WO2011091694A1 - 一种液浸光伏组件 - Google Patents

一种液浸光伏组件 Download PDF

Info

Publication number
WO2011091694A1
WO2011091694A1 PCT/CN2010/080280 CN2010080280W WO2011091694A1 WO 2011091694 A1 WO2011091694 A1 WO 2011091694A1 CN 2010080280 W CN2010080280 W CN 2010080280W WO 2011091694 A1 WO2011091694 A1 WO 2011091694A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
liquid
photovoltaic module
plate
insulating liquid
Prior art date
Application number
PCT/CN2010/080280
Other languages
English (en)
French (fr)
Inventor
朱丽
王一平
黄群武
任建波
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010102942A external-priority patent/CN101794830A/zh
Priority claimed from CN201010102925A external-priority patent/CN101794824A/zh
Priority claimed from CN2010101092854A external-priority patent/CN101794831B/zh
Application filed by 天津大学 filed Critical 天津大学
Priority to US13/574,600 priority Critical patent/US20120291851A1/en
Publication of WO2011091694A1 publication Critical patent/WO2011091694A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a liquid immersion solar cell photovoltaic module, and belongs to the technical field of photovoltaic power generation. Background technique
  • the efficiency of solar cells decreases with increasing temperature, and long-term damage to solar cells can occur when temperatures exceed certain limits.
  • the solar cell When the solar cell is operated under high light intensity, the increase of the operating temperature of the battery will lead to a decrease in power generation efficiency. Therefore, a reliable heat dissipation system is required to take away the heat generated on the surface of the battery in time to maintain the high efficiency of the solar cell. Therefore, maintaining the solar cell to operate at a lower temperature is of great significance for improving the power generation efficiency of the battery and prolonging the service life of the battery.
  • the existing cooling technologies mainly include passive cooling and active cooling. However, both cooling methods can only dissipate the heat of the solar battery through the heat sink disposed on the back of the battery, and cannot simultaneously face the front of the battery assembly.
  • a liquid immersed photovoltaic module comprising a bottom plate, an upper transparent cover, a side wall, an insulating liquid, a solar cell or a solar cell assembly, wherein a periphery of the lower bottom plate is fixed to a periphery of the upper transparent cover by the side wall Connected into a container, the insulating liquid is disposed in the container, the lower bottom plate is a transparent material plate or a metal plate connected with a lower fin, and the solar cell is disposed on an upper surface of the lower bottom plate,
  • the lower surface of the solar cell module is fixedly coupled to the upper surface of the support plate to which the support plate fins are attached, and the lower end of the support plate fin is fixedly coupled to the upper surface of the lower base plate.
  • the upper transparent cover is rectangular in shape or geometrically similar to the concentrator; the lower base is rectangular in shape or geometrically similar to the concentrator.
  • the material of the support plate is copper, aluminum, stainless steel, iron or ceramic copper clad laminate.
  • the material of the support plate fin is copper, aluminum, stainless steel, iron or ceramic copper clad laminate.
  • the height between the lower surface of the upper transparent cover and the upper surface of the lower bottom plate is lmn! ⁇ 50mm.
  • the container is provided with an insulating liquid inlet and an insulating liquid outlet.
  • the insulating liquid is deionized water, silicone oil, glycerin, ethanol, isopropanol, toluene, trichloroethane, acetone, methanol or ethylene glycol.
  • the insulating liquid is in direct contact with the solar cell. Fresnel reflection of light at the interface of the insulating liquid and multiple reflections inside the liquid can increase the incidence of sunlight on the surface of the solar cell.
  • Polarized molecules in the insulating liquid can reduce the surface recombination of carriers inside the battery, increase the current output of the solar cell, and improve efficiency.
  • Insulating liquid can take away the heat generated by the battery during operation, improve the efficiency of the photovoltaic power generation system, extend the service life of the battery, and help reduce the power generation cost of the photovoltaic system.
  • the support plate is set to increase the surface area of the solar cell module and increase the mechanical strength of the solar cell module.
  • the support plate fins can further increase the heat dissipation area of the solar cell module and the degree of turbulence of the insulating liquid, and enhance the heat transfer between the solar cell module and the insulating liquid.
  • the bottom plate is made of transparent material plate, which makes the liquid-immersed PV module of the invention have good light transmittance, and can be used as a glass window or a glass curtain wall or a glass roof for building, and realizes the perfect combination of photovoltaic utilization technology and architecture.
  • the insulating liquid inlet and the insulating liquid outlet can be used to make the insulating liquid flow through the surface of the solar cell, more effectively reduce the temperature of the solar cell, and improve the efficiency of the photovoltaic system.
  • Figure 1 is a cross-sectional view showing a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a second embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing a third embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a tissue connection mode of the present invention.
  • FIG. 5 is a schematic structural diagram of another tissue connection manner according to the present invention.
  • FIG. 6 is a schematic structural diagram of a third type of tissue connection manner according to the present invention, and a specific implementation manner
  • a liquid immersed photovoltaic module comprising a bottom plate 5, an upper transparent cover 1, a side wall 2, an insulating liquid 4, and a solar cell 3,
  • the periphery of the lower bottom plate is fixedly connected to the periphery of the upper transparent cover plate to form a container 7 through which the insulating liquid is disposed.
  • the lower bottom plate is a transparent material plate or a metal plate to which the lower fins 6 are connected, and the solar battery is disposed on the lower bottom plate.
  • a liquid immersed photovoltaic module comprises a lower bottom plate 5, an upper transparent cover plate 1, a side wall 2, an insulating liquid 4, and a solar cell assembly 10.
  • the periphery of the lower bottom plate is fixedly connected to a periphery of the upper transparent cover plate by a side wall to form a container. 7.
  • the insulating liquid is disposed in the container, and the lower bottom plate is a transparent material plate or a metal plate to which the lower fins 6 are attached, and the lower surface of the solar cell module is fixed to the upper surface of the support plate 8 to which the support plate fins 9 are attached.
  • the lower end of the support plate fin is fixedly connected to the upper surface of the lower base plate.
  • the material of the support plate may be any one of copper, aluminum, stainless steel, iron or ceramic copper clad; the material of the support fin may be any one of copper, aluminum, stainless steel, iron or ceramic copper clad laminate. (See Figure 3)
  • the height between the lower surface of the upper transparent cover and the upper surface of the lower base in the above manner is lmn! ⁇ 50mm.
  • An insulating liquid inlet and an insulating liquid outlet may also be provided on the container.
  • the upper transparent cover is rectangular in shape or geometrically similar to the concentrator; the lower base is rectangular in shape or geometrically similar to the concentrator.
  • the concentrator is a trough concentrator
  • the upper transparent cover and the lower bottom plate may have a rectangular shape or a trough paraboloid.
  • the concentrator is a dish concentrator
  • the upper transparent cover The shape of the bottom plate and the bottom plate may be a rectangular shape or a dish paraboloid.
  • the insulating liquid can be used as a packaged liquid in the container, or it can be cooled by the insulating liquid inlet and the insulating liquid outlet through the container to remove the heat generated by the solar cell or the solar cell module during operation.
  • the insulating liquid is deionized water, silicone oil, glycerin, ethanol, isopropanol, toluene, trichloroethane, acetone, methanol or ethylene glycol.
  • the side walls may be made of a transparent material or an opaque material.
  • the solar cell can be fixed to the upper surface of the lower substrate by bonding, soldering or mechanical connection, and the solar cell can be deposited directly onto the upper surface of the lower substrate.
  • the support plate and the support plate fins may be integral, and the support plate fins may be fixed to the lower surface of the support plate by bonding, welding or mechanical connection.
  • liquid inlets or liquid outlets may be provided, or no liquid inlets or outlets may be provided.
  • each liquid immersion photovoltaic module may be connected in series or in parallel. See Figure 4, Figure 5 and Figure 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

一种液浸光伏组件
技术领域
本发明涉及一种液体浸没太阳电池光伏组件, 属于光伏发电技术领域。 背景技术
太阳电池的效率随着温度的升高而降低, 而且当温度超过了一定的限度会对太阳电池 造成长期的损害。 太阳电池工作在高光强条件下, 电池工作温度的升高会导致发电效率的 下降, 因此需要有可靠的散热系统及时地将电池表面产生的热量带走, 维持太阳电池的高 效率工作。 所以维持太阳电池在较低的温度下工作对提高电池的发电效率、 延长电池的使 用寿命都有十分重要的意义。 现有的冷却技术主要有被动式冷却和主动式冷却两种方式, 然而这两种冷却方式都只能通过设置在电池背面的散热器将太阳电池的热量散失掉, 无法 同时对电池组件的正面和背面进行有效的冷却, 因此传统冷却方式的冷却效果不够好, 太 阳电池或组件的温度往往较高, 影响了光伏发电系统的发电量, 缩短了太阳电池的使用寿 命。 发明内容
本发明的目的是克服现有技术的不足, 提供一种液浸光伏组件。
本发明的技术方案概述如下:
一种液浸光伏组件, 包括下底板、 上透明盖板、 侧壁、 绝缘液体、 太阳电池或太阳电 池组件, 所述下底板的周边通过所述侧壁与所述上透明盖板的周边固定连接成一个容器, 所述绝缘液体设置在所述容器内, 所述下底板为透明材料板或连接有下翅片的金属板, 所 述太阳电池设置在所述下底板的上表面, 所述太阳电池组件的下表面与连接有支撑板翅片 的支撑板的上表面固定连接, 所述支撑板翅片的下端与所述下底板的上表面固定连接。
所述上透明盖板的形状为矩形或与聚光器几何相似; 所述下底板的形状为矩形或与聚 光器几何相似。
所述支撑板的材料为铜、 铝、 不锈钢、 铁或陶瓷覆铜板。
所述支撑板翅片的材料为铜、 铝、 不锈钢、 铁或陶瓷覆铜板。
所述上透明盖板的下表面和所述下底板的上表面之间的高度为 lmn!〜 50mm。
所述容器上设置有绝缘液体进口和绝缘液体出口。 所述绝缘液体为去离子水、 硅油、 甘油、 乙醇、 异丙醇、 甲苯、 三氯乙烷、 丙酮、 甲 醇或乙二醇。
本发明的优点是-
1. 绝缘液体直接与太阳电池接触, 光线在绝缘液体界面的菲涅尔反射和液体内部的 多次反射能够增加太阳光在太阳电池表面的入射。
2. 绝缘液体中的极化分子可以减少电池内部载流子的表面复合, 增大太阳电池的电 流输出、 提高效率。
3. 绝缘液体可以将电池工作时产生的热量及时带走, 提高光伏发电系统的效率, 延 长电池的使用寿命, 有助于降低光伏系统的发电成本。
4. 支撑板的设置能够增大太阳电池组件散热的表面积, 增加太阳电池组件的机械强 度。
5. 支撑板翅片可以进一步增加太阳电池组件的散热面积和绝缘液体的湍动程度, 强 化太阳电池组件和绝缘液体间的传热。
6. 下底板采用透明材料板, 使本发明液浸光伏组件具有很好的透光性, 可做成玻璃 窗或玻璃幕墙或玻璃屋顶等用于建筑, 实现光伏利用技术与建筑完美结合。
7. 当液浸光伏组件应用于聚光光伏系统中时, 设置的绝缘液体进口和绝缘液体出口 可以使绝缘液体流过太阳电池表面, 更有效地降低太阳电池的温度, 提高光伏发 电系统的效率。 附图说明
图 1为本发明第一种实施方式的剖视图。
图 2为本发明第二种实施方式的剖视图。
图 3为本发明第三种实施方式的剖视图。
图 4为本发明的一种组织连接方式结构示意图。
图 5为本发明的另一种组织连接方式结构示意图,
图 6为本发明的第三种组织连接方式结构示意图, 具体实施方式
下面结合附图对本发明作进一步的说明。
一种液浸光伏组件, 包括下底板 5、 上透明盖板 1、 侧壁 2、 绝缘液体 4、 太阳电池 3, 下底板的周边通过侧壁与上透明盖板的周边固定连接成一个容器 7, 绝缘液体设置在容器 内, 下底板为透明材料板或连接有下翅片 6的金属板, 太阳电池设置在下底板的上表面。
见图 1和图 2。
另一种方式:
一种液浸光伏组件, 包括下底板 5、 上透明盖板 1、 侧壁 2、 绝缘液体 4、 太阳电池组 件 10, 下底板的周边通过侧壁与上透明盖板的周边固定连接成一个容器 7, 绝缘液体设置 在所述容器内, 下底板为透明材料板或连接有下翅片 6的金属板, 太阳电池组件的下表面 与连接有支撑板翅片 9的支撑板 8的上表面固定连接, 支撑板翅片的下端与所述下底板的 上表面固定连接。 支撑板的材料可以选铜、 铝、 不锈钢、 铁或陶瓷覆铜板的任意一种; 支 撑板翅片的材料可以选铜、 铝、 不锈钢、 铁或陶瓷覆铜板的任意一种。 (见图 3 )
上述方式的上透明盖板的下表面和下底板的上表面之间的高度为 lmn!〜 50mm。
在容器上还可以设置绝缘液体进口和绝缘液体出口。
上透明盖板的形状为矩形或与聚光器几何相似; 下底板的形状为矩形或与聚光器几何 相似。 例如, 当聚光器为槽式聚光器时, 上透明盖板和下底板的形状可以为矩形, 也可以 是槽式抛物面, 当聚光器为碟式聚光器时, 上透明盖板和下底板的形状可以为矩形, 也可 以是碟式抛物面。
绝缘液体可以在静止在容器内作为封装的液体, 也可以通过绝缘液体进口和绝缘液体 出口经过容器以带走太阳电池或太阳电池组件工作时产生的热量, 对电池进行冷却。
绝缘液体为去离子水、 硅油、 甘油、 乙醇、 异丙醇、 甲苯、 三氯乙烷、 丙酮、 甲醇或 乙二醇。
侧壁可以由透明材料制成也可以选不透明材料制成。
太阳电池可以通过粘结、 焊接或机械连接方式固定到下底板的上表面, 太阳电池也可 以直接沉积到下底板的上表面。
支撑板与支撑板翅片可以是一体的, 也可以是通过粘结、 焊接或机械连接方式将支撑 板翅片固定到支撑板的下表面。
根据液浸光伏组件宽度的大小, 可以设置 1个、 2个或者多个液体进口或液体出口, 或者不设置液体的进口和出口。
各个液浸光伏组件的液体进口或液体出口可以采用串联方式连接, 也可以采用并联方 式连接。 见图 4、 图 5和图 6。

Claims

木又 禾 u
1. 一种液浸光伏组件, 包括下底板、 上透明盖板、 侧壁、 绝缘液体、 太阳电池或太阳电 池组件, 所述下底板的周边通过所述侧壁与所述上透明盖板的周边固定连接成一个容 器, 所述绝缘液体设置在所述容器内, 其特征是所述下底板为透明材料板或连接有下 翅片的金属板, 所述太阳电池设置在所述下底板的上表面, 所述太阳电池组件的下表 面与连接有支撑板翅片的支撑板的上表面固定连接, 所述支撑板翅片的下端与所述下 底板的上表面固定连接。
2. 根据权利要求书 1所述的一种液浸光伏组件, 其特征是所述上透明盖板的形状为矩形 或与聚光器几何相似; 所述下底板的形状为矩形或与聚光器几何相似。
3. 根据权利要求书 1所述的一种液浸光伏组件, 其特征是所述支撑板的材料为铜、 铝、 不锈钢、 铁或陶瓷覆铜板。
4. 根据权利要求书 1所述的一种液浸光伏组件, 其特征是所述支撑板翅片的材料为铜、 铝、 不锈钢、 铁或陶瓷覆铜板。
5. 根据权利要求书 1或 2所述的一种液浸光伏组件, 其特征是所述上透明盖板的下表面 和所述下底板的上表面之间的高度为 lmm〜50mm。
6. 根据权利要求书 1所述的一种液浸光伏组件, 其特征是所述容器上设置有绝缘液体进 口和绝缘液体出口。
7. 根据权利要求书 1或 6所述的一种液浸光伏组件,其特征是所述绝缘液体为去离子水、 硅油、 甘油、 乙醇、 异丙醇、 甲苯、 三氯乙烷、 丙酮、 甲醇或乙二醇。
PCT/CN2010/080280 2010-01-19 2010-12-25 一种液浸光伏组件 WO2011091694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/574,600 US20120291851A1 (en) 2010-01-19 2010-12-25 Liquid immersing photovoltaic module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010102942A CN101794830A (zh) 2010-01-29 2010-01-29 一种聚光光伏接收器
CN201010102925A CN101794824A (zh) 2010-01-29 2010-01-29 液体浸没太阳电池的散热装置
CN201010102942.2 2010-01-29
CN201010102925.9 2010-01-29
CN201010109285.4 2010-02-11
CN2010101092854A CN101794831B (zh) 2010-02-11 2010-02-11 液浸平板光伏组件

Publications (1)

Publication Number Publication Date
WO2011091694A1 true WO2011091694A1 (zh) 2011-08-04

Family

ID=44318652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080280 WO2011091694A1 (zh) 2010-01-19 2010-12-25 一种液浸光伏组件

Country Status (2)

Country Link
US (1) US20120291851A1 (zh)
WO (1) WO2011091694A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160925A3 (en) * 2012-04-26 2014-09-12 Tiano Francesco Antonio Hybrid solar generator
CN104682865A (zh) * 2014-12-22 2015-06-03 中国科学院广州能源研究所 一种聚光光伏自然循环相变散热系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489401B (en) * 2011-03-21 2014-04-23 Naked Energy Ltd Solar energy converter
EP3917004A1 (en) * 2020-05-29 2021-12-01 Total Se Photovoltaic module with enhanced heat extraction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053420A (ja) * 2006-08-24 2008-03-06 Fuji Electric Holdings Co Ltd 太陽電池モジュールの封止構造及び製造方法
CN101608606A (zh) * 2009-07-29 2009-12-23 中国科学技术大学 太阳能低温热发电与光伏发电复合系统
CN101794824A (zh) * 2010-01-29 2010-08-04 天津大学 液体浸没太阳电池的散热装置
CN101794831A (zh) * 2010-02-11 2010-08-04 天津大学 液浸平板光伏组件
CN101794830A (zh) * 2010-01-29 2010-08-04 天津大学 一种聚光光伏接收器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052228A (en) * 1976-07-12 1977-10-04 Russell Charles R Optical concentrator and cooling system for photovoltaic cells
US20030005957A1 (en) * 2001-06-22 2003-01-09 Kunihide Tanaka Solar energy converter using optical concentration through a liquid
AU2003902656A0 (en) * 2003-05-29 2003-06-12 Connor, Philip Michael Collector for solar radiation
EP2234172A4 (en) * 2008-01-15 2017-01-04 Affinity Co., Ltd. Solar cell module and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053420A (ja) * 2006-08-24 2008-03-06 Fuji Electric Holdings Co Ltd 太陽電池モジュールの封止構造及び製造方法
CN101608606A (zh) * 2009-07-29 2009-12-23 中国科学技术大学 太阳能低温热发电与光伏发电复合系统
CN101794824A (zh) * 2010-01-29 2010-08-04 天津大学 液体浸没太阳电池的散热装置
CN101794830A (zh) * 2010-01-29 2010-08-04 天津大学 一种聚光光伏接收器
CN101794831A (zh) * 2010-02-11 2010-08-04 天津大学 液浸平板光伏组件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160925A3 (en) * 2012-04-26 2014-09-12 Tiano Francesco Antonio Hybrid solar generator
AU2013254274B2 (en) * 2012-04-26 2016-09-29 Francesco Antonio TIANO Hybrid solar generator
CN104682865A (zh) * 2014-12-22 2015-06-03 中国科学院广州能源研究所 一种聚光光伏自然循环相变散热系统

Also Published As

Publication number Publication date
US20120291851A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN202059353U (zh) 高倍聚光太阳能光伏光热复合发电系统
CN101699745A (zh) 一种聚光光伏发电装置
US20160204296A1 (en) Liquid immersing photovoltaic module
WO2011091694A1 (zh) 一种液浸光伏组件
CN108599720A (zh) 一种密排cpv组件散热装置
CN113540280A (zh) 太阳能光伏热电联产组件
CN101794824A (zh) 液体浸没太阳电池的散热装置
WO2023134477A1 (zh) 板式容器、降温式光伏发电装置以及太阳能光伏发电设备
CN201733250U (zh) 一种线聚焦的聚光光伏组件
CN101794831B (zh) 液浸平板光伏组件
CN101794830A (zh) 一种聚光光伏接收器
CN110729378A (zh) 一种电热联产光伏板的制造方法
CN111953290B (zh) 一种热电联合多功能玻璃装置
CN209982443U (zh) 一种太阳能光伏光热综合利用装置
CN204216845U (zh) 一种菲涅尔式聚光光伏光热组件
JP2004317117A (ja) 太陽光発電機能を有する太陽熱集熱器
WO2012122909A1 (zh) 一种聚光太阳能装置
WO2011091681A1 (zh) 一种曲面聚光光伏接收器
CN102270690A (zh) 太阳能利用装置
CN112420863A (zh) 一体式光伏组件生产工艺
KR20120056648A (ko) 태양전지와 열전소자를 이용한 온수 가열 기능을 갖는 발전 시스템
CN112614906A (zh) 一种电热联产光伏板及其制造方法
CN204834643U (zh) 一种太阳能光伏光热建筑一体化模块
CN220605879U (zh) 一种光伏光热一体化组件
CN202339930U (zh) 太阳能利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844471

Country of ref document: EP

Kind code of ref document: A1