WO2011089080A1 - Flachleitervorrichtung und elektrischer energiespeicher - Google Patents

Flachleitervorrichtung und elektrischer energiespeicher Download PDF

Info

Publication number
WO2011089080A1
WO2011089080A1 PCT/EP2011/050497 EP2011050497W WO2011089080A1 WO 2011089080 A1 WO2011089080 A1 WO 2011089080A1 EP 2011050497 W EP2011050497 W EP 2011050497W WO 2011089080 A1 WO2011089080 A1 WO 2011089080A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat conductor
conductor device
electrical
flat
energy storage
Prior art date
Application number
PCT/EP2011/050497
Other languages
English (en)
French (fr)
Inventor
Georg Fischer
Thomas Schmid
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2011089080A1 publication Critical patent/WO2011089080A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a flat conductor device according to the preamble of claim 1 and an electrical energy storage device with such a flat conductor device.
  • Flat conductor devices are used in numerous applications for contacting electrical components and for distributing electrical signals and currents. If several different electrical components are to be contacted by means of the flat conductor device, then different requirements often arise for the design of the flat conductors, in particular for the cross section of the corresponding connection lug. One way to meet these requirements is to use appropriately designed for each electrical component with different requirements flat conductor. Another possibility is to use for all electrical components to be contacted uniformly flat conductor, which meet the highest demands on the cross-section or the thickness of the terminal lug.
  • these solutions result in significant disadvantages, such as increased manufacturing costs, high costs and low flexibility.
  • a flat conductor device according to independent claim 1 comprises at least one electrically insulating carrier layer and at least one electrical flat conductor.
  • the flat conductor is arranged on the carrier layer and has at least one connection lug for contacting an electrical component.
  • the flat conductor device is characterized in that at least one terminal lug of the at least one flat ⁇ conductor is folded or bent at least once by 180 °.
  • the idea underlying the invention is to be seen in meeting different demands on the cross section or the thickness of the terminal lugs by folding and thereby caused reinforcement or thickening of the cross section of the terminal lug.
  • connection lugs with a uniform cross section and / or uniform thickness can be used for the flat conductor device first. These differ, depending on the requirement of the electrical component to be contacted, in the region of the terminal lugs in their thickness, which results from the number of folds.
  • Such a lead frame assembly can be adjusted in the area of their terminal lugs individually to different Anforde ⁇ conclusions with respect to the thickness or the cross-section of the connecting lugs in a simple and economical manner, despite the use of flat electrical conductors having uniform cross-section and / or uniform thickness.
  • the cross-sections of the connection lugs can be reinforced by a single or multiple folding by 180 °.
  • the folding is advantageously designed so that the folded portions of the terminal lug abut each other directly and over the entire area.
  • the folded portions of the terminal lugs may also be electrically contacted to each other by welding or soldering or similar bonding methods.
  • the flat conductor device according to claim 2 is a flexible flat conductor device.
  • both the electrically insulating carrier layer, as well as the at least one electrical With regard to the thickness and the material used, the flat conductors are designed such that they are flexible or flexible. Due to the flexibility of the flat conductor device, it is possible to safely contact even a plurality of electrical components whose terminals are not in one plane.
  • At least one of the terminal lugs of the at least one flat conductor is folded several times by 180 °.
  • the connecting lugs of the cross-section or the thickness of the connecting sheet may be reproduced very simp ⁇ che and inexpensive manner.
  • the multiple folding or bending can take place in one direction or in opposite directions.
  • the folded portions of the at least one An ⁇ final lug are welded together, soldered or crimped. Due to the connection of the folded portions of the terminal lug a secure connection is ensured and prevents deployment of the terminal lug. Further, the electrical contact of the folded portions si ⁇ cherhog and the mechanical stability of Ranfah- ne is increased.
  • At least one of the terminal lugs is coated or tempered.
  • the coating is carried out, for example, by means of an over ⁇ train with a suitable metallic material (eg nickel).
  • a suitable metallic material eg nickel
  • the electrical conductivity or the resistance of the terminal lug can be increased.
  • By tempering the terminal lug their hardness and toughness can be improved.
  • An embodiment of the flat conductor device according to claim 6, this has a plurality of flat conductors, wherein these are defrost ⁇ nander electrically isolated.
  • this has at least one electrical component which is connected via recesses in the electrically insulating carrier layer to at least one of the flat conductors.
  • the electrical component can be arranged, for example, directly on the electrically insulating carrier layer or on a printed circuit board arranged between the electrical component and the electrically insulating carrier layer. In this way, results in a very compact structure, the transmission paths or contacting takes place in a very short ways.
  • An electrical energy store according to independent claim 8 has a plurality of energy storage cells and a flat conductor device according to claim 6. At least a part of the flat conductor is in each case assigned to one of the energy storage cells and electrically contacted by means of the associated connection lug with the respectively assigned energy storage cell.
  • an electrical energy storage are often components having different demands on the cross-section or the thickness of the connecting lug of the flat conductor to PLEASE CONTACT ⁇ ren.
  • the energy storage cells which both elec- can be rochemical as well as electrostatic nature, in comparison to other electrical components, such as sensor elements, with respect to the thickness of the An ⁇ final flag strongly divergent requirements.
  • this has at least one electrical component, which is electrically connected via recesses in the electrically insulating carrier layer with at least a portion of the flat conductor of the flat conductor device.
  • the electrical component for detecting Be ⁇ operating variables and / or for controlling the operation of the energy storage cells is formed.
  • the electrical component can be designed in particular for controlling the charging process and / or the discharging process of the energy storage cells.
  • this has a housing with an electrical connection, wherein the energy storage cells and the flat conductor device are arranged in the housing and the electrical component is electrically connected to the terminal of the housing.
  • connection of the housing accordingly serves for the external contact of the flat conductor device or the associated electrical component arranged in the housing.
  • the connection can be designed, for example, as an electrical plug connection. That way, all the electronics can the energy storage are arranged in the housing, where ⁇ is protected by this safe from damage and environmental influences.
  • Figure 1 is a schematic representation of a
  • FIGS. 2A and 2B are schematic detail views of a terminal lug of the flat conductor device
  • Figure 3 is a schematic cross-sectional view of
  • Figure 4 is an electrical energy storage with egg ner flat conductor device
  • the lead frame assembly 1 includes an electrically insulating carrier layer 2 and a plurality, disposed on the Trä ⁇ carrier layer 2, a flat electric conductor 3 (hidden in figure 1 under the electrically insulating carrier layer 2) each having a connecting tab 4 for contacting ei ⁇ ner electrical component on ,
  • the terminal lugs 4 of the flat conductor 3 protrude laterally beyond the electrically insulating carrier layer 2.
  • the terminal lugs 4 of the flat conductor 3 are folded or bent at least once by 180 ° (De ⁇ details in Figures 2A and 2B).
  • the electrically insulating carrier layer 2 has a plurality of recesses 6 in the form of through-holes, through which the flat conductor 3 running under the carrier layer 2 can be contacted. ⁇
  • Figures 2A and 2B are enlarged views of the detail indicated by the numeral "A" in Figure 1.
  • Figures 2A and 2B illustrate embodiments of the terminal lugs 4 of the flat conductors 3.
  • the terminal lugs 4 are folded several times by 180 ° .
  • the terminal lug 4 is bent several times in the same direction gefal ⁇ tet respectively, the terminal lug 4 is folded several times in the opposite direction in the Ausges ⁇ taltung the figure 2B. in both cases, the terminal lugs 4 are folded such that the folded portions 7, 8, 9 of the An ⁇ closing lug 4 abut each other directly and over the entire surface and thus are in electrically conductive contact.
  • the folded sections 7, 8, 9 of the terminal lug 4 can be welded, soldered or crimped together.
  • the terminal lugs 4 can be coated with appropriate materials (for example nickel). Furthermore, a compensation of the terminal lugs 4 is possible.
  • FIG 3 the cross section of the flat conductor device 1 is shown schematically.
  • the DAR g Hughes in Figure 3 lead frame assembly 1 in addition a printed circuit board 8 and a plurality, is arranged on the printed circuit board 8, elekt ⁇ generic components 9.
  • the flat conductor device 1 has a plurality of flat conductors 3, which are arranged between the electrically insulating carrier layer 2 and an additional electrically insulating cover layer 10. For the sake of clarity, only two are electrical
  • the flat ⁇ conductor device is designed as a flexible flat conductor device.
  • the carrier layer 2, the cover layer 10, the flat conductor 3 and the printed circuit board 8 constructed according to the material used and the thickness accordingly.
  • the electrically insulating carrier layer 2 and the electrically insulating cover layer 10 can be formed, for example, from very thin, flexible films, such as, for example, a polyimide film with a thickness of 20 to 50 microns.
  • the flat conductor 3 may be formed, for example, of very thin copper or gold sheets with 50 to 100 microns thickness.
  • the circuit board 8 is formed accordingly.
  • the flat conductors 3 are connected to the electrically insulating carrier layer 2 and the electrically insulating cover layer 10 by means of an adhesive 11, for example acrylic adhesive verbun ⁇ the.
  • the adhesive 11 preferably has electrically isolie ⁇ -saving properties. Between the flat conductors existing spaces are filled with the electrically insulating adhesive 11 so that the flat conductor 3 with each other elekt ⁇ driven isolated.
  • the terminal lug 4 of the flat conductor 3 is shown. These projects laterally beyond the electrically isolie ⁇ Rende cover layer 10 and carrier layer 2 addition. As already explained with reference to Figure 1, the terminal lug 4 is bent by 180 °, whereby here also the folded portions 7, 8 of the terminal lug 4 abut each other directly and over the entire surface. In contrast to the embodiments of the terminal lug 4 illustrated in FIGS. 2A and 2B, the terminal lug 4 shown in FIG. 3 is folded only once. The folded sections 7, 8 of the terminal lug 4 are mi ⁇ trate welded. Alternatively, they can also be crimped or soldered.
  • the terminal lug 4 of the flat conductor 3 is electrically connected to a not belonging to the flat conductor device 1 electrical component 5, for example by soldering or welding.
  • the arranged on the circuit board 8 electrical components 9 may be formed as switching, control and regulating circuits.
  • the circuit board 8 can be applied to the electrically isolie ⁇ leaders carrier layer 2 by means of a suitable adhesive layer 11 be attached.
  • At least a part of which is arranged on the printed ⁇ te 8 electrical components are electrically connected through the recesses 6 in the electrically insulating carrier layer 2 with at least a portion of the flat conductor 3, so that electrical signals between the flat conductors 3 and the electrical components can flow. 9
  • electrical signals between the electrical components 9 and the means of the terminal lug 4 of the flat ⁇ conductor 3 contacted electrical component 5 can be exchanged.
  • the electrical energy store 12 has a housing 13. In the housing, a plurality of energy storage cells 14 and a flat conductor device 1 shown schematically in Figure 3 are arranged.
  • the cover layer 10, the flat conductor 3, the carrier layer 2 and the circuit board 8 are summarized for reasons of better clarity .
  • the energy storage cells 14 are preferably electrochemical batteries (for example, lithium ion cells), but they may also be electrostatic energy storage cells 14.
  • the energy storage cells 14 are each associated with a flat conductor 3 and, via a pole of the energy storage cell, electrically connected to the terminal lug 4 of the respective flat conductor 3.
  • the housing 13 also has an electrical connection 15, which may be formed, for example, as a plug.
  • the electrical connection 15 is at least one
  • the at least one electrical component 9 of the flat conductor device 1 is designed for controlling the operation of the battery cells 14, in particular for controlling the charging and discharging processes of the battery cells 14.
  • other electrical components may be arranged in the housing of the energy storage device, which are to be contacted with the flat conductor device.
  • the flat conductor device 1 enables a high degree of flexibility with different demands on the terminal lugs 4 of the flat conductors 3, which occur in particular in the case of different electrical components to be contacted.
  • the cross-section or the thickness of the connecting lug can multiplied 4 and are individually adapted to the animal to kontak ⁇ electrical component. 5
  • the electrical energy storage 12 according to the invention has ei ⁇ ne such flat conductor device 1 according to the invention. Since a plurality of different electrical components are frequently to be contacted in an energy store, the abovementioned advantages of the flat conductor apparatus 1 according to the invention are used here in full. Through the flat conductor device 1 several different electrical components can be contacted (in ⁇ play energy storage cells, sensors, etc.) reliable, in accordance with the requirements for the terminal lug. 4 When using a flexible flat conductor device 1 and tolerances in the arrangement of the components to be contacted 5 can be compensated, without causing an impairment of the electrical contact or damage to the flat conductor device 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

Es wird eine Flachleitervorrichtung (1) vorgeschlagen mit einer elektrisch isolierenden Trägerschicht (2), zumindest einem elektrischen Flachleiter (3), welcher auf der Trägerschicht (2) angeordnet ist und welcher zumindest eine Anschlussfahne (4) aufweist. Zumindest eine Anschlussfahne (4) des zumindest einen Flachleiters (3) ist zumindest einmal um 180° gefaltet.

Description

Beschreibung
Flachleitervorrichtung und elektrischer Energiespeicher Die Erfindung betrifft eine Flachleitervorrichtung gemäß dem Oberbegriff des Anspruchs 1 und einen elektrischen Energiespeicher mit einer derartigen Flachleitervorrichtung.
Flachleitervorrichtungen gemäß dem Oberbegriff des Anspruchs 1 werden in zahlreichen Anwendungen zur Kontaktierung elektrischer Bauteile und zur Verteilung von elektrischen Signalen und Strömen verwendet. Sollen mittels der Flachleitervorrichtung mehrere verschiedene elektrische Bauteile kontaktiert werden, so ergeben sich oft unterschiedliche Anforderungen an die Ausgestaltung der Flachleiter, insbesondere an den Querschnitt der entsprechenden Anschlussfahne. Eine Möglichkeit, diesen Anforderungen gerecht zu werden ist, für jedes elektrische Bauteil mit unterschiedlichen Anforderungen entsprechend ausgestaltete Flachleiter zu verwenden. Eine weitere Möglichkeit ist, für alle zu kontaktierenden elektrischen Bauteile einheitlich Flachleiter zu verwenden, welche den höchsten Ansprüchen an den Querschnitt bzw. die Dicke der Anschlussfahne genügen. Durch diese Lösungen ergeben sich jedoch erhebliche Nachteile, wie erhöhten Fertigungsaufwand, hohe Kosten und geringe Flexibilität.
Es ist die Aufgabe der vorliegenden Erfindung eine Flachlei¬ tervorrichtung und einen Energiespeicher bereitzustellen, welche sich durch hohe Flexibilität, insbesondere bei unter- schiedlichen Anforderungen an die Kontaktierung elektrischer Bauteile, auszeichnen.
Diese Aufgabe wird durch die Flachleitervorrichtung und den elektrischen Energiespeicher gemäß den unabhängigen Ansprü- chen gelöst. In den Unteransprüchen sind vorteilhafte Ausges¬ taltungen der Erfindung beschrieben. Eine Flachleitervorrichtung gemäß dem unabhängigen Anspruch 1 umfasst zumindest eine elektrisch isolierende Trägerschicht und zumindest einen elektrischen Flachleiter. Der Flachleiter ist auf der Trägerschicht angeordnet und weist zumindest eine Anschlussfahne zur Kontaktierung eines elektrischen Bauteils auf. Die Flachleitervorrichtung zeichnet sich dadurch aus, dass zumindest eine Anschlussfahne des zumindest einen Flach¬ leiters zumindest einmal um 180° gefaltet bzw. gebogen ist. Die der Erfindung zugrunde liegende Idee ist darin zu sehen, unterschiedlichen Ansprüchen an den Querschnitt bzw. die Dicke der Anschlussfahnen durch Faltung und eine dadurch verursachte Verstärkung bzw. Verdickung des Querschnitts der Anschlussfahne zu begegnen. Auf diese Weise können für die Flachleitervorrichtung zunächst einzelne Flachleiter mit einheitlichem Querschnitt und/oder einheitlicher Dicke verwendet werden. Diese unterscheiden sich, je nach Anforderung des zu kontaktierenden elektrischen Bauteils, im Bereich der Anschlussfahnen in ihrer Dicke, welche sich durch die Anzahl der Faltungen ergibt. Eine derartige Flachleitervorrichtung kann trotz Verwendung elektrischer Flachleiter mit einheitlichen Querschnitt und/oder einheitlicher Dicke im Bereich ihrer Anschlussfahnen individuell an unterschiedliche Anforde¬ rungen bezüglich der Dicke oder des Querschnitts der An- schlussfahnen auf einfache und kostengünstige Weise angepasst werden. Bei Bedarf können die Querschnitte der Anschlussfahnen durch einmaliges oder mehrfaches Falten um 180° verstärkt werden. Die Faltung ist vorteilhafterweise so gestaltet, dass die gefalteten Abschnitte der Anschlussfahne unmittelbar und ganzflächig aneinander anliegen. Alternativ können die gefalteten Abschnitte der Anschlussfahnen auch durch Schweißen oder Löten oder ähnliche Verbindungsverfahren miteinander elektrisch kontaktiert werden. In einer Ausgestaltung der Flachleitervorrichtung nach Anspruch 2 handelt es sich um eine flexible Flachleitervorrichtung. Bei dieser Ausgestaltung sind sowohl die elektrisch isolierende Trägerschicht, als auch der zumindest eine elekt- rische Flachleiter bezüglich der Dicke und des verwendeten Materials derart ausgebildet, dass sie biegsam bzw. flexibel sind. Durch die Flexibilität der Flachleitervorrichtung ist es möglich, auch mehrere elektrische Bauteile, deren An- Schlüsse nicht in einer Ebene liegen, sicher zu kontaktieren. Auf diese Weise ergibt sich eine höhere Verlässlichkeit der Kontaktierung und eine höhere Flexibilität beim Einsatz der FlachleiterVorrichtung . In einer Ausgestaltung der Flachleitervorrichtung nach Anspruch 3 ist zumindest eine der Anschlussfahnen des zumindest einen Flachleiters mehrfach um 180° gefaltet.
Durch die mehrfache Faltung der Anschlussfahnen kann der Querschnitt bzw. die Dicke der Anschlussfahne auf sehr einfa¬ che und kostengünstige Weise vervielfältigt werden. Die mehr¬ fache Faltung bzw. Biegung kann dabei in einer Richtung oder in entgegengesetzte Richtungen erfolgen. In einer Ausgestaltung der Flachleitervorrichtung nach Anspruch 4 sind die gefalteten Abschnitte der zumindest eine An¬ schlussfahne miteinander verschweißt, verlötet oder ver- crimpt . Aufgrund der Verbindung der gefalteten Abschnitte der Anschlussfahne wird eine sichere Verbindung gewährleistet und eine Entfaltung der Anschlussfahne verhindert. Ferner wird die elektrische Kontaktierung der gefalteten Abschnitte si¬ chergestellt und die mechanische Stabilität der Anschlussfah- ne erhöht.
Bei der Ausgestaltung der Flachleitervorrichtung gemäß Anspruch 5 ist zumindest eine der Anschlussfahnen beschichtet oder vergütet .
Die Beschichtung erfolgt beispielsweise mittels eines Über¬ zugs mit einem geeigneten metallischen Material (z.B. Nickel) . Auf diese Weise können die elektrische Leitfähigkeit oder auch die Widerstandsfähigkeit der Anschlussfahne erhöht werden. Durch das Vergüten der Anschlussfahne kann deren Härte und Zähigkeit verbessert werden. Eine Ausgestaltung der Flachleitervorrichtung gemäß Anspruch 6 weist diese mehrere Flachleiter auf, wobei diese unterei¬ nander elektrisch isoliert sind.
Auf diese Weise können mittels der Flachleitervorrichtung mehrere unterschiedlich elektrische Bauteile kontaktiert wer¬ den. Durch die elektrische Isolierung werden Kurzschlüsse si¬ cher vermieden.
In einer Ausgestaltung der Flachleitervorrichtung nach Ans- pruch 7 weist diese zumindest ein elektrisches Bauteil auf, welches über Aussparungen in der elektrisch isolierenden Trägerschicht mit zumindest einem der Flachleiter verbunden ist.
Das elektrische Bauteil kann dabei beispielsweise unmittelbar auf der elektrisch isolierenden Trägerschicht oder auf einer zwischen dem elektrischen Bauteil und der elektrisch isolierenden Trägerschicht angeordneten Leiterplatte angeordnet sein. Auf diese Weise ergibt sich ein sehr kompakter Aufbau, wobei die Übermittlungswege bzw. die Kontaktierung auf sehr kurzem Wege erfolgt.
Ein elektrischer Energiespeicher gemäß dem unabhängigen Anspruch 8 weist mehrere Energiespeicherzellen und eine Flachleitervorrichtung gemäß Anspruch 6 auf. Zumindest ein Teil der Flachleiter ist jeweils einer der Energiespeicherzellen zugeordnet und mittels der zugehörigen Anschlussfahne mit der jeweils zugeordneten Energiespeicherzelle elektrisch kontaktiert . In einem elektrischen Energiespeicher sind oftmals Bauteile mit unterschiedlichen Anforderungen an den Querschnitt oder die Dicke der Anschlussfahne des Flachleiters zu kontaktie¬ ren. Insbesondere Energiespeicherzellen, welche sowohl elekt- rochemischer als auch elektrostatischer Natur sein können, haben im Vergleich zu anderen elektrischen Bauelementen, wie beispielsweise Sensorelemente, hinsichtlich der Dicke der An¬ schlussfahne stark abweichende Anforderungen. Durch Verwen- dung der erfindungsgemäßen Flachleitervorrichtung in einem elektrischen Energiespeicher kann diesen unterschiedlichen Anforderungen auf kostengünstige und einfache Weise begegnet werden. Des Weiteren gelten die zu den Ansprüchen 1 bis 7 genannten Vorteile in analoger Weise.
In einer Ausgestaltung des elektrischen Energiespeichers nach Anspruch 9 weist dieser zumindest ein elektrisches Bauteil auf, welches über Aussparungen in der elektrisch isolierenden Trägerschicht mit zumindest einem Teil der Flachleiter der Flachleitervorrichtung elektrisch verbunden ist.
In einer Ausgestaltung des elektrischen Energiespeichers von Anspruch 9 ist das elektrische Bauteil zum Erfassen von Be¬ triebsgrößen und/oder zum Steuern des Betriebs der Energie- Speicherzellen ausgebildet.
Auch hier gelten zunächst in analoger Weise die zu Anspruch 7 genannten Vorteile. Des Weiteren kann das elektrische Bauteil insbesondere zum Steuern des Ladevorgangs und/oder des Entla- devorgangs der Energiespeicherzellen ausgebildet sein.
In einer Ausgestaltung des elektrischen Energiespeichers nach Anspruch 11 weist dieser ein Gehäuse mit einem elektrischen Anschluss auf, wobei die Energiespeicherzellen und die Flach- leitervorrichtung in dem Gehäuse angeordnet sind und das elektrische Bauteil mit dem Anschluss des Gehäuses elektrisch verbunden ist.
Der Anschluss des Gehäuses dient demnach zur äußeren Kontak- tierung der in dem Gehäuse angeordneten Flachleitervorrichtung bzw. des zugehörigen elektrischen Bauteils. Der Anschluss kann beispielsweise als elektrische Steckerverbindung ausgebildet sein. Auf diese Weise kann die gesamte Elektronik des Energiespeichers in dem Gehäuse angeordnet werden, wo¬ durch diese sicher vor Beschädigung und Umwelteinflüssen geschützt ist. Im Folgenden wird die Erfindung anhand eines Ausführungsbei¬ spiels mit Bezug auf die beigefügten Figuren näher erläutert.
In den Figuren sind: Figur 1 eine schematische Darstellung einer
Flachleitervorriehtung;
Figuren
2A und 2B schematische Detailansichten einer Anschlussfahne der Flachleitervorrichtung;
Figur 3 eine schematische Querschnittsansicht der
Flachleitervorriehtung;
Figur 4 ein elektrischer Energiespeicher mit ei ner Flachleitervorrichtung;
In Figur 1 ist eine Flachleitervorrichtung 1 perspektivisch dargestellt. Die Flachleitervorrichtung 1 weist eine elekt- risch isolierende Trägerschicht 2 und mehrere, auf der Trä¬ gerschicht 2 angeordnete, elektrische Flachleiter 3 (in Figur 1 unter der elektrisch isolierenden Trägerschicht 2 verborgen) mit jeweils einer Anschlussfahne 4 zur Kontaktierung ei¬ ner elektrischen Komponente auf. Die Anschlussfahnen 4 der Flachleiter 3 ragen seitlich über die elektrisch isolierende Trägerschicht 2 hinaus. Die Anschlussfahnen 4 der Flachleiter 3 sind zumindest einmal um 180° gefaltet bzw. gebogen (De¬ tails in den Figuren 2A und 2B) . Die elektrisch isolierende Trägerschicht 2 weist mehrere Aussparungen 6 in Form von Durchgangslöchern auf, durch welche die unter der Trägerschicht 2 verlaufenden Flachleiter 3 kontaktiert werden können . η
Figuren 2A und 2B sind vergrößerte Ansichten des in Figur 1 mit dem Bezugszeichen ,,A" bezeichneten Details. Die Figuren 2A und 2B stellen Ausgestaltungen der Anschlussfahnen 4 der Flachleiter 3 dar. In beiden Ausgestaltungen sind die An- schlussfahnen 4 mehrfach um 180° gefaltet. Während in Figur 2A die Anschlussfahne 4 mehrfach in dieselbe Richtung gefal¬ tet bzw. gebogen ist, ist die Anschlussfahne 4 in der Ausges¬ taltung der Figur 2B mehrfach in entgegen gesetzte Richtung gefaltet. In beiden Fällen sind die Anschlussfahnen 4 derart gefaltet, dass die gefalteten Abschnitte 7, 8, 9 der An¬ schlussfahne 4 unmittelbar und ganzflächig aneinander anliegen und somit in elektrisch leitenden Kontakt stehen.
Zur Sicherstellung einer ausreichenden mechanischen Stabili- tät und einer zuverlässigen elektrischen Verbindung zwischen den gefalteten Abschnitten 7, 8, 9 der Anschlussfahne 4 können die gefalteten Abschnitte 7, 8, 9 miteinander verschweißt, verlötet oder vercrimpt werden. Zur Verbesserung der elektrischen Leitfähigkeit, der mechanischen Stabilität und der Korrosionsfestigkeit, können die An¬ schlussfahnen 4 mit entsprechenden Materialien (beispielsweise Nickel) beschichtet werden. Ferner ist eine Vergütung der Anschlussfahnen 4 möglich.
In Figur 3 ist der Querschnitt der Flachleitervorrichtung 1 schematisch dargestellt. Im Vergleich zu der in Figur 1 dargestellten Flachleitervorrichtung 1 weist die in Figur 3 dar- gstellte Flachleitervorrichtung 1 zusätzlich eine Leiterplat- te 8 und mehrere, auf der Leiterplatte 8 angeordnete, elekt¬ rische Bauteile 9 auf. Die Flachleitervorrichtung 1 weist mehrere Flachleiter 3 auf, welche zwischen der elektrisch isolierenden Trägerschicht 2 und einer zusätzlichen elektrisch isolierenden Deckschicht 10 angeordnet sind. Zum Zweck der besseren Übersichtlichkeit sind nur zwei elektrische
Flachleiter 3 dargestellt. Vorteilhafterweise ist die Flach¬ leitervorrichtung als flexible Flachleitervorrichtung ausgebildet. Dazu sind die Trägerschicht 2, die Deckschicht 10, die Flachleiter 3 und die Leiterplatte 8 hinsichtlich des verwendeten Materials und der Dicke entsprechend konstruiert. Dazu können die elektrisch isolierende Trägerschicht 2 und die elektrisch isolierende Deckschicht 10 beispielsweise aus sehr dünnen, flexiblen Folien, wie beispielsweise eine Polyi- mid-Folie mit 20 bis 50 Mikrometer Dicke, ausgebildet sein. Die Flachleiter 3 können beispielsweise aus sehr dünnen Kupfer- oder Goldbahnen mit 50 bis 100 Mikrometer Dicke gebildet sein. Auch die Leiterplatte 8 ist entsprechend ausgebildet. Die Flachleiter 3 sind mit der elektrisch isolierenden Trägerschicht 2 und der elektrisch isolierenden Deckschicht 10 mittels eines Klebers 11, beispielsweise Acrylkleber, verbun¬ den. Der Kleber 11 hat dabei vorzugsweise elektrisch isolie¬ rende Eigenschaften. Zwischen den Flachleitern bestehende Zwischenräume sind mit dem elektrisch isolierenden Kleber 11 ausgefüllt, so dass die Flachleiter 3 untereinander elekt¬ risch isoliert sind.
In Figur 3 ist die Anschlussfahne 4 eines der Flachleiter 3 dargestellt. Diese ragt seitlich über die elektrisch isolie¬ rende Deckschicht 10 und Trägerschicht 2 hinaus. Wie schon anhand von Figur 1 erläutert, ist die Anschlussfahne 4 um 180° gebogen, wobei auch hier die gefalteten Abschnitte 7, 8 der Anschlussfahne 4 unmittelbar und ganzflächig aneinander anliegen. Im Unterschied zu den in den Figuren 2A und 2B dargestellten Ausgestaltungen der Anschlussfahne 4 ist die in Figur 3 dargestellte Anschlussfahne 4 nur einmal gefaltet. Die gefalteten Abschnitte 7, 8 der Anschlussfahne 4 sind mi¬ teinander verschweißt. Alternativ können sie auch vercrimpt oder verlötet werden. Die Anschlussfahne 4 des Flachleiters 3 ist mit einer nicht zur Flachleitervorrichtung 1 gehörenden elektrischen Komponente 5, beispielsweise durch Löten oder Schweißen, elektrisch verbunden. Die auf der Leiterplatte 8 angeordneten elektrischen Bauteile 9 können als Schalt-, Steuer- und Regelkreise ausgebildet sein. Auch die Leiterplatte 8 kann auf der elektrisch isolie¬ renden Trägerschicht 2 mittels einer geeigneten Kleberschicht 11 befestigt sein. Zumindest ein Teil der auf der Leiterplat¬ te 8 angeordneten elektrischen Bauteile sind über die Aussparungen 6 in der elektrisch isolierenden Trägerschicht 2 mit zumindest einem Teil der Flachleiter 3 elektrisch verbunden, so dass elektrische Signale zwischen den Flachleitern 3 und den elektrischen Bauteilen 9 fließen können. Auf diese Weise können auch elektrische Signale zwischen den elektrischen Bauteilen 9 und der mittels der Anschlussfahne 4 des Flach¬ leiters 3 kontaktierten elektrischen Komponente 5 ausge- tauscht werden.
In Figur 4 ist ein Ausführungsbeispiel eines elektrischen Energiespeichers 12 schematisch dargestellt. Der elektrische Energiespeicher 12 weist ein Gehäuse 13 auf. In dem Gehäuse sind mehrere Energiespeicherzellen 14 sowie eine in Figur 3 schematisch dargestellte Flachleitervorrichtung 1 angeordnet. Die Deckschicht 10, die Flachleiter 3, die Trägerschicht 2 und die Leiterplatte 8 sind aus Gründen der besseren Über¬ sichtlichkeit zusammengefasst . Bei den Energiespeicherzellen 14 handelt es sich vorzugsweise um elektrochemische Batterien (beispielsweise Lithiumionenzellen) , jedoch kann es sich auch um elektrostatische Energiespeicherzellen 14 handeln. Die Energiespeicherzellen 14 sind jeweils einem Flachleiter 3 zugeordnet und, über einen Pol der Energiespeicherzelle, mit der Anschlussfahne 4 des jeweiligen Flachleiters 3 elektrisch verbunden .
Das Gehäuse 13 weist ferner einen elektrischen Anschluss 15 auf, welcher beispielsweise als Stecker ausgebildet sein kann. Der elektrische Anschluss 15 ist mit zumindest einem
Teil der elektrischen Bauteile 9 der Flachleitervorrichtung 1 elektrisch verbunden, so dass elektrische Signale von den elektrischen Bauteilen 9 nach außen und von außen zu den elektrischen Bauteilen 9 gesendet werden können. Auf diese Weise können Daten- und/oder Steuersignale und/oder elektrische Leistung zwischen den im Gehäuse der Batterie angeordne¬ ten elektrischen Bauteilen 9 und der Außenwelt ausgetauscht werden . 1
Vorteilhafterweise ist das zumindest eine elektrische Bauteil 9 der Flachleitervorrichtung 1 zum Steuern des Betriebs der Batteriezellen 14, insbesondere zur Steuerung der Lade- und Entladevorgänge der Batteriezellen 14, ausgebildet.
Neben den Energiespeicherzellen können in dem Gehäuse des Energiespeichers 12 andere elektrische Komponenten angeordnet sein, welche mit der Flachleitervorrichtung zu kontaktieren sind.
Die erfindungsgemäße Flachleitervorrichtung 1 ermöglicht eine hohe Flexibilität bei unterschiedlichen Anforderungen an die Anschlussfahnen 4 der Flachleiter 3, welche insbesondere bei unterschiedlichen zu kontaktierenden elektrischen Bauteilen auftreten. Durch die einmalige oder mehrfache Faltung der Anschlussfahnen 4 kann der Querschnitt bzw. die Dicke der Anschlussfahne 4 vervielfacht und individuell an die zu kontak¬ tierende elektrische Komponente 5 angepasst werden.
Der erfindungsgemäße elektrische Energiespeicher 12 weist ei¬ ne derartige erfindungsgemäße Flachleitervorrichtung 1 auf. Da in einem Energiespeicher häufig mehrere unterschiedliche elektrische Bauteile zu kontaktieren sind, kommen hier die oben genannten Vorteile der erfindungsgemäßen Flachleitervorrichtung 1 voll zum Einsatz. Durch die Flachleitervorrichtung 1 können mehrere unterschiedliche elektrische Bauteile (bei¬ spielsweise Energiespeicherzellen, Sensoren, etc.) zuverlässig und entsprechend der Anforderungen an die Anschlussfahne 4 kontaktiert werden. Bei Einsatz einer flexiblen Flachleitervorrichtung 1 können auch Toleranzen in der Anordnung der zu kontaktierenden Bauteile 5 ausgeglichen werden, ohne dass es zu einer Beeinträchtigung des elektrischen Kontakts oder einer Beschädigung des Flachleitervorrichtung 1 kommt.

Claims

Patentansprüche :
1. Flachleitervorrichtung (1) mit
einer elektrisch isolierenden Trägerschicht (2),
- zumindest einem elektrischen Flachleiter (3), welcher auf der Trägerschicht (2) angeordnet ist und welcher zu¬ mindest eine Anschlussfahne (4) aufweist,
dadurch gekennzeichnet, dass zumindest eine Anschlussfahne (4) des zumindest einen Flachleiters (3) zumindest einmal um 180° gefaltet ist.
2. Flachleitervorrichtung 1 nach Anspruch 1, wobei es sich um eine flexible Flachleitervorrichtung (1) handelt.
3. Flachleitervorrichtung 1 nach einem der Ansprüche 1 bis
2, wobei die zumindest eine Anschlussfahne (4) des zu¬ mindest einen Flachleiters (3) mehrfach um 180° gefaltet ist .
4. Flachleitervorrichtung (1) nach einem der Ansprüche 1 bis 3, wobei die gefalteten Abschnitte (7, 8, 9) der zu¬ mindest einen Anschlussfahne (4) miteinander verschweißt, verlötet oder vercrimpt sind.
5. Flachleitervorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei die zumindest eine Anschlussfahne (4) be¬ schichtet und/oder vergütet ist.
6. Flachleitervorrichtung (1) nach einem der Ansprüche 1 bis 5, mit mehreren elektrischen Flachleitern (3), wobei die Flachleiter (3) untereinander elektrisch isoliert sind .
7. Flachleitervorrichtung (1) nach einem der Ansprüche 1 bis 6, mit zumindest einem elektrischen Bauteil (5), welches über Aussparungen (6) in der elektrisch isolierenden Trägerschicht (2) mit zumindest einem der Flach- leiter (3) verbunden ist.
8. Elektrischer Energiespeicher (12) mit
mehreren Energiespeicherzellen (14),
einer Flachleitervorrichtung (1) nach Anspruch 6, wobei zumindest einer der Flachleiter (3) einer der Energiespeicherzellen (14) zugeordnet und mittels der zugehö¬ rigen Anschlussfahne (4) mit der zugeordneten Energiespei¬ cherzelle (14) elektrisch kontaktiert ist.
9. Elektrischer Energiespeicher (12) nach Anspruch 8, mit zumindest einem elektrischen Bauteil (9), welches über Aussparungen (6) in der elektrisch isolierenden Trägerschicht (2) mit zumindest einem der Flachleiter (3) verbunden ist.
10. Elektrischer Energiespeicher (12) nach Anspruch 9, wobei das elektrische Bauteil (9) zum Erfassen von Be¬ triebsgrößen und/oder zum Steuern des Betriebs der Energiespeicherzellen (14) ausgebildet ist.
11. Elektrischer Energiespeicher (12) nach Anspruch 10, mit einem Gehäuse (13), welches einen elektrischen An- schluss (15) aufweist, wobei die Energiespeicherzellen (14) und die Flachleitervorrichtung (1) in dem Gehäuse (13) angeordnet sind und das elektrische Bauteil (9) mit dem Anschluss (15) des Gehäuses (13) elektrisch verbun¬ den ist.
PCT/EP2011/050497 2010-01-19 2011-01-17 Flachleitervorrichtung und elektrischer energiespeicher WO2011089080A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010005021.0 2010-01-19
DE102010005021A DE102010005021A1 (de) 2010-01-19 2010-01-19 Flachleitervorrichtung und elektrischer Energiespeicher

Publications (1)

Publication Number Publication Date
WO2011089080A1 true WO2011089080A1 (de) 2011-07-28

Family

ID=43735777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/050497 WO2011089080A1 (de) 2010-01-19 2011-01-17 Flachleitervorrichtung und elektrischer energiespeicher

Country Status (2)

Country Link
DE (1) DE102010005021A1 (de)
WO (1) WO2011089080A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600236A (zh) * 2015-01-23 2015-05-06 珠海市嘉德电能科技有限公司 一种大电流锂离子电池组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056345A1 (ja) * 2016-09-26 2018-03-29 三洋電機株式会社 二次電池、二次電池の製造方法、及び二次電池用導電部材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643497A (en) * 1984-09-28 1987-02-17 Preh Elektrofeinmechanische Werke, Jakob Preh, Nachf. Gmbh & Co. Device and method for connecting a printed circuit film
EP0782215A1 (de) * 1995-12-22 1997-07-02 The Furukawa Electric Co., Ltd. Leiteranschlusselement und Verfahren zur Herstellung
US6085416A (en) * 1996-05-16 2000-07-11 Yazaki Corporation Wire shield structure and method of shielding a wire
WO2004093221A2 (en) * 2003-04-17 2004-10-28 Danionics International A/S Electrochemical cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104354A1 (de) * 2000-03-03 2001-09-06 Hirschmann Austria Gmbh Rankwe Elektrisches Flachbandkabel mit gefalteten elektrischen Leiterbahnen
DE10301227A1 (de) * 2002-05-16 2003-12-04 Hirschmann Austria Gmbh Rankwe Umformen von Leiterenden eines Flachbandkabels
DE102005015620A1 (de) * 2005-04-05 2006-10-12 Huber Und Brendel Inhaber: Wolfgang Brendel Elektrische Energiespeichereinheit, ggf. Akkumulator-Einheit, mit integrierter Spannungskonditionierung, insbesondere Spannungsregelung, oder/und Ladezustandsüberwachung, und elektrisches Gerät mit wenigstens einer derartigen Energiespeichereinheit
DE102006033269B4 (de) * 2006-07-18 2010-10-28 Continental Automotive Gmbh Verfahren zum Herstellen einer Anordnung mit einem flexiblen Leiterträger, einer Basisplatte und einem Dichtkörper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643497A (en) * 1984-09-28 1987-02-17 Preh Elektrofeinmechanische Werke, Jakob Preh, Nachf. Gmbh & Co. Device and method for connecting a printed circuit film
EP0782215A1 (de) * 1995-12-22 1997-07-02 The Furukawa Electric Co., Ltd. Leiteranschlusselement und Verfahren zur Herstellung
US6085416A (en) * 1996-05-16 2000-07-11 Yazaki Corporation Wire shield structure and method of shielding a wire
WO2004093221A2 (en) * 2003-04-17 2004-10-28 Danionics International A/S Electrochemical cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600236A (zh) * 2015-01-23 2015-05-06 珠海市嘉德电能科技有限公司 一种大电流锂离子电池组
CN104600236B (zh) * 2015-01-23 2017-07-21 珠海市嘉德电能科技有限公司 一种锂离子电池组

Also Published As

Publication number Publication date
DE102010005021A1 (de) 2011-07-21

Similar Documents

Publication Publication Date Title
EP2745337B1 (de) Zellverbinder, batteriezellenmodul, batterie, verfahren zur herstellung eines zellverbinders und kraftfahrzeug
DE102008034867A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102008059970A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102009013345A1 (de) Elektrodenstapel für eine galvanische Zelle
EP2732507A1 (de) Hochstrom-steckverbinder für kraftfahrzeuganwendungen
DE202009012647U1 (de) Batteriezellenverbinder
WO2011157331A1 (de) Umverdrahtungselement für ein energiespeichermodul, verfahren zu dessen herstellung und energiespeichermodul
WO2015197319A1 (de) Übertragungsvorrichtung zum übertragen von elektrischen signalen von wenigstens einer galvanischen zelle an zumindest eine elektronische auswerteeinheit
DE102009024513A1 (de) Batteriezellenverbinder
EP3232454B1 (de) Busbar mit einer mehrzahl von filmkondensatoren
WO2013064243A1 (de) Hochstrom-steckverbinder für kraftfahrzeuganwendungen
DE102012223708A1 (de) Batteriezelle mit Drucksensor
DE102019127803A1 (de) Heizbare Batterie
DE112008000141T5 (de) Batterieeinheit
WO2011089080A1 (de) Flachleitervorrichtung und elektrischer energiespeicher
WO2013017208A1 (de) Batterie mit mehreren batteriezellen und verfahren zu deren herstellung
DE102012223756A1 (de) Batteriezelle mit Überwachungsschaltung
EP2956976B1 (de) Zellverbinder zum elektrisch leitfähigen kontaktieren einer mehrzahl von batteriezellterminals, verfahren zum herstellen eines solchen zellverbinders und batteriemodul mit wenigstens einem solchen zellverbinder
DE102017200311A1 (de) Batterie, Trägerboard und Trägerboardelement mit Rastelementen
DE102011085368A1 (de) Akkupack mit Sicherung
WO2015055164A1 (de) Schaltvorrichtung für einen elektrochemischen energiespeicher und energiespeichersystem
DE102019208769A1 (de) Akkumulator
DE102014206951A1 (de) Batteriemodul mit wenigstens zwei parallel verschalteten Batteriezellen
WO2014095145A1 (de) Batteriezelle mit beschleunigungssensor
DE102018102005A1 (de) Kontaktierungsvorrichtung für mit elektrischen Polen ausgestattete Energiespeicherzellen mit einer Leiterplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11702812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11702812

Country of ref document: EP

Kind code of ref document: A1