WO2011089284A1 - Cuña plana deformable - Google Patents

Cuña plana deformable Download PDF

Info

Publication number
WO2011089284A1
WO2011089284A1 PCT/ES2010/070303 ES2010070303W WO2011089284A1 WO 2011089284 A1 WO2011089284 A1 WO 2011089284A1 ES 2010070303 W ES2010070303 W ES 2010070303W WO 2011089284 A1 WO2011089284 A1 WO 2011089284A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
piece
prolongations
arms
shape
Prior art date
Application number
PCT/ES2010/070303
Other languages
English (en)
French (fr)
Inventor
Antonio Diaz Gonzalez
Original Assignee
Antonio Diaz Gonzalez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Diaz Gonzalez filed Critical Antonio Diaz Gonzalez
Publication of WO2011089284A1 publication Critical patent/WO2011089284A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/54Portable devices, e.g. wedges; wedges for holding wings open or closed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/14Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening using wedges

Definitions

  • the present invention relates to a piece of small thickness compared to its dimensions in length and width, which is why it is called “flat”, and which will be able to deform flexibly, losing its flatness, when subjected to forces in the right direction
  • Its shape will be, basically and in a generic way, that of the letter U, (figure 2) with two substantially parallel arms (details Bl and B2 in figure 2) and a zone of union between them, which may have different shapes depending on the case , but that, for the purposes of this description, we will consider semicircular (detail S in figure 2), referring in this way to the shape defined by the space between two concentric semicircles and a common diameter.
  • This quality allows its use as a wedge, understanding as such a piece in a triangular shape, with one side substantially shorter than the other two, and that is inserted between two pieces or parts of the same piece that you want to separate or keep separate, keeping this side shorter on the outside to the pieces.
  • the present invention falls within the sector of the object handling and handling technique.
  • the initially planned design has direct application in the manipulation of manufactured natural stone planes from blocks, although applications are foreseen in other sectors, within the handling and handling sector.
  • a piece of wood or metal finished in a very acute dihedral angle is used, which serves to split or divide solid bodies, to adjust or tighten one another, to fit them or to fill any slits or holes .
  • This being the definition that we can find in the dictionary, we will understand that, by extension, it can also be made of materials other than wood or metal.
  • the novelty of the design of the flat wedge referred to in the present invention is that it allows the dihedral angle to be modified, even until it becomes a null angle, that is, a flat piece, with the advantage of being inserted simply and without effort between the solid bodies, to then exert its wedge function after causing its deformation by means of forces at the ends of the wedge outside the solid bodies to be separated.
  • the invention referred to here consists of a piece of a deformable material, and in such a way that two of its dimensions are substantially larger than the third, which is why we call it flat.
  • its shape within that plane will be that of the letter U, with two equal or similar longitudinal parts (figure 2: details Bl and B2), and another that joins them (figure 2: detail S).
  • wedge it is a piece finished at a very acute dihedral angle, without the two sides of the dihedral having to be flat.
  • these faces it is common for these faces to be convexly curved to facilitate greater resistance of the dihedral junction zone and greater ease of insertion once the introduction has begun (Figure 6).
  • concave curved wedges are convenient, sharpening the dihedral's contact area more, sacrificing its greater resistance due to a greater penetration capacity (figure 7).
  • the first is that it can be introduced in its flat position, deforming it later, which is not possible with the traditional wedge. This means that you can separate the moment in which you enter from the one in which you perform your function.
  • the proposed invention when made with an elastic material, will be able to maintain a tightening with the two parts to be separated, so that for small movements of separation or approximation between them, it will deform elastically, varying the tightening force but maintaining the contact, so that it does not fall, does not come off, does not enter more, nor does it turn.
  • Another advantage of the invention here collected with respect to the traditional wedge is based on the fact that it, in its working position, exerts a force between the two pieces almost always unknown, and bases its operation on a very high resistance of the separated pieces with respect to that of the wedge itself. This is so except in the case where it is used to force the separation of two joined parts, that is, when used to split or split solid bodies.
  • the present invention with the help of the knowledge of the science of the Strength of Materials, allows to know by calculation the force that is applied to the two pieces depending on the deformation suffered by the wedge, and also its relationship with the forces applied to the torsion and flexion of the arms.
  • the design of the flat wedge can be adjusted to the parts in contact to ensure that no unexpected damage occurs, both in the parts to be separated, and in the wedge itself, and it can also be calculated, depending on the elasticity of the material used and of the wedge design, the separation and the permissible approximation between the two parts separated by the wedge without any damage, permanent deformation or detachment of the wedge itself.
  • the invention referred to here has an additional advantage, consisting in that it can apply the separation force between the parts, not on the outer edge or edge thereof, but on the inner face. While the traditional wedge, with its triangle shape, and assuming perfectly flat the faces of the parts to be separated, comes into contact at first with the edges of the parts to be separated, (figure 8) the present invention, by design suitable of its arms, it allows to apply the force in the inner faces of the parts, avoiding the application of efforts in the edges, that generally is the weakest part (figure 9).
  • Figure 1 shows the embodiment that can be considered the simplest of the flat wedge, in the form of a letter U, in which the three views, elevation, plan and profile can be seen before deformation, next to the three views of the same piece already deformed.
  • the profile view of the deformed piece allows us to appreciate how the initially flat shape has changed, being precisely in this view where the triangle shape with a side significantly shorter than the other two is appreciated, that is, wedge-shaped .
  • Figure 2 shows the form that we consider the simplest embodiment of the present invention, on which the main parts have been detailed: the arms Bl and B2, and the semicircular junction zone, S.
  • Both arms made here Straight, like the junction zone, here in semicircular form, they can have different shapes, maintaining their behavior as the main characteristic when the arms are deformed by simultaneous bending and torsion forces at the free ends, staying together by the opposite ends.
  • Figure 3 shows the forces that must be applied to achieve deformation of the flat wedge.
  • TI, T2, T3 and T4 are forces of the same module, parallel directions and two-to-two opposite directions, which subject each of the arms to torsional stress; TI and T2 to the Bl arm, and T3 and T4 to the B2 arm.
  • the flexural forces, Fl for the arm Bl and F2 for the arm B2 are also presented, in such a way that they try to approximate both arms.
  • Figure 4 shows the three views, elevation, plan and profile, of the piece of Figure 2 before its deformation, in which the extreme points of the arms, A, B, C and D have been indicated.
  • Figure 5 shows the same part of Figure 2 and 4 already deformed by the action of the forces of Figure 3, in which points A, B, C and D of Figure 2 have moved to occupy the positions ⁇ ', ⁇ ', C 'and D'.
  • the comparison with figure 4 allows us to understand how the whole part has been deformed, and the profile view of the deformed part of figure 5 allows us to see how, viewed in a parallel direction to the plane that contained it before the deformation, it is shaped cradle.
  • Figure 6 shows a traditional wedge with its convex faces, which is referred to in the first paragraph on page 5.
  • Figure 7 shows a wedge with its concave faces, referred to in the same paragraph.
  • Figure 8 shows the two wedges of the previous paragraph inserted between two pieces, and serves to appreciate how the contact between the wedges and the pieces begins at the edge of the latter, concentrating the tensions at these points.
  • Figure 9 shows the same situation for a flat wedge that has been adapted to take form allomated, as mentioned in the second paragraph of page 7.
  • Figure 10 is a first example of how the sides of the arms can be modified to compensate for the greater rotation of the sections closest to the free end of each arm. It has been mentioned previously that, after applying a torsional stress on the free end of the arms, the rotation of the different sections is less and less from this free end to the semicircular junction zone, which results, when the rotation The triangular wedge shape is small in the projection corresponding to the profile view. However, by means of the design proposed in Figure 10, the length of the successive parallel sections is increased, so that, even if the angle of rotation is smaller, the displacement of the extreme points will be greater, as corresponds to a larger turning radius
  • Figure 11 is an attempt to show this effect, as well as its reflection in the profile view of the deformed part. Although the interpretation of this figure is not simple, the importance of being able to design pieces, included in the present invention, that will be able to work as wedges without even needing to contact the edges of the separate parts is highlighted here , avoiding the concentration of tensions that this contact produces.
  • Figure 12 shows, by means of the three plan, elevation and profile views, and with the dimensions expressed in millimeters, the embodiment referred to in the section EXHIBITION OF A MODE OF REALIZATION.
  • the two arms, Bl and B2, as well as the semicircular or semicircle junction zone are detailed.
  • a simple way to carry out the present invention will be by means of a piece made of sheet steel, shaped like a letter U, the sheet being 1 mm thick (0.001 meter) and measuring 205 mm (0.205 meter) high and 100 mm (0.1 meter) wide.
  • the width of the arms will be 30 mm (0.03 meter), this being also the difference between the radii of the two semicircles that delimit the simicircle that is the zone of union of the arms.
  • the diameter of the outer semicircle will be 100 mm (0.1 meter) and the diameter of the inner half circle will be 40 mm (0.04 meter).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Clamps And Clips (AREA)

Abstract

Consiste en una pieza de pequeño espesor y forma aproximada de U, con una parte curva y dos prolongaciones sensiblemente paralelas, con suficiente flexibilidad para deformarse cuando se fuerzan los extremos de la U de forma combinada, acercándolos al tiempo que se giran en sentido contrario respecto a un eje aproximadamente paralelo a las prolongaciones. La flexibilidad será la suficiente para que las dos prolongaciones de la U se torsionen y flexionen, al tiempo que su zona semicircular se comba, dando como resultado una deformada en forma de cuña. Las dos prolongaciones tendrán la longitud necesaria para permitir su torsión y flexión, que inducirán el combado de la parte curva. Estas prolongaciones podrán disponer terminaciones en forma de T para aplicar la torsión con mayor facilidad, y podrán tener sus lados curvilíneos para adaptarse al objeto sobre el que se aplica la cuña, distribuyendo mejor el esfuerzo.

Description

CUÑA PLANA DEFORMABLE
La presente invención se refiere a una pieza de pequeño espesor en comparación con sus dimensiones en largo y ancho, razón por la que se denomina "plana", y que será capaz de deformarse de forma flexible, perdiendo su planicidad, cuando se somete a fuerzas en el sentido adecuado. Su forma será, básicamente y de forma genérica, la de la letra U, (figura 2) con dos brazos sensiblemente paralelos (detalles Bl y B2 en figura 2) y una zona de unión entre ellos, que podrá tener formas diferentes según el caso, pero que, a los efectos de esta descripción, consideraremos semicircular (detalle S en figura 2), refiriéndonos de este modo a la forma definida por el espacio comprendido entre dos semicircunferencias concéntricas y un diámetro común.
Mediante la aplicación de fuerzas en los extremos libres de los brazos de modo adecuado para que los soliciten a torsión y flexión de forma combinada (figura 3, fuerzas de torsión TI y T2 en brazo Bl; fuerzas de torsión T3 y T4 en brazo B2; fuerza de flexión Fl en brazo Bl y fuerza de flexión F2 en brazo B2), se obtendrá una pieza deformada cuya característica principal será que, proyectada en un plano perpendicular al plano que la contenía antes de la deformación, cambia su forma plana para tomar una forma triangular (figura 4, alzado, planta y perfil antes de deformación, y figura 5, alzado, planta y perfil tras deformación). Esta cualidad permite su empleo como cuña, entendiendo como tal una pieza en forma triangular, con uno de los lados sensiblemente más corto que los otros dos, y que se inserta entre dos piezas o partes de una misma pieza que se quieren separar o mantener separadas, manteniendo este lado más corto en la parte exterior a las piezas.
SECTOR DE LA TÉCNICA
La presente invención se encuadra dentro del sector de la técnica de manutención y manipulación de objetos. El diseño inicialmente previsto tiene aplicación directa en la manipulación de fabricados planos de piedra natural a partir de bloques, aunque se prevén aplicaciones en otros sectores, dentro del sector de la manutención y manipulación.
ESTADO DE LA TÉCNICA
Según la descripción más general, se denomina cuña a una pieza de madera o de metal terminada en ángulo diedro muy agudo, que sirve para hender o dividir cuerpos sólidos, para ajustar o apretar uno con otro, para calzarlos o para llenar alguna raja o hueco. Siendo ésta la definición que podemos encontrar en el diccionario, entenderemos que, por extensión, también podrá estar fabricada en otros materiales distintos de madera o de metal.
Sin embargo, es característica propia de una cuña el hecho de que su forma de ángulo diedro muy agudo tenga carárcter permanente, sin que esté diseñada para su modificación intencionada. A pesar de esto, sufrirá o podrá sufrir deformación por flexibilidad o elasticidad, e incluso deformaciones permanentes en su uso. Todos los materiales con que se puedan fabricar tendrán unas características de flexibilidad, elasticidad y deformación más o menos conocidas y previsibles, pero hasta la fecha, estas propiedades no han sido aprovechadas como medio para obtener un diseño que permita modificar el referido ángulo diedro.
La novedad del diseño de la cuña plana a que se refiere la presente invención radica en que permite modificar el ángulo diedro, incluso hasta convertirlo en un ángulo nulo, es decir, en una pieza plana, con la ventaja de insertarse de forma sencilla y sin esfuerzo entre los cuerpos sólidos, para luego ejercer su función de cuña tras provocar su deformación mediante fuerzas en los extremos de la cuña exteriores a los cuerpos sólidos a separar. DESCRIPCIÓN DE LA INVENCIÓN.
De una forma sencilla, la invención aquí referida consiste en una pieza de un material deformable, y con una forma tal que dos de sus dimensiones son sensiblemente mayores que la tercera, razón por la que la denominamos plana. En su diseño más sencillo, su forma dentro de ese plano será la de la letra U, con dos partes longitudinales iguales o similares (figura 2: detalles Bl y B2), y otra que las une (figura 2: detalle S). A las dos partes longitudinales las denominaremos brazos, y a la que las une semicírculo.
Mediante la aplicación a estos brazos de un esfuerzo de torsión en sentido contrario en cada uno de ellos (figura 3: detalles TI y T2 en brazo Bl y detalles T3 y T4 en brazo B2), y una flexión del uno hacia el otro (figura 3: detalle Fl en brazo Bl y detalle F2 en brazo B2), se llevará a cabo una deformación de la pieza, perdiendo su forma plana (figura 4) y tomando una forma tal que su vista en un sentido paralelo al plano que antes la contenía se aproximará al de un triángulo con un lado mucho menor que los otros dos, es decir, con forma de cuña (figura 5).
Es necesario aclarar que la definición que se dio anteriormente de cuña dice que se trata de una pieza terminada en ángulo diedro muy agudo, sin que las dos caras del diedro tengan que ser planas. Así, es frecuente que esas caras sean curvadas en forma convexa para facilitar una mayor resistencia de la zona de unión del diedro y una mayor facilidad de inserción una vez comenzada la introducción (figura 6). También hay aplicaciones en las que convienen cuñas curvadas en forma cóncava, afilando más la zona de contacto del diedro, sacrificando su mayor resistencia por una mayor capacidad de penetración (figura 7).
Las aclaraciones del párrafo anterior son convenientes para explicar que, aunque la invención aquí referida no tiene forma plana en ninguna de las caras del diedro, y más aún, no forma diedro alguno más que en el sentido de la proyección en un plano perpendicular al que la contenía antes de su deformación, tiene capacidad para actuar como cuña, y además, con ciertas ventajas.
Entre las ventajas que presenta, la primera es que se podrá introducir en su posición plana, deformándola después, lo que no es posible con la cuña tradicional. Esto supone que se puede separar el momento en el que se introduce de aquél en el que realiza su función.
La forma tradicional de trabajo de la cuña supone, en la mayoría de la ocasiones, una cierta violencia en su introducción, que se logra generalmente mediante golpeo en su lado más corto. Sin embargo, la invención aquí referida no requiere golpeo para su introducción. Y, sin embargo, el hecho de que no lo requiera no implica que no lo pueda admitir, ya que se puede golpear una vez deformada en el mismo modo que a una cuña tradicional, o incluso antes de su deformación.
Otro inconveniente que presenta la cuña tradicional es que se mantiene en su posición gracias al apriete que provoca entre las piezas a separar. Esto quiere decir que, si por alguna circunstancia estas dos piezas se separan, se pierde la fuerza de contacto con ellas, y se corre el riesgo de que deje de funcionar, de forma que, cuando las piezas se vuelven a aproximar, es muy posible que la cuña ya no esté en su posición de trabajo, bien porque se haya caído o desprendido, bien porque se haya introducido más, o bien porque se haya girado o movido. La invención propuesta, cuando se realice con un material elástico, será capaz de mantener un apriete con las dos partes a separar, de modo que para pequeños movimientos de separación o de aproximación entre ellas, se deformará elásticamente, variando la fuerza de apriete pero manteniendo el contacto, de modo que ni se cae, ni se desprende, ni se introduce más, ni tampoco se gira.
Otra ventaja de la invención aquí recogida respecto a la cuña tradicional se fundamenta en que ésta, en su posición de trabajo, ejerce una fuerza entre las dos piezas casi siempre desconocida, y basa su funcionamiento en una muy alta resistencia de las piezas separadas respecto a la de la propia cuña. Esto es así salvo en el caso en que se utiliza para forzar la separación de dos partes unidas, es decir, cuando se utiliza para hender o dividir cuerpos sólidos. La presente invención, con la ayuda de los conocimientos de la ciencia de la Resistencia de los Materiales, permite conocer mediante cálculo la fuerza que se aplica a las dos piezas en función de la deformación sufrida por la cuña, y también su relación con las fuerzas aplicadas para la torsión y flexión de los brazos. Esto permitirá ajustar la fuerza de separación entre las piezas a voluntad, tanto para hender o dividir cuando se trate de un cuerpo sólido, como para ajustar o apretar cuando sea el caso de dos piezas separadas. Se podrá asi ajustar el diseño de la cuña plana a las piezas en contacto para asegurar que no se producen daños inesperados, tanto en las partes a separar, como en la propia cuña, y también se podrá calcular, en función de la elasticidad del material utilizado y del diseño de la cuña, la separación y la aproximación admisible entre las dos partes separadas por la cuña sin que se produzcan daños, deformaciones permanentes o el desprendimiento de la propia cuña.
Por último, cabe decir que la invención aquí referida tiene una ventaja adicional, consistente en que puede aplicar la fuerza de separación entre las partes, no en el borde exterior o arista de las mismas, sino en la cara interior. Mientras la cuña tradicional, con su forma de triángulo, y suponiendo perfectamente planas las caras de las partes a separar, entra en contacto en un primer momento con las aristas de las partes a separar, (figura 8) la presente invención, mediante el diseño adecuado de sus brazos, permite aplicar la fuerza en las caras interiores de las partes, evitando la aplicación de esfuerzos en las aristas, que generalmente es la parte más débil (figura 9).
Para lograr esto será necesario adaptar el diseño de los brazos, de modo que tengan una forma más estrecha en la parte más exterior que en la parte interior. Es un hecho conocido y ampliamente fundamentado en la ciencia de la Resistencia de los Materiales que, para las distintas secciones de los brazos perpendiculares a su eje, el giro que produce el momento torsor es mayor cuanto más cercana esté la sección al punto de aplicación del esfuerzo. Para la invención aquí recogida, en el momento de aplicarse las fuerzas de giro (TI y T2 en Bl , y T3 y T4 en B2 de la figura 3), la torsión se aplica en el extremo libre de cada uno de los brazos, mientras que la zona semicircular de unión será la que impida el giro. Por este motivo los brazos estarán más girados cuanto más cerca de sus extremos libres. Visto en su proyección de perfil, esto es lo que explica la forma en cuña (figura 5). Sin embargo, si los brazos tienen mayor sección en la parte más cercana a la zona semicircular (figura 10, sección EFGH frente a sección ABCD en el extremo), será posible compensar este efecto, y la cuña, en el momento de su deformación, y vista perpendicularmente a su plano de simetría (figura 11), tomará una forma alomada, similar a una bala o proyectil, de modo que será la parte superior de ese lomo la que entre en contacto con las caras interiores de las partes a separar.
DESCRIPCIÓN DE LOS DIBUJOS.
La figura 1 muestra la realización que se puede considerar más sencilla de la cuña plana, en forma de letra U, en la que se pueden ver las tres vistas, alzado, planta y perfil antes de su deformación, junto a las tres vistas de la misma pieza ya deformada.
En la parte izquierda tenemos las vistas antes de deformación, donde los puntos A y B se corresponden con los extremos libres de uno de los brazos, mientras los punto C y D se corresponden con los extremos libres del otro brazo. Se aprecia que el alzado y el perfil presentan muy pequeño espesor a la vista, como corresponde a una pieza plana.
En la parte derecha tenemos también las tres vistas, alzado, planta y perfil de la pieza deformada, donde los puntos A, B, C y D anteriores se han desplazado, tomando las posiciones Α', B', C y D'. Se observa de forma sencilla que los segmentos A-B y C-D tienen su posición girada con repecto a la original, siendo el giro de ambos segmentos del mismo ángulo y sentido opuesto. Este giro es debido a la solicitación a torsión realizada en los extremos libres de los brazos.
También se puede apreciar que estos segmentos se han acercado, sometiendo a los brazos a un esfuerzo de flexión. Esta deformación se aprecia especialmente en su vista en planta, donde la distancia entre los puntos B' y C es claramente inferior a la que separa los puntos B y C.
La vista de perfil de la pieza deformada permite apreciar cómo la forma inicialmente plana ha cambiado, siendo precisamente en esta vista en la que se aprecia la forma de triángulo con un lado significativamente más corto que los otros dos, es decir, en forma de cuña.
En la figura 2 se presenta la forma que consideramos la realización más sencilla de la presente invención, sobre la que se han detallado las partes principales: los brazos Bl y B2, y la zona de unión semicircular, S. Tanto los brazos, realizados aquí rectos, como la zona de unión, aquí en forma semicircular, podrán tener formas diferentes, manteniendo como característica principal su comportamiento cuando se deforman los brazos mediante fuerzas de flexión y torsión simultáneas en los extremos libres, manteniéndose unidos por los extremos opuestos. La figura 3 muestra las fuerzas que se deben aplicar para lograr la deformación de la cuña plana. Así, TI, T2, T3 y T4 son fuerzas de igual módulo, direcciones paralelas y sentidos contrarios dos a dos, que someten a cada uno de los brazos a esfuerzo de torsión; TI y T2 al brazo Bl, y T3 y T4 al brazo B2. También se presentan las fuerzas de flexión, Fl para el brazo Bl y F2 para el brazo B2, en sentido tal que tratan de aproximar ambos brazos.
La figura 4 muestra las tres vistas, alzado, planta y perfil, de la pieza de la figura 2 antes de su deformación, en la que se han señalado los puntos extremos de los brazos, A, B, C y D.
En la figura 5 se muestra la misma pieza de la figura 2 y 4 ya deformada por acción de las fuerzas de la figura 3, en la que los puntos A, B, C y D de la figura 2 se han desplazado para ocupar las posiciones Α', Β', C' y D'. La comparación con la figura 4 permite entender cómo se ha deformado toda la pieza, y la vista de perfil de la pieza deformada de la figura 5 permite ver cómo, vista en sentido paralelo al plano que la contenía antes de la deformación, tiene forma de cuña.
La figura 6 muestra una cuña tradicional con sus caras convexas, a la que se hace referencia en el primer párrafo de la página 5. La figura 7 muestra una cuña con sus caras cóncavas, a la que se hecho referencia en el mismo párrafo.
La figura 8 muestra las dos cuñas del párrafo anterior insertadas entre dos piezas, y sirve para apreciar cómo el contacto entre las cuñas y las piezas comienza en la arista de estas últimas, concentrando las tensiones en estos puntos. La figura 9 muestra la misma situación para una cuña plana que se ha adaptado para tomar forma alomada, tal como se menciona en el párrafo segundo de la página 7.
La figura 10 es un primer ejemplo de cómo se pueden modificar los lados de los brazos para compensar el mayor giro de las secciones más próximas al extremo libre de cada brazo. Se ha mencionado anteriormente que, tras aplicar un esfuerzo de torsión en el extremo libre de los brazos, el giro de las distintas secciones es cada vez menor desde este extremo libre hasta la zona semicircular de unión, lo que da como resultado, cuando el giro es pequeño, la forma triangular de cuña en la proyección correspondiente a la vista de perfil. Sin embargo, mendiante el diseño propuesto en la figura 10, se incrementa la longitud de las sucesivas secciones paralelas, con lo que se consigue que, aún siendo menor el ángulo de giro, el desplazamiento de los puntos extremos será mayor, como corresponde a un mayor radio de giro.
La figura 11 es un intento de mostrar este efecto, así como su reflejo en la vista de perfil de la pieza deformada. Aunque la interpretación de esta figura no es sencilla, se remarca aquí la importancia que tiene el hecho de poder diseñar piezas, incluidas en la presente invención, que serán capaces de trabajar como cuñas sin necesitar siquiera entrar en contacto con las aristas de las partes separadas, evitando la concentración de tensiones que este contacto produce.
La figura 12 muestra, mediante las tres vistas planta, alzado y perfil, y con las cotas expresadas en milímetros, el modo de realización que se refiere en el apartado EXPOSICÓN DE UN MODO DE REALIZACIÓN. Se detallan los dos brazos, Bl y B2, así como la zona de unión semicircular o semicírculo S.
EXPOSICIÓN DE UN MODO DE REALIZACIÓN.
Una forma sencilla de realizar la presente invención será mediante una pieza realizada en chapa de acero, con forma de letra U, siendo la chapa de espesor de 1 mm (0,001 metro) y con unas medidas de 205 mm (0,205 metro) de altura y 100 mm (0,1 metro) de ancho. El ancho de los brazos será de 30 mm (0,03 metro), siendo ésta también la diferencia entre los radios de las dos semicircunferencias que delimitan el simicírculo que supone la zona de unión de los brazos. El diámetro de la semicircunferencia exterior será de 100 mm (0,1 metro) y el diámetro de la semicircunferencia interior será de 40 mm (0,04 metro).

Claims

REIVINDICACIONES
1. Pieza de espesor significativamente menor que su altura y su anchura, caracterizada por estar formada por dos partes longitudinales iguales o similares, situadas paralelas o aproximadamente parelelas, y unidas mediante otra parte transversal, formando las tres partes una pieza única, realizada en un material flexible, capaz de deformarse cuando se solicita adecuadamente, y que, bajo esa solicitación, toma una forma tal que, vista su proyección en un plano perpendicular al que contiene sus dimensiones de altura y anchura, tendrá la forma muy cercana a la de un triángulo, con tres lados que, aún no siendo perfectamente rectilíneos, tendrán dos de ellos longitudes significativamente mayores que el tercero, de modo que tendrá forma de cuña.
2. Pieza de espesor significativamente menor que su altura y su anchura, según la reivindicación 1 , caracterizada por disponer de prolongaciones de las partes longitudinales en sus extremos libres y en sentido perpendicular, que facilitarán la aplicación de esfuerzos de torsión de las citadas partes longitudinales.
3. Pieza de espesor significativamente menor que su altura y su anchura, según la reivindicación 1 , caracterizada por que sus partes longitudinales tienen una forma ligeramente curvada para facilitar el contacto con las piezas entre las que actúa como cuña.
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2010/070303 2010-01-25 2010-05-06 Cuña plana deformable WO2011089284A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201000101A ES2363741B1 (es) 2010-01-25 2010-01-25 Cuña plana deformable.
ES201000101 2010-01-25

Publications (1)

Publication Number Publication Date
WO2011089284A1 true WO2011089284A1 (es) 2011-07-28

Family

ID=44306415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070303 WO2011089284A1 (es) 2010-01-25 2010-05-06 Cuña plana deformable

Country Status (2)

Country Link
ES (1) ES2363741B1 (es)
WO (1) WO2011089284A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190006634A (en) * 1900-04-09 1900-05-26 Edwin Orlando Blackwell An Improved Door Holder.
GB191215287A (en) * 1912-07-01 1912-10-31 Jacob Henry Coffman An Improved Door Stop and Holder.
US1633202A (en) * 1926-11-24 1927-06-21 Leland W Williams Door holder
ES1017759U (es) * 1991-06-03 1992-01-01 Clares Perales Angel Fernando Cuna para nivelar la posicion de un objeto dispuesto sobre una superficie plana.
ES1042740U (es) * 1999-04-08 1999-09-16 Ferres Francesc Ferres Elemento limitador de movimiento.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804038A (en) * 1997-09-08 1998-09-08 Conoco Inc. Reduction of metal stresses in delayed coking drums

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190006634A (en) * 1900-04-09 1900-05-26 Edwin Orlando Blackwell An Improved Door Holder.
GB191215287A (en) * 1912-07-01 1912-10-31 Jacob Henry Coffman An Improved Door Stop and Holder.
US1633202A (en) * 1926-11-24 1927-06-21 Leland W Williams Door holder
ES1017759U (es) * 1991-06-03 1992-01-01 Clares Perales Angel Fernando Cuna para nivelar la posicion de un objeto dispuesto sobre una superficie plana.
ES1042740U (es) * 1999-04-08 1999-09-16 Ferres Francesc Ferres Elemento limitador de movimiento.

Also Published As

Publication number Publication date
ES2363741A1 (es) 2011-08-12
ES2363741B1 (es) 2012-06-19

Similar Documents

Publication Publication Date Title
ES2620969T3 (es) Conjunto para fijar un miembro de desgaste
ES2698402T3 (es) Sistema de juego de construcción
ES2401176T3 (es) Órgano de fijación con cavidad en un extremo en una parte terminal fileteada, elemento macho, herramienta de maniobra y calibre que comprende un elemento macho de este tipo
ES2271533T3 (es) Articulacion para conectar componentes con lados longitudinales opuestos entre si, asi como una cinta flexible para el uso de una articulacion de este tipo.
ES2275921T3 (es) Brazo de limpiaparabrisas.
ES2149735T3 (es) Sistema de osteosintesis con deformacion elastica para columna vertebral.
ES2330244T3 (es) Remache para tejido.
ES2335695T3 (es) Destornillador con sistema de retencion de tronillos.
ES2760926T3 (es) Clip para fijar un primer elemento a un segundo elemento y dispositivo con un clip de este tipo
CN106504648B (zh) 一种用于保护柔性屏的链式装置及柔性显示设备
WO2007127604A3 (en) Surgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements
ES2555545T3 (es) Hebilla
ES2803963T3 (es) Taco basculante
ES2664176T3 (es) Implante quirúrgico para una fusión entre dos porciones de hueso y ancilar de apriete para apretar un implante quirúrgico de este tipo
ES2480296T3 (es) Tira de grapas para fijar placas de aislamiento a montantes de madera
JP3907769B2 (ja) 爆発力駆動打ち込み装置のための支持ストリップ
BR0318508A (pt) dispositivo para ligação de um transportador longitudinal a um osso
BR112014030800B1 (pt) Clipe cirúrgico compreendendo dois membros de clipe
WO2011089284A1 (es) Cuña plana deformable
ES2752098T3 (es) Taco basculante
ES2764274T3 (es) Brida de cable antideslizante
CN116018495B (zh) 具有改进的防翻卷功能和突出度的测量卷尺
EP2988018A1 (en) Self-adhesive balancing weight for a vehicle wheel
ES2295988T3 (es) Llave fija.
US20210216043A1 (en) Elastic retaining member for fixing a timepiece component on a support element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843780

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843780

Country of ref document: EP

Kind code of ref document: A1