレーションPall Corporation Filter arrangement including pre-filtration filter element and filter device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527253A (en) * 2007-05-15 2010-08-12 ジーヴイエス ソシエタ ペル アチオニ Filtration unit manufacturing method and related apparatus
JP2016159254A (en) * 2015-03-03 2016-09-05 トクラス株式会社 Water purification cartridge and water faucet
JP2016159255A (en) * 2015-03-03 2016-09-05 トクラス株式会社 Water purification cartridge and water faucet
WO2017142059A1 (en) * 2016-02-19 2017-08-24 東レ株式会社 Cartridge for water purifier, and water purifier
US20190176089A1 (en) * 2016-02-19 2019-06-13 Toray Industries, Inc. Cartridge for water purifier, and water purifier
JP2022002840A (en) * 2020-06-23 2022-01-11 ポール・コーポレーションPall Corporation Filter arrangement including pre-filtration filter element and filter device

Similar Documents

Publication Publication Date Title
US7081201B2 (en) Encapsulated filter cartridge
HU227884B1 (en) Ultrafiltration and microfiltration module and system
JP2006015199A (en) Water purifying cartridge built into faucet
JP2004000956A (en) Water purification cartridge having built-in tap
KR20070018151A (en) Filter apparatus for water purifier
JP5491249B2 (en) Faucet direct water purifier
JP2005000768A (en) Water cleaning cartridge
KR20090011436U (en) Composite water purifier filter
JPH11277051A (en) Water purifier
JPH04326980A (en) Water purifier
WO2001047818A1 (en) Water purifier
KR100882082B1 (en) Assembly of Activated Carbon Filter
JP4076848B2 (en) Water purifier
JP2518110B2 (en) Water purifier
JP2002331286A (en) Water cleaner
JPH0576865A (en) Water purifier
JPH11253935A (en) Water purifier
CN214437971U (en) Reverse osmosis filter element with backwashing function, composite filter element and water purifier
KR200402257Y1 (en) Filter apparatus for water purifier
JP2003311264A (en) Water cleaning cartridge built in faucet
JP3209867B2 (en) Water purifier
JPH0576593U (en) Liquid purification cartridge
JP3324792B2 (en) Water purifier
JP4164783B2 (en) Water purification cartridge and water purifier using the same
JPH0576594U (en) Liquid purification cartridge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Effective date: 20071126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A02