WO2023134477A1 - 板式容器、降温式光伏发电装置以及太阳能光伏发电设备 - Google Patents

板式容器、降温式光伏发电装置以及太阳能光伏发电设备 Download PDF

Info

Publication number
WO2023134477A1
WO2023134477A1 PCT/CN2022/144056 CN2022144056W WO2023134477A1 WO 2023134477 A1 WO2023134477 A1 WO 2023134477A1 CN 2022144056 W CN2022144056 W CN 2022144056W WO 2023134477 A1 WO2023134477 A1 WO 2023134477A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
power generation
plate container
solar photovoltaic
cooling
Prior art date
Application number
PCT/CN2022/144056
Other languages
English (en)
French (fr)
Inventor
严丛骊
Original Assignee
严丛骊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严丛骊 filed Critical 严丛骊
Publication of WO2023134477A1 publication Critical patent/WO2023134477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the technical field of solar power generation, in particular to a plate container, a cooling photovoltaic power generation device and solar photovoltaic power generation equipment.
  • Solar photovoltaic cells usually refer to facilities that use the photovoltaic effect of photovoltaic semiconductor materials to convert solar energy into DC power. Since its inception, the use of materials, continuous progress in technology, and the maturity of the manufacturing industry have all driven photovoltaic systems. The structure becomes cheaper and promotes the widespread application of photovoltaic power generation in various countries.
  • a plate container for cooling a solar photovoltaic module
  • the plate container has a heat dissipation surface, a heat exchange surface and an accommodation cavity between the heat dissipation surface and the heat exchange surface
  • the heat exchange surface of the plate container is used to be attached to the light-receiving surface of the solar photovoltaic module face to face
  • the substrate on the plate container that provides the heat dissipation surface and the heat exchange surface is made of transparent material and the accommodating cavity of the plate container is used for accommodating the light-transmitting liquid W for heat exchange and cooling of the solar photovoltaic module.
  • the plate container includes two light-transmitting panels and an upright peripheral wall, and the two light-transmitting panels are arranged at intervals on the upper and lower sides of the upright peripheral wall, so that The accommodating cavity is formed between the light-transmitting panels.
  • the light-transmitting liquid W contained in the accommodation cavity of the plate container is water.
  • the plate container is provided with a liquid inlet and a liquid outlet communicating with the accommodation chamber, wherein the liquid inlet of the plate container is used to supplement the accommodation chamber with cold light-transmitting liquid W, and the liquid outlet of the plate container is used to discharge the hot light-transmitting liquid W in the accommodating cavity.
  • the liquid inlet and the liquid outlet are connected to the radiator through a pipe.
  • a water pump is further arranged between the radiator and the plate container.
  • the present application further provides a cooling type photovoltaic power generation device for generating electricity using sunlight, including: a solar photovoltaic module, wherein the solar photovoltaic module has a light-receiving surface for receiving the sun light for photovoltaic power generation; and any one of the above-mentioned plate containers, wherein the plate container is correspondingly bonded to the light-receiving surface of the solar photovoltaic module for heat exchange and cooling of the solar photovoltaic module .
  • the plate container includes two light-transmitting panels and an upright peripheral wall, and the two light-transmitting panels are arranged at intervals on the upper and lower sides of the upright peripheral wall, so that The accommodation chamber is formed between the light-transmitting panels; and, the plate container is provided with a liquid inlet and a liquid outlet communicating with the accommodation chamber, wherein the liquid inlet of the plate container is used to feed the accommodation chamber The cold transparent liquid W is supplemented, and the liquid outlet of the plate container is used to discharge the hot transparent liquid W in the accommodation chamber.
  • the solar photovoltaic module includes tempered glass, photovoltaic cells, and a back sheet that are sequentially stacked from top to bottom, and the toughened glass and the back sheet are glued to the back sheet through a light-transmitting adhesive film.
  • the solar photovoltaic module includes a photovoltaic cell sheet and a back sheet, and the plate container and the back sheet are respectively directly glued to the photovoltaic cells of the solar photovoltaic module through a light-transmitting adhesive film. opposite surface of the sheet.
  • the solar photovoltaic module includes photovoltaic cell sheets, and the two plate containers are respectively glued to opposite surfaces of the photovoltaic cell sheets of the solar photovoltaic module through light-transmitting adhesive films.
  • the cooling type photovoltaic power generation device further includes a reflector, and the reflector is arranged corresponding to the light-receiving surface of the solar photovoltaic module, and is used to reflect the sunlight to the The light-receiving surface of the solar photovoltaic module.
  • the present application further provides a solar photovoltaic power generation device, including: any one of the cooling photovoltaic power generation devices described above; and an auxiliary device, wherein the auxiliary device can be electrically connected to the The temperature-cooling photovoltaic power generation device is used for processing the electric energy generated by the temperature-cooling photovoltaic power generation device.
  • Fig. 1 is a schematic structural diagram of a cooling photovoltaic power generation device according to an embodiment of the present application.
  • Fig. 2 shows a schematic diagram of the principle of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiment of the present application.
  • Fig. 3 shows a schematic perspective view of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiment of the present application.
  • Fig. 4 shows a first example of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiments of the present application.
  • Fig. 5 shows a second example of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiment of the present application.
  • Fig. 6 shows a third example of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiments of the present application.
  • Fig. 7 shows a fourth example of the temperature-cooling photovoltaic power generation device according to the above-mentioned embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of a solar photovoltaic power generation device according to an embodiment of the present application.
  • Cooling photovoltaic power generation device 10.
  • Solar photovoltaic module 100. Light-receiving surface; 11. Tempered glass; 12.
  • a component when a component is said to be “mounted on” another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the power generation efficiency will decrease by 0.4%, especially in summer, the surface temperature of photovoltaic modules can reach above 70°C, and the internal operating temperature can reach above 100°C, resulting in The power generation efficiency drops by about 30%.
  • the heat dissipation of solar photovoltaic modules mainly relies on natural ventilation to cool down, but the cooling effect of this method is very poor, and it cannot effectively reduce the operating temperature of photovoltaic modules, which greatly affects the application and promotion of photovoltaic power generation.
  • this application proposes a plate container, a cooling photovoltaic power generation device and solar photovoltaic power generation equipment 3, which can effectively reduce the operating temperature of the photovoltaic module by using a plate container containing a light-transmitting liquid, which contributes to Improve the efficiency of photovoltaic power generation and facilitate popularization and application.
  • the first embodiment of the present application provides a cooling photovoltaic power generation device 1 , which is suitable for generating electricity by using sunlight.
  • the cooling photovoltaic power generation device 1 may include a solar photovoltaic module 10 and a panel container 20 .
  • the solar photovoltaic module 10 has a light-receiving surface 100 for receiving sunlight to generate photovoltaic power.
  • the plate container 20 has a heat dissipation surface 201, a heat exchange surface 202, and an accommodation cavity 203 between the heat dissipation surface 201 and the heat exchange surface 202, and the heat exchange surface 202 of the plate container 20 is face to face Attached to the light-receiving surface 100 of the solar photovoltaic module 10 .
  • the substrate 200 on the plate container 20 for providing the heat dissipation surface 201 and the heat exchange surface 202 is made of transparent material, and the accommodating cavity 203 of the plate container 20 is used to accommodate the transparent liquid W for Perform heat exchange and cooling on the solar photovoltaic module 10 .
  • the accommodating chamber 203 of the plate container 20 of the present application may have, but is not limited to, a liquid injection port (not shown in the figure), for filling the accommodating chamber 203 with the light-transmitting liquid W .
  • the cooling photovoltaic power generation device 1 of the present application adopts a plate container 20 made of a transparent material to contain the light-transmitting liquid W, so that sunlight can pass through the plate container.
  • the container 20 can irradiate the light-receiving surface 100 of the solar photovoltaic module 10 to ensure the normal operation of photovoltaic power generation;
  • the light-receiving surface 100 of the solar photovoltaic module 10 is used to increase the heat exchange area and improve the heat exchange efficiency, which helps to reduce the operating temperature of the solar photovoltaic module 10, thereby preventing the solar photovoltaic module 10 from being damaged due to the increase of the operating temperature. lead to a reduction in power generation efficiency.
  • the serpentine tubes or tubes cannot be in surface contact with the solar panel, resulting in a small heat transfer area and large thermal resistance, resulting in poor heat transfer efficiency; on the other hand, the non-light-receiving surface of the solar panel is usually set There are various devices such as junction boxes or external connectors of wires, etc., so that the coils or pipes have to avoid these devices, so that the heat exchange area is further compressed, and it is impossible to obtain a better cooling effect.
  • the light-transmitting liquid W contained in the accommodation cavity 203 in the cooling photovoltaic power generation device 1 of the present application may be, but not limited to, implemented as an infrared absorbing liquid capable of absorbing infrared light such as water.
  • the heat exchange surface 202 of the plate container 20 of the present application is attached face-to-face to the light receiving surface 100 of the solar photovoltaic module 10, sunlight first passes through the plate container 20 The water contained in the accommodating chamber 203 is then irradiated onto the light-receiving surface 100 of the solar photovoltaic module 10 to generate electricity. Therefore, while serving as a heat-absorbing medium, the water can absorb infrared light in sunlight to The total heat irradiated to the light-receiving surface 100 is reduced, thereby further reducing the working temperature of the solar photovoltaic module 10 .
  • a centimeter of water layer can reduce the total heat irradiated by the sun by 20%, and in the 20% heat reduction, 90% of the heat comes from infrared light greater than 1100 nanometers, but this part of infrared light is Cannot participate in photovoltaic power generation.
  • the cooling photovoltaic power generation device 1 of the present application can not only use the plate container 20 containing water to perform heat exchange and cooling on the solar photovoltaic module 10 , and can also use the water contained in the plate container 20 to absorb the infrared light greater than 1100 nanometers in the solar energy, so as to reduce the heat generated by the solar photovoltaic module 10, greatly improve the cooling effect, and ensure that the cooling type The operating temperature of the photovoltaic power generation device 1 is effectively reduced, thereby improving power generation efficiency.
  • the base 200 of the plate container 20 can be implemented as a light-transmitting panel 21, such as a glass panel, but not limited to, to ensure that sunlight can While penetrating the plate container 20 to irradiate the light-receiving surface 100 of the solar photovoltaic module 10 , it can also provide a flat heat exchange surface 202 to be closely attached to all the solar photovoltaic modules 10
  • the above-mentioned light-receiving surface 100 is used to reduce the thermal resistance between the two and improve the heat exchange efficiency.
  • the base 200 of the plate container 20 can also be implemented, but not limited to, be made of polyvinylidene fluoride (PVDF for short), polyvinyl fluoride (PVF for short), poly Carbonate (referred to as PC), polymethyl methacrylate (referred to as PMMA), styrene dimethyl methacrylate copolymer (referred to as SMMA), polyethylene (referred to as PE), polyvinyl chloride (referred to as PVC), polystyrene Hard panels made of various organic materials such as ethylene (referred to as PS), polyethylene terephthalate (referred to as PET), polypropylene (referred to as PP), nylon (referred to as PA) or polyvinyl alcohol (referred to as PVA) Or a soft film, as long as it can be attached to the light-receiving surface 100 and allow sunlight to pass through and form the accommodating cavity 203 , the present application will not repeat this.
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the plate container 20 may include two transparent panels 21 and an upright peripheral wall 22, and the two transparent panels 21 are arranged at intervals The upper and lower sides of the upright peripheral wall 22 form the accommodating cavity 203 between the two light-transmitting panels 21 , so as to obtain a flat container for accommodating the light-transmitting liquid W.
  • the light-transmitting panel 21 located on the lower side of the upright peripheral wall 22 in the plate container 20 directly provides a flat heat exchange surface 202
  • the plate container 20 located on the upper side of the upright peripheral wall 22 The light-transmitting panel 21 directly provides a flat heat dissipation surface 201, so that after the plate container 20 is stacked and installed on the light receiving surface 100 of the solar photovoltaic module 10, the heat exchange surface 202 of the plate container 20 Closely attached to the light-receiving surface 100 of the solar photovoltaic module 10 for heat exchange, and the heat dissipation surface 201 of the plate container 20 is exposed for heat dissipation, which helps to reduce the solar photovoltaic module 10 operating temperature.
  • the light-transmitting panel 21 of the panel container 20 can be implemented as tempered glass
  • the upright peripheral wall 22 of the panel container 20 can be implemented as a rectangular frame, which is glued respectively Bonded to the periphery of two tempered glasses to make a flat container.
  • the upright peripheral wall 22 of the plate container 20 can be made of, but not limited to, metal or plastic.
  • the upright peripheral wall 22 of the plate container 20 may also be implemented as tempered glass, and the light-transmitting panel 21 and the upright peripheral wall 22 of the plate container 20 may be integrally formed, This application will not repeat it.
  • the thickness of the accommodating cavity 203 of the plate container 20 is between 3 mm and 15 mm; that is, the thickness of the transparent liquid W layer contained in the plate container 20 is between 3 mm and 15 mm. , in order to effectively filter out infrared light in sunlight while reducing the transmission of visible light in sunlight.
  • the plate container 20 may further include a support body, wherein the support body is correspondingly arranged in the accommodating chamber 203 of the plate container 20 to support the plate container 20.
  • the heat dissipation surface 201 and the heat exchange surface 202 prevent the heat dissipation surface 201 and/or the heat exchange surface 202 from being depressed or raised.
  • the support body corresponds to the junction of the cells in the solar photovoltaic module 10 , so as to avoid interference to the power generation of the cells while supporting stably. It can be understood that the support body of the plate container 20 can be made of transparent material, but not limited to, which will not be repeated in this application.
  • the specific heat capacity of water is 4100J/(kg*K)
  • the density of water is 1g/cm 3
  • the specific heat capacity of glass is 800J/(kg *K)
  • the density of the glass is 2.5g/cm 3
  • the specific heat capacity of the silicon wafer in the solar photovoltaic module 10 is about 700J/(kg*K)
  • the thickness of the silicon wafer is between 180 ⁇ m and 200 ⁇ m.
  • the heat storage capacity of the plate container 20 is 6.8 times that of the solar photovoltaic module 10, and the greater heat storage capacity means That is, if the heat can raise the temperature of the solar photovoltaic module 10 by 68°C, the same heat can only raise the temperature of the water by 10°C. In other words, the water stored in the large cavity is sufficient, so that there is a large temperature difference between the water as the heat exchange medium and the heat-generating object, and the larger the temperature difference, the faster the heat dissipation of the battery board.
  • the plate container 20 can cool the solar photovoltaic module 10 by 58°C, and the 10mm thick water layer can weaken about 20% of the solar radiation heat, so that the operating temperature of the solar photovoltaic module 10 is close to the water temperature, theoretically It can increase the power generation by 10%-25%.
  • the plate container 20 of the cooling photovoltaic power generation device 1 of the present application is also provided with the The liquid inlet 204 and the liquid outlet 205 connected to the accommodation chamber 203, wherein the liquid inlet 204 of the plate container 20 is used to supplement the cold light-transmitting liquid W to the accommodation chamber 203, and the plate container 20
  • the liquid outlet 205 is used to discharge the hot light-transmitting liquid W in the accommodation chamber 203 , so that the light-transmitting liquid W flows in the accommodation chamber 203 to improve heat exchange efficiency.
  • the temperature of the cold light-transmitting liquid W is lower than the temperature of the hot light-transmitting liquid W.
  • the liquid inlet 204 is located at the lower part of the plate container 20, and the liquid outlet 205 is located at the upper part of the plate container 20, so as to ensure that the light-transmitting liquid W is in the containing cavity 203 While flowing, the accommodating cavity 203 is always filled, which helps to improve the efficiency of heat exchange and the efficiency of filtering infrared light.
  • the cooling photovoltaic power generation device 1 may further include a radiator 30, wherein the radiator 30 is respectively connected to the liquid inlet 204 of the plate container 20 through pipes. and the liquid outlet 205 , used to dissipate heat from the hot liquid flowing out of the accommodation chamber 203 through the liquid outlet 205 , and deliver the cooled liquid to the accommodation chamber 203 through the liquid inlet 204 , so that the light-transmitting liquid W can be recycled, which helps to save resources while improving heat exchange efficiency.
  • a water pump can be arranged in the pipeline between the radiator 30 and the plate container 20 to promote the circulation of the liquid;
  • the radiator 30 mentioned in this application can be implemented as but not limited to Cooling facilities such as cooling containers with fins or pin-shaped cooling fins, as long as they can reduce the temperature of the light-transmitting liquid W and supply the cooled light-transmitting liquid W to the plate container 20, the present application I won't repeat it here.
  • the solar photovoltaic module 10 of the cooling photovoltaic power generation device 1 of the present application usually includes tempered glass stacked sequentially from top to bottom. 11. Photovoltaic cell sheet 12 and back sheet 13, and the tempered glass 11 and the back sheet 13 are glued to opposite sides of the photovoltaic cell sheet 12 through a light-transmitting adhesive film 14 to complete the solar photovoltaic module 10 package. At this time, the plate container 20 only needs to be stacked and installed on the tempered glass 11 of the solar photovoltaic module 10, so that the heat exchange surface 202 of the plate container 20 is attached to the tempered glass 11.
  • the cooling type photovoltaic power generation device 1 it can be assembled into the cooling type photovoltaic power generation device 1, so that the light-transmitting liquid W contained in the plate container 20 can be used on the light-receiving surface 100 of the solar photovoltaic module 10 (such as the solar photovoltaic module 10 front side) to dissipate heat and cool down, effectively reducing the operating temperature of the photovoltaic cells 12 of the solar photovoltaic module 10 and improving power generation efficiency.
  • the light-transmitting adhesive film 14 can be, but not limited to, implemented as an adhesive film made of polyethylene-polyvinyl acetate copolymer, referred to as an EVA adhesive film.
  • the water contained in the plate container 20 of the cooling photovoltaic power generation device 1 of the present application may additionally add ultraviolet absorbers and/or light stabilizers to absorb ultraviolet rays in sunlight, so as to Preventing ultraviolet rays from destroying the EVA film and causing the light-transmitting film to age and turn yellow helps to further prolong the service life of the cooling photovoltaic power generation device 1, because the aging and yellowing of the light-transmitting film will affect the light transmittance , leading to performance degradation of photovoltaic modules in long-term use.
  • the plate container 20 can be directly bonded to the surface of the tempered glass 11 of the solar photovoltaic module 10 to assemble the cooling type container 20 .
  • Photovoltaic power generation device 1 the present application only needs to attach the plate container 20 to the surface of the existing solar panel, and the existing solar panel can be transformed into the cooling photovoltaic power generation device 1 without disassembling or changing the existing solar panel.
  • the original structure of solar panels reduces the difficulty and cost of transformation, but can effectively improve power generation efficiency and facilitate popularization and application.
  • the solar photovoltaic module 10 in the cooling photovoltaic power generation device 1 of the present application may only include The photovoltaic cells 12 and the back plate 13 do not include the tempered glass 11 .
  • the plate container 20 is directly bonded to the surface of the photovoltaic cells 12 of the solar photovoltaic module 10 on the light-receiving surface side through the light-transmitting adhesive film 14, so as to assemble the cooling photovoltaic power generation system. device 1.
  • the cooling type photovoltaic power generation device 1 of the present application can use the plate container 20 to replace the original tempered glass, which not only saves the tempered glass to reduce the cost, but also reduces the size of the photovoltaic cells 12 and all the components.
  • the thermal resistance between the above-mentioned plate containers 20 is improved to improve the heat exchange efficiency.
  • the plate container 20 is integrally integrated with the solar photovoltaic module 10, that is, the plate container 20 and the solar photovoltaic module 10 are directly packaged in the production factory.
  • the plate container 20 and the solar photovoltaic module 10 are directly packaged in the production factory.
  • the backsheet 13 in the solar photovoltaic module 10 of the cooling type photovoltaic power generation device 1 may be an opaque backsheet, that is, the The solar photovoltaic module 10 has only one light-receiving surface 100 for single-sided power generation; and in some other examples of the application, the back plate 13 of the solar photovoltaic module 10 can also be a glass back plate, that is, the The solar photovoltaic module 10 has two light-receiving surfaces 100 for double-sided power generation.
  • the cooling photovoltaic power generation device 1 of the present application may include two plate containers 20, and the two plate containers 20 They are respectively stacked on the front and back of the solar photovoltaic module 10 to further increase the heat exchange area and improve the heat exchange efficiency.
  • the solar photovoltaic module 10 in the cooling photovoltaic power generation device 1 of the present application may only include the photovoltaic cells 12 , and the two plate containers 20 are respectively glued to the front and back of the photovoltaic cell sheet 12 through the light-transmitting adhesive film 14 to replace the original tempered glass and back plate, thereby reducing thermal resistance to the greatest extent, Improve the heat exchange efficiency, and then more effectively reduce the operating temperature of the solar photovoltaic module 10, and improve the power generation efficiency.
  • the two plate containers 20 can also be glued to the surface of the tempered glass and the back plate through the light-transmitting adhesive film 14 respectively, and it is still possible to increase the The heat exchange area improves the heat exchange efficiency, thereby effectively reducing the operating temperature of the solar photovoltaic module 10 and improving the power generation efficiency, which will not be described in detail in this application.
  • the existing solar panels cannot additionally use reflectors to increase their luminous flux due to poor heat dissipation performance, but because the cooling photovoltaic power generation device 1 of the present application can effectively reduce the The operating temperature of the solar photovoltaic module 10, therefore, the cooling photovoltaic power generation device 1 of the present application makes it possible to increase the luminous flux of the solar photovoltaic module 10 by additionally setting reflectors, so as to maximize the power generation.
  • the cooling type photovoltaic power generation device 1 may further include a reflector 40, and the reflector 40 is correspondingly set for directing sunlight reflected to the light-receiving surface 100 of the solar photovoltaic component 10 to increase the luminous flux of the sunlight received by the solar photovoltaic component 10 .
  • the plate container 20 can well perform heat exchange and cooling on the solar photovoltaic module 10 to ensure that the The operating temperature of the solar photovoltaic module 10 is maintained at a normal state to ensure high power generation efficiency.
  • the sunlight reflected by the reflector 40 will first pass through the plate container 20, and then irradiate to the light receiving surface 100 of the solar photovoltaic module 10, so that The water can also absorb the infrared light greater than 1100 nanometers in sunlight, so as to reduce the heat generated at the solar photovoltaic module 10, greatly improve the cooling effect, and ensure that the operating temperature of the cooling photovoltaic power generation device 1 can be effectively reduced , thereby increasing the power generation efficiency.
  • an embodiment of the present application can further provide a solar photovoltaic power generation device 3, which can include the above-mentioned cooling photovoltaic power generation device 1 and auxiliary device 2, and the auxiliary The device 2 can be electrically connected to the temperature-cooling photovoltaic power generation device 1 for processing the electric energy generated by the temperature-cooling photovoltaic power generation device 1 for use.
  • a solar photovoltaic power generation device 3 which can include the above-mentioned cooling photovoltaic power generation device 1 and auxiliary device 2, and the auxiliary The device 2 can be electrically connected to the temperature-cooling photovoltaic power generation device 1 for processing the electric energy generated by the temperature-cooling photovoltaic power generation device 1 for use.
  • the auxiliary device 2 of the solar photovoltaic power generation device 3 may include, but is not limited to, a DC to AC device and/or a booster device, etc., so that the electric energy generated by the cooling photovoltaic power generation device 1 can be converted The electrical energy that is directly used or connected to the grid will not be repeated in this application.
  • the plate container is directly attached to the upper surface of the solar cell panel, so that the lower plate surface of the plate container can be used as a contact with the solar cell without using an external cooling device.
  • the heat exchange surface in contact with the plates, and the upper plate surface of the plate container is used as the heat dissipation surface, and the large-area and small-thickness water convection between the two plates makes the functions of the heat dissipation device and the heat exchange device superimpose each other, which helps To improve the cooling effect.
  • the cooling photovoltaic power generation device 1 of the present application directly discharges heat to the air, and the upstream of the hot air does not return the heat to the solar panel.
  • the temperature-cooling photovoltaic power generation device 1 of the present application can achieve effective cooling without power consumption, which greatly increases its economic feasibility.
  • the application provides a plate container, a cooling type photovoltaic power generation device and solar photovoltaic power generation equipment, which have the following advantages: can effectively reduce the operating temperature of photovoltaic modules, help to improve the efficiency of photovoltaic power generation, and facilitate the popularization and application of photovoltaic power generation.
  • the temperature-cooling photovoltaic power generation device can effectively absorb the heat generated by the photovoltaic module by using the plate container containing the light-transmitting liquid, and reduce the operating temperature of the photovoltaic module.
  • the temperature-cooling photovoltaic power generation device can delay the aging of photovoltaic modules and increase the power generation in the entire service cycle.
  • the temperature-cooling photovoltaic power generation device can use the liquid flowing in the plate container to take away a large amount of heat, so as to further improve the cooling effect on the photovoltaic module.
  • the cooling photovoltaic power generation device can use a plate container to replace the tempered glass in the solar photovoltaic module, so as to reduce the weight of the device while improving the heat exchange efficiency.
  • the cooling type photovoltaic power generation device can directly install the plate container on the tempered glass of the solar photovoltaic module, so as to reduce the difficulty of refitting the existing solar panels and facilitate the installation of solar photovoltaic power generation equipment. Promote apps.
  • Another advantage of the present application is to provide a plate container, cooling photovoltaic power generation device and solar photovoltaic power generation equipment, wherein in order to achieve the above purpose, the present application does not need to use expensive materials or complicated structures. Therefore, the present application successfully and effectively provides a solution, not only providing a simple plate container, cooling type photovoltaic power generation device and solar photovoltaic power generation equipment, but also increasing the plate type container, cooling type photovoltaic power generation device and solar photovoltaic power generation equipment. Availability and reliability of power generation equipment.

Landscapes

  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种板式容器(20)、降温式光伏发电装置(1)及太阳能光伏发电设备(3)。该板式容器(20)具有散热面(201)、换热面(202)以及位于散热面(201)和换热面(202)之间的容纳腔(203),并且该换热面(202)用于被面对面地贴合于太阳能光伏组件(10)的受光面(100),该板式容器(20)上提供该散热面(201)和该换热面(202)的基体(200)由透明材料制成,并且该板式容器(20)的该容纳腔(203)用于容纳透光液体W以对该太阳能光伏组件(10)进行换热降温。该降温式光伏发电装置(1)及太阳能光伏发电设备(3)包括板式容器(20)。

Description

板式容器、降温式光伏发电装置以及太阳能光伏发电设备
相关申请
本申请要求2022年1月17日申请的,申请号为202220119632.X,发明名称为“板式容器、降温式光伏发电装置以及太阳能光伏发电设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能发电技术领域,特别是涉及一种板式容器、降温式光伏发电装置以及太阳能光伏发电设备。
背景技术
太阳作为地球表面能量的主要来源,不仅给我们带来了明亮的光线,而且也带来了辐射的热量。随着近年来各国都在积极推动可再生能源的应用,太阳能光伏产业的发展十分迅速。太阳能光伏电池通常是指利用光伏半导体材料的光生伏打效应而将太阳能转化为直流电能的设施,其自问世以来,使用材料、技术上的不断进步,以及制造产业的发展成熟,都驱使光伏系统的结构变得更加便宜,促进光伏发电在各国的广泛应用。
然而,太阳能光伏组件在发电的同时会发热,并且其工作温度升高会带来发电效率的下降。据测算,光伏组件的工作温度每升高1℃,其发电效率会下降0.4%,而在夏天的时候,光伏组件的表面温度可达到70℃以上,且内部工作温度可以达到100℃以上,造成发电效率下降30%左右。而目前的实践中,太阳能光伏组件的散热主要依靠自然通风来降温,但这种方式的降温效果很差,无法有效地降低光伏组件的工作温度,极大地影响了光伏发电的应用和推广。
发明内容
根据本申请的各种实施例,提供了一种板式容器,用于对太阳能光伏组件进行降温,所述板式容器具有散热面、换热面以及位于散热面和换热面之间的容纳腔,并且所述板式容器的所述换热面用于被面对面地贴合于该太阳能光伏组件的受光面,其中所述板式容器上提供所述散热面和所述换热面的基体由透明材料制成,并且所述板式容器的所述容纳腔用于容纳透光液体W以对该太阳能光伏组件进行换热降温。
根据本申请的一个实施例,所述板式容器包括两个透光面板和一个直立周壁,并且两个所述透光面板被间隔地设置于所述直立周壁的上下两侧,以在两个所述透光面板之间形成所述容纳腔。
根据本申请的一个实施例,所述板式容器的所述容纳腔所容纳的该透光液体W为水。
根据本申请的一个实施例,所述板式容器设有与所述容纳腔连通的液体进口和液体出口,其中所述板式容器的所述液体进口用于向所述容纳腔补充冷的透光液体W,并且所述板式容器的所述液体出口用于将所述容纳腔内热的透光液体W排出。
根据本申请的一个实施例,所述液体进口与所述液体出口通过管道连通于散热器。
根据本申请的一个实施例,所述散热器与所述板式容器之间还设置有水泵。
根据本申请的另一方面,本申请进一步提供了一种降温式光伏发电装置,用于利用太阳光进行发电,包括:太阳能光伏组件,其中所述太阳能光伏组件具有受光面,用于接收该太阳光以进行光伏发电;和上述任一所述的板式 容器,其中所述板式容器被对应地贴合于所述太阳能光伏组件的所述受光面,用于对所述太阳能光伏组件进行换热降温。
根据本申请的另一方面,所述板式容器包括两个透光面板和一个直立周壁,并且两个所述透光面板被间隔地设置于所述直立周壁的上下两侧,以在两个所述透光面板之间形成所述容纳腔;和,所述板式容器设有与所述容纳腔连通的液体进口和液体出口,其中所述板式容器的所述液体进口用于向所述容纳腔补充冷的所述透光液体W,并且所述板式容器的所述液体出口用于将所述容纳腔内热的所述透光液体W排出。
根据本申请的一个实施例,所述太阳能光伏组件包括自上至下依次叠置的钢化玻璃、光伏电池片以及背板,并且所述钢化玻璃和所述背板通过透光胶膜胶合于所述光伏电池片的相对两侧,其中所述板式容器被叠置地安装于所述太阳能光伏组件的所述钢化玻璃。
根据本申请的一个实施例,所述太阳能光伏组件包括光伏电池片和背板,并且所述板式容器和所述背板分别通过透光胶膜直接胶合于所述太阳能光伏组件的所述光伏电池片的相对表面。
根据本申请的一个实施例,所述太阳能光伏组件包括光伏电池片,并且两个所述板式容器分别通过透光胶膜胶合于所述太阳能光伏组件的所述光伏电池片的相对表面。
根据本申请的一个实施例,所述降温式光伏发电装置进一步包括反射镜,并且所述反射镜与所述太阳能光伏组件的所述受光面对应地设置,用于将该太阳光反射至所述太阳能光伏组件的所述受光面。
根据本申请的另一方面,本申请进一步提供了一种太阳能光伏发电设备,包括:上述任一所述的降温式光伏发电装置;和辅助装置,其中所述辅助装 置可通电地连接于所述降温式光伏发电装置,用于处理经由所述降温式光伏发电装置发出的电能。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据本申请的一个实施例的降温式光伏发电装置的结构示意图。
图2示出了根据本申请的上述实施例的所述降温式光伏发电装置的原理示意图。
图3示出了根据本申请的上述实施例的所述降温式光伏发电装置的立体示意图。
图4示出了根据本申请的上述实施例的所述降温式光伏发电装置的第一示例。
图5示出了根据本申请的上述实施例的所述降温式光伏发电装置的第二示例。
图6示出了根据本申请的上述实施例的所述降温式光伏发电装置的第三示例。
图7示出了根据本申请的上述实施例的所述降温式光伏发电装置的第四示例。
图8为根据本申请的一个实施例的太阳能光伏发电设备的结构示意图。
主要元件符号说明:1、降温式光伏发电装置;10、太阳能光伏组件;100、受光面;11、钢化玻璃;12、光伏电池片;13、背板;14、透光胶膜;20、板式容器;200、基体;201、散热面;202、换热面;203、容纳腔;204、液体进口;205、液体出口;21、透光面板;22、直立周壁;30、散热器;40、反射镜;2、辅助装置;3、太阳能光伏发电设备。
以上主要元件符号说明结合附图及具体实施方式对本申请作进一步详细的说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
考虑到光伏组件的工作温度每升高1℃,其发电效率会下降0.4%,特别是在夏天的时候,光伏组件的表面温度可达到70℃以上,且内部工作温度可 以达到100℃以上,造成发电效率下降30%左右。而目前的实践中,太阳能光伏组件的散热主要依靠自然通风来降温,但这种方式的降温效果很差,无法有效地降低光伏组件的工作温度,极大地影响了光伏发电的应用和推广。为了解决上述问题,本申请提出了一种板式容器、降温式光伏发电装置以及太阳能光伏发电设备3,其能够采用容纳有透光液体的板式容器来有效地降低光伏组件的工作温度,有助于提高光伏发电的效率,便于推广应用。
参考附图1至图3所示,本申请的第一实施例提供了一种降温式光伏发电装置1,其适于利用太阳光进行发电。具体地,所述降温式光伏发电装置1可以包括太阳能光伏组件10和板式容器20。所述太阳能光伏组件10具有受光面100,用于接收该太阳光以进行光伏发电。所述板式容器20具有散热面201、换热面202以及位于所述散热面201和所述换热面202之间的容纳腔203,并且所述板式容器20的所述换热面202被面对面地贴合于所述太阳能光伏组件10的所述受光面100。所述板式容器20上用于提供所述散热面201和所述换热面202的基体200由透明材料制成,并且所述板式容器20的所述容纳腔203用于容纳透光液体W以对所述太阳能光伏组件10进行换热降温。可以理解的是,本申请的所述板式容器20的所述容纳腔203可以但不限于具有注液口(图中未示出),用于向所述容纳腔203内灌注该透光液体W。
值得注意的是,如图2所示,本申请的所述降温式光伏发电装置1一方面采用由透明材料制成的板式容器20来容纳透光液体W,使得太阳光能够透过所述板式容器20以照射至所述太阳能光伏组件10的所述受光面100,确保光伏发电的正常进行;另一方面又通过将所述板式容器20的所述换热面202面对面地贴合于所述太阳能光伏组件10的所述受光面100,以增大换热面积,提高换热效率,有助于降低所述太阳能光伏组件10的工作温度,进而避免所 述太阳能光伏组件10因工作温度提升而导致发电效率降低。
可以理解的是,现有的技术方案除了采用自然风冷的方式对太阳能电池板进行散热降温之外,即便采用换热设备对其进行散热降温,通常也只是采用在太阳能电池板的非受光面(如背面)布设蛇管或排管,并通过管内流动的水来进行吸热以达到降温效果。然而,一方面,蛇管或排管与太阳能电池板无法面接触,导致换热面积较小且热阻较大,使得换热效率较差;另一方面,太阳能电池板的非受光面通常会设置有诸如接线盒或电线外接头等各种器件等,导致蛇管或排管不得不避让这些器件,使得换热面积进一步被压缩,无法获得较好的降温效果。
在一些实施例中,本申请的所述降温式光伏发电装置1中所述容纳腔203内所容纳的透光液体W可以但不限于被实施为诸如水等能够吸收红外光的红外吸收液体。
值得注意的是,由于本申请的所述板式容器20的所述换热面202面对面地贴合于所述太阳能光伏组件10的所述受光面100,使得太阳光先透过所述板式容器20的所述容纳腔203中容纳的水,再照射至所述太阳能光伏组件10的所述受光面100以进行发电,因此水在充当吸热介质的同时,能够吸收太阳光中的红外光,以减少照射到所述受光面100的总热量,从而进一步降低所述太阳能光伏组件10的工作温度。
此外,根据测算:一厘米的水层可以将太阳辐照的总热量减少20%,而减少的20%热量中,有90%的热量是来自大于1100纳米的红外光,但这部分红外光是不能参与到光伏发电的。换言之,受限于所述太阳能光伏组件10的发电原理,大于1100纳米的红外光在照射到所述太阳能光伏组件10的所述受光面100后,不仅无法参与到光电转换以形成电能,反而会转换为热能成 为提高所述太阳能光伏组件10的主要热量来源,本申请的所述降温式光伏发电装置1不仅能够利用容纳有水的所述板式容器20对所述太阳能光伏组件10进行换热降温,而且还能够利用所述板式容器20内容纳的水来吸收掉太阳能中大于1100纳米的红外光,以减少所述太阳能光伏组件10处产生的热量,大幅地提高降温效果,确保所述降温式光伏发电装置1的工作温度得以有效降低,进而提高发电效率。
根据本申请的上述实施例,如图3和图4所示,所述板式容器20的所述基体200可以但不限于被实施为透光面板21,如玻璃面板等,以在确保太阳光能够穿透所述板式容器20而照射至所述太阳能光伏组件10的所述受光面100的同时,还能够提供平整的所述换热面202以紧密地贴合于所述太阳能光伏组件10的所述受光面100,以减小两者之间的热阻,提高换热效率。
可以理解的是,在本申请的其他示例中,所述板式容器20的所述基体200也可以但不限于被实施为由聚偏氟乙烯(简称PVDF)、聚氟乙烯(简称PVF)、聚碳酸酯(简称PC)、聚甲基丙烯酸甲酯(简称PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(简称SMMA)、聚乙烯(简称PE)、聚氯乙烯(简称PVC)、聚苯乙烯(简称PS)、聚对苯二甲酸乙二醇酯(简称PET)、聚丙烯(简称PP)、尼龙(简称PA)或聚乙烯醇(简称PVA)等各类有机材料制成硬质面板或软质薄膜,只要能够贴合于所述受光面100,并允许太阳光穿过且形成所述容纳腔203即可,本申请对此不再赘述。
在一些实施例中,如图3和图4所示,所述板式容器20可以包括两个所述透光面板21和一个直立周壁22,并且两个所述透光面板21被间隔地设置于所述直立周壁22的上下两侧,以在两个所述透光面板21之间形成所述容纳腔203,从而获得用于容纳透光液体W的平板容器。换言之,所述板式容 器20中位于所述直立周壁22下侧的所述透光面板21直接提供平整的换热面202,并且所述板式容器20中位于所述直立周壁22上侧的所述透光面板21直接提供平整的散热面201,以便在所述板式容器20被叠置地安装于所述太阳能光伏组件10的所述受光面100后,所述板式容器20的所述换热面202紧密地贴合于所述太阳能光伏组件10的所述受光面100以进行换热,且所述板式容器20的所述散热面201被暴露在外以进行散热,有助于降低所述太阳能光伏组件10的工作温度。
在一些实施例中,所述板式容器20的所述透光面板21可以被实施为钢化玻璃,所述板式容器20的所述直立周壁22可以被实施为矩形框架,所述矩形框架分别被粘结于两个所述钢化玻璃的周缘,以制成平板容器。可以理解的是,在本申请的这一示例中,所述板式容器20的所述直立周壁22可以但不限于由金属或塑料等制成。在本申请的其他示例中,所述板式容器20的所述直立周壁22也可以被实施为钢化玻璃,并且所述板式容器20的所述透光面板21和所述直立周壁22可以一体成型,本申请对此不再赘述。
在一些实施例中,所述板式容器20的所述容纳腔203的厚度在3mm至15mm之间;也就是说,所述板式容器20内容纳的透光液体W层厚度在3mm至15mm之间,以便在减少阻挡太阳光中的可见光透过的同时,有效地过滤掉太阳光中的红外光。
在一些实施例中,所述板式容器20可以进一步包括支撑体,其中所述支撑体被对应地设置于所述板式容器20的所述容纳腔203内,以支撑所述板式容器20的所述散热面201和所述换热面202,防止所述散热面201和/或所述换热面202发生凹陷或凸起。在一些实施例中,所述支撑体对应于所述太阳能光伏组件10中电池片的拼接处,以在稳定支撑的同时,避免对电池片的发 电产生干扰。可以理解的是,所述板式容器20的所述支撑体可以但不限于由透明材质制成,本申请对此不再赘述。
值得注意的是,以水和玻璃分别作为透光液体W和基体200为例,水的比热容是4100J/(kg*K),水的密度是1g/cm 3,玻璃的比热容是800J/(kg*K),玻璃的密度是2.5g/cm 3,所述太阳能光伏组件10中硅片的比热容大约在700J/(kg*K),且硅片厚度在180μm至200μm之间。假设水层厚度为10mm,所述太阳能光伏组件10中的钢化玻璃厚度为3mm,则所述板式容器20的储热能力是太阳能光伏组件10的6.8倍,而更大的储热能力也就意味着如果热量能够让所述太阳能光伏组件10升温68℃,则同样的热量只能使水温上升10℃。换言之,大容腔所储存的水足够多,使得作为换热介质的水和发热物体之间存在较大温差,而温差越大,电池板散热就越快。这样,所述板式容器20能够使所述太阳能光伏组件10降温58℃,并且10mm厚的水层可以削弱20%左右的太阳辐射热量,使得所述太阳能光伏组件10的工作温度接近水温,理论上可以提高发电量10%-25%。
此外,为了进一步提高所述降温式光伏发电装置1的换热效率,如图1和图3所示,本申请的所述降温式光伏发电装置1的所述板式容器20还设有与所述容纳腔203连通的液体进口204和液体出口205,其中所述板式容器20的所述液体进口204用于向所述容纳腔203补充冷的透光液体W,并且所述板式容器20的所述液体出口205用于将所述容纳腔203内热的透光液体W排出,使得该透光液体W在所述容纳腔203内流动以提高换热效率。所述冷的透光液体W的温度低于所述热的透光液体W的温度。
在一些实施例中,所述液体进口204位于所述板式容器20的下部,并且所述液体出口205位于所述板式容器20的上部,以便确保所述透光液体W在 所述容纳腔203内流动的同时,始终充满所述容纳腔203,有助于提高换热效率和滤除红外光的效率。
在一些实施例中,如图1所示,所述降温式光伏发电装置1还可以进一步包括散热器30,其中所述散热器30通过管道分别连通于所述板式容器20的所述液体进口204和所述液体出口205,用于对从所述容纳腔203内经由所述液体出口205流出的热液体进行散热,并将散热后的冷液体经由所述液体进口204输送至所述容纳腔203,使得透光液体W被循环利用,有助于在提高换热效率的同时,节省资源。可以理解的是,所述散热器30与所述板式容器20之间的管道中可以设置水泵,以促进液体的循环流动;此外,本申请所提及的散热器30可以但不限于被实施为诸如带有翅片或针形散热片的散热容器等冷却设施,只要能够降低该透光液体W的温度,并将降温后的该透光液体W供应给所述板式容器20即可,本申请对此不再赘述。
值得注意的是,在本申请的第一示例中,如图4所示,本申请的所述降温式光伏发电装置1的所述太阳能光伏组件10通常包括自上至下依次叠置的钢化玻璃11、光伏电池片12以及背板13,并且所述钢化玻璃11和所述背板13通过透光胶膜14胶合于所述光伏电池片12的相对两侧,以完成所述太阳能光伏组件10的封装。此时,所述板式容器20只需被叠置地安装于所述太阳能光伏组件10的所述钢化玻璃11,使得所述板式容器20的所述换热面202贴合于所述钢化玻璃11的表面,就可以组装成所述降温式光伏发电装置1,以利用所述板式容器20内容纳的透光液体W在所述太阳能光伏组件10的所述受光面100(如所述太阳能光伏组件10的正面)进行散热降温,有效地降低所述太阳能光伏组件10的所述光伏电池片12的工作温度,提高发电效率。
在一些实施例中,所述透光胶膜14可以但不限于被实施为由聚乙烯-聚醋 酸乙烯酯共聚物制成的胶膜,简称EVA胶膜。
在一些实施例中,本申请的所述降温式光伏发电装置1的所述板式容器20内容纳的水中可以额外添加紫外线吸收剂和/或光稳定剂,用于吸收太阳光中的紫外线,以防止紫外线破坏所述EVA胶膜而导致透光胶膜老化变黄,有助于进一步延长所述降温式光伏发电装置1的使用寿命,这是因为透光胶膜老化变黄会影响透光率,导致光伏组件在长期使用中出现性能衰减。
值得注意的是,在本申请的上述第一示例中,所述板式容器20可以但不限于直接贴合于所述太阳能光伏组件10的所述钢化玻璃11的表面,以组装成所述降温式光伏发电装置1。换言之,本申请只需要将所述板式容器20贴合于现有太阳能电池板的表面,就能够将现有的太阳能电池板改造成所述降温式光伏发电装置1,无需拆卸或改变现有的太阳能电池板的原有构造,降低改造难度和成本,却能够有效地提高发电效率,便于推广应用。
此外,在本申请的第二示例中,如图5所示,本申请的所述降温式光伏发电装置1中的所述太阳能光伏组件10也可以只包括通过所述透光胶膜14胶合的所述光伏电池片12和所述背板13,而不包括所述钢化玻璃11。此时,所述板式容器20通过所述透光胶膜14直接粘接于所述太阳能光伏组件10的所述光伏电池片12的受光面一侧的表面,以组装成所述降温式光伏发电装置1。这样,本申请的所述降温式光伏发电装置1能够利用所述板式容器20替代原有的钢化玻璃,不仅能够省去钢化玻璃以降低成本,而且还能够减小所述光伏电池片12与所述板式容器20之间的热阻,提高换热效率。
换言之,这本申请的上述第二示例中,所述板式容器20被一体地集成于所述太阳能光伏组件10,即在生产工厂内直接将所述板式容器20和所述太阳能光伏组件10封装在同一个框架内,有助于提高所述降温式光伏发电装置1 的整体结构稳定性,降低制造成本。
值得注意的是,在本申请的上述第一和第二示例中,所述降温式光伏发电装置1的所述太阳能光伏组件10中的所述背板13可以是不透光背板,即所述太阳能光伏组件10只有一个所述受光面100,进行单面发电;而在本申请的一些其他示例中,所述太阳能光伏组件10的所述背板13也可以是玻璃背板,即所述太阳能光伏组件10具有两个所述受光面100,进行双面发电,此时,本申请的所述降温式光伏发电装置1可以包括两个所述板式容器20,并且两个所述板式容器20分别被叠置于所述太阳能光伏组件10的正面和背面,以进一步增大换热面积,提高换热效率。
示例性地,在本申请的所述第三示例中,如图6所示,本申请的所述降温式光伏发电装置1中的所述太阳能光伏组件10还可以只包括所述光伏电池片12,并且两个所述板式容器20分别通过所述透光胶膜14胶合于所述光伏电池片12的正面和背面,以替代原有的钢化玻璃和背板,从而最大限度地降低热阻,提高换热效率,进而更加有效地降低所述太阳能光伏组件10的工作温度,提高发电效率。可以理解的是,在本申请的其他示例中,两个所述板式容器20也可以分别通过所述透光胶膜14胶合于所述钢化玻璃和所述背板的表面,仍能够通过增大换热面积,提高换热效率,进而有效地降低所述太阳能光伏组件10的工作温度,提高发电效率,本申请对此不再赘述。
值得注意的是,现有的太阳能电池板因散热性能较差而无法额外采用反光镜来增加其光通量,但由于本申请的所述降温式光伏发电装置1能够通过所述板式容器20有效地降低所述太阳能光伏组件10的工作温度,因此本申请的所述降温式光伏发电装置1通过额外设置反射镜以增加所述太阳能光伏组件10的光通量成为可能,以最大限度地提高发电量。
示例性地,如图7所示,在本申请的第四示例中,所述降温式光伏发电装置1还可以包括反射镜40,并且所述反射镜40被对应地设置,用于将太阳光反射至所述太阳能光伏组件10的所述受光面100,以增加所述太阳能光伏组件10所接收到的太阳光的光通量。可以理解的是,虽然所述太阳能光伏组件10所产生的热量会随着光通量的增加而增加,但所述板式容器20能够很好地对所述太阳能光伏组件10进行换热降温,以保证所述太阳能光伏组件10的工作温度维持在正常状态,确保较高的发电效率。与此同时,经由所述反射镜40反射的太阳光也会先透过所述板式容器20,再照射至所述太阳能光伏组件10的所述受光面100,这样利用所述板式容器20内容纳的水也能够吸收掉太阳光中大于1100纳米的红外光,以减少所述太阳能光伏组件10处产生的热量,大幅地提高降温效果,确保所述降温式光伏发电装置1的工作温度得以有效降低,进而提高发电效率。
根据本申请的另一方面,如图8所示,本申请的一个实施例可以进一步提供一种太阳能光伏发电设备3,其可以包括上述降温式光伏发电装置1和辅助装置2,并且所述辅助装置2可通电地连接于所述降温式光伏发电装置1,用于处理经由所述降温式光伏发电装置1发出的电能,以供使用。可以理解的是,所述太阳能光伏发电设备3的所述辅助装置2可以但不限于包括直流变交流装置和/或升压装置等,使得经由所述降温式光伏发电装置1发出的电能能够转换成直接被使用或并网的电能,本申请对此不再赘述。
值得注意的是,众所周知物体的热交换存在三种形式:传导、对流以及辐射。相关技术中排布在太阳能背面的蛇管在吸收背板热量的同时,也在向背板背后的空气散发热量,而对流是空气换热的主要方式,对流换热的特点是热空气向上流动,这样就又把热量送回太阳能电池板,导致背面水冷方案 里需要通过另外的水管,通过泵把热水输送出去,以利用外部的散热装置来散热,而不能够直接排热到背板后的空气里。然而,本申请的所述降温式光伏发电装置1则直接将板式容器贴合于太阳能电池板的上表面,以在不使用外部散热装置的情况下,利用板式容器的下层板面作为与太阳能电池板接触的换热面,并利用板式容器的上层板面作为散热面,借助两层板面之间的大面积且小厚度的水对流,使得散热装置和换热装置的功能相互叠加,有助于提高降温效果。此外,本申请的所述降温式光伏发电装置1直接向空气排放热量,而热空气的上流并不会把热量还给太阳能电池板。
可以理解的是,本申请所提及的水泵、输水管以及外置散热器仅作为整体散热降温方案的可选性,而不是必备项,这是因为一边发电、一边用电冷却的方案在经济可行性上终有欠缺,本申请的所述降温式光伏发电装置1能够在不耗电的条件下,实现有效地降温,使得其在经济上的可行性大幅增加。
本申请提供一种板式容器、降温式光伏发电装置以及太阳能光伏发电设备,具有以下优点:能够有效地降低光伏组件的工作温度,有助于提高光伏发电的效率,便于光伏发电的推广应用。
在本申请的一些实施例中,所述降温式光伏发电装置能够利用容纳有透光液体的板式容器来有效地吸收光伏组件所产生的热量,降低光伏组件的工作温度。
在本申请的一些实施例中,所述降温式光伏发电装置能够延缓光伏组件的衰老,提高整个使用周期内的发电量。
在本申请的一些实施例中,所述降温式光伏发电装置能够利用在板式容器内流动的液体带走大量的热量,以便进一步提高对光伏组件的降温效果。
在本申请的一些实施例中,所述降温式光伏发电装置能够利用板式容器 来替代太阳能光伏组件中的钢化玻璃,以便在提高换热效率的同时,减轻装置重量。
在本申请的一些实施例中,所述降温式光伏发电装置能够直接将板式容器加装在太阳能光伏组件的钢化玻璃上,以降低现有的太阳能电池板的改装难度,便于太阳能光伏发电设备的推广应用。
本申请的另一优势在于提供一种板式容器、降温式光伏发电装置以及太阳能光伏发电设备,其中为了达到上述目的,在本申请中不需要采用昂贵的材料或复杂的结构。因此,本申请成功和有效地提供一解决方案,不只提供一种简单的板式容器、降温式光伏发电装置以及太阳能光伏发电设备,同时还增加了所述板式容器、降温式光伏发电装置以及太阳能光伏发电设备的实用性和可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 板式容器,用于对太阳能光伏组件进行降温,其特征在于,所述板式容器具有散热面、换热面以及位于散热面和换热面之间的容纳腔,并且所述板式容器的所述换热面用于被面对面地贴合于该太阳能光伏组件的受光面,其中所述板式容器上提供所述散热面和所述换热面的基体由透明材料制成,并且所述板式容器的所述容纳腔用于容纳透光液体W以对该太阳能光伏组件进行换热降温。
  2. 如权利要求1所述的板式容器,其中,所述板式容器包括两个透光面板和一个直立周壁,并且两个所述透光面板被间隔地设置于所述直立周壁的上下两侧,以在两个所述透光面板之间形成所述容纳腔。
  3. 如权利要求1所述的板式容器,其中,所述板式容器的所述容纳腔所容纳的该透光液体W为水。
  4. 如权利要求1至3中任一所述的板式容器,其中,所述板式容器设有与所述容纳腔连通的液体进口和液体出口,其中所述板式容器的所述液体进口用于向所述容纳腔补充冷的所述透光液体W,并且所述板式容器的所述液体出口用于将所述容纳腔内热的所述透光液体W排出。
  5. 如权利要求4所述的板式容器,其中,所述液体进口与所述液体出口通过管道连通于散热器。
  6. 如权利要求5所述的板式容器,其中,所述散热器与所述板式容器之间还设置有水泵。
  7. 降温式光伏发电装置,用于利用太阳光进行发电,其特征在于,包括:太阳能光伏组件,其中所述太阳能光伏组件具有受光面,用于接收该太阳光以进行光伏发电;和,板式容器,其中,所述板式容器具有散热面、换热面 以及位于散热面和换热面之间的容纳腔,并且所述板式容器的所述换热面用于被面对面地贴合于所述太阳能光伏组件的受光面,其中所述板式容器上提供所述散热面和所述换热面的基体由透明材料制成,并且所述板式容器的所述容纳腔用于容纳透光液体W以对该太阳能光伏组件进行换热降温。
  8. 如权利要求7所述的降温式光伏发电装置,其中,所述板式容器包括两个透光面板和一个直立周壁,并且两个所述透光面板被间隔地设置于所述直立周壁的上下两侧,以在两个所述透光面板之间形成所述容纳腔;和,
    所述板式容器设有与所述容纳腔连通的液体进口和液体出口,其中所述板式容器的所述液体进口用于向所述容纳腔补充冷的所述透光液体W,并且所述板式容器的所述液体出口用于将所述容纳腔内热的所述透光液体W排出。
  9. 如权利要求7所述的降温式光伏发电装置,其中,所述太阳能光伏组件包括自上至下依次叠置的钢化玻璃、光伏电池片以及背板,并且所述钢化玻璃和所述背板通过透光胶膜胶合于所述光伏电池片的相对两侧,其中所述板式容器被叠置地安装于所述太阳能光伏组件的所述钢化玻璃。
  10. 如权利要求7所述的降温式光伏发电装置,其中,所述太阳能光伏组件包括光伏电池片和背板,并且所述板式容器和所述背板分别通过透光胶膜直接胶合于所述太阳能光伏组件的所述光伏电池片的相对表面。
  11. 如权利要求7所述的降温式光伏发电装置,其中,所述太阳能光伏组件包括光伏电池片,并且两个所述板式容器分别通过透光胶膜胶合于所述太阳能光伏组件的所述光伏电池片的相对表面。
  12. 如权利要求7所述的降温式光伏发电装置,其中,所述降温式光伏发电装置进一步包括反射镜,并且所述反射镜与所述太阳能光伏组件的所述受 光面对应地设置,用于将该太阳光反射至所述太阳能光伏组件的所述受光面。
  13. 太阳能光伏发电设备,其特征在于,包括:
    降温式光伏发电装置,其中,所述降温式光伏发电装置包括太阳能光伏组件和板式容器,其中所述太阳能光伏组件具有受光面,用于接收该太阳光以进行光伏发电;所述板式容器具有散热面、换热面以及位于散热面和换热面之间的容纳腔,并且所述板式容器的所述换热面用于被面对面地贴合于所述太阳能光伏组件的受光面,其中所述板式容器上提供所述散热面和所述换热面的基体由透明材料制成,并且所述板式容器的所述容纳腔用于容纳透光液体W以对该太阳能光伏组件进行换热降温;和
    辅助装置,其中所述辅助装置可通电地连接于所述降温式光伏发电装置,用于处理经由所述降温式光伏发电装置发出的电能。
PCT/CN2022/144056 2022-01-17 2022-12-30 板式容器、降温式光伏发电装置以及太阳能光伏发电设备 WO2023134477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220119632.X 2022-01-17
CN202220119632.XU CN216851899U (zh) 2022-01-17 2022-01-17 板式容器、降温式光伏发电装置以及太阳能光伏发电设备

Publications (1)

Publication Number Publication Date
WO2023134477A1 true WO2023134477A1 (zh) 2023-07-20

Family

ID=82083489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144056 WO2023134477A1 (zh) 2022-01-17 2022-12-30 板式容器、降温式光伏发电装置以及太阳能光伏发电设备

Country Status (3)

Country Link
CN (1) CN216851899U (zh)
TW (2) TW202334590A (zh)
WO (1) WO2023134477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216851899U (zh) * 2022-01-17 2022-06-28 严丛骊 板式容器、降温式光伏发电装置以及太阳能光伏发电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025931A1 (en) * 2002-08-09 2004-02-12 S.I.E.M. S.R.L. Solar panel for simultaneous generation of electric and thermal energy
CN202405295U (zh) * 2011-11-04 2012-08-29 新奥科技发展有限公司 主动式冷却太阳能光伏发电系统
CN103708577A (zh) * 2013-12-23 2014-04-09 江苏大学 一种聚光太阳能光伏发电和水净化综合利用系统
CN206412373U (zh) * 2017-01-23 2017-08-15 英利能源(中国)有限公司 一种可控温聚光光伏组件
JP2019056538A (ja) * 2017-09-22 2019-04-11 キヤノン電子株式会社 太陽光パネルユニットおよびその保護ユニット
CN216851899U (zh) * 2022-01-17 2022-06-28 严丛骊 板式容器、降温式光伏发电装置以及太阳能光伏发电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025931A1 (en) * 2002-08-09 2004-02-12 S.I.E.M. S.R.L. Solar panel for simultaneous generation of electric and thermal energy
CN202405295U (zh) * 2011-11-04 2012-08-29 新奥科技发展有限公司 主动式冷却太阳能光伏发电系统
CN103708577A (zh) * 2013-12-23 2014-04-09 江苏大学 一种聚光太阳能光伏发电和水净化综合利用系统
CN206412373U (zh) * 2017-01-23 2017-08-15 英利能源(中国)有限公司 一种可控温聚光光伏组件
JP2019056538A (ja) * 2017-09-22 2019-04-11 キヤノン電子株式会社 太陽光パネルユニットおよびその保護ユニット
CN216851899U (zh) * 2022-01-17 2022-06-28 严丛骊 板式容器、降温式光伏发电装置以及太阳能光伏发电设备

Also Published As

Publication number Publication date
CN216851899U (zh) 2022-06-28
TWM647692U (zh) 2023-11-01
TW202334590A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US20140332055A1 (en) Solar cell module
CN102487255A (zh) 太阳能综合利用装置
JP2010258031A (ja) 発電システム
WO2023134477A1 (zh) 板式容器、降温式光伏发电装置以及太阳能光伏发电设备
KR20160136528A (ko) 태양열 및 태양광 복합 태양 에너지 온수기
CN202487599U (zh) 一种太阳能光伏组件
CN108599720A (zh) 一种密排cpv组件散热装置
CN201817988U (zh) 一种低倍聚光发电供热的太阳能瓦
CN101974963A (zh) 一种低倍聚光发电供热的太阳能瓦
CN201733250U (zh) 一种线聚焦的聚光光伏组件
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
KR102408769B1 (ko) 태양광 및 태양열 복합에너지 생성장치
WO2011091694A1 (zh) 一种液浸光伏组件
CN109217811A (zh) 一种光电光热一体化组件以及热水系统
CN210693821U (zh) 一种太阳能电站双面光伏电池组件
CN213599591U (zh) 光伏光热热电水箱模块
JP2004317117A (ja) 太陽光発電機能を有する太陽熱集熱器
CN209515691U (zh) 一种散热型半片电池组件
KR20210096424A (ko) 발전 성능이 개선된 pvt 패널
CN221103301U (zh) 一种低工作温度光伏光热组件
CN206059405U (zh) 一种砷化镓聚光太阳能电池
CN219393408U (zh) 一种光伏背板
CN213578160U (zh) 一种太阳能综合能源利用系统
CN108417655B (zh) 一种反光散热高效平板太阳能电池薄型组件
CN212231403U (zh) 新型光伏发电用光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920107

Country of ref document: EP

Kind code of ref document: A1