WO2011090232A1 - Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method - Google Patents

Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method Download PDF

Info

Publication number
WO2011090232A1
WO2011090232A1 PCT/KR2010/002358 KR2010002358W WO2011090232A1 WO 2011090232 A1 WO2011090232 A1 WO 2011090232A1 KR 2010002358 W KR2010002358 W KR 2010002358W WO 2011090232 A1 WO2011090232 A1 WO 2011090232A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
dye
sensitized solar
solar cell
transition metal
Prior art date
Application number
PCT/KR2010/002358
Other languages
French (fr)
Korean (ko)
Inventor
문준혁
진우민
신주환
강지환
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2011090232A1 publication Critical patent/WO2011090232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/209Light trapping arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell according to the present invention, and more particularly, a porous transition metal using a three-dimensional porous photoresist pattern formed using three-dimensional photointerference lithography as a template. It relates to a method for producing a photoelectrode for a dye-sensitized solar cell, comprising forming an oxide layer, and a dye-sensitized solar cell comprising the photoelectrode prepared thereby.
  • solar cells are devices that convert solar energy into electrical energy.
  • Solar cells produce electricity using solar energy, which is an infinite energy source, and silicon solar cells, which are already widely used in our lives, are typical.
  • dye-sensitized solar cells are being researched as next-generation solar cells.
  • the dye-sensitized solar cell is a typical one published by Gratzel et al. [US Patent No. 5350644], and the structure is one of the two electrodes, one of the two electrodes, the dye is adsorbed semiconductor oxide semiconductor oxide layer formed conductive It is a photoelectrode including a transparent substrate, and the electrolyte is filled in the space between the two electrodes.
  • the solar energy is absorbed by the dye adsorbed on the semiconductor oxide electrode to generate photoelectrons, which are conducted through the semiconductor oxide layer and transferred to the conductive transparent substrate on which the transparent electrode is formed.
  • the dye is reduced by the redox pairs contained in the electrolyte.
  • the electrons that reach the opposite electrode (relative electrode) through the external wire reduces the oxidation-reduction pair of the oxidized electrolyte again to complete the operation process.
  • dye-sensitized solar cells contain more interfaces (semiconductor
  • the energy conversion efficiency of the dye-sensitized solar cell is proportional to the amount of electrons generated by the light absorption, in order to generate a large amount of electrons by the light absorption, the photoelectrode may increase the adsorption amount of the dye molecules. Manufacturing is required.
  • the present application relates to the development of a new method for manufacturing a photoelectrode for a dye-sensitized solar cell, comprising adsorbing a dye to a porous transition metal oxide layer having a three-dimensional pore structure prepared through a three-dimensional optical interference lithography process to form a photoelectrode.
  • a dye-sensitized solar cell comprising a method for producing a photoelectrode for a dye-sensitized solar cell and a photoelectrode produced thereby.
  • the first aspect of the present application forming a photoresist layer on a conductive transparent substrate; Irradiating the photoresist layer with a three-dimensional optical interference pattern by using three-dimensional optical interference lithography to form a three-dimensional porous photoresist pattern; Injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern; Forming a porous transition metal oxide layer by removing the photoresist pattern by firing; And adsorbing a photosensitive dye on the porous transition metal oxide layer, thereby providing a method of manufacturing a photoelectrode for a dye-sensitized solar cell.
  • the 3D optical interference pattern may be formed by irradiating four coherent parallel lights having optical path differences on the photoresist layer, but is not limited thereto.
  • the lattice constant of the formed 3D porous photoresist pattern may be adjusted by adjusting the incident angle of the irradiated parallel light.
  • the intensity and irradiation time of the irradiated parallel light it is possible to adjust the pore size of the formed three-dimensional porous photoresist pattern.
  • the forming of the 3D porous photoresist pattern may include irradiating the 3D optical interference pattern to the photoresist layer using 3D optical interference lithography and then irradiating the 3D optical interference pattern.
  • the photoresist layer may be developed, but is not limited thereto.
  • the three-dimensional porous photoresist pattern may be formed by arranging a three-dimensional regular pattern in a surface centered cubic structure in the photoresist layer, but is not limited thereto.
  • the method may further include forming a blocking layer between the conductive transparent substrate and the photoresist layer, but is not limited thereto.
  • the method may further include forming a nanocrystalline transition metal thin film on the conductive transparent substrate before forming the photoresist layer on the conductive transparent substrate, but is not limited thereto.
  • the nanocrystalline transition metal thin film may be formed by applying transition metal nanoparticles, and the thickness thereof may be about several micro to several tens of micrometers, but is not limited thereto.
  • the transition metal oxide is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and their It may be an oxide of a transition metal selected from the group consisting of a combination, but is not limited thereto.
  • the photoresist layer may be formed using a negative type or a positive type photoresist, but is not limited thereto.
  • the second aspect of the present application is a dye-sensitized solar cell comprising a photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte located between the photoelectrode and the counter electrode, wherein the photoelectrode is the photoresist Irradiating the layer with a three-dimensional optical interference pattern to form a three-dimensional porous photoresist pattern; Injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern;
  • a dye-sensitized method which is prepared by forming a porous transition metal oxide layer by removing the photoresist pattern by firing, and comprises a porous transition metal oxide layer on which a photosensitive dye formed on the conductive transparent substrate is adsorbed.
  • Solar cells can be provided.
  • the porous transition metal oxide layer for forming the photoelectrode
  • the present invention by precisely controlling the various types of pores according to the intensity and the irradiation conditions of the irradiated light to form the porous transition metal oxide layer to form a photoelectrode, it is possible to manufacture an optimized dye-sensitized solar cell photoelectrode have.
  • the porous transition metal oxide layer for forming a photoelectrode by forming a three-dimensional pore structure having a pore size in the nanometer to micrometer unit, light scattering can be induced and the light of the dye-sensitized solar cell Increase the absorption efficiency.
  • FIG. 1 is a detailed block diagram of a dye-sensitized solar cell according to an embodiment of the present application.
  • FIG. 2 is a detailed flowchart of a method of manufacturing a photoelectrode for a dye-sensitized solar cell according to an embodiment of the present application.
  • FIG 3 is a view showing an example of a method of irradiating interference light to the photoresist layer according to an embodiment of the present application.
  • FIG. 4 is a conceptual diagram of three-dimensional lithography (optical interference lithography) in accordance with an embodiment of the present application.
  • FIG. 5 is an electron micrograph of a photoresist comprising three-dimensional pores formed through optical interference lithography according to one embodiment of the present disclosure.
  • FIG. 6 is an electron micrograph of a porous titanium dioxide layer formed by using a photoresist including three-dimensional pores of FIG. 5 as a sacrificial layer.
  • FIG. 7 is a graph of photocurrent-voltage characteristics of a dye-sensitized solar cell including a photoelectrode formed through optical interference lithography according to an embodiment of the present disclosure.
  • FIG. 1 is a detailed block diagram of a dye-sensitized solar cell according to an embodiment of the present application.
  • the dye-sensitized solar cell includes a photoelectrode 30 including a conductive transparent substrate 10 and a porous transition metal oxide layer 20 on which a photosensitive dye is adsorbed. ; A counter electrode 60 including a conductive transparent substrate 40 and a conductive layer 50; Electrolyte 70; And, the sealing unit 80 may be included.
  • a blocking layer (not shown) may be formed between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 if necessary.
  • the blocking layer may include an oxide and may serve to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20.
  • the blocking layer may include, for example, titanium dioxide, but is not limited thereto.
  • a plurality of dye molecules are adsorbed to the porous transition metal oxide layer 20.
  • the conductive transparent substrate 10 used in forming the photoelectrode 30 has a structure in which a conductive transparent electrode is formed on a transparent semiconductor electrode substrate.
  • a transparent glass substrate or a transparent polymer substrate having flexibility may be used as the substrate for the semiconductor electrode.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC Polycarbonate
  • PP polypropylene
  • PI polyimide
  • TAC triacetyl cellulose
  • the semiconductor electrode substrate may be doped with a material selected from the group consisting of Ti, In, Ga, and Al.
  • the transparent electrode formed on the substrate for a semiconductor electrode for example, indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), Zinc oxide, tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and conductive metal oxides selected from the group consisting of mixtures thereof, and preferably conductive, transparent and heat resistant It may include, but is not limited to, superior SnO 2 or cost-effective ITO.
  • the reason for employing the conductive transparent substrate 10 is to allow the sunlight to penetrate into the inside.
  • the meaning of the word transparent in the description of the present application includes not only the case where the light transmittance of the material is 100% but also the case where the light transmittance is high.
  • a plurality of dye molecules may be adsorbed to the porous transition metal oxide layer 20.
  • the pores of the porous transition metal oxide layer 20 may be, for example, arranged in a face centered cubic structure as a whole. That is, the porous transition metal oxide layer 20 may be provided in a structure having a three-dimensional porosity.
  • As the pores of the porous transition metal oxide layer 20 have a three-dimensional face-centered cubic structure a three-dimensional photonic crystal may be formed to expect a photoamplification effect.
  • an effective electron transfer path is formed by the porous three-dimensional face centered cubic structure having a certain rule, thereby improving the photoelectric conversion efficiency of the dye-sensitized solar cell.
  • the electrical stability of the dye-sensitized solar cell is improved by providing an efficient passage for the penetration of a highly viscous polymer or solid electrolyte through the pores formed in a three-dimensional face-centered cubic structure.
  • the smaller the size of the pores of the porous transition metal oxide layer 20 having a three-dimensional face-centered cubic structure is preferable.
  • the pore size of the porous transition metal oxide layer 20 decreases, the surface area increases, so that more dye molecules can be adsorbed, and when more dye molecules are adsorbed, more electrons are generated, which leads to energy conversion efficiency of the dye-sensitized solar cell. Because it is improved.
  • transition metal oxide included in the porous transition metal oxide layer 20 for example, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, It may include an oxide of a transition metal selected from the group consisting of Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof.
  • the present invention is not limited thereto, and other kinds of transition metal oxides may be applied.
  • the porous transition metal oxide layer 20 may include titanium dioxide, and it is preferable to use such titanium dioxide having an anatase crystallinity with good electron transfer ability. .
  • a dye is adsorbed on the surface of the transition metal oxide (particle) constituting the porous transition metal oxide layer 20, electrons are generated when light is incident on and absorbed by the dye molecule, and the generated electron is a porous transition metal oxide layer 20. Is transmitted to the conductive transparent substrate 10 through the passage.
  • a nanocrystalline transition metal thin film is formed on the conductive transparent substrate 10 or the blocking layer formed on the conductive transparent substrate 10, and then the photoresist layer is formed to form the porous transition metal oxide layer 20.
  • the nanocrystalline transition metal thin film may be formed by applying nanoparticles of a transition metal such as titanium dioxide, but is not limited thereto.
  • the step of adsorbing the dye the dye may be adsorbed to both the porous transition metal oxide layer 20 and the nano-crystalline transition metal thin film.
  • the incident light is scattered by the porous transition metal layer 20 to increase the light absorption efficiency, thereby increasing the amount of electrons generated from the adsorbed dye and transferring these electrons through the nanocrystalline transition metal thin film.
  • the light conversion efficiency of the battery can be increased.
  • the counter electrode 60 is disposed to face the photoelectrode 30.
  • the counter electrode 60 may include a conductive transparent substrate 40 on which a transparent electrode is formed on a substrate for a semiconductor electrode, and a conductive layer 50 formed on the transparent electrode.
  • the substrate for the semiconductor electrode forming the counter electrode 60 may be a glass substrate or a transparent polymer substrate.
  • the transparent polymer substrate for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide ( polyimide, PI), triacetyl cellulose (triacetylcellulose (TAC)), or a transparent polymer substrate including a polymer such as a copolymer thereof, but is not limited thereto.
  • the transparent electrode formed on the semiconductor electrode substrate for forming the counter electrode 60 may be indium tin oxide (ITO), fluorine tin oxide (FTO), or antimony tin oxide (antimony tin oxide). , ATO), zinc oxide, zinc oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , or a mixture thereof.
  • ITO indium tin oxide
  • FTO fluorine tin oxide
  • antimony tin oxide antimony tin oxide
  • ATO zinc oxide, zinc oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , or a mixture thereof.
  • the conductive layer 50 may be formed on one surface of the counter electrode 60 disposed opposite to the porous transition metal oxide layer 20 on which the dye of the photoelectrode 30 is adsorbed.
  • the conductive layer 50 plays a role of activating a redox couple, and includes platinum (Pt), gold (Au), ruthenium (Ru), palladium (Pd), and rhodium (Rh). ), Iridium (Ir), osmium (Os), carbon (C), WO 3 , TiO 2 or a conductive material such as a conductive polymer.
  • the conductive layer 50 formed on one surface of the counter electrode 60 is more efficient as the reflectivity is higher, so it is better to select a material having a high reflectance.
  • An electrolyte 70 is formed between the porous transition metal oxide layer 20 and the counter electrode 60.
  • the electrolyte 70 includes, for example, iodide, and serves to transfer electrons to a dye molecule that receives electrons from the counter electrode 60 by oxidation and reduction and loses electrons.
  • the sealing part 80 maintains a gap between the two electrodes and the electrolyte 70 filled between the photoelectrode 30 and the counter electrode 60.
  • the seal 80 may include, for example, a thermoplastic polymer that is cured by heat or ultraviolet rays.
  • the sealing part 80 may include an epoxy resin, but is not limited thereto.
  • FIG. 2 is a detailed flowchart of a method of manufacturing a photoelectrode for a dye-sensitized solar cell according to an embodiment of the present application.
  • 3 is a view showing an example of a method of irradiating interference light to the photoresist layer according to an embodiment of the present application
  • Figure 4 is a conceptual diagram of three-dimensional lithography (optical interference lithography) according to an embodiment of the present application to be.
  • Step S200 is to prepare a conductive transparent substrate 10.
  • a transparent electrode is deposited on a glass substrate or a transparent polymer substrate to prepare a conductive transparent substrate 10.
  • the material of the transparent polymer substrate for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (polypropylene, PP) , Polyimide (PI), triacetyl cellulose (triacetylcellulose, TAC), or copolymers thereof, and the like, but is not limited thereto.
  • the transparent electrode formed on the substrate for a semiconductor electrode may be indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), zinc oxide ( zinc oxide), tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and a conductive metal oxide selected from the group consisting of a mixture thereof, and more preferably SnO having excellent conductivity, transparency and heat resistance.
  • ITO indium tin oxide
  • FTO fluorine tin oxide
  • ATO antimony tin oxide
  • zinc oxide zinc oxide
  • tin oxide ZnO-Ga 2 O 3 , ZnO-Al 2 O 3
  • a conductive metal oxide selected from the group consisting of a mixture thereof, and more preferably SnO having excellent conductivity, transparency and heat resistance.
  • 2 or cost-effective ITO may include, but is not limited to.
  • step S200 it is possible to form a blocking layer by coating an oxide to a predetermined thickness on the conductive transparent substrate (10).
  • the material of the barrier layer, the number of heat treatments or conditions for forming the barrier layer, and the like can be variously modified within the scope of achieving the object of the present application.
  • the blocking layer serves to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 when the photoelectrode 30 is formed.
  • the blocking layer may be formed by any one of a deposition method, an electrolysis method, and a wet method.
  • Step S202 is a step of forming a three-dimensional porous photoresist pattern by irradiating the photoresist layer 300 with a three-dimensional optical interference pattern. If necessary, the 3D porous photoresist pattern may be developed by further performing a baking and etching process after irradiating the 3D optical interference pattern.
  • step S202 the photoresist layer 300 having a predetermined thickness is formed on the conductive transparent substrate 10, and the 3D photointerference pattern is irradiated to the formed photoresist layer 300 to form a 3D porous photoresist pattern.
  • the photoresist layer 300 having a predetermined thickness is formed on the conductive transparent substrate 10, and the 3D photointerference pattern is irradiated to the formed photoresist layer 300 to form a 3D porous photoresist pattern.
  • the thickness of the coated photoresist layer 300 may vary depending on the size of the dye-sensitized solar cell to be manufactured, for example, may be formed to a thickness of about 10 ⁇ m to 30 ⁇ m.
  • the photoresist may be coated on a conductive transparent substrate or a barrier layer such as titanium dioxide coated on the conductive transparent substrate by several nanometers.
  • step S202 by irradiating the optical interference pattern consisting of a plurality of coherent parallel light to which the optical path difference is applied, the three-dimensional porous pattern on the photoresist layer 300 in the optical interference lithography method Can be formed.
  • the three-dimensional optical interference pattern formed by using four coherent parallel lights may be irradiated onto the photoresist layer 300 to form a three-dimensional porous pattern, in which case four The above light can be generated by dividing one parallel light into a plurality of lights, or applying one parallel light to a prism of a polyhedron or the like.
  • a photo taken with an electron microscope of a photoresist with a three-dimensional porous pattern formed through optical interference lithography according to an embodiment of the present application is shown in FIG.
  • the pattern formed on the photoresist layer 300 may have a form in which pores of the surface centered cubic structure are repeated, and may be formed in various lattice structures by adjusting the angle and direction of the irradiated light. Furthermore, the size of the pattern can be effectively controlled by adjusting the exposure time and post-exposure baking time of the irradiated interference light.
  • the pore size and connection can be freely controlled by changing three-dimensional optical interference lithography conditions, and can overcome the limitations of pore control through conventional nanoparticle arrays.
  • the array of pores is a spherical or cylinder-shaped pores are arranged in a face-centered cubic structure, and the pores are connected by six pipe-shaped pores.
  • the size of the pores and connecting pores can be freely controlled by varying the optical interference lithography conditions.
  • the porous structure is formed up to about several hundred nanometers has the advantage of smoothly filling the pores when applying the electrolyte, it can provide efficient pores for the penetration of high viscosity polymer or solid electrolyte.
  • An average diameter of pores formed by lithography according to an embodiment of the present disclosure may range from about 100 nm to about 10 ⁇ m, but is not limited thereto.
  • the photoresist layer 300 may be formed using various polymer photoresist solutions whose crosslinking or solubility is changed by photoreaction, and both a negative type and a positive type photoresist may be used.
  • Step S204 is a step of injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern.
  • the transition metal oxide precursor solution may be injected into the photoresist pattern in which the three-dimensional pores are formed and dried for several minutes.
  • a transition metal oxide precursor that can cause a sol-gel reaction can be used.
  • Step S206 is a step of forming a porous transition metal oxide layer by removing the photoresist pattern using a heating predetermined process.
  • the porous structure may be formed while removing the photoresist.
  • the porous transition metal oxide layer may be formed by sintering at a temperature of 400 ° C. or more for 10 minutes or more.
  • titanium dioxide may be used as the transition metal oxide layer, and in particular, it is preferable to produce titanium dioxide having anatase crystallinity by the sintering.
  • a photoresist layer on the transition metal oxide layer A photoresist pattern may be formed by applying the 300 and irradiating interference light, and injecting a transition metal oxide precursor solution into the photoresist pattern to form a transition metal oxide layer 20 having a bilayer structure.
  • Step S208 is a step of adsorbing the photosensitive dye on the porous transition metal oxide layer.
  • the porous transition metal oxide layer formed as described above may be immersed in a solution containing a dye to coat the dye.
  • the dye for example, is composed of a metal complex containing aluminum (Al), platinum (Pt), palladium (Pd), europium (Eu), lead (Pb), iridium (Ir), ruthenium (Ru) and the like.
  • the dye containing ruthenium for example, Ru (etc bpy) 2 (NCS) 2 CH 3 CN type can be used.
  • the counter electrode 60 may be used that the platinum layer is coated on the conductive transparent substrate as described above.
  • the sealing part 80 may be formed at the edge of the photoelectrode 30 and the counter electrode 60.
  • the seal 80 includes a thermoplastic polymer and is cured by heat or ultraviolet rays.
  • the sealing part may include an epoxy resin, but is not limited thereto.
  • a polymer film having a thickness of several tens of microns may be sandwiched between two electrodes of the photoelectrode 30 and the counter electrode 60 to maintain a gap.
  • the polymer film may be formed only at the edge of the dye-sensitized solar cell. Then, the electrolyte 70 is injected and sealed to manufacture a dye-sensitized solar cell.
  • the TiO 2 layer was coated on the transparent glass substrate to form a barrier layer.
  • the conductive transparent substrate was immersed in 0.1 M TiCl 4 aqueous solution for 30 minutes in a 70 °C oven to coat the TiO 2 layer as a barrier layer.
  • porous titanium dioxide layer having a photosensitive dye adsorbed was formed on the blocking layer.
  • the porous titanium dioxide layer was formed of a porous structure in which the pattern formed by three-dimensional optical interference lithography was inverted.
  • the spin coating method was first applied to the SU-8 negative photoresist on the barrier layer by controlling the thickness according to the RPM. Specifically, the SU-8 negative photoresist was applied to the blocking layer to have a thickness of 7 ⁇ m. 8 was applied. And, after heat treatment for 10 minutes in a hot plate (95 °C hot plate) was examined the three-dimensional optical interference pattern.
  • the three-dimensional optical interference pattern is irradiated to the photoresist layer by irradiating a three-dimensional optical interference pattern formed by fixing a polyhedral prism on the photoresist layer and irradiating a UV light source of 300 to 400 nm, A photoresist pattern was formed.
  • the optical interference 3D lithography technique was applied to form a 3D photoresist pattern, and a 3D porous photoresist pattern structure was formed by irradiating a 3D optical interference pattern formed by overlapping four or more matching laser lights. It was.
  • a post-exposure baking process was performed on a hot plate at 60 ° C., followed by dissolving and removing the uncrosslinked portion of the SU-8 photoresist using an organic solvent, followed by 2-propanol. Impurities were washed off using to form a three-dimensional porous photoresist pattern.
  • Titanium dioxide precursor was injected into the pores of the formed three-dimensional porous photoresist pattern.
  • the titanium dioxide precursor one diluted with a precursor or a solvent in a solution state capable of causing a sol-gel reaction was used. Specifically, a 2.5 M TiCl 4 solution was used.
  • the baking treatment at 500 °C for 1 hour to form a three-dimensional porous titanium dioxide layer.
  • N719 dye a ruthenium-based dye molecule
  • Dyesol company As the dye, N719 was dispersed in anhydrous ethanol (anhydrous ethanol) to a concentration of 0.5 mM by immersing the substrate formed with the porous titanium dioxide layer formed in the dye solution for one day to adsorb the dye, washed and dried, the dye adsorbed porous A photoelectrode comprising a titanium dioxide layer was prepared.
  • a counter electrode was prepared by forming an ITO conductive transparent electrode layer on a glass substrate and then forming a platinum layer. Subsequently, the platinum layer of the counter electrode was disposed in parallel to face the porous titanium dioxide layer on which the dye of the photoelectrode was adsorbed. Specifically, H 2 PtCl 6 solution was applied to a glass substrate on which an ITO conductive transparent electrode was formed, placed on a hot plate at 130 ° C., and the solvent was evaporated. The platinum layer was formed by heat treatment at 450 ° C. for 30 minutes to form the counterpart. An electrode was prepared.
  • the electrolyte is a liquid electrolyte having an iodine-based redox pair, which is 0.7 M of 1-butyl-3-methylimidazolium and 0.03 M of iodide / iodine (I 2 ) and 0.1 M Guanidium thiocyanate (GSCN), 0.5 M 4-tert-butylpyridine (TBP) were added to acetonitrile (ACN) and valeronitrile (VN).
  • ACN acetonitrile
  • VN valeronitrile
  • the dye-sensitized solar cell manufactured according to the present example has photoelectric conversion efficiency of up to 3.98% (thickness of about 5 ⁇ m), which can form a similar structure. This is about 15% better than yes.
  • the photoelectric conversion efficiency of the dye-sensitized solar cell herein is the highest efficiency (0.6%) of the reverse-opal dye-sensitized solar cell prepared by the conventional sol-gel method [C. Huisman, J. Schoonman, A. Goossens, Sol. Energy Mater. Sol. Cells, 85, 2005, 115-24] show a 663% improvement in photoelectric conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a method for fabricating a photoelectrode, and a dye-sensitized solar cell including a photoelectrode fabricated using the method. In particular, disclosed is a method for fabricating a photoelectrode for a dye-sensitized solar cell, the method including using a three-dimensional porous photoresist pattern, formed using three-dimensional optical interference lithography, as a mold to form a porous transition metal oxide layer, and a dye-sensitized solar cell including a photoelectrode fabricated using the method.

Description

광간섭 리소그래피를 이용한 광전극의 제조 방법 및 이에 의한 광전극을 포함하는 염료감응 태양전지Method for manufacturing photoelectrode using optical interference lithography and dye-sensitized solar cell comprising photoelectrode
본원은 염료감응 태양전지용 광전극의 제조 방법 및 이에 의한 염료감응 태양전지에 관한 것으로서, 보다 상세하게는, 3차원 광간섭 리소그래피를 이용하여 형성된 3차원 다공성 포토레지스트 패턴을 주형으로서 이용하여 다공성 전이금속 산화물층을 형성하는 것을 포함하는, 염료감응 태양전지용 광전극의 제조 방법 및 이에 의하여 제조된 광전극을 포함하는 염료감응 태양전지에 관한 것이다.The present invention relates to a method for manufacturing a photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell according to the present invention, and more particularly, a porous transition metal using a three-dimensional porous photoresist pattern formed using three-dimensional photointerference lithography as a template. It relates to a method for producing a photoelectrode for a dye-sensitized solar cell, comprising forming an oxide layer, and a dye-sensitized solar cell comprising the photoelectrode prepared thereby.
일반적으로 태양전지는 태양에너지를 전기에너지로 변화시키는 소자이다. 태양전지는 무한한 에너지원인 태양광을 이용해 전기를 생산하는 것으로서, 이미 우리 생활에 널리 이용되고 있는 실리콘 태양전지가 대표적이며, 최근 차세대 태양전지로 염료감응 태양전지가 연구되고 있다.In general, solar cells are devices that convert solar energy into electrical energy. Solar cells produce electricity using solar energy, which is an infinite energy source, and silicon solar cells, which are already widely used in our lives, are typical. In recent years, dye-sensitized solar cells are being researched as next-generation solar cells.
염료감응 태양전지는 스위스 그라첼(Gratzel) 등에 의하여 발표된 것이 대표적이며 [미국등록특허 제 5350644호], 구조는 두 개의 전극 중 하나의 전극은 염료가 흡착되어 있는 반도체 산화물 반도체 산화물층이 형성된 전도성 투명 기판을 포함하는 광전극이며, 상기 두 개의 전극 사이의 공간에는 전해질이 채워져 있다. 작동 원리를 살펴보면, 태양 에너지가 반도체 산화물 전극에 흡착된 염료에 의해 흡수됨으로써 광전자가 발생하며, 상기 광전자는 반도체 산화물층을 통해 전도되어 투명 전극이 형성된 전도성 투명 기판에 전달되고, 전자를 잃어 산화된 염료는 전해질에 포함된 산화-환원 쌍에 의해 환원 된다. 한편, 외부 전선을 통하여 반대편 전극(상대 전극)에 도달한 전자는 산화된 전해질의 산화-환원 쌍을 다시 환원 시켜서 작동 과정이 완성된다. The dye-sensitized solar cell is a typical one published by Gratzel et al. [US Patent No. 5350644], and the structure is one of the two electrodes, one of the two electrodes, the dye is adsorbed semiconductor oxide semiconductor oxide layer formed conductive It is a photoelectrode including a transparent substrate, and the electrolyte is filled in the space between the two electrodes. In the working principle, the solar energy is absorbed by the dye adsorbed on the semiconductor oxide electrode to generate photoelectrons, which are conducted through the semiconductor oxide layer and transferred to the conductive transparent substrate on which the transparent electrode is formed. The dye is reduced by the redox pairs contained in the electrolyte. On the other hand, the electrons that reach the opposite electrode (relative electrode) through the external wire reduces the oxidation-reduction pair of the oxidized electrolyte again to complete the operation process.
한편, 염료감응 태양전지의 경우 기존 태양전지에 비해 여러 계면(반도체|염료, 반도체|전해질, 반도체|투명전극, 전해질|상대전극)을 포함하고 있어 각각의 계면에서의 물리화학 작용을 이해하고 조절하는 것이 염료감응 태양전지 기술의 핵심이다. 또한, 염료감응 태양전지의 에너지 변환 효율은 광흡수에 의해 생성된 전자의 양에 비례하기 때문에, 광흡수에 의해 많은 양의 전자를 생성하기 위해서는 염료 분자의 흡착량을 증가시킬 수 있는 광전극의 제조가 요구되고 있다.On the other hand, dye-sensitized solar cells contain more interfaces (semiconductor | dye, semiconductor | electrolyte, semiconductor | transparent electrode, electrolyte | relative electrode) than the conventional solar cells, so that they understand and control the physicochemical action at each interface. Is the key to dye-sensitized solar cell technology. In addition, since the energy conversion efficiency of the dye-sensitized solar cell is proportional to the amount of electrons generated by the light absorption, in order to generate a large amount of electrons by the light absorption, the photoelectrode may increase the adsorption amount of the dye molecules. Manufacturing is required.
본원은 염료감응 태양전지용 광전극의 신규 제조 방법 개발에 관한 것으로서, 3차원 광간섭 리소그래피 공정을 통하여 제조된 3차원 기공 구조를 갖는 다공성 전이금속 산화물층에 염료를 흡착시켜 광전극을 형성하는 것을 포함하는, 염료감응 태양전지용 광전극의 제조 방법 및 이에 의하여 제조되는 광전극을 포함하는 염료감응 태양전지를 제공한다.The present application relates to the development of a new method for manufacturing a photoelectrode for a dye-sensitized solar cell, comprising adsorbing a dye to a porous transition metal oxide layer having a three-dimensional pore structure prepared through a three-dimensional optical interference lithography process to form a photoelectrode. To provide a dye-sensitized solar cell comprising a method for producing a photoelectrode for a dye-sensitized solar cell and a photoelectrode produced thereby.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은, 전도성 투명 기판 상에 포토레지스트 층을 형성하는 단계; 상기 포토레지스트 층에 3차원 광간섭 리소그래피를 이용하여 3차원 광간섭 패턴을 조사함으로써 3차원 다공성 포토레지스트 패턴을 형성하는 단계; 상기 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체 용액을 주입하는 단계; 소성 처리에 의하여 상기 포토레지스트 패턴을 제거함으로써 다공성 전이금속 산화물 층을 형성하는 단계; 및, 상기 다공성 전이금속 산화물 층에 감광성 염료를 흡착시키는 단계를 포함하는, 염료감응 태양전지용 광전극의 제조 방법을 제공할 수 있다.As a technical means for achieving the above technical problem, the first aspect of the present application, forming a photoresist layer on a conductive transparent substrate; Irradiating the photoresist layer with a three-dimensional optical interference pattern by using three-dimensional optical interference lithography to form a three-dimensional porous photoresist pattern; Injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern; Forming a porous transition metal oxide layer by removing the photoresist pattern by firing; And adsorbing a photosensitive dye on the porous transition metal oxide layer, thereby providing a method of manufacturing a photoelectrode for a dye-sensitized solar cell.
예시적 구현예에 있어서, 상기 3차원 광간섭 패턴은, 상기 포토레지스트 층에 광로차를 갖는 4개의 간섭성 평행광을 조사하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 조사되는 간섭성 평행광의 입사각을 조절하여, 상기 형성되는 3차원 다공성 포토레지스트 패턴의 격자 상수를 조절할 수 있다. 또는, 예를 들어, 상기 조사되는 간섭성 평행광의 세기 및 조사 시간을 조절하여, 상기 형성되는 3차원 다공성 포토레지스트 패턴의 기공 크기를 조절할 수 있다.In an exemplary embodiment, the 3D optical interference pattern may be formed by irradiating four coherent parallel lights having optical path differences on the photoresist layer, but is not limited thereto. For example, the lattice constant of the formed 3D porous photoresist pattern may be adjusted by adjusting the incident angle of the irradiated parallel light. Alternatively, for example, by adjusting the intensity and irradiation time of the irradiated parallel light, it is possible to adjust the pore size of the formed three-dimensional porous photoresist pattern.
예시적 구현예에 있어서, 상기 3차원 다공성 포토레지스트 패턴을 형성하는 단계는, 상기 포토레지스트 층에 3차원 광간섭 리소그래피를 이용하여 3차원 광간섭 패턴을 조사한 후 상기 3차원 광간섭 패턴이 조사된 상기 포토레지스트 층을 현상하는 것일 수 있으나, 이에 제한되는 것은 아니다. In example embodiments, the forming of the 3D porous photoresist pattern may include irradiating the 3D optical interference pattern to the photoresist layer using 3D optical interference lithography and then irradiating the 3D optical interference pattern. The photoresist layer may be developed, but is not limited thereto.
예시적 구현예에 있어서, 상기 3차원 다공성 포토레지스트 패턴은, 상기 포토레지스트 층에 3차원의 규칙적인 패턴이 면심입방 구조로 배열되어 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다. In an exemplary embodiment, the three-dimensional porous photoresist pattern may be formed by arranging a three-dimensional regular pattern in a surface centered cubic structure in the photoresist layer, but is not limited thereto.
예시적 구현예에 있어서, 상기 전도성 투명 기판 및 상기 포토레지스트 층 사이에 차단층을 형성하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. In an exemplary embodiment, the method may further include forming a blocking layer between the conductive transparent substrate and the photoresist layer, but is not limited thereto.
예시적 구현예에 있어서, 상기 전도성 투명 기판 상에 포토레지스트 층을 형성하는 단계 전에, 상기 전도성 투명 기판 상에 나노 결정형 전이금속 박막을 형성하는 것을 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 나노 결정형 전이금속 박막은 전이금속 나노입자를 도포하여 형성할 수 있으며, 그 두께는 대략 수 마이크로에서 수십마이크로미터일 수 있으나, 이에 제한되는 것은 아니다. In an exemplary embodiment, the method may further include forming a nanocrystalline transition metal thin film on the conductive transparent substrate before forming the photoresist layer on the conductive transparent substrate, but is not limited thereto. For example, the nanocrystalline transition metal thin film may be formed by applying transition metal nanoparticles, and the thickness thereof may be about several micro to several tens of micrometers, but is not limited thereto.
예시적 구현예에 있어서, 상기 전이금속 산화물은 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물일 수 있으나, 이에 제한되는 것은 아니다.In an exemplary embodiment, the transition metal oxide is Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and their It may be an oxide of a transition metal selected from the group consisting of a combination, but is not limited thereto.
예시적 구현예에 있어서, 상기 포토레지스트 층은 네거티브 타입(negative type) 또는 포지티브 타입(positive type)의 포토레지스트를 이용하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다.In an exemplary embodiment, the photoresist layer may be formed using a negative type or a positive type photoresist, but is not limited thereto.
또한, 본원의 제 2 측면은, 광전극, 상기 광전극에 대향되는 상대 전극, 및 상기 광전극과 상기 상대 전극 사이에 위치하는 전해질을 포함하는 염료 감응 태양 전지로서, 상기 광전극은 상기 포토레지스트 층에 3차원 광간섭 패턴을 조사함으로써 3차원 다공성 포토레지스트 패턴을 형성하고; 상기 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체 용액을 주입하고; 소성 처리에 의하여 상기 포토레지스트 패턴을 제거함으로써 다공성 전이금속 산화물 층을 형성하여 제조된 것으로서, 상기 전도성 투명 기판 상에 형성된 감광성 염료가 흡착된 다공성 전이금속 산화물 층을 포함하는 것을 특징으로 하는, 염료 감응 태양 전지를 제공할 수 있다.In addition, the second aspect of the present application is a dye-sensitized solar cell comprising a photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte located between the photoelectrode and the counter electrode, wherein the photoelectrode is the photoresist Irradiating the layer with a three-dimensional optical interference pattern to form a three-dimensional porous photoresist pattern; Injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern; A dye-sensitized method, which is prepared by forming a porous transition metal oxide layer by removing the photoresist pattern by firing, and comprises a porous transition metal oxide layer on which a photosensitive dye formed on the conductive transparent substrate is adsorbed. Solar cells can be provided.
본원에 의하면, 3차원 광간섭 리소그래피 공정을 통하여 제조된 3차원의 기공 구조를 갖는 다공성 전이금속 산화물 층에 염료를 흡착시켜 광전극을 형성함으로써, 상기 광전극을 형성하기 위한 다공성 전이금속 산화물층의 형성에 소요되는 공정 시간을 단축하고 염료 흡착을 위한 기공 구조를 개선하여 이러한 광전극을 포함하는 염료감응 태양전지의 광전환 효율 등을 향상시킬 수 있다.According to the present invention, by adsorbing a dye to a porous transition metal oxide layer having a three-dimensional pore structure prepared through a three-dimensional optical interference lithography process to form a photoelectrode, the porous transition metal oxide layer for forming the photoelectrode By shortening the process time required for formation and improving the pore structure for dye adsorption, the light conversion efficiency of the dye-sensitized solar cell including the photoelectrode can be improved.
본원에 의하면, 조사하는 간섭광의 세기 및 조사 조건에 따라 다양한 형태의 기공을 정밀하게 제어하여 상기 다공성 전이금속 산화물층을 형성하여 광전극을 형성함으로써, 최적화된 염료감응 태양전지용 광전극을 제조할 수 있다.According to the present invention, by precisely controlling the various types of pores according to the intensity and the irradiation conditions of the irradiated light to form the porous transition metal oxide layer to form a photoelectrode, it is possible to manufacture an optimized dye-sensitized solar cell photoelectrode have.
본원에 의하면, 광전극을 형성하기 위한 상기 다공성 전이금속 산화물층에 있어서, 나노미터 내지 마이크로미터 단위의 기공 크기를 갖는 3차원의 기공 구조를 형성함으로써, 광산란 유도가 가능하며 염료감응 태양전지의 광흡수 효율을 증가시킨다.According to the present invention, in the porous transition metal oxide layer for forming a photoelectrode, by forming a three-dimensional pore structure having a pore size in the nanometer to micrometer unit, light scattering can be induced and the light of the dye-sensitized solar cell Increase the absorption efficiency.
상기 광전극 형성을 위한 다공성 전이금속 산화물 층의 기공 크기의 제어가 가능하여, 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 통로를 제공함으로써, 전기 안정성이 향상된 염료감응 태양전지의 제조가 가능하다.It is possible to control the pore size of the porous transition metal oxide layer for forming the photoelectrode, thereby providing an efficient passage for the penetration of a high viscosity polymer or solid electrolyte, it is possible to manufacture a dye-sensitized solar cell with improved electrical stability.
도 1은 본원의 일 실시예에 따른 염료감응 태양전지의 세부 구성도이다.1 is a detailed block diagram of a dye-sensitized solar cell according to an embodiment of the present application.
도 2는 본원의 일 실시예에 따른 염료감응 태양전지용 광전극의 제조 방법의 세부 흐름도이다.2 is a detailed flowchart of a method of manufacturing a photoelectrode for a dye-sensitized solar cell according to an embodiment of the present application.
도 3은 본원의 일 실시예에 따른 포토레지스트층에 간섭광을 조사하는 방법의 일례를 도시한 도면이다.3 is a view showing an example of a method of irradiating interference light to the photoresist layer according to an embodiment of the present application.
도 4는 본원의 일 실시예에 따른 3차원 리소그래피(광간섭 리소그래피)의 개념도이다.4 is a conceptual diagram of three-dimensional lithography (optical interference lithography) in accordance with an embodiment of the present application.
도 5는 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 3차원 기공을 포함하는 포토레지스트의 전자 현미경 사진이다.5 is an electron micrograph of a photoresist comprising three-dimensional pores formed through optical interference lithography according to one embodiment of the present disclosure.
도 6은, 도 5의 3차원 기공을 포함하는 포토레지스트를 희생층으로 하여 형성된 다공성 이산화티타늄 층의 전자 현미경 사진이다.6 is an electron micrograph of a porous titanium dioxide layer formed by using a photoresist including three-dimensional pores of FIG. 5 as a sacrificial layer.
도 7은 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 광전극을 포함하는 염료감응 태양전지의 광전류-전압 특성 그래프이다.7 is a graph of photocurrent-voltage characteristics of a dye-sensitized solar cell including a photoelectrode formed through optical interference lithography according to an embodiment of the present disclosure.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서,"~ 의 단계" 또는 "~ 하는 단계"는 "~을 위한 단계"를 의미하지 않는다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. Throughout this specification, "step of" or "step to" does not mean "step for."
이하 첨부된 도면을 참고하여 본원을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present application.
도 1은 본원의 일 실시예에 따른 염료감응 태양전지의 세부 구성도이다.1 is a detailed block diagram of a dye-sensitized solar cell according to an embodiment of the present application.
도 1에 도시된 바와 같이, 본원의 일 실시예에 따른 염료감응 태양전지는, 전도성 투명 기판(10)과 광감응 염료가 흡착된 다공성 전이금속 산화물층(20)을 포함하는 광전극(30); 전도성 투명 기판(40)과 전도층(50)을 포함하는 상대 전극(60); 전해질(70); 및, 밀봉부(80)를 포함할 수 있다.As shown in FIG. 1, the dye-sensitized solar cell according to the exemplary embodiment of the present disclosure includes a photoelectrode 30 including a conductive transparent substrate 10 and a porous transition metal oxide layer 20 on which a photosensitive dye is adsorbed. ; A counter electrode 60 including a conductive transparent substrate 40 and a conductive layer 50; Electrolyte 70; And, the sealing unit 80 may be included.
전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에는 필요한 경우 차단층(미도시)이 형성될 수 있다. 차단층은 산화물을 포함할 수 있으며, 전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에 접착력을 강화하는 역할을 할 수 있다. 상기 차단층은, 예를 들어, 이산화티타늄을 포함할 수 있으나, 이에 제한되는 것은 아니다. A blocking layer (not shown) may be formed between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 if necessary. The blocking layer may include an oxide and may serve to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20. The blocking layer may include, for example, titanium dioxide, but is not limited thereto.
또한, 다공성 전이금속 산화물층(20)에는 복수의 염료 분자가 흡착되어 있다.In addition, a plurality of dye molecules are adsorbed to the porous transition metal oxide layer 20.
광전극(30)을 형성함에 있어서 사용되는 전도성 투명 기판(10)은 투명한 반도체 전극용 기판 상에 전도성의 투명 전극이 형성되어 있는 구조를 갖는다.The conductive transparent substrate 10 used in forming the photoelectrode 30 has a structure in which a conductive transparent electrode is formed on a transparent semiconductor electrode substrate.
반도체 전극용 기판으로는 투명한 유리 기판 또는 유연성을 갖는 투명 고분자 기판이 사용될 수 있으며, 예를 들어, 상기 고분자 기판의 재료로는 폴리에틸렌테레프탈레이트(polyethyleneterephthalate, PET), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌(polypropylene, PP), 폴리이미드(polyimide, PI), 트리아세틸 셀룰로오스(triacetylcellulose, TAC), 또는 이들의 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 반도체 전극용 기판은 Ti, In, Ga 및 Al로 이루어진 군에서 선택된 물질로 도핑될 수 있다. 이러한 반도체 전극용 기판 상에 형성된 투명 전극은, 예를 들어, 인듐 틴 옥사이드(indium tin oxide: ITO), 플루오린 틴 옥사이드(fluorine tin oxide: FTO), 안티몬 틴 옥사이드(antimony tin oxide, ATO), 산화아연(zinc oxide), 산화주석, ZnO-Ga2O3, ZnO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함하며, 바람직하게는 전도성, 투명성 및 내열성이 우수한 SnO2 또는 비용 면에서 저렴한 ITO를 포함할 수 있으나, 이에 제한되는 것은 아니다. 여기서, 전도성 투명 기판(10)을 채용하는 이유는 태양광이 투과되어 내부로 입사될 수 있도록 하기 위함이다. 그리고, 본원을 설명하는 명세서에서 투명이라는 단어의 의미는 소재의 광투과율이 100%인 경우뿐만 아니라 광투과율이 높은 경우를 모두 포함한다.As the substrate for the semiconductor electrode, a transparent glass substrate or a transparent polymer substrate having flexibility may be used. For example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) may be used as the material of the polymer substrate. , Polycarbonate (PC), polypropylene (PP), polyimide (polyimide, PI), triacetyl cellulose (triacetylcellulose, TAC), or copolymers thereof, but is not limited thereto. . In addition, the semiconductor electrode substrate may be doped with a material selected from the group consisting of Ti, In, Ga, and Al. The transparent electrode formed on the substrate for a semiconductor electrode, for example, indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), Zinc oxide, tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and conductive metal oxides selected from the group consisting of mixtures thereof, and preferably conductive, transparent and heat resistant It may include, but is not limited to, superior SnO 2 or cost-effective ITO. Here, the reason for employing the conductive transparent substrate 10 is to allow the sunlight to penetrate into the inside. In addition, the meaning of the word transparent in the description of the present application includes not only the case where the light transmittance of the material is 100% but also the case where the light transmittance is high.
다공성 전이금속 산화물층(20)에는 복수의 염료 분자가 흡착될 수 있다. 다공성 전이금속 산화물층(20)의 기공은, 예를 들어, 전체적으로 면심입방 구조로 배열될 수 있다. 즉, 다공성 전이금속 산화물층(20)은 3차원 다공성을 갖는 구조로 마련될 수 있다. 다공성 전이금속 산화물층(20)의 기공은 3차원 면심입방 구조를 가짐에 따라 3차원 광 결정체(photonic crystal)를 형성하여 광증폭 효과를 기대할 수 있다. 구체적으로, 일정한 규칙을 갖는 다공성의 3차원 면심입방 구조의 기공에 의하여 효과적인 전자 전달 통로가 형성되어 염료감응 태양전지의 광전 변환 효율이 향상된다. 또한, 3차원 면심입방 구조로 형성된 기공을 통하여 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 통로를 제공해 줌으로써 염료감응 태양전지의 전기 안정성이 향상된다.A plurality of dye molecules may be adsorbed to the porous transition metal oxide layer 20. The pores of the porous transition metal oxide layer 20 may be, for example, arranged in a face centered cubic structure as a whole. That is, the porous transition metal oxide layer 20 may be provided in a structure having a three-dimensional porosity. As the pores of the porous transition metal oxide layer 20 have a three-dimensional face-centered cubic structure, a three-dimensional photonic crystal may be formed to expect a photoamplification effect. Specifically, an effective electron transfer path is formed by the porous three-dimensional face centered cubic structure having a certain rule, thereby improving the photoelectric conversion efficiency of the dye-sensitized solar cell. In addition, the electrical stability of the dye-sensitized solar cell is improved by providing an efficient passage for the penetration of a highly viscous polymer or solid electrolyte through the pores formed in a three-dimensional face-centered cubic structure.
한편, 3차원 면심입방 구조를 이루고 있는 상기 다공성 전이금속 산화물층(20)의 기공의 크기는 작을수록 바람직하다. 다공성 전이금속 산화물층(20)의 기공 크기가 작을수록 표면적이 늘어나 더 많은 염료 분자가 흡착될 수 있고, 더 많은 염료 분자가 흡착되는 경우에 더 많은 전자가 생성되어 염료감응 태양전지의 에너지 변환 효율이 향상되기 때문이다. 본원의 일 실시예에 따른 상기 다공성 전이금속 산화물층(20)에 포함되는 전이금속 산화물로서, 예를 들어, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물을 포함할 수 있다. 그러나, 이에 한정되지 않고 다른 종류의 전이금속 산화물도 적용 가능하다.On the other hand, the smaller the size of the pores of the porous transition metal oxide layer 20 having a three-dimensional face-centered cubic structure is preferable. As the pore size of the porous transition metal oxide layer 20 decreases, the surface area increases, so that more dye molecules can be adsorbed, and when more dye molecules are adsorbed, more electrons are generated, which leads to energy conversion efficiency of the dye-sensitized solar cell. Because it is improved. As a transition metal oxide included in the porous transition metal oxide layer 20 according to an embodiment of the present application, for example, Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, It may include an oxide of a transition metal selected from the group consisting of Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof. However, the present invention is not limited thereto, and other kinds of transition metal oxides may be applied.
본원에 따르는 일 실시예에서는 상기 다공성 전이금속 산화물층(20)은 이산화티타늄을 포함할 수 있으며, 이러한 이산화티타늄은 전자 전달 능력이 좋은 아나타제(anatase) 결정성을 갖는 것을 선택하여 사용하는 것이 바람직하다.In one embodiment according to the present invention, the porous transition metal oxide layer 20 may include titanium dioxide, and it is preferable to use such titanium dioxide having an anatase crystallinity with good electron transfer ability. .
다공성 전이금속 산화물층(20)을 이루는 전이금속 산화물 (입자)의 표면에 염료가 흡착되며, 상기 염료 분자에 광이 입사되어 흡수되면 전자가 생성되고, 생성된 전자는 다공성 전이금속 산화물층(20)을 통로로 하여 전도성 투명 기판(10)으로 전달된다.A dye is adsorbed on the surface of the transition metal oxide (particle) constituting the porous transition metal oxide layer 20, electrons are generated when light is incident on and absorbed by the dye molecule, and the generated electron is a porous transition metal oxide layer 20. Is transmitted to the conductive transparent substrate 10 through the passage.
필요한 경우, 전도성 투명 기판(10) 또는 전도성 투명 기판(10) 상에 형성된 차단층 상에 나노 결정형 전이금속 박막을 형성한 후 상기 포토레지스트 층을 형성하여 상기 다공성 전이금속 산화물층(20)을 형성할 수 있다. 예를 들어, 상기 나노 결정형 전이금속 박막은 이산화티타늄 등과 같은 전이금속의 나노입자를 도포하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 이후, 염료를 흡착시키는 단계, 상기 다공성 전이금속 산화물층(20)과 상기 나노 결정형 전이금속 박막 모두에 염료가 흡착될 수 있다. 이 경우, 상기 다공성 전이금속 층(20) 의해 입사광이 산란되어 빛 흡수 효율이 증가함으로써 흡착된 염료로부터 발생되는 전자의 양이 증가하고 이러한 전자들이 상기 나노 결정형 전이금속 박막을 통하여 전달됨으로써 염료감응 태양전지의 광전환 효율이 증가될 수 있다.If necessary, a nanocrystalline transition metal thin film is formed on the conductive transparent substrate 10 or the blocking layer formed on the conductive transparent substrate 10, and then the photoresist layer is formed to form the porous transition metal oxide layer 20. can do. For example, the nanocrystalline transition metal thin film may be formed by applying nanoparticles of a transition metal such as titanium dioxide, but is not limited thereto. Thereafter, the step of adsorbing the dye, the dye may be adsorbed to both the porous transition metal oxide layer 20 and the nano-crystalline transition metal thin film. In this case, the incident light is scattered by the porous transition metal layer 20 to increase the light absorption efficiency, thereby increasing the amount of electrons generated from the adsorbed dye and transferring these electrons through the nanocrystalline transition metal thin film. The light conversion efficiency of the battery can be increased.
상대 전극(60)은 광전극(30))에 대향하여 배치되어 있다. 상대 전극(60)은 반도체 전극용 기판 상에 투명 전극이 형성되어 있는 전도성 투명 기판(40) 및 상기 투명전극 상에 형성된 전도층(50)을 포함할 수 있다. 상대 전극(60)을 형성하는 반도체 전극용 기판은 유리 기판이거나 투명 고분자 기판일 수 있다. 상기 투명 고분자 기판으로서, 예를 들어, 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌(polypropylene, PP), 폴리 이미드(polyimide, PI), 트리아세틸 셀룰로오스(triacetylcellulose, TAC), 또는 이들의 공중합체 등의 고분자를 포함하는 투명 고분자 기판을 들 수 있으나, 이에 제한되는 것은 아니다. 그리고, 상대 전극(60) 형성을 위한 반도체 전극용 기판에 형성되는 투명 전극은 인듐 틴 옥사이드(indium tin oxide: ITO), 플루오린 틴 옥사이드(fluorine tin oxide: FTO), 안티몬 틴 옥사이드(antimony tin oxide, ATO), 산화아연(zinc oxide), 산화주석, ZnO-Ga2O3, ZnO-Al2O3, 또는 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함할 수 있다.The counter electrode 60 is disposed to face the photoelectrode 30. The counter electrode 60 may include a conductive transparent substrate 40 on which a transparent electrode is formed on a substrate for a semiconductor electrode, and a conductive layer 50 formed on the transparent electrode. The substrate for the semiconductor electrode forming the counter electrode 60 may be a glass substrate or a transparent polymer substrate. As the transparent polymer substrate, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide ( polyimide, PI), triacetyl cellulose (triacetylcellulose (TAC)), or a transparent polymer substrate including a polymer such as a copolymer thereof, but is not limited thereto. In addition, the transparent electrode formed on the semiconductor electrode substrate for forming the counter electrode 60 may be indium tin oxide (ITO), fluorine tin oxide (FTO), or antimony tin oxide (antimony tin oxide). , ATO), zinc oxide, zinc oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , or a mixture thereof.
광전극(30)의 염료가 흡착된 다공성 전이금속 산화물 층(20)에 대향 배치되는 상대 전극(60)의 일면에 전도층(50)이 형성될 수 있다. 예를 들어, 상기 전도층(50)은 산화-환원쌍(redox couple)을 활성화시키는 역할을 하는 것으로, 백금(Pt), 금(Au), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 탄소(C), WO3, TiO2 또는 전도성 고분자 등의 전도성 물질을 포함할 수 있다. 이러한 상대 전극(60)의 일면에 형성된 전도층(50)은 반사도가 높을수록 효율이 우수하므로, 반사율이 높은 재료를 선택하는 것이 좋다.The conductive layer 50 may be formed on one surface of the counter electrode 60 disposed opposite to the porous transition metal oxide layer 20 on which the dye of the photoelectrode 30 is adsorbed. For example, the conductive layer 50 plays a role of activating a redox couple, and includes platinum (Pt), gold (Au), ruthenium (Ru), palladium (Pd), and rhodium (Rh). ), Iridium (Ir), osmium (Os), carbon (C), WO 3 , TiO 2 or a conductive material such as a conductive polymer. The conductive layer 50 formed on one surface of the counter electrode 60 is more efficient as the reflectivity is higher, so it is better to select a material having a high reflectance.
다공성 전이금속 산화물층(20)과 상대 전극(60) 사이에는 전해질(70)이 형성되어 있다. 전해질(70)은, 예를 들어, 요오드화물(iodide)을 포함하며, 산화, 환원에 의해 상대 전극(60)으로부터 전자를 받아 전자를 잃었던 염료 분자에 받은 전자를 전달하는 역할을 수행한다.An electrolyte 70 is formed between the porous transition metal oxide layer 20 and the counter electrode 60. The electrolyte 70 includes, for example, iodide, and serves to transfer electrons to a dye molecule that receives electrons from the counter electrode 60 by oxidation and reduction and loses electrons.
밀봉부(80)는 광전극(30)과 상대 전극(60) 사이에 채워져 있는 전해질(70) 및 두 전극 사이의 간격을 유지하는 역할을 한다. 밀봉부(80)는, 예를 들어, 열 또는 자외선에 의하여 경화되는 열가소성 고분자물질을 포함할 수 있다. 그의 구체적인 예로, 밀봉부(80)는 에폭시 수지를 포함할 수 있으나, 이에 제한되는 것은 아니다The sealing part 80 maintains a gap between the two electrodes and the electrolyte 70 filled between the photoelectrode 30 and the counter electrode 60. The seal 80 may include, for example, a thermoplastic polymer that is cured by heat or ultraviolet rays. As a specific example thereof, the sealing part 80 may include an epoxy resin, but is not limited thereto.
이하에서는, 도 2 내지 도 4를 참조하여, 본원의 일 실시예에 따른 염료감응 태양전지용 광전극의 제조 방법에 대하여 설명하도록 한다.Hereinafter, a method of manufacturing the photoelectrode for dye-sensitized solar cell according to an embodiment of the present application will be described with reference to FIGS. 2 to 4.
도 2는 본원의 일 실시예에 따른 염료감응 태양전지용 광전극의 제조 방법의 세부 흐름도이다. 또한, 도 3은 본원의 일 실시예에 따른 포토레지스트층에 간섭광을 조사하는 방법의 일례를 도시한 도면이며, 도 4는 본원의 일 실시예에 따른 3차원 리소그래피(광간섭 리소그래피)의 개념도이다.2 is a detailed flowchart of a method of manufacturing a photoelectrode for a dye-sensitized solar cell according to an embodiment of the present application. 3 is a view showing an example of a method of irradiating interference light to the photoresist layer according to an embodiment of the present application, Figure 4 is a conceptual diagram of three-dimensional lithography (optical interference lithography) according to an embodiment of the present application to be.
단계 S200은 전도성 투명 기판(10)을 마련하는 단계이다.Step S200 is to prepare a conductive transparent substrate 10.
단계 S200에서는, 도 3에 도시된 바와 같이, 먼저, 예를 들어, 유리 기판 또는 투명 고분자 기판 상에 투명 전극을 증착하여 전도성 투명 기판(10)을 마련한다. 여기서, 상기 투명 고분자 기판의 재료로는, 예를 들어, 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌(polypropylene, PP), 폴리이미드(polyimide, PI), 트리아세틸 셀룰로오스(triacetylcellulose, TAC), 또는 이들의 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 이러한 반도체 전극용 기판 상에 형성된 투명 전극은 인듐 틴 옥사이드(indium tin oxide: ITO), 플루오린 틴 옥사이드(fluorine tin oxide: FTO), 안티몬 틴 옥사이드(antimony tin oxide, ATO), 산화아연(zinc oxide), 산화주석, ZnO-Ga2O3, ZnO-Al2O3, 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 금속 산화물을 포함하며, 보다 바람직하게는 전도성, 투명성 및 내열성이 우수한 SnO2 또는 비용면에서 저렴한 ITO를 포함할 수 있으나, 이에 제한되는 것은 아니다.In step S200, as shown in FIG. 3, first, for example, a transparent electrode is deposited on a glass substrate or a transparent polymer substrate to prepare a conductive transparent substrate 10. Here, the material of the transparent polymer substrate, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (polypropylene, PP) , Polyimide (PI), triacetyl cellulose (triacetylcellulose, TAC), or copolymers thereof, and the like, but is not limited thereto. In addition, the transparent electrode formed on the substrate for a semiconductor electrode may be indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide (ATO), zinc oxide ( zinc oxide), tin oxide, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , and a conductive metal oxide selected from the group consisting of a mixture thereof, and more preferably SnO having excellent conductivity, transparency and heat resistance. 2 or cost-effective ITO may include, but is not limited to.
또한, 단계 S200에서는 전도성 투명 기판(10) 상에 산화물을 일정한 두께로 코팅하여 차단층을 형성할 수 있다. 차단층의 재료, 차단층을 형성하기 위한 열처리 횟수나 조건 등은 본원의 목적을 달성할 수 있는 범위 내에서 다양하게 변형 가능하다. 이러한 차단층은 광전극(30)의 형성 시 전도성 투명 기판(10)과 다공성 전이금속 산화물층(20) 사이에 접착력을 강화하는 역할을 한다. 그리고, 차단층은 증착, 전기 분해, 습식법 중 어느 하나의 방법에 의하여 형성될 수 있다.In addition, in step S200 it is possible to form a blocking layer by coating an oxide to a predetermined thickness on the conductive transparent substrate (10). The material of the barrier layer, the number of heat treatments or conditions for forming the barrier layer, and the like can be variously modified within the scope of achieving the object of the present application. The blocking layer serves to enhance adhesion between the conductive transparent substrate 10 and the porous transition metal oxide layer 20 when the photoelectrode 30 is formed. The blocking layer may be formed by any one of a deposition method, an electrolysis method, and a wet method.
단계 S202는 포토레지스트층(300)에 3차원 광간섭 패턴을 조사하여 3차원 다공성 포토레지스트 패턴을 형성하는 단계이다. 필요한 경우, 상기 3차원 광간섭 패턴을 조사 후 베이킹 및 에칭 과정을 추가 수행하여 3차원 다공성 포토레지스트 패턴을 현상할 수 있다.Step S202 is a step of forming a three-dimensional porous photoresist pattern by irradiating the photoresist layer 300 with a three-dimensional optical interference pattern. If necessary, the 3D porous photoresist pattern may be developed by further performing a baking and etching process after irradiating the 3D optical interference pattern.
단계 S202에서는, 전도성 투명 기판(10) 상에 일정한 두께의 포토레지스트층(300)을 형성하고, 형성된 포토레지스트층(300)에 3차원 광간섭 패턴을 조사하여 3차원 다공성 포토레지스트 패턴을 형성할 수 있다.In step S202, the photoresist layer 300 having a predetermined thickness is formed on the conductive transparent substrate 10, and the 3D photointerference pattern is irradiated to the formed photoresist layer 300 to form a 3D porous photoresist pattern. Can be.
단계 S202에서, 코팅된 포토레지스트층(300)의 두께는 제조하고자 하는 염료감응 태양전지의 크기에 따라 달라질 수 있으나, 예를 들어, 약 10 μm 내지 30 μm의 두께로 형성될 수 있다. 또한, 상기 포토레지스트는 전도성 투명 기판에 코팅하거나, 상기 전도성 투명 기판에 수 나노미터로 코팅된 이산화티타늄과 같은 차단층에 코팅할 수도 있다.In step S202, the thickness of the coated photoresist layer 300 may vary depending on the size of the dye-sensitized solar cell to be manufactured, for example, may be formed to a thickness of about 10 μm to 30 μm. In addition, the photoresist may be coated on a conductive transparent substrate or a barrier layer such as titanium dioxide coated on the conductive transparent substrate by several nanometers.
또한, 단계 S202에서는, 도 3에 도시된 바와 같이, 광로차가 부여된 복수의 간섭성 평행광으로 이루어지는 광간섭 패턴을 조사하여, 광간섭 리소그래피 방식으로 포토레지스트층(300)에 3차원의 다공성 패턴을 형성할 수 있다. 또한, 도 4에 도시된 바와 같이, 4개의 간섭성 평행광을 이용하여 형성된 3차원 광간섭 패턴을 포토레지스트층(300)에 조사하여 3차원의 다공성 패턴을 형성할 수 있으며, 이 경우 4개 이상의 빛은, 하나의 평행광을 복수의 광으로 분할하거나, 하나의 평행광을 다면체의 프리즘에 조사하는 방법 등을 적용하여 생성할 수 있다. 또한, 본원의 일 실시예에 따른 광간섭 리소그래피를 통해 형성된 3차원 다공성 패턴이 형성된 포토레지스트를 전자 현미경으로 촬영한 사진을 도 5에 도시하였다.In addition, in step S202, as shown in Fig. 3, by irradiating the optical interference pattern consisting of a plurality of coherent parallel light to which the optical path difference is applied, the three-dimensional porous pattern on the photoresist layer 300 in the optical interference lithography method Can be formed. In addition, as shown in FIG. 4, the three-dimensional optical interference pattern formed by using four coherent parallel lights may be irradiated onto the photoresist layer 300 to form a three-dimensional porous pattern, in which case four The above light can be generated by dividing one parallel light into a plurality of lights, or applying one parallel light to a prism of a polyhedron or the like. In addition, a photo taken with an electron microscope of a photoresist with a three-dimensional porous pattern formed through optical interference lithography according to an embodiment of the present application is shown in FIG.
이 경우, 포토레지스트층(300)에 형성된 패턴은 면심입방 구조의 기공이 반복되는 형태를 가질 수 있으며, 조사되는 빛의 각도 및 방향을 조절하여 다양한 격자 구조로 형성 가능하다. 나아가, 조사되는 간섭광의 조사(exposure) 시간 및 가교(post-exposure baking) 시간 등을 조절하여, 패턴의 크기를 효과적으로 조절할 수 있다.In this case, the pattern formed on the photoresist layer 300 may have a form in which pores of the surface centered cubic structure are repeated, and may be formed in various lattice structures by adjusting the angle and direction of the irradiated light. Furthermore, the size of the pattern can be effectively controlled by adjusting the exposure time and post-exposure baking time of the irradiated interference light.
이러한, 다공성의 면심입방 구조에서 기공의 크기 및 연결은 3차원 광간섭 리소그래피 조건을 달리하여 자유롭게 제어할 수 있으며, 기존의 나노 입자 배열을 통한 기공 제어의 한계를 극복 할 수 있다. 예를 들어, 기공의 배열은 구형 또는 실린더 형태의 기공들이 면심입방구조로 배열되어 있으며 기공들 간에는 6개의 파이프 형태의 기공으로 연결되어 있다. 여기서 기공 및 연결기공의 크기는 광간섭 리소그래피 조건을 달리하여 자유롭게 제어할 수 있다.In the porous face-centered cubic structure, the pore size and connection can be freely controlled by changing three-dimensional optical interference lithography conditions, and can overcome the limitations of pore control through conventional nanoparticle arrays. For example, the array of pores is a spherical or cylinder-shaped pores are arranged in a face-centered cubic structure, and the pores are connected by six pipe-shaped pores. Here, the size of the pores and connecting pores can be freely controlled by varying the optical interference lithography conditions.
또한 다공성 구조는 크게는 수백 나노미터 정도까지 형성되어 전해질을 도포할 때 원활하게 기공을 채울 수 있는 장점이 있고, 점성이 높은 고분자 또는 고체 전해질의 침투에 효율적인 기공을 제공할 수 있다. 본원의 일 실시예에 따른 리소그래피에 의해 형성된 기공의 평균 지름은 약 100 nm 내지 약 10 μm의 범위일 수 있으나, 이에 제한되는 것은 아니다.In addition, the porous structure is formed up to about several hundred nanometers has the advantage of smoothly filling the pores when applying the electrolyte, it can provide efficient pores for the penetration of high viscosity polymer or solid electrolyte. An average diameter of pores formed by lithography according to an embodiment of the present disclosure may range from about 100 nm to about 10 μm, but is not limited thereto.
포토레지스트 층(300)은 광반응에 의해 가교 또는 용해도가 변화하는 다양한 고분자 포토레지스 용액을 사용하여 형성될 수 있으며, 네거티브(negative) 타입 및 포지티브(positive) 타입의 포토레지스트가 모두 사용 가능하다.The photoresist layer 300 may be formed using various polymer photoresist solutions whose crosslinking or solubility is changed by photoreaction, and both a negative type and a positive type photoresist may be used.
단계 S204는 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체 용액을 주입하는 단계이다.Step S204 is a step of injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern.
단계 S204에서는, 3차원의 기공이 형성된 포토레지스트 패턴 내에 전이금속 산화물 전구체 용액을 주입하고 수분 간 건조시킬 수 있다. 이 경우, 솔-젤 반응을 일으킬 수 있는 전이금속 산화물 전구체가 사용될 수 있다.In step S204, the transition metal oxide precursor solution may be injected into the photoresist pattern in which the three-dimensional pores are formed and dried for several minutes. In this case, a transition metal oxide precursor that can cause a sol-gel reaction can be used.
단계 S206은 가열 소정 공정을 이용하여 상기 포토레지스트 패턴을 제거함으로써 다공성 전이금속 산화물 층을 형성하는 단계이다.Step S206 is a step of forming a porous transition metal oxide layer by removing the photoresist pattern using a heating predetermined process.
단계 S206에서는, 포토레지스트를 제거하는 동시에 다공성 구조를 형성할 수 있다. 예를 들어, 400℃ 이상의 온도에서 10분 이상 소결하여 다공성 전이금속 산화물층을 형성할 수 있다. 이 때, 상기 전이금속 산화물층으로서, 예를 들어, 이산화티타늄을 이용할 수 있으며, 특히, 상기 소결에 의하여 아나타제(anatase) 결정성을 갖는 이산화티타늄을 제조하는 것이 바람직하다.In step S206, the porous structure may be formed while removing the photoresist. For example, the porous transition metal oxide layer may be formed by sintering at a temperature of 400 ° C. or more for 10 minutes or more. At this time, for example, titanium dioxide may be used as the transition metal oxide layer, and in particular, it is preferable to produce titanium dioxide having anatase crystallinity by the sintering.
한편, 본 발명의 다른 실시예에서는, 투명 전도성 기판(10) 상에 나노 결정형 전이금속 산화물층(예를 들어, 나노 결정형 이산화티타늄 박막)을 형성한 후, 상기 전이금속 산화물층 상에 포토레지스트층(300)을 도포하고 간섭광을 조사함으로써 포토레지스트 패턴을 형성할 수 있으며, 상기 포토레지스트 패턴 내에 전이금속 산화물 전구체 용액을 주입하여 이중층(bilayer) 구조의 전이 금속 산화물층(20)을 형성할 수 있다.Meanwhile, in another embodiment of the present invention, after forming a nano crystalline transition metal oxide layer (for example, nano crystalline titanium dioxide thin film) on the transparent conductive substrate 10, a photoresist layer on the transition metal oxide layer A photoresist pattern may be formed by applying the 300 and irradiating interference light, and injecting a transition metal oxide precursor solution into the photoresist pattern to form a transition metal oxide layer 20 having a bilayer structure. have.
단계 S208는 다공성 전이금속 산화물층 상에 감광성 염료를 흡착시키는 단계이다. 단계 S208에서는, 예를 들어, 상기와 같이 형성된 다공성 전이금속 산화물층을 염료가 포함된 용액에 침지하여 염료를 코팅할 수 있다. 상기 염료는, 예를 들어, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 유로퓸(Eu), 납(Pb), 이리듐(Ir), 루테늄(Ru) 등을 포함하는 금속 복합체로 이루어질 수 있다. 여기서, 루테늄을 포함하는 염료로는, 예를 들어, Ru(etc bpy)2(NCS)2 ·CH3CN 타입을 사용할 수 있다. 여기서 etc는 (COOEt)2 또는 (COOH)2로서 다공질막(예를 들어, TiO2) 표면과 결합 가능한 반응기이다. 또한, 유기 색소 등을 포함하는 염료가 사용될 수도 있는데, 이러한 유기 색소로는, 예를 들어, 쿠마린(coumarin), 포르피린(porphyrin), 크산틴(xanthene), 리보플라빈(riboflavin), 트리페닐메탄(triphenylmethane) 등이 있다. 본원의 일 실시예에 따른 이산화티타늄 광전극을 전자 현미경으로 촬영한 사진은 도 6에 도시되어 있다.Step S208 is a step of adsorbing the photosensitive dye on the porous transition metal oxide layer. In step S208, for example, the porous transition metal oxide layer formed as described above may be immersed in a solution containing a dye to coat the dye. The dye, for example, is composed of a metal complex containing aluminum (Al), platinum (Pt), palladium (Pd), europium (Eu), lead (Pb), iridium (Ir), ruthenium (Ru) and the like. Can be. Here, as the dye containing ruthenium, for example, Ru (etc bpy) 2 (NCS) 2 CH 3 CN type can be used. Where etc is a (COOEt) 2 or (COOH) 2 reactor capable of bonding with the surface of the porous membrane (eg TiO 2 ). In addition, dyes including organic dyes may also be used. Examples of such organic dyes include coumarin, porphyrin, xanthene, riboflavin, and triphenylmethane. ). A photograph taken by an electron microscope of a titanium dioxide photoelectrode according to an embodiment of the present application is shown in FIG. 6.
한편, 상대 전극(60)으로는 상기한 바와 같은 전도성 투명 기판에 백금층이 코팅된 것을 사용할 수 있다.On the other hand, the counter electrode 60 may be used that the platinum layer is coated on the conductive transparent substrate as described above.
광전극(30)과 상대전극(60)의 가장 자리에는 밀봉부(80)가 형성될 수 있다. 밀봉부(80)는 열가소성 고분자물질을 포함하며, 열 또는 자외선에 의하여 경화된다. 구체적인 예로, 밀봉부는 에폭시 수지를 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 밀봉부(80)로서 수십 마이크로 두께의 고분자 필름을 광전극(30)과 상대전극(60)두 전극 사이에 끼워 넣어 간격을 유지할 수 있다. 상기 고분자 필름은 염료감응 태양전지의 가장자리에만 형성할 수 있다. 이후, 전해질(70)을 주입하고 밀봉하여 염료감응 태양전지를 제조한다.The sealing part 80 may be formed at the edge of the photoelectrode 30 and the counter electrode 60. The seal 80 includes a thermoplastic polymer and is cured by heat or ultraviolet rays. As a specific example, the sealing part may include an epoxy resin, but is not limited thereto. For example, as the sealing part 80, a polymer film having a thickness of several tens of microns may be sandwiched between two electrodes of the photoelectrode 30 and the counter electrode 60 to maintain a gap. The polymer film may be formed only at the edge of the dye-sensitized solar cell. Then, the electrolyte 70 is injected and sealed to manufacture a dye-sensitized solar cell.
[실시예 1]Example 1
투명 유리 기판 상에 TiO2 층을 코팅하여 차단층을 형성하였다. 구체적으로 전도성 투명 기판을 70℃ 오븐에서 0.1 M TiCl4 수용액에 30분 동안 침지하여 차단층으로서 TiO2 층을 코팅하였다.The TiO 2 layer was coated on the transparent glass substrate to form a barrier layer. Specifically, the conductive transparent substrate was immersed in 0.1 M TiCl 4 aqueous solution for 30 minutes in a 70 ℃ oven to coat the TiO 2 layer as a barrier layer.
이후, 상기 차단층 상에 광감응 염료가 흡착된 다공성의 이산화티타늄층을 형성하였다. 여기에서 상기 다공성 이산화티타늄 층은 3차원 광간섭 리소그래피로 형성된 패턴이 역전된 다공성 구조로 형성하였다.Thereafter, a porous titanium dioxide layer having a photosensitive dye adsorbed was formed on the blocking layer. The porous titanium dioxide layer was formed of a porous structure in which the pattern formed by three-dimensional optical interference lithography was inverted.
구체적으로, 먼저 스핀 코팅 방법을 적용하여, RPM에 따라 두께 조절이 가능하도록 하여 상기 차단층 상에 SU-8 네가티브 포토레지스트를 도포하였으며, 구체적으로 2000 RPM을 적용하여 7 μm의 두께를 갖도록 SU-8을 도포하였다. 그리고, 95℃의 핫플레이트(hot plate)에서 10분 동안 열처리 한 후 3차원 광간섭 패턴을 조사하였다. 상기 3차원 광간섭 패턴을 조사는, 상기 포토레지스트 층 상부에 다면체 프리즘을 고정시킨 후 300 ~ 400 nm의 UV 광원을 조사시켜 형성되는 3차원 광간섭 패턴을 상기 포토레지스트 층에 조사하여, 3차원 포토레지스트 패턴을 형성하였다. 이 경우, 3차원 포토레지스트 패턴을 형성하기 위하여 광간섭 3차원 리소그래피 기술을 적용하였으며, 4개 이상의 결맞는 레이져 빛을 중첩하여 형성된 3차원 광간섭 패턴을 조사하여 3차원 다공성 포토레지스트 패턴 구조물을 형성하였다.Specifically, the spin coating method was first applied to the SU-8 negative photoresist on the barrier layer by controlling the thickness according to the RPM. Specifically, the SU-8 negative photoresist was applied to the blocking layer to have a thickness of 7 μm. 8 was applied. And, after heat treatment for 10 minutes in a hot plate (95 ℃ hot plate) was examined the three-dimensional optical interference pattern. The three-dimensional optical interference pattern is irradiated to the photoresist layer by irradiating a three-dimensional optical interference pattern formed by fixing a polyhedral prism on the photoresist layer and irradiating a UV light source of 300 to 400 nm, A photoresist pattern was formed. In this case, the optical interference 3D lithography technique was applied to form a 3D photoresist pattern, and a 3D porous photoresist pattern structure was formed by irradiating a 3D optical interference pattern formed by overlapping four or more matching laser lights. It was.
이어서, 노광 후 베이킹(post-exposure baking) 과정을 60℃의 핫플레이트(hot plate)에서 실시한 후 유기 용매를 이용하여 가교되지 않은 SU-8 포토레지스트 부분을 용해시켜 제거하고 2-프로판올(propanol)을 이용하여 불순물을 씻어 내어 3차원 다공성 포토레지스트 패턴을 형성하였다.Subsequently, a post-exposure baking process was performed on a hot plate at 60 ° C., followed by dissolving and removing the uncrosslinked portion of the SU-8 photoresist using an organic solvent, followed by 2-propanol. Impurities were washed off using to form a three-dimensional porous photoresist pattern.
상기 형성된 3차원 다공성 포토레지스트 패턴의 기공 내로 이산화티타늄 전구체를 주입하였다. 상기 이산화티타늄 전구체로서 솔-젤 반응을 일으킬 수 있는 용액 상태의 전구체 또는 용매에 희석된 것을 사용하였으며, 구체적으로 2.5 M TiCl4 용액을 사용하였다. 상기 3차원 다공성 포토레지스트 패턴의 기공 내로 이산화티타늄 전구체를 주입한 뒤 500℃에서의 소성 처리를 1시간 동안 실시하여 3차원 다공성 이산화티타늄 층을 형성하였다.Titanium dioxide precursor was injected into the pores of the formed three-dimensional porous photoresist pattern. As the titanium dioxide precursor, one diluted with a precursor or a solvent in a solution state capable of causing a sol-gel reaction was used. Specifically, a 2.5 M TiCl 4 solution was used. After injecting the titanium dioxide precursor into the pores of the three-dimensional porous photoresist pattern, the baking treatment at 500 ℃ for 1 hour to form a three-dimensional porous titanium dioxide layer.
이어서, 상기 다공성 이산화티타늄 층에 염료를 흡착하였다. 상기 염료로는 루테늄계 염료 분자인 N719 염료를 Dyesol 회사로부터 구입하여 사용하였다. N719를 무수 에탄올(anhydrous ethanol)에 분산시켜 0.5 mM의 농도로 맞추어 상기 형성된 다공성 이산화티타늄 층이 형성된 기판을 상기 염료 용액 내에 하루 동안 담가 상기 염료를 흡착시킨 후 세척 및 건조하여, 염료가 흡착된 다공성 이산화티타늄 층을 포함하는 광전극을 제조하였다.Subsequently, a dye was adsorbed onto the porous titanium dioxide layer. As the dye, N719 dye, a ruthenium-based dye molecule, was purchased from Dyesol company. N719 was dispersed in anhydrous ethanol (anhydrous ethanol) to a concentration of 0.5 mM by immersing the substrate formed with the porous titanium dioxide layer formed in the dye solution for one day to adsorb the dye, washed and dried, the dye adsorbed porous A photoelectrode comprising a titanium dioxide layer was prepared.
한편, 유리 기판에 ITO 전도성 투명 전극층을 형성한 후 백금층을 형성하여 상대 전극을 제조하였다. 이어, 상기 상대전극의 백금층이 상기 광전극의 염료가 흡착된 다공성 이산화티타늄 층에 대향하도록 평행하게 배치하였다. 구체적으로, ITO 전도성 투명 전극이 형성된 유리 기판에 H2PtCl6 용액을 도포하고 130℃의 핫플레이트에 놓고 용매를 증발시켰으며, 450℃에서 30분 동안의 열처리를 하여 백금층을 형성하여 상기 상대 전극을 제조하였다.Meanwhile, a counter electrode was prepared by forming an ITO conductive transparent electrode layer on a glass substrate and then forming a platinum layer. Subsequently, the platinum layer of the counter electrode was disposed in parallel to face the porous titanium dioxide layer on which the dye of the photoelectrode was adsorbed. Specifically, H 2 PtCl 6 solution was applied to a glass substrate on which an ITO conductive transparent electrode was formed, placed on a hot plate at 130 ° C., and the solvent was evaporated. The platinum layer was formed by heat treatment at 450 ° C. for 30 minutes to form the counterpart. An electrode was prepared.
이어서, 상기 광전극과 상대 전극 사이에 전해질을 주입하였으며, 상기 전해질은 상기 다공성 이산화티타늄 층을 포함하는 광전극의 기공 내부에도 침투할 수 있다. 구체적으로, 전해질은 요오드계 산화-환원 쌍을 갖는 액체 전해질로서, 0.7 M 의 1-부틸-3-메틸이미다졸륨 (1-butyl-3-methylimidazolium), 0.03 M의 요오드화물(iodide)/요오드(I2)와 0.1 M 과니디움 티오시아네이트(Guanidium thiocyanate: GSCN), 0.5 M의 4-tert-부틸피리딘(4-tert-buthylpyridine: TBP)을 아세토니트릴(ACN)와 발레로니트릴(VN)를 5:1로 혼합한 용액에 용해시킨 후 사용하였으며, 전해질 용액이 새어 나오지 않도록 하기 위해 25 μm 두께의 설린(Surlyn)을 밀봉부로서 사용하였다.Subsequently, an electrolyte was injected between the photoelectrode and the counter electrode, and the electrolyte may penetrate into the pores of the photoelectrode including the porous titanium dioxide layer. Specifically, the electrolyte is a liquid electrolyte having an iodine-based redox pair, which is 0.7 M of 1-butyl-3-methylimidazolium and 0.03 M of iodide / iodine (I 2 ) and 0.1 M Guanidium thiocyanate (GSCN), 0.5 M 4-tert-butylpyridine (TBP) were added to acetonitrile (ACN) and valeronitrile (VN). Was used after dissolving in a mixed solution of 5: 1, and a 25 μm thick Surlyn was used as a seal to prevent leakage of the electrolyte solution.
상기 실시예에 따라 제조된 염료감응 태양전지를 AM 1.5, 100 mW/㎠ 조건에서 전류 밀도(Jsc), 전압(Voc), 충진 계수(FF) 및 광전 변환 효율(EFF.) 값을 측정하였고, 그 결과는 표 1에 나타난 바와 같다. 하기 표 1에 나타낸 비교예로서, 대한민국 공개특허 10-2009-0047300호에 기재된 염료감응 태양전지의 실시예 결과와 비교하였다.In the dye-sensitized solar cell manufactured according to the above example, current density (Jsc), voltage (Voc), charge factor (FF) and photoelectric conversion efficiency (EFF.) Were measured at AM 1.5 and 100 mW / cm 2. The results are shown in Table 1. As a comparative example shown in Table 1, it was compared with the results of the examples of the dye-sensitized solar cell described in Republic of Korea Patent Publication No. 10-2009-0047300.
표 1
Figure PCTKR2010002358-appb-T000001
Table 1
Figure PCTKR2010002358-appb-T000001
또한, 본원에 따른 3차원 광간섭 리소그래피에 의해 형성된 다공성 이산화티타늄 층을 이용하여 제조된 광전극을 포함하는 염료감응 태양전지의 광 전류-전압 특성을 도 7에 도시하였다.In addition, the photocurrent-voltage characteristics of the dye-sensitized solar cell including the photoelectrode manufactured by using the porous titanium dioxide layer formed by three-dimensional optical interference lithography according to the present application is shown in FIG.
상기 표 1의 결과로부터, 본원 실시예에 따라 제작된 염료감응 태양전지는 최고 3.98%(약 5 μm의 두께)의 광전 변환 효율을 가짐을 알 수 있으며, 이는 비슷한 구조를 형성할 수 있는 상기 비교예보다 약 15% 향상된 결과이다. 또한, 상기 표 1의 결과로부터, 본원에 염료감응 태양전지의 광전 변환 효율은 기존의 졸-겔 법으로 제조되었던 역오팔 구조의 염료감응 태양전지의 최고효율(0.6%) [C. Huisman, J. Schoonman, A. Goossens, Sol. Energy Mater. Sol. Cells, 85, 2005, 115-24]보다 광전 변환 효율이 약 663% 향상된 결과이다.From the results of Table 1, it can be seen that the dye-sensitized solar cell manufactured according to the present example has photoelectric conversion efficiency of up to 3.98% (thickness of about 5 μm), which can form a similar structure. This is about 15% better than yes. In addition, from the results of Table 1, the photoelectric conversion efficiency of the dye-sensitized solar cell herein is the highest efficiency (0.6%) of the reverse-opal dye-sensitized solar cell prepared by the conventional sol-gel method [C. Huisman, J. Schoonman, A. Goossens, Sol. Energy Mater. Sol. Cells, 85, 2005, 115-24] show a 663% improvement in photoelectric conversion efficiency.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.

Claims (11)

  1. 전도성 투명 기판 상에 포토레지스트 층을 형성하는 단계;Forming a photoresist layer on the conductive transparent substrate;
    상기 포토레지스트 층에 3차원 광간섭 리소그래피를 이용하여 3차원 광간섭 패턴을 조사함으로써 3차원 다공성 포토레지스트 패턴을 형성하는 단계;Irradiating the photoresist layer with a three-dimensional optical interference pattern by using three-dimensional optical interference lithography to form a three-dimensional porous photoresist pattern;
    상기 3차원 다공성 포토레지스트 패턴 내로 전이금속 산화물 전구체 용액을 주입하는 단계;Injecting a transition metal oxide precursor solution into the three-dimensional porous photoresist pattern;
    소성 처리에 의하여 상기 포토레지스트 패턴을 제거함으로써 다공성 전이금속 산화물 층을 형성하는 단계; 및Forming a porous transition metal oxide layer by removing the photoresist pattern by firing; And
    상기 다공성 전이금속 산화물 층에 감광성 염료를 흡착시키는 단계:Adsorbing a photosensitive dye on the porous transition metal oxide layer:
    를 포함하는, 염료감응 태양전지용 광전극의 제조 방법.A manufacturing method of a photoelectrode for dye-sensitized solar cell comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 광간섭 패턴은,The three-dimensional optical interference pattern,
    상기 포토레지스트 층에 광로차를 갖는 4개의 간섭성 평행광을 조사하여 형성되는 것인, 염료감응 태양전지용 광전극의 제조 방법.The photoresist layer is formed by irradiating four coherent parallel light having an optical path difference, a method for manufacturing a photoelectrode for a dye-sensitized solar cell.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 형성되는 3차원 다공성 포토레지스트 패턴의 격자 상수는 상기 조사되는 간섭성 평행광의 입사각에 따라 조절되는 것인, 염료감응 태양전지용 광전극의 제조 방법.The lattice constant of the formed three-dimensional porous photoresist pattern is to be adjusted according to the incident angle of the irradiated parallel light, the manufacturing method of the dye-sensitized solar cell photoelectrode.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 형성되는 3차원 다공성 포토레지스트 패턴의 기공 크기는 상기 조사되는 간섭성 평행광의 세기 및 조사 시간에 따라 조절되는 것인, 염료감응 태양전지용 광전극의 제조 방법.The pore size of the formed three-dimensional porous photoresist pattern is controlled according to the intensity and irradiation time of the irradiated parallel light, manufacturing method of a dye-sensitized solar cell photoelectrode.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴을 형성하는 단계는,Forming the three-dimensional porous photoresist pattern,
    상기 3차원 광간섭 패턴이 조사된 상기 포토레지스트 층을 현상하는 것을 추가 포함하는 것인, 염료감응 태양전지용 광전극의 제조 방법.The method of manufacturing a photoelectrode for a dye-sensitized solar cell further comprises developing the photoresist layer irradiated with the three-dimensional optical interference pattern.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 다공성 포토레지스트 패턴은,The three-dimensional porous photoresist pattern,
    상기 포토레지스트 층에 3차원의 규칙적인 패턴이 면심입방 구조로 배열되어 있는 것인, 염료감응 태양전지용 광전극의 제조 방법.The three-dimensional regular pattern is arranged in a face-centered cubic structure in the photoresist layer, the manufacturing method of the photoelectrode for a dye-sensitized solar cell.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 전도성 투명 기판 및 상기 포토레지스트 층 사이에 차단층을 형성하는 것을 추가 포함하는, 염료감응 태양전지용 광전극의 제조 방법.The method of manufacturing a photoelectrode for a dye-sensitized solar cell further comprises forming a blocking layer between the conductive transparent substrate and the photoresist layer.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 전이금속 산화물은 Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga 및 이들의 조합으로 이루어진 군에서 선택되는 전이금속의 산화물인, 염료감응 태양전지용 광전극의 제조 방법.The transition metal oxide is selected from the group consisting of Ti, Zr, Sr, Zn, In, Yr, La, V, Mo, W, Sn, Nb, Mg, Al, Y, Sc, Sm, Ga and combinations thereof The manufacturing method of the photoelectrode for dye-sensitized solar cells which is an oxide of a transition metal.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 포토레지스트 층은 네거티브 타입(negative type) 또는 포지티브 타입(positive type)의 포토레지스트를 이용하여 형성되는 것인, 염료감응 태양전지용 광전극의 제조 방법.The photoresist layer is formed using a negative type (positive type) or a positive type (positive type) photoresist, the method of manufacturing a photoelectrode for a dye-sensitized solar cell.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 전도성 투명 기판 상에 포토레지스트 층을 형성하기 전에, 상기 전도성 투명 기판 상에 나노 결정형 전이금속 박막을 형성하는 것을 추가 포함하는, 염료감응 태양전지용 광전극의 제조 방법.Before forming the photoresist layer on the conductive transparent substrate, further comprising forming a nano-crystalline transition metal thin film on the conductive transparent substrate, the manufacturing method of the photoelectrode for a dye-sensitized solar cell.
  11. 광전극, 상기 광전극에 대향되는 상대 전극, 및 상기 광전극과 상기 상대 전극 사이에 위치하는 전해질을 포함하는 염료감응 태양전지에 있어서, In a dye-sensitized solar cell comprising a photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte located between the photoelectrode and the counter electrode,
    제 1 항 내지 제 10 항 중 어느 한 항에 따른 방법에 의하여 제조된 광전극을 포함하여, 상기 광전극은 전도성 투명 기판 및 상기 전도성 투명 기판 상에 형성된 염료가 흡착된 다공성 전이금속 산화물 층을 포함하는 것을 특징으로 하는, 염료감응 태양전지.11. A photoelectrode comprising a photoelectrode prepared by the method according to claim 1, wherein the photoelectrode comprises a conductive transparent substrate and a porous transition metal oxide layer adsorbed with a dye formed on the conductive transparent substrate. Dye-sensitized solar cell, characterized in that
PCT/KR2010/002358 2010-01-25 2010-04-15 Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method WO2011090232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0006675 2010-01-25
KR1020100006675A KR101058081B1 (en) 2010-01-25 2010-01-25 Method for manufacturing photoelectrode using optical interference lithography and dye-sensitized solar cell comprising photoelectrode

Publications (1)

Publication Number Publication Date
WO2011090232A1 true WO2011090232A1 (en) 2011-07-28

Family

ID=44307031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002358 WO2011090232A1 (en) 2010-01-25 2010-04-15 Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method

Country Status (2)

Country Link
KR (1) KR101058081B1 (en)
WO (1) WO2011090232A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400363B1 (en) * 2013-05-23 2014-06-27 한국과학기술원 Fabrication of three dimensional nano structured metal oxides using proximity-field nanopatterning and ALD
KR101515301B1 (en) 2013-09-17 2015-04-27 전남대학교산학협력단 Method for manufacturing solar cell with 3-dimensional structure of absorber layer film using laser lithograph
KR102091798B1 (en) * 2017-12-19 2020-03-20 이화여자대학교 산학협력단 Organic solar cell including of metal nanostructures having regular configuration, and method of preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610463B1 (en) * 1999-08-30 2003-08-26 Canon Kabushiki Kaisha Method of manufacturing structure having pores
EP1884578A1 (en) * 2006-07-31 2008-02-06 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610463B1 (en) * 1999-08-30 2003-08-26 Canon Kabushiki Kaisha Method of manufacturing structure having pores
EP1884578A1 (en) * 2006-07-31 2008-02-06 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOO-MIN JIN ET AL.: "Holographically Defined Ti02 Electrodes for Dye-sensitized Solar Cells", APPLIED MATERIALS AND INTERFACES, vol. 2, no. 11, 27 October 2010 (2010-10-27), pages 2970 - 2973 *

Also Published As

Publication number Publication date
KR20110087166A (en) 2011-08-02
KR101058081B1 (en) 2011-08-19

Similar Documents

Publication Publication Date Title
WO2012002697A2 (en) Photoelectrode, method for manufacturing same, and dye-sensitized solar cell comprising same
JP5389372B2 (en) Photoelectrode for dye-sensitized solar cell containing hollow spherical metal oxide nanoparticles and method for producing the same
US20090211639A1 (en) dye-sensitized solar cell having nanostructure absorbing multi-wavelength, and a method for preparing the same
US20060185714A1 (en) Flexible solar cell and method of producing the same
KR100928941B1 (en) Dye-Sensitized Solar Cell and Manufacturing Method Thereof
Liu et al. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte
Dissanayake et al. An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three layer composite photoanode for efficiency enhancement in dye-sensitized solar cells
KR101085100B1 (en) Preparing method of photoelectrode and dye-sensitized solar cell having photoelectrode prepared by the same
WO2012148213A2 (en) Layered porous transition metal oxide structure, method for preparing same, photoelectrode having same, and dye-sensitized solar cell having said photoelectrode
WO2011090232A1 (en) Method for fabricating a photoelectrode using optical interference lithography, and dye-sensitized solar cell including the photoelectrode fabricated using the method
KR101253563B1 (en) Dye-sensitized solar cell including scattering layer containing colloid crystal, and preparing method of the same
KR20120020938A (en) Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
KR101458444B1 (en) Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
KR101274948B1 (en) Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
KR20120001896A (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101665637B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101196819B1 (en) Photoelectrode for dye-sensitized solar cell having 1-dimensional pores, preparing method of the same, and dye-sensitized solar cell having the same
KR101160929B1 (en) Preparing method of photoelectrode using chemical bath deposition, photoelectrode by the same, and dye-sensitized solar cell having the photoelectrode
KR101451114B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same
KR101458448B1 (en) Preparing method of photoelectrode using chemical bath deposition, photoelectrode by the same, and dye-sensitized solar cell having the photoelectrode
KR101800849B1 (en) Scattering layer for dye-sensitized solar cell, and preparing method of the same
KR101617173B1 (en) Photoelectrode for dye-sensitized solar cell, and preparing method of the same
KR101601965B1 (en) Photoelectrode for dye-sensitized solar cell, and preparing method of the same
KR101363593B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same
KR101364446B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844028

Country of ref document: EP

Kind code of ref document: A1