WO2011092745A1 - Constant velocity reciprocating linear movement device and optical fiber polishing apparatus - Google Patents

Constant velocity reciprocating linear movement device and optical fiber polishing apparatus Download PDF

Info

Publication number
WO2011092745A1
WO2011092745A1 PCT/JP2010/000545 JP2010000545W WO2011092745A1 WO 2011092745 A1 WO2011092745 A1 WO 2011092745A1 JP 2010000545 W JP2010000545 W JP 2010000545W WO 2011092745 A1 WO2011092745 A1 WO 2011092745A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
polishing
guide
reciprocating linear
rotating member
Prior art date
Application number
PCT/JP2010/000545
Other languages
French (fr)
Japanese (ja)
Inventor
杉田尚樹
安東和俊
木村敏典
Original Assignee
エヌ・ティ・ティ・アドバンステクノロジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・ティ・ティ・アドバンステクノロジ株式会社 filed Critical エヌ・ティ・ティ・アドバンステクノロジ株式会社
Priority to PCT/JP2010/000545 priority Critical patent/WO2011092745A1/en
Publication of WO2011092745A1 publication Critical patent/WO2011092745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B19/226Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground of the ends of optical fibres

Definitions

  • the present invention relates to a device that converts a rotational motion into a constant velocity reciprocating linear motion, and is particularly suitable for being incorporated in a device for polishing a connection end face of an optical fiber.
  • An optical connector used to connect a plurality of optical fibers to each other or connect optical fibers to various optical devices usually has an optical fiber plug through which the optical fiber is inserted.
  • a conventional optical fiber plug is obtained by processing a low expansion coefficient material having excellent wear resistance such as zirconia ceramics into a cylindrical shape.
  • the front end surface of the optical fiber is exposed at the center of the connection end surface of the optical fiber plug.
  • the connection end surface is formed as a convex spherical surface having a radius of curvature of about 20 mm.
  • Patent Document 1 A polishing apparatus for processing a connection end face of such an optical fiber plug into a convex spherical surface having a predetermined curvature has been proposed in Patent Document 1.
  • This polishing apparatus has a polishing board in which an abrasive film is stuck on a flat surface via an elastic sheet, and a slider to which an optical fiber plug is attached, and these are moved relative to each other to polish the connection end face of the optical fiber plug.
  • the polishing disk revolves around an axis perpendicular to the surface thereof, the slider reciprocates linearly along the surface of the polishing disk, and the connection end face of the optical fiber plug is pressed against the polishing film.
  • An object of the present invention is to provide a constant velocity reciprocating device that keeps the reciprocating velocity of a slider constant.
  • Another object of the present invention is to provide a polishing apparatus in which the entire surface of the polishing film can be used more effectively than a conventional polishing apparatus by incorporating such a constant velocity reciprocating device.
  • slider driving means for reciprocating a slider which is attached to a guide member having a guide surface extending in the first direction and which is movable along the guide surface of the guide member.
  • the slider driving means includes a driving motor, a rotating member driven and rotated about an axis orthogonal to the first direction by the driving motor, and a position parallel to the rotating axis of the rotating member and away from the rotating member. And an eccentric pin projecting from the rotating member, and the slider extending so as to extend in the first direction and a second direction orthogonal to the rotation axis of the rotating member.
  • a reciprocating linear motion device having a guide groove that is movably fitted so that the linear moving speed of the slider along the first direction is constant except for its reciprocating end. It is characterized in that comprises a rotational speed control means for controlling the rotational speed of the rotary member.
  • the rotary member is rotated together with the eccentric pin protruding from the rotary member by the operation of the drive motor, and the slider having the guide groove into which the eccentric pin is fitted moves in the first direction along the guide surface.
  • the rotational speed control means controls the rotational speed of the rotating member, that is, the rotational speed of the drive motor so that the linear moving speed of the slider along the first direction is constant except for the reciprocating end.
  • any one of the reciprocating ends of the slider is set as a reference position, the time from the reference position is t, the moving speed of the slider is c, and the eccentric pin is
  • the rotational speed of the rotating member may be controlled so as to satisfy the above.
  • the drive motor is a pulse motor
  • the rotational speed control means includes a position detection means for detecting the reference position of the slider along the first direction, and a point from when the position detection means detects the reference position of the slider.
  • Timer for counting time setting means for setting the target rotation speed of the rotating member according to the count value by this timer, and driving for driving the pulse motor in accordance with the target rotation speed set by this setting means
  • a drive pulse setting unit that sets a pulse and a motor driver that outputs the drive pulse set by the drive pulse setting unit to a drive motor may be included.
  • a base a polishing disc support member provided on the base, a polishing disc mounted so as to be movable with respect to the polishing disc support member, and the polishing disc supporting the polishing disc.
  • a polishing disk turning means for turning the member, a guide member provided on the base, a slider attached to the guide member and capable of reciprocating linear movement along the guide member, and the slider as the guide member
  • a plurality of fiber holding portions for removably holding a connection end portion of an optical fiber that is coupled to the slider and pressed against the polishing surface of the polishing disk.
  • a plurality of fiber holders arranged in a direction intersecting with the reciprocating linear movement direction of the slider, and a slider.
  • driving means is a first constant-velocity reciprocal linear motion apparatus according to the present invention.
  • the polishing disk revolves with respect to the polishing disk support member by the polishing disk rotation means. Further, the fiber holder reciprocates linearly along the guide member by the slider driving means. As a result, relative movement occurs between the connection end of the optical fiber held by the fiber holder of the fiber holder and the polishing surface of the polishing disk, and the connection end of the optical fiber is polished.
  • the reciprocating linear motion of the slider is constant except for its reciprocating end, and local abrasion of the polishing surface of the polishing disk against which the connecting end of the optical fiber is pressed in the vicinity of the reciprocating end of the slider is suppressed. .
  • the polishing surface of the polishing disk may be formed by the surface of a substantially square polishing film that is detachably attached to the polishing disk.
  • the rotational speed control means for controlling the rotational speed of the rotating member is provided so that the linear moving speed of the slider along the first direction is constant except for the reciprocating end. Therefore, the linear moving speed of the slider along the first direction can be made constant except for its reciprocating end.
  • the rotation speed control means has a position detection means, a timer, a setting means for setting a target rotation speed of the rotating member, a drive pulse setting unit for setting a drive pulse for driving the pulse motor, and a motor driver
  • the drive control of the pulse motor can be easily performed without incorporating a complicated control system.
  • the slider driving means is the constant velocity reciprocating linear motion apparatus according to the first embodiment of the present invention, the progress of local wear on the polishing surface of the polishing disk can be suppressed.
  • the polishing film can be worn almost uniformly over the entire area. , Can extend its life.
  • FIG. 1 is a three-dimensional projection view showing the appearance of an embodiment of an optical fiber polishing apparatus according to the present invention incorporating a constant velocity motion apparatus according to the present invention.
  • FIG. 2 is a three-dimensional projection view showing a state in which a part of the optical fiber polishing apparatus shown in FIG. 1 is removed and disassembled.
  • FIG. 3 is a plan view showing a state where a part of the optical fiber polishing apparatus shown in FIG. 1 is removed.
  • FIG. 4 is a three-dimensional projection view showing a state in which a part of the optical fiber polishing apparatus shown in FIG. 2 is further removed and disassembled.
  • 5 is a cross-sectional view taken along line VV in FIG. 3 in the embodiment shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 3 in the embodiment shown in FIG. 7 is a cross-sectional view taken along the line VI-VI in FIG. 3 in the embodiment shown in FIG.
  • FIG. 8 is a block diagram of the rotation speed control means in the embodiment shown in FIG.
  • FIG. 9 is a graph showing the movement characteristics of the slider in the embodiment shown in FIG.
  • FIG. 10 is a three-dimensional projection view showing the appearance of the fiber holder portion in the embodiment shown in FIG.
  • FIG. 11 is a front view in which a part of the fiber holder shown in FIG. 10 is broken.
  • FIG. 12 is a plan view in which a part of the fiber holder shown in FIG. 10 is broken.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a conceptual diagram schematically showing the movement trajectory of the center of the optical fiber connection end face with respect to the polishing disk in the embodiment shown in FIG.
  • FIG. 16 is a conceptual diagram schematically showing the movement locus of the center of the optical fiber connection end face when the polishing surface is further shifted by 90 degrees with respect to the movement locus shown in FIG.
  • FIG. 1 shows the appearance of the optical fiber polishing apparatus in this embodiment
  • FIG. 2 shows the appearance of the state in which the fiber holder and the cover are removed and the polishing board and the slider are disassembled
  • FIG. 3 shows an appearance of the base and a state in which the base, the guide member directly attached to the base, and the polishing disk support member are disassembled.
  • the optical fiber polishing apparatus 10 according to the present embodiment includes a base 11, a polishing disk support member 12, a polishing disk 13, a polishing disk turning means 14, a guide member 15, a slider 16, a slider driving means 17,
  • the fiber holder 18 is provided.
  • the base 11 placed on the work floor via a pedestal (not shown) incorporating a vibration-proof rubber or the like has a plate shape having a flat mounting surface 11a with long sides and short sides of 400 mm ⁇ 300 mm, for example.
  • the base 11 in the present embodiment employs a stone surface plate that is excellent in wear resistance and corrosion resistance and has less thermal deformation than general metals such as cast steel and aluminum alloy. Therefore, the surface of the stone surface plate becomes the mounting surface 11 a of the base 11.
  • a granite stone platen having a linear expansion coefficient of 8.0 ⁇ 10 ⁇ 6 / ° C. can be used as the base 11.
  • the flatness of the surface plate surface, that is, the mounting surface 11a depends on the number of optical connectors 19 to be polished at the same time and the length of the arrangement interval.
  • the optical connector 19 functions as a connection end portion of the optical fiber in the present invention.
  • the linear expansion coefficient of the material constituting the base 11 is 1.1 ⁇ 10 ⁇ 5 / ° C. or less, it is possible to adopt a metal such as cast iron, SUS430, 50% nickel steel, or ordinary steel as the base 11. It is.
  • a polishing process liquid is used during the polishing process, or water is used when cleaning the connection end surface 19 a of the optical connector 19. Work fluid and water adhere.
  • a metal such as 50% nickel steel has a low hardness and is not suitable for a material used as the base 11.
  • the stone surface plate does not generate processing strain when processing the surface of the surface plate smoothly, and does not generate return or swelling due to processing. be able to.
  • FIG. 5 shows a cross-sectional structure taken along the line VV in FIG.
  • a plurality of (four in the illustrated example) polishing disk support members 12 spaced apart from the front central portion of the mounting surface 11a of the base 11 are mounted on a columnar pedestal 20 and the upper end of the pedestal 20.
  • the ball bear unit 21 is held by a disk-like retainer 22 fitted so as to cover the upper end portion of the pedestal 20 and a plurality of openings formed in the retainer 22, with respect to the upper end surface 20 a of the pedestal 20.
  • a plurality of rolling ball steel balls 23 for rolling bearings.
  • Each polishing disk support member 12 has an embedded nut 24 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a fixing bolt screwed into the embedded nut 24 through the ball retainer 22 and the base 20. 25 on the mounting surface 11 a of the base 11.
  • the upper end surface 20a of the pedestal 20 with which the steel balls 23 come into contact and the lower end surface 20b of the pedestal 20 in contact with the mounting surface 11a of the base 11 are processed in advance in parallel.
  • the support portion of the present invention parallel to the mounting surface 11a will be defined.
  • the polishing disc 13 is mounted on the polishing disc support member 12 via a support portion of the polishing disc support member 12, that is, a steel ball 23, so as to be movable in a direction parallel to the mounting surface 11 a of the base 11.
  • the polishing disc 13 formed of a hard material having excellent wear resistance has a receiving surface 13a parallel to the mounting surface 11a of the base 11, and the surface thereof is Smooth finish.
  • the receiving surface 13a in the present embodiment has a substantially square shape, and a square-shaped polishing film 27 is detachably attached to the receiving surface 13a via an elastically deformable elastic sheet 26, and the surface thereof is This is the polishing surface in the present invention.
  • FIG. 6 and FIG. 7 show the sectional structures taken along the lines VI-VI and VII-VII in FIG. 3, respectively.
  • the polishing disk turning means 14 is disposed on the mounting surface 11 a of the base 11.
  • the polishing disk turning means 14 is for rotating the polishing board 13 mounted on the polishing board support member 12 around an axis perpendicular to the mounting surface 11a of the base 11.
  • the polishing disk turning means 14 in this embodiment includes a polishing disk drive motor 28 installed above the mounting surface 11 a of the base 11, a drive sprocket 29, an endless toothed belt 30, and a pair of front and rear synchronous sprockets 31. And a connecting pin 32 and a guide pulley 33.
  • the seat plate 34 to which the polishing disk drive motor 28 is fixed downward is disposed above the rear portion of the mounting surface 11a of the base 11. Between the seat plate 34 and the mounting surface 11 a of the base 11, a plurality (four in the illustrated example) of cylindrical columns 35 are interposed.
  • the seat plate 34 uses an embedded nut 36 that is fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a column 35 that is screwed into the embedded nut 36 via a spacer 37. It is fixed above the attachment surface 11a.
  • the drive sprocket 29 is integrally fitted between a mounting surface 11 a of the base 11 and a seat plate 34 on a rotating shaft 28 a of a polishing disk drive motor 28 that protrudes downward from the seat plate 34.
  • the pair of synchronous sprockets 31 are arranged at the front center of the mounting surface 11a of the base 11 so as to be sandwiched between the previous polishing disc support members 12. Therefore, the lower portion of the stud shaft 39 is screwed into the embedded nut 38 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and the upper portion of the stud shaft 39 protruding from the mounting surface 11 a of the base 11 is inserted.
  • the synchronous sprocket 31 is rotatably mounted.
  • the synchronous sprocket 31 is provided with connecting pins 32 that are eccentric with respect to these stud shafts 39 by a predetermined amount, for example, r, and the connecting pins 32 are respectively formed on the back surface 13 b side of the polishing board 13.
  • the fitting hole 40 is fitted so as to be relatively rotatable.
  • the interval between the pair of front and rear pin fitting holes 40 is set to be the same as the interval between the stud shafts 39 of the synchronous sprocket 31, and the pair of connecting pins 32 and the pair of stud shafts 39 together with the synchronous sprocket 31 and the polishing disc 13 are four. Configure a joint parallel link mechanism.
  • the toothed belt 30 is wound around a drive sprocket 29 and a pair of synchronous sprockets 31.
  • the guide pulley 33 is for ensuring the meshing of the synchronous sprocket 31 and the toothed belt 30 and is attached to the mounting surface 11a of the base 11 along the left-right direction (left-right direction in FIG. 3). The position can be adjusted. More specifically, the guide pulley 33 is rotatably mounted on the support plate 41. The insertion position of the long hole 41a formed in the support plate 41 through which the fixing bolt 43 is screwed into the embedded nut 42 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11a of the base 11 is adjusted. It can be done.
  • the pair of guide members 15 extending in the front-rear direction of the base 11 (first direction in the present invention) is sandwiched between the polishing discs 13 in the left-right direction of the mounting surface 11a of the base 11 (second direction in the present invention). ) Fixed on both sides. More specifically, an embedded nut 44 that is fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a fixing bolt 45 that is screwed through the guide member 15 into the embedded nut 44.
  • the pair of guide members 15 is fixed to the mounting surface 11 a of the base 11 by using the above.
  • “front” means lower in FIG. 3, and “rear” means upper.
  • “left and right” intersecting with this means left and right in FIG.
  • the guide member 15 has a guide surface 15 a extending in the front-rear direction of the base 11 parallel to the mounting surface 11 a of the base 11.
  • the slider 16 that can move along the guide surface 15a of the guide member 15 is attached to the pair of guide members 15.
  • the slider 16 includes a pair of sliding blocks 46 slidably held with respect to the pair of guide members 15, a connecting plate 47 disposed above the polishing board 13 so as to straddle the polishing board 13, and a pair of connecting blocks. 48.
  • the connecting plate 47 integrally connects the pair of connecting blocks 48 disposed at the left and right ends thereof and the previous sliding block 46.
  • the connection block 48 has a holder mounting surface 48a for arranging the fiber holder 18 with high accuracy.
  • the slider drive means 17 arranged on the attachment surface 11a of the base 11 is for reciprocating the slider 16 attached to the guide member 15 back and forth along the guide surface 15a.
  • the slider drive means 17 in this embodiment includes a slider drive motor 49, a drive gear 50, a driven gear 51, an eccentric pin 52, and a guide groove 53.
  • the slider drive motor 49 in the present embodiment is a pulse motor, and is fixed downward to the previous seat plate 34 together with the polishing disk drive motor 28, and these are covered with a cover 54.
  • the drive gear 50 is integrally fitted between a mounting surface 11 a of the base 11 and a seat plate 34 on a rotary shaft 49 a of a slider drive motor 49 that projects downward from the seat plate 34.
  • a driven gear 51 as a rotating member in the present invention that meshes with the drive gear 50 is disposed at the rear end portion of the attachment surface 11 a of the base 11.
  • the embedded nut 55 fixed to the rear end portion of the base 11 so that the upper end does not protrude from the mounting surface 11a of the base 11 and the fixing bolt 57 screwed through the bearing 56 into the embedded nut 55 are used.
  • the driven gear 51 is rotatably supported on the mounting surface 11 a of the base 11 via the bearing 56.
  • an eccentric pin 52 that is eccentric by a predetermined amount, for example, s with respect to the rotation axis of the driven gear 51 is projected.
  • the eccentric pin 52 is slidably engaged with a guide groove 53 formed on the back surface 47 a side of the connecting plate 47.
  • the guide groove 53 having a length that is twice or more the previous eccentric amount s extends along the left-right direction of the base 11.
  • a rotational speed control means 58 for controlling the rotational speed of the driven gear 51 (more precisely, the peripheral speed of the eccentric pin 52) is provided, and the control block is schematically shown in FIG.
  • the rotational speed control means 58 controls the linear movement speed of the slider 16 along the front-rear direction of the base 11 to be constant except for the reciprocating end.
  • any one of the reciprocating ends of the slider 16 is set as a reference position, the time from the reference position is t, the moving speed of the slider 16 is c, the eccentric amount of the eccentric pin 52 and its reference position.
  • the rotational speed of the eccentric pin 52 of the driven gear 51 is controlled so as to satisfy the above condition.
  • the rotation speed control means 58 in this embodiment includes a photoelectric switch 59 as a position detection means of the present invention, a timer 60, a target rotation speed setting section 61, a drive pulse setting section 62, and a motor driver 63.
  • the rotational position of the eccentric pin 52 shown in FIG. 3 where the eccentric pin 52 is located most rearward with respect to the rotation axis of the driven gear 51 is the reference position (0 degree), and conversely, the eccentric pin 52 is most forward.
  • the rotational position of the eccentric pin 52 located at is 180 degrees.
  • the photoelectric switch 59 is fixed to the front end portion of the seat plate 34, and when the slider 16 reaches its retracted end, the dog 64 projecting behind the slider 16 blocks the photoelectric switch 59, so that the photoelectric switch 59 is turned off to detect the backward end.
  • the timer 60 counts the time from when the photoelectric switch 59 is turned off, that is, when the reference position of the slider 16 is detected, and outputs the counted time to the target rotational speed setting unit 61.
  • the target rotation speed setting unit 61 sets the target rotation speed V of the eccentric pin 52 of the driven gear 51 according to the count value by the timer 60 and outputs this to the drive pulse setting unit 62.
  • the drive pulse setting unit 62 sets a drive pulse P for driving the slider drive motor 49 corresponding to the target rotation speed V set by the target rotation speed setting unit 61, and outputs this to the motor driver 63. To do.
  • the motor driver 63 outputs the drive pulse P set by the drive pulse setting unit 62 to the slider drive motor 49 to control its rotation.
  • the data shown in Table 1 is stored in advance in the target rotation speed setting unit 61 and the drive pulse setting unit 62 so that cos ⁇ 1 ⁇ (t ⁇ c / s) ⁇ 3 ⁇ . For these data, corresponding values are output every 0.2 seconds based on a signal from the timer 60, for example.
  • FIG. 9 shows the relationship between the rotational speed of the eccentric pin 52 of the driven gear 51 of the slider driving means 17 and the moving speed of the slider 16.
  • the rotational speed of the driven gear 51 is finite according to the rotational speed of the slider drive motor 49, the slider 16 gradually decelerates from the constant speed c, and as a result, the direction of movement of the slider 16 can be set comfortably. It can be changed. Therefore, by changing the target rotational speed V of the eccentric pin 52 of the driven gear 51 as shown by the solid line in FIG. 9, the moving speed of the slider 16 can be set to a constant speed as shown by the solid line in the figure. It becomes possible. As a result, as will be described later, the polishing film 27 can be more evenly worn, extending its life and reducing the replacement frequency.
  • the appearance of the fiber holder 18 in the present embodiment is shown in FIG. 10, the front shape and the planar shape are partially broken, respectively, and shown in FIGS. 11 and 12, taken along line XIII-XIII in FIG.
  • the shape is shown in FIG. 13, and the cross-sectional shape taken along the line XIV-XIV in FIG. 11 is shown in FIG.
  • the fiber holder 18 includes an optical connector mounting plate 65, a guide column 66, a lifting block 67, and a pressing member 68.
  • the fiber holder 18 is detachably fixed to the connection block 48 in a state where the attachment reference surface 65 a formed on the back surface of the optical connector attachment plate 65 is in contact with the holder attachment surface 48 a of the connection block 48.
  • the optical connector mounting plate 65 has a plurality of front and rear optical connector mounting holes 69 arranged at a predetermined interval p along the longitudinal direction (left and right direction in FIG. 11). With respect to the arrangement interval p of the optical connector mounting holes 69 in one row, the optical connector mounting holes 69 in the other row are arranged so as to be shifted by 1/2 pitch, that is, p / 2 along these arrangement directions. .
  • These optical connector mounting holes 69 serve as a fiber holding portion of the present invention that removably holds the optical connector 19 that is polished when the connection end surface 19a (see FIG. 13) is pressed against the polishing film 27 affixed to the polishing board 13. Function.
  • a pair of mutually parallel guide columns 66 arranged in the left-right direction are fixed on the optical connector mounting plate 65 via bolts 70 at their lower ends, and are attached to the mounting surface 11 a of the base 11. Extends vertically.
  • the elevating block 67 further includes a lower bracket 71, an upper bracket 72, and a plurality of connecting shafts 73 that connect them.
  • the lower bracket 71 is integrally fixed with lower ends of connecting shafts 73 arranged at a predetermined interval p in association with the optical connector mounting holes 69, and the upper ends of these connecting shafts 73 are connected to upper portions via fixing bolts 74.
  • a bracket 72 is integrally connected.
  • a pressing member 68 for pressing the optical connector 19 downward is fitted to each connecting shaft 73 so as to be slidable in a direction perpendicular to the mounting surface 11 a of the base 11.
  • a compression coil spring 75 for biasing the pressing member 68 toward the lower bracket 71 is interposed between the upper bracket 72 and each pressing member 68, and the connecting shaft 73 is inserted through these. It has become. In the present embodiment, consideration is given to reducing variation in the pressing force applied to the optical connector 19 by using a long compression coil spring 75 having a small spring constant.
  • Guide struts 66 are inserted into the lower part of the lift block 67 and the left and right ends of the upper brackets 71 and 72, and the lift block 67 can be lifted and lowered with respect to the guide strut 66.
  • the guide column 66 is formed with a groove 66a extending in the vertical direction.
  • Both end portions of the penetrating pin 76 passing through the guide post 66 in the front-rear direction through the groove 66a are fitted to the upper bracket 72 so that the lifting block 67 does not come off from the guide post 66.
  • Spherical gripping portions 78 having clamp pins 77 are disposed at both left and right end portions of the upper bracket 72.
  • the clamp pin 77 is held by the upper bracket 72 so that its tip is slidable in the left-right direction facing the guide column 66.
  • the distal end portion of the clamp pin 77 can be fitted into positioning holes 79 and 80 formed on the upper end side and the lower portion of the guide column 66.
  • the positioning holes 79 and 80 define the retracted position and the machining position of the lifting block 67.
  • a spring 81 for urging the tip of the clamp pin 77 toward the guide column 66 is incorporated.
  • the operator grips the grip portion 78 against the biasing force of the spring 81 and pulls the clamp pin 77 so that the tip of the clamp pin 77 is separated from the guide column 66, so that the lifting block 67 is moved against the guide column 66. It can be moved up and down.
  • the pressing member 68 is pressed against the optical connector 19 mounted in the optical connector mounting hole 69 by the spring force of the compression coil spring 75. .
  • connection end surface 19a is projected from the lower surface of the optical connector mounting plate 65 as shown in FIG.
  • the pressing member 68 is retracted above the optical connector mounting plate 65 together with the lifting block 67.
  • the optical connector 19 can be attached to and detached from the optical connector mounting hole 69 of the optical connector mounting plate 65 safely and easily.
  • the lifting block 67 is raised to the retracted position, whereby the pressing member 68 is moved to two points in FIG. It rises to the position indicated by the chain line. Thereby, the attachment / detachment work of the optical connector 19 with respect to the optical connector mounting hole 69 can be easily performed.
  • the spring 82 is housed in the cylindrical guide column 66, and the upper end of the spring 82 abuts against the penetrating pin 76 of the lifting block 67 located below the guide column 66 by its own weight to push it up. It has become.
  • the lifting block 67 is pushed up by the spring force of the spring 82, so that the pressing member 68 does not press against the optical connector 19 mounted in the optical connector mounting hole 69.
  • the optical fiber polishing apparatus 10 in this embodiment further includes a holder attaching / detaching means 83.
  • the holder attaching / detaching means 83 is for detachably connecting the fiber holder 18 to the slider 16 and uses a toggle clamp in this embodiment. That is, a pair of left and right toggle clamps 83 are fixed to a connecting block 48 whose left and right ends are screwed to the sliding block 46 together with the connecting plate 47.
  • the lock lever 84 of the toggle clamp 83 is raised to the clamped state shown in FIG. 1, the tip of the clamp arm 85 presses against the upper surface of the optical connector mounting plate 65 of the fiber holder 18 facing the polishing disc 13.
  • the holder mounting surface 48a of the connecting block 48 comes into contact with and closely contacts the mounting reference surface 65a of the optical connector mounting plate 65, and the fiber holder 18 is fixed integrally to the connecting block 48 of the slider 16.
  • the connection end surface 19 a of the optical connector 19 attached to the fiber holder 18 is pressed against the polishing film 27 of the polishing board 13 with an appropriate pressing force by the urging force of the compression coil spring 75.
  • the lock lever 84 of the toggle clamp 83 is tilted to the unclamped state and the lifting block 67 of the fiber holder 18 is raised to the retracted position, the fiber holder 18 can be removed from the polishing board 13.
  • the attaching / detaching operation can be easily and safely performed without bringing the connection end face 19 a into contact with the polishing film 27.
  • the connection end surface 19a of the optical connector 19 comes into contact with the polishing film 27 of the polishing board 13. For this reason, the optical connector 19 is pushed up against the spring force of the compression coil spring 75 together with the pressing member 68. Accordingly, the processing position of the lifting block 67 of the fiber holder 18, that is, the position of the lower positioning hole 79 in the guide column 66 so that an appropriate processing pressure acts on the polishing film 27 on the connection end surface 19 a of the optical connector 19. Is set.
  • the polishing disk support member 12, the polishing disk turning means 14, the guide member 15, the slider driving means 17 and the like are arranged with reference to the mounting surface 11a of the base 11, a commercially available mechanical component having a predetermined accuracy is used.
  • the desired assembly accuracy can be easily achieved by diverting.
  • connection end faces 19a of the 24 optical connectors 19 are polished using the optical fiber polishing apparatus 10 in this embodiment, the movement trajectory of these centers with respect to the polishing board 13 is schematically shown in FIG.
  • the movement trajectory of the connection end surface 19a of the optical connector 19 can be prevented from completely overlapping with the polishing board 13 during the polishing operation. Therefore, even if foreign matter or the like is present on the polishing board 13, it is possible to avoid a problem that the connection end surfaces 19a of all the optical connectors 19 that are simultaneously polished are damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

A reciprocating linear movement device is equipped with a slider drive means (17) which assures the reciprocating movement of a slider (16) which can move along the guide surface (15a) of a guide member (15) having a guide surface (15a) which extends in a first direction. This slider drive means (17) comprises: a drive motor (49); a rotating member (51) which is driven by this drive motor (49) about an axis that intersects with the first direction; an eccentric pin (52) which is provided in a protruding manner to the rotating member (51) parallel to the axis of rotation of this rotating member (51); and a guide groove (53) with which the eccentric pin (52) can slidingly engage, and which is formed on the slider (16) in such a manner so as to extend in a first direction and a second direction which intersects with the axis of rotation of the rotating member (51). The reciprocating linear movement device of the present invention is equipped with a means (58) for controlling the speed of rotation of the rotating member (51) in such a manner that the linear velocity of the slider (16) in the first direction is constant, apart from at the ends of the reciprocal movement.

Description

等速往復直線運動装置および光ファイバー研磨装置Constant velocity reciprocating linear motion device and optical fiber polishing device
 本発明は、回転運動を等速往復直線運動に変換する装置に関し、特に光ファイバーの接続端面を研磨するための装置に組み込んで好適である。 The present invention relates to a device that converts a rotational motion into a constant velocity reciprocating linear motion, and is particularly suitable for being incorporated in a device for polishing a connection end face of an optical fiber.
 複数本の光ファイバーを相互に突き合わせて接続したり、各種光デバイスに対して光ファイバーを接続するために用いられる光コネクターは、通常、光ファイバーが挿通する光ファイバープラグを有する。従来の光ファイバープラグは、ジルコニアセラミックスなどの耐摩耗性に優れた低膨張率の材料を円柱状に加工したものである。この光ファイバープラグの接続端面の中央部には光ファイバーの先端面が露出した状態となっている。接続端面は、20mm程度の曲率半径の凸球面に形成される。 An optical connector used to connect a plurality of optical fibers to each other or connect optical fibers to various optical devices usually has an optical fiber plug through which the optical fiber is inserted. A conventional optical fiber plug is obtained by processing a low expansion coefficient material having excellent wear resistance such as zirconia ceramics into a cylindrical shape. The front end surface of the optical fiber is exposed at the center of the connection end surface of the optical fiber plug. The connection end surface is formed as a convex spherical surface having a radius of curvature of about 20 mm.
 このような光ファイバープラグの接続端面を所定曲率の凸球面に加工するための研磨装置が特許文献1にて提案されている。この研磨装置は、弾性シートを介して研磨フィルムが平坦な表面に貼付された研磨盤と、光ファイバープラグが装着されるスライダーとを有し、これらを相対移動させて光ファイバープラグの接続端面を研磨する。この場合、研磨盤は、その表面に対して垂直な軸線回りに旋回運動し、スライダーは研磨盤の表面に沿って往復直線運動し、光ファイバープラグの接続端面が研磨フィルムに押し当てられる。 A polishing apparatus for processing a connection end face of such an optical fiber plug into a convex spherical surface having a predetermined curvature has been proposed in Patent Document 1. This polishing apparatus has a polishing board in which an abrasive film is stuck on a flat surface via an elastic sheet, and a slider to which an optical fiber plug is attached, and these are moved relative to each other to polish the connection end face of the optical fiber plug. . In this case, the polishing disk revolves around an axis perpendicular to the surface thereof, the slider reciprocates linearly along the surface of the polishing disk, and the connection end face of the optical fiber plug is pressed against the polishing film.
特許第3773851号公報Japanese Patent No. 37773851
 特許文献1に開示された従来の研磨装置においては、スライダーを往復直線運動させる場合、その往復動端において前後運動速度が大きく変化する。より具体的には、スライダーの移動速度が正弦波形に従って変化するため、スライダーの往復動端近傍にて光ファイバーの接続端面に接する研磨フィルムの部分が他の部分に比べて激しく消耗する。この結果、研磨フィルムの全面を最大限に有効利用することができず、研磨フィルムを頻繁に交換しなければならず、研磨コストが増大してしまう。 In the conventional polishing apparatus disclosed in Patent Document 1, when the slider is reciprocated linearly, the longitudinal movement speed greatly changes at the reciprocating end. More specifically, since the moving speed of the slider changes in accordance with the sine waveform, the portion of the polishing film that contacts the connection end surface of the optical fiber near the reciprocating end of the slider is consumed more violently than the other portions. As a result, the entire surface of the polishing film cannot be effectively used to the maximum, and the polishing film must be frequently replaced, increasing the polishing cost.
 本発明の目的は、スライダーの往復運動速度を一定に保つ等速往復運動装置を提供することにある。 An object of the present invention is to provide a constant velocity reciprocating device that keeps the reciprocating velocity of a slider constant.
 本発明の他の目的は、このような等速往復運動装置を組み込むことにより、従来の研磨装置よりも研磨フィルムの全面をさらに有効利用し得る研磨装置を提供することにある。 Another object of the present invention is to provide a polishing apparatus in which the entire surface of the polishing film can be used more effectively than a conventional polishing apparatus by incorporating such a constant velocity reciprocating device.
 本発明の第1の形態は、第1の方向に延在する案内面を有する案内部材に取り付けられ、この案内部材の案内面に沿って移動可能なスライダーを往復運動させるためのスライダー駆動手段を具え、このスライダー駆動手段が、駆動モーターと、この駆動モーターにより前記第1の方向に対して直交する軸線回りに駆動回転する回転部材と、この回転部材の回転軸線と平行に、これから離れた位置に当該回転部材に突設された偏心ピンと、前記第1の方向および前記回転部材の回転軸線に対して直交する第2の方向に延在するように前記スライダーに形成され、前記偏心ピンが摺動自在に嵌合する案内溝とを有する往復直線運動装置であって、前記第1の方向に沿った前記スライダーの直線移動速度がその往復動端を除いて一定となるように、前記回転部材の回転速度を制御する回転速度制御手段を具えたことを特徴とするものである。 According to a first aspect of the present invention, there is provided slider driving means for reciprocating a slider which is attached to a guide member having a guide surface extending in the first direction and which is movable along the guide surface of the guide member. The slider driving means includes a driving motor, a rotating member driven and rotated about an axis orthogonal to the first direction by the driving motor, and a position parallel to the rotating axis of the rotating member and away from the rotating member. And an eccentric pin projecting from the rotating member, and the slider extending so as to extend in the first direction and a second direction orthogonal to the rotation axis of the rotating member. A reciprocating linear motion device having a guide groove that is movably fitted so that the linear moving speed of the slider along the first direction is constant except for its reciprocating end. It is characterized in that comprises a rotational speed control means for controlling the rotational speed of the rotary member.
 本発明においては、駆動モーターの作動によって回転部材がこの回転部材に突設された偏心ピンと共に回転し、この偏心ピンが嵌合する案内溝を有するスライダーが案内面に沿って第1の方向に往復直線運動を行う。この場合、第1の方向に沿ったスライダーの直線移動速度がその往復動端を除いて一定となるように、回転速度制御手段が回転部材の回転速度、つまり駆動モーターの回転速度を制御する。 In the present invention, the rotary member is rotated together with the eccentric pin protruding from the rotary member by the operation of the drive motor, and the slider having the guide groove into which the eccentric pin is fitted moves in the first direction along the guide surface. Perform reciprocating linear motion. In this case, the rotational speed control means controls the rotational speed of the rotating member, that is, the rotational speed of the drive motor so that the linear moving speed of the slider along the first direction is constant except for the reciprocating end.
 本発明の第1の形態による等速往復運動装置において、スライダーの往復動端のうちの何れか一方を基準位置とし、この基準位置からの時間をt、スライダーの移動速度をc、偏心ピンの偏心量ならびに基準位置からの回転角およびその角速度をsならびにθおよびθ(t)で表した場合、回転速度制御手段は、偏心ピンの角速度θ(t)が次式
  0≦θ≦πの場合、  θ(t)=cos-1{1-(t・c/s)}
  π≦θ≦2πの場合、 θ(t)=cos-1{(t・c/s)-3}
を満たすように、回転部材の回転速度を制御するものであってよい。
In the constant velocity reciprocating motion device according to the first aspect of the present invention, any one of the reciprocating ends of the slider is set as a reference position, the time from the reference position is t, the moving speed of the slider is c, and the eccentric pin is When the amount of eccentricity and the rotation angle from the reference position and its angular velocity are represented by s and θ and θ (t), the rotational speed control means is configured so that the angular velocity θ (t) of the eccentric pin is expressed by the following equation: 0 ≦ θ ≦ π , Θ (t) = cos −1 {1- (t · c / s)}
When π ≦ θ ≦ 2π, θ (t) = cos −1 {(t · c / s) −3}
The rotational speed of the rotating member may be controlled so as to satisfy the above.
 駆動モーターがパルスモーターであり、回転速度制御手段は、第1の方向に沿ったスライダーの基準位置を検出するための位置検出手段と、この位置検出手段がスライダーの基準位置を検出した時点からの時間をカウントするタイマーと、このタイマーによるカウント値に応じて回転部材の目標回転速度を設定する設定手段と、この設定手段によって設定された目標回転速度に対応してパルスモーターを駆動するための駆動パルスを設定する駆動パルス設定部と、この駆動パルス設定部にて設定された駆動パルスを駆動モーターに出力するモータードライバーとを有するものであってよい。 The drive motor is a pulse motor, and the rotational speed control means includes a position detection means for detecting the reference position of the slider along the first direction, and a point from when the position detection means detects the reference position of the slider. Timer for counting time, setting means for setting the target rotation speed of the rotating member according to the count value by this timer, and driving for driving the pulse motor in accordance with the target rotation speed set by this setting means A drive pulse setting unit that sets a pulse and a motor driver that outputs the drive pulse set by the drive pulse setting unit to a drive motor may be included.
 本発明の第2の形態は、ベースと、このベースに設けられた研磨盤支持部材と、この研磨盤支持部材に対して移動可能に搭載された研磨盤と、この研磨盤を前記研磨盤支持部材に対して旋回運動させる研磨盤旋回手段と、前記ベースに設けられた案内部材と、この案内部材に取り付けられ、当該案内部材に沿って往復直線移動可能なスライダーと、このスライダーを前記案内部材に沿って往復直線運動させるスライダー駆動手段と、前記スライダーに連結され、かつ前記研磨盤の研磨面に押し当って研磨される光ファイバーの接続端部を着脱可能に保持するための複数のファイバー保持部を有し、これら複数のファイバー保持部が前記スライダーの往復直線運動方向と交差する方向に沿って配列するファイバーホルダーとを具え、スライダー駆動手段が本発明の第1の形態による等速往復直線運動装置であることを特徴とする光ファイバー研磨装置にある。 According to a second aspect of the present invention, there is provided a base, a polishing disc support member provided on the base, a polishing disc mounted so as to be movable with respect to the polishing disc support member, and the polishing disc supporting the polishing disc. A polishing disk turning means for turning the member, a guide member provided on the base, a slider attached to the guide member and capable of reciprocating linear movement along the guide member, and the slider as the guide member And a plurality of fiber holding portions for removably holding a connection end portion of an optical fiber that is coupled to the slider and pressed against the polishing surface of the polishing disk. A plurality of fiber holders arranged in a direction intersecting with the reciprocating linear movement direction of the slider, and a slider. In an optical fiber polishing apparatus characterized by driving means is a first constant-velocity reciprocal linear motion apparatus according to the present invention.
 本発明においては、研磨盤旋回手段によって研磨盤が研磨盤支持部材に対して旋回運動する。また、スライダー駆動手段によりファイバーホルダーが案内部材に沿って往復直線運動する。この結果、ファイバーホルダーのファイバー保持部に保持された光ファイバーの接続端部と、研磨盤の研磨面との間で相対運動が発生し、光ファイバーの接続端部が研磨加工される。この場合、スライダーの往復直線運動がその往復動端を除いて一定となっており、スライダーの往復動端近傍にて光ファイバーの接続端部が押し当たる研磨盤の研磨面の局部摩耗が抑制される。 In the present invention, the polishing disk revolves with respect to the polishing disk support member by the polishing disk rotation means. Further, the fiber holder reciprocates linearly along the guide member by the slider driving means. As a result, relative movement occurs between the connection end of the optical fiber held by the fiber holder of the fiber holder and the polishing surface of the polishing disk, and the connection end of the optical fiber is polished. In this case, the reciprocating linear motion of the slider is constant except for its reciprocating end, and local abrasion of the polishing surface of the polishing disk against which the connecting end of the optical fiber is pressed in the vicinity of the reciprocating end of the slider is suppressed. .
 本発明の第2の形態による光ファイバー研磨装置において、研磨盤の研磨面がこの研磨盤に対して着脱可能に貼付されるほぼ正方形状の研磨フィルムの表面によって形成されているものであってよい。 In the optical fiber polishing apparatus according to the second embodiment of the present invention, the polishing surface of the polishing disk may be formed by the surface of a substantially square polishing film that is detachably attached to the polishing disk.
 本発明の等速運動装置によると、第1の方向に沿ったスライダーの直線移動速度がその往復動端を除いて一定となるように、回転部材の回転速度を制御する回転速度制御手段を具えているので、第1の方向に沿ったスライダーの直線移動速度をその往復動端を除いて一定にすることができる。 According to the constant velocity motion device of the present invention, the rotational speed control means for controlling the rotational speed of the rotating member is provided so that the linear moving speed of the slider along the first direction is constant except for the reciprocating end. Therefore, the linear moving speed of the slider along the first direction can be made constant except for its reciprocating end.
 基準位置からの偏心ピンの回転角θが0≦θ≦πの場合に偏心ピンの角速度θ(t)がθ(t)=cos-1{1-(t・c/s)}かつπ≦θ≦2πの場合にθ(t)=cos-1{(t・c/s)-3}を満たすように、回転部材の回転速度を制御した場合、第1の方向に沿ったスライダーの直線移動速度をその往復動端を除いて一定にすることができる。 When the rotation angle θ of the eccentric pin from the reference position is 0 ≦ θ ≦ π, the angular velocity θ (t) of the eccentric pin is θ (t) = cos −1 {1- (t · c / s)} and π ≦ When the rotational speed of the rotating member is controlled so that θ (t) = cos −1 {(t · c / s) −3} is satisfied when θ ≦ 2π, the straight line of the slider along the first direction The moving speed can be made constant except for the reciprocating end.
 回転速度制御手段が位置検出手段と、タイマーと、回転部材の目標回転速度を設定する設定手段と、パルスモーターを駆動するための駆動パルスを設定する駆動パルス設定部と、モータードライバーとを有する場合、複雑な制御系を組み込むことなく、パルスモーターの駆動制御を容易に行うことができる。 When the rotation speed control means has a position detection means, a timer, a setting means for setting a target rotation speed of the rotating member, a drive pulse setting unit for setting a drive pulse for driving the pulse motor, and a motor driver The drive control of the pulse motor can be easily performed without incorporating a complicated control system.
 本発明の光ファイバー研磨装置によると、スライダー駆動手段が本発明の第1の形態による等速往復直線運動装置であるので、研磨盤の研磨面の局部的な摩耗の進行を抑制することができる。 According to the optical fiber polishing apparatus of the present invention, since the slider driving means is the constant velocity reciprocating linear motion apparatus according to the first embodiment of the present invention, the progress of local wear on the polishing surface of the polishing disk can be suppressed.
 研磨盤の研磨面がこの研磨盤に対して着脱可能に貼付されるほぼ正方形状の研磨フィルムの表面によって形成されている場合、研磨フィルムをその全域に亙ってほぼ均一に摩耗させることができ、その寿命を延ばすことができる。 When the polishing surface of the polishing disk is formed by the surface of an approximately square polishing film that is detachably attached to the polishing disk, the polishing film can be worn almost uniformly over the entire area. , Can extend its life.
図1は、本発明による等速運動装置を組み込んだ本発明による光ファイバー研磨装置の一実施形態の外観を表す立体投影図である。FIG. 1 is a three-dimensional projection view showing the appearance of an embodiment of an optical fiber polishing apparatus according to the present invention incorporating a constant velocity motion apparatus according to the present invention. 図2は、図1に示した光ファイバー研磨装置の一部を取り外して分解した状態を表す立体投影図である。FIG. 2 is a three-dimensional projection view showing a state in which a part of the optical fiber polishing apparatus shown in FIG. 1 is removed and disassembled. 図3は、図1に示した光ファイバー研磨装置の一部を取り外した状態の平面図である。FIG. 3 is a plan view showing a state where a part of the optical fiber polishing apparatus shown in FIG. 1 is removed. 図4は、図2に示した光ファイバー研磨装置の一部をさらに取り外して分解した状態を表す立体投影図である。FIG. 4 is a three-dimensional projection view showing a state in which a part of the optical fiber polishing apparatus shown in FIG. 2 is further removed and disassembled. 図5は、図1に示した実施形態における図3中のV-V線に沿った矢視断面図である。5 is a cross-sectional view taken along line VV in FIG. 3 in the embodiment shown in FIG. 図6は、図1に示した実施形態における図3中のVI-VI線に沿った矢視断面図である。6 is a cross-sectional view taken along the line VI-VI in FIG. 3 in the embodiment shown in FIG. 図7は、図1に示した実施形態における図3中のVI-VI線に沿った矢視断面図である。7 is a cross-sectional view taken along the line VI-VI in FIG. 3 in the embodiment shown in FIG. 図8は、図1に示した実施形態における回転速度制御手段のブロック図である。FIG. 8 is a block diagram of the rotation speed control means in the embodiment shown in FIG. 図9は、図1に示した実施形態におけるスライダーの移動特性を表すグラフである。FIG. 9 is a graph showing the movement characteristics of the slider in the embodiment shown in FIG. 図10は、図1に示した実施形態におけるファイバーホルダーの部分の外観を表す立体投影図である。FIG. 10 is a three-dimensional projection view showing the appearance of the fiber holder portion in the embodiment shown in FIG. 図11は、図10に示したファイバーホルダーの一部を破断した正面図である。FIG. 11 is a front view in which a part of the fiber holder shown in FIG. 10 is broken. 図12は、図10に示したファイバーホルダーの一部を破断した平面図である。FIG. 12 is a plan view in which a part of the fiber holder shown in FIG. 10 is broken. 図13は、図11中のXIII-XIII線に沿った矢視断面図である。13 is a cross-sectional view taken along line XIII-XIII in FIG. 図14は、図11中のXIV-XIV線に沿った矢視断面図である。14 is a cross-sectional view taken along line XIV-XIV in FIG. 図15は、図1に示した実施形態における研磨盤に対する光ファイバー接続端面の中心の移動軌跡を模式的に表す概念図である。FIG. 15 is a conceptual diagram schematically showing the movement trajectory of the center of the optical fiber connection end face with respect to the polishing disk in the embodiment shown in FIG. 図16は、図15に示した移動軌跡に対し研磨面を90度ずらしてさらに研磨作業を行った場合の光ファイバー接続端面の中心の移動軌跡を模式的に表す概念図である。FIG. 16 is a conceptual diagram schematically showing the movement locus of the center of the optical fiber connection end face when the polishing surface is further shifted by 90 degrees with respect to the movement locus shown in FIG.
 本発明による等速運動装置を組み込んだ本発明による光ファイバー研磨装置の一実施形態について、図1~図16を参照しながら詳細に説明する。しかしながら、本発明はこのような実施形態のみに限らず、必要に応じて本発明の精神に帰属する他の任意の技術にも応用することが可能である。 An embodiment of an optical fiber polishing apparatus according to the present invention incorporating a constant velocity motion apparatus according to the present invention will be described in detail with reference to FIGS. However, the present invention is not limited to such an embodiment, and can be applied to any other technique belonging to the spirit of the present invention as necessary.
 本実施例における光ファイバー研磨装置の外観を図1に示し、ファイバーホルダーおよびカバーを取り外して研磨盤およびスライダーを分解した状態の外観を図2に示し、座板を取り外した状態の平面形状を図3に示し、さらにベースおよびこれに直接取り付けられる案内部材や研磨盤支持部材などを分解した状態の外観を図3に示す。すなわち、本実施形態における光ファイバー研磨装置10は、ベース11と、研磨盤支持部材12と、研磨盤13と、研磨盤旋回手段14と、案内部材15と、スライダー16と、スライダー駆動手段17と、ファイバーホルダー18とを具えている。 FIG. 1 shows the appearance of the optical fiber polishing apparatus in this embodiment, FIG. 2 shows the appearance of the state in which the fiber holder and the cover are removed and the polishing board and the slider are disassembled, and the plan view of the state in which the seat plate is removed is shown in FIG. Further, FIG. 3 shows an appearance of the base and a state in which the base, the guide member directly attached to the base, and the polishing disk support member are disassembled. That is, the optical fiber polishing apparatus 10 according to the present embodiment includes a base 11, a polishing disk support member 12, a polishing disk 13, a polishing disk turning means 14, a guide member 15, a slider 16, a slider driving means 17, The fiber holder 18 is provided.
 防振ゴムなどを組み込んだ図示しないペデスタルを介して作業床面上に載置されるベース11は、例えば長辺および短辺が400mm×300mmの平坦な取り付け面11aを有する板状をなす。本実施形態におけるベース11は、耐摩耗性および耐蝕性に優れ、かつ鋳鋼やアルミニウム合金などの一般的な金属よりも熱変形の少ない石定盤を採用している。従ってこの石定盤の定盤面がベース11の取り付け面11aとなる。例えば、線膨張係数が8.0×10-6/℃の花崗岩製の石定盤をベース11として採用することができる。また、その定盤面、すなわち取り付け面11aの平面度は、同時に研磨される光コネクター19の数およびその配列間隔の長さによるが、一般的にはJIS2級以上の精度であればよい。光コネクター19は、本発明における光ファイバーの接続端部として機能する。 The base 11 placed on the work floor via a pedestal (not shown) incorporating a vibration-proof rubber or the like has a plate shape having a flat mounting surface 11a with long sides and short sides of 400 mm × 300 mm, for example. The base 11 in the present embodiment employs a stone surface plate that is excellent in wear resistance and corrosion resistance and has less thermal deformation than general metals such as cast steel and aluminum alloy. Therefore, the surface of the stone surface plate becomes the mounting surface 11 a of the base 11. For example, a granite stone platen having a linear expansion coefficient of 8.0 × 10 −6 / ° C. can be used as the base 11. Further, the flatness of the surface plate surface, that is, the mounting surface 11a depends on the number of optical connectors 19 to be polished at the same time and the length of the arrangement interval. The optical connector 19 functions as a connection end portion of the optical fiber in the present invention.
 なお、ベース11を構成する材料の線膨張係数が1.1×10-5/℃以下であれば、鋳鉄やSUS430,50%ニッケル鋼,普通鋼などの金属をベース11として採用することも可能である。しかしながら、光ファイバー研磨装置10においては、研磨加工中に研磨加工液を使用したり、光コネクター19の接続端面19aの洗浄時に水などを使用したりするので、ベース11の取り付け面11aにはこれらの加工液や水が付着する。鋳鉄や、普通鋼の場合、加工液や水によって腐食が発生するため、耐蝕性の点で光ファイバー研磨装置10のベース11として好適とは言えない。また、50%ニッケル鋼などの金属は、硬度が低く、ベース11として使用する材料には適さない。しかも、金属材料は、その加工時に加工ひずみが残る。精度良くこれらを加工するためには、徐歪などの工程により加工によって生じたひずみを除去する必要がある。この点で、SUS430は問題であり、石定盤よりも製造コストが高くなってしまうという不具合がある。 If the linear expansion coefficient of the material constituting the base 11 is 1.1 × 10 −5 / ° C. or less, it is possible to adopt a metal such as cast iron, SUS430, 50% nickel steel, or ordinary steel as the base 11. It is. However, in the optical fiber polishing apparatus 10, a polishing process liquid is used during the polishing process, or water is used when cleaning the connection end surface 19 a of the optical connector 19. Work fluid and water adhere. In the case of cast iron or normal steel, corrosion occurs due to the working fluid or water, and therefore it cannot be said that it is suitable as the base 11 of the optical fiber polishing apparatus 10 in terms of corrosion resistance. Further, a metal such as 50% nickel steel has a low hardness and is not suitable for a material used as the base 11. Moreover, the processing strain remains in the metal material during the processing. In order to process these with high accuracy, it is necessary to remove strain generated by processing by a process such as slow strain. In this respect, SUS430 is a problem, and there is a problem that the manufacturing cost is higher than that of a stone surface plate.
 これに対し、石定盤は、定盤面などを平滑に加工する際に加工歪が発生せず、加工による返りやふくらみが発生しないため、徐歪などの工程が不要であり、安価に製造することができる。また水などによる酸化腐食も起こらず、光ファイバー研磨装置10のベース11として使用する際に必要かつ充分な硬度を有していることに注意されたい。 On the other hand, the stone surface plate does not generate processing strain when processing the surface of the surface plate smoothly, and does not generate return or swelling due to processing. be able to. In addition, it should be noted that there is no oxidative corrosion due to water or the like, and it has a necessary and sufficient hardness when used as the base 11 of the optical fiber polishing apparatus 10.
 図3中のV-V線に沿った矢視断面構造を図5に示す。ベース11の取り付け面11aの前部中央部分に相隔てて配される複数(図示例では4つ)の研磨盤支持部材12は、円柱状をなす台座20と、この台座20の上端に装着されるボールベアーユニット21とをそれぞれ有する。ボールベアーユニット21は、台座20の上端部を覆うように嵌め合わされる円板状のリテーナー22と、このリテーナー22に形成された複数の開口部分に保持され、台座20の上端面20aに対して転動可能な複数個のころがり軸受用の鋼球23とを有する。各研磨盤支持部材12は、上端がベース11の取り付け面11aから突出しないようにベース11に固定される埋め込みナット24と、ボールリテーナー22および台座20を貫通して埋め込みナット24にねじ込まれる固定ボルト25とを用いてベース11の取り付け面11aに設置される。鋼球23が接触する台座20の上端面20aとベース11の取り付け面11aに接する台座20の下端面20bとは、予め平行に加工されており、従ってすべての鋼球23の上端がベース11の取り付け面11aと平行な本発明の支持部を画成することとなる。 FIG. 5 shows a cross-sectional structure taken along the line VV in FIG. A plurality of (four in the illustrated example) polishing disk support members 12 spaced apart from the front central portion of the mounting surface 11a of the base 11 are mounted on a columnar pedestal 20 and the upper end of the pedestal 20. Each having a ball bear unit 21. The ball bear unit 21 is held by a disk-like retainer 22 fitted so as to cover the upper end portion of the pedestal 20 and a plurality of openings formed in the retainer 22, with respect to the upper end surface 20 a of the pedestal 20. And a plurality of rolling ball steel balls 23 for rolling bearings. Each polishing disk support member 12 has an embedded nut 24 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a fixing bolt screwed into the embedded nut 24 through the ball retainer 22 and the base 20. 25 on the mounting surface 11 a of the base 11. The upper end surface 20a of the pedestal 20 with which the steel balls 23 come into contact and the lower end surface 20b of the pedestal 20 in contact with the mounting surface 11a of the base 11 are processed in advance in parallel. The support portion of the present invention parallel to the mounting surface 11a will be defined.
 研磨盤13は、ベース11の取り付け面11aと平行な方向に移動可能に研磨盤支持部材12の支持部、つまり鋼球23を介して研磨盤支持部材12に搭載される。鋼球23の転動に伴う摩耗を低減すべく、耐摩耗性に優れた硬質材料にて形成される研磨盤13は、ベース11の取り付け面11aと平行な受け面13aを有し、表面が平滑に仕上げられている。本実施形態における受け面13aはほぼ正方形状となっており、この受け面13aには、弾性変形可能な弾性シート26を介して正方形状の研磨フィルム27が剥離可能に貼り付けられ、その表面が本発明における研磨面となる。 The polishing disc 13 is mounted on the polishing disc support member 12 via a support portion of the polishing disc support member 12, that is, a steel ball 23, so as to be movable in a direction parallel to the mounting surface 11 a of the base 11. In order to reduce wear caused by rolling of the steel ball 23, the polishing disc 13 formed of a hard material having excellent wear resistance has a receiving surface 13a parallel to the mounting surface 11a of the base 11, and the surface thereof is Smooth finish. The receiving surface 13a in the present embodiment has a substantially square shape, and a square-shaped polishing film 27 is detachably attached to the receiving surface 13a via an elastically deformable elastic sheet 26, and the surface thereof is This is the polishing surface in the present invention.
 図3中のVI-VI線およびVII-VII線に沿った矢視断面構造を図6および図7にそれぞれ示す。研磨盤旋回手段14は、ベース11の取り付け面11aの上に配される。研磨盤旋回手段14は、研磨盤支持部材12に搭載された研磨盤13をベース11の取り付け面11aに対して垂直な軸線回りに旋回運動させるためのものである。本実施形態における研磨盤旋回手段14は、ベース11の取り付け面11aの上方に設置される研磨盤駆動用モーター28と、駆動スプロケット29と、無端の歯付きベルト30と、前後一対の同期スプロケット31と、連結ピン32と、案内プーリー33とを有する。 FIG. 6 and FIG. 7 show the sectional structures taken along the lines VI-VI and VII-VII in FIG. 3, respectively. The polishing disk turning means 14 is disposed on the mounting surface 11 a of the base 11. The polishing disk turning means 14 is for rotating the polishing board 13 mounted on the polishing board support member 12 around an axis perpendicular to the mounting surface 11a of the base 11. The polishing disk turning means 14 in this embodiment includes a polishing disk drive motor 28 installed above the mounting surface 11 a of the base 11, a drive sprocket 29, an endless toothed belt 30, and a pair of front and rear synchronous sprockets 31. And a connecting pin 32 and a guide pulley 33.
 研磨盤駆動用モーター28が下向きに固定される座板34は、ベース11の取り付け面11aの後部上方に配される。座板34とベース11の取り付け面11aとの間には、複数本(図示例では4本)の円筒状をなす支柱35が介在している。座板34は、上端がベース11の取り付け面11aから突出しないようにベース11に固定される埋め込みナット36と、この埋め込みナット36にスペーサー37を介してねじ込まれる支柱35とを用いてベース11の取り付け面11aの上方に固定される。駆動スプロケット29は、ベース11の取り付け面11aと座板34との間に座板34から下向きに突出する研磨盤駆動用モーター28の回転軸28aに一体的に嵌着されている。一対の同期スプロケット31は、先の研磨盤支持部材12に挟まれるようにベース11の取り付け面11aの前部中央に配される。このため、上端がベース11の取り付け面11aから突出しないようにベース11に固定される埋め込みナット38にスタッド軸39の下部がねじ込まれ、ベース11の取り付け面11aから突出するスタッド軸39の上部に対し、同期スプロケット31が回転自在に装着される。同期スプロケット31には、これらのスタッド軸39に対して所定量、例えばrだけ偏心した連結ピン32がそれぞれ突設され、これら連結ピン32は研磨盤13の裏面13b側にそれぞれ形成されたピン嵌合孔40に対して相対回転可能に嵌合されている。これら前後一対のピン嵌合孔40の間隔は、同期スプロケット31のスタッド軸39の間隔と同一に設定され、一対の連結ピン32および一対のスタッド軸39は、同期スプロケット31および研磨盤13と共に四節平行リンク機構を構成する。歯付きベルト30は、駆動スプロケット29と、一対の同期スプロケット31に巻き掛けられている。案内プーリー33は、同期スプロケット31と歯付きベルト30との噛み合いを確実にするためのものであり、ベース11の取り付け面11aに対してその左右方向(図3中、左右方向)に沿った取り付け位置を調整できるようになっている。より具体的には、案内プーリー33は支持板41の上に回転自在に取り付けられている。上端がベース11の取り付け面11aから突出しないようにベース11に固定される埋め込みナット42にねじ込まれる固定ボルト43に対し、これが挿通される支持板41に形成された長孔41aの挿通位置を調整できるようになっている。 The seat plate 34 to which the polishing disk drive motor 28 is fixed downward is disposed above the rear portion of the mounting surface 11a of the base 11. Between the seat plate 34 and the mounting surface 11 a of the base 11, a plurality (four in the illustrated example) of cylindrical columns 35 are interposed. The seat plate 34 uses an embedded nut 36 that is fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a column 35 that is screwed into the embedded nut 36 via a spacer 37. It is fixed above the attachment surface 11a. The drive sprocket 29 is integrally fitted between a mounting surface 11 a of the base 11 and a seat plate 34 on a rotating shaft 28 a of a polishing disk drive motor 28 that protrudes downward from the seat plate 34. The pair of synchronous sprockets 31 are arranged at the front center of the mounting surface 11a of the base 11 so as to be sandwiched between the previous polishing disc support members 12. Therefore, the lower portion of the stud shaft 39 is screwed into the embedded nut 38 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and the upper portion of the stud shaft 39 protruding from the mounting surface 11 a of the base 11 is inserted. On the other hand, the synchronous sprocket 31 is rotatably mounted. The synchronous sprocket 31 is provided with connecting pins 32 that are eccentric with respect to these stud shafts 39 by a predetermined amount, for example, r, and the connecting pins 32 are respectively formed on the back surface 13 b side of the polishing board 13. The fitting hole 40 is fitted so as to be relatively rotatable. The interval between the pair of front and rear pin fitting holes 40 is set to be the same as the interval between the stud shafts 39 of the synchronous sprocket 31, and the pair of connecting pins 32 and the pair of stud shafts 39 together with the synchronous sprocket 31 and the polishing disc 13 are four. Configure a joint parallel link mechanism. The toothed belt 30 is wound around a drive sprocket 29 and a pair of synchronous sprockets 31. The guide pulley 33 is for ensuring the meshing of the synchronous sprocket 31 and the toothed belt 30 and is attached to the mounting surface 11a of the base 11 along the left-right direction (left-right direction in FIG. 3). The position can be adjusted. More specifically, the guide pulley 33 is rotatably mounted on the support plate 41. The insertion position of the long hole 41a formed in the support plate 41 through which the fixing bolt 43 is screwed into the embedded nut 42 fixed to the base 11 so that the upper end does not protrude from the mounting surface 11a of the base 11 is adjusted. It can be done.
 このような構成により、研磨盤駆動用モーター28を作動させると、研磨盤13はその姿勢を変えることなく、研磨盤支持部材12の上をスタッド軸39と平行な軸線周りに旋回半径をrとする旋回運動を行う。 With this configuration, when the polishing disk drive motor 28 is operated, the polishing disk 13 does not change its posture, and the turning radius is set to r around the axis parallel to the stud shaft 39 on the polishing disk support member 12. Make a swivel motion.
 ベース11の前後方向(本発明における第1の方向)に延在する一対の案内部材15は、研磨盤13を間に挾んでベース11の取り付け面11aの左右方向(本発明における第2の方向)両側に固定される。より具体的には、上端がベース11の取り付け面11aから突出しないようにベース11に固定される埋め込みナット44と、この埋め込みナット44に案内部材15を貫通してねじ込まれる固定用ボルト45とを用いて一対の案内部材15がベース11の取り付け面11aに固定される。なお、この明細書において「前」は図3中、下を意味し、「後」は上を意味する。また、これと交差する「左右」は、図3中、左右を意味する。案内部材15は、ベース11の取り付け面11aと平行なベース11の前後方向に延在する案内面15aを有する。 The pair of guide members 15 extending in the front-rear direction of the base 11 (first direction in the present invention) is sandwiched between the polishing discs 13 in the left-right direction of the mounting surface 11a of the base 11 (second direction in the present invention). ) Fixed on both sides. More specifically, an embedded nut 44 that is fixed to the base 11 so that the upper end does not protrude from the mounting surface 11 a of the base 11, and a fixing bolt 45 that is screwed through the guide member 15 into the embedded nut 44. The pair of guide members 15 is fixed to the mounting surface 11 a of the base 11 by using the above. In this specification, “front” means lower in FIG. 3, and “rear” means upper. Further, “left and right” intersecting with this means left and right in FIG. The guide member 15 has a guide surface 15 a extending in the front-rear direction of the base 11 parallel to the mounting surface 11 a of the base 11.
 一対の案内部材15には、案内部材15の案内面15aに沿って移動可能なスライダー16が取り付けられる。スライダー16は、一対の案内部材15に対してそれぞれ摺動自在に保持される一対の摺動ブロック46と、研磨盤13を跨ぐようにその上方に配される連結板47と、一対の連結ブロック48とを有する。連結板47は、その左右両端部に配される一対の連結ブロック48と、先の摺動ブロック46とを一体的に連結する。連結ブロック48は、ファイバーホルダー18を精度良く配置するためのホルダー取り付け面48aを有する。 The slider 16 that can move along the guide surface 15a of the guide member 15 is attached to the pair of guide members 15. The slider 16 includes a pair of sliding blocks 46 slidably held with respect to the pair of guide members 15, a connecting plate 47 disposed above the polishing board 13 so as to straddle the polishing board 13, and a pair of connecting blocks. 48. The connecting plate 47 integrally connects the pair of connecting blocks 48 disposed at the left and right ends thereof and the previous sliding block 46. The connection block 48 has a holder mounting surface 48a for arranging the fiber holder 18 with high accuracy.
 ベース11の取り付け面11aの上に配されるスライダー駆動手段17は、案内部材15に取り付けられたスライダー16をその案内面15aに沿って前後に往復運動させるためのものである。本実施形態におけるスライダー駆動手段17は、スライダー駆動用モーター49と、駆動歯車50と、従動歯車51と、偏心ピン52と、案内溝53とを有する。 The slider drive means 17 arranged on the attachment surface 11a of the base 11 is for reciprocating the slider 16 attached to the guide member 15 back and forth along the guide surface 15a. The slider drive means 17 in this embodiment includes a slider drive motor 49, a drive gear 50, a driven gear 51, an eccentric pin 52, and a guide groove 53.
 本実施形態におけるスライダー駆動用モーター49はパルスモーターであり、前記研磨盤駆動用モーター28と共に先の座板34に下向きに固定され、これらはカバー54で覆われている。駆動歯車50は、ベース11の取り付け面11aと座板34との間に座板34から下向きに突出するスライダー駆動用モーター49の回転軸49aに一体的に嵌着されている。この駆動歯車50と噛み合う本発明における回転部材としての従動歯車51は、ベース11の取り付け面11aの後端部に配される。このため、上端がベース11の取り付け面11aから突出しないようにベース11の後端部に固定される埋め込みナット55と、この埋め込みナット55に軸受56を貫通してねじ込まれる固定ボルト57とを用いて従動歯車51が軸受56を介してベース11の取り付け面11aの上に回転自在に支持される。従動歯車51の上端面51aには、この従動歯車51の回転軸線に対して所定量、例えばsだけ偏心した偏心ピン52が突設されている。この偏心ピン52は、連結板47の裏面47a側に形成された案内溝53に対して摺動自在に係合している。先の偏心量sの2倍以上の長さを有する案内溝53は、ベース11の左右方向に沿って延在する。 The slider drive motor 49 in the present embodiment is a pulse motor, and is fixed downward to the previous seat plate 34 together with the polishing disk drive motor 28, and these are covered with a cover 54. The drive gear 50 is integrally fitted between a mounting surface 11 a of the base 11 and a seat plate 34 on a rotary shaft 49 a of a slider drive motor 49 that projects downward from the seat plate 34. A driven gear 51 as a rotating member in the present invention that meshes with the drive gear 50 is disposed at the rear end portion of the attachment surface 11 a of the base 11. For this reason, the embedded nut 55 fixed to the rear end portion of the base 11 so that the upper end does not protrude from the mounting surface 11a of the base 11 and the fixing bolt 57 screwed through the bearing 56 into the embedded nut 55 are used. Thus, the driven gear 51 is rotatably supported on the mounting surface 11 a of the base 11 via the bearing 56. On the upper end surface 51 a of the driven gear 51, an eccentric pin 52 that is eccentric by a predetermined amount, for example, s with respect to the rotation axis of the driven gear 51 is projected. The eccentric pin 52 is slidably engaged with a guide groove 53 formed on the back surface 47 a side of the connecting plate 47. The guide groove 53 having a length that is twice or more the previous eccentric amount s extends along the left-right direction of the base 11.
 従って、スライダー駆動用モーター49を作動させると、従動歯車51の回転に伴ってその偏心ピン52に係合する案内溝53を持ったスライダー16の連結板47が案内部材15の案内面15aに沿って前後に2sのストロークで往復動することとなる。この場合、本実施形態においては従動歯車51の回転速度(正確には偏心ピン52の周速度)を制御する回転速度制御手段58を具えており、その制御ブロックを模式的に図8に示す。この回転速度制御手段58により、ベース11の前後方向に沿ったスライダー16の直線移動速度がその往復動端を除いて一定となるように制御される。より具体的には、スライダー16の往復動端のうちの何れか一方を基準位置とし、この基準位置からの時間をt、スライダー16の移動速度をc、偏心ピン52の偏心量ならびにその基準位置からの回転角およびその角速度をsならびにθおよびθ(t)で表した場合、回転速度制御手段58は、偏心ピン52の角速度θ(t)が次式
  0≦θ≦πの場合、  θ(t)=cos-1{1-(t・c/s)}
  π≦θ≦2πの場合、 θ(t)=cos-1{(t・c/s)-3}
を満たすように、従動歯車51の偏心ピン52の回転速度を制御する。このため、本実施形態における回転速度制御手段58は、本発明の位置検出手段としての光電スイッチ59と、タイマー60と、目標回転速度設定部61と、駆動パルス設定部62と、モータードライバー63とを有する。
Accordingly, when the slider driving motor 49 is operated, the connecting plate 47 of the slider 16 having the guide groove 53 that engages with the eccentric pin 52 as the driven gear 51 rotates is along the guide surface 15 a of the guide member 15. Thus, it will reciprocate with a stroke of 2 s back and forth. In this case, in this embodiment, a rotational speed control means 58 for controlling the rotational speed of the driven gear 51 (more precisely, the peripheral speed of the eccentric pin 52) is provided, and the control block is schematically shown in FIG. The rotational speed control means 58 controls the linear movement speed of the slider 16 along the front-rear direction of the base 11 to be constant except for the reciprocating end. More specifically, any one of the reciprocating ends of the slider 16 is set as a reference position, the time from the reference position is t, the moving speed of the slider 16 is c, the eccentric amount of the eccentric pin 52 and its reference position. , And θ and θ (t), the rotational speed control means 58 is configured so that the angular velocity θ (t) of the eccentric pin 52 is θ ( t) = cos −1 {1- (t · c / s)}
When π ≦ θ ≦ 2π, θ (t) = cos −1 {(t · c / s) −3}
The rotational speed of the eccentric pin 52 of the driven gear 51 is controlled so as to satisfy the above condition. For this reason, the rotation speed control means 58 in this embodiment includes a photoelectric switch 59 as a position detection means of the present invention, a timer 60, a target rotation speed setting section 61, a drive pulse setting section 62, and a motor driver 63. Have
 本実施形態では、従動歯車51の回転軸線に対して偏心ピン52が最も後方に位置する図3に示す偏心ピン52の回転位置を基準位置(0度)とし、逆に偏心ピン52が最も前方に位置する偏心ピン52の回転位置を180度としている。光電スイッチ59は座板34の前端部に固定されており、スライダー16がその後退端に達した場合、このスライダー16の後方に突設されたドッグ64が光電スイッチ59を遮ることにより、光電スイッチ59がオフとなってその後退端を検出するようになっている。タイマー60は、この光電スイッチ59がオフとなった時点、すなわちスライダー16の基準位置を検出した時点からの時間をカウントして目標回転速度設定部61に出力する。目標回転速度設定部61は、このタイマー60によるカウント値に応じて従動歯車51の偏心ピン52の目標回転速度Vを設定し、これを駆動パルス設定部62に出力する。駆動パルス設定部62は、この目標回転速度設定部61によって設定された目標回転速度Vに対応してスライダー駆動用モーター49を駆動するための駆動パルスPを設定し、これをモータードライバー63に出力する。モータードライバー63は、この駆動パルス設定部62にて設定された駆動パルスPをスライダー駆動用モーター49に出力してその回転を制御する。 In the present embodiment, the rotational position of the eccentric pin 52 shown in FIG. 3 where the eccentric pin 52 is located most rearward with respect to the rotation axis of the driven gear 51 is the reference position (0 degree), and conversely, the eccentric pin 52 is most forward. The rotational position of the eccentric pin 52 located at is 180 degrees. The photoelectric switch 59 is fixed to the front end portion of the seat plate 34, and when the slider 16 reaches its retracted end, the dog 64 projecting behind the slider 16 blocks the photoelectric switch 59, so that the photoelectric switch 59 is turned off to detect the backward end. The timer 60 counts the time from when the photoelectric switch 59 is turned off, that is, when the reference position of the slider 16 is detected, and outputs the counted time to the target rotational speed setting unit 61. The target rotation speed setting unit 61 sets the target rotation speed V of the eccentric pin 52 of the driven gear 51 according to the count value by the timer 60 and outputs this to the drive pulse setting unit 62. The drive pulse setting unit 62 sets a drive pulse P for driving the slider drive motor 49 corresponding to the target rotation speed V set by the target rotation speed setting unit 61, and outputs this to the motor driver 63. To do. The motor driver 63 outputs the drive pulse P set by the drive pulse setting unit 62 to the slider drive motor 49 to control its rotation.
 ここで、偏心ピン52の偏心量sが33mmかつスライダー16を毎秒5mmの速度で往復直線運動させる場合、0.2秒毎の偏心ピン52の基準位置からの回転角θと、その角速度θ(t)と、従動歯車51の偏心ピン52の目標回転速度Vと、駆動パルスPとの関係を表1、および表2に示す。 Here, when the eccentric amount s of the eccentric pin 52 is 33 mm and the slider 16 is reciprocated linearly at a speed of 5 mm per second, the rotational angle θ from the reference position of the eccentric pin 52 every 0.2 seconds and the angular velocity θ ( Tables 1 and 2 show the relationship between t), the target rotational speed V of the eccentric pin 52 of the driven gear 51, and the drive pulse P.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 上述したように、本発明においては0≦θ≦πの場合にθ(t)=cos-1{1-(t・c/s)}かつπ≦θ≦2πの場合にθ(t)=cos-1{(t・c/s)-3}となるように、先の目標回転速度設定部61および駆動パルス設定部62には、表1に示したデーターが予め記憶されている。これらのデーターは、タイマー60からの信号に基づいて対応する値が例えば0.2秒毎に出力されるようになっている。このようなスライダー駆動手段17の従動歯車51の偏心ピン52の回転速度とスライダー16の移動速度との関係を図9に示す。比較のため、偏心ピン52の回転速度を一定に保った従来の構成のものを破線にて示す。従動歯車51の回転速度が従来のように破線で示す一定速度の場合、スライダー16の移動速度は、図中、破線で示すような正弦波形で変化する。このような変化は、研磨フィルム27の均一な摩耗を損なうこととなる。

As described above, in the present invention, θ (t) = cos −1 {1- (t · c / s)} when 0 ≦ θ ≦ π and θ (t) = when π ≦ θ ≦ 2π. The data shown in Table 1 is stored in advance in the target rotation speed setting unit 61 and the drive pulse setting unit 62 so that cos −1 {(t · c / s) −3}. For these data, corresponding values are output every 0.2 seconds based on a signal from the timer 60, for example. FIG. 9 shows the relationship between the rotational speed of the eccentric pin 52 of the driven gear 51 of the slider driving means 17 and the moving speed of the slider 16. For comparison, a conventional configuration in which the rotational speed of the eccentric pin 52 is kept constant is indicated by a broken line. When the rotational speed of the driven gear 51 is a constant speed indicated by a broken line as in the prior art, the moving speed of the slider 16 changes in a sine waveform as indicated by the broken line in the figure. Such a change impairs uniform wear of the polishing film 27.
 ところで、従動歯車51の偏心ピン52の回転位置Pが0度および180度に近づくと、その角速度θ(t)は無限に大きくなる。これは、スライダー16の移動速度を一定速度cに制御するためである。実際には、従動歯車51の偏心ピン52の回転位置Pが0度および180度の場合、スライダー16の移動方向が前後に切り変わるので、スライダー16の移動速度は一定速度cから0まで減速し、次いで逆方向に0から一定速度cまで増速されることになる。つまり、スライダー駆動用モーター49の回転速度に応じて従動歯車51の回転速度が有限であるので、スライダー16が一定速度cから徐々に減速することになり、結果としてスライダー16の移動方向を無理なく変えさせることができる。従って、図9中の実線で示すように従動歯車51の偏心ピン52の目標回転速度Vを変化させることにより、スライダー16の移動速度を図中、実線で示すような一定速度に設定することが可能となる。この結果、後述するように研磨フィルム27をより均一に摩耗させることができ、その寿命を延ばして交換頻度を下げることが可能となる。 Incidentally, when the rotational position P of the eccentric pin 52 of the driven gear 51 approaches 0 degrees and 180 degrees, the angular velocity θ (t) increases infinitely. This is for controlling the moving speed of the slider 16 to a constant speed c. Actually, when the rotational position P of the eccentric pin 52 of the driven gear 51 is 0 degree and 180 degrees, the moving direction of the slider 16 is switched back and forth, so that the moving speed of the slider 16 is reduced from the constant speed c to 0. Then, the speed is increased from 0 to a constant speed c in the reverse direction. That is, since the rotational speed of the driven gear 51 is finite according to the rotational speed of the slider drive motor 49, the slider 16 gradually decelerates from the constant speed c, and as a result, the direction of movement of the slider 16 can be set comfortably. It can be changed. Therefore, by changing the target rotational speed V of the eccentric pin 52 of the driven gear 51 as shown by the solid line in FIG. 9, the moving speed of the slider 16 can be set to a constant speed as shown by the solid line in the figure. It becomes possible. As a result, as will be described later, the polishing film 27 can be more evenly worn, extending its life and reducing the replacement frequency.
 本実施形態におけるファイバーホルダー18の外観を図10に示し、その正面形状および平面形状をそれぞれ一部破断して図11および図12に示し、図11中のXIII-XIII線に沿った矢視断面形状を図13に示し、図11中のXIV-XIV線に沿った矢視断面形状を図14に示す。ファイバーホルダー18は、光コネクター取り付け板65と、案内支柱66と、昇降ブロック67と、押圧部材68とを有する。ファイバーホルダー18は、光コネクター取り付け板65の裏面に形成された取り付け基準面65aを連結ブロック48のホルダー取り付け面48aに当接させた状態で、連結ブロック48に対し取り外し可能に固定される。 The appearance of the fiber holder 18 in the present embodiment is shown in FIG. 10, the front shape and the planar shape are partially broken, respectively, and shown in FIGS. 11 and 12, taken along line XIII-XIII in FIG. The shape is shown in FIG. 13, and the cross-sectional shape taken along the line XIV-XIV in FIG. 11 is shown in FIG. The fiber holder 18 includes an optical connector mounting plate 65, a guide column 66, a lifting block 67, and a pressing member 68. The fiber holder 18 is detachably fixed to the connection block 48 in a state where the attachment reference surface 65 a formed on the back surface of the optical connector attachment plate 65 is in contact with the holder attachment surface 48 a of the connection block 48.
 光コネクター取り付け板65には、その長手方向(図11中、左右方向)に沿って所定間隔pで配列する複数の光コネクター装着孔69が前後2列形成されている。一方の列の光コネクター装着孔69の配列間隔pに対し、他方の列の光コネクター装着孔69は、これらの配列方向に沿って1/2ピッチ、すなわちp/2だけずらして配列している。これら光コネクター装着孔69は、接続端面19a(図13参照)が研磨盤13に貼付された研磨フィルム27に押し当って研磨される光コネクター19を着脱可能に保持する本発明のファイバー保持部として機能する。 The optical connector mounting plate 65 has a plurality of front and rear optical connector mounting holes 69 arranged at a predetermined interval p along the longitudinal direction (left and right direction in FIG. 11). With respect to the arrangement interval p of the optical connector mounting holes 69 in one row, the optical connector mounting holes 69 in the other row are arranged so as to be shifted by 1/2 pitch, that is, p / 2 along these arrangement directions. . These optical connector mounting holes 69 serve as a fiber holding portion of the present invention that removably holds the optical connector 19 that is polished when the connection end surface 19a (see FIG. 13) is pressed against the polishing film 27 affixed to the polishing board 13. Function.
 なお、光コネクター装着孔69の配列間隔pは、研磨盤13の旋回半径rが光コネクター装着孔69の配列間隔pの整数倍とならないように、同期スプロケット31の連結ピン32の偏心量rに関係付けて設定されている。すなわち、r≠np(ただしnは整数)とすることによって、研磨フィルム27に対する光コネクター19の接続端面19aの研磨軌跡の重なりを回避し、研磨フィルム27の有効利用を図ることができる。例えば、r=0.45p程度が研磨フィルム27を最大限に有効に利用するために好ましいと言えよう。 The arrangement interval p of the optical connector mounting holes 69 is set to an eccentricity r of the connecting pins 32 of the synchronous sprocket 31 so that the turning radius r of the polishing board 13 is not an integral multiple of the arrangement interval p of the optical connector mounting holes 69. It is set in association. That is, by setting r ≠ np (where n is an integer), it is possible to avoid overlapping of the polishing trajectory of the connection end surface 19a of the optical connector 19 with respect to the polishing film 27 and to effectively use the polishing film 27. For example, it can be said that r = 0.45p is preferable in order to make effective use of the polishing film 27 to the maximum extent.
 左右方向に隔てて配される相互に平行な一対の案内支柱66は、これらの下端部がそれぞれボルト70を介して光コネクター取り付け板65の上に固定され、ベース11の取り付け面11aに対して垂直方向に延在する。 A pair of mutually parallel guide columns 66 arranged in the left-right direction are fixed on the optical connector mounting plate 65 via bolts 70 at their lower ends, and are attached to the mounting surface 11 a of the base 11. Extends vertically.
 昇降ブロック67は、下部ブラケット71と、上部ブラケット72と、これらを連結する複数本の連結軸73とをさらに有する。下部ブラケット71には、光コネクター装着孔69に関連付けて所定間隔pで配列する連結軸73の下端部が一体的に固定されており、これら連結軸73の上端には固定ボルト74を介して上部ブラケット72が一体的に連結されている。個々の連結軸73には、光コネクター19を下向きに押圧するための押圧部材68がそれぞれベース11の取り付け面11aに対して垂直な方向に摺動自在に嵌着されている。また、上部ブラケット72と個々の押圧部材68との間には、押圧部材68を下部ブラケット71側に付勢するための圧縮コイルばね75が介装され、連結軸73がこれらを挿通した状態となっている。本実施形態では、ばね定数の小さな長い圧縮コイルばね75を用いることで光コネクター19に加えられる押圧力のばらつきが少なくなるように配慮している。昇降ブロック67の下部および上部ブラケット71,72の左右両端部には案内支柱66が挿通され、案内支柱66に対して昇降ブロック67が昇降自在となっている。案内支柱66には、上下方向に延在する溝孔66aが形成されている。この溝孔66aを通って案内支柱66を前後方向に貫通する貫通ピン76の両端部が上部ブラケット72に対して嵌着され、案内支柱66から昇降ブロック67が抜け外れないように配慮されている。クランプピン77を有する球形の把持部78が上部ブラケット72の左右両端部に配されている。クランプピン77は、その先端が案内支柱66と対向する左右方向に摺動自在に上部ブラケット72に保持されている。クランプピン77の先端部は、案内支柱66の上端側と下部とに形成された位置決め孔79,80に対して嵌合可能である。位置決め孔79,80は、昇降ブロック67の退避位置と加工位置とを規定する。クランプピン77と上部ブラケット72との間には、クランプピン77の先端を案内支柱66側に付勢するばね81が組み込まれている。このばね81の付勢力に抗して作業者が把持部78を掴んでクランプピン77の先端が案内支柱66から離れるようにクランプピン77を引くことにより、昇降ブロック67が案内支柱66に対して昇降可能となる。クランプピン77が下方の位置決め孔79に嵌合された図11の実線で示す状態では、押圧部材68が圧縮コイルばね75のばね力によって光コネクター装着孔69に装着された光コネクター19に押し当たる。この結果、その接続端面19aを図13に示すように光コネクター取り付け板65の下面から突出させる。これに対し、クランプピン77が上方の位置決め孔80に嵌合された図11の二点鎖線で示す状態では、押圧部材68が昇降ブロック67と共に光コネクター取り付け板65の上方に退避する。この結果、光コネクター取り付け板65の光コネクター装着孔69に対する光コネクター19の着脱を安全かつ容易に行うことができる。 The elevating block 67 further includes a lower bracket 71, an upper bracket 72, and a plurality of connecting shafts 73 that connect them. The lower bracket 71 is integrally fixed with lower ends of connecting shafts 73 arranged at a predetermined interval p in association with the optical connector mounting holes 69, and the upper ends of these connecting shafts 73 are connected to upper portions via fixing bolts 74. A bracket 72 is integrally connected. A pressing member 68 for pressing the optical connector 19 downward is fitted to each connecting shaft 73 so as to be slidable in a direction perpendicular to the mounting surface 11 a of the base 11. Further, a compression coil spring 75 for biasing the pressing member 68 toward the lower bracket 71 is interposed between the upper bracket 72 and each pressing member 68, and the connecting shaft 73 is inserted through these. It has become. In the present embodiment, consideration is given to reducing variation in the pressing force applied to the optical connector 19 by using a long compression coil spring 75 having a small spring constant. Guide struts 66 are inserted into the lower part of the lift block 67 and the left and right ends of the upper brackets 71 and 72, and the lift block 67 can be lifted and lowered with respect to the guide strut 66. The guide column 66 is formed with a groove 66a extending in the vertical direction. Both end portions of the penetrating pin 76 passing through the guide post 66 in the front-rear direction through the groove 66a are fitted to the upper bracket 72 so that the lifting block 67 does not come off from the guide post 66. . Spherical gripping portions 78 having clamp pins 77 are disposed at both left and right end portions of the upper bracket 72. The clamp pin 77 is held by the upper bracket 72 so that its tip is slidable in the left-right direction facing the guide column 66. The distal end portion of the clamp pin 77 can be fitted into positioning holes 79 and 80 formed on the upper end side and the lower portion of the guide column 66. The positioning holes 79 and 80 define the retracted position and the machining position of the lifting block 67. Between the clamp pin 77 and the upper bracket 72, a spring 81 for urging the tip of the clamp pin 77 toward the guide column 66 is incorporated. The operator grips the grip portion 78 against the biasing force of the spring 81 and pulls the clamp pin 77 so that the tip of the clamp pin 77 is separated from the guide column 66, so that the lifting block 67 is moved against the guide column 66. It can be moved up and down. In the state shown by the solid line in FIG. 11 in which the clamp pin 77 is fitted in the lower positioning hole 79, the pressing member 68 is pressed against the optical connector 19 mounted in the optical connector mounting hole 69 by the spring force of the compression coil spring 75. . As a result, the connection end surface 19a is projected from the lower surface of the optical connector mounting plate 65 as shown in FIG. On the other hand, in the state indicated by the two-dot chain line in FIG. 11 in which the clamp pin 77 is fitted in the upper positioning hole 80, the pressing member 68 is retracted above the optical connector mounting plate 65 together with the lifting block 67. As a result, the optical connector 19 can be attached to and detached from the optical connector mounting hole 69 of the optical connector mounting plate 65 safely and easily.
 従って、光コネクター取り付け板65の光コネクター装着孔69に対して光コネクター19の着脱作業を行う際には、昇降ブロック67を退避位置に上昇させることにより、押圧部材68が図14中、二点鎖線で示す位置まで上昇する。これにより、光コネクター装着孔69に対する光コネクター19の着脱作業を容易に行うことができる。 Therefore, when the optical connector 19 is attached to or detached from the optical connector mounting hole 69 of the optical connector mounting plate 65, the lifting block 67 is raised to the retracted position, whereby the pressing member 68 is moved to two points in FIG. It rises to the position indicated by the chain line. Thereby, the attachment / detachment work of the optical connector 19 with respect to the optical connector mounting hole 69 can be easily performed.
 なお、本実施形態では、筒状をなす案内支柱66内にばね82が収容され、その上端が自重によって案内支柱66の下部に位置する昇降ブロック67の貫通ピン76に当接してこれを押し上げるようになっている。クランプピン77を下方の位置決め孔79に嵌合しない状態では、ばね82のばね力によって昇降ブロック67が押し上げられ、押圧部材68が光コネクター装着孔69に装着された光コネクター19に押し当たらないように設定されている。つまり、このばね82の力に抗して昇降ブロック67を押し下げた状態でクランプピン77の先端を下方の位置決め孔79に嵌合させる必要がある。こうすることにより、光コネクター装着孔69に装着された光コネクター19の接続端面19aに過大な押圧力が加わらないように配慮している。 In the present embodiment, the spring 82 is housed in the cylindrical guide column 66, and the upper end of the spring 82 abuts against the penetrating pin 76 of the lifting block 67 located below the guide column 66 by its own weight to push it up. It has become. When the clamp pin 77 is not fitted into the lower positioning hole 79, the lifting block 67 is pushed up by the spring force of the spring 82, so that the pressing member 68 does not press against the optical connector 19 mounted in the optical connector mounting hole 69. Is set to That is, it is necessary to fit the tip of the clamp pin 77 into the lower positioning hole 79 in a state where the lifting block 67 is pushed down against the force of the spring 82. By doing so, it is considered that an excessive pressing force is not applied to the connection end surface 19a of the optical connector 19 mounted in the optical connector mounting hole 69.
 本実施形態における光ファイバー研磨装置10は、ホルダー着脱手段83をさらに具えている。このホルダー着脱手段83は、ファイバーホルダー18をスライダー16に対して着脱自在に連結するためのものであり、本実施形態ではトグルクランプを用いている。すなわち、連結板47と共に左右両端部が摺動ブロック46にねじ止めされた連結ブロック48には、左右一対のトグルクランプ83が固定されている。トグルクランプ83のロックレバー84を図1に示すクランプ状態に起こした場合、クランプアーム85の先端部が研磨盤13と対向するファイバーホルダー18の光コネクター取り付け板65の上面にそれぞれ押し当たる。これにより、光コネクター取り付け板65の取り付け基準面65aに対して連結ブロック48のホルダー取り付け面48aが当接して密着し、ファイバーホルダー18をスライダー16の連結ブロック48に対して一体的に固定する。この場合、ファイバーホルダー18に取り付けられた光コネクター19の接続端面19aが圧縮コイルばね75による付勢力によって研磨盤13の研磨フィルム27に対し適切な押圧力でそれぞれ押し当てられる。逆に、トグルクランプ83のロックレバー84を倒してアンクランプ状態にし、ファイバーホルダー18の昇降ブロック67を退避位置に上昇させた場合、研磨盤13からファイバーホルダー18を取り外すことが可能となる。この場合、ファイバーホルダー18に対する光コネクター19の着脱時にその接続端面19aを研磨フィルム27に当接させることなく、容易かつ安全に着脱作業を行うことができる。 The optical fiber polishing apparatus 10 in this embodiment further includes a holder attaching / detaching means 83. The holder attaching / detaching means 83 is for detachably connecting the fiber holder 18 to the slider 16 and uses a toggle clamp in this embodiment. That is, a pair of left and right toggle clamps 83 are fixed to a connecting block 48 whose left and right ends are screwed to the sliding block 46 together with the connecting plate 47. When the lock lever 84 of the toggle clamp 83 is raised to the clamped state shown in FIG. 1, the tip of the clamp arm 85 presses against the upper surface of the optical connector mounting plate 65 of the fiber holder 18 facing the polishing disc 13. As a result, the holder mounting surface 48a of the connecting block 48 comes into contact with and closely contacts the mounting reference surface 65a of the optical connector mounting plate 65, and the fiber holder 18 is fixed integrally to the connecting block 48 of the slider 16. In this case, the connection end surface 19 a of the optical connector 19 attached to the fiber holder 18 is pressed against the polishing film 27 of the polishing board 13 with an appropriate pressing force by the urging force of the compression coil spring 75. Conversely, when the lock lever 84 of the toggle clamp 83 is tilted to the unclamped state and the lifting block 67 of the fiber holder 18 is raised to the retracted position, the fiber holder 18 can be removed from the polishing board 13. In this case, when the optical connector 19 is attached to or detached from the fiber holder 18, the attaching / detaching operation can be easily and safely performed without bringing the connection end face 19 a into contact with the polishing film 27.
 なお、上述したトグルクランプ83のロックレバー84をクランプ状態に起こした場合、光コネクター19の接続端面19aが研磨盤13の研磨フィルム27に当接する。このため、光コネクター19は押圧部材68と共に圧縮コイルばね75のばね力に抗して押し上げられる。従って、研磨フィルム27に対して適切な加工圧が光コネクター19の接続端面19aに作用するように、ファイバーホルダー18の昇降ブロック67の加工位置、すなわち案内支柱66における下側の位置決め孔79の位置が設定される。 In addition, when the lock lever 84 of the toggle clamp 83 described above is raised to the clamped state, the connection end surface 19a of the optical connector 19 comes into contact with the polishing film 27 of the polishing board 13. For this reason, the optical connector 19 is pushed up against the spring force of the compression coil spring 75 together with the pressing member 68. Accordingly, the processing position of the lifting block 67 of the fiber holder 18, that is, the position of the lower positioning hole 79 in the guide column 66 so that an appropriate processing pressure acts on the polishing film 27 on the connection end surface 19 a of the optical connector 19. Is set.
 上述したように、ベース11の取り付け面11aを基準として研磨盤支持部材12,研磨盤旋回手段14,案内部材15,スライダー駆動手段17などを配した場合、所定の精度を持つ市販の機械部品を流用して所望の組立精度を容易に達成することができる。 As described above, when the polishing disk support member 12, the polishing disk turning means 14, the guide member 15, the slider driving means 17 and the like are arranged with reference to the mounting surface 11a of the base 11, a commercially available mechanical component having a predetermined accuracy is used. The desired assembly accuracy can be easily achieved by diverting.
 本実施例における光ファイバー研磨装置10を用いて24本の光コネクター19の接続端面19aを研磨した場合、研磨盤13に対するこれらの中心の移動軌跡を図15に模式的に示す。図15からも明らかなように、研磨作業中に研磨盤13に対して光コネクター19の接続端面19aの移動軌跡が完全に重なり合わないようにすることができる。従って、研磨盤13の上に異物などが存在しても、同時に研磨加工されるすべての光コネクター19の接続端面19aが損傷を受けるような不具合を回避することが可能である。さらに、この状態から研磨フィルム27の向きを90度変えて新たな24本の光コネクター19の接続端面19aを研磨することも可能である。この状態を図16に示す。特に研磨フィルム27を正方形状にすることによって、研磨フィルム27のほぼ全面を有効利用することができ、研磨フィルム27の寿命を従来のものよりも延ばすことができることを確認できた。 When the connection end faces 19a of the 24 optical connectors 19 are polished using the optical fiber polishing apparatus 10 in this embodiment, the movement trajectory of these centers with respect to the polishing board 13 is schematically shown in FIG. As is clear from FIG. 15, the movement trajectory of the connection end surface 19a of the optical connector 19 can be prevented from completely overlapping with the polishing board 13 during the polishing operation. Therefore, even if foreign matter or the like is present on the polishing board 13, it is possible to avoid a problem that the connection end surfaces 19a of all the optical connectors 19 that are simultaneously polished are damaged. Furthermore, it is also possible to polish the connection end surfaces 19a of the new 24 optical connectors 19 by changing the direction of the polishing film 27 by 90 degrees from this state. This state is shown in FIG. In particular, by making the polishing film 27 square, it was confirmed that almost the entire surface of the polishing film 27 could be used effectively, and that the life of the polishing film 27 could be extended compared to the conventional one.
 なお、本発明はその特許請求の範囲に記載された事項のみから解釈されるべきものであり、上述した実施形態においても、本発明の概念に包含されるあらゆる変更や修正が記載した事項以外に可能である。例えば、研磨盤支持部材12や研磨盤旋回手段14,案内部材15,スライダー駆動手段17,ホルダー着脱手段83などは、上述した実施形態以外に任意の構成のものを必要に応じて採用することができる。つまり、上述した実施形態におけるすべての事項は、本発明を限定するためのものではなく、本発明とは直接的に関係のないあらゆる構成を含め、その用途や目的などに応じて任意に変更し得るものである。 It should be noted that the present invention should be construed only from the matters described in the claims, and in the above-described embodiment, all the changes and modifications included in the concept of the present invention are other than those described. Is possible. For example, as the polishing plate support member 12, the polishing plate turning means 14, the guide member 15, the slider driving means 17, the holder attaching / detaching means 83, etc., any configuration other than the above-described embodiment may be adopted as necessary. it can. That is, all matters in the above-described embodiment are not intended to limit the present invention, and include any configuration not directly related to the present invention. To get.
 10 光ファイバー研磨装置
 11 ベース
 11a 取り付け面
 12 研磨盤支持部材
 13 研磨盤
 13a 研磨面
 13b 裏面
 14 研磨盤旋回手段
 15 案内部材
 15a 案内面
 16 スライダー
 17 スライダー駆動手段
 18 ファイバーホルダー
 18a 載置面
 19 光コネクター
 19a 接続端面
 20 台座
 20a 上端面
 20b 下端面
 21 ボールベアーユニット
 22 リテーナー
 23 鋼球
 24 埋め込みナット
 25 固定ボルト
 26 弾性シート
 27 研磨フィルム
 28 研磨盤駆動用モーター
 28a 回転軸
 29 駆動スプロケット
 30 歯付きベルト
 31 同期スプロケット
 32 連結ピン
 33 案内プーリー
 34 座板
 35 支柱
 36 埋め込みナット
 37 スペーサー
 38 埋め込みナット
 39 スタッド軸
 40 ピン嵌合孔
 41 支持板
 42 埋め込みナット
 43 固定ボルト
 44 埋め込みナット
 45 固定用ボルト
 46 摺動ブロック
 47 連結板
 48 連結ブロック
 48a ホルダー取り付け面
 49 スライダー駆動用モーター
 49a 回転軸
 50 駆動歯車
 51 従動歯車
 51a 上端面
 52 偏心ピン
 53 案内溝
 54 カバー
 55 埋め込みナット
 56 軸受
 57 固定ボルト
 58 回転速度制御手段
 59 光電スイッチ
 60 タイマー
 61 目標回転速度設定部
 62 駆動パルス設定部
 63 モータードライバー
 64 ドッグ
 65 光コネクター取り付け板
 65a 取り付け基準面
 66 案内支柱
 66a 溝孔
 67 昇降ブロック
 68 押圧部材
 69 光コネクター装着孔
 70 ボルト
 71 下部ブラケット
 72 上部ブラケット
 73 連結軸
 74 固定ボルト
 75 圧縮コイルばね
 76 貫通ピン
 77 クランプピン
 78 把持部
 79,80 位置決め孔
 81,82 ばね
 83 トグルクランプ(ホルダー着脱手段)
 84 ロックレバー
 85 クランプアーム
 r,s 偏心量
 p 間隔
DESCRIPTION OF SYMBOLS 10 Optical fiber polisher 11 Base 11a Mounting surface 12 Polishing disk support member 13 Polishing disk 13a Polishing surface 13b Back surface 14 Polishing disk turning means 15 Guide member 15a Guide surface 16 Slider 17 Slider driving means 18 Fiber holder 18a Mounting surface 19 Optical connector 19a Connection end surface 20 Base 20a Upper end surface 20b Lower end surface 21 Ball bear unit 22 Retainer 23 Steel ball 24 Embedded nut 25 Fixing bolt 26 Elastic sheet 27 Polishing film 28 Polishing disk drive motor 28a Rotating shaft 29 Drive sprocket 30 Toothed belt 31 Synchronous sprocket 32 Connecting Pin 33 Guide Pulley 34 Seat Plate 35 Strut 36 Embedded Nuts 37 Spacer 38 Embedded Nuts 39 Stud Shaft 40 Pin Fitting Hole 41 Support Plate 42 Insertion nut 43 Fixing bolt 44 Embedded nut 45 Fixing bolt 46 Sliding block 47 Connecting plate 48 Connecting block 48a Holder mounting surface 49 Slider driving motor 49a Rotating shaft 50 Driving gear 51 Driven gear 51a Upper end surface 52 Eccentric pin 53 Guide groove 54 cover 55 embedded nut 56 bearing 57 fixing bolt 58 rotational speed control means 59 photoelectric switch 60 timer 61 target rotational speed setting section 62 drive pulse setting section 63 motor driver 64 dog 65 optical connector mounting plate 65a mounting reference surface 66 guide post 66a groove Hole 67 Elevating block 68 Press member 69 Optical connector mounting hole 70 Bolt 71 Lower bracket 72 Upper bracket 73 Connecting shaft 74 Fixing bolt 75 Compression coil spring 76 Through pin 77 Clamp pin 78 Grip part 79, 80 Positioning hole 81, 82 Spring 83 Toggle clamp (holder attachment / detachment means)
84 Lock lever 85 Clamp arm r, s Eccentricity p Interval

Claims (5)

  1.  第1の方向に延在する案内面を有する案内部材に取り付けられ、この案内部材の案内面に沿って移動可能なスライダーを往復運動させるためのスライダー駆動手段を具え、このスライダー駆動手段が、駆動モーターと、この駆動モーターにより前記第1の方向に対して直交する軸線回りに駆動回転する回転部材と、この回転部材の回転軸線と平行に、これから離れた位置に当該回転部材に突設された偏心ピンと、前記第1の方向および前記回転部材の回転軸線に対して直交する第2の方向に延在するように前記スライダーに形成され、前記偏心ピンが摺動自在に嵌合する案内溝とを有する往復直線運動装置であって、
     前記第1の方向に沿った前記スライダーの直線移動速度がその往復動端を除いて一定となるように、前記回転部材の回転速度を制御する回転速度制御手段を具えたことを特徴とする等速往復直線運動装置。
    A slider driving means is provided on a guide member having a guide surface extending in the first direction, and reciprocally moves a slider movable along the guide surface of the guide member. A motor, a rotating member that is driven to rotate about an axis orthogonal to the first direction by the drive motor, and a protruding member that protrudes from the rotating member in a position parallel to the rotating axis of the rotating member and away from the rotating member. An eccentric pin, and a guide groove formed on the slider so as to extend in the first direction and a second direction orthogonal to the rotation axis of the rotating member, and the eccentric pin is slidably fitted therein A reciprocating linear motion device comprising:
    Rotating speed control means for controlling the rotating speed of the rotating member is provided so that the linear moving speed of the slider along the first direction is constant except for its reciprocating end. High speed reciprocating linear motion device.
  2.  前記スライダーの往復動端のうちの何れか一方を基準位置とし、この基準位置からの時間をt、前記スライダーの移動速度をc、前記偏心ピンの偏心量ならびにその基準位置からの回転角およびその角速度をsならびにθおよびθ(t)で表した場合、前記回転速度制御手段は、前記偏心ピンの角速度θ(t)が次式
      0≦θ≦πの場合、  θ(t)=cos-1{1-(t・c/s)}
      π≦θ≦2πの場合、 θ(t)=cos-1{(t・c/s)-3}
    を満たすように、前記回転部材の回転速度を制御することを特徴とする請求項1に記載の等速往復直線運動装置。
    Any one of the reciprocating ends of the slider is set as a reference position, a time from the reference position is t, a moving speed of the slider is c, an eccentric amount of the eccentric pin, a rotation angle from the reference position, and When the angular velocity is represented by s, and θ and θ (t), the rotational speed control means, when the angular velocity θ (t) of the eccentric pin satisfies the following formula 0 ≦ θ ≦ π, θ (t) = cos −1 {1- (t · c / s)}
    When π ≦ θ ≦ 2π, θ (t) = cos −1 {(t · c / s) −3}
    The constant-speed reciprocating linear motion device according to claim 1, wherein the rotational speed of the rotating member is controlled so as to satisfy
  3.  前記駆動モーターがパルスモーターであり、前記回転速度制御手段は、
     前記第1の方向に沿った前記スライダーの基準位置を検出するための位置検出手段と、
     この位置検出手段が前記スライダーの基準位置を検出した時点からの時間をカウントするタイマーと、
     このタイマーによるカウント値に応じて前記回転部材の目標回転速度を設定する設定手段と、
     この設定手段によって設定された目標回転速度に対応して前記パルスモーターを駆動するための駆動パルスを設定する駆動パルス設定部と、
     この駆動パルス設定部にて設定された駆動パルスを前記駆動モーターに出力するモータードライバーと
    を有することを特徴とする請求項1または請求項2に記載の等速往復直線運動装置。
    The drive motor is a pulse motor, and the rotational speed control means is
    Position detecting means for detecting a reference position of the slider along the first direction;
    A timer that counts the time from when the position detecting means detects the reference position of the slider;
    Setting means for setting a target rotation speed of the rotating member according to a count value by the timer;
    A drive pulse setting section for setting a drive pulse for driving the pulse motor in accordance with the target rotational speed set by the setting means;
    The constant velocity reciprocating linear motion device according to claim 1, further comprising: a motor driver that outputs the driving pulse set by the driving pulse setting unit to the driving motor.
  4.  ベースと、
     このベースに設けられた研磨盤支持部材と、
     この研磨盤支持部材に対して移動可能に搭載された研磨盤と、
     この研磨盤を前記研磨盤支持部材に対して旋回運動させる研磨盤旋回手段と、
     前記ベースに設けられた案内部材と、
     この案内部材に取り付けられ、当該案内部材に沿って往復直線移動可能なスライダーと、
     このスライダーを前記案内部材に沿って往復直線運動させるスライダー駆動手段と、
     前記スライダーに連結され、かつ前記研磨盤の研磨面に押し当って研磨される光ファイバーの接続端部を着脱可能に保持するための複数のファイバー保持部を有し、これら複数のファイバー保持部が前記スライダーの往復直線運動方向と交差する方向に沿って配列するファイバーホルダーと
     を具え、前記スライダー駆動手段が請求項1から請求項3の何れかに記載の等速往復直線運動装置であることを特徴とする光ファイバー研磨装置。
    Base and
    A polishing disk support member provided on the base;
    A polishing machine mounted movably with respect to the polishing board support member;
    A polishing disk turning means for rotating the polishing board with respect to the polishing disk support member;
    A guide member provided on the base;
    A slider attached to the guide member and capable of reciprocating linear movement along the guide member;
    Slider driving means for reciprocating linear movement of the slider along the guide member;
    A plurality of fiber holding portions connected to the slider and detachably holding a connection end of an optical fiber that is pressed against the polishing surface of the polishing disc and polished; A constant velocity reciprocating linear motion device according to any one of claims 1 to 3, wherein the slider driving means is a fiber holder arranged along a direction intersecting a reciprocating linear motion direction of the slider. Optical fiber polishing equipment.
  5.  前記研磨盤の研磨面がこの研磨盤に対して着脱可能に貼付されるほぼ正方形状の研磨フィルムの表面によって形成されていることを特徴とする請求項4に記載の光ファイバー研磨装置。 The optical fiber polishing apparatus according to claim 4, wherein the polishing surface of the polishing disk is formed by a surface of a substantially square polishing film that is detachably attached to the polishing disk.
PCT/JP2010/000545 2010-01-29 2010-01-29 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus WO2011092745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000545 WO2011092745A1 (en) 2010-01-29 2010-01-29 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000545 WO2011092745A1 (en) 2010-01-29 2010-01-29 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus

Publications (1)

Publication Number Publication Date
WO2011092745A1 true WO2011092745A1 (en) 2011-08-04

Family

ID=44318764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000545 WO2011092745A1 (en) 2010-01-29 2010-01-29 Constant velocity reciprocating linear movement device and optical fiber polishing apparatus

Country Status (1)

Country Link
WO (1) WO2011092745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027180A1 (en) * 2014-08-18 2016-02-25 Tyco Electronics (Shanghai) Co. Ltd. Polishing apparatus
WO2020205362A1 (en) * 2019-03-29 2020-10-08 Commscope Technologies Llc Fiber optic connector fabrication carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264U (en) * 1988-06-03 1990-01-05
JPH1086051A (en) * 1996-09-13 1998-04-07 Canon Inc Grinding method
JP2003205446A (en) * 2002-01-09 2003-07-22 Ntt Advanced Technology Corp Polishing method and device
JP2009090415A (en) * 2007-10-10 2009-04-30 Okamoto Machine Tool Works Ltd Reciprocating and reversing movement method for machine tool table

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264U (en) * 1988-06-03 1990-01-05
JPH1086051A (en) * 1996-09-13 1998-04-07 Canon Inc Grinding method
JP2003205446A (en) * 2002-01-09 2003-07-22 Ntt Advanced Technology Corp Polishing method and device
JP2009090415A (en) * 2007-10-10 2009-04-30 Okamoto Machine Tool Works Ltd Reciprocating and reversing movement method for machine tool table

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027180A1 (en) * 2014-08-18 2016-02-25 Tyco Electronics (Shanghai) Co. Ltd. Polishing apparatus
JP2017525573A (en) * 2014-08-18 2017-09-07 タイコ エレクトロニクス (シャンハイ) カンパニー リミテッド Polishing equipment
KR101931595B1 (en) 2014-08-18 2018-12-21 타이코 일렉트로닉스 (상하이) 컴퍼니 리미티드 Abrasive device
WO2020205362A1 (en) * 2019-03-29 2020-10-08 Commscope Technologies Llc Fiber optic connector fabrication carrier

Similar Documents

Publication Publication Date Title
WO2012111290A1 (en) Polishing apparatus
CN211916313U (en) Two-sided burnishing device of sheet metal
CN107851575B (en) Flat processing device
WO2023217171A1 (en) Polishing apparatus
WO2011092744A1 (en) Optical fiber polishing apparatus
WO2011092745A1 (en) Constant velocity reciprocating linear movement device and optical fiber polishing apparatus
KR20190071178A (en) Grinding Apparatus
JP3773851B2 (en) Polishing equipment
CN210849627U (en) Flexible abrasive belt grinding and polishing device suitable for tail end of robot
CN213106054U (en) Metallographic grinding and polishing machine with multi-degree-of-freedom clamping device
CN111896411B (en) Sand paper performance testing machine
CN216179486U (en) Smooth surface polishing device for balancing weight
CN213673505U (en) Mechanical grinding and polishing integrated machine for metal products
CN212964297U (en) Grinding equipment for metallographic analysis
JP3673703B2 (en) Polishing tool
CN110103127B (en) Automatic burnishing machine of car compressor backup pad upper surface
CN212095845U (en) Mechanical equipment part polishing is with location clamping device
TWM624422U (en) Polishing apparatus with automatic compensation pressure reset function
CN108608326B (en) A kind of arc thin-wall part outer surface polishing machine tool
JP3773821B2 (en) Double-sided surface polishing machine
CN215881103U (en) Polishing device
CN217475614U (en) Shaft part polishing bush
JP2005335002A (en) Squeegee polishing device
CN219649545U (en) Grinding and polishing equipment
CN219853697U (en) Chamfering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP