WO2011089872A1 - 画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路 - Google Patents

画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路 Download PDF

Info

Publication number
WO2011089872A1
WO2011089872A1 PCT/JP2011/000150 JP2011000150W WO2011089872A1 WO 2011089872 A1 WO2011089872 A1 WO 2011089872A1 JP 2011000150 W JP2011000150 W JP 2011000150W WO 2011089872 A1 WO2011089872 A1 WO 2011089872A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
image
importance
occurrence
feature amount
Prior art date
Application number
PCT/JP2011/000150
Other languages
English (en)
French (fr)
Inventor
和彦 前田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11734479.6A priority Critical patent/EP2528034B1/en
Priority to CN201180001520.9A priority patent/CN102792332B/zh
Priority to US13/256,505 priority patent/US20120002881A1/en
Priority to JP2011535339A priority patent/JP5330530B2/ja
Publication of WO2011089872A1 publication Critical patent/WO2011089872A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/30Scenes; Scene-specific elements in albums, collections or shared content, e.g. social network photos or video

Definitions

  • the present invention relates to an image management technique, and more particularly to an image search technique for efficiently searching for a desired image from an enormous number of images.
  • Patent Document 1 a method of ranking an image by evaluating the facial expression of a person included in each inputted photographed image (for example, Patent Document 1), a human face orientation
  • Patent Document 2 a technique that ranks images by evaluating the shooting state of images based on predetermined setting conditions such as the degree of opening of eyes.
  • An object of the present invention is to provide an image management apparatus and an image management method.
  • an image management apparatus includes an image acquisition unit that acquires an image, and a distribution of pixel values of a plurality of pixels corresponding to an object (for example, a human face) included in the image in each image.
  • An object detection unit that detects an object by extracting an object feature amount that is a feature amount according to a predetermined criterion, and each object detected in each image acquired by the image acquisition unit is an object of each object Object classification means for classifying into one of a plurality of clusters according to the feature amount, and for each object, the object importance that is the importance of the object based on the number of objects that belong together in the same cluster as the object Object importance evaluation means for evaluating Based on the object importance of objects, characterized by comprising an image importance degree evaluating means for evaluating the importance of the one image.
  • a cluster is a unit of classification when objects having similar object feature quantities are grouped together, and each cluster corresponds to a different feature quantity range.
  • the image management apparatus having the above configuration includes, in the image, an object importance level corresponding to the importance level of the person's face, which is an object included in the image, if the predetermined reference defines the feature amount of the person's face.
  • Embodiment 1 It is an example of image importance. It is an example of a ranking result.
  • movement of Embodiment 1 is shown.
  • the co-occurrence information generation process is shown.
  • the accuracy calculation process is shown. It is an example of certainty. It is an example of a support degree.
  • transformation image management apparatus. It is a functional block diagram of an object part. This is an example of detecting a co-occurrence object in an image. It is an example of object appearance information. It is an example of object cluster classification information. It is an example of the co-occurrence information with respect to an object cluster. 10 is a flowchart illustrating the operation of the second embodiment. The co-occurrence information generation process of the second embodiment is shown. The accuracy calculation process of Embodiment 2 is shown.
  • FIG. 10 is a functional configuration diagram of a modified image management apparatus 3500 according to a third embodiment. It is an example of reliability information. 10 is a flowchart showing the operation of the third embodiment. The reliability calculation process is shown. 10 illustrates accuracy calculation processing according to the third embodiment.
  • FIG. 1 is a system configuration diagram illustrating an example of an image management system 10 including an image management apparatus 100 according to an embodiment of the present invention and an apparatus related thereto.
  • the image management device 100 is connected to the photographing device 110 and the display device 120. Further, the image management apparatus 100 can also receive a user operation from the controller 130.
  • the photographing device 110 is a device that can photograph images and store the photographed images, for example, a digital camera.
  • the stored image group is input to the image management apparatus 100 via a cable such as a Universal Serial Bus (USB) cable.
  • USB Universal Serial Bus
  • An image here is a collection of pixel value data.
  • the image may be, for example, a still image such as a photograph or a moving image.
  • a still image such as a photograph or a moving image.
  • the image is a photograph and a still image.
  • the display device 120 is a device that displays video output from the image management device 100 by being connected to the image management device 100 via a cable such as a High-Definition Multimedia Interface (HDMI) cable, for example, a digital television. It is.
  • HDMI High-Definition Multimedia Interface
  • the image management apparatus 100 receives an image group from the image capturing apparatus 110, ranks the input image group based on the image importance that is the importance of the image, and outputs the ranking result to the display apparatus 120.
  • the image management apparatus 100 detects an object having a specific pattern from the image, and evaluates an image containing a large number of objects that are evaluated as having high importance for the user as an image having high image importance. For this reason, the user can easily select an image important for himself / herself by searching for an image in order from an image having a high image importance level to an image having a low image importance level.
  • an object is an element detected in an image by a template possessed by the image management apparatus 100.
  • the template has information for specifying an object.
  • This template is data indicating a feature amount pattern related to a human face, for example. By using this template, a human face can be detected as an object.
  • the image management apparatus 100 evaluates, for each object, an object importance level indicating how important the object is for the user.
  • the object importance level is evaluated based on the number of objects that belong to the same cluster as the object to be evaluated based on the result of the image management apparatus 100 classifying the objects into clusters.
  • a cluster is a unit of classification when objects having similar object feature quantities are grouped together. For example, assuming that an object is a person and there are multiple images of the same person, the object feature values of the person extracted from each image may not be exactly the same due to changes in the shooting state, etc. Many. However, since the same person is considered to have object feature amounts that are similar to each other even if they are not exactly the same, there is a high possibility that they belong to the same cluster. For this reason, if objects belonging to the same cluster are regarded as the same person, a large number of photographed persons have a large number of objects belonging to the same cluster, and the object importance is highly evaluated.
  • Embodiment 1> the image management apparatus 100 detects a human face as an object, evaluates the importance of the person as the object importance, and evaluates and ranks the image importance of the image based on the object importance.
  • the image management apparatus 100 according to the first embodiment of the present invention has a hardware configuration that includes a USB input terminal for inputting an image, an HDMI output terminal for outputting video, a memory for storing data and a program, and a processor for executing the program. Is provided.
  • FIG. 2 is a block diagram showing the functional configuration of the image management apparatus 100 according to the first embodiment of the present invention, including related apparatuses.
  • the image management apparatus 100 includes an image acquisition unit 201, an image storage unit 202, an object detection unit 203, a template storage unit 204, an object appearance information storage unit 205, an object feature amount storage unit 206, an object classification unit 207, a cluster.
  • the image acquisition unit 201 has a function of acquiring a group of images stored in the photographing apparatus 110 through an input interface such as a USB input terminal.
  • the image acquisition unit 201 assigns an image ID (IDentifier) 301 to each image in the acquired image group, and stores the image ID 301 and the image data 302 in the image storage unit 202 in association with each other as the image group 300.
  • IDentifier image ID
  • the image storage unit 202 has a function of storing the image ID 301 and the image data 302 of all the images included in the image group 300 acquired by the image acquisition unit 201.
  • the image storage unit 202 is realized by a memory, for example.
  • FIG. 3 shows an example of the image group 300 stored in the image storage unit 202. FIG. 3 will be described in detail later.
  • the object detection unit 203 extracts a feature amount from each image of the image group 300 stored in the image storage unit 202, detects an object using a template stored in the template storage unit 204, and detects the detected object Has a function of assigning an object ID 402 for identifying each object.
  • the function of the object detection unit 203 is realized, for example, when a processor executes a program stored in a memory.
  • the feature amount will be described in detail later.
  • FIG. 4 shows an example of detecting an object from an image. FIG. 4 will be described in detail later.
  • the object detection unit 203 further associates the image ID 301 with the object ID 402 of the object detected in the image for each image and stores it in the object appearance information storage unit 205 as the object appearance information 500, and sets the object ID 402 for each detected object.
  • the object feature quantity 601 which is the feature quantity of the object is associated and stored in the object feature quantity storage unit 206.
  • the template storage unit 204 stores a template having information for detecting an object in the image by the object detection unit 203.
  • the template storage unit 204 is realized by a memory, for example.
  • the template is data indicating a feature amount pattern related to a human face, and the template storage unit 204 stores a template generated from learning data prepared in advance.
  • the object appearance information storage unit 205 has a function of storing the object appearance information 500 for each image.
  • the object appearance information storage unit 205 is realized by a memory, for example.
  • FIG. 5 shows an example of the object appearance information 500 stored in the object appearance information storage unit 205. FIG. 5 will be described in detail later.
  • the object feature amount storage unit 206 has a function of storing the object feature amount 601 of the object detected by the object detection unit 203 together with the object ID 402.
  • the object feature amount storage unit 206 is realized by a memory, for example.
  • FIG. 6 shows an example of the object feature amount of the object stored in the object feature amount storage unit 206. FIG. 6 will be described in detail later.
  • the object classification unit 207 classifies the object into clusters based on the object feature amount of the object stored in the object feature amount storage unit 206 and the cluster feature amount 702 of the cluster stored in the cluster feature amount storage unit 208. It has a function. Further, it has a function of calculating the cluster feature quantity 702 of the cluster from the object feature quantity of the object classified into the cluster. A cluster ID 703 for identifying each cluster is assigned to the cluster, and the calculated cluster feature quantity 702 is stored in the cluster feature quantity storage unit 208 in association with the cluster ID 703 of the cluster, and each cluster ID 703 and its cluster are stored.
  • the object ID 402 of the object classified into the class ID and the number of objects classified into the cluster are associated with each other and stored as cluster classification information 900 in the cluster classification information storage unit 209.
  • the function of the object classification unit 207 is realized, for example, when a processor executes a program stored in a memory.
  • the cluster feature amount storage unit 208 stores a cluster feature amount 702 possessed by the cluster in association with the cluster ID 703.
  • the cluster feature amount storage unit 208 is realized by a memory, for example.
  • the cluster feature quantity 702 stored in the cluster feature quantity storage unit 208 is updated by the object classification unit 207 as necessary.
  • the cluster classification information storage unit 209 has a function of storing the cluster classification information 900 for each cluster.
  • the cluster classification information storage unit 209 is realized by a memory, for example.
  • FIG. 9 shows an example of cluster classification information 900 stored in the cluster classification information storage unit 209. FIG. 9 will be described in detail later.
  • the co-occurrence information generation unit 210 uses the object appearance information 500 stored in the object appearance information storage unit 205 and the cluster classification information 900 stored in the cluster classification information storage unit 209 for each image in the image group 300. It has a function of generating co-occurrence information 1100 by detecting a co-occurrence relationship and a non-co-occurrence state.
  • the function of the co-occurrence information generation unit 210 is realized, for example, when a processor executes a program stored in a memory.
  • the co-occurrence information 1100 will be described in detail later.
  • the similarity calculation unit 211 determines how similar the object feature amount of the object stored in the object feature amount storage unit 206 is with the cluster feature amount 702 of the cluster stored in the cluster feature amount storage unit 208. It has a function of calculating the similarity 1201 indicating whether or not.
  • the function of the similarity calculation unit 211 is realized, for example, when a processor executes a program stored in a memory.
  • the accuracy calculation unit 212 uses the similarity 130 calculated by the similarity calculation unit 211 and the co-occurrence information 1100 generated by the co-occurrence information generation unit 210 as the accuracy 1301 used for the calculation process of the evaluation value 1401 by the evaluation value calculation unit 213. 1201 and a function to calculate based on The function of the accuracy calculation unit 212 is realized, for example, when a processor executes a program stored in a memory.
  • the evaluation value calculation unit 213 calculates an evaluation value 1401 for the cluster of objects from the accuracy 1301 calculated by the accuracy calculation unit 212 and the number of objects classified into clusters stored in the cluster classification information storage unit 209. Has a function to calculate.
  • the function of the evaluation value calculation unit 213 is realized, for example, when a processor executes a program stored in a memory.
  • the object importance level evaluation unit 214 has a function of evaluating the object importance level 1501 of an object based on the evaluation value 1401 calculated by the evaluation value calculation unit 213.
  • the function of the object importance level evaluation unit 214 is realized, for example, when a processor executes a program stored in a memory.
  • the image importance degree evaluation unit 215 performs image importance 1601 of an image based on the object appearance information 500 stored in the object appearance information storage unit 205 and the object importance degree 1501 stored in the object importance degree evaluation unit 214. It has a function to evaluate.
  • the function of the image importance degree evaluation unit 215 is realized by, for example, a processor executing a program stored in a memory.
  • the image ranking unit 216 has a function of ordering the image groups 300 based on the image importance 1601 evaluated by the image importance evaluation unit 215.
  • the function of the image ranking unit 216 is realized, for example, when a processor executes a program stored in a memory.
  • the image output unit 217 has a function of causing the display device 120 to display the image group 300 stored in the image storage unit 202 through an output interface such as an HDMI output terminal based on the order ordered by the image ranking unit 216. . Further, the display mode of the output image can be changed by the control signal received from the operation input unit 218. For example, when the number of images is large and all the images do not fit on the screen, the screen can be scrolled so as to display an image that is not displayed.
  • the function of the image output unit 217 is realized, for example, when a processor executes a program stored in a memory.
  • the operation input unit 218 has a function of receiving a user operation issued from the controller 130 by an infrared receiver or the like and transmitting a control signal corresponding to the operation to the image output unit 217.
  • the function of the operation input unit 218 is realized, for example, when a processor executes a program stored in a memory.
  • FIG. 3 is a diagram showing a data structure and example contents of the image group 300.
  • the image group 300 includes an image ID 301 for identifying each image and image data 302.
  • the image ID 301 is an identifier for uniquely identifying each image in the image management apparatus 100, and is assigned by the image acquisition unit 201 so as to correspond to the image data 302 on a one-to-one basis.
  • the image ID 301 is generated by the image acquisition unit 201. For example, it is assumed that the image ID 301 is numbered from 1 in the order in which the image acquisition unit 201 has acquired images from the photographing apparatus 110, and an alphabet “I” is added to the head of the number.
  • an image ID 302 of I001 is assigned to the image data 302a
  • I002 is assigned to the image data 302b
  • I003 is assigned to the image data 302c
  • I004 is assigned to the image data 302d.
  • the object appearance information 500 is information indicating which object is detected in which image.
  • the object appearance information 500 is generated by the object detection unit 203, stored in the object appearance information storage unit 205, and used by the co-occurrence information generation unit 210, the accuracy calculation unit 212, and the image importance degree evaluation unit 215.
  • FIG. 4 shows an example of an area 401 where the object detection unit 203 detects an object and an object ID 402 of an object detected in the area 401.
  • FIG. 5 corresponds to the data configuration of the object appearance information 500 and FIG. It is an example of contents to be.
  • the object appearance information 500 is represented for each image as a set of an image ID 301 and an object ID 402 for identifying each object of the object detected in the image. There may be one object included in the image, or there may be a plurality of objects or none.
  • the object ID 402 is an identifier for uniquely identifying each object in the image management apparatus 100, and is given by the object detection unit 203 so as to correspond to the object on a one-to-one basis.
  • the object ID 402 is generated by the object detection unit 203. For example, it is assumed that the object ID 402 is numbered from 1 in the order in which the object detection unit 203 detected the object, and an alphabet “O” is added to the head of the number.
  • the object detected in the area 401a is O001
  • the object detected in the area 401b is O002
  • the object detected in the area 401c is O003
  • the object detected in the area 401d is O004
  • An object ID 402 of O006 is assigned to the object detected in the area 401e
  • an object ID 402 of O006 is assigned to the object detected in the area 401f.
  • an object identified by an object ID 402 of O001 is called an object O001.
  • the object ID 402 of the object included in the specific image can be acquired, and conversely, the image ID 301 of the image including the specific object can also be acquired.
  • the feature amount indicates a feature related to a distribution of pixel values related to a plurality of pixels in the image.
  • the feature amount is a vector having a plurality of numerical values indicating image features as components.
  • Image features include the periodicity and directionality of pixel value distribution of image data obtained using a Gabor filter.
  • the periodicity and directionality of pixel value distribution For example, a distance between two points recognized as eyes from a point, a distance between a point recognized as a nose and a point recognized as a mouth can be used as a component.
  • the object feature quantity 601 is a feature quantity detected as an object among the feature quantities extracted by the object detection unit 203, is generated by the object detection unit 203, and is stored in the object feature quantity storage unit 206 together with the object ID 402. Then, it is used in the object classification unit 207 and the similarity calculation unit 211.
  • FIG. 6 shows a data configuration and example contents of the object feature quantity 601 stored in the object feature quantity storage unit 206.
  • the object feature quantity 601 is composed of a plurality of feature quantity components including a feature quantity component 1, a feature quantity component 2, and a feature quantity component 3.
  • the object feature quantity 601 of the object O001 stores the feature quantity component 1 as 90.3, the feature quantity component 2 as 98.4, and the feature quantity component 3 as 71.4.
  • Cluster> The cluster ID 703, the cluster feature amount 702, and the cluster classification information 900 will be described as data regarding the cluster.
  • FIG. 7 is a diagram illustrating an image in which the object classification unit 207 classifies objects into clusters.
  • 601a, 601b, 601c, 601d, 601e, and 601f indicate the object feature quantity 601 of the object O001, object O002, object O003, object O004, object O005, and object O006, respectively.
  • symbols and objects correspond to each other.
  • the feature amount space 700 includes three clusters, a cluster 701a, a cluster 701b, and a cluster 701c, which are separated by a cluster boundary 704.
  • the cluster ID 703 is an identifier for uniquely identifying each cluster in the image management apparatus 100, and is assigned by the object classification unit 207 so as to correspond to the cluster on a one-to-one basis.
  • the cluster ID 703 is generated by the object classification unit 207.
  • the cluster ID 703 is numbered from 1 in the order in which the object classification unit 207 generates clusters, and an alphabet “C” is added to the head of the number.
  • a cluster ID 703 of C001 is assigned to the cluster 701a
  • C002 is assigned to the cluster 701b
  • C003 is assigned to the cluster 701c.
  • cluster C001 the cluster identified by the cluster ID 703 of C001.
  • the cluster feature amount 702 is a feature amount that the cluster has, and is a value that represents the object feature amount 601 of all objects included in the cluster.
  • the cluster feature quantity 702 is stored in the cluster feature quantity storage unit 208, and is generated, discarded, and updated by the object classification unit 207 as necessary.
  • FIG. 8 shows an example of the data structure of the cluster feature quantity 702 and data contents corresponding to the cluster of FIG.
  • the data structure of the cluster feature quantity 702 is the same as that of the object feature quantity 601.
  • the cluster feature amount 702 is calculated as an arithmetic average of the object feature amounts 601 of the objects included in the cluster, for example.
  • the cluster feature quantity 702 of the cluster C001 stores feature quantity component 1 as 94.4, feature quantity component 2 as 90.2, and feature quantity component 3 as 79.8.
  • the cluster classification information 900 is information indicating which object the object classification unit 207 has classified into which cluster.
  • the cluster classification information 900 is generated by the object classification unit 207, stored in the cluster classification information storage unit 209, and used by the co-occurrence information generation unit 210 and the evaluation value calculation unit 213.
  • FIG. 9 shows an example of the data structure of the cluster classification information 900 and data contents corresponding to the cluster of FIG.
  • the cluster classification information 900 includes a cluster ID 703, an object ID 402 of each object belonging to the cluster, and a number 901 of objects belonging to the cluster for each cluster.
  • an object O001, an object O003, and an object O006 having object feature amounts 601 of 601a, 601b, and 601c belong to the cluster C001 indicated by the reference numeral 701a, and FIG. 9 corresponding to FIG.
  • the cluster classification information 900 of the cluster C001 stores information that the object O001, the object O003, and the object O006 belong, and the total number of objects 901 belonging to the cluster C001 is 30. ⁇ 2-2-5.
  • Co-occurrence information> Here, first, co-occurrence and non-co-occurrence will be described, and then the co-occurrence information 1100 will be described.
  • co-occurrence means that two events occur together.
  • cluster A and cluster B co-occur, it is said that there is a co-occurrence relationship between cluster A and cluster B, especially when an event of “an object belonging to cluster A is included” occurs. , It is assumed that there is a co-occurrence relationship from cluster A to cluster B when the event “an object belonging to cluster B is included” occurs.
  • Fig. 10 is a conceptual diagram of the co-occurrence relationship.
  • a broken arrow 1001 indicates a co-occurrence relationship and connects objects included together in the same image.
  • an arrow 1001 from the object a to the object b is attached.
  • an arrow 1001 from the object b to the object a is also attached.
  • an arrow 1001 is attached from object a belonging to cluster A to object b belonging to cluster B, there is a co-occurrence relationship from cluster A to cluster B.
  • the image including the object O001 corresponding to 601a includes both the object O002 corresponding to 601b. It can be said that there is a relationship. At the same time, since the object O001 is included in the image including the object O002, it can be said that there is a co-occurrence relationship from the cluster C002 to the cluster C001.
  • non-co-occurrence means not co-occurring, and here, in particular, indicates that a certain cluster does not co-occur with any cluster in one image. That is, here, non-co-occurrence refers to an event in which only one object belonging to a certain cluster is included in one image.
  • the object O006 corresponding to 601f that is not connected by an arrow is included alone in the image, and there is no object included in the same image. Therefore, the object O006 is included in the image including the object O006. It can be said that the cluster C001 (701a) to which is belongs is a non-co-occurrence state.
  • the co-occurrence information 1100 is information regarding co-occurrence between clusters, is generated by the co-occurrence information generation unit 210, and is used by the accuracy calculation unit 212.
  • FIG. 11 shows a data structure and content example of the co-occurrence information 1100.
  • the co-occurrence information 1100 includes a co-occurrence degree 1101 indicating the degree of co-occurrence relationship from which cluster to which cluster in all the images of the image group 300, and the non-co-occurrence state of which cluster is the entire image of the image group 300.
  • the degree of non-co-occurrence 1102 indicating the degree of the occurrence of
  • the co-occurrence degree 1101 is the number of times the co-occurrence relationship is detected in the image group 300.
  • the co-occurrence degree 1101 of cluster A with respect to cluster B is the number of times that the co-occurrence relationship between cluster A and cluster B is detected in the image group 300.
  • the non-co-occurrence degree 1102 is the number of times a non-co-occurrence state is detected in the image group 300.
  • the non-co-occurrence degree 1102 of the cluster A is the number of times that the non-co-occurrence state of the cluster A is detected in the image group 300 and matches the number of images in which an object belonging to the cluster A is included alone.
  • the co-occurrence degree 1101 for cluster C001 is 0, the co-occurrence degree 1101 for cluster C002 is 8, the co-occurrence degree 1101 for cluster C003 is 2, and the non-co-occurrence degree 1102 is 5. .
  • the co-occurrence degree 1101 of the cluster C001 with respect to the cluster C001 is 0 because the image including the object belonging to the cluster C001 does not include the object belonging to the cluster C001 in addition to the object. Means.
  • the co-occurrence degree 1101 of the cluster C001 with respect to the cluster C002 means that the number of times that the object belonging to the cluster C002 is included in the image including the object belonging to the cluster C001 is eight.
  • the non-co-occurrence degree 1102 of the cluster C001 means that the number of times that no other object is included in the image including the object belonging to the cluster C001 is five. That is, the number of images including an object belonging to cluster C001 alone is five. ⁇ 2-2-6. Similarity>
  • the similarity 1201 is a value indicating how close the object feature quantity 601 of an object and the cluster feature quantity 702 of a cluster are.
  • the similarity 1201 is generated by the similarity calculator 211 and used by the accuracy calculator 212.
  • FIG. 12 shows the data structure and content example of the similarity 1201.
  • the similarity 1201 is a numerical value for a combination of the object ID 402 of the object and the cluster ID 703 of the cluster.
  • the similarity 1201 is, for example, a numerical value represented by the inner product of a vector indicating the object feature amount 601 of the object and a vector indicating the cluster feature amount 702 of the object in the feature amount space 700, or a cluster of the object feature amount 601 of the object and the cluster.
  • a numerical value calculated from a difference from the feature amount 702 can be used.
  • the similarity 1201 is calculated from the difference between the object feature quantity 601 of the object and the cluster feature quantity 702 of the cluster.
  • the similarity 1201 of the object O003 with respect to the cluster C001, the cluster C002, and the cluster C003 is 0.50, 0.46, and 0.42, respectively.
  • the accuracy 1301 is a value indicating the height of association with the cluster of objects using not only the similarity 1201 but also the co-occurrence information 1100.
  • the accuracy 1301 is generated by the accuracy calculation unit 212 and used by the evaluation value calculation unit 213. By using the accuracy 1301, it is possible to evaluate the related height with higher accuracy than judging the related height only from the similarity 1201.
  • the accuracy 1301 of the object A with respect to the cluster B is calculated based on the similarity 1201 of the object A with respect to the cluster B and the co-occurrence information 1100 of the cluster B.
  • the calculation method will be described in detail later.
  • FIG. 13 shows an example of the data structure and contents of accuracy 1301.
  • the accuracy 1301 is a numerical value for a combination of the object ID 402 of the object and the cluster ID 703 of the cluster.
  • the accuracy 1301 of the object O003 with respect to the cluster C001, cluster C002, and cluster C003 is 0.46, 0.53, and 0.39, respectively.
  • the evaluation value 1401 is an importance calculated for a combination of an object and a cluster, and an object importance 1501 described later is evaluated based on the evaluation value 1401.
  • the evaluation value 1401 is generated by the evaluation value calculation unit 213 and used by the object importance level evaluation unit 214.
  • the evaluation value 1401 of the object A with respect to the cluster B is calculated as the product of the accuracy 1301 of the object A with respect to the cluster B and the number 901 of objects belonging to the cluster B.
  • FIG. 14 shows a data configuration and example contents of the evaluation value 1401.
  • the evaluation value 1401 is constituted by a numerical value for a combination of the object ID 402 of the object and the cluster ID 703 of the cluster.
  • the evaluation values 1401 for the cluster C001, cluster C002, and cluster C003 of the object O003 are 13.6, 14.2, and 7.77, respectively.
  • the evaluation value 1401 for the cluster C001 of the object O003 is 13.6 as a product of 0.46 which is the accuracy 1301 of the object O003 with respect to the cluster C001 and 30 which is the number 901 of objects belonging to the cluster C001. It has become. ⁇ 2-2-8.
  • the object importance 1501 is an importance evaluated for each object, and an image importance 1601 described later is evaluated based on the object importance 1501 of the object.
  • the object importance level 1501 is generated by the object importance level evaluation unit 214 and used by the image importance level evaluation unit 215.
  • the object importance 1501 of an object is evaluated as the sum of evaluation values 1401 for each cluster of the object.
  • FIG. 15 shows an example of the data structure and contents of the object importance 1501.
  • the object importance 1501 is a numerical value for the object ID 402 of the object.
  • the object importance levels 1501 of the objects O001, O002, and O003 are 40.3, 25.6, and 38.1, respectively.
  • the object O001 has an evaluation value 1401 of 13.6 for the cluster C001 of the object O001, 14.2 of the evaluation value 1401 for the cluster C002, 7.77 of the evaluation value 1401 for the cluster C003,
  • the total evaluation value 1401 for the cluster is added to 40.3.
  • the image importance 1601 is an importance evaluated for each image, and the image management apparatus 100 ranks the image group 300 based on the image importance 1601 of each image.
  • the image importance 1601 is generated by the image importance evaluation unit 215 and used by the image ranking unit 216.
  • the image importance 1601 of an image is evaluated as the sum of the object importance 1501 of all objects included in the image.
  • FIG. 16 shows the data structure and content example of the image importance 1601.
  • the image importance 1601 includes a numerical value for the image ID 301 of the image.
  • the image importance 1601 of the image I001, the image I002, the image I003, and the image I004 are 65.9, 89.4, 28.8, and 0, respectively.
  • the image importance 1601 of the image I001 is 65.9, which is obtained by adding 40.3 of the object importance 1501 of the object O001 and 25.6 of the object importance 1501 of the object O002. Yes.
  • FIG. 1 An example of the result of arranging the images of the image group 300 based on the image importance 1601 is shown in FIG.
  • the rank 1701 of the image I017 having the image importance 1601 of 128 is the first, and the image I002, the image I001, and the image I072 follow the second rank.
  • the operation of the image management apparatus 100 according to the present invention will be described.
  • the image acquisition unit 201 acquires an image group stored in the photographing apparatus 110. Then, each image data 302 of the acquired image group 300 is stored in the image storage unit 202 together with an image ID 301 for identifying each image (S1801).
  • the object detection unit 203 extracts the object feature quantity 601 in each image stored in the image storage unit 202, and detects an object (S1802).
  • the object detection unit 203 generates object appearance information 500 for each image and stores it in the object appearance information storage unit 205.
  • the object feature quantity 601 of the detected object is stored in the object feature quantity storage unit 206 in association with the object ID 402. The object detection process will be described in detail later.
  • the object classification unit 207 classifies all objects detected by the object detection unit 203 into clusters based on the object feature amount 601 of each object stored in the object feature amount storage unit 206 (S1803).
  • the object classification unit 207 also calculates a cluster feature amount 702 representing the cluster.
  • Cluster classification information 900 which is a result of the classification, is stored in the cluster classification information storage unit 209.
  • the calculated cluster feature quantity 702 is stored in the cluster feature quantity storage unit 208. The object classification process will be described in detail later.
  • the similarity calculation unit 211 calculates each object from the object feature amount 601 of each object stored in the object feature amount storage unit 206 and the cluster feature amount 702 stored in the cluster classification information storage unit 209.
  • the similarity 1201 with each cluster is calculated (S1804 to S1806).
  • the co-occurrence information generation unit 210 uses the object appearance information 500 stored in the object appearance information storage unit 205 and the cluster classification information 900 stored in the cluster classification information storage unit 209 in the image group 300.
  • the co-occurrence relationship and the non-co-occurrence state are detected to generate co-occurrence information 1100 for all clusters (S1807).
  • the generation process of the co-occurrence information 1100 will be described in detail later.
  • the accuracy calculation unit 212 calculates the accuracy 1301 for each cluster of each object based on the similarity 1201 calculated by the similarity calculation unit 211 and the co-occurrence information 1100 generated by the co-occurrence information generation unit 210.
  • the evaluation value calculation unit 213 calculates an evaluation value 1401 for each cluster of each object based on the accuracy 1301 calculated by the accuracy calculation unit 212 and the cluster classification information 900 stored in the cluster classification information storage unit 209. (S1808 to S1809).
  • the calculation process of the accuracy 1301 and the calculation process of the evaluation value 1401 will be described in detail later.
  • the object importance level evaluation unit 214 evaluates the object importance level 1501 of each object based on the evaluation value 1401 calculated by the evaluation value calculation unit 213 (S1810 to S1811).
  • the object importance 1501 is evaluated as the sum of all evaluation values 1401 for each cluster of the object to be evaluated.
  • the image importance evaluation unit 215 determines the image importance of each image based on the object importance 1501 evaluated by the object importance evaluation unit 214 and the object appearance information 500 stored in the object appearance information storage unit 205.
  • the degree 1601 is evaluated (S1812 to S1813).
  • the image importance 1601 of the image is the sum of the object importances 1501 of all the objects included in the image. If no object is included, the image importance 1601 of the image is set to 0.
  • the image ranking unit 216 ranks the image group 300 based on the image importance 1601 evaluated by the image importance evaluation unit 215 (S1814).
  • the images are arranged in descending order of the numerical value of the image importance 1601.
  • the image output unit 217 outputs the result of ranking by the image ranking unit 216 (S1815). Based on the order rearranged by the image ranking unit 216 and the operation received by the operation input unit 218, the image group 300 stored in the image storage unit 202 is arranged and output to the display device 120. ⁇ 2-3-2. Object detection process> Here, an object detection process (S1802) performed by the object detection unit 203 will be described.
  • the object detection unit 203 first extracts a feature amount from the target image for detecting the object.
  • a method for extracting feature amounts from an image there is a method for extracting feature amounts such as periodicity and directionality of pixel value distribution of image data using a Gabor filter.
  • the object detection unit 203 compares the extracted feature amount with the template stored in the template storage unit 204 to detect an object.
  • an object is detected when the extracted feature amount matches the feature amount pattern of the template.
  • the objects detected by the object detection unit 203 are numbered from 1 in the order in which the objects are detected, and an object ID 402 with an alphabetic “O” added to the beginning of the number is assigned.
  • the object detection unit 203 stores the set of the image ID 301 of the image as the object detection target and the object IDs 402 of all the objects detected in the image as the object appearance information 500 in the object appearance information storage unit 205. Further, the feature quantity extracted from the area 401 where the object is detected is stored in the object feature quantity storage unit 206 in association with the object ID 402 as the object feature quantity 601.
  • FIG. 4 shows an example of detecting an object in an image.
  • object O001 and object O002 are detected in image data 302a
  • object O003 and object O004 and object O005 are detected in image 302b
  • object O006 is detected in image 302c
  • no object is detected in image 302d.
  • the object detection unit 203 extracts feature amounts from the image data 302a, and the feature amounts extracted from the regions 401a and 401b in the image I001 corresponding to the image data 302a are stored in the template storage unit 204. Therefore, the object is detected from the area 401a and the area 401b.
  • the object detection unit 203 assigns object IDs 402 of O001 and O002 to the objects detected from the areas 401a and 401b.
  • the object detection unit 203 stores the object appearance information 500 in the object appearance information storage unit 205 as shown in FIG. Further, the object feature quantity 601 is stored in the object feature quantity storage unit 206 as shown in FIG. ⁇ 2-3-3.
  • Object classification process> Here, the object classification processing (S1803) performed by the object classification unit 207 will be described.
  • the object classification unit 207 classifies all the objects detected by the object detection unit 203 into clusters based on the object feature quantity 601 of each object stored in the object feature quantity storage unit 206.
  • the K-means method is a classification method for automatically generating clusters and classifying objects.
  • a cluster feature quantity 702 representing a cluster is automatically calculated, and each object is classified into a cluster having a cluster feature quantity 702 closest to the object feature quantity 601 of the object.
  • Fig. 7 shows an image of classification by the K-means method.
  • Reference numerals 601a to 601i denote positions in the feature amount space 700 of the object feature amounts 601 of the corresponding objects.
  • 701a to 701c are clusters generated by the K-means method, and have cluster feature amounts 702 indicated by positions 702a to 702c, respectively.
  • the object classification unit 207 classifies these three objects into the cluster 701a. Similarly, the object O002, the object O004, and the object O007 are classified into the cluster 701b, and the object O005, the object O008, and the object O009 are classified into the cluster 701c.
  • the object classification unit 207 assigns numbers 701a to 701c to the clusters generated by the K-means method in the order in which the clusters are generated, starting with 1 and adding the alphabet “C” to the beginning of the number. ID 703 is assigned.
  • the cluster classification information 900 as a result of the classification is stored in the cluster classification information storage unit 209.
  • FIG. 9 shows an example of cluster classification information 900 obtained as a result of classifying all objects into clusters.
  • the cluster feature quantity 702 is calculated as an arithmetic average of the object feature quantities 601 of all objects belonging to the cluster.
  • the calculated cluster feature quantity 702 is stored in the cluster feature quantity storage unit 208.
  • FIG. 7 shows an example of the cluster feature amount 702. ⁇ 2-3-4.
  • Co-occurrence information generation processing> Here, the co-occurrence information 1100 generation process (S1807) performed by the co-occurrence information generation unit 210 for the image group 300 will be described.
  • the co-occurrence information generation unit 210 detects the co-occurrence relationship of clusters and the non-co-occurrence state in each image of the image group 300, and generates co-occurrence information 1100 for all clusters.
  • the process of detecting the co-occurrence relation or the non-co-occurrence state for one image and updating the co-occurrence information 1100 is referred to as a co-occurrence relation detection process.
  • FIG. 19 is a flowchart when the co-occurrence information generation unit 210 generates the co-occurrence information 1100, and shows details of step S1807. It is assumed that the co-occurrence degree 1101 and the non-co-occurrence degree 1102 are all initialized to 0 before the generation process of the co-occurrence information 1100 is started.
  • the co-occurrence relationship detection processing for the image k After the co-occurrence relationship detection processing for the image k is completed, it is determined whether there is an image that has not yet been subjected to the co-occurrence relationship detection processing (S1902). If it exists, one of the images is set as the next image k, and the process returns to S1901. If it does not exist, the co-occurrence information generation unit 210 ends the process of generating the co-occurrence information 1100 for the image group 300.
  • the co-occurrence relation detection process for image k is performed as follows.
  • the number of objects included in the image k is checked from the object appearance information 500. At this time, the case is divided according to whether the number of objects is 1 or 2 (S1903).
  • the cluster A to which the object a belongs is in a non-co-occurrence state in the image k. It can be said.
  • the cluster A to which the object a belongs is acquired from the cluster classification information 900 stored in the cluster classification information storage unit 209 (S1904).
  • the non-co-occurrence state is detected from the object a, and the non-co-occurrence degree 1102 of the cluster A is increased by 1 (S1905).
  • the co-occurrence relationship detection process for the image k is terminated.
  • the image I001 includes both the object O001 belonging to the cluster C001 and the object O002 belonging to the cluster C002. Therefore, in the image I001, it can be said that there are two co-occurrence relationships of the cluster C001 to the cluster C002 and the co-occurrence relationship of the cluster C002 to the cluster C001.
  • the co-occurrence relationship detection process is performed as follows. However, here, when detecting the co-occurrence relationship between the cluster A to which the object a belongs and the cluster B to which the object b belongs, the object a is called the co-occurrence source object and the object b is called the co-occurrence destination object of the object a. .
  • an object a that has not yet been used as a co-occurrence source object is selected from the objects included in the image k. Then, the cluster A to which the object a belongs is acquired from the cluster classification information 900 (S1906).
  • an object b that is not used as a co-occurrence object of the object a other than the object a is selected from the objects included in the image k.
  • the cluster B to which the object b belongs is acquired from the cluster classification information 900 (S1907).
  • the co-occurrence relationship is detected from the co-occurrence source object a and the co-occurrence destination object b, and the co-occurrence degree 1101 of the cluster A with respect to the cluster B is increased by 1 (S1908).
  • the object b has been used as a co-occurrence destination object of the object a.
  • the evaluation value calculation unit 213 calculates an evaluation value 1401 for the cluster of objects. calculate.
  • the evaluation value calculation unit 213 uses the evaluation value 1401 for the accuracy 1301 for the cluster I of the object j calculated by the accuracy calculation unit 212 and the cluster classification information storage. This is calculated by multiplying the number of objects 901 belonging to cluster I acquired from the unit 209.
  • a method of calculating the accuracy 1301 of the object j with respect to the cluster I by the accuracy calculation unit 212 will be described later.
  • Accuracy calculation process> Here, a calculation process of the accuracy 1301 performed by the accuracy calculation unit 212 will be described.
  • the accuracy calculation unit 212 calculates the accuracy 1301 for the cluster of objects.
  • FIG. 20 is a flowchart showing the operation of the accuracy calculation unit 212 when the accuracy 1301 for a certain cluster I of an object j included in the image k is obtained.
  • the number of objects existing in the image k including the object j is checked from the object appearance information 500 stored in the object appearance information storage unit 205. Then, the case is classified according to whether the number of objects is 1 or 2 (S2001). If it is 1, the accuracy 1301 is calculated based on the non-co-occurrence degree 1102, and if it is 2 or more, the accuracy 1301 is calculated based on the co-occurrence degree 1101.
  • the calculation process of the accuracy 1301 based on the non-co-occurrence degree 1102 is performed as follows.
  • the accuracy calculation unit 212 uses the accuracy 1301 as the cluster of the object j calculated using the non-co-occurrence 1102 of the cluster I. It is calculated based on the certainty factor and the support degree for I, and the similarity 1201 for the cluster I of the object j calculated by the similarity calculation unit 211.
  • the certainty factor and the support factor are a kind of index indicating the strength of the correlation between the condition m and the conclusion n in the data mining technology.
  • the certainty factor indicates the rate at which the conclusion n occurs together when the condition m occurs.
  • the degree of support represents the ratio of the number of occurrences of both condition m and conclusion n with respect to the whole. When the certainty value and the support value are both large, it can be said that there is a high possibility that the conclusion n occurs when the condition m occurs.
  • the condition m is an event that an object belonging to the cluster I is included in the image
  • a conclusion n is an object that the object belonging to the cluster I is non-co-occurring in the image. It is an event that is included in the state of origin.
  • the certainty factor and the support factor calculated for one cluster I are referred to as non-co-occurrence confidence factor 2102 of cluster I and non-co-occurrence support factor 2202 of cluster I, respectively. . That is, when the accuracy 1301 is calculated based on the non-co-occurrence degree 1102, the certainty factor of the object j with respect to the cluster I is the non-co-occurrence certainty factor 2102 of the cluster I, and the support degree of the object j with respect to the cluster I is the cluster I.
  • FIG. 21 shows the data structure and content example of the certainty factor 2100.
  • the certainty factor 2100 includes a later-described co-occurrence certainty factor 2101 and the non-co-occurrence certainty factor 2102 described above.
  • the non-co-occurrence certainty 2102 of the cluster C001 is 0.17. This means that when an event that an object belonging to the cluster C001 is included in the image occurs, an event that the object is included in the image in a non-co-occurrence state occurs at a rate of 17%. .
  • Fig. 22 shows the data structure and content example of the support level 2200.
  • the support degree 2200 includes a co-occurrence support degree 2201 described later and the non-co-occurrence support degree 2202 described above.
  • the non-co-occurrence support degree 2202 of the cluster C001 is 0.03. This means that when one object is selected from all objects, the event that the object belongs to the cluster C001 and is included in the image in a non-co-occurrence state occurs at a rate of 3%. means.
  • the non-co-occurrence certainty 2102 and the non-co-occurrence support degree 2202 for the cluster I of the object j are calculated using the non-co-occurrence degree 1102 of the cluster I (S2008).
  • the non-co-occurrence certainty 2102 is calculated as a ratio of the non-co-occurrence degree 1102 of the cluster I to the number 901 of objects belonging to the cluster I.
  • the non-co-occurrence support degree 2202 is calculated as a ratio of the non-co-occurrence degree 1102 of the cluster I to the total number of objects.
  • the non-co-occurrence certainty factor 2102 and non-co-occurrence support degree 2202 of the cluster I calculated in this way, and the similarity 1201 of the object j with respect to the cluster I calculated by the similarity calculation unit 211 are used as a formula for calculating the accuracy 1301.
  • the accuracy 1301 is calculated by substitution (S2009).
  • the formula for calculating the accuracy 1301 is a logistic regression formula in which a coefficient is determined by performing in advance a logistic regression analysis based on statistics when an object exists alone in an image.
  • Logistic regression analysis like multiple regression analysis, predicts the objective variable for an arbitrary explanatory variable by deriving the relationship between the explanatory variable and the objective variable in advance using learning data.
  • the explanatory variable corresponds to the similarity 1201, the certainty factor, and the support level of the object j with respect to the cluster I
  • the objective variable corresponds to the probability 1301 that the object j is the cluster I.
  • an explanatory variable having a greater influence on the calculation of the accuracy has a larger coefficient.
  • the calculation process of the accuracy 1301 based on the co-occurrence degree 1101 is performed as follows.
  • the accuracy calculation unit 212 sets the accuracy 1301 to 1 of the objects other than the object j existing in the image k in the cluster I.
  • the certainty and support for the cluster I of the object j calculated using the co-occurrence 1101 for the cluster X to which the object x belongs, and the similarity 1201 for the cluster I of the object j calculated by the similarity calculation unit 211. Based on and.
  • an object x that is not used in the calculation process of the accuracy 1301 for the cluster I of the object j is selected from objects other than the object j included in the image k (S2002).
  • the cluster X to which the selected object x belongs is acquired from the cluster classification information 900 stored in the cluster classification information storage unit 209 (S2003). Then, from a co-occurrence degree 1101 of cluster I with respect to cluster X, a later-described co-occurrence certainty degree 2101 with respect to cluster X of cluster I and a later-described co-occurrence support degree 2201 with respect to cluster X of cluster I are calculated (S2004).
  • the co-occurrence certainty 2101 of cluster I with respect to cluster X is calculated as a ratio of the co-occurrence degree 1101 with respect to cluster X of cluster I to the number 901 of objects belonging to cluster X.
  • the co-occurrence support degree 2201 of the cluster I for the cluster X is calculated as a ratio of the co-occurrence degree 1101 for the cluster I of the cluster I to the total number of objects.
  • the co-occurrence certainty 2101 and co-occurrence support 2201 of the cluster I calculated in this way for the cluster X to which the object x belongs, the co-occurrence certainty for the object x for the cluster I of the object j, and the object for the cluster I of the object j Let it be the co-occurrence support for x.
  • the process returns to S2002. If not, the co-occurrence confidence and co-occurrence support for the object having the highest co-occurrence support among the objects other than the object j included in the image k are set as the object. Let j be the certainty and support for cluster I (S2006).
  • the accuracy 1301 is calculated by substituting the certainty factor and the support factor calculated in this way and the similarity 1201 of the object j with respect to the cluster I calculated by the similarity calculation unit 211 into the formula for calculating the accuracy 1301 (S2007).
  • the formula for calculating the accuracy 1301 is a logistic regression equation in which a coefficient is determined by performing a logistic regression analysis based on statistics when there are a plurality of objects in the image, and for calculating the accuracy, Explanatory variables with greater influence have larger coefficients.
  • co-occurrence certainty 2101 and co-occurrence support degree 2201 of cluster I for cluster X are based on the condition that the object belonging to cluster X is included in the image, and that the object belonging to cluster I is included in the same image. Of confidence and support.
  • the co-occurrence certainty 2101 of the cluster C001 with respect to the cluster C002 is 0.30. This means that when an event that an object belonging to the cluster C002 is included in the image occurs, an event that an object that belongs to the cluster C001 is included in the same image occurs at a rate of 30%.
  • the co-occurrence support degree 2201 for the cluster C001 with respect to the cluster C002 is 0.04. This is because when one object is selected from all objects, the event that the object belongs to the cluster C002 and the object belonging to the cluster C001 is included in the image including the object is 4%. It means that it occurs at a rate. ⁇ 2-4. Effect of Embodiment 1>
  • the image management apparatus 100 according to the first embodiment sets the object importance level corresponding to the importance level of a person's face, which is an object included in an image, of objects belonging to a cluster indicating that the person is the same person as the face person included in the image.
  • the object importance is evaluated using the number of objects belonging to the surrounding clusters having high similarity to the object, so the object is correctly It can be evaluated that the object importance is closer when it is determined that the person is the same person.
  • the object is calculated based only on the similarity of the feature amount and the possibility of the same person as the person with the highest number of appearances is evaluated to be low, the object importance is evaluated low even if the object is the same person.
  • the possibility of being the same person is evaluated using not only the similarity of the feature quantity but also the co-occurrence relationship between the persons, the object can be another person only with the feature quantity. Even in the case where the property is high, it can be evaluated that the object importance is closer when the object is correctly determined to be the same person. ⁇ 3.
  • Embodiment 2 of the present invention where the accuracy 1301 is calculated using the co-occurrence relationship between clusters to which the human face object belongs in Embodiment 1, the co-occurrence of the human face and an object other than the person is used.
  • the modified image management apparatus 2300 that has been changed to a method for calculating the accuracy 1301 using the relationship will be described.
  • the object refers to a predetermined object other than a human face detected in an object part to be described later, and hereinafter referred to as a “co-occurrence object” in order to distinguish it from an “object” having a general meaning.
  • Co-occurring objects are, for example, cars, animals, plants, buildings, and the like.
  • the co-occurrence object is used only for calculating the accuracy 1301 using the co-occurrence information, and the importance of the object is not considered.
  • the hardware configuration of the modified image management apparatus 2300 is the same as that of the image management apparatus 100 according to the first embodiment.
  • FIG. 23 is a diagram showing a functional configuration of the modified image management apparatus 2300 as a whole. However, description of peripheral devices is omitted, and functional blocks having functions equivalent to those of the image management device 100 are assigned the same reference numerals as in FIG.
  • the deformed image management device 2300 adds an object unit 2301 for detecting and classifying an object to the image management device 100, and the co-occurrence information generation unit 210 and the accuracy calculation unit 212 are changed to a co-occurrence information generation unit 210a and an accuracy calculation unit, respectively. It has been changed to 212a.
  • a portion corresponding to a difference from the image management apparatus 100 will be described.
  • FIG. 24 is a block diagram showing the object part 2301 in detail.
  • the object unit 2301 includes an object detection unit 2401, an object appearance information storage unit 2402, an object classification unit 2403, and an object cluster classification information storage unit 2404.
  • the object detection unit 2401 extracts an object feature amount that is a feature amount of a co-occurrence object in each image of the image group 300 stored in the image storage unit 202, and detects a co-occurrence object based on a predetermined condition. And a function of assigning an object ID 2502 for identifying each co-occurrence object to the detected co-occurrence object.
  • the function of the object detection unit 2401 is realized, for example, when a processor executes a program stored in a memory.
  • FIG. 25 shows an example of detecting an object and a co-occurrence object from an image. FIG. 25 will be described in detail later.
  • the object detection unit 2401 further associates the image ID 301 with the object ID 2502 of the co-occurrence object detected in the image for each image, and stores the object appearance information 2600 in the object appearance information storage unit 2402.
  • the object appearance information storage unit 2402 has a function of storing object appearance information 2600 for each image.
  • the object appearance information storage unit 2402 is realized by a memory, for example.
  • FIG. 26 shows an example of object appearance information 2600 stored in the object appearance information storage unit 2402. FIG. 26 will be described in detail later.
  • the object classification unit 2403 has a function of classifying an object detected by the object detection unit 2401 into an object cluster based on the object feature amount extracted by the object detection unit 2401.
  • the function of the object classification unit 2403 is realized, for example, when a processor executes a program stored in a memory.
  • the object classifying unit 2403 assigns an object cluster ID 2701 for identifying each object cluster to the object cluster, and assigns an object cluster ID 2701 for each object cluster, an object ID 2502 of the co-occurrence object classified into the object cluster, and the object cluster.
  • the number of classified objects is associated and stored in the object cluster classification information storage unit 2404 as object cluster classification information 2700.
  • the object cluster is a unit of classification when classifying co-occurrence objects based on a predetermined standard, and each object cluster corresponds to a range of object feature values different from each other.
  • the object cluster classification information storage unit 2404 has a function of storing object cluster classification information 2700 for each object cluster.
  • the object cluster classification information storage unit 2404 is realized by a memory, for example.
  • FIG. 27 shows an example of object cluster classification information 2700 stored in the object cluster classification information storage unit 2404.
  • FIG. 27 will be described in detail later.
  • Object appearance information> The object appearance information 2600 is information indicating which co-occurrence object is detected in which image.
  • the object appearance information 2600 is generated by the object detection unit 2401, stored in the object appearance information storage unit 2402, and used by the co-occurrence information generation unit 210a and the accuracy calculation unit 212a.
  • FIG. 25 shows an example of an area 2501 where the object detection unit 2401 detects a co-occurrence object and an object ID 2502 of the co-occurrence object detected in the area 2501.
  • FIG. 26 shows the data structure of the object appearance information 2600 and It is an example of the content corresponding to FIG.
  • the object appearance information 2600 is represented for each image by a set of an image ID 301 and an object ID for identifying each co-occurrence object of the co-occurrence object detected in the image. There may be one co-occurrence object included in the image, there may be a plurality of co-occurring objects, or there may be no one.
  • the object ID 2502 is an identifier for uniquely identifying each co-occurrence object in the deformed image management apparatus 2300, and is assigned by the object detection unit 2401 so as to correspond to the co-occurrence object on a one-to-one basis.
  • the object ID 2502 is generated by the object detection unit 2401. For example, the object ID 2502 is numbered from 1 in the order in which the object detection unit 2401 detects the object, and an alphabet “B” is added to the head of the number.
  • B001 is assigned to the co-occurrence object detected in the area 2501a
  • B002 is assigned to the co-occurrence object detected in the area 2501b
  • the object ID 2502 of B003 is assigned to the co-occurrence object detected in the area 2501c. Has been.
  • the co-occurrence object shown in FIG. 25 is described as a specific example, the co-occurrence object is referred to as an object ID 2502.
  • the co-occurrence object identified by the object ID 2502 of B001 is referred to as a co-occurrence object B001.
  • the object ID 2502 of the co-occurrence object included in the specific image can be acquired, and conversely, the image ID 301 of the image including the specific co-occurrence object can also be acquired.
  • the object feature amount is a feature amount related to an object.
  • the object feature amount is a vector having a plurality of numerical values indicating image features as components.
  • a feature amount related to an automobile when pixels having pixel values that are recognized as wheels (for example, a pixel value indicating black) are arranged in a circle, the diameter of the circle, the position of the center point, etc. It can be set as the feature amount of the wheel.
  • a vector including a wheel feature value, a window feature value, or the like as a component can be used as an object feature value of an automobile.
  • the object feature amount is generated by the object detection unit 2401 and used by the object classification unit 2403. ⁇ 3-2-3.
  • the object cluster ID 2701 is an identifier for uniquely identifying each object cluster in the deformed image management apparatus 2300, and is assigned by the object classification unit 2403 so as to correspond to the object cluster on a one-to-one basis.
  • the object cluster ID 2701 is generated by the object classification unit 2403. For example, it is assumed that the object cluster ID 2701 is numbered from 1 in the order in which the object classification unit 2403 generates clusters, and the alphabet “BC” is added to the head of the number.
  • the object cluster classification information 2700 is information indicating which co-occurrence object is classified into which object cluster by the object classification unit 2403.
  • the object cluster classification information 2700 is generated by the object classification unit 2403, stored in the object cluster classification information storage unit 2404, and used by the co-occurrence information generation unit 210a and the evaluation value calculation unit 213a.
  • FIG. 27 shows an example of the data structure of the object cluster classification information 2700 and the contents of the object cluster classification information 2700 as a result of classifying the co-occurrence objects in FIG.
  • the object cluster classification information 2700 includes, for each object cluster, a set of an object cluster ID 2701, an object ID 2502 of each co-occurrence object belonging to the object cluster, and the number of co-occurrence objects 2702 belonging to the object cluster.
  • the object cluster shown in FIG. 27 is described as a specific example, the object cluster is referred to as an object cluster ID 2701.
  • the object cluster identified by the BC001 object cluster ID 2701 is referred to as an object cluster BC001.
  • the object cluster classification information 2700 of the object cluster BC001 stores information that the object B001 and the object B003 belong, and the total number of objects 2702 belonging to the object cluster BC001 is 21. . ⁇ 3-2-4.
  • Co-occurrence information 2800 in the second embodiment is information indicating a relationship between a cluster and an object cluster.
  • the cluster A and the object cluster B co-occur, it is said that there is a co-occurrence relationship between the cluster A and the object cluster B.
  • an event that “an object belonging to the cluster A is included” occurs.
  • the event “a co-occurrence object belonging to the object cluster B is included” occurs, there is a co-occurrence relationship from the cluster A to the object cluster B.
  • the co-occurrence information 2800 is information relating to the co-occurrence relationship of the cluster to the object cluster, and is generated by the co-occurrence information generation unit 210a and used by the accuracy calculation unit 212a.
  • FIG. 28 shows an example of the data structure and contents of the co-occurrence information 2800.
  • the co-occurrence information 2800 is configured by a co-occurrence degree 2801 indicating how much the co-occurrence relationship from which cluster to which object cluster exists in all the images of the image group 300.
  • the co-occurrence degree 2801 is the number of times the co-occurrence relationship is detected in the image group 300.
  • the co-occurrence degree 2801 of the cluster A with respect to the object cluster B is the number of times that the co-occurrence relationship between the cluster A and the object cluster B is detected in the image group 300.
  • the co-occurrence degree 2801 of the cluster C001 for the object cluster BC001 is 0, the co-occurrence degree 2801 for the object cluster BC002 is 3, and the co-occurrence degree 2801 for the object cluster BC003 is 5.
  • FIG. 29 is a flowchart showing the operation of the modified image management apparatus 2300.
  • the same operations as those in the image management apparatus 100 are assigned the same reference numerals as those in FIG.
  • the co-occurrence object detection process (S2901) and the co-occurrence object classification process (S2902) are added to the operation of the image management apparatus 100 after the object classification process (S1803).
  • the contents of the co-occurrence information 2800 generation process (S1807) and the evaluation value 1401 calculation process (S1808) are changed (S1807a and S1808a, respectively).
  • the object detection unit 2401 first extracts an object feature amount from the target image for detecting the co-occurrence object.
  • a method for extracting an object feature quantity from an image is a method for extracting a feature quantity such as periodicity and directionality of a distribution of pixel values of image data using a Gabor filter in the same manner as a feature quantity extraction method in object detection processing. There is.
  • the object detection unit 2401 compares the template of the object detection unit 2401 and detects a co-occurrence object.
  • a co-occurrence object is detected when the extracted object feature amount matches the pattern of the object feature amount possessed by the template.
  • the co-occurrence objects detected by the object detection unit 2401 are numbered from 1 in the order in which the co-occurrence objects are detected, and an object ID 2502 with an alphabet “B” added to the head of the number is assigned.
  • the object detection unit 2401 stores, in the object appearance information storage unit 2402, as a set of object appearance information 2600, a set of the image ID 301 of the image that is the detection target of the co-occurrence object and the object IDs 2502 of all the co-occurrence objects detected in the image. To do.
  • FIG. 25 shows an example of detecting an object in an image.
  • the co-occurrence object B001 is detected in the image 302d
  • the co-occurrence object B002 is detected in the image 302e
  • the co-occurrence object B003 is detected in the image 302f
  • the co-occurrence object is not detected in the image 302c.
  • the object detection unit 2401 extracts the object feature amount from the image data 302d, and the object feature amount extracted from the region 2501a in the image I004 corresponding to the image data 302d satisfies the standard defined by the template.
  • the co-occurrence object is detected from the area 2501a.
  • the object detection unit 2401 assigns an object ID 2502 of B001 to the co-occurrence object detected from the area 2501a.
  • the object detection unit 2401 stores the object appearance information 2600 in the object appearance information storage unit 2402 as shown in FIG. ⁇ 3-3-2.
  • Co-occurrence object classification process> Here, the co-occurrence object classification process (S2602) performed by the object classification unit 2403 will be described.
  • the object classification unit 2403 classifies all co-occurrence objects detected by the object detection unit 2401 into object clusters based on the object feature amounts of the co-occurrence objects extracted by the object detection unit 2401.
  • SVM Support Vector Machine
  • the object cluster classification information 2700 as a result of the classification is stored in the object cluster classification information storage unit 2404.
  • An example of the object cluster classification information 2700 after classifying all co-occurrence objects into object clusters is shown in FIG. ⁇ 3-3-3.
  • Co-occurrence information generation processing> Here, the co-occurrence information 2800 generation process (S1807a) performed by the co-occurrence information generation unit 210a for the image group 300 will be described.
  • the co-occurrence information generation unit 210a detects the co-occurrence relationship of the clusters in the images of the image group 300 with respect to the object clusters, and generates co-occurrence information 2800 between all clusters and all object clusters.
  • the process of detecting the co-occurrence relation for one image and updating the co-occurrence information 2800 is referred to as a co-occurrence relation detection process.
  • FIG. 30 is a flowchart when the co-occurrence information generation unit 210a generates the co-occurrence information 2800, and shows details of step S1807a. It is assumed that the co-occurrence degree 2801 is initialized to 0 before starting the process of generating the co-occurrence information 2800.
  • the co-occurrence relationship detection processing for the image k After the co-occurrence relationship detection processing for the image k is completed, it is determined whether there is an image that has not yet been subjected to the co-occurrence relationship detection processing (S3002). If it exists, one of the images is set as the next image k, and the process returns to S3001. If it does not exist, the co-occurrence information generation unit 210a ends the process of generating the co-occurrence information 2800 for the image group 300.
  • the co-occurrence relation detection process for image k is performed as follows.
  • the image 302f includes both the object detected from the area 401i (hereinafter referred to as object O009) and the object B003. Therefore, in the image 302f, it can be said that there is one co-occurrence relationship between the cluster to which the object O009 belongs and the object cluster to which the object B003 belongs.
  • the co-occurrence relationship detection process is performed as follows. However, here, when detecting the co-occurrence relationship between the cluster A to which the object a belongs and the object cluster B to which the co-occurrence object b belongs, the object a is the co-occurrence source object, and the co-occurrence object b is the co-occurrence destination object of the object a. Let's say each.
  • an object a that has not yet been used as a co-occurrence source object is selected from the objects included in the image k. Then, the cluster A to which the object a belongs is acquired from the cluster classification information 900 stored in the cluster classification information storage unit 209 (S3004).
  • a co-occurrence object b that is not yet used as a co-occurrence destination object of the object a is selected from the co-occurrence objects included in the image k.
  • the object cluster B to which the co-occurrence object b belongs is acquired (S3005).
  • the co-occurrence relationship is detected from the co-occurrence source object a and the co-occurrence destination object b, and the co-occurrence degree 1101 of the cluster A with respect to the cluster B is increased by 1 (S3006).
  • the co-occurrence object b has been used as the co-occurrence destination object of the object a.
  • one of the co-occurrence objects is set as the next co-occurrence destination object b, and the process returns to S3005. If it does not exist, it is assumed that object a has been used as a co-occurrence source object.
  • the evaluation value calculation unit 213 calculates an evaluation value 1401 for the cluster of objects in the same manner as in the first embodiment.
  • the accuracy 1301 for the cluster of objects is the one calculated by the accuracy calculation unit 212a.
  • the calculation process of the accuracy 1301 in the accuracy calculation unit 212a will be described below. ⁇ 3-3-5. Accuracy calculation process>
  • a calculation process of the accuracy 1301 performed by the accuracy calculation unit 212a will be described.
  • the accuracy calculation unit 212a calculates the accuracy 1301 for the cluster of objects.
  • FIG. 31 is a flowchart showing the operation of the accuracy calculation unit 212a when determining the accuracy 1301 for a certain cluster I of an object j included in the image k.
  • the object appearance information 2600 stored in the object appearance information storage unit 2402 determines whether or not a co-occurrence object is included in the image k (S3101). If not included, the accuracy 1301 for the cluster I of the object j is set to 0 (S3108). If included, the accuracy 1301 is calculated based on the co-occurrence degree 2801.
  • the calculation process of the accuracy 1301 based on the co-occurrence degree 2801 is performed as follows.
  • the accuracy calculation unit 212a sets the accuracy 1301 to one of the co-occurrence objects existing in the image k of the cluster I.
  • the certainty and support for the cluster I of the object j calculated using the co-occurrence degree 2801 for the object cluster X to which the object x belongs, and the similarity 1201 for the cluster I of the object j calculated by the similarity calculation unit 211. Calculate based on
  • a co-occurrence object x that is not used in the calculation process of the accuracy 1301 for the cluster I of the object j is selected from the co-occurrence objects included in the image k (S3102).
  • the object cluster X to which the selected co-occurrence object x belongs is acquired from the object cluster classification information 2700 stored in the object cluster classification information storage unit 2404 (S3103). Then, from the co-occurrence degree 2801 of the cluster I with respect to the object cluster X, a later-described co-occurrence certainty factor 3201 for the object cluster X of the cluster I and a later-described co-occurrence support degree 3301 for the object cluster X of the cluster I are calculated (S3104). .
  • the co-occurrence certainty 3201 of the cluster I with respect to the object cluster X is calculated as a ratio of the co-occurrence degree 2801 of the cluster I with respect to the cluster X to the number 2702 of objects belonging to the object cluster X.
  • the co-occurrence support 3301 of the cluster I with respect to the object cluster X is calculated as a ratio of the co-occurrence degree 2801 of the cluster I with respect to the object cluster X to the sum of the number of all objects and the number of all co-occurrence objects.
  • the co-occurrence confidence 3201 and the co-occurrence support 3301 of the cluster I calculated for the object cluster X to which the co-occurrence object x belongs are obtained.
  • the accuracy 1301 is calculated by substituting the reliability 1201 calculated for the cluster I of the object j calculated by the similarity calculation unit 211 into the formula for calculating the accuracy 1301 (S3107).
  • the formula for calculating the accuracy 1301 is a logistic regression equation in which a coefficient is determined by performing a logistic regression analysis based on statistics in the case where an object and a co-occurring object exist in the image.
  • the explanatory variable that has a greater influence on the calculation has a larger coefficient.
  • the co-occurrence confidence 3201 and the co-occurrence support degree 3301 of the cluster I for the object cluster X are such that the objects belonging to the cluster I are included in the same image with respect to the condition that the co-occurring objects belonging to the object cluster X are included in the image.
  • the co-occurrence certainty 3201 of the cluster C001 with respect to the object cluster BC002 is 0.60. This means that when an event occurs that a co-occurrence object belonging to the object cluster BC002 is included in the image, an event that an object belonging to the cluster C001 is included in the same image occurs at a rate of 60%. To do.
  • the co-occurrence support degree 3301 of the cluster C001 with respect to the object cluster BC002 is 0.008. This is because when one object or co-occurrence object is selected from all objects and all co-occurrence objects, the object or co-occurrence object is a co-occurrence object belonging to the object cluster BC002, and the co-occurrence object is This means that an event that both the objects belonging to the cluster C001 are included in the included image occurs at a rate of 0.8%. ⁇ 3-4. Effects of Embodiment 2> Similar to the image management apparatus 100, the modified image management apparatus 2300 according to the second embodiment can easily select an image in which an important person with high interest is shown from an enormous number of images.
  • the image management apparatus using this method is obtained by adding the co-occurrence information generation unit 210 of the image management apparatus 100 of the first embodiment to the above-described modified image management apparatus 2300 and changing the operation of the accuracy calculation unit 212a.
  • FIG. 34 shows a flowchart of processing in which the accuracy calculation unit 212a whose operation has been changed calculates the accuracy 1301 for the cluster I of the object j included in the image k.
  • the number of objects existing in the image k including the object j is checked from the object appearance information 500 stored in the object appearance information storage unit 205. Then, the case is classified according to whether the number of objects is 1 or 2 (S3401).
  • the accuracy 1301 is calculated based on the co-occurrence degree 1101 for the cluster to which the object included in cluster I belongs. This processing is the same as the processing in steps S2002 to S2007 in the first embodiment.
  • the accuracy 1301 is calculated based on the co-occurrence degree 2801 of the cluster I with respect to the object cluster to which the co-occurrence objects included are included. This processing is the same as the processing in steps S3004 to S3008 in the second embodiment.
  • the accuracy 1301 is calculated based on the non-co-occurrence degree 1102 of the cluster I. This processing is the same as the processing in steps S2008 to S2009 in the first embodiment.
  • the image management apparatus evaluates the importance of the image using the co-occurrence relationship between the people as much as possible, and for the image that cannot use the co-occurrence relationship between the persons, The importance of the image is evaluated based on the co-occurrence relationship or the number of times a person is captured by one person.
  • Embodiment 3> As the third embodiment of the present invention, the accuracy 1301 is calculated based on the similarity, the certainty, and the support in the first embodiment, and the accuracy 1301 is further calculated based on the cluster reliability.
  • the modified image management apparatus 3500 that has been changed to will be described.
  • the cluster reliability is the degree to which the object feature amount of each object belonging to the cluster is concentrated on the cluster feature amount of the cluster, that is, the deviation of the object feature amount of each object belonging to the cluster. Indicates how small is overall.
  • the distance between the cluster feature amount 702a of the cluster C001 and the object feature amounts 601a, 603c, and 601f of the objects belonging to the cluster C001 is the magnitude of the difference in feature amount. Show. That is, the closer the distance between the cluster feature amount and the object feature amount of each object belonging to the cluster, the higher the degree of concentration of the object feature amount of each object with respect to the cluster feature amount, and the higher the reliability of the cluster.
  • the hardware configuration of the modified image management apparatus 3500 is the same as that of the image management apparatus 100 of the first embodiment.
  • FIG. 35 is a diagram showing a functional configuration of the deformed image management apparatus 3500 as a whole. However, description of peripheral devices is omitted, and functional blocks having functions equivalent to those of the image management device 100 are assigned the same reference numerals as in FIG.
  • the modified image management apparatus 3500 adds a reliability calculation unit 3501 for calculating the reliability of the cluster to the image management apparatus 100, and changes the accuracy calculation unit 212 to the accuracy calculation unit 212b.
  • a portion corresponding to a difference from the image management apparatus 100 will be described.
  • the reliability calculation unit 3501 has a function of calculating the reliability of the cluster for all clusters. Details of the reliability calculation method will be described later.
  • the accuracy calculation unit 212b adds the accuracy 1301 used for the calculation process of the evaluation value 1401 by the evaluation value calculation unit 213 to the co-occurrence information 1100 and the similarity 1201 used by the accuracy calculation unit 212, and further calculates the reliability.
  • a function of calculating based on the reliability 3601 calculated by the unit 3501 is provided. ⁇ 4-2. Data> ⁇ 4-2-1.
  • Reliability information> The reliability information 3600 is information indicating the reliability 3601 for each cluster. Generated and updated by the reliability calculation unit 3501, and used by the accuracy calculation unit 212b.
  • FIG. 36 shows a data configuration and content example of the reliability information 3600.
  • the reciprocal of a value obtained by dividing the difference between the cluster feature quantity of the cluster and the object feature quantity of each object belonging to the cluster by the number of objects belonging to the cluster is defined as the reliability of the cluster.
  • each feature quantity is composed of a plurality of components, the sum of the squares of the differences between the feature quantity components of the cluster and the object is summed, and the square root of the value is calculated between the cluster feature quantity and the object feature quantity. Difference.
  • FIG. 37 is a flowchart showing the operation of the modified image management apparatus 3500. However, the same operations as those in the image management apparatus 100 are assigned the same reference numerals as those in FIG.
  • the operation of the deformed image management apparatus 3500 is the accuracy used for the calculation process of the evaluation value 1401 by adding a calculation process (S3701) of the reliability 3601 after the object classification process (S1803) with respect to the operation of the image management apparatus 100.
  • the content of the calculation process 1301 has been changed (S1808b).
  • FIG. 38 shows a flowchart relating to the calculation process of the reliability 3601.
  • the reliability calculation unit 3501 acquires the cluster feature amount of the cluster from the cluster feature amount storage unit 208 (step S3801), and focuses on one of the objects belonging to the cluster from the cluster classification information 900 (step S3802). Thereafter, the object feature amount of the object of interest is acquired from the object feature amount storage unit 206 (step S3803), and the difference between the acquired object feature amount and the cluster feature amount is calculated (step S3804).
  • the difference between the feature amounts of the cluster C001 and the object O001 is the square of the difference of the feature amount component 1 (94.4-90.3) 2 and the square of the difference of the feature amount component 2 (90.2-98.4).
  • step S3805 the square of the difference of the feature quantity component 3 (79.8-71.4) 2 is 12.43 which is the square root of the sum of the two .
  • the processing from step S3801 to step S3805 is repeated until the difference between the object feature value of all the objects belonging to the cluster and the cluster feature value is calculated.
  • step S3806 When the difference between the object feature amount and the cluster feature amount of all objects belonging to the cluster is calculated, the calculated differences are summed, and the value is divided by the number of objects belonging to the cluster (step S3806). The reciprocal of the obtained value is set as the reliability of the cluster (step S3807). The processing from step S3801 to step S3808 is repeated until the reliability is calculated for all the clusters registered in the cluster classification information 900. ⁇ 4-3-2. Accuracy calculation process> Here, a calculation process of the accuracy 1301 performed by the accuracy calculation unit 212b will be described.
  • FIG. 39 shows a flowchart of the accuracy calculation process.
  • step S2006 of the accuracy calculation processing shown in FIG. 20 the reliability of the cluster to which the object j belongs and the reliability of the cluster to which the object with the highest support level belongs are obtained (step S3901) is added, and the accuracy calculation processing performed in step S2007 is replaced with the accuracy calculation processing using the reliability acquired in step S3901 (step S3902) in addition to the similarity, reliability, and support. It is.
  • the confidence level and the support level of the cluster having the highest support level among the objects co-occurring with the cluster to which the object j belongs are obtained. Selected (steps S2001 to S2006).
  • the reliability of the cluster I to which the object j belongs and the reliability of the cluster with the highest support are acquired from the reliability information 3600 (step S3901).
  • the accuracy 1301 is calculated by substituting the reliability of the cluster having a high value into the formula for calculating the accuracy 1301 (step S3902).
  • the formula here is a logistic regression formula with coefficients determined by performing a logistic regression analysis based on statistics when there are multiple objects in the image, and has a large influence on the accuracy calculation.
  • the explanatory variable has a larger coefficient.
  • the certainty factor and the support factor are calculated based on the non-co-occurrence degree of the cluster I to which the object j belongs (step S2008).
  • the reliability of the cluster I is acquired from the reliability information 3600 (step S3903).
  • the certainty factor and the support factor calculated in step S2008, the similarity 1201 with respect to the cluster I of the object j calculated by the similarity calculation unit 211, and the reliability of the cluster I to which the object j acquired in step S3903 belongs are represented with an accuracy 1301.
  • the accuracy 1301 is calculated by substituting it into the formula for calculating (step S3904).
  • the formula here is a logistic regression formula with coefficients determined by performing a logistic regression analysis based on statistics when an object is present alone in the image, and has a large influence on the accuracy calculation.
  • the explanatory variable has a larger coefficient.
  • an evaluation value for the cluster is obtained from the accuracy belonging to the cluster and the number of objects belonging to the cluster, and the evaluation value for each cluster of the object Is the object importance of the object.
  • the images are displayed in order of decreasing image importance, with the total object importance of the objects in the image as the image importance.
  • the image management apparatus has been described as an example.
  • the present invention is not limited to an apparatus that mainly manages images.
  • it may be replaced with a storage device for storing still images or moving images such as a file server, a playback device for still images and moving images, a digital camera, a photographing device such as a camera-equipped mobile phone or a movie camera, and a personal computer (PC).
  • PC personal computer
  • any apparatus capable of managing images may be applied.
  • the image acquisition unit 201 includes a USB input terminal and acquires an image group from the photographing apparatus 110 via a cable such as a USB cable. There is no need to acquire an image from the USB input terminal.
  • the image group may be input by wireless communication, or may be input via a recording medium such as a memory card.
  • the image group is input from the imaging device 110 to the image management device.
  • the present invention is not limited to the imaging device, and any device can be used as long as the image group can be input to the image management device.
  • an image group may be input from a file server storing images through a network. In short, it is sufficient that the image management apparatus can acquire the image group.
  • the image acquisition unit 201 acquires an image group from the photographing apparatus 110 that is an external device.
  • the image group may be acquired from an internal component of the image management apparatus.
  • the image management apparatus itself may include an image storage unit such as a hard disk, and the image acquisition unit 201 may acquire an image group from the image storage unit.
  • the image acquisition unit 201 can acquire the image group to be evaluated, it is not necessary to acquire all the image groups at once. For example, the image acquisition unit 201 may acquire one image or several images at a time and add an image to the image group 300 each time.
  • all the image groups 300 acquired by the image acquisition unit 201 including the pixel values of the image data 302 are stored in the image storage unit 202.
  • the image management apparatus performs processing, If the processing target image data 302 can be referred to, it is not always necessary to store all the image data 302 in the image storage unit 202.
  • the image storage unit 202 stores only the image ID 301 of the image group 300 and the image data 302 of one image being processed, and is necessary for the object detection unit 203, the object detection unit 2401, and the image output unit 217.
  • the acquired image data 302 may be acquired by the image acquisition unit 201 from an external device one by one. In short, it is only necessary for the apparatus to have access to all images when processing is performed using the image group 300.
  • the image ID 301 generated by the image acquisition unit 201 is used to identify an image. However, if each image can be identified one by one, the image ID 301 is not necessarily the image acquisition unit 201. Does not need to be generated. For example, when an image is acquired as a file, the file name of the image may be used as the image ID 301. Further, the address of the top memory of the image data 302 when the image data 302 is stored in the memory may be used as the image ID 301.
  • the object is a person's face and the template is data indicating a feature amount pattern related to the person's face.
  • the present invention is not limited to the person's face.
  • the object may be a pet animal and the template may be replaced with pattern data relating to the animal.
  • an object may be detected as an object using a template related to an object such as an automobile or a building.
  • a template related to an object such as an automobile or a building.
  • the object classification unit 207 calculates the cluster feature quantity 702 of the cluster from the object feature quantity 601 of the object classified into the cluster, but it is not always necessary to calculate it.
  • the cluster feature quantity 702 may be used as it is and may not be changed.
  • the cluster only needs to have a cluster feature amount 702 for calculating the similarity 1201 to the cluster of the object.
  • the cluster classification information storage unit 209 also stores the number of objects classified into each cluster. However, it is not always necessary to store the number of objects. For example, when using the number of objects belonging to a cluster, if the using side counts the objects belonging to the cluster each time, the cluster classification information storage unit 209 does not need to store the number of objects. In short, it is only necessary to obtain the number of objects classified into each cluster.
  • the image importance level is obtained by adding all the object importance levels 1501 of the objects included in the image to highly evaluate an image including many important objects. It is not limited to. For example, the average object importance of the objects included in the image may be used, or the highest object importance may be selected and the value may be used as the image importance as it is. Further, evaluation may be performed by further weighting the ratio of the area of the object in the image. In short, the image importance may be calculated using the object importance of the object included in the image.
  • the image importance is evaluated using only the object importance, but the present invention is not limited to this.
  • the importance level may be evaluated with respect to the background, the shooting situation, and the like, and in addition to the object importance level, those importance levels may be used for evaluating the image importance level.
  • other evaluation means may be further combined.
  • the image group 300 is arranged in descending order from the image having the highest importance, and is output to the display device 120.
  • the present invention is not limited to this.
  • the image importance value may be added as image metadata and output in the same order as when the image group 300 was input. In short, image importance may be evaluated.
  • the image output unit 217 includes an HDMI output terminal and outputs video from the image management apparatus to the display apparatus 120 via the HDMI cable. is not.
  • an image may be output to the display device 120 via a DVI cable.
  • the output target need not be limited to the display device, and the output content need not be limited to video.
  • an image with high image importance may be printed by connecting to a printer.
  • an image file to which an image importance value is added as image metadata may be recorded by connecting to an external storage device.
  • the image management apparatus includes a memory for storing data.
  • the present invention is not limited to this as long as it is a means for storing data.
  • a hard disk or other data recording medium may be used.
  • the logistic regression analysis is used to calculate the accuracy 1301, but the present invention is not limited to the logistic regression analysis. You may calculate by another method using similarity and co-occurrence information, or using similarity, co-occurrence information, and reliability.
  • the sum of the accuracy 1301 for all clusters of one object is not necessarily 1, but the accuracy 1301 may be normalized so that the sum is 1.
  • the accuracy is calculated using the co-occurrence information, but the co-occurrence information is not necessarily used.
  • the accuracy may be calculated only from the similarity, or the accuracy may be calculated from the similarity and the reliability.
  • the evaluation value may be calculated from the similarity and the number of objects belonging to the cluster without using the accuracy, or the number of objects belonging to the cluster to which the object belongs without using the similarity may be used as the object importance. good. In short, it is sufficient to use the number of objects belonging to the cluster to which the object belongs at least when evaluating the object importance.
  • the evaluation value for an object cluster is calculated by multiplying the accuracy of the object with respect to the cluster and the number of objects belonging to the cluster.
  • the present invention is not limited to this method.
  • only the evaluation value for the cluster to which the object belongs may be multiplied by 2, for example, so as to be calculated by a method that places more importance on other clusters.
  • the evaluation value may be calculated from the accuracy and the number of objects belonging to the cluster.
  • Embodiments 1 to 3 the object importance level of a certain object is evaluated using the evaluation values for all clusters, but it is not always necessary to use the evaluation values for all clusters. For example, an evaluation value may be calculated only for a cluster having a similarity with the object equal to or higher than a predetermined value, and only the evaluation value may be used. In short, it is sufficient to use the number of objects belonging to the cluster to which the object belongs at least when evaluating the object importance.
  • the method using the K-means method has been described as a method for classifying objects into clusters.
  • the method is not limited to the K-means method as long as the objects can be classified into clusters.
  • the cluster feature value 702 is automatically calculated by the K-means method, but the automatically calculated cluster feature value 702 is not necessarily used. For example, it may be a median of feature quantities of objects belonging to a cluster.
  • the co-occurrence information for all clusters is generated, but the present invention is not limited to this.
  • a modification in which co-occurrence between the same clusters is not generated as co-occurrence information can be considered.
  • the co-occurrence degree 1101 of cluster A with respect to cluster B is known
  • the co-occurrence degree 1101 of cluster B with respect to cluster A is also known, so it is sufficient to generate either one, so only one co-occurrence degree 1101 is obtained. It may be generated. For example, if there is a magnitude relationship between the cluster IDs, only the co-occurrence degree 1101 for a cluster with a large cluster ID of a cluster with a small cluster ID may be generated.
  • the accuracy is calculated using the non-co-occurrence degree 1102 when only one object is included in one image.
  • the accuracy may be calculated according to a standard. For example, the accuracy may be calculated using only the similarity, or the accuracy may be calculated using the similarity and the reliability.
  • the importance of the co-occurrence object is not considered.
  • the importance of the co-occurrence object is evaluated, and the image importance is evaluated based on the importance of the co-occurrence object. Also good.
  • the number of co-occurrence objects belonging to the same object cluster as the co-occurrence object is used as the importance of the co-occurrence object, and the image importance of the image further adds the importance of the co-occurrence object to the sum of the object importance. It is good as a thing.
  • the object importance may be used for evaluating the image importance of the image.
  • the object cluster classification information storage unit 2404 also stores the number of co-occurrence objects classified into each object cluster. However, if the number of objects belonging to the object cluster can be acquired, it is not always necessary. There is no need to memorize the number of objects. For example, when using the number of objects belonging to an object cluster, if the user side counts the objects belonging to the object cluster each time, the object cluster classification information storage unit 2404 does not need to store the number of objects.
  • the method of classifying co-occurrence objects into object clusters has been described as SVM.
  • the method is not limited to SVM as long as the co-occurrence objects can be classified into object clusters.
  • the K-means method described as a method for classifying objects may be used.
  • the accuracy with respect to the cluster of the object included in the image is set to 0.
  • the accuracy is not necessarily set to 0.
  • the accuracy of the object with respect to the cluster may be calculated based only on the similarity.
  • the co-occurrence object detection process and the co-occurrence object classification process are added after the object classification process. However, after the image is acquired, the co-occurrence information is generated. Anytime before you do. For example, a co-occurrence object detection process and a co-occurrence object classification process may be added immediately before the co-occurrence information generation process.
  • the sum of the squares of the difference between the feature amount components of the cluster and the object is summed, and the square root of the value is calculated as the difference between the cluster feature amount of the cluster and the object feature amount of the object.
  • the present invention is not limited to this.
  • an arithmetic average of absolute values of differences between the feature amount components between the cluster and the object may be used as the feature amount difference.
  • the sum of the difference between the cluster feature quantity of a cluster and the object feature quantity of each object belonging to the cluster is divided by the number of objects belonging to the cluster, and the reciprocal of the value is calculated as the reliability.
  • the present invention is not limited to this.
  • the variance, the standard deviation, or the like may be calculated from the cluster feature amount of the cluster and the object feature amount of each object belonging to the cluster, and the inverse thereof may be used as the reliability.
  • the method of extracting the feature amount using the Gabor filter is described as an example.
  • the feature amount may be extracted by any method as long as the feature amount of the image can be extracted.
  • the present invention performs the image importance degree evaluation processing and the like shown in the first to third embodiments (see FIGS. 18 to 20, FIGS. 29 to 31, FIG. 34, and FIGS. 37 to 39) and the processor of the image management apparatus.
  • a control program made up of program codes to be executed by various circuits connected to the processor can be recorded on a recording medium or distributed and distributed via various communication paths. Examples of such a recording medium include an IC card, a hard disk, an optical disk, a flexible disk, and a ROM.
  • the distributed and distributed control program is used by being stored in a memory or the like that can be read by the processor, and the processor executes the control program to realize the functions shown in the embodiments. Become so.
  • a part of the control program is transmitted to a device (processor) capable of executing a program separate from the image management apparatus via various networks, and the part of the control program is executed in the separate program-executable device. It is also possible to make it.
  • Part or all of the constituent elements constituting the image management apparatus may be implemented as one or a plurality of integrated circuits (IC, LSI, etc.), and other elements are included in the constituent elements of the image management apparatus. It is also possible to add an integrated circuit (single chip).
  • the image management apparatus corresponds to an object included in an image in an image acquisition unit that acquires an image and each image acquired by the image acquisition unit.
  • An object detection unit that detects an object by extracting an object feature amount, which is a feature amount related to a distribution of pixel values of a plurality of pixels, based on a predetermined reference, and is detected in each image acquired by the image acquisition unit
  • Based on the object classification means for classifying each object into one of a plurality of clusters according to the object feature amount of each object, and for each object based on the number of objects belonging to the same cluster as the object
  • Object importance evaluation hand that evaluates object importance that is the importance of When provided on the basis of the object importance of objects contained in one image, and an image importance degree evaluating means for evaluating the importance of the one image.
  • the image management apparatus includes, in the image, the object importance level corresponding to the importance level of the person's face, which is an object included in the image, if the predetermined criterion determines the feature amount of the person's face. It is calculated based on the number of appearances of objects belonging to the cluster indicating that it is the same person as the person of the face, and the importance of each image is calculated to reflect the importance of the object included in each image.
  • the predetermined criterion determines the feature amount of the person's face. It is calculated based on the number of appearances of objects belonging to the cluster indicating that it is the same person as the person of the face, and the importance of each image is calculated to reflect the importance of the object included in each image.
  • the object importance level evaluation unit in the image management apparatus determines the object importance level of an object by determining the number of objects belonging to the same cluster as the cluster to which the object belongs, the object feature value of the object, and the feature value indicated by the cluster.
  • the evaluation value for the cluster of the object which is calculated based on the degree of similarity indicating how similar the cluster feature value that is the representative value of is, and a cluster different from the cluster to which the object belongs, Based on the number of objects belonging to the other cluster and the evaluation value for the other cluster of the object calculated based on the similarity between the feature amount of the object and the cluster feature amount of the other cluster May be evaluated.
  • a cluster different from the cluster to which the object belongs may be the same person as the person belonging to the cluster (accuracy) Is calculated from the similarity, and the object importance is evaluated by weighting the number of objects belonging to the cluster with the accuracy obtained from the similarity, so the object importance closer to when the object is correctly determined to be the same person Can be evaluated. Therefore, the image importance can be evaluated with higher accuracy.
  • the object importance level evaluation means in the image management apparatus when the second object is included in the image including the first object to be evaluated, the first object of the first object is An evaluation value for the first cluster, which is a cluster to which the first object belongs or a cluster to which the first object does not belong, and a cluster to which the object belonging to the first cluster and the second object belong in the image group obtained by the image obtaining unit. Calculate based on the degree of co-occurrence of the first cluster and the second cluster to the extent that an event that both objects belonging to the same second cluster are included in one image occurs. It is good.
  • the object importance level is increased even if the person is the same person.
  • the possibility of being the same person is calculated using not only the similarity of the feature amount but also the co-occurrence relationship between the persons.
  • the object importance level evaluation unit in the image management apparatus includes the first cluster and the second object when the second object is included in the image including the first object to be evaluated.
  • the degree of co-occurrence with the same second cluster as the belonging cluster is calculated as a ratio to the number of objects belonging to the second cluster, the certainty factor for the first cluster of the first object, the first cluster and the The degree of co-occurrence with the second cluster, calculated as a ratio of the total number of objects detected by the object detection means, the degree of support of the first object with respect to the first cluster, and the first of the first object
  • the first class of the first object calculated based on the similarity to one cluster.
  • the evaluation value for the first cluster of the first object, the and accuracy with respect to the first cluster of the first object may be calculated from the number of objects belonging to the first cluster. According to this configuration, the accuracy of the first object with respect to the first cluster based on the certainty factor of the first object with respect to the first cluster, the support degree of the first object with respect to the first cluster, and the similarity of the first object with respect to the first cluster. Therefore, the evaluation value for the first cluster of the first object can be calculated based on the calculated accuracy.
  • the object importance level evaluation unit in the image management apparatus further includes the accuracy of the first cluster when the second object is included in the image including the first object to be evaluated.
  • the reliability of the first cluster which is calculated based on the difference between the cluster feature and the object feature of each object belonging to the first cluster, and indicates how much each object feature is concentrated on the cluster feature It is also possible to calculate based on the reliability of the second cluster calculated based on the difference between the cluster feature amount of the second cluster and the object feature amount of each object belonging to the second cluster. According to this configuration, since the accuracy of the first object with respect to the first cluster is calculated based on the reliability of the first cluster and the reliability of the second cluster, the accuracy of the first object with respect to the first cluster is increased. The accuracy can be calculated.
  • the object importance level evaluation means in the image management device when the second object is included in the image including the first object to be evaluated, the accuracy of the first object with respect to the first cluster.
  • the certainty factor of the first object for the first cluster is the certainty factor of the first object for the first cluster, the support level of the first object for the first cluster, the similarity of the first object to the first cluster, and the trust of the first cluster. It is good also as calculating using logistic regression which uses degree and the reliability of the said 2nd cluster as an explanatory variable.
  • the coefficient of each explanatory variable is determined based on the magnitude of the influence on the accuracy calculation based on past actual measurement values and the like. Therefore, according to this configuration, the accuracy of the first object with respect to the first cluster can be calculated with higher accuracy.
  • the object importance level evaluation means in the image management apparatus when the second object is included in the image including the first object to be evaluated, the accuracy of the first object with respect to the first cluster.
  • Logistic regression using the confidence level of the first object for the first cluster, the support level of the first object for the first cluster, and the similarity of the first object to the first cluster as explanatory variables It is good also as calculating using.
  • the coefficient of each explanatory variable is determined based on the magnitude of the influence on the accuracy calculation based on past actual measurement values and the like. Therefore, according to this configuration, the accuracy of the first object with respect to the first cluster can be calculated with higher accuracy.
  • the object importance level evaluation unit in the image management apparatus when an object other than the object is not included in the image including the object to be evaluated, includes the cluster to which the object belongs.
  • the evaluation value for the cluster to which the object does not belong is further increased to the extent that an event that the object belonging to the cluster is included alone in one image in the image group obtained by the image obtaining unit. It may be calculated based on the non-co-occurrence degree of the cluster. According to this configuration, since the evaluation value of the cluster to which the object belongs and the cluster to which the object does not belong is calculated based on the degree of non-co-occurrence that is the extent to which the object is included in the image alone, Even if it is included in the image alone, the possibility that the object belongs to the cluster can be calculated.
  • the object importance level evaluation means in the image management apparatus when an object other than the object is not included in the image including the object to be evaluated, the cluster to which the object belongs or the object does not belong
  • the certainty factor calculated as the ratio of the non-co-occurrence of a cluster to the number of objects belonging to the cluster and the ratio of the non-co-occurrence of the cluster to the number of all objects detected by the object detection means Is calculated based on the degree of support and the similarity of the object to the cluster, and the accuracy of the object with respect to the cluster is calculated, and the cluster to which the object belongs and the object does not belong to the object to be evaluated
  • the evaluation value, and accuracy with respect to the cluster of the object may be calculated from the number of objects belonging to the cluster.
  • the first object based on the non-co-occurrence certainty for the first cluster, the first object non-co-occurrence support for the first cluster, and the similarity of the first object to the first cluster. Since the accuracy of one object with respect to the first cluster is calculated, the possibility that the first object belongs to the first cluster can be calculated.
  • the object detection means in the image management apparatus may extract the object feature amount based on a reference for extracting a feature amount related to a human face. According to this configuration, since the human face that strongly shows the characteristics of the person is extracted as an object, the possibility that the object can be classified more accurately is increased. It can be ranked as a high image.
  • the image management apparatus further extracts an object feature amount, which is a feature amount related to a distribution of pixel values of a plurality of pixels corresponding to the object included in the image, based on a predetermined reference in each image.
  • object classification means for classifying each object detected in each image acquired by the image acquisition means into one of a plurality of object clusters according to the object feature amount of each object.
  • the object importance level evaluation means further includes evaluation values for the cluster to which the object belongs and a cluster to which the object does not belong, and one or more objects are included in the image including the object. In the image group acquired by the image acquisition means, the object belonging to the cluster and the object are included.
  • Co-occurrence of the cluster and the object cluster to the extent that an event occurs in which an object belonging to the object cluster to which one of the objects included in the image is included is included in the same image. It may be calculated based on the degree.
  • the object cluster is a unit of classification when an object is classified based on a predetermined standard, and each object cluster corresponds to a range of different object feature amounts.
  • the object classification means in the image management apparatus may classify each object into clusters by the K-means method. According to this configuration, since the K-means method is used for classifying objects, each object can be classified into clusters by a simple algorithm.
  • the object importance level evaluation unit in the image management apparatus is configured such that the object importance level includes a cluster feature amount that is a representative value of a feature amount indicated by a cluster to which the object belongs, and the object feature of each object belonging to the cluster. It is also possible to calculate based on the reliability of the cluster, which is calculated based on the difference from the amount and indicates how much each object feature amount is concentrated on the cluster feature amount. According to this configuration, since the object importance is calculated based on the reliability of the cluster to which the object belongs and the number of objects belonging to the cluster, it is higher than calculating the object importance based only on the number of objects belonging to the cluster. It is possible to calculate the object importance with accuracy.
  • the image management apparatus and the image management method according to the present invention are applied to a device for storing still images or moving images, a reproduction device for still images and moving images, a digital camera, a photographing device such as a camera-equipped mobile phone or a movie camera, and a PC. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

 画像管理装置100は、画像取得部201で画像群を取得して、オブジェクト検出部203で画像群の各画像からオブジェクトと特徴量とを抽出し、オブジェクト分類部207で全オブジェクトをクラスタに分類する。次に、類似度算出部211で各オブジェクトと各クラスタとの特徴量の類似度を算出し、共起情報生成部210で全クラスタの共起情報を求めて、類似度と共起情報から確度算出部212及び評価値算出部213で各オブジェクトの各クラスタに対する評価値を求める。そして、評価値からオブジェクト重要度評価部214で各オブジェクトのオブジェクト重要度を評価して、オブジェクト重要度から画像重要度評価部215で各画像の重要度を評価する。

Description

画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路
 本発明は、画像管理技術に関するものであり、特に膨大な枚数の画像から所望される画像を効率的に検索するための画像検索技術に関する。
 近年、デジタルカメラの普及により、膨大な枚数の画像を撮影者などのユーザが保有するようになってきている。保有する画像の枚数が増大するにつれて、ユーザにとって重要な画像を選び出すことが困難になってきている。
 そのため、ユーザが所望する画像を効率的に検索することができるように、そのユーザにとって重要度の高い画像から重要度の低い画像へ順に並べることが必要となっている。画像をランキングして表示することにより、ユーザは膨大な枚数の画像の中でもランキングの上位から探していくことができるので、所望の画像を容易に選択することができる。
 従来の画像ランキング方法として、入力された1枚1枚の撮影画像中に含まれている人物の表情を評価して画像をランキングするもの(例えば、特許文献1)や、人物の顔の向き、目の開き具合など、所定の設定条件に基づいて画像の撮影状態を評価して画像をランキングするもの(例えば、特許文献2)がある。
特開2004-46591号公報 特開2005-20446号公報
 しかし従来の技術では、ユーザにとって関心の薄い人物が写っている画像においてその人物の表情や撮影状態が良かった場合、その関心の薄い人物の写る画像が不本意に高い評価となってしまい、ユーザにとって重要度が高い写真を見つけることがかえって困難になる。
 本発明は、上記問題を鑑みてなされたものであって、ユーザが膨大な枚数の画像からユーザにとって重要度が高い人物が写っている画像を容易に選択できるように、画像を評価しランキングすることができる画像管理装置及び画像管理方法を提供することを目的とする。
 上記課題を解決するために本発明に係る画像管理装置は、画像を取得する画像取得手段と、各画像において、画像に含まれるオブジェクト(例えば人物の顔)に該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出手段と、前記画像取得手段で取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類手段と、各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価手段と、一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価手段とを備えることを特徴とする。
 ここでクラスタとは、類似するオブジェクト特徴量を持つオブジェクトをひとまとめにして分類するときの分類の単位であり、各クラスタは互いに異なる特徴量の範囲に対応する。
 上記構成を備える画像管理装置は、前記所定の基準が人物の顔の特徴量を定めるものであれば、画像に含まれるオブジェクトである人物の顔の重要度に当たるオブジェクト重要度を、画像に含まれる顔の人物と同一人物であることを示すクラスタに属するオブジェクトの出現回数に基づいて求め、そのオブジェクト重要度に基づいて画像の重要度を求めて、その画像重要度によって画像をランキングすることで、出現回数の多い人物が含まれている画像を上位に並べることができる。ユーザは、ランキングの上位から順に画像を探していくことで、膨大な枚数の画像から関心の高い重要な人物が写っている画像、つまり重要度が高い画像を容易に選択できる。
画像管理装置の、関連する装置を含めた利用例のイメージである。 画像管理装置の機能構成図である。 画像取得部で取得した画像群の例である。 画像においてオブジェクトを検出する例である。 オブジェクト出現情報の例である。 オブジェクト特徴量の例である。 クラスタ分類のイメージ図である。 クラスタ特徴量の例である。 クラスタ分類情報の例である。 共起関係のイメージ図である。 共起情報の例である。 オブジェクトとクラスタとの類似度の例である。 オブジェクトのクラスタに対する確度の例である。 オブジェクトのクラスタに対する評価値の例である。 オブジェクト重要度の例である。 画像重要度の例である。 ランキング結果の例である。 実施形態1の動作を示している。 共起情報の生成処理を示している。 確度の算出処理を示している。 確信度の例である。 支持度の例である。 変形画像管理装置の機能構成図である。 物体部の機能構成図である。 画像において共起物体を検出する例である。 物体出現情報の例である。 物体クラスタ分類情報の例である。 物体クラスタに対する共起情報の例である。 実施形態2の動作を示すフローチャートである。 実施形態2の共起情報の生成処理を示している。 実施形態2の確度の算出処理を示している。 物体クラスタに対する確信度の例である。 物体クラスタに対する支持度の例である。 実施形態2の変形例における確度の算出処理を示している。 実施形態3に係る変形画像管理装置3500の機能構成図である。 信頼度情報の例である。 実施形態3の動作を示すフローチャートである。 信頼度の算出処理を示している。 実施形態3の確度の算出処理を示している。
 以下、本発明の実施の形態である画像管理装置について、図面を参照しながら説明する。
<1.概要>
 図1は、本発明の実施の形態である画像管理装置100と、それに関連する装置により構成される画像管理システム10の例を示すシステム構成図である。画像管理装置100は、撮影装置110及び表示装置120と接続される。また、画像管理装置100はコントローラ130によるユーザの操作を受けることもできる。
 撮影装置110は画像を撮影することができ、また撮影した画像を蓄積することができる装置であり、例えばデジタルカメラである。Universal Serial Bus(USB)ケーブルなどのケーブルを介して、蓄積している画像群を画像管理装置100へ入力する。
 ここでいう画像とは、画素値のデータの集合である。画像は例えば、写真などの静止画像でも良いし、動画像でも良い。ここでは画像は写真であり、静止画像であるとする。
 表示装置120は、High-Definition Multimedia Interface(HDMI)ケーブルなどのケーブルを介して画像管理装置100と接続されることにより、画像管理装置100から出力される映像を表示する装置であり、例えばデジタルテレビである。
 画像管理装置100は、撮影装置110から画像群を入力され、入力された画像群を画像の重要度である画像重要度に基づいてランキングして、ランキング結果を表示装置120に出力する。画像管理装置100は、特定のパターンを持つオブジェクトを画像中から検出し、ユーザにとって重要度が高いと評価されるオブジェクトが多数含まれている画像を画像重要度が高い画像として評価する。このため、画像重要度の高い画像から画像重要度の低い画像へ順に画像を探すことで、ユーザは自分にとって重要な画像を容易に選択することができる。
 ここでオブジェクトとは、画像管理装置100が持つテンプレートによって画像中において検出される要素である。テンプレートはオブジェクトを特定するための情報を有し、このテンプレートは例えば人物の顔に係る特徴量のパターンを示すデータであり、このテンプレートを用いると人物の顔をオブジェクトとして検出できる。
 画像管理装置100は各オブジェクトに対して、そのオブジェクトがユーザにとってどの程度重要であるかを示すオブジェクト重要度を評価する。オブジェクト重要度は、画像管理装置100がオブジェクトをクラスタに分類した結果に基づき、評価対象のオブジェクトと同じクラスタに属するオブジェクトの個数に基づいて評価する。
 ここでクラスタとは、類似するオブジェクト特徴量を持つオブジェクトをひとまとめにして分類するときの分類の単位である。例えばオブジェクトが人物であるものとし、同一人物が撮影された複数の画像があったとしても、撮影状態の変化などによりそれぞれの画像から抽出された人物のオブジェクト特徴量が全く同じにはならない場合が多い。しかし同一人物であれば、全く同じでなくとも互いに類似するオブジェクト特徴量を持つと考えられるので、同じクラスタに属する可能性が高い。そのため、同じクラスタに属するオブジェクトを同一人物であるとみなすと、多く撮影された人物は同じクラスタに属するオブジェクトの個数が多くなり、オブジェクト重要度が高く評価される。
 以下では、本発明に係る画像管理装置100の実施形態について更に詳しく説明する。
<2.実施形態1>
 実施形態1では、オブジェクトとして人物の顔を検出し、オブジェクト重要度として人物の重要度を評価して、そのオブジェクト重要度に基づいて画像の画像重要度を評価してランキングする画像管理装置100について説明する。
<2-1.構成>
 本発明の実施形態1である画像管理装置100は、ハードウェア構成に関しては、画像を入力するUSB入力端子、映像を出力するHDMI出力端子、データとプログラムとを記憶するメモリ及びプログラムを実行するプロセッサを備える。
 図2は、本発明の実施形態1に係る画像管理装置100の機能構成を、それに関連する装置も含めて示したブロック図である。
 図2において、画像管理装置100は、画像取得部201、画像記憶部202、オブジェクト検出部203、テンプレート記憶部204、オブジェクト出現情報記憶部205、オブジェクト特徴量記憶部206、オブジェクト分類部207、クラスタ特徴量記憶部208、クラスタ分類情報記憶部209、共起情報生成部210、類似度算出部211、確度算出部212、評価値算出部213、オブジェクト重要度評価部214、画像重要度評価部215、画像ランキング部216、画像出力部217及び操作入力部218から構成される。
 画像取得部201は、USB入力端子などの入力インターフェースにより撮影装置110が蓄積している画像群を取得する機能を有する。画像取得部201は取得した画像群の各画像に対して画像ID(IDentifier)301を付与し、画像記憶部202に画像ID301と画像データ302とを対応付けて画像群300として格納する。
 画像記憶部202は、画像取得部201で取得した画像群300に含まれる全画像の画像ID301と画像データ302とを記憶する機能を有する。画像記憶部202は、例えばメモリにより実現される。図3は、画像記憶部202が記憶している画像群300の例を示したものである。図3については、後に詳しく説明する。
 オブジェクト検出部203は、画像記憶部202に格納されている画像群300の各画像から特徴量を抽出して、テンプレート記憶部204に格納されているテンプレートを用いてオブジェクトを検出し、検出したオブジェクトに対して各オブジェクトを特定するためのオブジェクトID402を付与する機能を有する。オブジェクト検出部203の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。特徴量については、後に詳しく説明する。図4は、画像からオブジェクトを検出する例を示したものである。図4については、後に詳しく説明する。オブジェクト検出部203は更に、画像ごとに画像ID301とその画像において検出したオブジェクトのオブジェクトID402とを対応付けてオブジェクト出現情報500としてオブジェクト出現情報記憶部205に格納し、検出したオブジェクトごとにオブジェクトID402とそのオブジェクトの特徴量であるオブジェクト特徴量601とを対応付けてオブジェクト特徴量記憶部206に格納する。
 テンプレート記憶部204は、オブジェクト検出部203で画像においてオブジェクトを検出するための情報を持つテンプレートを記憶している。テンプレート記憶部204は、例えばメモリにより実現される。ここで、テンプレートは人物の顔に係る特徴量のパターンを示すデータであり、テンプレート記憶部204は予め用意された学習データから生成されたテンプレートを記憶しているものとする。
 オブジェクト出現情報記憶部205は、画像ごとにオブジェクト出現情報500を記憶する機能を有する。オブジェクト出現情報記憶部205は、例えばメモリにより実現される。図5は、オブジェクト出現情報記憶部205が記憶しているオブジェクト出現情報500の例を示している。図5については、後に詳しく説明する。
 オブジェクト特徴量記憶部206は、オブジェクト検出部203で検出したオブジェクトが持つオブジェクト特徴量601をオブジェクトID402と共に記憶する機能を有する。オブジェクト特徴量記憶部206は、例えばメモリにより実現される。図6は、オブジェクト特徴量記憶部206が記憶しているオブジェクトのオブジェクト特徴量の例を示したものである。図6については、後に詳しく説明する。
 オブジェクト分類部207は、オブジェクト特徴量記憶部206に格納されているオブジェクトのオブジェクト特徴量と、クラスタ特徴量記憶部208に格納されているクラスタのクラスタ特徴量702に基づいてオブジェクトをクラスタに分類する機能を有する。また、クラスタに分類されたオブジェクトのオブジェクト特徴量からクラスタのクラスタ特徴量702を算出する機能をも有する。クラスタには各クラスタを識別するためのクラスタID703を付与し、算出したクラスタ特徴量702はそのクラスタのクラスタID703と対応付けてクラスタ特徴量記憶部208に格納し、クラスタごとのクラスタID703とそのクラスタに分類したオブジェクトのオブジェクトID402とクラスタに分類されているオブジェクトの個数とを対応付けてクラスタ分類情報900としてクラスタ分類情報記憶部209に格納する。オブジェクト分類部207の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 クラスタ特徴量記憶部208は、クラスタが持つクラスタ特徴量702をクラスタID703と対応付けて記憶している。クラスタ特徴量記憶部208は、例えばメモリにより実現される。クラスタ特徴量記憶部208が記憶しているクラスタ特徴量702は、必要に応じてオブジェクト分類部207により更新される。
 クラスタ分類情報記憶部209は、クラスタごとにクラスタ分類情報900を記憶する機能を有する。クラスタ分類情報記憶部209は、例えばメモリにより実現される。図9はクラスタ分類情報記憶部209が記憶しているクラスタ分類情報900の例を示している。図9については、後に詳しく説明する。
 共起情報生成部210は、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500と、クラスタ分類情報記憶部209に格納されているクラスタ分類情報900とから、画像群300の各画像における共起関係と非共起の状態とを検出して共起情報1100を生成する機能を有する。共起情報生成部210の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。共起情報1100については、後に詳しく説明する。
 類似度算出部211は、オブジェクト特徴量記憶部206に格納されているオブジェクトのオブジェクト特徴量と、クラスタ特徴量記憶部208に格納されているクラスタのクラスタ特徴量702とが、どの程度類似しているかを示す類似度1201を算出する機能を有する。類似度算出部211の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 確度算出部212は、評価値算出部213で評価値1401の算出処理に使用される確度1301を、共起情報生成部210が生成した共起情報1100と類似度算出部211が算出した類似度1201とに基づいて算出する機能を有する。確度算出部212の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 評価値算出部213は、確度算出部212で算出された確度1301と、クラスタ分類情報記憶部209に格納されているクラスタに分類されているオブジェクトの個数とから、オブジェクトのクラスタに対する評価値1401を算出する機能を有する。評価値算出部213の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 オブジェクト重要度評価部214は、評価値算出部213で算出された評価値1401に基づいて、オブジェクトのオブジェクト重要度1501を評価する機能を有する。オブジェクト重要度評価部214の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 画像重要度評価部215は、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500と、オブジェクト重要度評価部214に格納されているオブジェクト重要度1501とに基づいて画像の画像重要度1601を評価する機能を有する。画像重要度評価部215の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 画像ランキング部216は、画像重要度評価部215が評価した画像重要度1601に基づいて、画像群300を順序付けする機能を有する。画像ランキング部216の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。
 画像出力部217は、画像記憶部202に記憶されている画像群300を、画像ランキング部216により順序付けされた順序に基づいて、HDMI出力端子などの出力インターフェースにより表示装置120に表示させる機能を有する。また、操作入力部218から受信した制御信号により、出力画像の表示態様を変化させることができる。例えば、画像数が多くて全画像が画面に収まりきらない場合に、表示されていない画像を表示するように画面をスクロールさせることができる。画像出力部217の機能は例えば、プロセッサがメモリに格納されているプログラムを実行することにより実現される。
 操作入力部218は、赤外線受光器などによりコントローラ130から発せられるユーザの操作を受け付け、操作に対応する制御信号を画像出力部217に送信する機能を有する。操作入力部218の機能は例えば、プロセッサがメモリに格納されているプログラムを実行することにより実現される。
<2-2.データ>
 次に、上述の構成を備える画像管理装置100が取り扱う情報について説明する。
<2-2-1.画像群>
 画像群300は画像管理装置100がランキングする対象の複数の画像である。画像群300は、画像取得部201で撮影装置110から入力された複数の画像から生成され、画像記憶部202に格納されて、オブジェクト検出部203及び画像出力部217により使用される。
 図3は画像群300のデータ構成及び内容例を示す図である。同図に示すように、画像群300は各画像を識別するための画像ID301と画像データ302とにより構成されている。
 画像ID301は、画像管理装置100内で各画像を一意に識別するための識別子であり、画像データ302に対して一対一に対応するように画像取得部201により付与される。画像ID301は、画像取得部201により生成される。画像ID301は例えば、画像取得部201が撮影装置110から画像を取得した順番に1から番号を振り、その番号の先頭にアルファベットの“I”を付加したものとする。
 図3の例では、画像データ302aにはI001、画像データ302bにはI002、画像データ302cにはI003、画像データ302dにはI004の画像ID301が付与されている。
 なお、以下では図3に挙げた画像を具体例にとって説明を行うとき、その画像を画像ID301で呼ぶこととする。例えば、I001の画像ID301で識別される画像は画像I001と呼ぶ。
<2-2-2.オブジェクト出現情報>
 オブジェクト出現情報500は、どの画像においてどのオブジェクトが検出されたのかを示す情報である。オブジェクト出現情報500は、オブジェクト検出部203により生成され、オブジェクト出現情報記憶部205に格納されて、共起情報生成部210、確度算出部212及び画像重要度評価部215により使用される。
 図4はオブジェクト検出部203がオブジェクトを検出した領域401及びその領域401で検出されたオブジェクトのオブジェクトID402の例を示したものであり、図5はオブジェクト出現情報500のデータ構成及び図4に対応する内容例である。
 図5に示すように、オブジェクト出現情報500は画像ごとに、画像ID301と、その画像において検出されたオブジェクトの各オブジェクトを識別するためのオブジェクトID402との組で表される。画像に含まれているオブジェクトは1つの場合もあるし、複数存在する場合や1つも含まれない場合もある。
 オブジェクトID402は、画像管理装置100内で各オブジェクトを一意に識別するための識別子であり、オブジェクトに対して一対一に対応するようにオブジェクト検出部203により付与される。オブジェクトID402は、オブジェクト検出部203により生成される。オブジェクトID402は例えば、オブジェクト検出部203がオブジェクトを検出した順番に1から番号を振り、その番号の先頭にアルファベットの“O”を付加したものとする。
 図4の例では、領域401aで検出されたオブジェクトにはO001、領域401bで検出されたオブジェクトにはO002、領域401cで検出されたオブジェクトにはO003、領域401dで検出されたオブジェクトにはO004、領域401eで検出されたオブジェクトにはO005、領域401fで検出されたオブジェクトにはO006のオブジェクトID402がそれぞれ付与されている。
 なお、以下では図4に挙げたオブジェクトを具体例にとって説明を行うとき、そのオブジェクトをオブジェクトID402で呼ぶこととする。例えば、O001のオブジェクトID402で識別されるオブジェクトはオブジェクトO001と呼ぶ。
 オブジェクト出現情報500を用いると、特定の画像中に含まれるオブジェクトのオブジェクトID402を取得することができ、逆に特定のオブジェクトが含まれる画像の画像ID301を取得することもできる。
 図5の例では、画像I002には、オブジェクトO003、オブジェクトO004及びオブジェクトO005が含まれていることがオブジェクト出現情報500からわかる。また、オブジェクトO002が含まれている画像は、画像I001であることがわかる。
<2-2-3.特徴量>
 特徴量とは、画像中の複数の画素に係る画素値の分布に係る特徴を示したものである。例えば特徴量は画像の特徴を示す複数の数値を成分とするベクトルである。画像の特徴には、Gaborフィルタを用いて得られる画像データの画素値の分布の周期性や方向性などがあり、人物の顔に係る特徴量の場合、画素値の分布の周期性や方向性などから目と認識された点2つの間の距離や、鼻と認識された点と口と認識された点との距離などの量を成分とすることができる。
 オブジェクト特徴量601は、オブジェクト検出部203により抽出された特徴量のうちオブジェクトとして検出された特徴量であり、オブジェクト検出部203により生成され、オブジェクトID402と共にオブジェクト特徴量記憶部206に格納される。そして、オブジェクト分類部207及び類似度算出部211で使用される。
 図6は、オブジェクト特徴量記憶部206に格納されているオブジェクト特徴量601のデータ構成と内容例である。ここではオブジェクト特徴量601は、特徴量成分1、特徴量成分2、特徴量成分3を含む複数の特徴量成分から構成されている。
 同図の例では、オブジェクトO001のオブジェクト特徴量601には、特徴量成分1が90.3、特徴量成分2が98.4、特徴量成分3が71.4として格納されている。
<2-2-4.クラスタ>
 クラスタに関するデータとして、クラスタID703、クラスタ特徴量702、クラスタ分類情報900について説明する。
 図7はオブジェクト分類部207がオブジェクトをクラスタに分類するイメージを示した図である。ここで、601a、601b、601c、601d、601e及び601fはそれぞれ、オブジェクトO001、オブジェクトO002、オブジェクトO003、オブジェクトO004、オブジェクトO005及びオブジェクトO006のオブジェクト特徴量601を示すものとし、以下、実施形態1の説明中では同様に符号とオブジェクトとが対応するものとする。
 同図では、特徴量空間700にクラスタ701a、クラスタ701b、クラスタ701cの3つのクラスタがあり、クラスタの境界704により区切られている。
 クラスタID703は、画像管理装置100内で各クラスタを一意に識別するための識別子であり、クラスタに対して一対一に対応するようにオブジェクト分類部207により付与される。クラスタID703は、オブジェクト分類部207により生成される。クラスタID703は例えば、オブジェクト分類部207がクラスタを生成した順番に1から番号を振り、その番号の先頭にアルファベットの“C”を付加したものとする。
 図7の例では、クラスタ701aにはC001、クラスタ701bにはC002、クラスタ701cにはC003のクラスタID703が付与されている。
 なお、以下では図7に挙げたクラスタを具体例にとって説明を行うとき、そのクラスタをクラスタID703で呼ぶこととする。例えば、C001のクラスタID703で識別されるクラスタはクラスタC001と呼ぶ。
 クラスタ特徴量702は、クラスタが持つ特徴量のことで、クラスタに含まれている全オブジェクトのオブジェクト特徴量601を代表する値である。クラスタ特徴量702はクラスタ特徴量記憶部208に格納され、必要に応じてオブジェクト分類部207により生成、破棄及び更新される。
 図8はクラスタ特徴量702のデータ構成及び図7のクラスタに対応するデータの内容例である。クラスタ特徴量702のデータ構成は、オブジェクト特徴量601と同様である。
 クラスタ特徴量702は例えば、クラスタに含まれているオブジェクトのオブジェクト特徴量601の相加平均として算出される。
 図8の例では、クラスタC001のクラスタ特徴量702には、特徴量成分1が94.4、特徴量成分2が90.2、特徴量成分3が79.8として格納されている。
 クラスタ分類情報900は、オブジェクト分類部207がどのオブジェクトをどのクラスタに分類したのかを示す情報である。クラスタ分類情報900は、オブジェクト分類部207により生成され、クラスタ分類情報記憶部209に格納されて、共起情報生成部210及び評価値算出部213で使用される。
 図9はクラスタ分類情報900のデータ構成及び図7のクラスタに対応するデータの内容例である。クラスタ分類情報900はクラスタごとに、クラスタID703と、そのクラスタに属する各オブジェクトのオブジェクトID402と、そのクラスタに属するオブジェクトの個数901との組で構成される。
 図7の例では、701aの符号で示されるクラスタC001には、601a、601b、601cのオブジェクト特徴量601をそれぞれ持つオブジェクトO001、オブジェクトO003及びオブジェクトO006が属しており、図7に対応する図9の例では、クラスタC001のクラスタ分類情報900には、オブジェクトO001、オブジェクトO003、オブジェクトO006が属しており、クラスタC001に属するオブジェクトの個数901は全部で30個あるという情報が格納されている。
<2-2-5.共起情報>
 ここではまず共起及び非共起について説明し、続いて共起情報1100について説明する。
 一般的に共起とは、2つの事象が共に起こっていることを指す。例えば、1つの画像中にクラスタAに属するオブジェクトとクラスタBに属するオブジェクトとが共に含まれているとき、その画像において「クラスタAに属するオブジェクトが含まれる」という事象と「クラスタBに属するオブジェクトが含まれる」という事象とが共起しているといえる。
 ここでは、1つの画像において「クラスタAに属するオブジェクトが含まれる」という事象と「クラスタBに属するオブジェクトが含まれる」という事象とが共起していることを、クラスタAとクラスタBとが共起しているというものとする。すなわち、1つの画像中にクラスタAに属するオブジェクトとクラスタBに属するオブジェクトとが共に含まれているとき、クラスタAとクラスタBとが共起しているとする。
 また、クラスタAとクラスタBとが共起しているとき、クラスタAとクラスタBとの間に共起関係があるといい、特に「クラスタAに属するオブジェクトが含まれる」という事象が起きた場合に「クラスタBに属するオブジェクトが含まれる」という事象が起きるとき、クラスタAからクラスタBに対する共起関係があるということにする。
 図10は共起関係のイメージ図である。破線の矢印1001は共起関係を示しており、同じ画像中に共に含まれているオブジェクト同士をつないでいる。
 例えば、オブジェクトaが含まれる画像中にオブジェクトbが共に含まれていた場合には、オブジェクトaからオブジェクトbに向かう矢印1001を付けている。また同時に、オブジェクトbが含まれる画像中にオブジェクトaが共に含まれているともいえるので、オブジェクトbからオブジェクトaに向かう矢印1001も付けている。そして、クラスタAに属するオブジェクトaからクラスタBに属するオブジェクトbに向かって矢印1001が付けられている場合にはクラスタAからクラスタBに対する共起関係がある。
 図10の例では、601aに対応するオブジェクトO001が含まれている画像には601bに対応するオブジェクトO002が共に含まれているため、それぞれが属するクラスタC001(701a)からクラスタC002(701b)に対する共起関係があるといえる。同時に、オブジェクトO002が含まれている画像にはオブジェクトO001が共に含まれているため、クラスタC002からクラスタC001に対する共起関係もあるといえる。
 また、非共起とは共起していないことを意味し、ここでは特に、あるクラスタが1つの画像においてどのクラスタとも共起していないことを指す。すなわち、ここで非共起とはあるクラスタに属するオブジェクトが1つの画像において唯1つのみ含まれている事象を指す。
 図10の例では、矢印で結ばれていない601fに対応するオブジェクトO006は画像中に単独で含まれており、同じ画像に共に含まれているオブジェクトがないため、オブジェクトO006を含む画像においてオブジェクトO006が属するクラスタC001(701a)は非共起の状態であるといえる。
 共起情報1100は、クラスタ間の共起に関する情報であり、共起情報生成部210により生成され、確度算出部212で使用される。
 図11は共起情報1100のデータ構成及び内容例である。共起情報1100は、どのクラスタからどのクラスタに対する共起関係が画像群300の全画像においてどの程度あるかを示す共起度1101と、どのクラスタの非共起の状態が画像群300の全画像においてどの程度あるかを示す非共起度1102とにより構成されている。
 共起度1101は、ここでは画像群300の中で共起関係が検出された回数とする。クラスタAのクラスタBに対する共起度1101というと、画像群300の中でクラスタAのクラスタBに対する共起関係が検出された回数である。
 非共起度1102は、ここでは画像群300の中で非共起の状態が検出された回数とする。クラスタAの非共起度1102というと、画像群300の中でクラスタAの非共起の状態が検出された回数であり、クラスタAに属するオブジェクトが単独で含まれる画像の枚数と一致する。
 図11の例では、クラスタC001の、クラスタC001に対する共起度1101は0、クラスタC002に対する共起度1101は8、クラスタC003に対する共起度1101は2、そして非共起度1102は5である。
 前述の例において、クラスタC001のクラスタC001に対する共起度1101が0であるのは、クラスタC001に属するオブジェクトが含まれる画像には、そのオブジェクトの他にクラスタC001に属するオブジェクトが含まれていないことを意味する。
 また、クラスタC001のクラスタC002に対する共起度1101が8であるのは、クラスタC001に属するオブジェクトが含まれる画像にクラスタC002に属するオブジェクトが含まれる回数が8回であることを意味する。
 そして、クラスタC001の非共起度1102が5であるのは、クラスタC001に属するオブジェクトが含まれる画像に他のオブジェクトが含まれていない回数が5回であることを意味する。すなわち、クラスタC001に属するオブジェクトが単独で含まれる画像の枚数は5枚である。
<2-2-6.類似度>
 類似度1201は、オブジェクトのオブジェクト特徴量601とクラスタのクラスタ特徴量702とがどの程度近い値を持つかを示す値である。類似度1201は、類似度算出部211によって生成され、確度算出部212により使用される。
 図12は類似度1201のデータ構成及び内容例である。類似度1201はオブジェクトのオブジェクトID402とクラスタのクラスタID703との組み合わせに対する数値で構成される。
 類似度1201は、例えば特徴量空間700におけるオブジェクトのオブジェクト特徴量601を示すベクトルとクラスタのクラスタ特徴量702を示すベクトルとの内積で表される数値や、オブジェクトのオブジェクト特徴量601とクラスタのクラスタ特徴量702との差から算出する数値などとすることができる。ここでは類似度1201はオブジェクトのオブジェクト特徴量601とクラスタのクラスタ特徴量702との差から算出されるものとする。
 図12の例では、オブジェクトO003のクラスタC001、クラスタC002及びクラスタC003に対する類似度1201はそれぞれ0.50、0.46及び0.42となっている。
<2-2-7.確度>
 確度1301は、オブジェクトのクラスタとの関連の高さを、類似度1201だけでなく共起情報1100をも用いて示した値である。確度1301は、確度算出部212により生成され、評価値算出部213で使用される。確度1301を用いることで、類似度1201だけから関連の高さを判断するよりも精度良く関連の高さを評価することができる。
 オブジェクトAのクラスタBに対する確度1301は、ここではオブジェクトAのクラスタBに対する類似度1201と、クラスタBの共起情報1100とに基づいて算出されるものとする。算出方法については、後に詳しく説明する。
 図13は、確度1301のデータ構成と内容例である。確度1301はオブジェクトのオブジェクトID402とクラスタのクラスタID703との組み合わせに対する数値で構成される。
 同図の例では、オブジェクトO003のクラスタC001、クラスタC002及びクラスタC003に対する確度1301はそれぞれ0.46、0.53及び0.39となっている。
<2-2-8.評価値>
 評価値1401は、オブジェクトとクラスタとの組み合わせに対して算出される重要度であり、後述するオブジェクト重要度1501は評価値1401に基づいて評価される。評価値1401は、評価値算出部213により生成され、オブジェクト重要度評価部214により使用される。
 オブジェクトAのクラスタBに対する評価値1401は、ここではオブジェクトAのクラスタBに対する確度1301と、クラスタBに属するオブジェクトの個数901との積として算出されるものとする。
 図14は、評価値1401のデータ構成及び内容例である。評価値1401はオブジェクトのオブジェクトID402とクラスタのクラスタID703との組み合わせに対する数値で構成される。
 同図の例では、オブジェクトO003のクラスタC001、クラスタC002及びクラスタC003に対する評価値1401はそれぞれ13.6、14.2及び7.77となっている。
 前述の例において、オブジェクトO003のクラスタC001に対する評価値1401は、オブジェクトO003のクラスタC001に対する確度1301である0.46と、クラスタC001に属するオブジェクトの個数901である30との積で13.6となっている。
<2-2-8.オブジェクト重要度>
 オブジェクト重要度1501は、オブジェクトごとに評価される重要度であり、後述する画像重要度1601はオブジェクトのオブジェクト重要度1501に基づいて評価される。オブジェクト重要度1501は、オブジェクト重要度評価部214により生成され、画像重要度評価部215に使用される。
 オブジェクトのオブジェクト重要度1501は、ここではそのオブジェクトの各クラスタに対する評価値1401の合計として評価されるものとする。
 図15はオブジェクト重要度1501のデータ構成及び内容例である。オブジェクト重要度1501はオブジェクトのオブジェクトID402に対する数値で構成される。
 同図の例では、オブジェクトO001、オブジェクトO002及びオブジェクトO003のオブジェクト重要度1501はそれぞれ40.3、25.6及び38.1となっている。
 前述の例において、オブジェクトO001は、オブジェクトO001のクラスタC001に対する評価値1401の13.6と、クラスタC002に対する評価値1401の14.2と、クラスタC003に対する評価値1401の7.77と、他のクラスタに対する評価値1401とを全て足し合わせて、40.3となっている。
<2-2-9.画像重要度>
 画像重要度1601は、画像ごとに評価される重要度であり、画像管理装置100は画像群300を各画像の画像重要度1601に基づいてランキングする。画像重要度1601は、画像重要度評価部215により生成され、画像ランキング部216に使用される。
 画像の画像重要度1601は、ここではその画像中に含まれる全オブジェクトのオブジェクト重要度1501の合計として評価されるものとする。
 図16は画像重要度1601のデータ構成及び内容例である。画像重要度1601は画像の画像ID301に対する数値で構成される。
 同図の例では、画像I001、画像I002、画像I003及び画像I004の画像重要度1601はそれぞれ65.9、89.4、28.8及び0となっている。
 前述の例において、画像I001の画像重要度1601は、オブジェクトO001のオブジェクト重要度1501の40.3と、オブジェクトO002のオブジェクト重要度1501の25.6とを足し合わせて、65.9となっている。
 画像重要度1601に基づいて画像群300の各画像を並べた結果の一例を図17に示す。同図の例ではランキング結果1700は、128の画像重要度1601を持つ画像I017の順位1701が1位であり、2位以下に画像I002、画像I001及び画像I072が続いている。
<2-3.動作>
 次に、本発明に係る画像管理装置100の動作について説明する。
<2-3-1.動作の概要>
 図18のフローチャートを用いて画像管理装置100が行う動作の概要を説明する。
 まず、画像取得部201が撮影装置110に蓄積されている画像群を取得する。そして取得した画像群300の各画像データ302を、それぞれの画像を識別するための画像ID301と共に画像記憶部202に格納する(S1801)。
 次に、オブジェクト検出部203が、画像記憶部202に格納されている各画像においてオブジェクト特徴量601を抽出し、オブジェクトを検出する(S1802)。オブジェクト検出部203は画像ごとにオブジェクト出現情報500を生成し、オブジェクト出現情報記憶部205に格納する。そして、検出したオブジェクトのオブジェクト特徴量601はオブジェクトID402と対応付けてオブジェクト特徴量記憶部206に格納する。オブジェクトの検出処理については、後に詳しく説明する。
 次に、オブジェクト分類部207が、オブジェクト検出部203が検出した全オブジェクトを、オブジェクト特徴量記憶部206に格納されている各オブジェクトのオブジェクト特徴量601によりクラスタに分類する(S1803)。また、クラスタを代表するクラスタ特徴量702も、オブジェクト分類部207が算出する。分類した結果であるクラスタ分類情報900はクラスタ分類情報記憶部209に格納する。また、算出したクラスタ特徴量702はクラスタ特徴量記憶部208に格納する。オブジェクトの分類処理については、後に詳しく説明する。
 次に、類似度算出部211が、オブジェクト特徴量記憶部206に格納されている各オブジェクトのオブジェクト特徴量601とクラスタ分類情報記憶部209に格納されているクラスタ特徴量702とから、各オブジェクトと各クラスタとの類似度1201を算出する(S1804~S1806)。
 次に、共起情報生成部210が、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500と、クラスタ分類情報記憶部209に格納されているクラスタ分類情報900とから、画像群300における共起関係と非共起の状態とを検出して全クラスタの共起情報1100を生成する(S1807)。共起情報1100の生成処理については、後に詳しく説明する。
 次に、確度算出部212が、類似度算出部211が算出した類似度1201と、共起情報生成部210が生成した共起情報1100とに基づいて各オブジェクトの各クラスタに対する確度1301を算出して、評価値算出部213が、確度算出部212が算出した確度1301と、クラスタ分類情報記憶部209に格納されているクラスタ分類情報900とに基づいて各オブジェクトの各クラスタに対する評価値1401を算出する(S1808~S1809)。確度1301の算出処理及び評価値1401の算出処理については、後に詳しく説明する。
 次に、オブジェクト重要度評価部214が、評価値算出部213が算出した評価値1401に基づいて各オブジェクトのオブジェクト重要度1501を評価する(S1810~S1811)。オブジェクト重要度1501はここでは、評価対象となるオブジェクトの各クラスタに対する評価値1401全ての合計として評価する。
 次に、画像重要度評価部215が、オブジェクト重要度評価部214が評価したオブジェクト重要度1501と、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500とに基づいて各画像の画像重要度1601を評価する(S1812~S1813)。画像の画像重要度1601はここでは、画像中に含まれている全オブジェクトのオブジェクト重要度1501の合計とする。また、オブジェクトが含まれていない場合は、画像の画像重要度1601を0とする。
 次に、画像ランキング部216が、画像重要度評価部215が評価した画像重要度1601によって画像群300をランキングする(S1814)。ここでは、画像重要度1601の数値の降順で各画像を並べるものとする。
 最後に、画像出力部217が、画像ランキング部216がランキングした結果を出力する(S1815)。画像ランキング部216で並べ替えた順序と、操作入力部218で受け付けた操作とに基づいて、画像記憶部202に格納されている画像群300を整列し、表示装置120に対し出力する。
<2-3-2.オブジェクトの検出処理>
 ここではオブジェクト検出部203が行うオブジェクトの検出処理(S1802)について述べる。
 オブジェクト検出部203は、まずオブジェクトを検出する対象の画像から特徴量を抽出する。画像から特徴量を抽出する方法には、Gaborフィルタを用いて画像データの画素値の分布の周期性や方向性などの特徴量を抽出する方法がある。
 次にオブジェクト検出部203は、抽出した特徴量をテンプレート記憶部204に格納されているテンプレートと照合して、オブジェクトを検出する。ここでは、抽出された特徴量が、テンプレートが持つ特徴量のパターンに当てはまる場合にオブジェクトが検出される。
 オブジェクト検出部203が検出したオブジェクトに対しては、オブジェクトを検出した順番に1から番号を振り、その番号の先頭にアルファベットの“O”を付加したオブジェクトID402を付与する。
 そしてオブジェクト検出部203は、オブジェクトの検出対象とした画像の画像ID301と、その画像において検出した全オブジェクトのオブジェクトID402との組をオブジェクト出現情報500としてオブジェクト出現情報記憶部205に格納する。また、オブジェクトを検出した領域401から抽出された特徴量をオブジェクト特徴量601としてオブジェクトID402と対応付けてオブジェクト特徴量記憶部206に格納する。
 図4は、画像においてオブジェクトを検出する例を示したものである。同図の例では、画像データ302aにおいてオブジェクトO001とオブジェクトO002、画像302bにおいてオブジェクトO003とオブジェクトO004とオブジェクトO005、画像302cにおいてオブジェクトO006がそれぞれ検出されており、画像302dにおいてはオブジェクトは検出されていない。
 前述の例において、オブジェクト検出部203は画像データ302aから特徴量を抽出し、画像データ302aに対応する画像I001において領域401aと領域401bとから抽出した特徴量が、テンプレート記憶部204に格納されているテンプレートで定められる基準を満たしているため、領域401aと領域401bとからオブジェクトを検出している。
 領域401aと領域401bとから検出されたオブジェクトに対して、オブジェクト検出部203はそれぞれO001及びO002のオブジェクトID402を付与している。
 そして、オブジェクト検出部203は図5のようにオブジェクト出現情報500をオブジェクト出現情報記憶部205に格納している。また、図6のようにオブジェクト特徴量601をオブジェクト特徴量記憶部206に格納している。
<2-3-3.オブジェクトの分類処理>
 ここではオブジェクト分類部207が行うオブジェクトの分類処理(S1803)について述べる。
 オブジェクト分類部207は、オブジェクト検出部203が検出した全オブジェクトを、オブジェクト特徴量記憶部206に格納されている各オブジェクトのオブジェクト特徴量601によりクラスタに分類する。
 オブジェクトをクラスタに分類する方法には、K-means法を用いる方法がある。K-means法は、自動的にクラスタを生成してオブジェクトを分類する分類方法である。K-means法を用いると、クラスタを代表するクラスタ特徴量702は自動的に算出され、各オブジェクトはそのオブジェクトが持つオブジェクト特徴量601と最も近いクラスタ特徴量702を持つクラスタに分類される。
 図7にK-means法による分類のイメージを示す。601a~601iはそれぞれ対応するオブジェクトのオブジェクト特徴量601の特徴量空間700での位置を示している。701a~701cはK-means法により生成されるクラスタであり、それぞれ702a~702cの位置で示されるクラスタ特徴量702を持つ。
 同図の例では、オブジェクトO001、オブジェクトO003、オブジェクトO006はオブジェクト特徴量601がクラスタC001のクラスタ特徴量702aに最も近いため、オブジェクト分類部207はこの3つのオブジェクトをクラスタ701aに分類する。同様にして、オブジェクトO002、オブジェクトO004、オブジェクトO007はクラスタ701bに分類し、オブジェクトO005、オブジェクトO008、オブジェクトO009はクラスタ701cに分類する。
 オブジェクト分類部207は、701a~701cはK-means法により生成されたクラスタに対して、クラスタが生成された順番に1から番号を振り、その番号の先頭にアルファベットの“C”を付加したクラスタID703を付与する。
 分類した結果のクラスタ分類情報900はクラスタ分類情報記憶部209に格納する。図9は全オブジェクトをクラスタに分類した結果のクラスタ分類情報900の例である。
 また、クラスタ特徴量702は、クラスタに属する全オブジェクトのオブジェクト特徴量601の相加平均として算出する。算出したクラスタ特徴量702はクラスタ特徴量記憶部208に格納する。図7はクラスタ特徴量702の例である。
<2-3-4.共起情報の生成処理>
 ここでは共起情報生成部210が画像群300について行う共起情報1100の生成処理(S1807)について述べる。
 共起情報生成部210は、画像群300の各画像におけるクラスタの共起関係と非共起の状態とを検出して全クラスタの共起情報1100を生成する。なお、ここでは1つの画像について共起関係又は非共起の状態を検出して共起情報1100を更新する処理を共起関係検出処理ということとする。
 図19は、共起情報生成部210が共起情報1100を生成するときのフローチャートであり、ステップS1807の詳細を示したものである。なお、共起情報1100の生成処理を始める前には共起度1101及び非共起度1102は全て0で初期化されているものとする。
 まず、画像群300の中の1つの画像kについて、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500から、画像kにオブジェクトが含まれているか否かを判定する(S1901)。
 オブジェクトが含まれていた場合は、後述する画像kについての共起関係検出処理を行う。オブジェクトが含まれていなかった場合は、なんら処理を行わずに画像kについての共起関係検出処理が終了したものとする。
 画像kについての共起関係検出処理が終了したのち、いまだ共起関係検出処理を行っていない画像が存在するか否かを判定する(S1902)。存在する場合は、その画像のうち1つを次の画像kとし、S1901に戻る。存在しない場合は、共起情報生成部210は画像群300についての共起情報1100の生成処理を終了する。
 画像kについての共起関係検出処理は、以下のように行う。
 まず画像kの中に含まれるオブジェクトの数をオブジェクト出現情報500から調べる。このとき、オブジェクトの数が1であった場合と2以上であった場合とで場合分けを行う(S1903)。
 オブジェクトの数が1であった場合は、唯1つ含まれているオブジェクトであるオブジェクトaは単独で画像中に含まれているため、オブジェクトaが属するクラスタAは画像kにおいて非共起の状態といえる。その場合には、オブジェクトaが属するクラスタAをクラスタ分類情報記憶部209に格納されているクラスタ分類情報900から取得する(S1904)。これによりオブジェクトaから非共起の状態を検出したものとし、クラスタAの非共起度1102を1増やす(S1905)。そして、画像kについての共起関係検出処理を終了する。
 オブジェクトの数が2以上であった場合は、それぞれのオブジェクトが属するクラスタ間に共起関係があるといえる。例えば、画像I001においては、クラスタC001に属するオブジェクトO001と、クラスタC002に属するオブジェクトO002とが共に含まれている。そのため、画像I001においては、クラスタC001のクラスタC002に対する共起関係及びクラスタC002のクラスタC001に対する共起関係の2つの共起関係があるといえる。
 オブジェクトの数が2以上であった場合は、次のように共起関係検出処理を行うものとする。ただしここで、オブジェクトaの属するクラスタAの、オブジェクトbの属するクラスタBに対する共起関係を検出するとき、オブジェクトaを共起元オブジェクト、オブジェクトbをオブジェクトaの共起先オブジェクトとそれぞれいうこととする。
 まず画像kに含まれるオブジェクトの中から、いまだ共起元オブジェクトとして使用していないオブジェクトaを選び出す。そしてオブジェクトaが属するクラスタAをクラスタ分類情報900から取得する(S1906)。
 次に、画像kに含まれるオブジェクトの中から、オブジェクトa以外で、いまだオブジェクトaの共起先オブジェクトとして使用していないオブジェクトbを選び出す。そして、オブジェクトbが属するクラスタBをクラスタ分類情報900から取得する(S1907)。これにより共起元オブジェクトaと共起先オブジェクトbから共起関係を検出したものとし、クラスタAのクラスタBに対する共起度1101を1増やす(S1908)。これによりオブジェクトbはオブジェクトaの共起先オブジェクトとして使用が終了したものとする。
 更に画像k中に、いまだオブジェクトaの共起先オブジェクトとして使用していないオブジェクトが存在するか否かを判定する(S1909)。
 存在する場合は、そのオブジェクトのうち1つを次のオブジェクトbとし、S1907に戻る。存在しない場合は、オブジェクトaは共起元オブジェクトとしての使用が終了したものとする。
 オブジェクトaの共起元オブジェクトとしての使用が終了したら、画像k中に更にいまだ共起元オブジェクトとして使用していないオブジェクトが存在するか否かを判定する(S1910)。存在する場合、そのオブジェクトのうち1つを次のオブジェクトaとし、S1906に戻る。存在しない場合、画像kについての共起関係検出処理を終了する。
<2-3-5.評価値の算出処理>
 ここでは評価値算出部213が行う評価値1401の算出処理(S1808)について述べる。
 評価値算出部213は、確度算出部212で算出される確度1301と、クラスタ分類情報記憶部209に格納されているクラスタに属するオブジェクトの個数901とに基づいて、オブジェクトのクラスタに対する評価値1401を算出する。
 あるオブジェクトjのあるクラスタIに対する評価値1401を求める場合、評価値算出部213はその評価値1401を、確度算出部212で算出される、オブジェクトjのクラスタIに対する確度1301と、クラスタ分類情報記憶部209から取得される、クラスタIに属するオブジェクトの個数901とを掛け合わせて算出する。
 確度算出部212で、オブジェクトjのクラスタIに対する確度1301を算出する方法については後述する。
<2-3-6.確度の算出処理>
 ここでは確度算出部212が行う確度1301の算出処理について述べる。
 確度算出部212は、オブジェクトのクラスタに対する確度1301を算出する。画像kに含まれているあるオブジェクトjのあるクラスタIに対する確度1301を求める場合の確度算出部212の動作を示したフローチャートを図20に示す。
 まず、オブジェクトjが含まれる画像k中に存在するオブジェクトの数を、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500から調べる。そしてオブジェクトの数が1か2以上かによって場合分けを行う(S2001)。1であった場合には非共起度1102に基づいて確度1301を算出し、2以上であった場合には共起度1101に基づいて確度1301を算出する。
 非共起度1102に基づく確度1301の算出処理は以下のように行う。
 オブジェクトjが含まれる画像k中に存在するオブジェクトの数が1であった場合には、確度算出部212は確度1301を、クラスタIの非共起度1102を用いて算出されるオブジェクトjのクラスタIに対する確信度と支持度と、類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とに基づいて算出する。
 確信度及び支持度とは、データマイニング技術における、条件mと結論nとの相関性の強さを示す指標の一種である。確信度とは、条件mが発生したときに、結論nが共に発生する割合を示す。支持度とは、全体に対する条件mと結論nとが共に発生した数の割合を表す。確信度と支持度の値が共に大きい場合、条件mが発生した場合は結論nが発生する可能性が高いといえる。
 非共起度1102に基づいて確度1301を算出する場合には、条件mはクラスタIに属するオブジェクトが画像中に含まれるという事象であり、結論nはクラスタIに属するオブジェクトが画像中に非共起の状態で含まれるという事象である。
 上述の条件mと結論nとにより、1つのクラスタIに対して算出される確信度及び支持度を、ここではそれぞれクラスタIの非共起確信度2102、クラスタIの非共起支持度2202という。つまり非共起度1102に基づいて確度1301を算出する場合には、オブジェクトjのクラスタIに対する確信度はクラスタIの非共起確信度2102であり、オブジェクトjのクラスタIに対する支持度はクラスタIの非共起支持度2202である。
 図21に確信度2100のデータ構造及び内容例を示す。確信度2100は、後述する共起確信度2101と上述の非共起確信度2102とにより構成されている。
 同図の例では、クラスタC001の非共起確信度2102は、0.17である。これは、クラスタC001に属するオブジェクトが画像中に含まれるという事象が発生したときに、そのオブジェクトが画像中に非共起の状態で含まれるという事象が17%の割合で発生することを意味する。
 図22に支持度2200のデータ構造及び内容例を示す。支持度2200は、後述する共起支持度2201と上述の非共起支持度2202とにより構成されている。
 同図の例では、クラスタC001の非共起支持度2202は、0.03である。これは、全オブジェクトの中から1つのオブジェクトを選んだときに、そのオブジェクトがクラスタC001に属しておりなおかつ画像中に非共起の状態で含まれるという事象が3%の割合で発生することを意味する。
 算出処理として、まずクラスタIの非共起度1102を用いてオブジェクトjのクラスタIに対する非共起確信度2102及び非共起支持度2202を算出する(S2008)。
 ここで、非共起確信度2102はクラスタIの非共起度1102の、クラスタIに属するオブジェクトの個数901に対する割合として算出される。また、非共起支持度2202はクラスタIの非共起度1102の、全オブジェクトの数に対する割合として算出される。
 こうして算出されたクラスタIの非共起確信度2102と非共起支持度2202と、そして類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とを、確度1301を算出する公式に代入して確度1301を算出する(S2009)。
 ここでは確度1301を算出する公式は、画像中に単独でオブジェクトが存在する場合の統計に基づくロジスティック回帰分析を予め行うことにより、係数を定めておいたロジスティック回帰の式とする。
 ロジスティック回帰分析とは、重回帰分析などと同様に、予め学習データによって説明変数と目的変数との関係を導くことで、任意の説明変数に対する目的変数を予測する。この場合において、説明変数は、オブジェクトjのクラスタIに対する類似度1201、確信度及び支持度に当たり、目的変数はオブジェクトjがあるクラスタIである確度1301に当たる。ここでは、確度の算出に対し影響力の大きい説明変数ほど係数が大きくなる。
 以上で非共起度1102に基づく確度1301の算出は終了する。
 共起度1101に基づく確度1301の算出処理は以下のように行う。
 オブジェクトjが含まれる画像k中に存在するオブジェクトの数が2以上であった場合には、確度算出部212は確度1301を、クラスタIの、画像k中に存在するオブジェクトj以外のオブジェクトの1つであるオブジェクトxの属するクラスタXに対する共起度1101を用いて算出されるオブジェクトjのクラスタIに対する確信度と支持度と、類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とに基づいて算出する。
 まず、画像k中に含まれるオブジェクトj以外のオブジェクトから、オブジェクトjのクラスタIに対する確度1301の算出処理に使用していないオブジェクトxを選び出す(S2002)。
 選び出したオブジェクトxの属するクラスタXをクラスタ分類情報記憶部209に格納されているクラスタ分類情報900から取得する(S2003)。そして、クラスタIのクラスタXに対する共起度1101から、クラスタIのクラスタXに対する後述の共起確信度2101、クラスタIのクラスタXに対する後述の共起支持度2201を算出する(S2004)。
 ここで、クラスタIのクラスタXに対する共起確信度2101はクラスタIのクラスタXに対する共起度1101の、クラスタXに属するオブジェクトの個数901に対する割合として算出される。また、クラスタIのクラスタXに対する共起支持度2201はクラスタIのクラスタXに対する共起度1101の、全オブジェクトの数に対する割合として算出される。
 こうして算出したクラスタIの、オブジェクトxが属するクラスタXに対する共起確信度2101と共起支持度2201を、それぞれオブジェクトjのクラスタIに対するオブジェクトxについての共起確信度、オブジェクトjのクラスタIに対するオブジェクトxについての共起支持度ということにする。
 オブジェクトjのクラスタIに対するオブジェクトxについての共起確信度及び共起支持度を算出したら、オブジェクトxはオブジェクトjのクラスタIに対する確度1301の算出処理への使用が終了したものとする。
 そして、画像k中にオブジェクトjのクラスタIに対する確度1301の算出処理に使用していないオブジェクトが更にあるか否かを判定する(S2005)。
 ある場合にはS2002に戻り、ない場合には、画像k中に含まれるオブジェクトj以外のオブジェクトのうち、最も共起支持度が高かったオブジェクトについての共起確信度及び共起支持度を、オブジェクトjのクラスタIに対する確信度及び支持度とする(S2006)。
 こうして算出した確信度と支持度と、そして類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とを、確度1301を算出する公式に代入して確度1301を算出する(S2007)。
 ここでは確度1301を算出する公式は、画像中に複数のオブジェクトが存在する場合の統計に基づくロジスティック回帰分析を予め行うことにより、係数を定めておいたロジスティック回帰の式とし、確度の算出に対し影響力の大きい説明変数ほど係数が大きくなる。
 なお、クラスタIのクラスタXに対する共起確信度2101及び共起支持度2201は、クラスタXに属するオブジェクトが画像中に含まれるという条件に対する、クラスタIに属するオブジェクトが同じ画像中に含まれるという結論の確信度及び支持度とする。
 図21の例では、クラスタC001のクラスタC002に対する共起確信度2101は0.30である。これは、クラスタC002に属するオブジェクトが画像中に含まれるという事象が発生したときに、クラスタC001に属するオブジェクトが同じ画像中に含まれるという事象が30%の割合で発生することを意味する。
 図22の例では、クラスタC001のクラスタC002に対する共起支持度2201は0.04である。これは、全オブジェクトの中から1つのオブジェクトを選んだときに、そのオブジェクトがクラスタC002に属しておりなおかつそのオブジェクトが含まれる画像中にクラスタC001に属するオブジェクトが共に含まれるという事象が4%の割合で発生することを意味する。
<2-4.実施形態1の効果>
 実施形態1に係る画像管理装置100は、画像に含まれるオブジェクトである人物の顔の重要度に当たるオブジェクト重要度を、画像に含まれる顔の人物と同一人物であることを示すクラスタに属するオブジェクトの出現回数に基づいて求め、そのオブジェクト重要度に基づいて画像の重要度を求めて、その画像重要度によって画像をランキングすることで、出現回数の多い人物が含まれている画像を上位に並べることができる。ユーザは関心の高い人物が写っている画像を多く保有すると考えられるため、ランキングの上位から順に画像を探していくことで、膨大な枚数の画像から関心の高い重要な人物が写っている画像、つまり重要度が高い画像を容易に選択できる。
 ここで、同一人物のオブジェクトが誤ってそれぞれ別のクラスタに分類されたとしても、そのオブジェクトと類似度の高い周辺のクラスタに属するオブジェクトの個数も用いてオブジェクト重要度を評価するため、オブジェクトが正しく同一人物と判定されたときにより近いオブジェクト重要度と評価することができる。
 更に、オブジェクトが特徴量の類似度だけで計算して出現回数が多い人物と同一人物の可能性が低いと評価された場合にはその人物と同一人物であってもオブジェクト重要度が低く評価されてしまうことが考えられるが、特徴量の類似度だけでなく人物同士の共起関係をも用いて同一人物である可能性を評価しているため、特徴量だけではオブジェクトが別の人物の可能性が高いとされる場合においても、オブジェクトが正しく同一人物と判定されたときにより近いオブジェクト重要度と評価することができる。
<3.実施形態2>
 本発明の実施形態2として、実施形態1において人物の顔のオブジェクトが属するクラスタ間の共起関係を用いて確度1301を算出していたところを、人物の顔と人物以外の物体との共起関係を用いて確度1301を算出する方式に変更した変形画像管理装置2300について説明する。
 ここで物体とは、後述する物体部で検出される、人物の顔以外である所定のオブジェクトのことを指し、以下では一般的な意味の「物体」と区別するため「共起物体」ということとする。共起物体は例えば自動車、動物、植物、建物などである。
 なお、共起物体は共起情報を用いた確度1301の算出処理のみに用いることとし、物体の重要度は考えない。
<3-1.構成>
 変形画像管理装置2300のハードウェア構成は、実施形態1である画像管理装置100と同じである。
 図23は、変形画像管理装置2300の全体としての機能構成を示した図である。ただし、周辺装置は記載を省略し、画像管理装置100と同等の機能を持つ機能ブロックは図2と同じ符号を割り当てている。
 変形画像管理装置2300は画像管理装置100に対して、物体を検出、分類する物体部2301を追加し、共起情報生成部210及び確度算出部212をそれぞれ共起情報生成部210a及び確度算出部212aに変更している。以下では、画像管理装置100との差に当たる部分を説明する。
 図24は、物体部2301を詳細に表したブロック図である。物体部2301は物体検出部2401、物体出現情報記憶部2402、物体分類部2403及び物体クラスタ分類情報記憶部2404から構成される。
 物体検出部2401は、画像記憶部202に格納されている画像群300の各画像において、共起物体の特徴量である物体特徴量を抽出して所定の条件に基づいて共起物体を検出し、検出した共起物体に対して各共起物体を特定するための物体ID2502を付与する機能を有する。物体検出部2401の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。図25は、画像からオブジェクトと共起物体とを検出する例を示したものである。図25については、後に詳しく説明する。物体検出部2401は更に、画像ごとに画像ID301とその画像において検出した共起物体の物体ID2502とを対応付けて物体出現情報2600として物体出現情報記憶部2402に格納する。
 物体出現情報記憶部2402は、画像ごとに物体出現情報2600を記憶する機能を有する。物体出現情報記憶部2402は、例えばメモリにより実現される。図26は、物体出現情報記憶部2402が記憶している物体出現情報2600の例を示している。図26については、後に詳しく説明する。
 物体分類部2403は、物体検出部2401が検出した物体を物体検出部2401が抽出した物体特徴量に基づいて物体クラスタに分類する機能を有する。物体分類部2403の機能は、例えばプロセッサがメモリに格納されているプログラムを実行することにより実現される。また物体分類部2403は、物体クラスタに各物体クラスタを識別するための物体クラスタID2701を付与し、物体クラスタごとの物体クラスタID2701とその物体クラスタに分類した共起物体の物体ID2502とその物体クラスタに分類されている物体の個数とを対応付けて物体クラスタ分類情報2700として物体クラスタ分類情報記憶部2404に格納する。
 ここで物体クラスタとは、共起物体を所定の基準に基づいて分類するときの分類の単位であり、各物体クラスタは互いに異なる物体特徴量の範囲に対応する。
 物体クラスタ分類情報記憶部2404は、物体クラスタごとに物体クラスタ分類情報2700を記憶する機能を有する。物体クラスタ分類情報記憶部2404は、例えばメモリにより実現される。図27は、物体クラスタ分類情報記憶部2404が記憶している物体クラスタ分類情報2700の例を示したものである。図27については、後に詳しく説明する。
<3-2.データ>
<3-2-1.物体出現情報>
 物体出現情報2600は、どの画像においてどの共起物体が検出されたのかを示す情報である。物体出現情報2600は、物体検出部2401により生成され、物体出現情報記憶部2402に格納されて、共起情報生成部210a及び確度算出部212aにより使用される。
 図25は物体検出部2401が共起物体を検出した領域2501及びその領域2501で検出された共起物体の物体ID2502の例を示したものであり、図26は物体出現情報2600のデータ構成及び図25に対応する内容例である。
 図26に示すように、物体出現情報2600は画像ごとに、画像ID301と、その画像において検出された共起物体の各共起物体を識別するための物体IDの組で表される。画像に含まれている共起物体は1つの場合もあるし、複数存在する場合や1つも含まれない場合もある。
 物体ID2502は、変形画像管理装置2300内で各共起物体を一意に識別するための識別子であり、共起物体に対して一対一に対応するように物体検出部2401により付与される。物体ID2502は、物体検出部2401により生成される。物体ID2502は例えば、物体検出部2401が物体を検出した順番に1から番号を振り、その番号の先頭にアルファベットの“B”を付加したものとする。
 図25の例では、領域2501aで検出された共起物体にはB001、領域2501bで検出された共起物体にはB002、領域2501cで検出された共起物体にはB003の物体ID2502がそれぞれ付与されている。
 なお、以下では図25に挙げた共起物体を具体例にとって説明を行うとき、その共起物体を物体ID2502で呼ぶこととする。例えば、B001の物体ID2502で識別される共起物体は共起物体B001と呼ぶ。
 物体出現情報2600を用いると、特定の画像中に含まれる共起物体の物体ID2502を取得することができ、逆に特定の共起物体が含まれる画像の画像ID301を取得することもできる。
 図26の例では、画像I003には共起物体が含まれておらず、画像I004には共起物体B001が含まれていることがわかる。また、共起物体B002が含まれている画像は、画像I004であることがわかる。
<3-2-2.物体特徴量>
 物体特徴量とは、物体に係る特徴量のことである。例えば物体特徴量は画像の特徴を示す複数の数値を成分とするベクトルである。自動車に係る特徴量の場合、車輪と認識される画素値(例えば黒色を示す画素値)を持つ画素が円周状に並んでいた場合には、その円の直径や中心点の位置などを自動車の車輪の特徴量とすることができる。そして車輪の特徴量や窓の特徴量などを成分として含むベクトルを自動車の物体特徴量とすることができる。
 物体特徴量は物体検出部2401により生成され、物体分類部2403によって使用される。
<3-2-3.物体クラスタ>
 物体クラスタに関するデータとして、物体クラスタID2701及び物体クラスタ分類情報2700について説明する。
 物体クラスタID2701は、変形画像管理装置2300内で各物体クラスタを一意に識別するための識別子であり、物体クラスタに対して一対一に対応するように物体分類部2403により付与される。物体クラスタID2701は物体分類部2403により生成される。物体クラスタID2701は例えば、物体分類部2403がクラスタを生成した順番に1から番号を振り、その番号の先頭にアルファベットの“BC”を付加したものとする。
 物体クラスタ分類情報2700は、物体分類部2403がどの共起物体をどの物体クラスタに分類したのかを示す情報である。物体クラスタ分類情報2700は、物体分類部2403により生成され、物体クラスタ分類情報記憶部2404に格納されて、共起情報生成部210a及び評価値算出部213aで使用される。
 図27は物体クラスタ分類情報2700のデータ構成及び図25の共起物体を分類した結果の物体クラスタ分類情報2700の内容例である。物体クラスタ分類情報2700は物体クラスタごとに、物体クラスタID2701と、その物体クラスタに属する各共起物体の物体ID2502と、その物体クラスタに属する共起物体の個数2702との組で構成される。
 なお、以下では図27に挙げた物体クラスタを具体例にとって説明を行うとき、その物体クラスタを物体クラスタID2701で呼ぶこととする。例えば、BC001の物体クラスタID2701で識別される物体クラスタは物体クラスタBC001と呼ぶ。
 図27の例では、物体クラスタBC001の物体クラスタ分類情報2700には、物体B001及び物体B003が属しており、物体クラスタBC001に属するオブジェクトの個数2702は全部で21個あるという情報が格納されている。
<3-2-4.共起情報>
 実施形態2における共起情報2800は、クラスタと物体クラスタとの間の関係を示す情報である。
 ここではまず共起について説明し、続いて共起情報2800について説明する。
 実施形態2では、1つの画像において「クラスタAに属するオブジェクトが含まれる」という事象と「物体クラスタBに属する共起物体が含まれる」という事象とが共起していることを、クラスタAと物体クラスタBとが共起しているというものとする。すなわち、1つの画像中にクラスタAに属するオブジェクトと物体クラスタBに属する共起物体とが共に含まれているとき、クラスタAと物体クラスタBとが共起しているとする。
 また、クラスタAと物体クラスタBとが共起しているとき、クラスタAと物体クラスタBとの間に共起関係があるといい、特に「クラスタAに属するオブジェクトが含まれる」という事象が起きた場合に「物体クラスタBに属する共起物体が含まれる」という事象が起きるとき、クラスタAから物体クラスタBに対する共起関係があるという。
 共起情報2800は、クラスタの物体クラスタに対する共起関係に関する情報であり、共起情報生成部210aにより生成され、確度算出部212aで使用される。
 図28は共起情報2800のデータ構成及び内容例である。共起情報2800は、どのクラスタからどの物体クラスタに対する共起関係が画像群300の全画像においてどの程度あるかを示す共起度2801により構成されている。
 共起度2801は、ここでは画像群300の中で共起関係が検出された回数とする。クラスタAの物体クラスタBに対する共起度2801というと、画像群300の中でクラスタAの物体クラスタBに対する共起関係が検出された回数である。
 図28の例では、クラスタC001の、物体クラスタBC001に対する共起度2801は0、物体クラスタBC002に対する共起度2801は3、物体クラスタBC003に対する共起度2801は5である。
 前述の例において、クラスタC001の物体クラスタBC002に対する共起度2801が3であるのは、クラスタC001に属するオブジェクトが含まれる画像に物体クラスタBC002に属する共起物体が含まれる回数が3回であることを意味する。
<3-3.動作>
 図29は、変形画像管理装置2300の動作を示したフローチャートである。ただし、画像管理装置100と同じ動作の部分は図18と同じ符号を割り当てている。
 変形画像管理装置2300の動作は画像管理装置100の動作に対して、オブジェクトの分類処理(S1803)の後に、共起物体の検出処理(S2901)と共起物体の分類処理(S2902)とが追加され、共起情報2800の生成処理(S1807)及び評価値1401の算出処理(S1808)の内容が変更されている(それぞれS1807a、S1808a)。
 以下では、画像管理装置100と動作の異なる部分である共起物体の検出処理(S2901)、共起物体の分類処理(S2902)、共起情報2800の生成処理(S1807a)、評価値1401の算出処理(S1808a)について説明する。
<3-3-1.共起物体の検出処理>
 ここでは、物体検出部2401が行う共起物体の検出処理(S2901)について述べる。
 物体検出部2401は、まず共起物体を検出する対象の画像から物体特徴量を抽出する。画像から物体特徴量を抽出する方法にはオブジェクトの検出処理における特徴量の抽出方法と同じく、Gaborフィルタを用いて画像データの画素値の分布の周期性や方向性などの特徴量を抽出する方法がある。
 次に物体検出部2401は、物体検出部2401が持つテンプレートと照合して、共起物体を検出する。ここでは、抽出された物体特徴量が、テンプレートが持つ物体特徴量のパターンに当てはまる場合に共起物体が検出される。
 物体検出部2401が検出した共起物体に対しては、共起物体を検出した順番に1から番号を振り、その番号の先頭にアルファベットの“B”を付加した物体ID2502を付与する。
 そして物体検出部2401は、共起物体の検出対象とした画像の画像ID301と、その画像において検出した全共起物体の物体ID2502との組を物体出現情報2600として物体出現情報記憶部2402に格納する。
 図25は、画像において物体を検出する例を示したものである。同図の例では、画像302dにおいて共起物体B001、画像302eにおいて共起物体B002、画像302fにおいて共起物体B003がそれぞれ検出されており、画像302cにおいては共起物体は検出されていない。
 前述の例において、物体検出部2401は画像データ302dから物体特徴量を抽出し、画像データ302dに対応する画像I004において領域2501aから抽出した物体特徴量が、テンプレートで定められる基準を満たしているため、領域2501aから共起物体を検出している。
 領域2501aから検出した共起物体に対して、物体検出部2401はB001の物体ID2502を付与している。
 そして、物体検出部2401は図26のように物体出現情報2600を物体出現情報記憶部2402に格納している。
<3-3-2.共起物体の分類処理>
 ここでは、物体分類部2403が行う共起物体の分類処理(S2602)について述べる。
 物体分類部2403は、物体検出部2401が検出した全共起物体を、物体検出部2401が抽出した各共起物体の物体特徴量により物体クラスタに分類する。
 共起物体を物体クラスタに分類する方法には、例えばSupport Vector Machine(以下、「SVM」という)にかける方法がある。SVMは、予め与えられた学習データを元に分類を行う手法の1つである。
 分類した結果の物体クラスタ分類情報2700は物体クラスタ分類情報記憶部2404に格納される。全共起物体を物体クラスタに分類した後の物体クラスタ分類情報2700の一例を図27に示す。
<3-3-3.共起情報の生成処理>
 ここでは、共起情報生成部210aが画像群300について行う共起情報2800の生成処理(S1807a)について述べる。
 共起情報生成部210aは、画像群300の各画像におけるクラスタの物体クラスタに対する共起関係を検出して全クラスタと全物体クラスタとの共起情報2800を生成する。なお、ここでは1つの画像について共起関係を検出して共起情報2800を更新する処理を共起関係検出処理ということとする。
 図30は、共起情報生成部210aが共起情報2800を生成するときのフローチャートであり、ステップS1807aの詳細を示したものである。なお、共起情報2800の生成処理を始める前には共起度2801は全て0で初期化されているものとする。
 まず、画像群300の中の1つの画像kについて、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500から、画像kにオブジェクトが含まれているか否かを判定する(S3001)。
 オブジェクトが含まれていた場合は、後述する画像kについての共起関係検出処理を行う。オブジェクトが含まれていなかった場合は、なんら処理を行わずに画像kについての共起関係検出処理が終了したものとする。
 画像kについての共起関係検出処理が終了したのち、いまだ共起関係検出処理を行っていない画像が存在するか否かを判定する(S3002)。存在する場合は、その画像のうち1つを次の画像kとし、S3001に戻る。存在しない場合は、共起情報生成部210aは画像群300についての共起情報2800の生成処理を終了する。
 画像kについての共起関係検出処理は、以下のように行う。
 まず物体出現情報記憶部2402に格納されている物体出現情報2600から、画像kの中に共起物体が含まれているか否かを判定する(S3003)。
 共起物体が含まれていなかった場合には、なんら処理を行わずに画像kについての共起関係検出処理が終了したものとする。
 共起物体が含まれていた場合には、それぞれのオブジェクトが属するクラスタのそれぞれの共起物体が属する物体クラスタに対する共起関係があるといえる。
 例えば、画像302fにおいては、領域401iから検出されたオブジェクト(以下、オブジェクトO009とする)と物体B003とが共に含まれている。そのため、画像302fにおいては、オブジェクトO009の属するクラスタの物体B003の属する物体クラスタに対する共起関係が1つあるといえる。
 オブジェクトと共起物体とが共に含まれていた場合は、次のように共起関係検出処理を行うものとする。ただしここで、オブジェクトaの属するクラスタAの、共起物体bの属する物体クラスタBに対する共起関係を検出するとき、オブジェクトaを共起元オブジェクト、共起物体bをオブジェクトaの共起先物体とそれぞれいうこととする。
 まず画像kに含まれるオブジェクトの中から、いまだ共起元オブジェクトとして使用していないオブジェクトaを選び出す。そしてオブジェクトaが属するクラスタAをクラスタ分類情報記憶部209に格納されているクラスタ分類情報900から取得する(S3004)。
 次に、画像kに含まれる共起物体の中から、いまだオブジェクトaの共起先物体として使用していない共起物体bを選び出す。そして、共起物体bが属する物体クラスタBを取得する(S3005)。これにより共起元オブジェクトaと共起先物体bから共起関係を検出したものとし、クラスタAのクラスタBに対する共起度1101を1増やす(S3006)。これにより共起物体bはオブジェクトaの共起先物体として使用が終了したものとする。
 更に画像k中に、いまだオブジェクトaの共起先物体として使用していない共起物体が存在するか否かを判定する(3007)。
 存在する場合は、その共起物体のうち1つを次の共起先物体bとし、S3005に戻る。存在しない場合は、オブジェクトaは共起元オブジェクトとしての使用が終了したものとする。
 オブジェクトaの共起元オブジェクトとしての使用が終了したら、画像k中に更にいまだ共起元オブジェクトとして使用していないオブジェクトが存在するか否かを判定する(S3008)。存在する場合、そのオブジェクトのうち1つを次のオブジェクトaとし、S3004に戻る。存在しない場合、画像kについての共起関係検出処理を終了する。
<3-3-4.評価値の算出処理>
 ここでは、評価値算出部213が行う評価値1401の算出処理(S1808a)について述べる。
 評価値算出部213は実施形態1と同様の方法で、オブジェクトのクラスタに対する評価値1401を算出する。ただし、オブジェクトのクラスタに対する確度1301は確度算出部212aで算出したものを用いる。確度算出部212aでの確度1301の算出処理については以下で述べる。
<3-3-5.確度の算出処理>
 ここでは確度算出部212aが行う確度1301の算出処理について述べる。
 確度算出部212aは、オブジェクトのクラスタに対する確度1301を算出する。画像kに含まれているあるオブジェクトjのあるクラスタIに対する確度1301を求める場合の確度算出部212aの動作を示したフローチャートを図31に示す。
 まず、画像k中に共起物体が含まれるか否かを、物体出現情報記憶部2402に格納されている物体出現情報2600から判定する(S3101)。含まれなかった場合には、オブジェクトjのクラスタIに対する確度1301は0とする(S3108)。含まれていた場合には、共起度2801に基づいて確度1301を算出する。
 共起度2801に基づく確度1301の算出処理は以下のように行う。
 オブジェクトjが含まれる画像k中に共起物体が含まれていた場合には、確度算出部212aは確度1301を、クラスタIの、画像k中に存在する共起物体の1つである共起物体xの属する物体クラスタXに対する共起度2801を用いて算出されるオブジェクトjのクラスタIに対する確信度と支持度と、類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とに基づいて算出する。
 まず、画像k中に含まれる共起物体から、オブジェクトjのクラスタIに対する確度1301の算出処理に使用していない共起物体xを選び出す(S3102)。
 選び出した共起物体xの属する物体クラスタXを物体クラスタ分類情報記憶部2404に格納されている物体クラスタ分類情報2700から取得する(S3103)。そして、クラスタIの物体クラスタXに対する共起度2801から、クラスタIの物体クラスタXに対する後述の共起確信度3201、クラスタIの物体クラスタXに対する後述の共起支持度3301を算出する(S3104)。
 ここで、クラスタIの物体クラスタXに対する共起確信度3201はクラスタIのクラスタXに対する共起度2801の、物体クラスタXに属するオブジェクトの個数2702に対する割合として算出される。また、クラスタIの物体クラスタXに対する共起支持度3301はクラスタIの物体クラスタXに対する共起度2801の、全オブジェクトの数と全共起物体の数との和に対する割合として算出される。
 こうして算出したクラスタIの、共起物体xが属する物体クラスタXに対する共起確信度3201と共起支持度3301を、それぞれオブジェクトjのクラスタIに対する共起物体xについての共起確信度、オブジェクトjのクラスタIに対する共起物体xについての共起支持度ということにする。
 オブジェクトjのクラスタIに対する共起物体xについての共起確信度及び共起支持度を算出したら、共起物体xはオブジェクトjのクラスタIに対する確度1301の算出処理への使用が終了したものとする。
 そして、画像k中にオブジェクトjのクラスタIに対する確度1301の算出処理に使用していない共起物体が更にあるか否かを判定する(S3105)。
 ある場合にはS3102に戻り、ない場合には、画像k中に含まれる共起物体のうち、最も共起支持度が高かった共起物体についての共起確信度及び共起支持度を、オブジェクトjのクラスタIに対する確信度及び支持度とする(S3106)。
 こうして算出した確信度と支持度と、そして類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201とを、確度1301を算出する公式に代入して確度1301を算出する(S3107)。
 ここでは確度1301を算出する公式は、画像中にオブジェクトと共起物体とが存在する場合の統計に基づくロジスティック回帰分析を予め行うことにより、係数を定めておいたロジスティック回帰の式とし、確度の算出に対し影響力の大きい説明変数ほど係数が大きくなる。
 なお、クラスタIの物体クラスタXに対する共起確信度3201及び共起支持度3301は、物体クラスタXに属する共起物体が画像中に含まれるという条件に対する、クラスタIに属するオブジェクトが同じ画像中に含まれるという結論の確信度及び支持度とする。
 図32の例では、クラスタC001の物体クラスタBC002に対する共起確信度3201は0.60である。これは、物体クラスタBC002に属する共起物体が画像中に含まれるという事象が発生したときに、クラスタC001に属するオブジェクトが同じ画像中に含まれるという事象が60%の割合で発生することを意味する。
 図33の例では、クラスタC001の物体クラスタBC002に対する共起支持度3301は0.008である。これは、全オブジェクトと全共起物体との中から1つのオブジェクト又は共起物体を選んだときに、そのオブジェクト又は共起物体が物体クラスタBC002に属する共起物体でありなおかつその共起物体が含まれる画像中にクラスタC001に属するオブジェクトが共に含まれるという事象が0.8%の割合で発生することを意味する。
<3-4.実施形態2の効果>
 実施形態2に係る変形画像管理装置2300は、画像管理装置100と同様に、膨大な枚数の画像から関心の高い重要な人物が写っている画像を容易に選択できる。
 ここで、同一人物である可能性を評価する方法として、人物以外の物体との共起関係を用いるため、人物が自動車や建物などの物体と共に画像に写っている場合に、オブジェクトが正しく同一人物と判定されたときにより近いオブジェクト重要度と評価することができる。
<3-5.変形例(実施形態1、2の組み合わせ)>
 実施形態2の変形例として、クラスタの物体クラスタに対する共起関係を用いた確度1301の算出処理に、実施形態1で行うこととしたクラスタ間の共起関係を用いた確度1301の算出処理を加えた画像管理装置について説明する。
 この方法を用いた画像管理装置は、上述の変形画像管理装置2300に、実施形態1の画像管理装置100の共起情報生成部210を加え、確度算出部212aの動作を変更したものである。
 動作を変更された確度算出部212aが画像k中に含まれるオブジェクトjのクラスタIに対する確度1301の算出を行う処理のフローチャートを図34に示す。
 まず、オブジェクトjが含まれる画像k中に存在するオブジェクトの数を、オブジェクト出現情報記憶部205に格納されているオブジェクト出現情報500から調べる。そしてオブジェクトの数が1か2以上かによって場合分けを行う(S3401)。
 2以上であった場合にはクラスタIの、共に含まれるオブジェクトの属するクラスタに対する共起度1101に基づいて確度1301を算出する。この処理は、実施形態1におけるステップS2002~S2007の処理と同様である。
 1であった場合には、画像k中に共起物体が含まれるか否かを、物体出現情報記憶部2402に格納されている物体出現情報2600から判定する(S3101)。
 含まれていた場合にはクラスタIの、共に含まれる共起物体の属する物体クラスタに対する共起度2801に基づいて確度1301を算出する。この処理は、実施形態2におけるステップS3004~S3008の処理と同様である。
 含まれなかった場合にはクラスタIの非共起度1102に基づいて確度1301を算出する。この処理は、実施形態1におけるステップS2008~S2009の処理と同様である。
 上記の変形例に係る画像管理装置は、可能な限り人物同士の共起関係を用いて画像重要度を評価し、人物同士の共起関係を用いることができない画像に対しては共起物体との共起関係又は人物が1人で写っている回数を元に画像重要度を評価する。
<4.実施形態3>
 本発明の実施形態3として、実施形態1において類似度と確信度と支持度とに基づいて確度1301を算出していたところを、更に、クラスタの信頼度にも基づいて確度1301を算出する方式に変更した変形画像管理装置3500について説明する。ここで、クラスタの信頼度とは、クラスタに属する各オブジェクトのオブジェクト特徴量が、当該クラスタのクラスタ特徴量にどの程度集中しているか、つまりクラスタに属する各オブジェクトのオブジェクト特徴量の偏差の大きさが総合的にどの程度小さいかを示すものである。例えばクラスタC001では、図7に示すように、クラスタC001のクラスタ特徴量702aと、クラスタC001に属する各オブジェクトのオブジェクト特徴量である601a、603c及び601fとの距離が特徴量の差の大きさを示す。つまり、クラスタ特徴量と当該クラスタに属する各オブジェクトのオブジェクト特徴量との距離が近いほど、各オブジェクトのオブジェクト特徴量のクラスタ特徴量に対する集中度合いが高く、クラスタの信頼度が高いことを示す。
 クラスタの信頼度が高い場合、つまり特徴量の集中度合いが高い場合は、そのクラスタは同一の人物で構成されている可能性が高く、そのクラスタのクラスタ特徴量を基に算出する類似度や共起度の信頼性も高くなる。一方、クラスタの信頼度が低い場合、つまり特徴量の集中度合いが低い場合は、そのクラスタには複数の人物が含まれている可能性が高く、そのクラスタのクラスタ特徴量を基に算出する類似度や共起度の信頼性も低くなる。そのため、確度1301の算出にクラスタの信頼度を用いることにより、より高い精度でオブジェクトの重要度を評価することができる。
<4-1.構成>
 変形画像管理装置3500のハードウェア構成は、実施形態1の画像管理装置100と同じである。
 図35は、変形画像管理装置3500の全体としての機能構成を示した図である。ただし、周辺装置は記載を省略し、画像管理装置100と同等の機能を持つ機能ブロックは図2と同じ符号を割り当てている。
 変形画像管理装置3500は画像管理装置100に対して、クラスタの信頼度を算出する信頼度算出部3501を追加し、確度算出部212を確度算出部212bに変更している。以下では、画像管理装置100との差に当たる部分を説明する。
 信頼度算出部3501は、全クラスタについて、当該クラスタの信頼度を算出する機能を有する。信頼度の算出方法の詳細については後述する。
 確度算出部212bは、評価値算出部213で評価値1401の算出処理に使用される確度1301を、確度算出部212で用いた共起情報1100と類似度1201とに加え、更に、信頼度算出部3501が算出した信頼度3601とに基づいて算出する機能を有する。
<4-2.データ>
<4-2-1.信頼度情報>
 信頼度情報3600は、クラスタごとの信頼度3601を示す情報である。信頼度算出部3501により生成、更新され、確度算出部212bにより使用される。
 図36は、信頼度情報3600のデータ構成及び内容例である。
 ここでは、クラスタのクラスタ特徴量と当該クラスタに属する各オブジェクトのオブジェクト特徴量との差の合計を、当該クラスタに属するオブジェクトの数で除算した値の逆数を、当該クラスタの信頼度とする。ここで、各特徴量は複数の成分で構成されているため、クラスタとオブジェクトとの各特徴量成分の差を二乗したものを合計し、その値の平方根をクラスタ特徴量とオブジェクト特徴量との差とする。
 「P」をクラスタ特徴量、「P」をオブジェクト特徴量、「n」をクラスタに属するオブジェクトの数、「m」を特徴量成分の数とすると、クラスタの信頼度は(数1)で表せられる。
Figure JPOXMLDOC01-appb-M000001
<4-3.動作>
 図37は、変形画像管理装置3500の動作を示したフローチャートである。ただし、画像管理装置100と同じ動作の部分は図18と同じ符号を割り当てている。
 変形画像管理装置3500の動作は画像管理装置100の動作に対して、オブジェクトの分類処理(S1803)の後に、信頼度3601の算出処理(S3701)が追加され、評価値1401の算出処理に用いる確度1301の算出処理の内容が変更されている(S1808b)。
 以下では、画像管理装置100と動作の異なる部分である信頼度の算出処理(S3701)、評価値の算出処理に用いる確度の算出処理(S1808b)について説明する。
<4-3-1.信頼度の算出処理>
 以下、信頼度3601の算出処理について説明する。
 図38に、信頼度3601の算出処理に係るフローチャートを示す。
 まず、信頼度算出部3501は、クラスタのクラスタ特徴量をクラスタ特徴量記憶部208から取得し(ステップS3801)、クラスタ分類情報900より当該クラスタに属するオブジェクトの一つに着目する(ステップS3802)。その後、オブジェクト特徴量記憶部206より、着目したオブジェクトのオブジェクト特徴量を取得し(ステップS3803)、取得したオブジェクト特徴量とクラスタ特徴量との差を算出する(ステップS3804)。例えば、クラスタC001とオブジェクトO001との特徴量の差は、特徴量成分1の差の二乗(94.4-90.3)、特徴量成分2の差の二乗(90.2-98.4)、特徴量成分3の差の二乗(79.8-71.4)の合計の平方根である12.43となる。当該クラスタに属する全てのオブジェクトのオブジェクト特徴量とクラスタ特徴量との差を算出するまでステップS3801からステップS3805の処理を繰り返す。
 当該クラスタに属する全てのオブジェクトのオブジェクト特徴量とクラスタ特徴量との差を算出したら、算出した差を合計し、その値を当該クラスタに属するオブジェクトの数で除算する(ステップS3806)。得られた値の逆数を、当該クラスタの信頼度とする(ステップS3807)。クラスタ分類情報900に登録されている全てのクラスタについて信頼度を算出するまで、ステップS3801からステップS3808の処理を繰り返す。
<4-3-2.確度の算出処理>
 ここでは確度算出部212bが行う確度1301の算出処理について述べる。
 図39に、確度算出処理のフローチャートを示す。ここでの確度算出処理は、図20に示す確度算出処理のステップS2006の後ろに、オブジェクトjが属するクラスタの信頼度と、最も支持度の高いオブジェクトの属するクラスタの信頼度を取得する処理(ステップS3901)を追加し、ステップS2007で行った確度の算出処理を、類似度、確信度、支持度に加え、ステップS3901で取得した信頼度を用いた確度の算出処理(ステップS3902)に置き換えたものである。
 以下、図20との違いを中心に説明する。
 画像k中に、2以上のオブジェクトが含まれていた場合、実施形態1と同様に、オブジェクトjが属するクラスタと共起するオブジェクトの中で最も支持度が高いクラスタの確信度と支持度とを選出する(ステップS2001~ステップS2006)。
 その後、オブジェクトjが属するクラスタIの信頼度と、最も支持度が高いクラスタの信頼度とを信頼度情報3600から取得する(ステップS3901)。
 ステップS2006で選出した確信度と支持度と、類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201と、ステップS3901で取得したオブジェクトjが属するクラスタIの信頼度と、最も支持度が高いクラスタの信頼度とを、確度1301を算出する公式に代入して確度1301を算出する(ステップS3902)。ここでの公式は、画像中に複数のオブジェクトが存在する場合の統計に基づくロジスティック回帰分析を予め行うことにより、係数を定めておいたロジスティック回帰の式とし、確度の算出に対し影響力の大きい説明変数ほど係数が大きくなる。
 画像k中に、オブジェクトjのみが含まれていた場合、オブジェクトjの属するクラスタIの非共起度に基づいて確信度と支持度とを算出する(ステップS2008)。
 その後、信頼度情報3600よりクラスタIの信頼度を取得する(ステップS3903)。ステップS2008で算出した確信度と支持度と、類似度算出部211で算出したオブジェクトjのクラスタIに対する類似度1201と、ステップS3903で取得したオブジェクトjが属するクラスタIの信頼度とを、確度1301を算出する公式に代入して確度1301を算出する(ステップS3904)。ここでの公式は、画像中に単独でオブジェクトが存在する場合の統計に基づくロジスティック回帰分析を予め行うことにより、係数を定めておいたロジスティック回帰の式とし、確度の算出に対し影響力の大きい説明変数ほど係数が大きくなる。
 その後は、実施形態1と同様に、ある一つのオブジェクトがある一つのクラスタについて、当該クラスタに属する確度とクラスタに属するオブジェクトの数から当該クラスタに対する評価値を求め、当該オブジェクトの各クラスタに対する評価値の合計を当該オブジェクトのオブジェクト重要度とする。各画像について、画像内のオブジェクトのオブジェクト重要度の合計を画像重要度として、画像重要度の高い順番に各画像を表示する。
<5.補足>
 以上、本発明に係る画像管理装置について実施形態に基づいて説明したが、本発明は上述の実施形態で示した通りの画像管理装置に限られないことはもちろんである。
 (1)実施形態1~3では、画像管理装置を例にして説明したが、本発明は画像の管理を主として行う装置に限るものではない。例えば、ファイルサーバなどの静止画又は動画を蓄積する記憶装置、静止画及び動画の再生装置、デジタルカメラ、カメラ付携帯電話やムービーカメラなどの撮影装置及びパーソナルコンピュータ(PC)などに替えても良い。要は、画像を管理できる装置であれば何に適用しても良い。
 (2)実施形態1~3では、画像取得部201はUSB入力端子を備え、USBケーブルなどのケーブルを介して画像群を撮影装置110から取得するものとしたが、画像が取得できるならば必ずしもUSB入力端子から画像を取得する必要はない。例えば、無線通信により画像群を入力しても良いし、メモリーカードなどの記録媒体を介して入力しても良い。
 (3)実施形態1~3では画像管理装置へ撮影装置110から画像群を入力するものとしたが、撮影装置に限る必要はなく、画像管理装置へ画像群を入力できればどのような装置でも良い。例えば、画像を蓄積しているファイルサーバからネットワークを通じて画像群を入力しても良い。要は、画像管理装置が画像群を取得できれば良い。
 (4)実施形態1~3では、画像取得部201は外部装置である撮影装置110から画像群を取得するものとしたが、画像群を画像管理装置の内部の構成要素から取得しても良い。例えば、画像管理装置自身がハードディスクなどの画像蓄積部を備え、画像取得部201は画像蓄積部から画像群を取得するものとしても良い。
 (5)画像取得部201は評価対象の画像群を取得できれば、その画像群を一度に全て取得する必要はない。例えば、画像取得部201は画像を1枚又は数枚ずつ取得し、その都度画像群300に画像を追加しても良い。
 (6)実施形態1~3では画像取得部201で取得した画像群300を、画像データ302の持つ画素値も含めて全て画像記憶部202に格納したが、画像管理装置が処理をする間、処理対象の画像データ302が参照可能であれば、必ずしも画像記憶部202に全ての画像データ302を格納しておく必要はない。例えば、画像記憶部202には画像群300の画像ID301及び処理中の画像1枚の画像データ302のみを格納しておいて、オブジェクト検出部203、物体検出部2401及び画像出力部217で必要になった画像データ302を、逐一外部装置から画像取得部201によって取得することにしても良い。要は、画像群300を使用して処理を行う際に全画像に対してアクセスできる手段が装置内にあれば良い。
 (7)実施形態1~3では、画像を識別するのに画像取得部201により生成される画像ID301を用いたが、画像を1つ1つ識別することができれば画像ID301は必ずしも画像取得部201が生成する必要はない。例えば、画像をファイルとして取得した場合には、画像のファイル名を画像ID301としても良い。また、画像データ302をメモリ上に格納した際の画像データ302の先頭のメモリのアドレスを画像ID301としても良い。
 (8)実施形態1~3では、オブジェクトを人物の顔とし、テンプレートを人物の顔に係る特徴量のパターンを示すデータとしたが、人物の顔に限るものではない。例えば、オブジェクトをペットの動物とし、テンプレートを動物に関するパターンのデータに替えても良い。また、自動車や建物などの物体に関するテンプレートを用いて物体をオブジェクトとして検出しても良い。更には、テンプレートを用いないこととしても差し支えない。要は、オブジェクトを検出するための基準を持ち、その基準に基づいてオブジェクトを抽出できれば良い。
 (9)実施形態1~3では、オブジェクト分類部207はクラスタに分類されたオブジェクトのオブジェクト特徴量601からクラスタのクラスタ特徴量702を算出するとしたが、必ずしも算出する必要はない。例えば、クラスタ特徴量記憶部208に予めクラスタ特徴量702が格納されていた場合は、そのクラスタ特徴量702をそのまま用いることとし、変更しないことにしても良い。要は、オブジェクトのクラスタに対する類似度1201を算出するためのクラスタ特徴量702をクラスタが持っていれば良い。
 (10)実施形態1~3では、クラスタ分類情報記憶部209は各クラスタに分類されているオブジェクトの個数をも記憶しているとしたが、必ずしもオブジェクトの個数を記憶する必要はない。例えば、クラスタに属するオブジェクトの個数を利用するときに、利用する側がそのクラスタに属するオブジェクトをその都度数え上げるとすると、クラスタ分類情報記憶部209はオブジェクトの個数を記憶する必要はない。要は、各クラスタに分類されているオブジェクトの個数を取得できれば良い。
 (11)実施形態1~3では、画像重要度はその画像に含まれるオブジェクトのオブジェクト重要度1501を全て足し合わせ、重要なオブジェクトが多数含まれている画像を高く評価するものとしたが、これに限るものではない。例えば、画像に含まれるオブジェクトのオブジェクト重要度の平均としても良いし、最も高いオブジェクト重要度を選び出してその値をそのまま画像重要度としても良い。また、オブジェクトの画像に占める面積の割合で更に重み付けして評価しても良い。要は、画像に含まれるオブジェクトのオブジェクト重要度を用いて画像重要度を算出すれば良い。
 (12)実施形態1~3では、画像重要度はオブジェクト重要度のみを用いて評価していたが、これに限るものではない。例えば、背景や撮影状況などに対しても重要度を評価し、オブジェクト重要度に加えてそれらの重要度を画像重要度の評価に用いても良い。要は、画像重要度の評価にオブジェクト重要度を用いれば、他の評価手段を更に組み合わせても良い。
 (13)実施形態1~3では、画像群300を画像重要度の高いものから降順に並べて表示装置120に出力するものとしたが、これに限るものではない。例えば、画像群300を入力時と同じ順序のまま、画像重要度の値を画像のメタデータとして付加して出力しても良い。要は、画像重要度を評価すれば良い。
 (14)実施形態1~3では、画像出力部217はHDMI出力端子を備え、画像管理装置から表示装置120へHDMIケーブルを介して映像を出力するものとしたが、出力ができればこれに限るものではない。まず、HDMI出力端子によりHDMIケーブルを介して映像を出力することに限る必要はない。例えばDVIケーブルにより表示装置120へ映像を出力しても良い。また、出力する対象は表示装置に限る必要はなく、出力内容も映像に限る必要はない。例えば、プリンタと接続して、画像重要度の高い画像を印刷するようにしても良い。また、外部記憶装置と接続して、画像重要度の値を画像のメタデータとして付加した画像ファイルを記録するようにしても良い。
 (15)実施形態1~3では、画像管理装置はデータを記憶するためにメモリを備えるものとしたが、データを記憶する手段であればこれに限る必要はない。例えば、ハードディスクやその他のデータ記録媒体を用いるものとしても良い。
(16)実施形態1~3では、確度1301の算出にロジスティック回帰分析を用いたが、ロジスティック回帰分析に限る必要はない。類似度と共起情報とを用いて、または類似度と共起情報と信頼度とを用いて別の方法で算出しても良い。また、1つのオブジェクトの全クラスタに対する確度1301の総和は必ずしも1にはならないが、総和が1になるように確度1301を正規化しても良い。
 (17)実施形態1~3では、共起情報を用いて確度を算出したが、必ずしも共起情報を用いる必要はない。例えば、類似度のみから確度を算出しても良いし、類似度と信頼度とから確度を算出しても良い。更には、確度を用いず類似度とクラスタに属するオブジェクトの個数とから評価値を算出しても良いし、類似度も用いずオブジェクトが属するクラスタに共に属するオブジェクトの数そのものをオブジェクト重要度としても良い。要は、オブジェクト重要度を評価するときに最低限そのオブジェクトが属するクラスタに共に属するオブジェクトの個数を用いていれば良い。
 (18)実施形態1~3では、オブジェクトのクラスタに対する評価値を、そのオブジェクトのそのクラスタに対する確度とそのクラスタに属するオブジェクトの個数を掛け合わせて算出したが、この方法に限るものではない。例えば、そのオブジェクトが属するクラスタに対する評価値のみ更に2を掛けるなどして他のクラスタより重視する方法で算出するようにしても良い。要は、評価値を確度とクラスタに属するオブジェクトの個数とから算出すれば良い。
 (19)実施形態1~3では、あるオブジェクトのオブジェクト重要度を、全クラスタに対する評価値を用いて評価したが、必ずしも全クラスタに対する評価値を用いる必要はない。例えば、そのオブジェクトとの類似度が所定値以上のクラスタについてのみ評価値を算出し、その評価値のみを用いることとしても良い。要は、オブジェクト重要度を評価するときに最低限そのオブジェクトが属するクラスタに共に属するオブジェクトの個数を用いていれば良い。
 (20)実施形態1~3では、オブジェクトをクラスタに分類する方法としてK-means法を用いる方法を説明したが、オブジェクトをクラスタに分類できればK-means法に限るものではない。例えば、実施形態2で物体を分類する方法として説明したSVMを用いる方法がある。また、クラスタ特徴量702はK-means法により自動的に算出されるものを用いたが、必ずしも自動的に算出されたクラスタ特徴量702を用いる必要はない。例えば、クラスタに属するオブジェクトの特徴量の中央値としても良い。
 (21)実施形態1、3では、あるオブジェクトのあるクラスタに対する確度を算出するときに、そのオブジェクトの含まれる画像中に他のオブジェクトが2つ以上含まれている場合には、最も支持度の高くなるオブジェクト1つのみを選んでその確信度及び支持度を計算に用いていたが、2つ以上を選んでそれらの確信度及び支持度を用いても良い。
 (22)実施形態1、3では、全クラスタの全クラスタに対する共起情報を生成したが、これに限るものではない。例えば、同じクラスタ同士の共起は共起情報として生成しないこととする変形例が考えられる。この変形例では、一のクラスタと1人の人物とを一対一に対応付けている場合、同一人物が同じ画像中に二人以上出現することは通常起こりえないので、これを無視することができる。また、クラスタAのクラスタBに対する共起度1101がわかっていれば、クラスタBのクラスタAに対する共起度1101もわかるため、どちらか一方を生成すれば事足りるので、一方の共起度1101のみを生成することとしても良い。例えば、クラスタIDに大小関係がある場合には、クラスタIDが小さいクラスタのクラスタIDが大きいクラスタに対する共起度1101のみを生成しても良い。
 (23)実施形態1、3では、1つの画像中にオブジェクトが1つだけ含まれている場合には非共起度1102を用いて確度を算出していたが、非共起度1102以外の基準によって確度を算出しても良い。例えば、類似度のみを用いて確度を算出するものとしても良いし、類似度と信頼度とを用いて確度を算出しても良い。
 (24)実施形態2では、共起物体の重要度を考えないものとしたが、共起物体の重要度を評価し、共起物体の重要度にも基づいて画像重要度を評価するものとしても良い。例えば、共起物体の重要度として、その共起物体と同じ物体クラスタに共に属する共起物体の個数を用い、画像の画像重要度はオブジェクト重要度の総和に更に共起物体の重要度を加えるものとしても良い。要は、画像の画像重要度の評価にオブジェクト重要度を用いていれば良い。
 (25)実施形態2では、物体クラスタ分類情報記憶部2404は各物体クラスタに分類されている共起物体の個数をも記憶しているとしたが、物体クラスタに属する物体の個数を取得できれば必ずしも物体の個数を記憶する必要はない。例えば、物体クラスタに属する物体の個数を利用するときに、利用する側がその物体クラスタに属する物体をその都度数え上げるとすると、物体クラスタ分類情報記憶部2404は物体の個数を記憶する必要はない。
 (26)実施形態2では、あるオブジェクトのあるクラスタに対する確度を算出するときに、そのオブジェクトの含まれる画像中に共起物体が2つ以上含まれている場合には、最も支持度の高くなる共起物体1つのみを選んでその確信度及び支持度を計算に用いていたが、2つ以上を選んでそれらの確信度及び支持度を用いても良い。
 (27)実施形態2では、共起物体を物体クラスタに分類する方法をSVMとして説明したが、共起物体を物体クラスタに分類できるならSVMに限るものではない。例えば、オブジェクトを分類する方法として説明したK-means法を用いても良い。
 (28)実施形態2では、画像中に物体が含まれていない場合にはその画像に含まれるオブジェクトのクラスタに対する確度を0にするものとしたが、必ずしも確度を0にする必要はない。例えば、画像中に物体が含まれていない場合にはオブジェクトのクラスタに対する確度を類似度のみによって算出するものとしても良い。
 (29)実施形態2では、オブジェクトの分類処理の後に、共起物体の検出処理と共起物体の分類処理とが追加されるものとしたが、画像を取得した後であり共起情報を生成する前であればいつでも良い。例えば、共起情報の生成処理の直前に共起物体の検出処理と共起物体の分類処理とを追加しても良い。
 (30)実施形態3では、クラスタとオブジェクトとの各特徴量成分の差を二乗したものを合計し、その値の平方根を、クラスタのクラスタ特等量とオブジェクトのオブジェクト特徴量との差として算出したが、これに限らず、例えば、クラスタとオブジェクトとの各特徴量成分の差の絶対値の相加平均を特徴量の差としてもよい。
 (31)実施形態3では、クラスタのクラスタ特徴量と当該クラスタに属する各オブジェクトのオブジェクト特徴量との差の合計を当該クラスタに属するオブジェクトの数で除算し、その値の逆数を信頼度として算出したが、これに限らず、例えば、クラスタのクラスタ特徴量と当該クラスタに属する各オブジェクトのオブジェクト特徴量とから分散や標準偏差等を算出し、その逆数を信頼度としてもよい。
 (32)実施形態1~3では、Gaborフィルタを用いて特徴量を抽出する方法を例に挙げたが、画像の特徴量を抽出できればどのような方法で特徴量を抽出してもかまわない。
 (33)上述の各実施形態及び各変形例を、部分的に組み合わせても良い。
 (34)本発明は、実施形態1~3で示した画像重要度の評価処理等(図18~20、図29~31、図34、図37~39を参照)を画像管理装置のプロセッサ及びそのプロセッサに接続された各種回路に実行させるためのプログラムコードからなる制御プログラムを、記録媒体に記録すること又は各種通信路等を介して流通させ頒布することもできる。このような記録媒体には、ICカード、ハードディスク、光ディスク、フレキシブルディスク、ROMなどがある。流通、頒布された制御プログラムはプロセッサに読み出されうるメモリなどに格納されることにより利用に供され、そのプロセッサがその制御プログラムを実行することにより各実施形態で示したような機能が実現されるようになる。なお、制御プログラムの一部を画像管理装置とは別個のプログラム実行可能な装置(プロセッサ)に各種ネットワークを介して送信して、その別個のプログラム実行可能な装置においてその制御プログラムの一部を実行させることとしても良い。
 (35)画像管理装置を構成する構成要素の一部又は全部は、1又は複数の集積回路(IC、LSIなど)として実装されることとしても良く、画像管理装置の構成要素に更に他の要素を加えて集積回路化(1チップ化)されることとしても良い。
 以下、更に本発明の一実施形態としての画像管理装置の構成及びその変形例と効果について説明する。
 (a)本発明の一実施形態に係る画像管理装置は、図2に示すように、画像を取得する画像取得手段と、前記画像取得手段で取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出手段と、前記画像取得手段で取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類手段と、各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価手段と、一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価手段とを
備える。この構成により、画像管理装置は、前記所定の基準が人物の顔の特徴量を定めるものであれば、画像に含まれるオブジェクトである人物の顔の重要度に当たるオブジェクト重要度を、画像に含まれる顔の人物と同一人物であることを示すクラスタに属するオブジェクトの出現回数に基づいて求め、各画像に含まれるオブジェクトの重要度を反映するよう各画像の重要度を求めて、その画像重要度によって画像をランキングすることで、出現回数の多い人物が含まれている画像を上位に並べることができる。ユーザは、ランキングの上位から順に画像を探していくことで、膨大な枚数の画像から関心の高い重要な人物が写っている画像、つまり重要度が高い画像を容易に選択できる。
 (b)前記画像管理装置におけるオブジェクト重要度評価手段は、オブジェクトのオブジェクト重要度を、当該オブジェクトが属するクラスタと同じクラスタに属するオブジェクトの個数と、当該オブジェクトのオブジェクト特徴量と当該クラスタが示す特徴量の代表値であるクラスタ特徴量とがどの程度類似しているかを示す類似度とに基づいて算出される、当該オブジェクトの当該クラスタに対する評価値と、当該オブジェクトが属するクラスタとは別のクラスタについて、当該別のクラスタに属するオブジェクトの個数と、当該オブジェクトの特徴量と当該別のクラスタのクラスタ特徴量との類似度とに基づいて算出される、当該オブジェクトの当該別のクラスタに対する評価値とに基づいて評価することとしてもよい。この構成によると、同一人物のオブジェクトが誤ってそれぞれ別のクラスタに分類された場合においても、そのオブジェクトが属するクラスタと異なるクラスタについても、そのクラスタに属する人物と同一人物である可能性(確度)を類似度から算出し、そのクラスタに属するオブジェクトの個数を類似度から求めた確度で重み付けして用いてオブジェクト重要度を評価するため、オブジェクトが正しく同一人物と判定されたときにより近いオブジェクト重要度と評価することができる。そのため、より高い精度で画像重要度を評価できる。
 (c)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、第1オブジェクトの、当該第1オブジェクトが属するクラスタ又は当該第1オブジェクトが属さないクラスタである第1クラスタに対する評価値を更に、前記画像取得手段で取得した画像群の中で、当該第1クラスタに属するオブジェクトと、第2オブジェクトが属するクラスタと同じ第2クラスタに属するオブジェクトとが一の画像中に共に含まれるという事象の発生している程度である、当該第1クラスタと当該第2クラスタとの共起度にも基づいて算出することとしてもよい。この構成によると、オブジェクトが特徴量の類似度だけで計算して出現回数が多い人物と同一人物の可能性が低いと評価された場合にはその人物と同一人物であってもオブジェクト重要度が低く評価されてしまうことが考えられるが、上記のようにすることで、特徴量の類似度だけでなく人物同士の共起関係をも用いて同一人物である可能性を算出する。これにより、同じ人物でも写る向きが違う等で、特徴量だけではオブジェクトが別の人物の可能性が高いとされる場合においても、オブジェクトが正しく同一人物と判定されたときにより近いオブジェクト重要度と評価することができる。そのため、更に高い精度で画像重要度を評価できる。
 (d)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、前記第1クラスタと、第2オブジェクトが属するクラスタと同じ第2クラスタとの共起度の、当該第2クラスタに属するオブジェクトの個数に対する割合として算出される、当該第1オブジェクトの当該第1クラスタに対する確信度と、当該第1クラスタと当該第2クラスタとの共起度の、前記オブジェクト検出手段により検出された全オブジェクトの個数に対する割合として算出される、当該第1オブジェクトの当該第1クラスタに対する支持度と、当該第1オブジェクトの当該第1クラスタに対する類似度とに基づいて計算される、当該第1オブジェクトの当該第1クラスタに対する確度を算出し、第1オブジェクトの第1クラスタに対する評価値を、当該第1オブジェクトの当該第1クラスタに対する確度と、当該第1クラスタに属するオブジェクトの個数とから算出することとしてもよい。この構成によると、第1オブジェクトの第1クラスタに対する確信度と第1オブジェクトの第1クラスタに対する支持度と第1オブジェクトの第1クラスタに対する類似度とに基づいて第1オブジェクトの第1クラスタに対する確度を算出するため、算出した確度に基づいて第1オブジェクトの第1クラスタに対する評価値を算出することができる。
 (e)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、前記確度を、更に、第1クラスタの前記クラスタ特徴量と第1クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出され、各オブジェクト特徴量がどの程度前記クラスタ特徴量に集中しているかを示す第1クラスタの信頼度と、第2クラスタの前記クラスタ特徴量と第2クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出される第2クラスタの信頼度とにも基づいて算出することとしてもよい。この構成によると、第1オブジェクトの第1クラスタに対する確度を、第1クラスタの信頼度と第2クラスタの信頼度とにも基づいて算出するため、より高い精度で第1オブジェクトの第1クラスタに対する確度を算出することができる。
 (f)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、当該第1オブジェクトの第1クラスタに対する確度を、当該第1オブジェクトの当該第1クラスタに対する確信度と、当該第1オブジェクトの当該第1クラスタに対する支持度と、当該第1オブジェクトの当該第1クラスタに対する類似度と、当該第1クラスタの信頼度と、当該第2クラスタの信頼度とを説明変数として用いるロジスティック回帰を用いて計算することとしてもよい。ロジスティック回帰分析では、過去の実測値等に基づき、確度の算出に対する影響力の大きさにより各説明変数の係数が決定される。そのため、この構成によると、より高い精度で第1オブジェクトの第1クラスタに対する確度を算出することが可能となる。
 (g)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、当該第1オブジェクトの第1クラスタに対する確度を、当該第1オブジェクトの当該第1クラスタに対する確信度と、当該第1オブジェクトの当該第1クラスタに対する支持度と、当該第1オブジェクトの当該第1クラスタに対する類似度とを説明変数として用いるロジスティック回帰を用いて計算することとしてもよい。ロジスティック回帰分析では、過去の実測値等に基づき、確度の算出に対する影響力の大きさにより各説明変数の係数が決定される。そのため、この構成によると、より高い精度で第1オブジェクトの第1クラスタに対する確度を算出することが可能となる。
 (h)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象のオブジェクトが含まれる画像中に、当該オブジェクト以外にオブジェクトが含まれない場合には、評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を更に、前記画像取得手段で取得した画像群の中で、一の画像中に当該クラスタに属するオブジェクトが単独で含まれるという事象の発生している程度である、当該クラスタの非共起度に基づいて算出することとしてもよい。この構成によると、オブジェクトが単独で画像に含まれる事象の発生している程度である非共起度に基づいてオブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタの評価値を算出するため、オブジェクトが単独で画像に含まれていた場合にも、オブジェクトがクラスタに属する可能性を算出することが可能となる。
 (i)前記画像管理装置におけるオブジェクト重要度評価手段は、評価対象のオブジェクトが含まれる画像中に、当該オブジェクト以外にオブジェクトが含まれない場合には、当該オブジェクトが属するクラスタ又は当該オブジェクトが属さないクラスタの非共起度の、当該クラスタに属するオブジェクトの個数に対する割合として算出される確信度と、当該クラスタの非共起度の、前記オブジェクト検出手段により検出された全オブジェクトの個数に対する割合として算出される支持度と、当該オブジェクトの当該クラスタに対する類似度とに基づいて計算される、当該オブジェクトの当該クラスタに対する確度を算出し、評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を、当該オブジェクトの当該クラスタに対する確度と、当該クラスタに属するオブジェクトの個数とから算出することとしてもよい。この構成によると、第1オブジェクトの第1クラスタに対する非共起の確信度と第1オブジェクトの第1クラスタに対する非共起の支持度と第1オブジェクトの第1クラスタに対する類似度とに基づいて第1オブジェクトの第1クラスタに対する確度を算出するため、第1オブジェクトが第1クラスタに属する可能性を算出することができる。
 (j)前記画像管理装置におけるオブジェクト検出手段は、人物の顔に係る特徴量を抽出する基準によりオブジェクト特徴量を抽出することとしてもよい。この構成によると、人物の特徴を強く示す人物の顔をオブジェクトとして抽出するため、より正確にオブジェクトを分類できる可能性が高まり、その結果、ユーザにとって重要な人物が写っている画像を重要度の高い画像としてランキングすることができる。
 (k)前記画像管理装置は更に、各画像において、画像に含まれる物体に該当する複数画素の画素値の分布に係る特徴量である物体特徴量を所定の基準に基づいて抽出することにより物体を検出する物体検出手段と、前記画像取得手段で取得した各画像において検出された各物体を、各物体の物体特徴量に応じて、複数の物体クラスタのいずれかに分類する物体分類手段とを備え、前記オブジェクト重要度評価手段は、評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を更に、当該オブジェクトが含まれる画像中に、1以上の物体が共に含まれる場合には、前記画像取得手段で取得した画像群の中で、当該クラスタに属するオブジェクトと、当該オブジェクトが含まれる画像に当該オブジェクトと共に含まれるうちの1つの物体が属する物体クラスタに共に属する物体とが一の画像中に共に含まれるという事象の発生する程度である、当該クラスタと当該物体クラスタとの共起度に基づいて算出することとしてもよい。ここで物体クラスタとは、物体を所定の基準に基づいて分類するときの分類の単位であり、各物体クラスタは互いに異なる物体特徴量の範囲に対応する。
 この構成によると、例えば、画像に単独で写っている場合等、人物同士の共起関係では同一人物である可能性を判断しにくい場合にも、人物と物体との共起関係を用いて同一人物であるか否かを判断することが可能となる。
 (l)前記画像管理装置におけるオブジェクト分類手段は、K-means法により各オブジェクトをクラスタに分類することとしてもよい。この構成によると、オブジェクトの分類にK-means法を用いるため、単純なアルゴリズムで各オブジェクトをクラスタに分類することができる。
 (m)前記画像管理装置におけるオブジェクト重要度評価手段は、前記オブジェクト重要度を、前記オブジェクトが属するクラスタが示す特徴量の代表値であるクラスタ特徴量と、当該クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出され、各オブジェクト特徴量がどの程度前記クラスタ特徴量に集中しているかを示すクラスタの信頼度にも基づいて算出することとしてもよい。この構成によると、オブジェクトが属するクラスタの信頼度と、当該クラスタに属するオブジェクトの個数によりオブジェクト重要度を算出するため、当該クラスタに属するオブジェクトの個数のみに基づいてオブジェクト重要度を算出するよりも高い精度でオブジェクト重要度を算出することが可能となる。
 本発明に係る画像管理装置及び画像管理方法は、静止画又は動画を蓄積する装置、静止画及び動画の再生装置、デジタルカメラ、カメラ付携帯電話やムービーカメラなどの撮影装置及びPCなどに適用することができる。
10 画像管理システム
100 画像管理装置
110 撮影装置
120 表示装置
130 コントローラ
201 画像取得部
202 画像記憶部
203 オブジェクト検出部
204 テンプレート記憶部
205 オブジェクト出現情報記憶部
206 オブジェクト特徴量記憶部
207 オブジェクト分類部
208 クラスタ特徴量記憶部
209 クラスタ分類情報記憶部
210、210a 共起情報生成部
211 類似度算出部
212、212a、212b 確度算出部
213 評価値算出部
214 オブジェクト重要度評価部
215 画像重要度評価部
216 画像ランキング部
217 画像出力部
218 操作入力部
700 特徴量空間
701 クラスタ
702 クラスタ特徴量
703 クラスタID
704 クラスタの境界
2300 変形画像管理装置
2301 物体部
2401 物体検出部
2402 物体出現情報記憶部
2403 物体分類部
2404 物体クラスタ分類情報記憶部
3500 変形画像管理装置
3501 信頼度算出部

Claims (17)

  1.  画像を取得する画像取得手段と、
     前記画像取得手段で取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出手段と、
     前記画像取得手段で取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類手段と、
     各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価手段と、
     一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価手段と
     を備えることを特徴とする画像管理装置。
  2.  前記オブジェクト重要度評価手段は、
     オブジェクトのオブジェクト重要度を、
     当該オブジェクトが属するクラスタと同じクラスタに属するオブジェクトの個数と、当該オブジェクトのオブジェクト特徴量と当該クラスタが示す特徴量の代表値であるクラスタ特徴量とがどの程度類似しているかを示す類似度とに基づいて算出される、当該オブジェクトの当該クラスタに対する評価値と、
     当該オブジェクトが属するクラスタとは別のクラスタについて、当該別のクラスタに属するオブジェクトの個数と、当該オブジェクトの特徴量と当該別のクラスタのクラスタ特徴量との類似度とに基づいて算出される、当該オブジェクトの当該別のクラスタに対する評価値とに基づいて評価する
     ことを特徴とする請求項1に記載の画像管理装置。
  3.  前記オブジェクト重要度評価手段は、
     評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、
     第1オブジェクトの、当該第1オブジェクトが属するクラスタ又は当該第1オブジェクトが属さないクラスタである第1クラスタに対する評価値を更に、
     前記画像取得手段で取得した画像群の中で、当該第1クラスタに属するオブジェクトと、第2オブジェクトが属するクラスタと同じ第2クラスタに属するオブジェクトとが一の画像中に共に含まれるという事象の発生している程度である、当該第1クラスタと当該第2クラスタとの共起度にも基づいて算出する
     ことを特徴とする請求項2に記載の画像管理装置。
  4.  前記オブジェクト重要度評価手段は、
     評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、
     前記第1クラスタと、第2オブジェクトが属するクラスタと同じ第2クラスタとの共起度の、当該第2クラスタに属するオブジェクトの個数に対する割合として算出される、当該第1オブジェクトの当該第1クラスタに対する確信度と、
     当該第1クラスタと当該第2クラスタとの共起度の、前記オブジェクト検出手段により検出された全オブジェクトの個数に対する割合として算出される、当該第1オブジェクトの当該第1クラスタに対する支持度と、
     当該第1オブジェクトの当該第1クラスタに対する類似度と
     に基づいて計算される、当該第1オブジェクトの当該第1クラスタに対する確度を算出し、
     第1オブジェクトの第1クラスタに対する評価値を、
     当該第1オブジェクトの当該第1クラスタに対する確度と、
     当該第1クラスタに属するオブジェクトの個数とから算出する
     ことを特徴とする請求項3に記載の画像管理装置。
  5.  前記オブジェクト重要度評価手段は、
     評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、
     前記確度を、更に、第1クラスタの前記クラスタ特徴量と第1クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出され、各オブジェクト特徴量がどの程度前記クラスタ特徴量に集中しているかを示す第1クラスタの信頼度と、第2クラスタの前記クラスタ特徴量と第2クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出される第2クラスタの信頼度とにも基づいて算出する
     ことを特徴とする請求項4に記載の画像管理装置。
  6.  前記オブジェクト重要度評価手段は、
     評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、
     当該第1オブジェクトの第1クラスタに対する確度を、
     当該第1オブジェクトの当該第1クラスタに対する確信度と、
     当該第1オブジェクトの当該第1クラスタに対する支持度と、
     当該第1オブジェクトの当該第1クラスタに対する類似度と、
     当該第1クラスタの信頼度と、
     当該第2クラスタの信頼度と
     を説明変数として用いるロジスティック回帰を用いて計算する
     ことを特徴とする請求項5に記載の画像管理装置。
  7.  前記オブジェクト重要度評価手段は、
     評価対象である第1オブジェクトが含まれる画像中に、第2オブジェクトが共に含まれる場合には、
     当該第1オブジェクトの第1クラスタに対する確度を、
     当該第1オブジェクトの当該第1クラスタに対する確信度と、
     当該第1オブジェクトの当該第1クラスタに対する支持度と、
     当該第1オブジェクトの当該第1クラスタに対する類似度と
     を説明変数として用いるロジスティック回帰を用いて計算する
     ことを特徴とする請求項4に記載の画像管理装置。
  8.  前記オブジェクト重要度評価手段は、
     評価対象のオブジェクトが含まれる画像中に、当該オブジェクト以外にオブジェクトが含まれない場合には、
     評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を更に、
     前記画像取得手段で取得した画像群の中で、一の画像中に当該クラスタに属するオブジェクトが単独で含まれるという事象の発生している程度である、当該クラスタの非共起度に基づいて算出する
     ことを特徴とする請求項2に記載の画像管理装置。
  9.  前記オブジェクト重要度評価手段は、
     評価対象のオブジェクトが含まれる画像中に、当該オブジェクト以外にオブジェクトが含まれない場合には、
     当該オブジェクトが属するクラスタ又は当該オブジェクトが属さないクラスタの非共起度の、当該クラスタに属するオブジェクトの個数に対する割合として算出される確信度と、
     当該クラスタの非共起度の、前記オブジェクト検出手段により検出された全オブジェクトの個数に対する割合として算出される支持度と、
     当該オブジェクトの当該クラスタに対する類似度と
     に基づいて計算される、当該オブジェクトの当該クラスタに対する確度を算出し、
     評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を、
     当該オブジェクトの当該クラスタに対する確度と、
     当該クラスタに属するオブジェクトの個数とから算出する
     ことを特徴とする請求項8に記載の画像管理装置。
  10.  前記オブジェクト検出手段は、
     人物の顔に係る特徴量を抽出する基準によりオブジェクト特徴量を抽出する
     ことを特徴とする請求項2に記載の画像管理装置。
  11.  前記画像管理装置は更に、
     各画像において、画像に含まれる物体に該当する複数画素の画素値の分布に係る特徴量である物体特徴量を所定の基準に基づいて抽出することにより物体を検出する物体検出手段と、
     前記画像取得手段で取得した各画像において検出された各物体を、各物体の物体特徴量に応じて、複数の物体クラスタのいずれかに分類する物体分類手段と
     を備え、
     前記オブジェクト重要度評価手段は、
     評価対象のオブジェクトの、当該オブジェクトが属するクラスタ及び当該オブジェクトが属さないクラスタに対する評価値を更に、
     当該オブジェクトが含まれる画像中に、1以上の物体が共に含まれる場合には、
     前記画像取得手段で取得した画像群の中で、当該クラスタに属するオブジェクトと、当該オブジェクトが含まれる画像に当該オブジェクトと共に含まれるうちの1つの物体が属する物体クラスタに共に属する物体とが一の画像中に共に含まれるという事象の発生する程度である、当該クラスタと当該物体クラスタとの共起度に基づいて算出する
     ことを特徴とする請求項10に記載の画像管理装置。
  12.  前記オブジェクト分類手段は、
     K-means法により各オブジェクトをクラスタに分類する
     ことを特徴とする請求項1に記載の画像管理装置。
  13.  前記オブジェクト重要度評価手段は、
     前記オブジェクト重要度を、
     前記オブジェクトが属するクラスタが示す特徴量の代表値であるクラスタ特徴量と、当該クラスタに属する各オブジェクトの前記オブジェクト特徴量との差に基づいて算出され、各オブジェクト特徴量がどの程度前記クラスタ特徴量に集中しているかを示すクラスタの信頼度にも基づいて算出する
     ことを特徴とする請求項1に記載の画像管理装置。
  14.  画像を取得する画像取得ステップと、
     前記画像取得ステップで取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出ステップと、
     前記画像取得ステップで取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類ステップと、
     各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価ステップと、
     一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価ステップと
     を備えることを特徴とする画像管理方法。
  15.  画像を取得する画像取得ステップと、
     前記画像取得ステップで取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出ステップと、
     前記画像取得ステップで取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類ステップと、
     各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価ステップと、
     一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価ステップと
     を含む処理をコンピュータに実行させることを特徴とするプログラム。
  16.  画像を取得する画像取得ステップと、
     前記画像取得ステップで取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出ステップと、
     前記画像取得ステップで取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類ステップと、
     各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価ステップと、
     一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価ステップと
     を含む処理をコンピュータに実行させるプログラムを記録している記録媒体。
  17.  画像を取得する画像取得手段と、
     前記画像取得手段で取得した各画像において、画像に含まれるオブジェクトに該当する複数画素の画素値の分布に係る特徴量であるオブジェクト特徴量を所定の基準に基づいて抽出することによりオブジェクトを検出するオブジェクト検出手段と、
     前記画像取得手段で取得した各画像において検出された各オブジェクトを、各オブジェクトのオブジェクト特徴量に応じて、複数のクラスタのいずれかに分類するオブジェクト分類手段と、
     各オブジェクトについて、当該オブジェクトと同じクラスタに共に属するオブジェクトの個数の大小に基づいて、オブジェクトの重要度であるオブジェクト重要度を評価するオブジェクト重要度評価手段と、
     一の画像に含まれるオブジェクトのオブジェクト重要度に基づいて、当該一の画像の重要度を評価する画像重要度評価手段と
     を備えることを特徴とする集積回路。
     
PCT/JP2011/000150 2010-01-22 2011-01-13 画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路 WO2011089872A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11734479.6A EP2528034B1 (en) 2010-01-22 2011-01-13 Image management device, image management method, program, recording medium, and integrated circuit
CN201180001520.9A CN102792332B (zh) 2010-01-22 2011-01-13 图像管理装置、图像管理方法及集成电路
US13/256,505 US20120002881A1 (en) 2010-01-22 2011-01-13 Image management device, image management method, program, recording medium, and integrated circuit
JP2011535339A JP5330530B2 (ja) 2010-01-22 2011-01-13 画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-012468 2010-01-22
JP2010012468 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011089872A1 true WO2011089872A1 (ja) 2011-07-28

Family

ID=44306674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000150 WO2011089872A1 (ja) 2010-01-22 2011-01-13 画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路

Country Status (5)

Country Link
US (1) US20120002881A1 (ja)
EP (1) EP2528034B1 (ja)
JP (1) JP5330530B2 (ja)
CN (1) CN102792332B (ja)
WO (1) WO2011089872A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132613A1 (ja) * 2013-02-26 2014-09-04 日本電気株式会社 診断支援システム、診断支援方法及びそのプログラム
WO2018042606A1 (ja) * 2016-09-01 2018-03-08 株式会社日立製作所 分析装置、分析システムおよび分析方法
JPWO2017069231A1 (ja) * 2015-10-23 2018-10-04 国立大学法人大阪大学 人体における治療後の形態予測方法及びシステム
CN116403080A (zh) * 2023-06-09 2023-07-07 江西云眼视界科技股份有限公司 一种人脸聚类评价方法、系统、计算机及可读存储介质
CN117786434A (zh) * 2023-11-22 2024-03-29 太极计算机股份有限公司 一种集群管理方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102820A1 (en) 2001-06-20 2002-12-27 Nuevolution A/S Nucleoside derivatives for library preparation
ATE414769T1 (de) * 2002-03-15 2008-12-15 Nuevolution As Eine verbesserte methode zur synthese von matritzenabhängigen molekülen
AU2003247266A1 (en) 2002-08-01 2004-02-23 Nuevolution A/S Multi-step synthesis of templated molecules
US9049419B2 (en) 2009-06-24 2015-06-02 Hewlett-Packard Development Company, L.P. Image album creation
WO2011127933A1 (en) 2010-04-16 2011-10-20 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
US8923629B2 (en) * 2011-04-27 2014-12-30 Hewlett-Packard Development Company, L.P. System and method for determining co-occurrence groups of images
US8958645B2 (en) * 2012-04-19 2015-02-17 Canon Kabushiki Kaisha Systems and methods for topic-specific video presentation
WO2014068567A1 (en) * 2012-11-02 2014-05-08 Itzhak Wilf Method and system for predicting personality traits, capabilities and suggested interactions from images of a person
US20140169687A1 (en) * 2012-12-13 2014-06-19 Htc Corporation Image search systems and methods
JP6213557B2 (ja) * 2013-03-01 2017-10-18 日本電気株式会社 情報処理装置、そのデータ処理方法、およびプログラム
US9369662B2 (en) * 2013-04-25 2016-06-14 Microsoft Technology Licensing, Llc Smart gallery and automatic music video creation from a set of photos
JP6009481B2 (ja) 2014-03-11 2016-10-19 富士フイルム株式会社 画像処理装置、重要人物判定方法、画像レイアウト方法ならびにプログラムおよび記録媒体
US10002310B2 (en) * 2014-04-29 2018-06-19 At&T Intellectual Property I, L.P. Method and apparatus for organizing media content
JP6660119B2 (ja) 2015-08-07 2020-03-04 キヤノン株式会社 情報処理装置、情報処理方法、並びにプログラム
CN107924465B (zh) * 2016-03-18 2021-09-10 Jvc 建伍株式会社 物体识别装置、物体识别方法以及存储介质
JP6798183B2 (ja) * 2016-08-04 2020-12-09 株式会社リコー 画像解析装置、画像解析方法およびプログラム
GB2553775A (en) * 2016-09-09 2018-03-21 Snell Advanced Media Ltd Method and apparatus for ordering images
US10909341B2 (en) * 2016-10-26 2021-02-02 Datalogic Automation, Inc. Data processing reduction in barcode reading systems with overlapping frames
US11205089B2 (en) * 2017-07-07 2021-12-21 Nec Corporation Object identification device, object identification method, and recording medium
CN107832852B (zh) * 2017-11-14 2021-03-02 深圳码隆科技有限公司 数据处理学习方法、系统以及电子设备
CN108596735A (zh) * 2018-04-28 2018-09-28 北京旷视科技有限公司 信息推送方法、装置及系统
CN110826616B (zh) * 2019-10-31 2023-06-30 Oppo广东移动通信有限公司 信息处理方法及装置、电子设备、存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024229A (ja) * 2000-07-03 2002-01-25 Fuji Photo Film Co Ltd 本人画像提供システム
JP2002215643A (ja) * 2001-01-15 2002-08-02 Minolta Co Ltd 画像分類プログラム、画像分類プログラムを記録したコンピュータ読み取り可能な記録媒体、画像分類方法および画像分類装置
JP2004046591A (ja) 2002-07-12 2004-02-12 Konica Minolta Holdings Inc 画像評価装置
JP2004318603A (ja) * 2003-04-17 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> 画像検索方法、自分撮り推定装置および方法、並びに自分撮り推定プログラム
JP2005020446A (ja) 2003-06-26 2005-01-20 Casio Comput Co Ltd 画像撮影装置及びプログラム
JP2005056387A (ja) * 2003-07-18 2005-03-03 Canon Inc 画像処理装置、撮像装置、画像処理方法
JP2005107885A (ja) * 2003-09-30 2005-04-21 Casio Comput Co Ltd 画像分類装置及び画像分類プログラム
JP2005148900A (ja) * 2003-11-12 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 画像分類装置、画像分類方法、および、プログラム
JP2006523334A (ja) * 2003-02-06 2006-10-12 センターフレーム・リミテッド・ライアビリティ・カンパニー 特定の電子画像をユーザに配布する方法
JP2006318034A (ja) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd 画像選択方法、画像選択装置、プログラム、およびプリント注文受付機
JP2007174378A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 画像ファイリング方法及びデジタルカメラ及び画像ファイリング処理プログラム及び動画記録再生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7382903B2 (en) * 2003-11-19 2008-06-03 Eastman Kodak Company Method for selecting an emphasis image from an image collection based upon content recognition
WO2006080755A1 (en) * 2004-10-12 2006-08-03 Samsung Electronics Co., Ltd. Method, medium, and apparatus for person-based photo clustering in digital photo album, and person-based digital photo albuming method, medium, and apparatus
US8050453B2 (en) * 2006-06-15 2011-11-01 Omron Corporation Robust object tracking system
US8031914B2 (en) * 2006-10-11 2011-10-04 Hewlett-Packard Development Company, L.P. Face-based image clustering
US7903883B2 (en) * 2007-03-30 2011-03-08 Microsoft Corporation Local bi-gram model for object recognition
US7953690B2 (en) * 2008-01-25 2011-05-31 Eastman Kodak Company Discovering social relationships from personal photo collections

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024229A (ja) * 2000-07-03 2002-01-25 Fuji Photo Film Co Ltd 本人画像提供システム
JP2002215643A (ja) * 2001-01-15 2002-08-02 Minolta Co Ltd 画像分類プログラム、画像分類プログラムを記録したコンピュータ読み取り可能な記録媒体、画像分類方法および画像分類装置
JP2004046591A (ja) 2002-07-12 2004-02-12 Konica Minolta Holdings Inc 画像評価装置
JP2006523334A (ja) * 2003-02-06 2006-10-12 センターフレーム・リミテッド・ライアビリティ・カンパニー 特定の電子画像をユーザに配布する方法
JP2004318603A (ja) * 2003-04-17 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> 画像検索方法、自分撮り推定装置および方法、並びに自分撮り推定プログラム
JP2005020446A (ja) 2003-06-26 2005-01-20 Casio Comput Co Ltd 画像撮影装置及びプログラム
JP2005056387A (ja) * 2003-07-18 2005-03-03 Canon Inc 画像処理装置、撮像装置、画像処理方法
JP2005107885A (ja) * 2003-09-30 2005-04-21 Casio Comput Co Ltd 画像分類装置及び画像分類プログラム
JP2005148900A (ja) * 2003-11-12 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> 画像分類装置、画像分類方法、および、プログラム
JP2006318034A (ja) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd 画像選択方法、画像選択装置、プログラム、およびプリント注文受付機
JP2007174378A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 画像ファイリング方法及びデジタルカメラ及び画像ファイリング処理プログラム及び動画記録再生装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132613A1 (ja) * 2013-02-26 2014-09-04 日本電気株式会社 診断支援システム、診断支援方法及びそのプログラム
US10127473B2 (en) 2013-02-26 2018-11-13 Nec Corporation Diagnosis assisting system, diagnosis assisting method, and program thereof
JPWO2017069231A1 (ja) * 2015-10-23 2018-10-04 国立大学法人大阪大学 人体における治療後の形態予測方法及びシステム
US11065084B2 (en) 2015-10-23 2021-07-20 Osaka University Method and system for predicting shape of human body after treatment
US11617633B2 (en) 2015-10-23 2023-04-04 Osaka University Method and system for predicting shape of human body after treatment
WO2018042606A1 (ja) * 2016-09-01 2018-03-08 株式会社日立製作所 分析装置、分析システムおよび分析方法
CN116403080A (zh) * 2023-06-09 2023-07-07 江西云眼视界科技股份有限公司 一种人脸聚类评价方法、系统、计算机及可读存储介质
CN116403080B (zh) * 2023-06-09 2023-08-11 江西云眼视界科技股份有限公司 一种人脸聚类评价方法、系统、计算机及可读存储介质
CN117786434A (zh) * 2023-11-22 2024-03-29 太极计算机股份有限公司 一种集群管理方法

Also Published As

Publication number Publication date
JP5330530B2 (ja) 2013-10-30
EP2528034B1 (en) 2019-03-06
EP2528034A1 (en) 2012-11-28
JPWO2011089872A1 (ja) 2013-05-23
CN102792332B (zh) 2016-01-06
CN102792332A (zh) 2012-11-21
EP2528034A4 (en) 2017-04-26
US20120002881A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5330530B2 (ja) 画像管理装置、画像管理方法、プログラム、記録媒体及び集積回路
Zhang et al. A gated peripheral-foveal convolutional neural network for unified image aesthetic prediction
CN110119711B (zh) 一种获取视频数据人物片段的方法、装置及电子设备
US9020244B2 (en) Ranking and selecting representative video images
CN112989209B (zh) 内容推荐方法、装置和存储介质
CN108476259B (zh) 基于用户行为的内容推荐的系统和方法
US9058611B2 (en) System and method for advertising using image search and classification
CN110390033A (zh) 图像分类模型的训练方法、装置、电子设备及存储介质
CN109871464B (zh) 一种基于ucl语义标引的视频推荐方法与装置
CN102150163B (zh) 交互式图像选择方法
US9137574B2 (en) Method or system to predict media content preferences
WO2011097041A2 (en) Recommending user image to social network groups
CN112100438A (zh) 一种标签抽取方法、设备及计算机可读存储介质
CN111708913B (zh) 一种标签生成方法、设备及计算机可读存储介质
US20200012862A1 (en) Multi-model Techniques to Generate Video Metadata
US20180336931A1 (en) Automatic and intelligent video sorting
CN113806588B (zh) 搜索视频的方法和装置
CN112434744B (zh) 一种多模态特征融合模型的训练方法及装置
CN112685596B (zh) 视频推荐方法及装置、终端、存储介质
EP2874102A2 (en) Generating models for identifying thumbnail images
CN114845149B (zh) 视频片段的剪辑方法、视频推荐方法、装置、设备及介质
CN111625680A (zh) 确定搜索结果的方法及装置
Chen et al. Automatic training image acquisition and effective feature selection from community-contributed photos for facial attribute detection
US20110044530A1 (en) Image classification using range information
CN112884866A (zh) 一种黑白视频的上色方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001520.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535339

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13256505

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011734479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE