WO2011092778A1 - Plasma film-forming apparatus - Google Patents

Plasma film-forming apparatus Download PDF

Info

Publication number
WO2011092778A1
WO2011092778A1 PCT/JP2010/006894 JP2010006894W WO2011092778A1 WO 2011092778 A1 WO2011092778 A1 WO 2011092778A1 JP 2010006894 W JP2010006894 W JP 2010006894W WO 2011092778 A1 WO2011092778 A1 WO 2011092778A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
anode electrode
electrode
cathode electrode
forming apparatus
Prior art date
Application number
PCT/JP2010/006894
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎篤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011092778A1 publication Critical patent/WO2011092778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Definitions

  • the present invention relates to a plasma film forming apparatus. Specifically, the present invention relates to a plasma film forming apparatus for manufacturing a thin film transistor (TFT) substrate or the like used in a display device.
  • TFT thin film transistor
  • the plasma deposition (Chemical Vapor Deposition) method is known as a method for forming a semiconductor film or the like using plasma, and is used for manufacturing integrated circuits, liquid crystal display panels, organic electroluminescence elements, solar cells, and the like. ing.
  • a plasma film forming apparatus for forming a film by using this plasma film forming method includes a cathode electrode and an anode electrode arranged so as to face each other inside a processing chamber.
  • the anode electrode is provided in a substrate holder disposed on the upper wall of the processing chamber, and a substrate to be processed such as a glass substrate is mounted on the surface on the cathode electrode side by the substrate holder.
  • the cathode electrode is formed with a plurality of gas inlets for introducing a source gas for film formation into the processing chamber.
  • a substrate to be processed is mounted on an anode electrode, and a source gas is introduced into the processing chamber from each gas introduction port in a state where the inside of the processing chamber is decompressed by a vacuum pump or the like.
  • a plasma state of the source gas is generated as a glow discharge phenomenon due to gas breakdown due to the generated electric field.
  • dissociation of the source gas (gas molecules) is promoted and radicals are generated in the vicinity of the cathode electrode where the relatively strong electric field is formed and in the vicinity thereof.
  • the radicals generated in this way diffuse to the substrate to be processed and deposit on the surface of the substrate, thereby forming a thin film.
  • a substrate installation part that also serves as a first electrode part (anode electrode), a gas supply part that supplies a reactive gas, and an excitation source that excites the reactive gas supplied by the gas supply part to plasma.
  • a plasma processing apparatus includes a second electrode part (cathode electrode) and a power supply part that applies a voltage between the first electrode part and the second electrode part.
  • a reaction gas having a total partial pressure of the source gas and H 2 gas of 80% or more is introduced into a plasma formation space where the reaction gas is plasma-excited, and the pressure of the plasma formation space is set to approximately atmospheric pressure.
  • the thin film is formed on the substrate placed on the substrate installation portion by plasma excitation of the reaction gas while being held in the substrate. And it is described that such a configuration can increase the amount of H 2 input, can form a thin silicon film with good crystallinity and high speed, and can form a silicon thin film that is optimal for applications such as solar cells. (For example, refer to Patent Document 1).
  • the distance between the first electrode portion (anode electrode) and the second electrode portion (cathode electrode) is set to 2 mm.
  • the cathode electrode in the plasma film forming apparatus described in Patent Document 1 has a substantially rectangular parallelepiped shape, and since the end in the longitudinal direction is fixed, the heat (200 ° C. to 200 ° C.) 400 ° C.), the central portion in the longitudinal direction is warped, and the cathode electrode is bent.
  • the substrate installation portion that also serves as the anode electrode is provided with a heater for heating the substrate to be processed when the film formation process is performed.
  • the anode electrode is deformed by the heat of the heater, and the anode electrode is bent.
  • the anode electrode - the distance between the cathode electrode becomes non-uniform, the discharge becomes uneven, 1m 2 or more large area (1m wide or more, or more in length 1m) It becomes difficult to generate plasma uniformly in the plasma region formed between the electrodes having. As a result, there is a problem that it is difficult to form a thin film having a uniform film thickness on the surface of the substrate to be processed.
  • the pressure in the processing chamber (chamber) of the plasma film forming apparatus is a high pressure of 10 Torr or more and the distance between the anode electrode and the cathode electrode is 10 mm or less, the gap between the anode electrode and the cathode electrode described above.
  • the influence of the non-uniformity of the distance becomes large, and the discharge becomes more non-uniform.
  • An object of the present invention is to provide a plasma film forming apparatus capable of forming a thin film having a uniform film thickness on the surface of a substrate to be processed by generating a proper discharge.
  • a plasma film forming apparatus includes a processing chamber in which a substrate to be processed is installed, and a plasma discharge generation unit provided to face the substrate to be processed, and plasma discharge.
  • the generating unit includes an anode electrode disposed opposite to the substrate to be processed disposed in the processing chamber, a cathode electrode disposed away from the anode electrode, and plasma formed between the anode electrode and the cathode electrode.
  • a generator chamber and an insulator that is fixed to the cathode electrode and that supports the anode electrode so that the distance between the cathode electrode and the anode electrode is constant over the entire plasma discharge generator. This is a plasma film forming apparatus.
  • the distance between the anode electrode and the cathode electrode can be kept constant over the entire plasma discharge generating portion, a uniform discharge is generated and a uniform film is formed on the surface of the substrate to be processed.
  • a thin film having a thickness can be formed.
  • the anode electrode is configured to support the insulator, and the anode electrode is not fixed to the insulator, so that the anode electrode is not warped due to deformation due to heat during plasma generation, The anode electrode is not bent. Therefore, even when heat acts on the anode electrode and the cathode electrode, the distance between the cathode electrode and the anode electrode can be kept constant in the plasma discharge generating portion, so that a uniform discharge is generated. A thin film having a uniform film thickness can be formed on the surface of the substrate to be processed.
  • the cathode electrode is formed so as to penetrate in the thickness direction of the cathode electrode, and is provided with a gas introduction port for introducing a material gas into the plasma generation chamber.
  • the port is formed by a first gas introduction port and a second gas introduction port formed on the end surface facing the anode electrode so as to communicate with the first gas introduction port and having a diameter larger than the diameter of the first gas introduction port. It is configured.
  • the holocathode structure can be formed in the cathode electrode, and the discharge chamber can be formed inside the cathode electrode, so that a holocathode discharge can be generated inside the cathode electrode. Accordingly, the holocathode effect associated with the holocathode discharge is generated inside the cathode electrode, and the plasma electron density can be increased, so that the film formation rate can be improved.
  • the anode electrode is formed so as to penetrate in the thickness direction of the anode electrode, and radicals generated from the material gas dissociated by the plasma generated in the plasma generation chamber It is characterized in that a radical introduction port for introduction into is provided.
  • a holocathode structure can be formed in the anode electrode, and a discharge chamber can be formed in the anode electrode. Therefore, a holocathode discharge can be generated in the anode electrode. Accordingly, the holocathode effect associated with the holocathode discharge is generated inside the anode electrode, and the plasma electron density can be increased, so that the film formation rate can be improved.
  • the plasma electron density can be further increased and the film formation rate can be dramatically improved.
  • the insulator is formed with a notch, and the anode electrode is supported by the insulator by engaging the anode electrode and the notch. To do.
  • the anode electrode can be supported by the insulator with a simple configuration.
  • the film formation distribution is such that the concavo-convex structure is transferred.
  • production can be prevented and generation
  • the plasma film forming apparatus of the present invention has an excellent characteristic that a thin film having a uniform film thickness can be formed on the surface of a substrate to be processed by generating a uniform discharge. Therefore, the plasma film forming apparatus of the present invention is preferably used for a plasma film forming apparatus in which the material gas is a silane-based gas. With such a structure, a silicon thin film used for a solar cell or the like is formed on a film formation substrate. It is possible to provide a plasma film forming apparatus for forming a uniform film thickness on the surface of the film.
  • a uniform discharge can be generated to form a thin film having a uniform thickness on the surface of the substrate to be processed.
  • FIG. 1 is a perspective view schematically showing a plasma film forming apparatus according to an embodiment of the present invention. It is sectional drawing which represents typically the plasma film-forming apparatus which concerns on embodiment of this invention. It is a fragmentary sectional view which shows the plasma discharge generation
  • FIG. 1 is a perspective view schematically showing a plasma film forming apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view schematically showing the plasma film forming apparatus according to an embodiment of the present invention
  • FIG. 3 is a partial cross-sectional view showing a plasma discharge generating portion in the plasma film forming apparatus according to this embodiment of the present invention.
  • the plasma film forming apparatus 1 includes a processing chamber (vacuum container) 11 in which a substrate 10 to be processed is loaded, and a plasma discharge generation unit 13 provided in the processing chamber 11.
  • a substrate holder 14 that holds the substrate to be processed 10 is provided in the processing chamber 11, and the substrate to be processed 10 is placed on the substrate holder 14.
  • a high-frequency power source 15 for supplying electric power to the plasma discharge generator 13, that is, applying electric energy, and a material gas (hereinafter also simply referred to as “gas”) are contained in the processing chamber 11.
  • a gas supply unit 16 a for supplying gas to the gas chamber, a gas pressure adjusting unit 16 b for adjusting the gas pressure in the processing chamber 11, and a gas discharging unit 17 for discharging the gas in the processing chamber 11 are provided.
  • the gas supply unit 16a can be constituted by a gas cylinder or the like.
  • the gas pressure adjusting unit 16b can be configured by a gas pressure adjusting valve or the like.
  • the high-frequency power supply 15 is connected to the plasma discharge generator 13 via the wiring 18.
  • the frequency of the high frequency power supply 15 can be set to 13.56 MHz, for example.
  • the plasma discharge generator 13 is provided in the processing chamber 11 so as to be separated from the substrate 10 and to face the substrate 10 to be processed.
  • the plasma discharge generator 13 has a plurality of cathode electrodes 19 and a plurality of anode electrodes 20.
  • the cathode electrode 19 is disposed away from the anode electrode, and the anode electrode 20 is disposed to face the substrate 10 to be processed.
  • a plasma generation chamber 30 is formed between the anode electrode 20 and the cathode electrode 19.
  • the anode electrode 20 is provided closer to the substrate holder 14 than the cathode electrode 19 (that is, the substrate 10 to be processed).
  • the thickness T 1 of the cathode electrode 19 can be set to, for example, 20 mm.
  • the thickness T 2 of the anode electrode 20, for example, can be set to 2 mm.
  • the plurality of cathode electrodes 19 are arranged to be substantially parallel at a predetermined interval in the length direction X of the plasma film forming apparatus 1, and each of the plurality of cathode electrodes 19 is arranged in the plasma film forming apparatus 1. In the width direction Y.
  • the cathode electrode 19 is formed with a gas introduction port 12 through which the material gas is introduced into the plasma generation chamber 30 so as to penetrate in the thickness direction of the cathode electrode 19.
  • each of the plurality of anode electrodes 20 is arranged so as to be substantially parallel at a predetermined interval in the length direction X of the plasma film forming apparatus 1, and each of the plurality of anode electrodes 20 includes: It extends in the width direction Y of the plasma film forming apparatus 1.
  • the plasma discharge generator 13 includes a cathode electrode 19a that does not have a holocathode structure, which will be described later, and the plurality of cathode electrodes 19 are formed integrally with the cathode electrode 19a.
  • the high frequency power supply 15 is connected to the cathode electrode 19 a via the wiring 18, so that the high frequency power supply 15 is connected to each cathode electrode 19.
  • the high frequency power supply 15 is also connected to the anode electrode 20 via a wiring 18.
  • a plurality of inter-electrode insulators 22 having a T-shaped cross section and supporting each anode electrode 20 are provided between the cathode electrodes 19 and between the anode electrodes 20.
  • the plurality of inter-electrode insulators 22 are arranged so as to be substantially parallel at predetermined equal pitch intervals in the length direction X of the plasma film forming apparatus 1, and each of the plurality of inter-electrode insulators 22 is The plasma film forming apparatus 1 extends in the width direction Y.
  • the pitch interval of the interelectrode insulator 22 in the length direction X of the plasma film forming apparatus 1 is P
  • the anode electrode 20 in the height direction Z of the plasma film forming apparatus 1 When the distance from the substrate to be processed 10 is F, the relationship 2.5P ⁇ F is preferable, and the relationship 3P ⁇ F is more preferable.
  • the substrate 10 to be processed is disposed close to the anode electrode 20, so the anode electrode 20 on the upper end surface (end surface on the substrate 10 side) of the plasma discharge generator 13.
  • a film formation distribution in which the concavo-convex structure by the inter-electrode insulator 22 is transferred occurs, and film formation unevenness may occur in the substrate 10 to be processed.
  • the cathode electrode 19 and the anode electrode 20 are in an electrically insulated state by being spaced apart by the interelectrode insulator 22.
  • the plasma discharge generator 13 is provided with a support 23 that supports the interelectrode insulator 22.
  • the support 23 is provided so as to cover the lower end surfaces of the cathode electrode 19 and the interelectrode insulator 22 (that is, the surface opposite to the anode electrode side).
  • the support 23 is configured to fix the interelectrode insulator 22 to the cathode electrode 19.
  • a gas supply port 37 for supplying the material gas supplied from the gas supply unit 16 a to the gas introduction port 12 of the cathode electrode 19 is provided at a portion corresponding to the gas introduction port 12 of the cathode electrode 19. Is formed.
  • the cathode electrode 19, the anode electrode 20 facing the cathode electrode 19, and the pair of interelectrode insulators 22 sandwiching the cathode electrode 19 and the anode electrode 20 are surrounded.
  • the space to be formed is a plasma generation chamber (plasma generation space) 30.
  • the width W of the plasma generation chamber 30 is small, the space in which the plasma is generated becomes small and the film forming speed decreases. If the width W is large, the plasma film forming apparatus 1 becomes large.
  • the width W is preferably set to about 10 to 15 mm.
  • the cathode electrode 19 employs a holo cathode structure. More specifically, the gas inlet 12 formed in the cathode electrode 19 is formed to communicate with the first gas inlet 12a on the upper surface side facing the first gas inlet 12a and the anode electrode 20, It is constituted by the second gas introducing port 12b having a larger diameter R 2 than the diameter R 1 of the first gas inlet 12a.
  • a holocathode structure (a hollow structure or a holostructure) is formed in the cathode electrode 19.
  • a discharge chamber is formed in the cathode electrode 19 to generate a holocathode discharge inside the cathode electrode 19 (that is, inside the second gas inlet 12b).
  • the anode electrode 20 has radicals that introduce radicals generated from the material gas decomposed and dissociated by the high-density plasma generated in the plasma generation chamber 30 into the processing chamber 11.
  • An introduction port 32 is formed.
  • the radical inlet 32 is formed so as to extend in the width direction Y of the plasma film forming apparatus 1, and is formed so as to penetrate in the thickness direction of the anode electrode 20.
  • the above-described radical introduction port 32 is formed to form a holocathode structure (a hollow structure or a holostructure) in the anode electrode 20, and a discharge chamber is formed inside the anode electrode 20.
  • the holocathode discharge is generated inside the anode electrode 20 (that is, inside the radical inlet 32).
  • the application of the high frequency power causes a holocathode effect in the anode electrode 20 to cause ionization / ionization.
  • extremely high density plasma is generated in the vicinity of the opening of the radical inlet 32 of the anode electrode 20 in the plasma generation chamber 30. That is, by adopting such a holocathode structure, the plasma electron density can be increased, so that the film formation rate can be improved.
  • the plasma electron density can be further increased and the film formation rate can be dramatically improved.
  • a film uniformly on the substrate 10 to be processed having a large area (for example, a length of 1 m or more and a width of 1 m or more).
  • the pressure in the processing chamber 11 of the plasma film forming apparatus 1 is set to a high pressure of 10 Torr or higher, the film is uniformly formed on the processing substrate having a large area at a high speed of 10 ⁇ / s or higher. It becomes possible to do.
  • the pitch P of the interelectrode insulator 22 is set to 25 mm and the plasma film forming apparatus 1 is used.
  • the longitudinal direction X 40 or more of each of the cathode electrode 19 and the anode electrode 20 are arranged, and the entire width of the plasma film forming apparatus 1 is set to 1 m or more.
  • the width of the interelectrode insulators 22 can be set to 15 mm.
  • the width of the anode electrode 20 is set larger than the width W of the plasma generation chamber 30 (for example, when the width W of the plasma generation chamber 30 is 15 mm, the anode The width of the electrode 20 is set to 20 mm).
  • a cutout portion 21 is formed on the side surface of the cathode electrode 19 on the lower end surface side.
  • the notch 21 is formed along the length direction of the cathode electrode 19.
  • a space 26 for accommodating the interelectrode insulator 22 is formed between the cathode electrodes 19.
  • a protruding portion 24 protruding toward the cathode electrode 19 is formed on the side surface on the lower end surface side of the interelectrode insulator 22, and the protruding portion 24 allows the electrode to be
  • the intermediate insulator 22 has a T-shaped cross section.
  • the protrusion 24 is formed along the length direction of the interelectrode insulator 22.
  • a notch 25 is formed on the side surface of the interelectrode insulator 22 on the upper end surface side.
  • the notch 25 is formed in the length direction of the interelectrode insulator 22.
  • the height H of the notch 25 is set to be equal to the thickness T 2 of the anode electrode 20 described above.
  • the thickness T 2 of the anode electrode 20 is the case of 2 mm
  • the height H of the notch 25 is set to 2 mm.
  • the height H of the notch 25 may be set larger than the thickness T 2 of the anode electrode 20 (for example, when T 2 is 2 mm, H is set to 3 mm). .
  • the interelectrode insulator 22 When assembling the plasma discharge generator 13, first, the interelectrode insulator 22 is inserted into the space 26 formed between the cathode electrodes 19, and the interelectrode insulator 22 is accommodated in the space 26. Then, as shown in FIG. 6, the protrusion 24 of the interelectrode insulator 22 engages with the notch 21 of the cathode electrode 19, and the interelectrode insulator 22 is supported by the cathode electrode 19. 22 is attached to the cathode electrode 19.
  • the interelectrode insulator 22 is disposed between the cathode electrodes 19 in this way.
  • the plurality of inter-electrode insulators 22 are provided at a predetermined pitch interval P so as to extend substantially parallel to each other. Further, the cathode electrode 19 is sandwiched by the interelectrode insulator 22 accommodated in the space 26.
  • the anode electrode 20 is inserted into the notch 25 formed in each of the adjacent interelectrode insulators 22 provided between the cathode electrodes 19, and the anode electrode 20 is accommodated between the interelectrode insulators 22. Then, as shown in FIG. 7, the side end portion 27 of the anode electrode 20 is engaged with the notch portion 25 of the interelectrode insulator 22, and the anode electrode 20 is supported (sandwiched) by the adjacent interelectrode insulator 22. The anode electrode 20 is attached to the interelectrode insulator 22. In the present embodiment, the anode electrode 20 is thus disposed between the interelectrode insulators 22 so as to face the cathode electrode.
  • the anode electrode 20 is provided so as to face the cathode electrode 19 substantially in parallel in the width direction of the plasma film forming apparatus (the direction of the arrow Y shown in FIG. 1). Further, in the length direction X of the plasma film forming apparatus 1, the plurality of anode electrodes 20 are provided at equal intervals so as to extend in parallel with each other.
  • the cathode electrode 19 the anode electrode 20 facing the cathode electrode 19, and a pair of interelectrode insulators 22 sandwiching the cathode electrode 19 and the anode electrode 20 are sandwiched.
  • a plasma generation chamber 30 surrounded by is formed.
  • the anode electrode 20 is supported by the interelectrode insulator 22 by the side end portion 27 and attached to the interelectrode insulator 22, but the side end portion 27 of the anode electrode 20 supports the anode electrode 20. It is not fixed to the interelectrode insulator 22. Accordingly, since the anode electrode 20 is not warped due to deformation due to heat when plasma is generated, the anode electrode 20 is not bent. Therefore, even when heat acts on the anode electrode 20 and the cathode electrode 19, the cathode electrode 19 and the anode electrode 20 in the height direction Z of the plasma film forming apparatus 1 are spread over the entire plasma discharge generation unit 13. The distance D between (see FIG. 3) can be kept constant.
  • the interelectrode insulator 22 supports the anode electrode 20 so that the distance D between the cathode electrode 19 and the anode electrode 20 is constant over the entire plasma discharge generator 13. It is the composition to do.
  • the distance D between the cathode electrode 19 and the anode electrode 20 is appropriately determined by adjusting the gas pressure in the processing chamber 11 according to Paschen's law. Can be determined.
  • the voltage V has a minimum value with respect to the product of the gas pressure P and the discharge path length d. Therefore, for example, by increasing the gas pressure P in the processing chamber 11 while the voltage V is constant, the discharge path length d can be shortened.
  • the cathode electrode 19 and the anode electrode are determined by determining the position of the notch 25 formed in the interelectrode insulator 22 based on the discharge path length d calculated according to Paschen's law. The distance D between 20 can be adjusted.
  • a support 23 that supports the interelectrode insulator 22 is provided so as to cover the lower end surfaces of the cathode electrode 19 and the interelectrode insulator 22 (that is, the surface opposite to the anode electrode 20 side). Then, the interelectrode insulator 22 is fixed to the cathode electrode 19 by the protrusion 24 and the support 23 that engage with the notch 21 described above, and the plasma discharge generator 13 is assembled as shown in FIG. It is done.
  • the plasma processing method includes a substrate placement process, a gas introduction process, a plasma processing process, and a thin film forming process.
  • the substrate 10 to be processed is placed in the processing chamber 11. More specifically, the substrate 10 to be processed is placed on the substrate holder 14 provided in the processing chamber 11. In addition, the to-be-processed substrate 10 is arrange
  • positioned so that the above-mentioned relationship of 2.5P ⁇ F is materialized, for example, when the pitch space
  • the substrate 10 to be processed is placed at the position.
  • a glass substrate having a thickness of 1.1 mm is used as the substrate 10 to be processed.
  • the gas discharge unit 17 is used to discharge the gas in the processing chamber 11 and set the processing chamber 11 in a predetermined vacuum state.
  • a material gas is introduced into the processing chamber 11 in which the target substrate 10 is disposed. More specifically, first, the material gas is supplied from the gas supply unit 16 a to the gas retention unit 8, and the material gas is temporarily retained in the gas retention unit 8. Thereafter, the material gas passes through the gas supply port 37 formed in the support 23, is supplied to the gas introduction port 12 of the cathode electrode 19, and passes through the gas introduction port 12 to pass through the plasma discharge generation unit 13. It is introduced into the plasma generation chamber 30.
  • SiH 4 , H 2 , N 2 or the like is used as the material gas. More specifically, for example, in the case where a silicon thin film used for a thin film transistor (TFT), a semiconductor integrated circuit, a solar cell or the like constituting a liquid crystal display device is formed on the substrate 10 to be processed, silane (SiH 4 ) or Silane-based gases such as hydrogen-diluted silane (SiH 4 / H 2 ) are used. At this time, for example, the gas flow rate of silane can be set to 60 sccm, and the gas flow rate of hydrogen can be set to 120 sccm. The material gas is introduced at a pressure of 70 Pa, for example.
  • silane (SiH 4 ), ammonia (NH 3 ), nitrogen (N 2 ), or the like is used as a material gas for forming a silicon nitride film.
  • the gas flow rate of silane can be set to 20 sccm
  • the gas flow rate of ammonia can be set to 40 sccm
  • the gas flow rate of nitrogen can be set to 100 sccm.
  • the material gas is introduced at a pressure of 200 Pa, for example.
  • sccm is a gas flow rate in cubic centimeters flowing every minute at 0 ° C.
  • plasma 40 is generated by the plasma discharge generator 13 to perform plasma processing on the surface of the substrate 10 to be processed. More specifically, first, for example, a pulse discharge is generated between the anode electrode 20 and the cathode electrode 19 to generate a plasma 40 in the plasma generation chamber 30 of the plasma discharge generation unit 13. Let The plasma 40 is generated according to a voltage (potential difference) applied between the cathode electrode 19 and the anode electrode 20.
  • a power source for applying a voltage for example, a high frequency power source 15 having a frequency of 300 MHz is used.
  • the holocathode structure is adopted, so that the plasma electron density can be increased.
  • the material gas introduced into the processing chamber 11 and flowing into the plasma discharge generator 13 is dissociated by the plasma 40.
  • the material gas supplied to the plasma discharge generator 13 is decomposed and dissociated to generate radicals.
  • An arrow 41 in FIG. 2 indicates the flow of radicals.
  • the generated radical is introduced into the processing chamber 11 through the radical inlet 32 formed in the anode electrode 20.
  • the generated radicals diffuse to the substrate 10 to be processed and adhere to and deposit on the surface of the substrate 10 held by the substrate holder 14. That is, a film grows on the surface of the substrate to be processed 10 to form a thin film.
  • the generated radicals reach the surface of the thin film one after another and the thickness of the thin film increases. Then, after applying the pulse voltage until the set film thickness is reached, the voltage application between the cathode electrode 19 and the anode electrode 20, that is, the supply of power to the plasma discharge generator 13 is stopped. In this way, the plasma processing is performed on the surface of the substrate 10 to be processed. Thereafter, when the substrate 10 to be processed is removed from the substrate holder 14 and taken out of the processing chamber 11, a thin film-formed substrate on which a thin film is formed is obtained.
  • the anode electrode 20 is fixed to the cathode electrode 19 so that the distance D between the cathode electrode 19 and the anode electrode 20 is constant over the entire plasma discharge generator 13.
  • the interelectrode insulator 22 to be supported is provided. Accordingly, since the distance D between the anode electrode 20 and the cathode electrode 19 can be kept constant, a uniform discharge can be generated and a thin film having a uniform film thickness can be formed on the surface of the substrate 10 to be processed. .
  • the anode electrode 20 Since the anode electrode 20 is supported by the interelectrode insulator 22, and the anode electrode 20 is not fixed to the interelectrode insulator 22, the anode is caused by deformation due to heat at the time of plasma generation.
  • the electrode 20 is not warped, and the anode electrode 20 is not bent. Accordingly, even when heat is applied to the anode electrode 20 and the cathode electrode 19, the distance D between the cathode electrode 19 and the anode electrode 20 can be kept constant in the plasma discharge generator 13, so that it is uniform. It is possible to form a thin film having a uniform film thickness on the surface of the substrate 10 to be processed by generating an appropriate discharge.
  • the gas inlet 12 of the cathode electrode 19 is formed to communicate with the first gas inlet 12a and the first gas inlet 12a on the end face side facing the anode electrode 20, It is constituted by a second gas introducing port 12b having one large diameter R 2 than the diameter R 1 of the gas inlet 12a. Therefore, since a holocathode structure can be formed in the cathode electrode 19 and a discharge chamber can be formed in the cathode electrode 19, a holocathode discharge can be generated in the cathode electrode 19. As a result, a holocathode effect associated with the holocathode discharge occurs inside the cathode electrode 19 and the plasma electron density can be increased, so that the film formation rate can be improved.
  • the anode electrode 20 is provided with a radical introduction port 32 through which radicals generated from the material gas dissociated by the plasma generated in the plasma generation chamber 30 are introduced into the processing chamber 11. Accordingly, since a holocathode structure can be formed in the anode electrode 20 and a discharge chamber can be formed in the anode electrode 20, a holocathode discharge can be generated in the anode electrode 20. As a result, since the holocathode effect accompanying the holocathode discharge is generated inside the anode electrode 20 and the plasma electron density can be increased, the film formation rate can be improved.
  • the plasma electron density can be further increased and the film formation rate can be dramatically improved.
  • the notch portion 25 is formed in the interelectrode insulator 22, and the anode electrode 20 is supported by the interelectrode insulator 22 by the engagement of the anode electrode 20 and the notch portion 25. It is configured to do. Accordingly, the anode electrode 20 can be supported by the interelectrode insulator 22 with a simple configuration.
  • a plurality of inter-electrode insulators 22 are arranged at equal pitch intervals, the pitch interval of the inter-electrode insulators 22 is P, and the distance between the anode electrode 20 and the substrate to be processed 10 is F. In this case, the relationship of 2.5P ⁇ F is established. Therefore, for example, even when there is a concavo-convex structure formed by the anode electrode 20 and the interelectrode insulator 22 on the end face of the plasma discharge generation unit 13 facing the substrate 10 to be processed, film formation in which the concavo-convex structure is transferred. The occurrence of distribution can be prevented, and the occurrence of film formation unevenness on the substrate to be processed 10 can be prevented.
  • the protrusion 24 that engages the notch 21 of the cathode electrode 19 is formed in the interelectrode insulator 22, and the support 23 that supports the interelectrode insulator 22 is provided, thereby interelectrode insulation.
  • the body 22 is fixed to the cathode electrode 19 as shown in FIG. 9, the interelectrode insulator 22 is fixed to the cathode electrode 19 only by the protrusion 24 that engages with the notch 21 of the cathode electrode 19 as shown in FIG. 9. It is good also as a structure fixed.
  • the notch portion 21 is formed on the side surface other than the upper and lower end surfaces of the cathode electrode 19, and the protruding portion 24 is formed on the side surface other than the end surface side of the interelectrode insulator 22.
  • the plasma film forming apparatus 1 has been described by taking the case of forming a silicon thin film as an example.
  • the present invention is not limited to this, and a silicon germanium (SiGe) film or zinc selenide (ZnSe) is used.
  • the present invention can also be applied as a film forming apparatus for forming another semiconductor film such as a film.
  • a plasma film forming apparatus for manufacturing a thin film transistor (TFT) substrate, a solar cell or the like used in a display device.
  • TFT thin film transistor
  • Plasma film-forming apparatus To-be-processed substrate 11 Processing chamber 13 Plasma discharge generation part 12 Gas inlet 12a 1st gas inlet 12b 2nd gas inlet 19 Cathode electrode 20 Anode electrode 21 Notch 22 Interelectrode insulator 24 Protrusion Part 25 Notch part 26 Space 30 Plasma generating chamber 32 Radical inlet D Distance between cathode electrode and anode electrode F Distance between anode electrode and substrate to be processed P Pitch interval between insulators between electrodes R 1 Diameter of first gas inlet Diameter of R2 second gas inlet

Abstract

Disclosed is a plasma film-forming apparatus (1), which is provided with a processing chamber (11) wherein a substrate to be processed (10) is disposed, and a plasma discharge generating section (13), which is provided to face the substrate to be processed (10). The plasma discharge generating section (13) has: an anode electrode (20); a cathode electrode (19), which is disposed by being spaced apart from the anode electrode (20); a plasma generating chamber (30), which is formed between the anode electrode (20) and the cathode electrode (19); and an inter-electrode insulating body (22), which is fixed to the cathode electrode (19), and supports the anode electrode (20) such that the distance between the cathode electrode (19) and the anode electrode (20) are fixed in the whole plasma discharge generating section (13).

Description

プラズマ成膜装置Plasma deposition system
 本発明はプラズマ成膜装置に関する。詳細には、表示装置に使用される薄膜トランジスタ(TFT)基板等を製造するプラズマ成膜装置に関する。 The present invention relates to a plasma film forming apparatus. Specifically, the present invention relates to a plasma film forming apparatus for manufacturing a thin film transistor (TFT) substrate or the like used in a display device.
 プラズマ成膜(Chemical Vapor Deposition)法は、プラズマを利用して半導体膜等を成膜する方法として知られており、集積回路、液晶表示パネル、有機エレクトロルミネッセンス素子及び太陽電池等の製造に使用されている。 The plasma deposition (Chemical Vapor Deposition) method is known as a method for forming a semiconductor film or the like using plasma, and is used for manufacturing integrated circuits, liquid crystal display panels, organic electroluminescence elements, solar cells, and the like. ing.
 このプラズマ成膜法を用いて成膜を行うためのプラズマ成膜装置は、処理室の内部に互いに対向するように配置されたカソード電極及びアノード電極を備えている。例えば、アノード電極は、処理室の上壁部に配置された基板ホルダー内に設けられ、当該基板ホルダーによってカソード電極側の表面にガラス基板等の被処理基板が装着される構成となっている。また、カソード電極には、成膜用の原料ガスを処理室内に導入するための複数のガス導入口が形成されている。 A plasma film forming apparatus for forming a film by using this plasma film forming method includes a cathode electrode and an anode electrode arranged so as to face each other inside a processing chamber. For example, the anode electrode is provided in a substrate holder disposed on the upper wall of the processing chamber, and a substrate to be processed such as a glass substrate is mounted on the surface on the cathode electrode side by the substrate holder. The cathode electrode is formed with a plurality of gas inlets for introducing a source gas for film formation into the processing chamber.
 このプラズマ成膜装置は、アノード電極上に被処理基板を装着して真空ポンプ等で処理室の内部を減圧した状態で、各ガス導入口から原料ガスを処理室内に導入し、カソード電極とアノード電極との間に電圧を印加することにより、発生した電界による気体の絶縁破壊によってグロー放電現象として原料ガスのプラズマ状態を生じさせる。これにより、カソード電極の近傍において、比較的強い電界が形成されるカソードシース部やその付近では、原料ガス(気体分子)の解離が促進されてラジカルが生成される。そして、このように生成されたラジカルが、被処理基板にまで拡散し、その基板表面に堆積することにより、薄膜が成膜される。 In this plasma deposition apparatus, a substrate to be processed is mounted on an anode electrode, and a source gas is introduced into the processing chamber from each gas introduction port in a state where the inside of the processing chamber is decompressed by a vacuum pump or the like. By applying a voltage between the electrodes, a plasma state of the source gas is generated as a glow discharge phenomenon due to gas breakdown due to the generated electric field. Thereby, dissociation of the source gas (gas molecules) is promoted and radicals are generated in the vicinity of the cathode electrode where the relatively strong electric field is formed and in the vicinity thereof. The radicals generated in this way diffuse to the substrate to be processed and deposit on the surface of the substrate, thereby forming a thin film.
 このプラズマ成膜装置としては、例えば、第1電極部(アノード電極)を兼ねる基板設置部と、反応ガスを供給するガス供給部と、ガス供給部により供給された反応ガスをプラズマ励起させる励起用の第2電極部(カソード電極)と、第1電極部と第2電極部との間に電圧を印加する電源部とを備えるプラズマプロセス装置が開示されている。このプラズマプロセス装置では、原料ガスとHガスとの合計の分圧が80%以上となる反応ガスを、反応ガスをプラズマ励起させるプラズマ化空間に導入し、プラズマ化空間の圧力を略大気圧に保持しつつ反応ガスをプラズマ励起させて基板設置部に載せた基板上に薄膜を形成する。そして、このような構成により、H投入量を増加させて、結晶性が良く薄いシリコン膜を高速で形成でき、太陽電池等の用途に最適なシリコン薄膜の成膜が可能となると記載されている(例えば、特許文献1参照)。 As this plasma film-forming apparatus, for example, a substrate installation part that also serves as a first electrode part (anode electrode), a gas supply part that supplies a reactive gas, and an excitation source that excites the reactive gas supplied by the gas supply part to plasma. A plasma processing apparatus is disclosed that includes a second electrode part (cathode electrode) and a power supply part that applies a voltage between the first electrode part and the second electrode part. In this plasma processing apparatus, a reaction gas having a total partial pressure of the source gas and H 2 gas of 80% or more is introduced into a plasma formation space where the reaction gas is plasma-excited, and the pressure of the plasma formation space is set to approximately atmospheric pressure. The thin film is formed on the substrate placed on the substrate installation portion by plasma excitation of the reaction gas while being held in the substrate. And it is described that such a configuration can increase the amount of H 2 input, can form a thin silicon film with good crystallinity and high speed, and can form a silicon thin film that is optimal for applications such as solar cells. (For example, refer to Patent Document 1).
 また、一般、太陽電池等で使用される微結晶シリコンや多結晶シリコン等の薄膜をプラズマ成膜装置により形成する場合、微結晶シリコンや多結晶シリコンの欠陥性を低下させるとともに、成膜速度を向上させるとの観点から、プラズマ成膜装置の処理室(チャンバー)内の圧力を10Torr以上の高圧に設定する必要がある。また、このような高い圧力に設定された処理室内でプラズマを発生させるためには、放電に関するパッシェンの法則により、電圧が一定の場合、アノード電極(即ち、被処理基板)とカソード電極間の距離を10mm以下に設定する必要がある(例えば、非特許文献1参照)。 In general, when a thin film such as microcrystalline silicon or polycrystalline silicon used in a solar cell is formed by a plasma film forming apparatus, the defect rate of the microcrystalline silicon or polycrystalline silicon is reduced and the film forming speed is increased. From the viewpoint of improvement, it is necessary to set the pressure in the processing chamber (chamber) of the plasma film forming apparatus to a high pressure of 10 Torr or more. Further, in order to generate plasma in the processing chamber set at such a high pressure, the distance between the anode electrode (that is, the substrate to be processed) and the cathode electrode when the voltage is constant according to Paschen's law regarding discharge. Must be set to 10 mm or less (for example, see Non-Patent Document 1).
 上記特許文献1に記載のプラズマ成膜装置においては、第1電極部(アノード電極)と第2電極部(カソード電極)との距離が2mmに設定されている。 In the plasma film forming apparatus described in Patent Document 1, the distance between the first electrode portion (anode electrode) and the second electrode portion (cathode electrode) is set to 2 mm.
特開2005-93986号公報JP 2005-93986 A
 ここで、上記特許文献1に記載のプラズマ成膜装置におけるカソード電極は、略直方体形状を有しており、その長手方向における端部が固定されているため、プラズマ発生時の熱(200℃~400℃)により変形し、その長手方向の中央部が反った状態になり、カソード電極に撓みが生じる。 Here, the cathode electrode in the plasma film forming apparatus described in Patent Document 1 has a substantially rectangular parallelepiped shape, and since the end in the longitudinal direction is fixed, the heat (200 ° C. to 200 ° C.) 400 ° C.), the central portion in the longitudinal direction is warped, and the cathode electrode is bent.
 また、上記特許文献1に記載のプラズマ成膜装置におけるアノード電極を兼ねる基板設置部においては成膜処理を行う際に被処理基板を加熱するためのヒーターが設けられているため、カソード電極と同様に、ヒータの熱により変形して、アノード電極に撓みが生じる。 Further, in the plasma deposition apparatus described in Patent Document 1, the substrate installation portion that also serves as the anode electrode is provided with a heater for heating the substrate to be processed when the film formation process is performed. In addition, the anode electrode is deformed by the heat of the heater, and the anode electrode is bent.
 そうすると、上述の電極の撓みに起因して、アノード電極-カソード電極間の距離が不均一になるため、放電が不均一になり、1m以上の大面積(幅1m以上、長さ1m以上)を有する電極間に形成されたプラズマ領域において、均一にプラズマを生成させることが困難になる。その結果、被処理基板の表面に均一な膜厚を有する薄膜を形成することが困難になるという問題があった。 Then, due to the deflection of the above electrode, the anode electrode - the distance between the cathode electrode becomes non-uniform, the discharge becomes uneven, 1m 2 or more large area (1m wide or more, or more in length 1m) It becomes difficult to generate plasma uniformly in the plasma region formed between the electrodes having. As a result, there is a problem that it is difficult to form a thin film having a uniform film thickness on the surface of the substrate to be processed.
 特に、上述のごとく、プラズマ成膜装置の処理室(チャンバー)内の圧力が10Torr以上の高圧であり、アノード電極とカソード電極間の距離が10mm以下の場合、上述のアノード電極-カソード電極間の距離の不均一性による影響が大きくなり、放電がより一層不均一になってしまう。 In particular, as described above, when the pressure in the processing chamber (chamber) of the plasma film forming apparatus is a high pressure of 10 Torr or more and the distance between the anode electrode and the cathode electrode is 10 mm or less, the gap between the anode electrode and the cathode electrode described above. The influence of the non-uniformity of the distance becomes large, and the discharge becomes more non-uniform.
 そこで、本発明は、上述の問題に鑑みてなされたものであり、アノード電極とカソード電極に熱が作用する場合であっても、アノード電極-カソード電極間の距離を均一に保つことにより、均一な放電を発生させて、被処理基板の表面に均一な膜厚を有する薄膜を形成することができるプラズマ成膜装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and even when heat acts on the anode electrode and the cathode electrode, the distance between the anode electrode and the cathode electrode can be kept uniform to maintain a uniform distance. An object of the present invention is to provide a plasma film forming apparatus capable of forming a thin film having a uniform film thickness on the surface of a substrate to be processed by generating a proper discharge.
 上記目的を達成するために、本発明のプラズマ成膜装置は、被処理基板が内部に設置される処理室と、被処理基板に対向して設けられたプラズマ放電発生部とを備え、プラズマ放電発生部は、処理室に設置された被処理基板に対向して配置されるアノード電極と、アノード電極から離間して配置されたカソード電極と、アノード電極とカソード電極との間に形成されたプラズマ発生室と、カソード電極に固定され、プラズマ放電発生部の全体に渡って、カソード電極とアノード電極との間の距離が一定となるようにアノード電極を支持する絶縁体とを有することを特徴とするプラズマ成膜装置である。 In order to achieve the above object, a plasma film forming apparatus according to the present invention includes a processing chamber in which a substrate to be processed is installed, and a plasma discharge generation unit provided to face the substrate to be processed, and plasma discharge. The generating unit includes an anode electrode disposed opposite to the substrate to be processed disposed in the processing chamber, a cathode electrode disposed away from the anode electrode, and plasma formed between the anode electrode and the cathode electrode. A generator chamber and an insulator that is fixed to the cathode electrode and that supports the anode electrode so that the distance between the cathode electrode and the anode electrode is constant over the entire plasma discharge generator. This is a plasma film forming apparatus.
 同構成によれば、プラズマ放電発生部の全体に渡って、アノード電極-カソード電極間の距離を一定に保つことができるため、均一な放電を発生させて、被処理基板の表面に均一な膜厚を有する薄膜を形成することができる。 According to this configuration, since the distance between the anode electrode and the cathode electrode can be kept constant over the entire plasma discharge generating portion, a uniform discharge is generated and a uniform film is formed on the surface of the substrate to be processed. A thin film having a thickness can be formed.
 また、アノード電極を絶縁体に支持する構成としており、アノード電極が絶縁体に固定されていないため、プラズマ発生時の熱による変形に起因して、アノード電極が反った状態になることがなく、アノード電極に撓みが生じることはない。従って、アノード電極とカソード電極に熱が作用する場合であっても、プラズマ放電発生部において、カソード電極とアノード電極との間の距離を一定に保つことができるため、均一な放電を発生させて、被処理基板の表面に均一な膜厚を有する薄膜を形成することができる。 In addition, the anode electrode is configured to support the insulator, and the anode electrode is not fixed to the insulator, so that the anode electrode is not warped due to deformation due to heat during plasma generation, The anode electrode is not bent. Therefore, even when heat acts on the anode electrode and the cathode electrode, the distance between the cathode electrode and the anode electrode can be kept constant in the plasma discharge generating portion, so that a uniform discharge is generated. A thin film having a uniform film thickness can be formed on the surface of the substrate to be processed.
 また、本発明のプラズマ成膜装置においては、カソード電極には、カソード電極の厚み方向に貫通するように形成され、プラズマ発生室内に材料ガスを導入するガス導入口が設けられており、ガス導入口は、第1ガス導入口と、アノード電極と対向する端面側に第1ガス導入口と連通するよう形成され、第1ガス導入口の径よりも大きい径を有する第2ガス導入口とにより構成されていることを特徴とする。 In the plasma film forming apparatus of the present invention, the cathode electrode is formed so as to penetrate in the thickness direction of the cathode electrode, and is provided with a gas introduction port for introducing a material gas into the plasma generation chamber. The port is formed by a first gas introduction port and a second gas introduction port formed on the end surface facing the anode electrode so as to communicate with the first gas introduction port and having a diameter larger than the diameter of the first gas introduction port. It is configured.
 同構成によれば、カソード電極にホロカソード構造を形成して、カソード電極の内部に放電室を形成することができるため、カソード電極の内部おいてホロカソード放電を発生させることができる。従って、カソード電極の内部において、ホロカソード放電に伴うホロカソード効果が生じて、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。 According to this configuration, the holocathode structure can be formed in the cathode electrode, and the discharge chamber can be formed inside the cathode electrode, so that a holocathode discharge can be generated inside the cathode electrode. Accordingly, the holocathode effect associated with the holocathode discharge is generated inside the cathode electrode, and the plasma electron density can be increased, so that the film formation rate can be improved.
 また、本発明のプラズマ成膜装置においては、アノード電極には、アノード電極の厚み方向に貫通するように形成され、プラズマ発生室において発生したプラズマにより解離された材料ガスから生成したラジカルを処理室内に導入するラジカル導入口が設けられていることを特徴とする。 In the plasma film forming apparatus of the present invention, the anode electrode is formed so as to penetrate in the thickness direction of the anode electrode, and radicals generated from the material gas dissociated by the plasma generated in the plasma generation chamber It is characterized in that a radical introduction port for introduction into is provided.
 同構成によれば、アノード電極にホロカソード構造を形成して、アノード電極の内部に放電室を形成することができるため、アノード電極の内部おいてホロカソード放電を発生させることができる。従って、アノード電極の内部において、ホロカソード放電に伴うホロカソード効果が生じて、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。 According to this configuration, a holocathode structure can be formed in the anode electrode, and a discharge chamber can be formed in the anode electrode. Therefore, a holocathode discharge can be generated in the anode electrode. Accordingly, the holocathode effect associated with the holocathode discharge is generated inside the anode electrode, and the plasma electron density can be increased, so that the film formation rate can be improved.
 特に、カソード電極とアノード電極の双方において、ホロカソード構造を採用することにより、プラズマ電子密度をより一層増加させて、成膜速度を飛躍的に向上させることができる。また、大面積を有する被処理基板に対して、均一に成膜することが可能になる。 In particular, by adopting a holo-cathode structure in both the cathode electrode and the anode electrode, the plasma electron density can be further increased and the film formation rate can be dramatically improved. In addition, it is possible to form a film uniformly on a substrate to be processed having a large area.
 また、本発明のプラズマ成膜装置においては、絶縁体には切り欠き部が形成され、アノード電極と切り欠き部とが係合することにより、アノード電極が絶縁体に支持されることを特徴とする。 In the plasma film forming apparatus of the present invention, the insulator is formed with a notch, and the anode electrode is supported by the insulator by engaging the anode electrode and the notch. To do.
 同構成によれば、簡単な構成で、絶縁体によりアノード電極を支持することが可能になる。 According to this configuration, the anode electrode can be supported by the insulator with a simple configuration.
 また、本発明のプラズマ成膜装置においては、複数の絶縁体が等ピッチ間隔で配列されており、絶縁体のピッチ間隔をP、アノード電極と被処理基板との距離をFとした場合、2.5P≦Fの関係が成立することを特徴とする。 In the plasma film forming apparatus of the present invention, when a plurality of insulators are arranged at equal pitch intervals, P is the pitch interval of the insulators, and F is the distance between the anode electrode and the substrate to be processed. .5P ≦ F is established.
 同構成によれば、例えば、被処理基板に対向するプラズマ放電発生部の端面においてアノード電極と絶縁体による凹凸構造が存在する場合であっても、凹凸構造が転写されたような成膜分布の発生を防止して、被処理基板において成膜ムラの発生を防止することができる。 According to this configuration, for example, even when a concavo-convex structure is formed by an anode electrode and an insulator on the end surface of the plasma discharge generation portion facing the substrate to be processed, the film formation distribution is such that the concavo-convex structure is transferred. Generation | occurrence | production can be prevented and generation | occurrence | production of the film-forming nonuniformity can be prevented in a to-be-processed substrate.
 また、本発明のプラズマ成膜装置は、均一な放電を発生させて、被処理基板の表面に均一な膜厚を有する薄膜を形成することができるという優れた特性を備えている。従って、本発明のプラズマ成膜装置は、材料ガスが、シラン系ガスであるプラズマ成膜装置に好適に使用され、このような構成により、太陽電池等に使用されるシリコン薄膜を被成膜基板の表面に均一な膜厚で形成するプラズマ成膜装置を提供することができる。 The plasma film forming apparatus of the present invention has an excellent characteristic that a thin film having a uniform film thickness can be formed on the surface of a substrate to be processed by generating a uniform discharge. Therefore, the plasma film forming apparatus of the present invention is preferably used for a plasma film forming apparatus in which the material gas is a silane-based gas. With such a structure, a silicon thin film used for a solar cell or the like is formed on a film formation substrate. It is possible to provide a plasma film forming apparatus for forming a uniform film thickness on the surface of the film.
 本発明によれば、均一な放電を発生させて、被処理基板の表面に均一な膜厚を有する薄膜を形成することができる。 According to the present invention, a uniform discharge can be generated to form a thin film having a uniform thickness on the surface of the substrate to be processed.
本発明の実施形態に係るプラズマ成膜装置を模式的に表す斜視図である。1 is a perspective view schematically showing a plasma film forming apparatus according to an embodiment of the present invention. 本発明の実施形態に係るプラズマ成膜装置を模式的に表す断面図である。It is sectional drawing which represents typically the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の本実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部を示す部分断面図である。It is a fragmentary sectional view which shows the plasma discharge generation | occurrence | production part in the plasma film-forming apparatus which concerns on this embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部の組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of the plasma discharge generation part in the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部の組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of the plasma discharge generation part in the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部の組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of the plasma discharge generation part in the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部の組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of the plasma discharge generation part in the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部の組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of the plasma discharge generation part in the plasma film-forming apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ成膜装置の変形例を説明するための図である。It is a figure for demonstrating the modification of the plasma film-forming apparatus which concerns on embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。尚、本発明は以下の実施形態に限定されるものではない。図1は、本発明の実施形態に係るプラズマ成膜装置を模式的に表す斜視図であり、図2は、本発明の実施形態に係るプラズマ成膜装置を模式的に表す断面図である。また、図3は、本発明の本実施形態に係るプラズマ成膜装置におけるプラズマ放電発生部を示す部分断面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment. FIG. 1 is a perspective view schematically showing a plasma film forming apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing the plasma film forming apparatus according to an embodiment of the present invention. FIG. 3 is a partial cross-sectional view showing a plasma discharge generating portion in the plasma film forming apparatus according to this embodiment of the present invention.
 プラズマ成膜装置1は、被処理基板10が装入される処理室(真空容器)11と、処理室11内に設けられたプラズマ放電発生部13とを有する。典型的には、処理室11内に、被処理基板10を保持する基板ホルダ14が設けられており、被処理基板10は基板ホルダ14に設置される。 The plasma film forming apparatus 1 includes a processing chamber (vacuum container) 11 in which a substrate 10 to be processed is loaded, and a plasma discharge generation unit 13 provided in the processing chamber 11. Typically, a substrate holder 14 that holds the substrate to be processed 10 is provided in the processing chamber 11, and the substrate to be processed 10 is placed on the substrate holder 14.
 処理室11の外部には、プラズマ放電発生部13に電力を供給する、即ち、電気的エネルギーを印加する高周波電源15と、材料ガス(以下、単に「ガス」ともいう。)を処理室11内に供給するガス供給部16aと、処理室11のガスの圧力を調整するガス圧調整部16bと、処理室11内のガスを排出するガス排出部17とが設けられている。 Outside the processing chamber 11, a high-frequency power source 15 for supplying electric power to the plasma discharge generator 13, that is, applying electric energy, and a material gas (hereinafter also simply referred to as “gas”) are contained in the processing chamber 11. A gas supply unit 16 a for supplying gas to the gas chamber, a gas pressure adjusting unit 16 b for adjusting the gas pressure in the processing chamber 11, and a gas discharging unit 17 for discharging the gas in the processing chamber 11 are provided.
 ガス供給部16aはガスボンベ等により構成することができる。ガス圧調整部16bはガス圧調整バルブ等により構成することができる。ガス排出部17としては、例えば、メカニカル・ブースター・ポンプやロータリーポンプが用いられる。 The gas supply unit 16a can be constituted by a gas cylinder or the like. The gas pressure adjusting unit 16b can be configured by a gas pressure adjusting valve or the like. As the gas discharge part 17, a mechanical booster pump and a rotary pump are used, for example.
 高周波電源15は、配線18を介してプラズマ放電発生部13に接続されている。高周波電源15の周波数は、例えば、13.56MHzとすることができる。 The high-frequency power supply 15 is connected to the plasma discharge generator 13 via the wiring 18. The frequency of the high frequency power supply 15 can be set to 13.56 MHz, for example.
 プラズマ放電発生部13は、被処理基板10から離間し、被処理基板10に対向するように処理室11内に設けられている。プラズマ放電発生部13は、複数のカソード電極19と、複数のアノード電極20とを有する。 The plasma discharge generator 13 is provided in the processing chamber 11 so as to be separated from the substrate 10 and to face the substrate 10 to be processed. The plasma discharge generator 13 has a plurality of cathode electrodes 19 and a plurality of anode electrodes 20.
 図1~図3に示すように、カソード電極19はアノード電極から離間して配置されており、アノード電極20は、被処理基板10に対向して配置されている。また、アノード電極20とカソード電極19との間にはプラズマ発生室30が形成されている。なお、アノード電極20は、カソード電極19よりも基板ホルダ14側(即ち、被処理基板10側)に設けられている。 As shown in FIGS. 1 to 3, the cathode electrode 19 is disposed away from the anode electrode, and the anode electrode 20 is disposed to face the substrate 10 to be processed. A plasma generation chamber 30 is formed between the anode electrode 20 and the cathode electrode 19. The anode electrode 20 is provided closer to the substrate holder 14 than the cathode electrode 19 (that is, the substrate 10 to be processed).
 また、カソード電極19の厚みTとしては、例えば20mmに設定することができる。また、アノード電極20の厚みTとしては、例えば、2mmに設定することができる。 The thickness T 1 of the cathode electrode 19 can be set to, for example, 20 mm. The thickness T 2 of the anode electrode 20, for example, can be set to 2 mm.
 複数のカソード電極19は、プラズマ成膜装置1の長さ方向Xにおいて、所定の間隔で略平行となるように配置されており、また、複数のカソード電極19の各々は、プラズマ成膜装置1の幅方向Yにおいて延設されている。 The plurality of cathode electrodes 19 are arranged to be substantially parallel at a predetermined interval in the length direction X of the plasma film forming apparatus 1, and each of the plurality of cathode electrodes 19 is arranged in the plasma film forming apparatus 1. In the width direction Y.
 また、カソード電極19には、カソード電極19の厚み方向に貫通するように形成され、プラズマ発生室30内に材料ガスを導入するガス導入口12が形成されている。 Further, the cathode electrode 19 is formed with a gas introduction port 12 through which the material gas is introduced into the plasma generation chamber 30 so as to penetrate in the thickness direction of the cathode electrode 19.
 また、同様に、複数のアノード電極20は、プラズマ成膜装置1の長さ方向Xにおいて、所定の間隔で略平行となるように配置されており、また、複数のアノード電極20の各々は、プラズマ成膜装置1の幅方向Yにおいて延設されている。 Similarly, the plurality of anode electrodes 20 are arranged so as to be substantially parallel at a predetermined interval in the length direction X of the plasma film forming apparatus 1, and each of the plurality of anode electrodes 20 includes: It extends in the width direction Y of the plasma film forming apparatus 1.
 また、図1に示すように、プラズマ放電発生部13は、後述するホロカソード構造を有しないカソード電極19aを備えており、複数のカソード電極19はこのカソード電極19aと一体的に形成されている。そして、上述の高周波電源15を、配線18を介してカソード電極19aに接続することにより、高周波電源15を各カソード電極19に接続する構成となっている。なお、図1に示すように、この高周波電源15は、配線18を介してアノード電極20にも接続されている。 Further, as shown in FIG. 1, the plasma discharge generator 13 includes a cathode electrode 19a that does not have a holocathode structure, which will be described later, and the plurality of cathode electrodes 19 are formed integrally with the cathode electrode 19a. The high frequency power supply 15 is connected to the cathode electrode 19 a via the wiring 18, so that the high frequency power supply 15 is connected to each cathode electrode 19. As shown in FIG. 1, the high frequency power supply 15 is also connected to the anode electrode 20 via a wiring 18.
 また、プラズマ放電発生部13においては、カソード電極19間、及びアノード電極20間に、断面T字形状を有し、各アノード電極20を支持する複数の電極間絶縁体22が設けられている。複数の電極間絶縁体22は、プラズマ成膜装置1の長さ方向Xにおいて、所定の等ピッチ間隔で略平行となるように配列されており、また、複数の電極間絶縁体22の各々は、プラズマ成膜装置1の幅方向Yにおいて延設されている。 In the plasma discharge generator 13, a plurality of inter-electrode insulators 22 having a T-shaped cross section and supporting each anode electrode 20 are provided between the cathode electrodes 19 and between the anode electrodes 20. The plurality of inter-electrode insulators 22 are arranged so as to be substantially parallel at predetermined equal pitch intervals in the length direction X of the plasma film forming apparatus 1, and each of the plurality of inter-electrode insulators 22 is The plasma film forming apparatus 1 extends in the width direction Y.
 なお、アノード電極20を支持する電極間絶縁体22を設けた場合であっても、プラズマ発生室30で生成したラジカルを均一に拡散させて、被処理基板10の表面全体において均一に成膜を行うとの観点から、図2に示すように、プラズマ成膜装置1の長さ方向Xにおける電極間絶縁体22のピッチ間隔をP、プラズマ成膜装置1の高さ方向Zにおけるアノード電極20と被処理基板10との距離をFとした場合、2.5P≦Fの関係が成立することが好ましく、3P≦Fの関係が成立することがより好ましい。 Even when the interelectrode insulator 22 that supports the anode electrode 20 is provided, radicals generated in the plasma generation chamber 30 are uniformly diffused to form a film uniformly over the entire surface of the substrate 10 to be processed. From the viewpoint of performing, as shown in FIG. 2, the pitch interval of the interelectrode insulator 22 in the length direction X of the plasma film forming apparatus 1 is P, and the anode electrode 20 in the height direction Z of the plasma film forming apparatus 1 When the distance from the substrate to be processed 10 is F, the relationship 2.5P ≦ F is preferable, and the relationship 3P ≦ F is more preferable.
 2.5P>Fの場合、アノード電極20に対して被処理基板10が近くに配置されることになるため、プラズマ放電発生部13の上端面(被処理基板10側の端面)におけるアノード電極20と電極間絶縁体22による凹凸構造が転写されたような成膜分布が生じてしまい、被処理基板10において成膜ムラが生じる場合がある。 In the case of 2.5P> F, the substrate 10 to be processed is disposed close to the anode electrode 20, so the anode electrode 20 on the upper end surface (end surface on the substrate 10 side) of the plasma discharge generator 13. As a result, a film formation distribution in which the concavo-convex structure by the inter-electrode insulator 22 is transferred occurs, and film formation unevenness may occur in the substrate 10 to be processed.
 そして、カソード電極19とアノード電極20とは、この電極間絶縁体22により離間して配置されることにより、電気的に絶縁された状態にある。 The cathode electrode 19 and the anode electrode 20 are in an electrically insulated state by being spaced apart by the interelectrode insulator 22.
 また、プラズマ放電発生部13においては、電極間絶縁体22を支持する支持体23が設けられている。この支持体23は、カソード電極19及び電極間絶縁体22の各々の下端面(即ち、アノード電極側とは反対側の表面)覆うように設けられている。そして、この支持体23により、電極間絶縁体22がカソード電極19に対して固定される構成となっている。 Further, the plasma discharge generator 13 is provided with a support 23 that supports the interelectrode insulator 22. The support 23 is provided so as to cover the lower end surfaces of the cathode electrode 19 and the interelectrode insulator 22 (that is, the surface opposite to the anode electrode side). The support 23 is configured to fix the interelectrode insulator 22 to the cathode electrode 19.
 また、支持体23において、カソード電極19のガス導入口12に対応する部分には、ガス供給部16aから供給された材料ガスをカソード電極19のガス導入口12に供給するためのガス供給口37が形成されている。 Further, in the support 23, a gas supply port 37 for supplying the material gas supplied from the gas supply unit 16 a to the gas introduction port 12 of the cathode electrode 19 is provided at a portion corresponding to the gas introduction port 12 of the cathode electrode 19. Is formed.
 そして、本実施形態のプラズマ成膜装置1においては、カソード電極19と、カソード電極19に対向するアノード電極20と、カソード電極19及びアノード電極20を狭持する一対の電極間絶縁体22により囲まれる空間がプラズマ発生室(プラズマ発生空間)30となっている。 In the plasma film forming apparatus 1 of the present embodiment, the cathode electrode 19, the anode electrode 20 facing the cathode electrode 19, and the pair of interelectrode insulators 22 sandwiching the cathode electrode 19 and the anode electrode 20 are surrounded. The space to be formed is a plasma generation chamber (plasma generation space) 30.
 なお、プラズマ発生室30の幅Wが小さいと、プラズマの発生する空間が小さくなって、成膜速度が低下しまい、また、幅Wが大きいと、プラズマ成膜装置1が大型化してしまうため、幅Wは10~15mm程度に設定することが好ましい。 Note that if the width W of the plasma generation chamber 30 is small, the space in which the plasma is generated becomes small and the film forming speed decreases. If the width W is large, the plasma film forming apparatus 1 becomes large. The width W is preferably set to about 10 to 15 mm.
 また、本実施形態においては、カソード電極19においてホロカソード構造を採用している。より具体的には、カソード電極19に形成されたガス導入口12は、第1ガス導入口12aと、アノード電極20と対向する上端面側に第1ガス導入口12aと連通するよう形成され、第1ガス導入口12aの径Rよりも大きい径Rを有する第2ガス導入口12bにより構成されている。 In the present embodiment, the cathode electrode 19 employs a holo cathode structure. More specifically, the gas inlet 12 formed in the cathode electrode 19 is formed to communicate with the first gas inlet 12a on the upper surface side facing the first gas inlet 12a and the anode electrode 20, It is constituted by the second gas introducing port 12b having a larger diameter R 2 than the diameter R 1 of the first gas inlet 12a.
 このように、本実施形態においては、カソード電極19に第2ガス導入口12bを形成することにより、カソード電極19にホロカソード構造(窪み構造、またはホロ構造)を形成して、カソード電極19の内部に放電室を形成し、カソード電極19の内部(即ち、第2ガス導入口12bの内部)おいてホロカソード放電を発生させる構成としている。 As described above, in the present embodiment, by forming the second gas introduction port 12 b in the cathode electrode 19, a holocathode structure (a hollow structure or a holostructure) is formed in the cathode electrode 19. A discharge chamber is formed in the cathode electrode 19 to generate a holocathode discharge inside the cathode electrode 19 (that is, inside the second gas inlet 12b).
 このような構成により、高周波電源15からカソード電極19に高周波電力を印加すると、高周波電力の印加により、カソード電極19の内部において、ホロカソード放電に伴う負に帯電した電子の閉じ込め効果(ホロカソード効果、またはホロ効果)が生じて、電離・イオン化が促進され、プラズマ発生室30において、カソード電極19の第2ガス導入口12bの開口付近に極めて高密度のプラズマが生成される。即ち、このようなホロカソード構造を採用することにより、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。 With this configuration, when high-frequency power is applied from the high-frequency power supply 15 to the cathode electrode 19, a negatively charged electron confinement effect (holo-cathode effect, or (Holo effect) occurs, ionization and ionization are promoted, and extremely high density plasma is generated in the plasma generation chamber 30 in the vicinity of the opening of the second gas inlet 12b of the cathode electrode 19. That is, by adopting such a holocathode structure, the plasma electron density can be increased, so that the film formation rate can be improved.
 また、図1~図3に示すように、アノード電極20には、プラズマ発生室30において発生した高密度のプラズマにより分解・解離された材料ガスから生成したラジカルを処理室11内に導入するラジカル導入口32が形成されている。このラジカル導入口32は、図1に示すように、プラズマ成膜装置1の幅方向Yに延びるように形成されており、アノード電極20の厚み方向に貫通するように形成されている。 As shown in FIGS. 1 to 3, the anode electrode 20 has radicals that introduce radicals generated from the material gas decomposed and dissociated by the high-density plasma generated in the plasma generation chamber 30 into the processing chamber 11. An introduction port 32 is formed. As shown in FIG. 1, the radical inlet 32 is formed so as to extend in the width direction Y of the plasma film forming apparatus 1, and is formed so as to penetrate in the thickness direction of the anode electrode 20.
 そして、アノード電極20においても、上述のラジカル導入口32を形成することにより、アノード電極20にホロカソード構造(窪み構造、またはホロ構造)を形成して、アノード電極20の内部に放電室を形成し、アノード電極20の内部(即ち、ラジカル導入口32の内部)おいてホロカソード放電を発生させる構成としている。 Also in the anode electrode 20, the above-described radical introduction port 32 is formed to form a holocathode structure (a hollow structure or a holostructure) in the anode electrode 20, and a discharge chamber is formed inside the anode electrode 20. The holocathode discharge is generated inside the anode electrode 20 (that is, inside the radical inlet 32).
 従って、上述のカソード電極19の場合と同様に、高周波電源15からアノード電極20に高周波電力を印加すると、高周波電力の印加により、アノード電極20の内部において、ホロカソード効果が生じて、電離・イオン化が促進され、プラズマ発生室30において、アノード電極20のラジカル導入口32の開口付近に極めて高密度のプラズマが生成される。即ち、このようなホロカソード構造を採用することにより、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。 Accordingly, as in the case of the cathode electrode 19 described above, when high frequency power is applied from the high frequency power source 15 to the anode electrode 20, the application of the high frequency power causes a holocathode effect in the anode electrode 20 to cause ionization / ionization. In the plasma generation chamber 30, extremely high density plasma is generated in the vicinity of the opening of the radical inlet 32 of the anode electrode 20 in the plasma generation chamber 30. That is, by adopting such a holocathode structure, the plasma electron density can be increased, so that the film formation rate can be improved.
 特に、カソード電極19とアノード電極20の双方において、ホロカソード構造を採用することにより、プラズマ電子密度をより一層増加させて、成膜速度を飛躍的に向上させることができる。 In particular, by adopting a holo-cathode structure in both the cathode electrode 19 and the anode electrode 20, the plasma electron density can be further increased and the film formation rate can be dramatically improved.
 また、大面積(例えば、長さ1m以上、幅1m以上)を有する被処理基板10に対して、均一に成膜することが可能になる。 Further, it becomes possible to form a film uniformly on the substrate 10 to be processed having a large area (for example, a length of 1 m or more and a width of 1 m or more).
 即ち、プラズマ成膜装置1の処理室11内の圧力を10Torr以上の高圧に設定した場合であっても、大面積を有する処理基板に対して、均一かつ10Å/s以上の高速で成膜を行うことが可能になる。 That is, even when the pressure in the processing chamber 11 of the plasma film forming apparatus 1 is set to a high pressure of 10 Torr or higher, the film is uniformly formed on the processing substrate having a large area at a high speed of 10 Å / s or higher. It becomes possible to do.
 なお、例えば、長さが1mで幅が1mの大面積を有する被処理基板10をプラズマ処理する場合は、上述の電極間絶縁体22のピッチPを25mmに設定するとともに、プラズマ成膜装置1の長さ方向Xにおいて、カソード電極19及びアノード電極20の各々を40個以上配列し、プラズマ成膜装置1全体の幅を1m以上に設定する。 For example, when plasma processing is performed on the substrate to be processed 10 having a length of 1 m and a width of 1 m, the pitch P of the interelectrode insulator 22 is set to 25 mm and the plasma film forming apparatus 1 is used. In the longitudinal direction X, 40 or more of each of the cathode electrode 19 and the anode electrode 20 are arranged, and the entire width of the plasma film forming apparatus 1 is set to 1 m or more.
 また、この場合、例えば、プラズマ発生室30の幅Wを10mm、電極間絶縁体22のピッチ間隔Pを25mmに設定した場合、電極間絶縁体22の幅を15mmに設定することができる。また、アノード電極20を電極間絶縁体22により支持するために、アノード電極20の幅をプラズマ発生室30の幅Wよりも大きく設定(例えば、プラズマ発生室30の幅Wが15mmの場合、アノード電極20の幅を20mmに設定)する。 In this case, for example, when the width W of the plasma generation chamber 30 is set to 10 mm and the pitch interval P between the interelectrode insulators 22 is set to 25 mm, the width of the interelectrode insulators 22 can be set to 15 mm. Further, in order to support the anode electrode 20 by the interelectrode insulator 22, the width of the anode electrode 20 is set larger than the width W of the plasma generation chamber 30 (for example, when the width W of the plasma generation chamber 30 is 15 mm, the anode The width of the electrode 20 is set to 20 mm).
 また、図3、図4に示すように、カソード電極19の下端面側の側面には、切り欠き部21が形成されている。この切り欠き部21は、カソード電極19の長さ方向に渡って形成されている。また、図4に示すように、各カソード電極19間には、電極間絶縁体22を収納するための空間26が形成されている。 3 and 4, a cutout portion 21 is formed on the side surface of the cathode electrode 19 on the lower end surface side. The notch 21 is formed along the length direction of the cathode electrode 19. As shown in FIG. 4, a space 26 for accommodating the interelectrode insulator 22 is formed between the cathode electrodes 19.
 また、図3、図5に示すように、電極間絶縁体22の下端面側の側面には、カソード電極19に向けて突出する突出部24が形成されており、当該突出部24により、電極間絶縁体22が断面T字形状を有する構成となっている。この突出部24は、電極間絶縁体22の長さ方向に渡って形成されている。 Further, as shown in FIGS. 3 and 5, a protruding portion 24 protruding toward the cathode electrode 19 is formed on the side surface on the lower end surface side of the interelectrode insulator 22, and the protruding portion 24 allows the electrode to be The intermediate insulator 22 has a T-shaped cross section. The protrusion 24 is formed along the length direction of the interelectrode insulator 22.
 また、図3、図5に示すように、電極間絶縁体22の上端面側の側面には、切り欠き部25が形成されている。この切り欠き部25は、電極間絶縁体22の長さ方向に渡って形成されている。また、切り欠き部25の高さHは、上述のアノード電極20の厚みTと等しくなるように設定されている。例えば、アノード電極20の厚みTが2mmの場合、切り欠き部25の高さHも2mmに設定される。 As shown in FIGS. 3 and 5, a notch 25 is formed on the side surface of the interelectrode insulator 22 on the upper end surface side. The notch 25 is formed in the length direction of the interelectrode insulator 22. Further, the height H of the notch 25 is set to be equal to the thickness T 2 of the anode electrode 20 described above. For example, the thickness T 2 of the anode electrode 20 is the case of 2 mm, the height H of the notch 25 is set to 2 mm.
 なお、熱変形分を考慮して、切り欠き部25の高さHをアノード電極20の厚みTよりも大きく設定(例えば、Tが2mmの場合、Hを3mmに設定)しても良い。 In consideration of thermal deformation, the height H of the notch 25 may be set larger than the thickness T 2 of the anode electrode 20 (for example, when T 2 is 2 mm, H is set to 3 mm). .
 そして、プラズマ放電発生部13を組み立てる場合は、まず、カソード電極19間に形成された空間26に電極間絶縁体22を挿入して、空間26に電極間絶縁体22を収納する。そうすると、図6に示すように、電極間絶縁体22の突出部24がカソード電極19の切り欠き部21と係合して、電極間絶縁体22がカソード電極19に支持され、電極間絶縁体22がカソード電極19に取り付けられる。 When assembling the plasma discharge generator 13, first, the interelectrode insulator 22 is inserted into the space 26 formed between the cathode electrodes 19, and the interelectrode insulator 22 is accommodated in the space 26. Then, as shown in FIG. 6, the protrusion 24 of the interelectrode insulator 22 engages with the notch 21 of the cathode electrode 19, and the interelectrode insulator 22 is supported by the cathode electrode 19. 22 is attached to the cathode electrode 19.
 本実施形態においては、このようにして、カソード電極19間に電極間絶縁体22が配設される。そして、プラズマ成膜装置1の長さ方向(即ち、図中の矢印Xの方向)において、複数の電極間絶縁体22が相互に略平行に延びるように、所定のピッチ間隔Pで設けられる。また、空間26に収納された電極間絶縁体22により、カソード電極19が狭持される構成となっている。 In this embodiment, the interelectrode insulator 22 is disposed between the cathode electrodes 19 in this way. In the length direction of the plasma film forming apparatus 1 (that is, the direction of the arrow X in the drawing), the plurality of inter-electrode insulators 22 are provided at a predetermined pitch interval P so as to extend substantially parallel to each other. Further, the cathode electrode 19 is sandwiched by the interelectrode insulator 22 accommodated in the space 26.
 次いで、カソード電極19間に設けられた隣接する電極間絶縁体22の各々に形成された切り欠き部25にアノード電極20を挿入して、電極間絶縁体22間にアノード電極20を収納する。そうすると、図7に示すように、アノード電極20の側端部27が電極間絶縁体22の切り欠き部25と係合して、アノード電極20が隣接する電極間絶縁体22に支持(狭持)され、アノード電極20が電極間絶縁体22に取り付けられる。本実施形態においては、このようにして、電極間絶縁体22間にアノード電極20がカソード電極に対向して配設される。 Next, the anode electrode 20 is inserted into the notch 25 formed in each of the adjacent interelectrode insulators 22 provided between the cathode electrodes 19, and the anode electrode 20 is accommodated between the interelectrode insulators 22. Then, as shown in FIG. 7, the side end portion 27 of the anode electrode 20 is engaged with the notch portion 25 of the interelectrode insulator 22, and the anode electrode 20 is supported (sandwiched) by the adjacent interelectrode insulator 22. The anode electrode 20 is attached to the interelectrode insulator 22. In the present embodiment, the anode electrode 20 is thus disposed between the interelectrode insulators 22 so as to face the cathode electrode.
 そして、図1、図7に示すように、アノード電極20は、プラズマ成膜装置の幅方向(図1に示す矢印Yの方向)において、カソード電極19と略平行に対向するように設けられる。また、プラズマ成膜装置1の長さ方向Xにおいて、複数のアノード電極20が相互に並行に延びるように、等間隔に設けられる。 1 and 7, the anode electrode 20 is provided so as to face the cathode electrode 19 substantially in parallel in the width direction of the plasma film forming apparatus (the direction of the arrow Y shown in FIG. 1). Further, in the length direction X of the plasma film forming apparatus 1, the plurality of anode electrodes 20 are provided at equal intervals so as to extend in parallel with each other.
 また、アノード電極20を電極間絶縁体22に取り付けることにより、カソード電極19と、カソード電極19に対向するアノード電極20と、カソード電極19及びアノード電極20を狭持する一対の電極間絶縁体22により囲まれるプラズマ発生室30が形成される。 Further, by attaching the anode electrode 20 to the interelectrode insulator 22, the cathode electrode 19, the anode electrode 20 facing the cathode electrode 19, and a pair of interelectrode insulators 22 sandwiching the cathode electrode 19 and the anode electrode 20 are sandwiched. A plasma generation chamber 30 surrounded by is formed.
 また、アノード電極20は、その側端部27により電極間絶縁体22に支持され、電極間絶縁体22に取り付けられているが、アノード電極20の側端部27は、アノード電極20を支持する電極間絶縁体22に固定されていない。従って、プラズマ発生時の熱による変形に起因して、アノード電極20が反った状態になることはないため、アノード電極20に撓みが生じることはない。従って、アノード電極20とカソード電極19に熱が作用する場合であっても、プラズマ放電発生部13の全体に渡って、プラズマ成膜装置1の高さ方向Zにおけるカソード電極19とアノード電極20との間の距離D(図3を参照)を一定に保つことができる。 The anode electrode 20 is supported by the interelectrode insulator 22 by the side end portion 27 and attached to the interelectrode insulator 22, but the side end portion 27 of the anode electrode 20 supports the anode electrode 20. It is not fixed to the interelectrode insulator 22. Accordingly, since the anode electrode 20 is not warped due to deformation due to heat when plasma is generated, the anode electrode 20 is not bent. Therefore, even when heat acts on the anode electrode 20 and the cathode electrode 19, the cathode electrode 19 and the anode electrode 20 in the height direction Z of the plasma film forming apparatus 1 are spread over the entire plasma discharge generation unit 13. The distance D between (see FIG. 3) can be kept constant.
 即ち、本実施形態においては、電極間絶縁体22が、プラズマ放電発生部13の全体に渡って、カソード電極19とアノード電極20との間の距離Dが一定となるようにアノード電極20を支持する構成となっている。 That is, in the present embodiment, the interelectrode insulator 22 supports the anode electrode 20 so that the distance D between the cathode electrode 19 and the anode electrode 20 is constant over the entire plasma discharge generator 13. It is the composition to do.
 なお、本実施形態1に係るプラズマ成膜装置1では、カソード電極19とアノード電極20との間の距離Dは、パッシェンの法則に従って、処理室11内のガス圧を調節することによって、適宜、決定することができる。 In the plasma film forming apparatus 1 according to the first embodiment, the distance D between the cathode electrode 19 and the anode electrode 20 is appropriately determined by adjusting the gas pressure in the processing chamber 11 according to Paschen's law. Can be determined.
 パッシェンの法則によると、放電が開始される電圧Vは処理室11内のガス圧Pと放電経路長d(即ち、距離D)との積の関数となる(即ち、V=f(P×d))。また、電圧Vはガス圧Pと放電経路長dとの積に対して極小値を有する。従って、例えば、電圧Vが一定である状態で、処理室11内のガス圧Pを大きくすることにより、放電経路長dを短くすることができる。 According to Paschen's law, the voltage V at which discharge is started is a function of the product of the gas pressure P in the processing chamber 11 and the discharge path length d (ie, distance D) (ie, V = f (P × d )). The voltage V has a minimum value with respect to the product of the gas pressure P and the discharge path length d. Therefore, for example, by increasing the gas pressure P in the processing chamber 11 while the voltage V is constant, the discharge path length d can be shortened.
 そして、本実施形態においては、パッシェンの法則に従って算出された放電経路長dに基づいて、電極間絶縁体22に形成される切り欠き部25の位置を決定することにより、カソード電極19とアノード電極20との間の距離Dを調節することができる。 In this embodiment, the cathode electrode 19 and the anode electrode are determined by determining the position of the notch 25 formed in the interelectrode insulator 22 based on the discharge path length d calculated according to Paschen's law. The distance D between 20 can be adjusted.
 次いで、カソード電極19及び電極間絶縁体22の各々の下端面(即ち、アノード電極20側とは反対側の表面)覆うように、電極間絶縁体22とを支持する支持体23を設ける。そうすると、上述の切り欠き部21と係合する突出部24と支持体23によって、電極間絶縁体22がカソード電極19に対して固定され、図8に示すように、プラズマ放電発生部13が組み立てられる。 Next, a support 23 that supports the interelectrode insulator 22 is provided so as to cover the lower end surfaces of the cathode electrode 19 and the interelectrode insulator 22 (that is, the surface opposite to the anode electrode 20 side). Then, the interelectrode insulator 22 is fixed to the cathode electrode 19 by the protrusion 24 and the support 23 that engage with the notch 21 described above, and the plasma discharge generator 13 is assembled as shown in FIG. It is done.
 次いで、プラズマ処理方法について説明する。プラズマ処理方法には、基板配置工程と、ガス導入工程と、プラズマ処理工程と、薄膜形成工程が含まれる。 Next, the plasma processing method will be described. The plasma processing method includes a substrate placement process, a gas introduction process, a plasma processing process, and a thin film forming process.
 <基板配置工程>
 まず、処理室11内に被処理基板10を配置する。より具体的には、処理室11内に設けられた基板ホルダ14に被処理基板10を設置する。なお、被処理基板10は、上述の2.5P≦Fの関係が成立するように配置され、例えば、電極間絶縁体22のピッチ間隔Pが25mmの場合は、アノード電極20から上方に75mm離れた位置に被処理基板10を配置する。被処理基板10としては、例えば、厚みが1.1mmのガラス基板が使用される。
<Board placement process>
First, the substrate 10 to be processed is placed in the processing chamber 11. More specifically, the substrate 10 to be processed is placed on the substrate holder 14 provided in the processing chamber 11. In addition, the to-be-processed substrate 10 is arrange | positioned so that the above-mentioned relationship of 2.5P <= F is materialized, for example, when the pitch space | interval P of the insulator 22 between electrodes is 25 mm, it leaves | separates 75 mm upwards from the anode electrode 20 The substrate 10 to be processed is placed at the position. As the substrate 10 to be processed, for example, a glass substrate having a thickness of 1.1 mm is used.
 なお、同時に、上述のガス排出部17を使用して、処理室11内のガスを排出し、処理室11内を所定の真空状態に設定しておく。 At the same time, the gas discharge unit 17 is used to discharge the gas in the processing chamber 11 and set the processing chamber 11 in a predetermined vacuum state.
 <ガス導入工程>
 次に、被処理基板10が配置された処理室11内に材料ガスが導入される。より具体的には、まず、ガス供給部16aから材料ガスがガス滞留部8に供給され、材料ガスは、一旦、ガス滞留部8に滞留する。その後、材料ガスは、支持体23に形成されたガス供給口37を通過して、カソード電極19のガス導入口12に供給されるとともに、ガス導入口12を通って、プラズマ放電発生部13のプラズマ発生室30に導入される。
<Gas introduction process>
Next, a material gas is introduced into the processing chamber 11 in which the target substrate 10 is disposed. More specifically, first, the material gas is supplied from the gas supply unit 16 a to the gas retention unit 8, and the material gas is temporarily retained in the gas retention unit 8. Thereafter, the material gas passes through the gas supply port 37 formed in the support 23, is supplied to the gas introduction port 12 of the cathode electrode 19, and passes through the gas introduction port 12 to pass through the plasma discharge generation unit 13. It is introduced into the plasma generation chamber 30.
 なお、材料ガスとしては、例えば、SiH、H、N等が使用される。より具体的には、例えば、液晶表示装置を構成する薄膜トランジスタ(TFT)、半導体集積回路、太陽電池等に使用されるシリコン薄膜を被処理基板10上に形成する場合は、シラン(SiH)または水素希釈のシラン(SiH/H)等のシラン系ガスが使用される。この際、例えば、シランのガス流量を60sccm、水素のガス流量を120sccmに設定することができる。また、材料ガスは、例えば、70Pa等の圧力で導入される。 For example, SiH 4 , H 2 , N 2 or the like is used as the material gas. More specifically, for example, in the case where a silicon thin film used for a thin film transistor (TFT), a semiconductor integrated circuit, a solar cell or the like constituting a liquid crystal display device is formed on the substrate 10 to be processed, silane (SiH 4 ) or Silane-based gases such as hydrogen-diluted silane (SiH 4 / H 2 ) are used. At this time, for example, the gas flow rate of silane can be set to 60 sccm, and the gas flow rate of hydrogen can be set to 120 sccm. The material gas is introduced at a pressure of 70 Pa, for example.
 また、その他に、例えば、窒化シリコン膜を成膜するときの材料ガスには、シラン(SiH)、アンモニア(NH)、及び窒素(N)等が使用される。この際、例えば、シランのガス流量を20sccm、アンモニアのガス流量を40sccm、窒素のガス流量を100sccmに設定することができる。また、材料ガスは、例えば、200Pa等の圧力で導入される。なお、「sccm」とは、0℃において毎分流れる立方センチメートル単位のガス流量である。 In addition, for example, silane (SiH 4 ), ammonia (NH 3 ), nitrogen (N 2 ), or the like is used as a material gas for forming a silicon nitride film. At this time, for example, the gas flow rate of silane can be set to 20 sccm, the gas flow rate of ammonia can be set to 40 sccm, and the gas flow rate of nitrogen can be set to 100 sccm. The material gas is introduced at a pressure of 200 Pa, for example. Note that “sccm” is a gas flow rate in cubic centimeters flowing every minute at 0 ° C.
 <プラズマ処理工程>
 次に、プラズマ放電発生部13によって、プラズマ40を発生させて被処理基板10の表面にプラズマ処理を施す。より具体的には、まず、アノード電極20とカソード電極19との間に、例えば、パルス電圧を印加することによりパルス放電を生じさせてプラズマ放電発生部13のプラズマ発生室30にプラズマ40を発生させる。このプラズマ40は、カソード電極19とアノード電極20との間に印加される電圧(電位差)に応じて、発生する。電圧の印加を行う電源としては、例えば、周波数が300MHzの高周波電源15が用いられる。
<Plasma treatment process>
Next, plasma 40 is generated by the plasma discharge generator 13 to perform plasma processing on the surface of the substrate 10 to be processed. More specifically, first, for example, a pulse discharge is generated between the anode electrode 20 and the cathode electrode 19 to generate a plasma 40 in the plasma generation chamber 30 of the plasma discharge generation unit 13. Let The plasma 40 is generated according to a voltage (potential difference) applied between the cathode electrode 19 and the anode electrode 20. As a power source for applying a voltage, for example, a high frequency power source 15 having a frequency of 300 MHz is used.
 また、本実施形態においては、上述のごとく、ホロカソード構造を採用しているため、プラズマ電子密度を増加させることができる。 Further, in the present embodiment, as described above, the holocathode structure is adopted, so that the plasma electron density can be increased.
 そして、処理室11に導入されてプラズマ放電発生部13に流れてきた材料ガスをプラズマ40により解離させる。そうすると、プラズマ放電発生部13に供給された材料ガスが分解・解離されてラジカルが生成される。図2中の矢印41はラジカルの流れを示している。生成したラジカルは、アノード電極20に形成されたラジカル導入口32を通って、処理室11に導入される。 Then, the material gas introduced into the processing chamber 11 and flowing into the plasma discharge generator 13 is dissociated by the plasma 40. As a result, the material gas supplied to the plasma discharge generator 13 is decomposed and dissociated to generate radicals. An arrow 41 in FIG. 2 indicates the flow of radicals. The generated radical is introduced into the processing chamber 11 through the radical inlet 32 formed in the anode electrode 20.
 <薄膜形成工程>
 次いで、生成したラジカルは、図2に示すように、被処理基板10まで拡散し、基板ホルダ14に保持された被処理基板10の表面に付着し堆積する。即ち、被処理基板10の表面に膜が成長して薄膜が形成される。
<Thin film formation process>
Next, as shown in FIG. 2, the generated radicals diffuse to the substrate 10 to be processed and adhere to and deposit on the surface of the substrate 10 held by the substrate holder 14. That is, a film grows on the surface of the substrate to be processed 10 to form a thin film.
 生成したラジカルは、次々に薄膜表面に到達して薄膜の厚さが増していく。そして、設定された膜厚になるまでパルス電圧を印加し続けた後、カソード電極19及びアノード電極20の間への電圧の印加、すなわち、プラズマ放電発生部13への電力の供給を停止する。このようにして、被処理基板10の表面に対してプラズマ処理が施される。その後、基板ホルダ14から被処理基板10を取り外し、処理室11外に取り出すと、薄膜が形成された薄膜形成基板が得られる。 The generated radicals reach the surface of the thin film one after another and the thickness of the thin film increases. Then, after applying the pulse voltage until the set film thickness is reached, the voltage application between the cathode electrode 19 and the anode electrode 20, that is, the supply of power to the plasma discharge generator 13 is stopped. In this way, the plasma processing is performed on the surface of the substrate 10 to be processed. Thereafter, when the substrate 10 to be processed is removed from the substrate holder 14 and taken out of the processing chamber 11, a thin film-formed substrate on which a thin film is formed is obtained.
 以上に説明した本実施形態によれば、以下の効果を得ることができる。 According to the present embodiment described above, the following effects can be obtained.
 (1)本実施形態においては、カソード電極19に固定され、プラズマ放電発生部13の全体に渡って、カソード電極19とアノード電極20との間の距離Dが一定となるようにアノード電極20を支持する電極間絶縁体22を設ける構成としている。従って、アノード電極20とカソード電極19間の距離Dを一定に保つことができるため、均一な放電を発生させて、被処理基板10の表面に均一な膜厚を有する薄膜を形成することができる。 (1) In this embodiment, the anode electrode 20 is fixed to the cathode electrode 19 so that the distance D between the cathode electrode 19 and the anode electrode 20 is constant over the entire plasma discharge generator 13. The interelectrode insulator 22 to be supported is provided. Accordingly, since the distance D between the anode electrode 20 and the cathode electrode 19 can be kept constant, a uniform discharge can be generated and a thin film having a uniform film thickness can be formed on the surface of the substrate 10 to be processed. .
 (2)また、アノード電極20を電極間絶縁体22に支持する構成としており、アノード電極20が電極間絶縁体22に固定されていないため、プラズマ発生時の熱による変形に起因して、アノード電極20が反った状態になることがなく、アノード電極20に撓みが生じることはない。従って、アノード電極20とカソード電極19に熱が作用する場合であっても、プラズマ放電発生部13において、カソード電極19とアノード電極20との間の距離Dを一定に保つことができるため、均一な放電を発生させて、被処理基板10の表面に均一な膜厚を有する薄膜を形成することができる。 (2) Since the anode electrode 20 is supported by the interelectrode insulator 22, and the anode electrode 20 is not fixed to the interelectrode insulator 22, the anode is caused by deformation due to heat at the time of plasma generation. The electrode 20 is not warped, and the anode electrode 20 is not bent. Accordingly, even when heat is applied to the anode electrode 20 and the cathode electrode 19, the distance D between the cathode electrode 19 and the anode electrode 20 can be kept constant in the plasma discharge generator 13, so that it is uniform. It is possible to form a thin film having a uniform film thickness on the surface of the substrate 10 to be processed by generating an appropriate discharge.
 (3)本実施形態においては、カソード電極19のガス導入口12を、第1ガス導入口12aと、アノード電極20と対向する端面側に第1ガス導入口12aと連通するよう形成され、第1ガス導入口12aの径Rよりも大きい径Rを有する第2ガス導入口12bとにより構成している。従って、カソード電極19にホロカソード構造を形成して、カソード電極19の内部に放電室を形成することができるため、カソード電極19の内部おいてホロカソード放電を発生させることができる。その結果、カソード電極19の内部において、ホロカソード放電に伴うホロカソード効果が生じて、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。 (3) In the present embodiment, the gas inlet 12 of the cathode electrode 19 is formed to communicate with the first gas inlet 12a and the first gas inlet 12a on the end face side facing the anode electrode 20, It is constituted by a second gas introducing port 12b having one large diameter R 2 than the diameter R 1 of the gas inlet 12a. Therefore, since a holocathode structure can be formed in the cathode electrode 19 and a discharge chamber can be formed in the cathode electrode 19, a holocathode discharge can be generated in the cathode electrode 19. As a result, a holocathode effect associated with the holocathode discharge occurs inside the cathode electrode 19 and the plasma electron density can be increased, so that the film formation rate can be improved.
 (4)本実施形態においては、アノード電極20に、プラズマ発生室30において発生したプラズマにより解離された材料ガスから生成したラジカルを処理室11内に導入するラジカル導入口32を設ける構成としている。従って、アノード電極20にホロカソード構造を形成して、アノード電極20の内部に放電室を形成することができるため、アノード電極20の内部おいてホロカソード放電を発生させることができる。その結果、アノード電極20の内部において、ホロカソード放電に伴うホロカソード効果が生じて、プラズマ電子密度を増加させることができるため、成膜速度を向上させることができる。特に、カソード電極19とアノード電極20の双方において、ホロカソード構造(または、ホロ構造)を採用することにより、プラズマ電子密度をより一層増加させて、成膜速度を飛躍的に向上させることができる。また、大面積を有する被処理基板10に対して、均一に成膜することが可能になる。 (4) In the present embodiment, the anode electrode 20 is provided with a radical introduction port 32 through which radicals generated from the material gas dissociated by the plasma generated in the plasma generation chamber 30 are introduced into the processing chamber 11. Accordingly, since a holocathode structure can be formed in the anode electrode 20 and a discharge chamber can be formed in the anode electrode 20, a holocathode discharge can be generated in the anode electrode 20. As a result, since the holocathode effect accompanying the holocathode discharge is generated inside the anode electrode 20 and the plasma electron density can be increased, the film formation rate can be improved. In particular, by adopting a holo-cathode structure (or a holo structure) in both the cathode electrode 19 and the anode electrode 20, the plasma electron density can be further increased and the film formation rate can be dramatically improved. Moreover, it becomes possible to form a film uniformly on the substrate 10 to be processed having a large area.
 (5)本実施形態においては、電極間絶縁体22に切り欠き部25を形成し、アノード電極20と切り欠き部25とが係合することにより、アノード電極20を電極間絶縁体22に支持する構成としている。従って、簡単な構成で、電極間絶縁体22によりアノード電極20を支持することが可能になる。 (5) In the present embodiment, the notch portion 25 is formed in the interelectrode insulator 22, and the anode electrode 20 is supported by the interelectrode insulator 22 by the engagement of the anode electrode 20 and the notch portion 25. It is configured to do. Accordingly, the anode electrode 20 can be supported by the interelectrode insulator 22 with a simple configuration.
 (6)本実施形態においては、複数の電極間絶縁体22を等ピッチ間隔で配列し、電極間絶縁体22のピッチ間隔をP、アノード電極20と被処理基板10との距離をFとした場合、2.5P≦Fの関係が成立する構成としている。従って、例えば、被処理基板10に対向するプラズマ放電発生部13の端面においてアノード電極20と電極間絶縁体22による凹凸構造が存在する場合であっても、凹凸構造が転写されたような成膜分布の発生を防止して、被処理基板10における成膜ムラの発生を防止することができる。 (6) In this embodiment, a plurality of inter-electrode insulators 22 are arranged at equal pitch intervals, the pitch interval of the inter-electrode insulators 22 is P, and the distance between the anode electrode 20 and the substrate to be processed 10 is F. In this case, the relationship of 2.5P ≦ F is established. Therefore, for example, even when there is a concavo-convex structure formed by the anode electrode 20 and the interelectrode insulator 22 on the end face of the plasma discharge generation unit 13 facing the substrate 10 to be processed, film formation in which the concavo-convex structure is transferred. The occurrence of distribution can be prevented, and the occurrence of film formation unevenness on the substrate to be processed 10 can be prevented.
 なお、上記実施形態は以下のように変更しても良い。 Note that the above embodiment may be modified as follows.
 上記実施形態においては、カソード電極19の切り欠き部21と係合する突出部24を電極間絶縁体22に形成し、電極間絶縁体22を支持する支持体23を設けることにより、電極間絶縁体22をカソード電極19に対して固定する構成としたが、図9に示すようにカソード電極19の切り欠き部21と係合する突出部24のみで電極間絶縁体22をカソード電極19に対して固定する構成としても良い。 In the embodiment described above, the protrusion 24 that engages the notch 21 of the cathode electrode 19 is formed in the interelectrode insulator 22, and the support 23 that supports the interelectrode insulator 22 is provided, thereby interelectrode insulation. Although the body 22 is fixed to the cathode electrode 19 as shown in FIG. 9, the interelectrode insulator 22 is fixed to the cathode electrode 19 only by the protrusion 24 that engages with the notch 21 of the cathode electrode 19 as shown in FIG. 9. It is good also as a structure fixed.
 この場合、図9に示すように、カソード電極19の上下端面側以外の側面に切り欠き部21を形成し、電極間絶縁体22の端面側以外の側面に突出部24を形成する。このような構成により、上述の支持体23が不要になるため、安価つ簡単な構成で、電極間絶縁体22をカソード電極19に対して固定することが可能になる。 In this case, as shown in FIG. 9, the notch portion 21 is formed on the side surface other than the upper and lower end surfaces of the cathode electrode 19, and the protruding portion 24 is formed on the side surface other than the end surface side of the interelectrode insulator 22. Such a configuration eliminates the need for the support 23 described above, so that the interelectrode insulator 22 can be fixed to the cathode electrode 19 with an inexpensive and simple configuration.
 上記実施形態においては、プラズマ成膜装置1について、シリコン薄膜を成膜する場合を例に挙げて説明したが、本発明はこれに限られず、シリコンゲルマニウム(SiGe)膜やセレン化亜鉛(ZnSe)膜等の他の半導体膜を成膜する成膜装置としても適用することが可能である。 In the above embodiment, the plasma film forming apparatus 1 has been described by taking the case of forming a silicon thin film as an example. However, the present invention is not limited to this, and a silicon germanium (SiGe) film or zinc selenide (ZnSe) is used. The present invention can also be applied as a film forming apparatus for forming another semiconductor film such as a film.
 本発明の活用例としては、表示装置に使用される薄膜トランジスタ(TFT)基板や太陽電池等を製造するプラズマ成膜装置が挙げられる。 As an application example of the present invention, there is a plasma film forming apparatus for manufacturing a thin film transistor (TFT) substrate, a solar cell or the like used in a display device.
 1  プラズマ成膜装置
 10  被処理基板
 11  処理室
 13  プラズマ放電発生部
 12  ガス導入口
 12a  第1ガス導入口
 12b  第2ガス導入口
 19  カソード電極
 20  アノード電極
 21  切り欠き部
 22  電極間絶縁体
 24  突出部
 25  切り欠き部
 26  空間
 30  プラズマ発生室
 32  ラジカル導入口
 D  カソード電極とアノード電極の距離
 F  アノード電極と被処理基板との距離
 P  電極間絶縁体のピッチ間隔
 R  第1ガス導入口の径
 R  第2ガス導入口の径
DESCRIPTION OF SYMBOLS 1 Plasma film-forming apparatus 10 To-be-processed substrate 11 Processing chamber 13 Plasma discharge generation part 12 Gas inlet 12a 1st gas inlet 12b 2nd gas inlet 19 Cathode electrode 20 Anode electrode 21 Notch 22 Interelectrode insulator 24 Protrusion Part 25 Notch part 26 Space 30 Plasma generating chamber 32 Radical inlet D Distance between cathode electrode and anode electrode F Distance between anode electrode and substrate to be processed P Pitch interval between insulators between electrodes R 1 Diameter of first gas inlet Diameter of R2 second gas inlet

Claims (6)

  1.  被処理基板が内部に設置される処理室と、
     前記被処理基板に対向して設けられたプラズマ放電発生部と
     を備え、
     プラズマ放電発生部は、前記処理室に設置された前記被処理基板に対向して配置されるアノード電極と、前記アノード電極から離間して配置されたカソード電極と、前記アノード電極と前記カソード電極との間に形成されたプラズマ発生室と、前記カソード電極に固定され、前記プラズマ放電発生部の全体に渡って、前記カソード電極と前記アノード電極との間の距離が一定となるように前記アノード電極を支持する絶縁体とを有することを特徴とするプラズマ成膜装置。
    A processing chamber in which a substrate to be processed is installed;
    A plasma discharge generator provided opposite to the substrate to be processed,
    The plasma discharge generation unit includes an anode electrode disposed opposite to the substrate to be processed disposed in the processing chamber, a cathode electrode disposed away from the anode electrode, the anode electrode and the cathode electrode, A plasma generation chamber formed between the cathode electrode and the anode electrode so that a distance between the cathode electrode and the anode electrode is constant over the entire plasma discharge generation portion. And an insulator that supports the plasma deposition apparatus.
  2.  前記カソード電極には、該カソード電極の厚み方向に貫通するように形成され、前記プラズマ発生室内に材料ガスを導入するガス導入口が設けられており、前記ガス導入口は、第1ガス導入口と、前記アノード電極と対向する端面側に前記第1ガス導入口と連通するよう形成され、前記第1ガス導入口の径よりも大きい径を有する第2ガス導入口とにより構成されていることを特徴とする請求項1に記載のプラズマ成膜装置。 The cathode electrode is provided with a gas inlet that is formed so as to penetrate in the thickness direction of the cathode electrode and introduces a material gas into the plasma generation chamber. The gas inlet is a first gas inlet. And a second gas inlet that is formed on the end face facing the anode electrode so as to communicate with the first gas inlet and has a diameter larger than the diameter of the first gas inlet. The plasma film-forming apparatus according to claim 1.
  3.  前記アノード電極には、該アノード電極の厚み方向に貫通するように形成され、前記プラズマ発生室において発生したプラズマにより解離された前記材料ガスから生成したラジカルを前記処理室内に導入するラジカル導入口が設けられていることを特徴とする請求項2に記載のプラズマ成膜装置。 The anode electrode has a radical inlet that is formed so as to penetrate in the thickness direction of the anode electrode and introduces radicals generated from the material gas dissociated by the plasma generated in the plasma generation chamber into the processing chamber. The plasma film forming apparatus according to claim 2, wherein the plasma film forming apparatus is provided.
  4.  前記絶縁体には切り欠き部が形成され、前記アノード電極と前記切り欠き部とが係合することにより、前記アノード電極が前記絶縁体に支持されることを特徴とする請求項1~請求項3のいずれか1項に記載のプラズマ成膜装置。 The insulator is supported by the insulator by forming a notch in the insulator and engaging the anode electrode with the notch. 4. The plasma film forming apparatus according to any one of 3 above.
  5.  複数の前記絶縁体が等ピッチ間隔で配列されており、前記絶縁体のピッチ間隔をP、前記アノード電極と前記被処理基板との距離をFとした場合、2.5P≦Fの関係が成立することを特徴とする請求項1~請求項4のいずれか1項に記載のプラズマ成膜装置。 When a plurality of the insulators are arranged at equal pitch intervals, the pitch interval of the insulators is P, and the distance between the anode electrode and the substrate to be processed is F, a relationship of 2.5P ≦ F is established. The plasma film forming apparatus according to any one of claims 1 to 4, wherein:
  6.  前記材料ガスが、シラン系ガスであることを特徴とする請求項1~請求項5のいずれか1項に記載のプラズマ成膜装置。 The plasma film forming apparatus according to any one of claims 1 to 5, wherein the material gas is a silane-based gas.
PCT/JP2010/006894 2010-01-28 2010-11-25 Plasma film-forming apparatus WO2011092778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017138 2010-01-28
JP2010017138 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092778A1 true WO2011092778A1 (en) 2011-08-04

Family

ID=44318792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006894 WO2011092778A1 (en) 2010-01-28 2010-11-25 Plasma film-forming apparatus

Country Status (1)

Country Link
WO (1) WO2011092778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247257A (en) * 2021-04-25 2022-10-28 广东聚华印刷显示技术有限公司 Film forming apparatus and method for producing film layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158839A (en) * 2002-10-16 2004-06-03 Sharp Corp Electronic device, its manufacturing method, and plasma process unit
JP2006024634A (en) * 2004-07-06 2006-01-26 Sharp Corp Plasma processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158839A (en) * 2002-10-16 2004-06-03 Sharp Corp Electronic device, its manufacturing method, and plasma process unit
JP2006024634A (en) * 2004-07-06 2006-01-26 Sharp Corp Plasma processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247257A (en) * 2021-04-25 2022-10-28 广东聚华印刷显示技术有限公司 Film forming apparatus and method for producing film layer
CN115247257B (en) * 2021-04-25 2024-01-23 广东聚华印刷显示技术有限公司 Film forming apparatus and method for producing film

Similar Documents

Publication Publication Date Title
US20100024729A1 (en) Methods and apparatuses for uniform plasma generation and uniform thin film deposition
EP2274764A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
KR20010096568A (en) Device for Fabricating Film for Plasma-Forming Thin Film
US20110220026A1 (en) Plasma processing device
KR20080105617A (en) Chemical vapor deposition apparatus and plasma enhanced chemical vapor deposition apparatus
US10961626B2 (en) Plasma processing apparatus having injection ports at both sides of the ground electrode for batch processing of substrates
JP2006152416A (en) Plasma cvd apparatus
TWI414628B (en) Plasma treatment apparatus and plasma cvd method for forming film
JP5377749B2 (en) Plasma generator
JP5659225B2 (en) Plasma deposition source and method for depositing thin films
JP5089669B2 (en) Thin film forming equipment
KR101854738B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
US8931433B2 (en) Plasma processing apparatus
WO2011092778A1 (en) Plasma film-forming apparatus
JP2008205279A (en) Method and device for depositing silicon-based thin film
JP4194466B2 (en) Plasma process apparatus and electronic device manufacturing method using the same
JP2008171888A (en) Plasma cvd apparatus and thin-film formation method
KR101823678B1 (en) Apparatus and method for deposition
JP2012507133A (en) Deposition apparatus for improving uniformity of material processed on a substrate and method of using the same
KR102010762B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
KR101952126B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
JP4554712B2 (en) Plasma processing equipment
JP2012190957A (en) Thin film deposition apparatus
JP2008251838A (en) Plasma processing apparatus
JP4981387B2 (en) Thin film manufacturing apparatus and solar cell manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP