WO2011086834A1 - Process for production of n-acetyl-d-neuraminic acid - Google Patents

Process for production of n-acetyl-d-neuraminic acid Download PDF

Info

Publication number
WO2011086834A1
WO2011086834A1 PCT/JP2010/073379 JP2010073379W WO2011086834A1 WO 2011086834 A1 WO2011086834 A1 WO 2011086834A1 JP 2010073379 W JP2010073379 W JP 2010073379W WO 2011086834 A1 WO2011086834 A1 WO 2011086834A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
nana
acetyl
aldolase
reaction
Prior art date
Application number
PCT/JP2010/073379
Other languages
French (fr)
Japanese (ja)
Inventor
健三 横関
大郎 萩下
昌 清水
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2011086834A1 publication Critical patent/WO2011086834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • the present invention relates to a method for producing N-acetyl-D-neuraminic acid aldolase, and proteins, polynucleotides, expression vectors, transformants, bacteria, and the like useful for producing N-acetyl-D-neuraminic acid aldolase.
  • N-acetyl-D-neuraminic acid which is the most universal of all sialic acid species (hereinafter abbreviated as NANA if necessary), is a glycan chain terminal in the glycoconjugate present on the vertebrate cell surface. Is the essential and most abundant amino sugar located in NANA plays a prominent role in many biological functions, including viral infections. The virus propagated inside the cell is bound to NANA on the surface of the infected cell, and the release and spread of the infectious virus from the infected cell is caused by the action of neuraminidase existing on the surface of the virus to cause NANA on the surface of the infected cell. It is essential to break the bond. NANA analogs have therefore been investigated as potential antiviral agents.
  • Zanamivir product name: Relenza
  • oselfamivir product name: Tamiflu
  • NANA analogs that inhibit both A and B influenza virus neuraminidases have been developed and treated against the highly toxic H5N1 strain Widely used as a medicine.
  • the replicated influenza virus binds to NANA present on the infected cell surface and localizes on the infected cell.
  • Influenza virus has neuraminidase, an enzyme that cleaves the bond that links the NANA receptor of influenza virus and the NANA of infected cells. Virus release requires neuraminidase to break the bond between influenza virus and infected cells.
  • NANA aldolase or nanA N-acetyl-D-mannosamine
  • NANA aldolase or nanA N-acetyl-D-neuraminic acid aldolase
  • NANA enzyme synthesis method corresponding to the reaction step of (2) described later
  • Pyr pyruvic acid
  • the NANA enzyme synthesis method using NAG and Pyr as raw materials includes the following reaction steps (1) and (2).
  • Patent Documents 1 and 2 include NAG comprising using epimerase under neutral conditions in the reaction step (1) above, and using NANA aldolase under neutral conditions in the reaction step (2) above. And a method for enzymatic synthesis of NANA from Pyr.
  • Patent Document 3 utilizes chemical isomerization of NAG to NAM under alkaline conditions in the reaction step (1) above, and NANA under neutral conditions in the reaction step (2) above.
  • a method for enzymatic synthesis of NANA from NAG and Pyr, including the use of aldolase, is disclosed.
  • Non-Patent Document 1 utilizes chemical isomerization of NAG to NAM under alkaline conditions in the reaction step (1) above, and NANA under alkaline conditions in the reaction step (2) above.
  • a method for enzymatic synthesis of NANA from NAG and Pyr, including the use of aldolase, is disclosed. According to the present method, theoretically, it is possible to efficiently produce a large amount of NANA by simultaneously performing the reaction steps (1) and (2) under alkaline conditions and performing them simultaneously. This is because NAM is replenished from NAG by chemical equilibrium when NAM generated by chemical isomerization decreases with NANA synthesis.
  • NANA aldolase-producing bacteria there have been many reports on NANA aldolase-producing bacteria.
  • Escherichia Non-Patent Documents 2 to 4
  • Clostridium Non-Patent Documents 5 and 6
  • Bacillus Citrobacter, Corynebacterium, Enterobacter, Clavera, Micrococcus genus, Proteus genus (non-patent document 7), Aerobacter genus (patent document 4), Pseudomonas genus, Pseudomonas genus, Sarsina genus, Bacteria genus, Arthrobacter genus, Brevibacterium genus (Patent Document 5) It is done.
  • Patent Document 6 reports that in the NANA production method, the deactivation of NANA aldolase is suppressed under alkaline conditions at high pH due to the protective effect of the substrates NAG and Pyr.
  • Patent Documents 1 to 6 and Non-Patent Documents 1 to 7 have the following problems.
  • Patent Document 3 The method described in Patent Document 3 is complicated because it is necessary to extract NAM from a reaction solution under alkaline conditions after the completion of the reaction step (1) and then use NANA aldolase under neutral conditions. is there.
  • the method described in Patent Document 3 has a small amount of NAM extracted after the completion of the reaction step (1) (that is, the chemical equilibrium of isomerization of NAG and NAM is not on the NAM side but on the NAG side.
  • the reaction step (2) a large amount of NANA cannot be produced efficiently.
  • Non-Patent Document 1 Since the NANA aldolase used in the method described in Non-Patent Document 1 is unstable and rapidly deactivates under alkaline conditions of high pH required in the reaction step (1) above, In reality, a large amount of NANA cannot be produced efficiently.
  • NANA aldolase described in Non-Patent Documents 2 to 6 and Patent Documents 4 to 5 is unstable under alkaline conditions.
  • NANA aldolase derived from the genus Escherichia (Non-patent Document 4) or Clostridium (non-patent Document 5) is used among the above-mentioned NANA aldolases derived from bacteria.
  • NANA aldolase exhibits stability only at pH 6.0 to 9.0, and does not exhibit stability under alkaline conditions of high pH required in the reaction step (1). Therefore, these NANA aldolases are not efficient as enzymes for producing NANA from NAG and Pyr by simultaneously proceeding the reaction steps (1) and (2) above.
  • Patent Document 6 when a reaction system including the reaction steps (1) and (2) above is used, if the NANA aldolase itself is stable under alkaline conditions at high pH, the activity is maintained for a longer period. It is thought that a large amount of NANA can be produced efficiently. Further, when the NANA aldolase is stable without depending on the substrate concentration, it is considered that the NANA aldolase is easier to use in the reaction system including the reaction steps (1) and (2). Therefore, there is a demand for the development of NANA aldolase exhibiting high pH stability under alkaline conditions of high pH.
  • the present invention has been made in view of the above, and provides a stable NANA aldolase under alkaline conditions at a high pH, and efficiently produces a large amount of NANA using such a NANA aldolase. It aims to provide a way to do.
  • the present inventors search for strains having the ability to synthesize NANA from NAM and Pyr under high pH alkaline conditions for many microorganisms having the ability to grow on an alkaline medium using NANA as a single carbon source.
  • NANA as a single carbon source.
  • the isolation of a strain having these abilities, the identification of a gene encoding N-acetylneuraminic acid aldolase from the isolated strain, and the use of N-acetylneuraminic acid aldolase The present inventors have succeeded in developing a method for efficiently producing NANA and have completed the present invention. That is, the present invention is as follows.
  • a protein which exhibits pH stability at pH 8.0 to 11.0 and has N-acetyl-D-neuraminic acid aldolase activity [2] A protein selected from the group consisting of the following (A) to (D): (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2; (C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing a mutation of one or several amino acid residues selected from the group consisting of deletion, substitution, addition and insertion of amino acid residues; And a protein having N-acetyl-D-neuraminic acid aldolase activity; and (D) an amino acid sequence having at least 80% or more amino acid sequence identity to the amino acid sequence represented by SEQ ID NO: 2, and N A protein having acetyl-D-neuraminic acid aldolase activity; [3] The protein according to [2], wherein the protein exhibit
  • [6] A transformant introduced with the expression vector of [5] above.
  • [8] A bacterium derived from the genus Bacillus having the ability to produce the protein of any one of [1] to [3].
  • [9] comprising culturing the transformant of [6] or [7] and / or the bacterium of [8] in a medium to obtain a protein of any one of [1] to [3], A method for producing acetyl-D-neuraminic acid aldolase.
  • N-acetyl- comprising synthesizing N-acetyl-D-neuraminic acid from N-acetyl-D-mannosamine and pyruvic acid in the presence of the protein of any one of [1] to [3] A method for producing D-neuraminic acid.
  • the production method of [10] wherein the synthesis is further performed in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
  • FIG. 1 shows the effect of pH on chemical isomerization.
  • the effect of pH on chemical isomerization was determined using 50 mM ammonium buffer (pH 8.5 to 10.0), 50 mM CAPS (N-cyclohexyl-3-aminopropanesulfonic acid) buffer (pH 10.0 to 11.0), It was determined by using 50 mM sodium phosphate buffer (pH 11.0 to 12.0).
  • a reaction mixture (0.1 ml) of the above buffer containing 100 mM NAG was incubated at 30 ° C. for 12 hours.
  • FIG. 2 is a diagram showing the optimum pH of nanA derived from Bacillus sp. YKR.
  • FIG. 3 is a diagram showing the pH stability of nanA derived from Bacillus sp. YKR.
  • FIG. 4 is a diagram showing the optimum temperature of nanA derived from Bacillus sp. YKR.
  • FIG. 5 is a diagram showing the temperature stability of nanA derived from Bacillus sp. YKR. The enzyme activity was measured using an enzyme treated for 1 hour at each temperature shown in FIG. 5 in 50 mM Tris-HCl buffer (pH 8.5) to determine temperature stability.
  • FIG. 6 is a diagram showing NANA production from NAM and Pyr.
  • FIG. 7 shows the effect of split addition of Pyr on NANA production at pH 8.5.
  • a reaction mixture (1.0 ml) containing 0.5 mg / ml protein of a cell-free extract derived from 50 mM Tris-HCl buffer (pH 8.5), 100 mM NAM, 100 mM Pyr and recombinant Escherichia coli was prepared at 30 ° C. Incubated with. 50 mM, 10 mM and 10 mM Pyr were added after 2 hours, 4 hours and 6 hours.
  • FIG. 8 shows the effect of split addition of Pyr on NANA production at pH 10.0.
  • FIG. 9 is a diagram showing a time course of NANA production from NAM and Pyr.
  • FIG. 10 is a diagram showing a time course of NANA production from NAG and Pyr using a cell-free extract.
  • NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours in a volume of 0.7 ml.
  • FIG. 11 is a diagram showing a time course of NANA production from NAG and Pyr using bacterial cells.
  • NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours in a volume of 0.7 ml.
  • NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively.
  • a cell-free extract of recombinant Escherichia coli derived from 100 mM CAPS (pH 10.0), 700 mM Pyr and 0.5 mg / ml protein or a cell derived from recombinant Escherichia coli (5 ml cultured) was added in a final volume of 1 ml and incubated at 30 ° C. 400 mM, 300 mM, 300 mM, 300 mM, 400 mM and 300 mM Pyr were added after 4.5, 7.5, 25, 30, 34, 48 hours, respectively.
  • FIG. 12 shows the influence of Pyr concentration on NANA production.
  • a reaction mixture (1.0 ml) containing 0.5 mg / ml protein of a cell-free extract derived from 50 mM Tris buffer (pH 8.0), 100 mM NAM, 100 to 900 mM Pyr, and recombinant Escherichia coli is 37 ° C. Incubated with.
  • FIG. 13 is a diagram showing the influence of the Pyr concentration on the high concentration NAM.
  • Proteins, polynucleotides, microorganisms and their preparation according to the present invention provides proteins useful for the production of NANA.
  • the protein of the present invention may exhibit pH stability under alkaline conditions. More specifically, the proteins of the present invention may exhibit pH stability at a pH of about 8.0 to about 11.0.
  • pH stability means 60% or more of the initial activity, preferably 70%, more preferably when the protein is incubated at 4 ° C. for 16 hours in the relevant pH range. It means that the activity of 80%, even more preferably 90% or more can be maintained.
  • proteins of the invention can exhibit pH stability that retains at least 60% of the initial activity when incubated for 16 hours at a pH of about 8.0 to about 11.0.
  • the protein of the present invention may also have various enzymatic characteristics in addition to the above pH stability.
  • Such enzymatic properties include optimal pH, optimal temperature, temperature stability, molecular weight, activity, and Km value.
  • the term “optimal pH” refers to the pH at which a protein exhibits maximum activity.
  • the optimum pH of the protein of the present invention may be any pH value in the range of about pH 7.0 to about 10.0, but is preferably in the range of about pH 7.0 to about 9.0. Any pH value in the range, more preferably any pH value in the range of about 7.5 to about 8.5, even more preferably about pH 8.0. It may be any pH value in the range of about 8.5.
  • the term “temperature stability” refers to 60% or more of the initial activity, preferably 70%, more preferably 80% when the protein is incubated for 1 hour in the relevant temperature range. Even more preferably, it means that 90% or more of activity can be maintained.
  • the protein of the present invention may exhibit temperature stability at about 0 to about 55 ° C. when it retains 60% or more of the initial activity and retains 70% or more of the initial activity. In this case, the temperature stability may be exhibited at about 0 to about 50 ° C., and when the activity of 80% or more of the initial activity is maintained, the temperature stability may be exhibited at about 0 to about 40 ° C. % Activity may be exhibited at about 0 to about 30 ° C.
  • the proteins of the invention can exhibit temperature stability that retains at least 60% of the initial activity when incubated at about 0 to about 55 ° C. for 1 hour.
  • optimum temperature refers to the temperature at which a protein exhibits maximum activity.
  • the optimum temperature of the protein of the present invention may be any temperature in the range of about 40 to about 70 ° C., but is preferably any temperature in the range of about 45 to about 55 ° C., more preferably About 50 ° C.
  • the molecular weight of the protein of the present invention may be, for example, about 20 to 40 kDa, preferably about 25 kDa to 35 kDa, more preferably about 30 kDa.
  • the protein of the present invention may also have a Km value for NANA, NAM and Pyr.
  • the Km value of the protein of the present invention for NANA is, for example, about 0.2 to about 20.0 mM, preferably about 0.4 to about 10.0 mM, more preferably about 1.0 to about 5.0 mM, even more preferably. May be from about 1.5 to about 3 mM.
  • the Km value of the protein of the present invention for NAM is, for example, about 2.0 to about 200.0 mM, preferably about 5.0 to about 100.0 mM, more preferably about 10.0 to about 50.0 mM, and even more preferably. May be from about 20 to about 30 mM.
  • the Km value of the protein of the present invention relative to Pyr is, for example, about 4.0 to about 400.0 mM, preferably about 8.0 to about 200.0 mM, more preferably about 15.0 to about 100.0 mM, even more preferably May be from about 30 to about 50 mM.
  • the protein of the present invention may also have N-acetyl-D-neuraminic acid aldolase activity (NANA aldolase activity).
  • NANA aldolase activity refers to N-acetyl-D-mannosamine (NAM) and pyruvic acid (Pyr) and aldol condensation. Refers to the catalytic activity to convert to N-acetyl-D-mannosamine (NANA).
  • the protein of the present invention may also be derived from a bacterium belonging to the genus Bacillus. More specifically, the protein of the present invention may be Bacillus sp., Preferably Bacillus sp. It may be derived from the YKR AJ110757 strain (referred to herein as Bacillus sp. YKR, if necessary). Bacillus sp.
  • the YKR AJ110757 strain is a strain that has been deposited with the following depository and has been deposited and managed with the deposit number of FERM BP-11319. The strain to which the FERM number is assigned can be sold by a predetermined procedure with reference to the accession number.
  • the protein of the present invention may be a protein selected from the group consisting of (A) to (D) below: (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 2; (B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2; (C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing a mutation (eg, deletion, substitution, addition and insertion) of one or several amino acid residues, and N-acetyl-D- A protein having neuraminate aldolase activity; or (D) consisting of an amino acid sequence having a predetermined amino acid sequence identity to the amino acid sequence represented by SEQ ID NO: 2 and having N-acetyl-D-neuraminate aldolase activity Have a protein.
  • A a protein comprising the amino acid sequence represented by SEQ ID NO: 2
  • B a protein comprising the amino acid sequence represented by SEQ ID NO: 2
  • C the amino acid sequence represented by SEQ ID NO: 2
  • substantially the same protein as the protein (A) can also be used.
  • the proteins shown in (B) to (D) are provided as substantially the same protein as the protein (A).
  • the term “one or several” indicates a range that does not significantly impair the three-dimensional structure and activity of the amino acid residue protein, although it depends on the position and type of the three-dimensional structure of the amino acid residue protein.
  • the number “1 or several” in the case of protein is, for example, 1 to 100, preferably 1 to 70, more preferably 1 to 40, more preferably 1 to 20, and preferably 1 to The number is 10, more preferably 1 to 5.
  • proteins (B) to (D) are not particularly limited as long as they retain NANA aldolase activity, but may further retain one or more of the above-described properties (eg, pH stability). However, in the case of proteins (B) to (D), under conditions of 50 ° C. and pH 8.5, about half or more of protein (A), more preferably 80% or more, still more preferably 90% or more, and even more preferably It is desirable to maintain NANA aldolase activity of 95% or more.
  • the protein of the present invention can be obtained by isolating a NANA-assimilating microorganism (eg, a bacterium belonging to the genus Bacillus) from a soil sample (eg, a soil sample of Kamogawa Riverbed in Sakyo-ku, Kyoto, Japan). Sex microorganisms are available. Isolation of a NANA-assimilating microorganism may be performed by using a medium under strong alkaline conditions (eg, medium i and medium ii described in Examples).
  • a medium under strong alkaline conditions eg, medium i and medium ii described in Examples.
  • the protein of the present invention can also be obtained by a mutagenesis method such as a site-specific mutagenesis method or by inserting a polynucleotide encoding the protein into an expression vector having a tag sequence such as a purification sequence. Moreover, you may acquire the protein which has the above modified amino acid sequences by the conventionally known mutation process.
  • Mutation treatment includes a method of in vitro treatment of DNA encoding protein (A) with hydroxylamine or the like, and Escherichia bacterium carrying the DNA encoding protein (A) by ultraviolet irradiation or N-methyl-N ′.
  • -A method of treating with a mutating agent usually used for artificial mutation such as nitro-N-nitrosoguanidine (NTG) or nitrous acid.
  • DNA encoding the protein substantially the same as protein (A) can be obtained by expressing the DNA having the mutation as described above in a suitable cell and examining the enzyme activity of the expression product.
  • amino acid residue substitution may be a conservative substitution.
  • conservative substitution refers to the replacement of a given amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues with similar side chains are well known in the art.
  • such families include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having uncharged polar side chains (Eg, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ -branched side chain Amino acids (eg, threonine, valine, isoleucine), amino acids having aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine), amino acids having side groups containing hydroxyl groups (eg, alcoholic, phenolic) ( Example, serine, thread Nin, tyrosine), and amino acids (e.g.
  • the conservative substitution of amino acids is a substitution between aspartic acid and glutamic acid, a substitution between arginine and lysine and histidine, a substitution between tryptophan and phenylalanine, and between phenylalanine and valine. Or a substitution between leucine, isoleucine and alanine, and a substitution between glycine and alanine.
  • the protein substantially the same as the protein (A) is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95%, 96%, 97%, 98% or 99 % Of proteins having an amino acid sequence identity of at least%.
  • the present invention also provides a polynucleotide that is any one selected from the group consisting of the following (a) to (e): (A) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1; (B) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1; (C) a polymorph encoding a protein comprising a nucleotide sequence having at least 80% nucleotide sequence identity to the amino acid sequence represented by SEQ ID NO: 1 and having N-acetyl-D-neuraminic acid aldolase activity nucleotide; (D) encodes a protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 and has N-acetyl-D-neuraminic acid aldolase activity Or (e) a polynucle
  • the polynucleotide of the present invention may be DNA or RNA, or a mixture thereof.
  • DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 is Bacillus sp. From a chromosomal DNA or a DNA library by PCR or hybridization. Primers used for PCR can be designed based on an internal amino acid sequence determined based on a purified protein having an activity of catalyzing the reaction in the method of the present invention, for example. In addition, a primer or a probe for hybridization can be designed based on the nucleotide sequence described in SEQ ID NO: 1, or can be isolated using the probe.
  • polynucleotides substantially the same as the polynucleotide (a) are also included in the polynucleotides of the present invention.
  • examples of the polynucleotide substantially the same as the polynucleotide (a) include the polynucleotides (b) to (e) described above.
  • nucleotide sequence identity to the polynucleotide (a) is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95%, 96%, 97 %, 98% or 99% or more.
  • “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such conditions include, for example, hybridization at about 45 ° C. in 6 ⁇ SSC (sodium chloride / sodium citrate), followed by 50 ⁇ 65 ° C. in 0.2 ⁇ SSC, 0.1% SDS. 1 or 2 times of washing.
  • the genes that hybridize under these conditions include those that have generated stop codons in the middle and those that have lost activity due to mutations in the active center. It can be easily removed by expressing in an appropriate host and measuring the enzyme activity of the expression product by the method described below.
  • the polynucleotides (b) to (d) are not particularly limited as long as the protein encoded by them retains NANA aldolase activity, but further retains one or more of the above properties (eg, pH stability). It may also encode a protein that However, in the case of the above polynucleotides (b) to (d), at 50 ° C. and pH 8.5, about half or more of the protein (A), more preferably 80% or more, more preferably 90% or more, More preferably, it encodes a protein having 95% or more of NANA aldolase activity.
  • the transformant expressing the protein (A) can be prepared using an expression vector incorporating a polynucleotide having any one of the above nucleotide sequences.
  • a transformant that expresses the protein (A) can be obtained by preparing an expression vector incorporating a DNA having the nucleotide sequence shown in SEQ ID NO: 1 and introducing it into an appropriate host.
  • hosts for expressing a protein specified by the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 include Escherichia bacteria such as Escherichia coli, Corynebacterium bacteria, and Bacillus subtilis.
  • Various prokaryotic cells including Bacillus subtilis, Saccharomyces cerevisiae, Pichia stititis, and Aspergillus oryzae can be used as true cells such as Aspergillus oryzae. .
  • the expression vector used for introducing the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 into the host is expressed in a vector according to the type of the host to be expressed, and the protein encoded by the DNA is expressed. It can be prepared by inserting in a possible form.
  • a promoter for expressing a protein when a promoter specific to a gene encoding the enzyme derived from a bacterium belonging to the genus Bacillus functions in a host cell, the promoter can be used. Further, if necessary, another promoter that works in the host cell may be linked to DNA such as SEQ ID NO: 1 and expressed under the control of the promoter.
  • the target protein is mass-produced using recombinant DNA technology
  • a form in which an inclusion body of the protein is formed by associating the protein in a transformant producing the protein is given as a preferred embodiment. It is done.
  • Advantages of this expression production method are that the target protein is protected from digestion by proteases present in the microbial cells, and that the target protein can be easily purified by centrifugation following cell disruption.
  • a series of operations such as solubilization and activity regeneration are required, and the operation becomes more complicated than when directly producing an active protein.
  • the effect can be suppressed by accumulating them in the bacterial cells as inactive protein inclusion bodies.
  • a method for mass production of the target protein as inclusion bodies there is a method of expressing the target protein alone under the control of a strong promoter, or a method of expressing it as a fusion protein with a protein known to be expressed in large quantities. is there.
  • the host to be transformed is as described above, but in detail about E. coli, it can be selected from Escherichia coli JM109 strain, DH5 ⁇ strain, HB101 strain, BL21 (DE3) strain, etc. Methods for performing transformation and methods for selecting transformants are also described in Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor press (2001/01/15) and the like. Hereinafter, a method for producing transformed E. coli and producing a predetermined enzyme using the same will be described more specifically as an example.
  • a promoter for expressing DNA encoding a protein having a catalytic activity used in the present invention a promoter usually used for heterologous protein production in Escherichia coli can be used.
  • a promoter usually used for heterologous protein production in Escherichia coli can be used.
  • T7 promoter, lac promoter, trp promoter, trc Strong promoters such as promoter, tac promoter, lambda phage PR promoter, PL promoter, T5 promoter, and the like can be mentioned.
  • Examples of the vector include pUC19, pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSF1010, pACYC177, pACYC184, pMW119, pMW118, pMW219, pMW218, pQE30, and derivatives thereof.
  • phage DNA vectors may be used.
  • an expression vector containing a promoter and capable of expressing the inserted DNA sequence may be used.
  • a gene encoding another protein is linked upstream or downstream of the protein, and the fusion protein gene and To do.
  • a gene encoding another protein may be any gene that increases the accumulation amount of the fusion protein and enhances the solubility of the fusion protein after the denaturation and regeneration steps.
  • T7gene 10, ⁇ -galactosidase gene, Dehydrofolate reductase gene, interferon ⁇ gene, interleukin-2 gene, prochymosin gene and the like are listed as candidates.
  • the codon reading frames should be matched. Ligation may be performed at an appropriate restriction enzyme site, or synthetic DNA having an appropriate sequence may be used.
  • a terminator which is a transcription termination sequence, downstream of the fusion protein gene.
  • the terminator include T7 terminator, fd phage terminator, T4 terminator, tetracycline resistance gene terminator, E. coli trpA gene terminator, and the like.
  • a so-called multicopy type is preferable, and a plasmid having a replication origin derived from ColE1, such as a pUC-type plasmid or pBR322, is used.
  • the “derivative” means one obtained by modifying a plasmid by base substitution, deletion, insertion, addition and / or inversion.
  • the “modification” here includes modification by mutation treatment, UV irradiation, natural mutation, or the like.
  • the vector has a marker such as an ampicillin resistance gene in order to select transformants.
  • a marker such as an ampicillin resistance gene
  • an expression vector having a strong promoter is commercially available (eg, pUC system (manufactured by Takara Bio Inc.), pPROK system (manufactured by Clontech), pKK233-2 (manufactured by Clontech)).
  • An expression vector is obtained by ligating a promoter, a gene encoding a target protein having a predetermined activity or a fusion protein of the target protein and another protein, or, in some cases, a terminator-linked DNA fragment, and vector DNA.
  • the obtained expression vector When the obtained expression vector is used to transform E. coli and the E. coli is cultured, a predetermined protein or a fusion protein thereof is expressed and produced.
  • the target protein When expressed as a fusion protein, the target protein may be excised using a restriction protease such as blood coagulation factor Xa, kallikrein, etc., which has a sequence not present in the target protein as a recognition sequence.
  • a restriction protease such as blood coagulation factor Xa, kallikrein, etc.
  • a medium usually used for culturing Escherichia coli such as M9-casamino acid medium and LB medium may be used.
  • the culture conditions and production induction conditions are appropriately selected according to the type of the marker, promoter, host fungus and the like used.
  • the target protein or a fusion protein containing the protein There are the following methods for recovering the target protein or a fusion protein containing the protein. If the target protein or its fusion protein is solubilized in the microbial cells, the microbial cells can be recovered and then disrupted or lysed to be used as a crude enzyme solution. Furthermore, if necessary, the target protein or a fusion protein thereof can be purified and used by a conventional method such as precipitation, filtration or column chromatography. In this case, a purification method using an antibody of the target protein or fusion protein can also be used. When a protein inclusion body is formed, the protein of interest can be obtained by solubilizing it with a denaturing agent and removing the denaturing agent by dialysis or the like.
  • the present invention provides a method for producing NANA using the protein of the present invention.
  • the production method of the present invention can be classified into production method (I) and production method (II). First, the outline of the production method (I) will be explained, and then the outline of the production method (II) will be explained.
  • the production method (I) of the present invention includes a step of synthesizing NANA from NAM and Pyr in the presence of the protein of the present invention (corresponding to the reaction step (2) shown in the background art).
  • the production method (I) is carried out under any conditions in which the protein of the present invention has NANA aldolase activity.
  • the production method (I) is carried out in the form of the production method (II) in combination with the steps described later, it is alkaline. It is carried out in a reaction solution under conditions.
  • Alkaline buffers include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide), alkali metal carbonates (eg, sodium carbonate, potassium carbonate), alkali metals It may be prepared using an alkaline substance such as bicarbonate (eg, sodium bicarbonate, potassium bicarbonate), ammonia, or phosphate buffer, Tris-HCl buffer, borate buffer, veronal hydrochloride buffer. Well-known alkaline buffers such as liquid, Good buffer, and diethanolamine hydrochloride buffer may be used.
  • alkali metal hydroxides eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide
  • alkali metal carbonates eg, sodium carbonate, potassium carbonate
  • alkali metals It may be prepared using an alkaline substance such as bicarbonate (eg, sodium bicarbonate, potassium bicarbonate), ammonia, or phosphate buffer, Tri
  • the pH of the reaction solution under alkaline conditions in the production method (I) takes into consideration the pH stability and optimum pH of the protein of the present invention. Thus, it is preferable to perform the above steps.
  • Such a pH range is apparent from the above description of pH stability and optimum pH.
  • pH pH 8.0 to 10.0 preferably pH 8.0 to 9.0, more preferably pH 8.0 to It may be 8.5.
  • the concentration of each substrate in the reaction solution is not particularly limited. Specifically, the concentrations of NAM and Pyr in the production method (I) can be set as appropriate. Each substrate may also be supplemented as appropriate during the reaction. Furthermore, NAM can be used in any form of free base and salt (eg, hydrochloride, sulfate). Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
  • NAM can be used in any form of free base and salt (eg, hydrochloride, sulfate).
  • Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
  • the concentration of the protein of the present invention in the reaction solution is not particularly limited as long as the reaction proceeds.
  • the form of the protein of the present invention is not particularly limited as long as it exists in the reaction system in a state capable of catalyzing the above reaction. That is, when the reaction is performed in the presence of the protein, the specific form of the protein in the reaction system includes, for example, a culture containing a microorganism producing the protein, a microbial cell separated from the culture, Processed bacterial cells (extracted protein) and the like are included.
  • a culture containing microorganisms is a product obtained by culturing microorganisms.
  • microbial cells a medium used for culturing the microorganisms, and substances produced by the cultured microorganisms, And a mixture thereof.
  • the microbial cells may be washed and used as washed cells.
  • cell-treated products include those obtained by crushing, lysing, and lyophilizing the cells, and further purifying the cell-free extracts and crude proteins recovered by treating the cells. Extracted proteins such as purified protein are included.
  • purified protein partially purified proteins obtained by various purification methods may be used, or immobilized proteins obtained by immobilizing these by a covalent bond method, an adsorption method, a comprehensive method, or the like may be used. Good.
  • some microorganisms lyse during culture, and in this case, the culture supernatant can also be used as a protein-containing material.
  • the above steps may be performed in consideration of the temperature stability and optimum temperature of the protein of the present invention. preferable.
  • a temperature range can be appropriately determined by those skilled in the art. For example, 30 to 60 ° C. is used.
  • the reaction time can be appropriately set according to the amount of NANA to be produced.
  • the reaction can be performed in a stationary state or with stirring.
  • the production method (I) may be performed in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in addition to the protein of the present invention.
  • 4-Hydroxy-4-methyl-2-oxoglutarate aldolase can suppress the production of 4-hydroxy-4-methyl-2-oxoglutarate caused by condensation of pyruvic acid under alkaline conditions. Therefore, from the viewpoint of improving the NANA yield, the production method (I) is preferably performed in the presence of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
  • 4-Hydroxy-4-methyl-2-oxoglutarate aldolase is an enzyme classified as EC 4.1.3.17, which is 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase or ProA aldolase ( WO2003 / 091396), or 4-hydroxy-4-methyl-2-ketoglutarate aldolase, ⁇ -methyl- ⁇ -hydroxy- ⁇ -ketoglutarate aldolase, KDPG aldolase, MHK aldolase, MHKG aldolase or pyruvate aldolase (BRENDA: (http://www.brenda-enzymes.org/index.php4).
  • 4-hydroxy-4-methyl-2-oxoglutarate aldolase various enzymes (eg, derived from microorganisms or animals and plants) are known.
  • aldolases include those derived from the genus Komamomas, Pseudomonas, and Arakis.
  • 4-hydroxy-4-methyl-2-oxoglutarate aldolase include Comomas testosteroni (WO2003 / 091396), Pseudomonas putida [Tack, J. et al. Biol. Chem. vol. 247, p. 6444-6449 (1972); Dagley et al. , Methods Enzymol. vol. 90, p.
  • the concentration of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in the reaction solution is not particularly limited as long as the reaction proceeds.
  • the form of 4-hydroxy-4-methyl-2-oxoglutarate aldolase is not particularly limited as long as it is present in the reaction system in a state capable of catalyzing the above reaction. That is, when the reaction is carried out in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase, the specific form of aldolase present in the reaction system is, for example, 4-hydroxy-4-methyl-2 -Cultures containing microorganisms producing oxoglutarate aldolase, microbial cells isolated from the cultures, treated cells (extracted proteins), etc. are included.
  • examples of the transformant include (i) a transformant producing the protein of the present invention, (ii) 4-hydroxy-4-methyl- A transformant producing 2-oxoglutarate aldolase, (iii) a transformant producing both the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
  • the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase May be provided in the reaction in the following manner.
  • -Protein of the present invention extracting enzyme
  • 4-hydroxy-4-methyl-2-oxoglutarate aldolase extracting enzyme
  • -Transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase extraction enzyme
  • a transformant producing the protein of the present invention extractcting enzyme
  • 4-hydroxy-4-methyl-2-oxoglutarate aldolase A transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
  • a transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2 A transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2. -Transformant producing oxoglutarate aldolase-Protein of the present invention and transformant producing 4-hydroxy-4-methyl-2-oxoglutarate aldolase
  • the above-mentioned transformant can be obtained by, for example, i) introducing the expression vector of the protein of the present invention into a 4-hydroxy-4-methyl-2-oxoglutarate aldolase producing bacterium, ii) 4-hydroxy-4- By introducing an expression vector of methyl-2-oxoglutarate aldolase into a bacterium producing the protein of the present invention, iii) the first expression vector of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate Introducing the second expression vector of aldolase into the host microorganism, iv) introducing the protein of the present invention and the expression vector of 4-hydroxy-4-methyl-2-oxoglutarate aldolase into the host microorganism.
  • Examples of the expression vector of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase include, for example, i ′) the first polynucleotide encoding the protein of the present invention, and the first polynucleotide.
  • An expression vector comprising a second expression unit composed of a second promoter operably linked to ii ′) a first polynucleotide encoding a protein of the invention and 4-hydroxy-4-methyl- Second polynucleoside encoding 2-oxoglutarate aldolase De, and expression vectors comprising a promoter operably linked to the first and second polynucleotide (vector capable of expressing the polycistronic mRNA) are exemplified.
  • the first polynucleotide encoding the protein of the present invention may be located upstream or downstream of the second polynucleotide encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase. May be located.
  • NANA produced by the production method (I) can be easily separated and purified from the reaction solution by a known method. For example, it can be purified by ion exchange column chromatography and then concentrated to obtain a crystal from water or an organic solvent.
  • the production method (II) of the present invention comprises a first step (corresponding to the reaction step (1) shown in the background art) for producing NAM from NAG by an isomerization reaction under alkaline conditions, and A second step of synthesizing NANA from NAM and Pyr in the presence of protein (corresponding to the reaction step (2) above) is included.
  • Production method (II) is carried out in a reaction solution under alkaline conditions.
  • the reaction solution under alkaline conditions used in the production method (II) of the present invention is the same under the alkaline conditions used in the production method (I) of the present invention except that the raw material substrate is changed from NAM to NAG. It is the same as the reaction solution.
  • the reaction may be carried out in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase as in the production method (I) of the present invention.
  • the pH of the reaction solution under alkaline conditions is such that when both steps proceed simultaneously, from the viewpoint of efficiently producing a larger amount of NANA from NAG and Pyr, the chemical from NAG to NAM
  • Such a pH region is apparent from the above-mentioned pH necessary for chemical isomerization of NAG to NAM, and the above-mentioned pH stability and optimum pH.
  • pH 9.5 to 10.0 Preferably pH 10.0 is used.
  • the reaction under alkaline conditions in the production method (II) may be performed at a plurality of pHs in each step.
  • the first step is performed in the pH range necessary for chemical isomerization from NAG to NAM, and then the second step is performed in the pH range considering the pH stability and optimum pH of the protein of the present invention. Done.
  • the pH region in the first step is pH 9.5 or higher, and the pH region in the second step is the same as the pH region in the production method (I).
  • the reaction under alkaline conditions in the production method (II) is carried out by performing the first step at a preferred pH (eg, pH 11.5) by chemical isomerization from NAG to NAM, and then the pH of the reaction solution is changed to pH Adjust pH to the pH required for chemical isomerization from NAG to NAM (eg, pH 10) considering stability and optimum pH, and add the protein of the present invention to the reaction solution after pH adjustment By doing so, not only the second step but also the first step may be performed simultaneously.
  • This format has the advantage that a larger amount of NANA can be efficiently manufactured.
  • each substrate in the reaction solution is not particularly limited. Specifically, the concentrations of NAG and Pyr in the production method (II) can be set as appropriate. Each substrate may also be supplemented as appropriate during the reaction. Furthermore, NAG can be used in any form of free base and salt (eg, hydrochloride, sulfate). Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
  • NAG can be used in any form of free base and salt (eg, hydrochloride, sulfate).
  • Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
  • the concentration of the protein of the present invention in the reaction solution is not particularly limited as long as the reaction proceeds.
  • the form of the protein of the present invention in production method (II) is the same as the form of the protein of the present invention in production method (I).
  • the preferred temperature for the chemical isomerization of NAG to NAM, and the temperature stability and optimum of the protein of the present invention is preferable to perform the above steps in consideration of an appropriate temperature.
  • Such a temperature range can be appropriately determined by those skilled in the art. For example, 30 to 60 ° C. is used.
  • the reaction time can be appropriately set according to the amount of NANA to be produced.
  • the reaction can be performed in a stationary state or with stirring.
  • the NANA produced by the production method (II) can be easily separated and purified from the reaction solution by a known method in the same manner as the NANA produced by the production method (I).
  • NANA N-acetyl-D-neuraminic acid
  • NAG N-acetyl-D-glucosamine
  • NAM N-acetyl-D-mannosamine
  • pyruvic acid Pyr
  • the mobile phase was 5 mM H 2 SO 4 buffer with a flow rate of 0.6 ml / min, and the eluate was monitored by 210 mm UV detection.
  • the temperature was 40 ° C.
  • Microorganisms that assimilate N-acetyl-D-neuraminic acid as a carbon source were isolated from soil samples from Kamogawa Riverbed in Sakyo-ku, Kyoto, Kyoto, Japan, and used for screening.
  • the isolation medium (medium i) is 0.3% (w / v) NANA, 0.3% (w / v) (NH 4 ) 2 SO 4 , 0.3% (w / v) K 2 HPO 4 , 0.05% (w / v) yeast extract, 0.05% (w / v) MgSO 4 .7H 2 O, 0.001% (w / v) FeSO 4 .7H 2 O, 0.001 % (W / v) MnSO 4 .5H 2 O, 0.75% (w / v) Na 2 CO 3 was contained in tap water (pH 10.5).
  • Soil samples are incubated in this medium with shaking for 8 or 24 hours at 28 ° C., after which the culture is spread on a 2.0% agar plate of medium ii and then incubated at 28 ° C. for 12 hours did.
  • Medium ii is 0.1% (w / v) NANA, 0.5% (w / v) sodium fumarate, 1.0% (w / v) peptone, 1.0% (w / v) yeast extraction Product, 0.3% (w / v) NaCl, 0.75% (w / v) Na 2 CO 3 was contained in tap water (pH 10.5). Appearing colonies were isolated on agar plates of medium ii. Subsequently, it was transferred again to an agar plate of medium ii containing 0.3% (w / v) NANA and cultured at 28 ° C. for 24 hours to obtain a sufficient amount of cells for the screening reaction.
  • the reaction mixture contained 100 mM Pyr, 100 mM NAM, 50 mM borate buffer (pH 10.0) and 5 mg of wet cells collected from the agar plate in 100 ⁇ l.
  • the reaction mixture was incubated at 28 ° C. for 8 or 24 hours and centrifuged at 10,000 ⁇ g for 5 minutes. Production of NANA in the supernatant was analyzed by HPLC.
  • the plasmid T-vector (Novagen, USA) was used as a customary DNA cloning vector.
  • the plasmid pKK223-3 (GE Healthcare Bio-Sciences Corp, USA) was used as a protein expression vector.
  • Escherichia coli JM109 was employed as the usual cloning host, and JM109, a host strain for protein expression, was added to Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast). Extract and 1% NaCl). If necessary, 50 ⁇ g / ml ampicillin was added.
  • Upstream primer 5′-GCNGTNACNCCNTTYTAYTA-3 ′ (SEQ ID NO: 3) [corresponding to AVTPFYY (SEQ ID NO: 4)]
  • Downstream primer 5′-AANGTNSWNCCATNGCNCCRTC-3 ′ (SEQ ID NO: 5) [corresponds to FTSGIAGD (SEQ ID NO: 6)]
  • Amplification was carried out as follows (annealing at 45 ° C. for 30 seconds, extension at 72 ° C. for 60 seconds and denaturation at 98 ° C. for 10 seconds for a total of 40 cycles).
  • the PCR product (pNANA) was cloned into the pMD20-T vector, subjected to nucleotide sequence analysis, and then used as a probe.
  • pNANA was labeled with digoxigenin-UTP using a DNA labeling kit (Roche), and the labeled pNANA was detected using a DNA detection kit (Roche).
  • Bacillus sp. YKR genomic DNA was digested with BamHI, EcoRI, HindIII, PstI, SacI, SalI, or SpeI, separated on a 0.7% agarose gel and transferred to a nylon membrane. Membranes were prehybridized in hybridization buffer (Roche) for 30 minutes at 40 ° C. and hybridized overnight at 65 ° C. with pNANA-labeled digoxigenin-UTP labeled using a DNA labeling kit (Roche). . 2 ⁇ SSC (SSC: 333mM NaCl , 333mM C 6 H 5 O 7 Na 3 ⁇ 2H 2 O), 55 at 20 ° C.
  • Luminescence was recorded by exposure to X-ray film.
  • a Bacillus sp. YKR genomic library was prepared using genomic DNA digested with EcoRI. Based on the results of Southern blotting hybridization using pNANA, the size of the DNA fragment containing the nanA gene was estimated to be 2.0 kb. Fragments were size fractionated by means of 0.7% agarose gem electrophoresis after digesting genomic DNA with EcoRI. A gel part corresponding to a molecular size of 2.0 kb was cut out. The DNA fragment thus isolated was purified and ligated into pUK118. Approximately 5 ⁇ 10 3 recombinants were screened with digoxigenin-labeled pNANA. After colony hybridization under the above conditions, the nylon membrane was washed at 40 ° C. in 2 ⁇ SSC, 0.1% SDS and 55 ° C. in 0.5 ⁇ SSC, 0.1% SDS, then The DNA was examined using a detection kit (Roche). Luminescence was recorded by exposure to X-ray film.
  • the reaction mixture contained 100 ng Bacillus sp. YKR genomic DNA as a template and 50 pmol each of P1 and P2 in the manufacturer's reaction buffer.
  • the reaction was carried out through 30 cycles of 90 ° C. for 30 seconds, 50 ° C. for 30 seconds, and 72 ° C. for 2 minutes.
  • the PCR product and pKK223-3 were digested with EcoRI and HindIII.
  • the PCR product was inserted into the EcoRI and HindIII sites of pKK223-3.
  • Escherichia coli JM109 having no nanA activity was transformed with the obtained plasmid and grown to stationary phase.
  • Cells are collected by centrifugation at 10,000 ⁇ g for 15 minutes, suspended in 50 mM Tris-HCl buffer (pH 8.0), and 3000 rpm using a cell disruption system (Micro Smash, TOMY, Japan). It was crushed for 180 seconds (30 seconds ⁇ 6). Cell debris was removed by centrifugation at 10,000 ⁇ g for 5 minutes, and the supernatant was used as a cell-free extract for nanA characterization, enzyme purification and NANA production reactions.
  • nanA assay The enzyme activity value of nanA was determined by measuring the production of NANA from NAM and Pyr. In the basic reaction, a reaction mixture (100 ⁇ l) containing 50 mM buffer (Tris-HCl buffer (pH 8.5), 100 mM NAM, 100 mM Pyr and enzyme) was incubated at 30 ° C. for 30 minutes. Defined as the amount catalyzing the formation of 1 ⁇ mol NANA per minute at 30 ° C.
  • Step 1 Preparation of crude extract 6.7 g of washed wet cells were suspended in 50 mM Tris-HCl buffer (pH 8.0), and then using a bead-type cell disrupter (Micro Smash, TOMY, Japan). And crushed at 3000 rpm for 180 seconds (30 seconds ⁇ 6). After centrifugation at 10,000 ⁇ g for 15 minutes, the supernatant solution was dialyzed against 50 mM Tris-HCl buffer (pH 8.0). The precipitate that formed during dialysis was removed by centrifugation at 10,000 ⁇ g for 15 minutes. The supernatant solution was used as a cell-free extract.
  • Tris-HCl buffer pH 8.0
  • Step 2 HiPrep 16/10 DEAE FF column chromatography
  • a HiPrep 16/10 DEAE FF column (GE) in which 4.5 ml of the above cell-free extract was equilibrated with 50 mM Tris-HCl buffer (pH 8.0) containing 50 mM NaCl. Applied by Healthcare). The column was washed with equilibration buffer. The enzyme was eluted with a linear gradient of NaCl (50-250 mM in buffer). 4.5 ml fractions were collected. The enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) and concentrated to 1 ml.
  • Step 3 Mono Q HR 5/5 Column Chromatography
  • the above enzyme concentrated solution ml was applied to a Mono Q HR 5/5 column (manufactured by GE Healthcare) equilibrated with 50 mM Tris-HCl buffer (pH 8.0). did.
  • the column was washed with 50 mM Tris-HCl buffer (pH 8.0) containing 200 mM NaCl.
  • the enzyme was eluted with a linear gradient of NaCl (200-300 mM in buffer). Fractions were collected in 0.5 ml aliquots.
  • the enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) to obtain 1 ml of the active fraction.
  • Step 4 Mono Q column chromatography 25 ⁇ l of the above enzyme concentrated solution was applied to a Mono Q column equilibrated with 50 mM Tris-HCl buffer (pH 8.0) (manufactured by GE Healthcare). The column was washed with 50 mM Tris-HCl buffer (pH 8.0) containing 200 mM NaCl. The enzyme was eluted with a linear gradient of NaCl (200-300 mM in buffer). Fractions were collected in 0.1 ml portions. The enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) to obtain 1 ml of a concentrated solution.
  • 50 mM Tris-HCl buffer pH 8.0
  • NANA production reaction from NAM and Pyr A standard reaction mixture (100 ⁇ l) is a cell-free extract of 0.5 mg / ml protein, 50 mM Tris-HCl buffer (pH 8.5), or CAPS buffer (pH 10.0), 100 mM NAM and Contained 100 mM Pyr. Incubated at 30 ° C.
  • NAM production reaction from NAG and Pyr NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours at 40 ° C. in a volume of 0.7 ml. NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively.
  • Protein concentration was measured with a protein assay kit (Bio-Rad Laboratories, USA) using bovine serum albumin as a standard (Bradford, MM, Anal Biochem 72 (1976) 248-254). SDS-PAGE was performed using 12.5% polyacrylamide using a Tris-glycine buffer system as described by King and Laemmli (King et al., J. Mol. Biol. 62 (1971) 465-477). Performed in slab gel.
  • reaction temperature The effect of reaction temperature on the chemical isomerization of NAG to NAM was investigated.
  • the reaction was incubated at 20 ° C. to 80 ° C. for 3 hours at pH 11.5.
  • isomerization to NAM proceeded without decomposition of NAG and NAM.
  • decomposition of NAG and NAM was observed at temperatures above 45 ° C. Therefore, the optimum temperature for chemical isomerization was 40 ° C.
  • the optimum pH for isomerization was pH 11.5 to 12.0.
  • most microorganisms could not grow at a pH higher than pH 11.0. Therefore, the medium i condition was determined at pH 10.5.
  • NANA-utilizing microorganisms utilize NAM and / or Pyr (which are degraded from NANA by nanA) as a carbon source.
  • the NANA-assimilating microorganism has nanA.
  • Medium i containing NANA as a single carbon source was used for screening of nanA.
  • NANA-assimilating microorganisms were isolated from soil by enrichment culture in an alkaline medium i (pH 10.5) containing 0.3% NANA. Thirty of these strains produced NANA from NAM and Pyr under alkaline conditions. The production of NANA by these strains was examined under alkaline conditions (Table 1). These strains were incubated for 24 hours at 28 ° C. on alkaline medium ii. 5 mg of this wet cell was added to a reaction mixture (100 ⁇ l) containing 0.1 M Pyr and 0.1 M NAM, and incubated at pH 10.0 for 4 hours. Six strains I, II, V, VI, VII and YKR produced higher amounts of NANA. These six strains were identified as Bacillus sp.
  • Example 2 Cloning of a gene encoding N-acetyl-D-neuraminic acid aldolase derived from newly isolated Bacillus sp. And expression of the enzyme in Escherichia coli JM109
  • nanA derived from Bacillus sp. YKR PCR cloning was performed, and a part of the gene encoding nanA was obtained from the genomic DNA of six microorganisms isolated from soil.
  • microorganisms (Shigella dysenteriae, Escherichia coli K-12, Salmonella entericaserovar, Haemophilus influenza, Actinobacillus pleuropneumoniae, Fusobacterium nucleatum, Lactobacillus plantarum, Clostridium perfringens, Staphlocpccus aureus, Streptococcus pneumonia, Pasteurella multocide, Trichomonas vaginalis, Mycoplasma capricolum, and Pseudoalteromonas Haloplan tis) aligning the 14 amino acid sequence of a known nanA from the condensation oligonucleotides were designed on conserved regions.
  • a nucleotide fragment of the Bacillus sp. YKR nanA gene was amplified by PCR.
  • the nucleotide sequence of the amplified gene fragment having a size of 271 bp showed homology with nanA from Clostridium perfringens.
  • Gene DNAs did not show similar sequences of known proteins with significant homology. Southern blotting hybridization using this fragment as a probe showed a single band generated by digestion of Bacillus sp.
  • YKR DNA with BamHI, EcoRI, HindIII, PstI, SacI, SalI or SpeI.
  • a 2.0-3.0 kb DNA fragment recovered by size fractionation after EcoRI digestion was used to construct a partial Bacillus sp. YKR gene library, which was then screened using probe DNA. Plasmid DNA was isolated from positive clones. The entire 2.2 kb fragment obtained by digestion with EcoRI was sequenced. The sequence data of the isolated gene showed that the entire structural gene is located on the cloned fragment. All amino acid sequences determined for the nanA peptide fragment from Bacillus sp. YKR closely matched the amino acid sequence predicted from the DNA sequence.
  • the open reading frame consisted of 864 bp, which encoded a protein of 288 amino acids with a calculated molecular weight of 32,643 Da (the nucleotide sequence represented by SEQ ID NO: 1 and represented by SEQ ID NO: 2) See amino acid sequence).
  • nanA in Escherichia coli JM109 The nanA gene was ligated into pKK223-3 with the tac promoter. The resulting plasmid, pKKnanA, was introduced into Escherichia coli JM109.
  • Escherichia coli JM109 cells were induced at 37 ° C. with 0.1 mM IPTG. The expressed protein was detected by SDS-PAGE. The main band showed a molecular weight of about 30 kDa. This value was consistent with the calculated molecular weight of the nanA gene.
  • IPTG concentration The effect of IPTG concentration on the expression of nanA was examined.
  • E. coli JM109 cells were induced at 37 ° C. with various concentrations of IPTG (0.05-5.0 mM). However, no difference in protein expression was detected on SDS-PAGE.
  • the enzyme was added to Tris-HCl buffer (pH 8.0, 8.5 and 9.0), borate buffer (pH 9.0, 9.5 and 10.0) and CAPS (pH 10.0, 10.5 and 11.0) buffers, no activity loss was observed when incubated overnight (16 hours) at 4 ° C.
  • Table 3 shows an outline of purification of this enzyme.
  • the purification rate of this enzyme was about 2.5 times, and the purification yield was 24%.
  • As for the purified enzyme a single band was confirmed on SDS-PAGE.
  • NANA Production of NANA from NAM and Pyr
  • NANA under conditions of equimolar concentrations of NAM and Pyr Details of the following reaction conditions are as described in the brief description of the drawings. 40.2 mM NANA was produced in 6 hours from 100 mM NAM and 100 mM Pyr at pH 8.5. On the other hand, 52.7 mM NANA was produced in 6 hours from 100 mM NAM and 100 mM Pyr at pH 10.0, and at that time, 11.2 mM NAG was accumulated (FIG. 6). After 6 hours of reaction, NAM to NANA conversion reached 40.2% and 52.7%, respectively.
  • NANA was produced from NAG and Pyr (FIG. 10).
  • NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 at 40 ° C. for 3 hours in a volume of 0.7 ml.
  • NANA was produced from NAG and Pyr (FIG. 11).
  • 1000 mM NAG was incubated at pH 11.5 at 40 ° C. for 3 hours to prepare NAM from NAG.
  • NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively.
  • 50 mM CAPS pH 10.0
  • 700 mM Pyr 700 mM Pyr and recombinant Escherichia coli resting cells
  • nanA derived from Bacillus sp. YKR was optimal at pH 8.0 to 8.5, and activity exceeding 60% of the maximum activity was observed at pH 7.0 to pH 10.0.
  • the activity of nanA derived from Bacillus sp. YKR was stable between pH 8.0 and pH 11.0.
  • the activity of nanA derived from Escherichia coli was optimal at pH 7.7, and activity exceeding 50% of the maximum activity was observed at pH 6.0 to pH 9.0.
  • the activity of nanA derived from Escherichia coli is stable between pH 6.0 and pH 9.0 (Non-patent Document 2).
  • NANA was produced from NAG and Pyr under alkaline conditions by a novel one-pot reaction that does not require ATP.
  • ATP is a relatively unstable molecule and is very expensive. ATP is not required if chemical isomerization is used in the isomerization reaction instead of enzymatic isomerization.
  • NANA production from NAG and Pyr was 51.6% (relative to NAG) in 57 hours.
  • novel one-pot reaction consisting of NAM isomerization reaction from NAG and NANA synthesis reaction from NAM and Pyr, it took 57 hours to produce 368 mM NANA.
  • the production method of the present invention has a NANA production rate of at least 6.3 mM / h.
  • Example 4 NANA production reaction from NAG and Pyr added with 4-hydroxy-4-methyl-2-oxoglutarate aldolase Under the alkaline reaction conditions, reduction of pyruvic acid and formation of by-products were observed. We thought that it was important to suppress. The generated by-product was analyzed using LC / MS, and it was found that pyruvic acid was polymerized 4-hydroxy-4-methyl-2-oxoglutaric acid. In order to suppress the formation of this compound, the use of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in the reaction was investigated.
  • reaction mixture 50 mM of CAPS (pH 10.0), Pyr of 1000 mM, 0.1 mM MgSO 4, recombinant 0.5mg / ml4- hydroxy-4-methyl-2-oxoglutarate aldolase protein
  • a cell-free extract from Escherichia coli and a cell-free extract from 0.5 mg / ml N-acetyl-D-neuraminic acid aldolase recombinant Escherichia coli were added in a final volume of 1 ml.
  • a control obtained by removing the cell-free extract derived from recombinant Escherichia coli of 0.5 mg / ml 4-hydroxy-4-methyl-2-oxoglutarate aldolase protein from the above reaction conditions was used as a control.
  • 26.8 mM NANA was produced in the reaction for 6 hours, while in the reaction to which 4-hydroxy-4-methyl-2-oxoglutarate aldolase was added, 43.2 mM NANA was produced in 6 hours.
  • 4-hydroxy-4-methyl-2-oxoglutarate aldolase improves the yield of NANA.
  • the protein of the present invention exhibits pH stability under the alkaline conditions of high pH required in the chemical isomerization reaction from NAG to NAM, an efficient large amount of NANA using NAG and Pyr as raw materials It has the advantage of allowing manufacturing.
  • the polynucleotide, expression vector, transformant and bacterium of the present invention are useful for the production of the protein of the present invention, and as such enable efficient production of large amounts of NANA using NAG and Pyr as raw materials.
  • Has the advantage of The production method of the present invention can efficiently produce a large amount of NANA by using NAG and Pyr as raw materials.
  • the production method of the present invention also has an advantage that an efficient production of a large amount of NANA can be carried out at low cost because expensive ATP is not required because chemical isomerization of NAM to NAM is used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed are: NANA aldolase which is stable under alkaline conditions having high pH values; and a process for producing NANA in a large amount with high efficiency using the NANA aldolase. Specifically disclosed are: a protein which exhibits pH stability at pH 8.0 to 11.0 and has an N-acetyl-D-neuraminic acid aldolase activity; a polynucleotide encoding the protein; an expression vector carrying the polynucleotide; a transformant having the expression vector introduced thereinto; a bacterium capable of producing the protein; a process for producing N-acetyl-D-neuraminic acid aldolase using the protein; and others.

Description

N-アセチル-D-ノイラミン酸の製造方法Process for producing N-acetyl-D-neuraminic acid
 本発明は、N-アセチル-D-ノイラミン酸アルドラーゼの製造方法、ならびにN-アセチル-D-ノイラミン酸アルドラーゼの製造に有用なタンパク質、ポリヌクレオチド、発現ベクター、形質転換体および細菌などに関する。 The present invention relates to a method for producing N-acetyl-D-neuraminic acid aldolase, and proteins, polynucleotides, expression vectors, transformants, bacteria, and the like useful for producing N-acetyl-D-neuraminic acid aldolase.
 全てのシアル酸種のうち最も普遍的であるN-アセチル-D-ノイラミン酸(以下、必要に応じて、NANAと略称)は、脊椎動物の細胞表面に存在する糖抱合体中のグリカン鎖末端に位置する不可欠かつ最も豊富なアミノ糖である。NANAは、ウイルス感染を含む多くの生物学的機能において顕著な役割を果たしている。細胞内で増殖したウイルスは感染細胞表面にあるNANAと結合しており、感染細胞からの感染性ウイルスの放出、拡散には、ウイルスの表面に存在するノイラミニダーゼの作用により、感染細胞表面にあるNANAと結合を切断することが必須である。したがって、NANAアナログは、潜在的な抗ウイルス剤として検討されてきた。A及びB型の双方のインフルエンザウイルスのノイラミニダーゼを阻害する、NANAアナログである、ザナミビル(製品名:リレンザ)およびオセルファミビル(製品名:タミフル)が開発されており、高毒性のH5N1株に対する治療薬として広く用いられている。複製したインフルエンザウイルスは、感染細胞表面に存在するNANAに結合し、感染細胞上に局在する。インフルエンザウイルスは、インフルエンザウイルスのNANAレセプターと感染細胞のNANAとを連結する結合を切断する酵素であるノイラミニダーゼを有する。ウイルス放出は、ノイラミニダーゼがインフルエンザウイルスと感染細胞との結合を切断することを必要とする。ノイラミニダーゼ阻害剤であるザナミビルおよびオセルファミビルの存在下では、ウイルスは、感染細胞の膜に付着したままであり、自己凝集を引き起こし、ウイルスの拡散が阻害される。現在、インフルエンザウイルスに対するNANAベースの新規薬剤が、医療分野で非常に必要とされており、多量のNANAについて世界で需要がある。したがって、NANAを効率的に多量に製造するため、酵素を用いる種々の合成法が検討されている。 N-acetyl-D-neuraminic acid, which is the most universal of all sialic acid species (hereinafter abbreviated as NANA if necessary), is a glycan chain terminal in the glycoconjugate present on the vertebrate cell surface. Is the essential and most abundant amino sugar located in NANA plays a prominent role in many biological functions, including viral infections. The virus propagated inside the cell is bound to NANA on the surface of the infected cell, and the release and spread of the infectious virus from the infected cell is caused by the action of neuraminidase existing on the surface of the virus to cause NANA on the surface of the infected cell. It is essential to break the bond. NANA analogs have therefore been investigated as potential antiviral agents. Zanamivir (product name: Relenza) and oselfamivir (product name: Tamiflu), NANA analogs that inhibit both A and B influenza virus neuraminidases, have been developed and treated against the highly toxic H5N1 strain Widely used as a medicine. The replicated influenza virus binds to NANA present on the infected cell surface and localizes on the infected cell. Influenza virus has neuraminidase, an enzyme that cleaves the bond that links the NANA receptor of influenza virus and the NANA of infected cells. Virus release requires neuraminidase to break the bond between influenza virus and infected cells. In the presence of the neuraminidase inhibitors zanamivir and oselfamivir, the virus remains attached to the membrane of the infected cell, causing self-aggregation and inhibiting the spread of the virus. Currently, new NANA-based drugs against influenza viruses are in great demand in the medical field and there is a worldwide demand for large amounts of NANA. Therefore, various synthetic methods using enzymes have been studied in order to efficiently produce a large amount of NANA.
 酵素を用いるNANAの合成法の例としては、N-アセチル-D-ノイラミン酸アルドラーゼ(以下、必要に応じて、NANAアルドラーゼまたはnanAと略称)の存在下で、N-アセチル-D-マンノサミン(以下、必要に応じて、NAMと略称)およびピルビン酸(以下、必要に応じて、Pyrと略称)を反応させることによる、NANAの酵素合成法(後述する(2)の反応工程に相当)が挙げられる。しかしながら、本方法は、NAMが高価であるため、実用的とはいえない。そこで、NAMの代わりに、安価なN-アセチル-D-グルコサミン(以下、必要に応じて、NAGと略称)、およびPyrを原料として用いる、NANAの酵素合成法が検討されている。 As an example of a synthesis method of NANA using an enzyme, N-acetyl-D-mannosamine (hereinafter referred to as NANA aldolase or nanA, if necessary) in the presence of N-acetyl-D-neuraminic acid aldolase (hereinafter referred to as NANA aldolase or nanA as required) , And NANA enzyme synthesis method (corresponding to the reaction step of (2) described later) by reacting pyruvic acid (hereinafter abbreviated as Pyr, if necessary). It is done. However, this method is not practical because NAM is expensive. Therefore, an NANA enzyme synthesis method using N-acetyl-D-glucosamine (hereinafter, abbreviated as NAG as necessary) and Pyr as raw materials instead of NAM has been studied.
 NAGおよびPyrを原料として用いる、NANAの酵素合成法は、以下(1)(2)の反応工程を含む。 The NANA enzyme synthesis method using NAG and Pyr as raw materials includes the following reaction steps (1) and (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 特許文献1、2は、上記(1)の反応工程において、中性条件下でエピメラーゼを用いること、および上記(2)の反応工程において、中性条件下でNANAアルドラーゼを用いることを含む、NAGおよびPyrからのNANAの酵素合成法を開示している。 Patent Documents 1 and 2 include NAG comprising using epimerase under neutral conditions in the reaction step (1) above, and using NANA aldolase under neutral conditions in the reaction step (2) above. And a method for enzymatic synthesis of NANA from Pyr.
 特許文献3は、上記(1)の反応工程において、アルカリ性条件下でのNAGからのNAMへの化学的異性化を利用すること、および上記(2)の反応工程において、中性条件下でNANAアルドラーゼを用いることを含む、NAGおよびPyrからのNANAの酵素合成法を開示している。 Patent Document 3 utilizes chemical isomerization of NAG to NAM under alkaline conditions in the reaction step (1) above, and NANA under neutral conditions in the reaction step (2) above. A method for enzymatic synthesis of NANA from NAG and Pyr, including the use of aldolase, is disclosed.
 非特許文献1は、上記(1)の反応工程において、アルカリ性条件下でのNAGからのNAMへの化学的異性化を利用すること、および上記(2)の反応工程において、アルカリ性条件下でNANAアルドラーゼを用いることを含む、NAGおよびPyrからのNANAの酵素合成法を開示している。本方法によれば、理論的には、上記(1)(2)の反応工程をアルカリ性条件下で統一して同時に行うことにより、多量のNANAを効率的に製造することが可能になる。これは、化学的異性化により生じたNAMがNANA合成に伴って減少すると、NAMが、化学平衡によりNAGから補充されるためである。 Non-Patent Document 1 utilizes chemical isomerization of NAG to NAM under alkaline conditions in the reaction step (1) above, and NANA under alkaline conditions in the reaction step (2) above. A method for enzymatic synthesis of NANA from NAG and Pyr, including the use of aldolase, is disclosed. According to the present method, theoretically, it is possible to efficiently produce a large amount of NANA by simultaneously performing the reaction steps (1) and (2) under alkaline conditions and performing them simultaneously. This is because NAM is replenished from NAG by chemical equilibrium when NAM generated by chemical isomerization decreases with NANA synthesis.
 NANAアルドラーゼ産生菌については、多数の報告がある。例えば、NANAアルドラーゼ産生菌としては、エシェリヒア属(非特許文献2~4)、クロストリジウム属(非特許文献5、6)、バチルス属、シトロバクター属、コリネバクテリウム属、エンテロバクター属、クライベラ属、ミクロコッカス属、プロテウス属(非特許文献7)、エアロバクター属(特許文献4)、シュードモナス属、シュードモナス属、ザルシナ属、バクテリウム属、アルスロバクター属、ブレビバクテリウム属(特許文献5)が挙げられる。 There have been many reports on NANA aldolase-producing bacteria. For example, as a NANA aldolase-producing bacterium, Escherichia (Non-Patent Documents 2 to 4), Clostridium (Non-Patent Documents 5 and 6), Bacillus, Citrobacter, Corynebacterium, Enterobacter, Clavera, Micrococcus genus, Proteus genus (non-patent document 7), Aerobacter genus (patent document 4), Pseudomonas genus, Pseudomonas genus, Sarsina genus, Bacteria genus, Arthrobacter genus, Brevibacterium genus (Patent Document 5) It is done.
 ところで、特許文献6では、NANAの製造方法において、基質であるNAGおよびPyrの保護効果により、高pHのアルカリ性条件下で、NANAアルドラーゼの失活が抑制されることが報告されている。 By the way, Patent Document 6 reports that in the NANA production method, the deactivation of NANA aldolase is suppressed under alkaline conditions at high pH due to the protective effect of the substrates NAG and Pyr.
特許第3151210号Japanese Patent No. 3151210 特許第3418764号Japanese Patent No. 3418764 WO94/29476WO94 / 29476 特公昭55-50890JP 55-50890 特公昭55-50891JP 55-50891 WO93/15214WO93 / 15214
 しかしながら、特許文献1~6および非特許文献1~7に記載される方法は、以下のような問題を有する。 However, the methods described in Patent Documents 1 to 6 and Non-Patent Documents 1 to 7 have the following problems.
 特許文献1、2に記載される方法は、上記(1)の反応工程において、エピメラーゼの活性の低さに起因して、NAGからNAMへの変換効率が低く、また、エピメラーゼの活性発現のために、高価なATPを補酵素として要する。 In the method described in Patent Documents 1 and 2, in the reaction step (1), the conversion efficiency from NAG to NAM is low due to the low activity of epimerase, and the activity of epimerase is expressed. In addition, expensive ATP is required as a coenzyme.
 特許文献3に記載される方法は、上記(1)の反応工程の終了後に、NAMをアルカリ性条件下の反応液から抽出し、次いで中性条件下でNANAアルドラーゼを用いる必要があるため、煩雑である。また、特許文献3に記載される方法は、上記(1)の反応工程の終了後に抽出されるNAMが少量であるため(即ち、NAGとNAMの異性化の化学平衡はNAM側ではなくNAG側に傾いている)、上記(2)の反応工程において、多量のNANAを効率的に製造し得ない。 The method described in Patent Document 3 is complicated because it is necessary to extract NAM from a reaction solution under alkaline conditions after the completion of the reaction step (1) and then use NANA aldolase under neutral conditions. is there. In addition, the method described in Patent Document 3 has a small amount of NAM extracted after the completion of the reaction step (1) (that is, the chemical equilibrium of isomerization of NAG and NAM is not on the NAM side but on the NAG side. In the reaction step (2), a large amount of NANA cannot be produced efficiently.
 非特許文献1に記載される方法で用いられるNANAアルドラーゼは、上記(1)の反応工程において必要とされる高pHのアルカリ性条件下では不安定であり急速に失活するため、本方法は、現実的には、多量のNANAを効率的に製造し得ない。 Since the NANA aldolase used in the method described in Non-Patent Document 1 is unstable and rapidly deactivates under alkaline conditions of high pH required in the reaction step (1) above, In reality, a large amount of NANA cannot be produced efficiently.
 非特許文献2~6、特許文献4~5に記載されるNANAアルドラーゼは、アルカリ性条件下では不安定である。例えば、従来のNANAの製造では、上述の菌由来のNANAアルドラーゼのうち、エシェリヒア属(非特許文献4)またはクロストリジウム属(非特許文献5)由来のNANAアルドラーゼのみが使用されているが、これらのNANAアルドラーゼは、pH6.0~9.0において安定性を示すのみであり、上記(1)の反応工程において必要とされる高pHのアルカリ性条件下では安定性を示さない。したがって、これらのNANAアルドラーゼは、上記(1)(2)の反応工程を同時に進行させて、NAGおよびPyrからNANAを製造するための酵素としては、効率的ではない。 NANA aldolase described in Non-Patent Documents 2 to 6 and Patent Documents 4 to 5 is unstable under alkaline conditions. For example, in the conventional production of NANA, only NANA aldolase derived from the genus Escherichia (Non-patent Document 4) or Clostridium (non-patent Document 5) is used among the above-mentioned NANA aldolases derived from bacteria. NANA aldolase exhibits stability only at pH 6.0 to 9.0, and does not exhibit stability under alkaline conditions of high pH required in the reaction step (1). Therefore, these NANA aldolases are not efficient as enzymes for producing NANA from NAG and Pyr by simultaneously proceeding the reaction steps (1) and (2) above.
 特許文献6については、上記(1)(2)の反応工程を含む反応系を用いる場合、高pHのアルカリ性条件下でNANAアルドラーゼ自体が安定であれば、より長期にわたって活性を保持するので、より多量のNANAを効率的に製造できると考えられる。また、基質濃度に依存することなくNANAアルドラーゼが安定である場合、上記(1)(2)の反応工程を含む反応系では、NANAアルドラーゼを、より使用し易いと考えられる。したがって、高pHのアルカリ性条件下で、高いpH安定性を示すNANAアルドラーゼの開発が求められている。 Regarding Patent Document 6, when a reaction system including the reaction steps (1) and (2) above is used, if the NANA aldolase itself is stable under alkaline conditions at high pH, the activity is maintained for a longer period. It is thought that a large amount of NANA can be produced efficiently. Further, when the NANA aldolase is stable without depending on the substrate concentration, it is considered that the NANA aldolase is easier to use in the reaction system including the reaction steps (1) and (2). Therefore, there is a demand for the development of NANA aldolase exhibiting high pH stability under alkaline conditions of high pH.
 本発明は、上記に鑑みてなされたものであって、高pHのアルカリ性条件下で安定なNANAアルドラーゼを提供すること、およびこのようなNANAアルドラーゼを利用して、多量のNANAを効率的に製造する方法を提供することを目的とする。 The present invention has been made in view of the above, and provides a stable NANA aldolase under alkaline conditions at a high pH, and efficiently produces a large amount of NANA using such a NANA aldolase. It aims to provide a way to do.
 本発明者らは、NANAを単一炭素源とするアルカリ培地で生育する能力を有する多くの微生物について、高pHのアルカリ性条件下でNAMおよびPyrからNANAを合成する能力を有する菌株を探索する実験を繰り返した結果、これらの能力を有する菌株を単離すること、単離された菌株からN-アセチルノイラミン酸アルドラーゼをコードする遺伝子を同定すること、ならびにN-アセチルノイラミン酸アルドラーゼを用いて、NANAを効率的に製造する方法などを開発することに成功し、本発明を完成するに至った。すなわち、本発明は、以下のとおりである。 The present inventors search for strains having the ability to synthesize NANA from NAM and Pyr under high pH alkaline conditions for many microorganisms having the ability to grow on an alkaline medium using NANA as a single carbon source. As a result of repeating the above, the isolation of a strain having these abilities, the identification of a gene encoding N-acetylneuraminic acid aldolase from the isolated strain, and the use of N-acetylneuraminic acid aldolase The present inventors have succeeded in developing a method for efficiently producing NANA and have completed the present invention. That is, the present invention is as follows.
〔1〕pH8.0~11.0においてpH安定性を示し、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質。
〔2〕下記(A)~(D)からなる群より選ばれるいずれかである、タンパク質:
(A)配列番号2により表されるアミノ酸配列からなるタンパク質;
(B)配列番号2により表されるアミノ酸配列を含むタンパク質;
(C)配列番号2により表されるアミノ酸配列において、アミノ酸残基の欠失、置換、付加および挿入からなる群より選ばれる、1または数個のアミノ酸残基の変異を含むアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質;ならびに
(D)配列番号2により表されるアミノ酸配列に対して少なくとも80%以上のアミノ酸配列同一性を有するアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質。
〔3〕前記タンパク質がpH8.0~11.0においてpH安定性を示す、上記〔2〕のタンパク質。
〔4〕下記(a)~(e)からなる群より選ばれるいずれかである、ポリヌクレオチド:
(a)配列番号1により表されるヌクレオチド配列からなるポリヌクレオチド;
(b)配列番号1により表されるヌクレオチド配列を含むポリヌクレオチド;
(c)配列番号1により表されるアミノ酸配列に対して少なくとも80%以上のヌクレオチド配列同一性を有するヌクレオチド配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;
(d)配列番号1により表されるヌクレオチド配列に対して相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;ならびに
(e)上記〔1〕~〔3〕のいずれかのタンパク質をコードするポリヌクレオチド。
〔5〕上記〔4〕のポリヌクレオチドを含む発現ベクター。
〔6〕上記〔5〕の発現ベクターが導入された形質転換体。
〔7〕形質転換体の宿主がエシェリヒア・コリである、〔6〕の形質転換体。
〔8〕〔1〕~〔3〕のいずれかのタンパク質を産生する能力を有する、バチルス属由来の細菌。
〔9〕〔6〕または〔7〕の形質転換体および/または〔8〕の細菌を培地中で培養して、〔1〕~〔3〕のいずれかのタンパク質を得ることを含む、N-アセチル-D-ノイラミン酸アルドラーゼの製造方法。
〔10〕〔1〕~〔3〕のいずれかのタンパク質の存在下で、N-アセチル-D-マンノサミンおよびピルビン酸からN-アセチル-D-ノイラミン酸を合成することを含む、N-アセチル-D-ノイラミン酸の製造方法。
〔11〕さらに4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で合成が行われる、〔10〕の製造方法。
〔12〕前記方法がpH8.0~11.0の条件下で行われる、〔10〕または〔11〕の製造方法。
〔13〕pH9.5以上のアルカリ性条件下での異性化反応により、N-アセチル-D-グルコサミンからN-アセチル-D-マンノサミンを生成することをさらに含む、〔10〕~〔12〕のいずれかの製造方法。
[1] A protein which exhibits pH stability at pH 8.0 to 11.0 and has N-acetyl-D-neuraminic acid aldolase activity.
[2] A protein selected from the group consisting of the following (A) to (D):
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing a mutation of one or several amino acid residues selected from the group consisting of deletion, substitution, addition and insertion of amino acid residues; And a protein having N-acetyl-D-neuraminic acid aldolase activity; and (D) an amino acid sequence having at least 80% or more amino acid sequence identity to the amino acid sequence represented by SEQ ID NO: 2, and N A protein having acetyl-D-neuraminic acid aldolase activity;
[3] The protein according to [2], wherein the protein exhibits pH stability at pH 8.0 to 11.0.
[4] A polynucleotide selected from the group consisting of the following (a) to (e):
(A) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
(B) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
(C) a polymorph that encodes a protein comprising a nucleotide sequence having at least 80% nucleotide sequence identity to the amino acid sequence represented by SEQ ID NO: 1 and having N-acetyl-D-neuraminic acid aldolase activity nucleotide;
(D) encodes a protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 and has N-acetyl-D-neuraminic acid aldolase activity And (e) a polynucleotide encoding the protein of any one of [1] to [3] above.
[5] An expression vector comprising the polynucleotide of [4] above.
[6] A transformant introduced with the expression vector of [5] above.
[7] The transformant according to [6], wherein the host of the transformant is Escherichia coli.
[8] A bacterium derived from the genus Bacillus having the ability to produce the protein of any one of [1] to [3].
[9] comprising culturing the transformant of [6] or [7] and / or the bacterium of [8] in a medium to obtain a protein of any one of [1] to [3], A method for producing acetyl-D-neuraminic acid aldolase.
[10] N-acetyl-, comprising synthesizing N-acetyl-D-neuraminic acid from N-acetyl-D-mannosamine and pyruvic acid in the presence of the protein of any one of [1] to [3] A method for producing D-neuraminic acid.
[11] The production method of [10], wherein the synthesis is further performed in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
[12] The production method of [10] or [11], wherein the method is carried out under conditions of pH 8.0 to 11.0.
[13] The method according to any one of [10] to [12], further comprising producing N-acetyl-D-mannosamine from N-acetyl-D-glucosamine by an isomerization reaction under an alkaline condition of pH 9.5 or higher. Manufacturing method.
図1は、化学的異性化に対するpHの効果を示す図である。化学的異性化に対するpHの効果を、50mMアンモニウム緩衝液(pH8.5~10.0)、50mM CAPS(N-シクロヘキシル-3-アミノプロパンスルホン酸)緩衝液(pH10.0~11.0)、50mMリン酸ナトリウム緩衝液(pH11.0~12.0)を用いることにより決定した。100mM NAGを含む上記緩衝液の反応混合液(0.1ml)を、30℃で12時間インキュベートした。アンモニウム緩衝液、CAPS緩衝液、リン酸ナトリウム緩衝液FIG. 1 shows the effect of pH on chemical isomerization. The effect of pH on chemical isomerization was determined using 50 mM ammonium buffer (pH 8.5 to 10.0), 50 mM CAPS (N-cyclohexyl-3-aminopropanesulfonic acid) buffer (pH 10.0 to 11.0), It was determined by using 50 mM sodium phosphate buffer (pH 11.0 to 12.0). A reaction mixture (0.1 ml) of the above buffer containing 100 mM NAG was incubated at 30 ° C. for 12 hours. Ammonium buffer, CAPS buffer, sodium phosphate buffer 図2は、バチルス・エスピーYKR由来のnanAの至適pHを示す図である。50mMリン酸カリウム緩衝液(pH7.0~8.0)、50mM Tris-HCl緩衝液(pH8.0~9.0)、50mMホウ酸緩衝液(pH9.0~10.0)、50mM CAPS緩衝液(pH10.0~11.0)を用いることにより酵素活性を測定し、至適pHを決定した。相対活性は、pH8.5の活性に対する百分率で表した。リン酸カリウム緩衝液、Tris-HCl緩衝液、ホウ酸緩衝液、CAPS緩衝液FIG. 2 is a diagram showing the optimum pH of nanA derived from Bacillus sp. YKR. 50 mM potassium phosphate buffer (pH 7.0 to 8.0), 50 mM Tris-HCl buffer (pH 8.0 to 9.0), 50 mM borate buffer (pH 9.0 to 10.0), 50 mM CAPS buffer The enzyme activity was measured by using the solution (pH 10.0-11.0), and the optimum pH was determined. Relative activity was expressed as a percentage of the pH 8.5 activity. Potassium phosphate buffer, Tris-HCl buffer, borate buffer, CAPS buffer 図3は、バチルス・エスピーYKR由来のnanAのpH安定性を示す図である。10mM酢酸緩衝液(5.0~6.0)、50mMリン酸カリウム緩衝液(pH6.0~8.0)、50mM Tris-HCl緩衝液(pH8.0~9.0)、50mMホウ酸緩衝液(pH9.0~10.0)、50mM CAPS緩衝液(pH10.0~11.0)の種々のpH値で4℃で一晩(16時間)予め処理された酵素を用いて、活性を測定し、pH安定性を決定した。相対活性は、pH8.5の活性に対する百分率で表した。酢酸緩衝液、リン酸カリウム緩衝液、Tris-HCl緩衝液、ホウ酸緩衝液、CAPS緩衝液FIG. 3 is a diagram showing the pH stability of nanA derived from Bacillus sp. YKR. 10 mM acetate buffer (5.0 to 6.0), 50 mM potassium phosphate buffer (pH 6.0 to 8.0), 50 mM Tris-HCl buffer (pH 8.0 to 9.0), 50 mM borate buffer Activity using enzymes pretreated overnight (16 hours) at 4 ° C. with various pH values of solution (pH 9.0-10.0), 50 mM CAPS buffer (pH 10.0-11.0). Measured and determined pH stability. Relative activity was expressed as a percentage of the pH 8.5 activity. Acetate buffer, potassium phosphate buffer, Tris-HCl buffer, borate buffer, CAPS buffer 図4は、バチルス・エスピーYKR由来のnanAの至適温度を示す図である。50mM Tris-HCl緩衝液(pH8.5)を用いて、反応温度が20℃から80℃の間で酵素活性を測定し、至適温度を決定した。FIG. 4 is a diagram showing the optimum temperature of nanA derived from Bacillus sp. YKR. Using 50 mM Tris-HCl buffer (pH 8.5), the enzyme activity was measured at a reaction temperature between 20 ° C. and 80 ° C. to determine the optimum temperature. 図5は、バチルス・エスピーYKR由来のnanAの温度安定性を示す図である。50mM Tris-HCl緩衝液(pH8.5)中で図5に示した各温度にて1時間処理した酵素を用いて、酵素活性を測定し、温度安定性を決定した。FIG. 5 is a diagram showing the temperature stability of nanA derived from Bacillus sp. YKR. The enzyme activity was measured using an enzyme treated for 1 hour at each temperature shown in FIG. 5 in 50 mM Tris-HCl buffer (pH 8.5) to determine temperature stability. 図6は、NAMおよびPyrからのNANA製造を示す図である。50mM緩衝液(Tris-HCl緩衝液(pH8.5);CAPS緩衝液(pH10.0))、100mM NAM、100mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(0.5ml)を、30℃でインキュベートした。FIG. 6 is a diagram showing NANA production from NAM and Pyr. 50 mM buffer (Tris-HCl buffer (pH 8.5); CAPS buffer (pH 10.0)), 100 mM NAM, 100 mM Pyr, and 0.5 mg / ml protein of cell-free extract derived from recombinant Escherichia coli The containing reaction mixture (0.5 ml) was incubated at 30 ° C. 図7は、pH8.5における、NANA製造に対するPyrの分割添加の効果を示す図である。50mM Tris-HCl緩衝液(pH8.5)、100mM NAM、100mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(1.0ml)を、30℃でインキュベートした。50mM、10mMおよび10mMのPyrを2時間後、4時間後および6時間後に加えた。FIG. 7 shows the effect of split addition of Pyr on NANA production at pH 8.5. A reaction mixture (1.0 ml) containing 0.5 mg / ml protein of a cell-free extract derived from 50 mM Tris-HCl buffer (pH 8.5), 100 mM NAM, 100 mM Pyr and recombinant Escherichia coli was prepared at 30 ° C. Incubated with. 50 mM, 10 mM and 10 mM Pyr were added after 2 hours, 4 hours and 6 hours. 図8は、pH10.0における、NANA製造に対するPyrの分割添加の効果を示す図である。50mM CAPS緩衝液(pH10.0)、100mM NAM、100mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(1.0ml)を、30℃でインキュベートした。50mM、10mMおよび10mMのPyrを2時間後、4時間後および6時間後に加えた。FIG. 8 shows the effect of split addition of Pyr on NANA production at pH 10.0. Reaction mixture (1.0 ml) containing 0.5 mg / ml protein of cell-free extract derived from 50 mM CAPS buffer (pH 10.0), 100 mM NAM, 100 mM Pyr and recombinant Escherichia coli is incubated at 30 ° C. did. 50 mM, 10 mM and 10 mM Pyr were added after 2 hours, 4 hours and 6 hours. 図9は、NAMおよびPyrからのNANA製造のタイムコースを示す図である。50mM CAPS緩衝液(pH10.0)、490mM NAM、240mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(1.0ml)を、30℃でインキュベートした。490mMおよび310mMのPyrを、1.5時間および5.0時間後に加えた。FIG. 9 is a diagram showing a time course of NANA production from NAM and Pyr. Reaction mixture (1.0 ml) containing 50 mg CAPS buffer (pH 10.0), 490 mM NAM, 240 mM Pyr and 0.5 mg / ml protein of cell-free extract derived from recombinant Escherichia coli at 30 ° C. did. 490 mM and 310 mM Pyr were added after 1.5 and 5.0 hours. 図10は、無細胞抽出液を用いた、NAGおよびPyrからのNANA製造のタイムコースを示す図である。第1に、0.7mlの容量中において、1000mM NAGを、pH11.5で3時間インキュベートして、NAGからNAMを調製した。第2に、反応混合液に、100mMのCAPS(pH10.0)、700mMのPyrおよび0.5mg/mlタンパク質の組換えエシェリヒア・コリ由来の無細胞抽出液を、1mlの最終容量において加え、30℃でインキュベートした。1000mM、1000mMおよび500mMのPyrをそれぞれ、23、45および76時間後に加えた。FIG. 10 is a diagram showing a time course of NANA production from NAG and Pyr using a cell-free extract. First, NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours in a volume of 0.7 ml. Second, cell-free extract from recombinant Escherichia coli of 100 mM CAPS (pH 10.0), 700 mM Pyr and 0.5 mg / ml protein was added to the reaction mixture in a final volume of 1 ml, Incubated at 0 ° C. 1000 mM, 1000 mM and 500 mM Pyr were added after 23, 45 and 76 hours, respectively. 図11は、菌体を用いた、NAGおよびPyrからのNANA製造のタイムコースを示す図である。第1に、0.7mlの容量中において、1000mM NAGを、pH11.5で3時間インキュベートして、NAGからNAMを調製した。化学的異性化反応によってNAGとNAMはそれぞれ855mMと205mMとなった。第2に、反応混合液に、100mMのCAPS(pH10.0)、700mMのPyrおよび0.5mg/mlタンパク質の組換えエシェリヒア・コリ由来の無細胞抽出液もしくは組換えエシェリヒア・コリ由来の菌体(5ml培養した)を、1mlの最終容量において加え、30℃でインキュベートした。400mM、300mM、300mM、300mM、400mMおよび300mMのPyrをそれぞれ、4.5、7.5、25、30、34、48時間後に加えた。FIG. 11 is a diagram showing a time course of NANA production from NAG and Pyr using bacterial cells. First, NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours in a volume of 0.7 ml. NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively. Second, a cell-free extract of recombinant Escherichia coli derived from 100 mM CAPS (pH 10.0), 700 mM Pyr and 0.5 mg / ml protein or a cell derived from recombinant Escherichia coli (5 ml cultured) was added in a final volume of 1 ml and incubated at 30 ° C. 400 mM, 300 mM, 300 mM, 300 mM, 400 mM and 300 mM Pyr were added after 4.5, 7.5, 25, 30, 34, 48 hours, respectively. 図12は、NANAの生産に対するPyr濃度の影響を示す図である。50mM Tris緩衝液(pH8.0)、100mM NAM、100から900mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(1.0ml)を、37℃でインキュベートした。FIG. 12 shows the influence of Pyr concentration on NANA production. A reaction mixture (1.0 ml) containing 0.5 mg / ml protein of a cell-free extract derived from 50 mM Tris buffer (pH 8.0), 100 mM NAM, 100 to 900 mM Pyr, and recombinant Escherichia coli is 37 ° C. Incubated with. 図13は、高濃度NAMに対するPyr濃度の影響を示す図である。50mM Tris緩衝液(pH8.0)、500mM NAM、100から900mM Pyrおよび組換えエシェリヒア・コリ由来の無細胞抽出液の0.5mg/mlタンパク質を含む反応混合液(1.0ml)を、37℃でインキュベートした。FIG. 13 is a diagram showing the influence of the Pyr concentration on the high concentration NAM. A reaction mixture (1.0 ml) containing 0.5 mg / ml protein of a cell-free extract derived from 50 mM Tris buffer (pH 8.0), 500 mM NAM, 100 to 900 mM Pyr and recombinant Escherichia coli was added at 37 ° C. Incubated with.
1.本発明に係るタンパク質、ポリヌクレオチド、微生物およびこれらの調製
 本発明は、NANAの製造に有用なタンパク質を提供する。
1. Proteins, polynucleotides, microorganisms and their preparation according to the present invention The present invention provides proteins useful for the production of NANA.
 一実施形態では、本発明のタンパク質は、アルカリ性条件下で、pH安定性を示してもよい。より具体的には、本発明のタンパク質は、pH約8.0~約11.0においてpH安定性を示してもよい。本明細書中で用いられる場合、用語「pH安定性」とは、該当するpH領域において、タンパク質を4℃で16時間インキュベートした場合、初期活性の60%以上、好ましくは70%、より好ましくは80%、さらにより好ましくは90%以上の活性を保持できることをいう。したがって、本発明のタンパク質は、pH約8.0~約11.0において16時間インキュベートされた場合、初期活性の少なくとも60%の活性を保持するpH安定性を示すことができる。 In one embodiment, the protein of the present invention may exhibit pH stability under alkaline conditions. More specifically, the proteins of the present invention may exhibit pH stability at a pH of about 8.0 to about 11.0. As used herein, the term “pH stability” means 60% or more of the initial activity, preferably 70%, more preferably when the protein is incubated at 4 ° C. for 16 hours in the relevant pH range. It means that the activity of 80%, even more preferably 90% or more can be maintained. Thus, proteins of the invention can exhibit pH stability that retains at least 60% of the initial activity when incubated for 16 hours at a pH of about 8.0 to about 11.0.
 本発明のタンパク質はまた、上記pH安定性に加えて、種々の酵素学的特性を有していてもよい。このような酵素学的特性としては、至適pH、至適温度、温度安定性、分子量、活性、Km値が挙げられる。 The protein of the present invention may also have various enzymatic characteristics in addition to the above pH stability. Such enzymatic properties include optimal pH, optimal temperature, temperature stability, molecular weight, activity, and Km value.
 本明細書中で用いられる場合、用語「至適pH」とは、タンパク質が最大活性を示すpHをいう。本発明のタンパク質の至適pHは、pH約7.0~約10.0の範囲中の任意のpH値であってもよいが、好ましくは、pH約7.0~約9.0の範囲中の任意のpH値であってもよく、より好ましくは、pH約7.5~約8.5の範囲中の任意のpH値であってもよく、さらにより好ましくは、pH約8.0~約8.5の範囲中の任意のpH値であってもよい。 As used herein, the term “optimal pH” refers to the pH at which a protein exhibits maximum activity. The optimum pH of the protein of the present invention may be any pH value in the range of about pH 7.0 to about 10.0, but is preferably in the range of about pH 7.0 to about 9.0. Any pH value in the range, more preferably any pH value in the range of about 7.5 to about 8.5, even more preferably about pH 8.0. It may be any pH value in the range of about 8.5.
 本明細書中で用いられる場合、用語「温度安定性」とは、該当する温度範囲において、タンパク質を1時間インキュベートした場合、初期活性の60%以上、好ましくは70%、より好ましくは80%、さらにより好ましくは90%以上の活性を保持できることをいう。換言すれば、本発明のタンパク質は、初期活性の60%以上の活性を保持する場合、約0~約55℃で温度安定性を示してもよく、初期活性の70%以上の活性を保持する場合、約0~約50℃で温度安定性示してもよく、初期活性の80%以上の活性を保持する場合、約0~約40℃で温度安定性を示してもよく、初期活性の90%以上の活性を保持する場合、約0~約30℃で温度安定性を示してもよい。したがって、本発明のタンパク質は、約0~約55℃で1時間インキュベートされた場合、初期活性の少なくとも60%の活性を保持する温度安定性を示すことができる。 As used herein, the term “temperature stability” refers to 60% or more of the initial activity, preferably 70%, more preferably 80% when the protein is incubated for 1 hour in the relevant temperature range. Even more preferably, it means that 90% or more of activity can be maintained. In other words, the protein of the present invention may exhibit temperature stability at about 0 to about 55 ° C. when it retains 60% or more of the initial activity and retains 70% or more of the initial activity. In this case, the temperature stability may be exhibited at about 0 to about 50 ° C., and when the activity of 80% or more of the initial activity is maintained, the temperature stability may be exhibited at about 0 to about 40 ° C. % Activity may be exhibited at about 0 to about 30 ° C. Thus, the proteins of the invention can exhibit temperature stability that retains at least 60% of the initial activity when incubated at about 0 to about 55 ° C. for 1 hour.
 本明細書中で用いられる場合、用語「至適温度」とは、タンパク質が最大活性を示す温度をいう。本発明のタンパク質の至適温度は、約40~約70℃の範囲中の任意の温度であってもよいが、好ましくは、約45~約55℃の範囲中の任意の温度、より好ましくは、約50℃であってもよい。 As used herein, the term “optimum temperature” refers to the temperature at which a protein exhibits maximum activity. The optimum temperature of the protein of the present invention may be any temperature in the range of about 40 to about 70 ° C., but is preferably any temperature in the range of about 45 to about 55 ° C., more preferably About 50 ° C.
 本発明のタンパク質の分子量は、例えば約20~40kDa、好ましくは約25kDa~35kDa、より好ましくは約30kDaであってもよい。 The molecular weight of the protein of the present invention may be, for example, about 20 to 40 kDa, preferably about 25 kDa to 35 kDa, more preferably about 30 kDa.
 本発明のタンパク質はまた、NANA、NAMおよびPyrについてのKm値を有していてもよい。NANAに対する本発明のタンパク質のKm値は、例えば約0.2~約20.0mM、好ましくは約0.4~約10.0mM、より好ましくは約1.0~約5.0mM、さらにより好ましくは約1.5~約3mMであってもよい。NAMに対する本発明のタンパク質のKm値は、例えば約2.0~約200.0mM、好ましくは約5.0~約100.0mM、より好ましくは約10.0~約50.0mM、さらにより好ましくは約20~約30mMであってもよい。Pyrに対する本発明のタンパク質のKm値は、例えば約4.0~約400.0mM、好ましくは約8.0~約200.0mM、より好ましくは約15.0~約100.0mM、さらにより好ましくは約30~約50mMであってもよい。 The protein of the present invention may also have a Km value for NANA, NAM and Pyr. The Km value of the protein of the present invention for NANA is, for example, about 0.2 to about 20.0 mM, preferably about 0.4 to about 10.0 mM, more preferably about 1.0 to about 5.0 mM, even more preferably. May be from about 1.5 to about 3 mM. The Km value of the protein of the present invention for NAM is, for example, about 2.0 to about 200.0 mM, preferably about 5.0 to about 100.0 mM, more preferably about 10.0 to about 50.0 mM, and even more preferably. May be from about 20 to about 30 mM. The Km value of the protein of the present invention relative to Pyr is, for example, about 4.0 to about 400.0 mM, preferably about 8.0 to about 200.0 mM, more preferably about 15.0 to about 100.0 mM, even more preferably May be from about 30 to about 50 mM.
 本発明のタンパク質はまた、N-アセチル-D-ノイラミン酸アルドラーゼ活性(NANAアルドラーゼ活性)を有していてもよい。本明細書中で用いられる場合、用語「N-アセチル-D-ノイラミン酸アルドラーゼ活性(NANAアルドラーゼ活性)」とは、N-アセチル-D-マンノサミン(NAM)およびピルビン酸(Pyr)を、アルドール縮合により、N-アセチル-D-マンノサミン(NANA)に変換する触媒活性をいう。 The protein of the present invention may also have N-acetyl-D-neuraminic acid aldolase activity (NANA aldolase activity). As used herein, the term “N-acetyl-D-neuraminic acid aldolase activity (NANA aldolase activity)” refers to N-acetyl-D-mannosamine (NAM) and pyruvic acid (Pyr) and aldol condensation. Refers to the catalytic activity to convert to N-acetyl-D-mannosamine (NANA).
 本発明のタンパク質はまた、バチルス属の細菌に由来していてもよい。より具体的には、本発明のタンパク質は、バチルス・エスピー(Bacillus sp.)、好ましくは、Bacillus sp.YKR AJ110757株(本明細書中、必要に応じて、Bacillus sp.YKRと称する)に由来していてもよい。Bacillus sp.YKR AJ110757株は、下記寄託機関に寄託され、FERM BP-11319の受託番号が付されて受託管理されている菌株である。FERM番号が付与された菌株は、受託番号を参照の上、所定の手続により分譲を受けることができる。 The protein of the present invention may also be derived from a bacterium belonging to the genus Bacillus. More specifically, the protein of the present invention may be Bacillus sp., Preferably Bacillus sp. It may be derived from the YKR AJ110757 strain (referred to herein as Bacillus sp. YKR, if necessary). Bacillus sp. The YKR AJ110757 strain is a strain that has been deposited with the following depository and has been deposited and managed with the deposit number of FERM BP-11319. The strain to which the FERM number is assigned can be sold by a predetermined procedure with reference to the accession number.
名称:Bacillus sp.YKR AJ110757
受託番号:FERM BP-11319
寄託機関:独立行政法人産業技術総合研究所特許生物寄託センター
寄託機関住所:日本国茨城県つくば市東1丁目1番地1 中央第6
上記寄託機関に受託された日:2009年9月10日
Name: Bacillus sp. YKR AJ110757
Accession Number: FERM BP-11319
Depositary institution: National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Depositary Institution: Address 1 1-1, Higashi 1-chome, Tsukuba, Ibaraki, Japan
Date of deposit to the above depository: September 10, 2009
 別の実施形態では、本発明のタンパク質は、下記(A)~(D)からなる群より選ばれるいずれかであるタンパク質であってもよい:
(A)配列番号2により表されるアミノ酸配列からなるタンパク質;
(B)配列番号2により表されるアミノ酸配列を含むタンパク質;
(C)配列番号2により表されるアミノ酸配列において、1または数個のアミノ酸残基の変異(例、欠失、置換、付加および挿入)を含むアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質;あるいは
(D)配列番号2により表されるアミノ酸配列に対して所定のアミノ酸配列同一性を有するアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質。
In another embodiment, the protein of the present invention may be a protein selected from the group consisting of (A) to (D) below:
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
(B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
(C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing a mutation (eg, deletion, substitution, addition and insertion) of one or several amino acid residues, and N-acetyl-D- A protein having neuraminate aldolase activity; or (D) consisting of an amino acid sequence having a predetermined amino acid sequence identity to the amino acid sequence represented by SEQ ID NO: 2 and having N-acetyl-D-neuraminate aldolase activity Have a protein.
 本発明においては、タンパク質(A)と実質的に同一のタンパク質も用いることができる。タンパク質(A)と実質的に同じタンパク質として、(B)~(D)に示すタンパク質が提供される。アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、用語「1又は数個」は、アミノ酸残基のタンパク質の立体構造や活性を大きく損なわない範囲を示すものである。タンパク質の場合における用語「1又は数個」が示す数は、例えば、1~100個、好ましくは1~70個、より好ましくは1~40個、より好ましくは1~20個、好ましくは1~10個、さらに好ましくは1~5個である。タンパク質(B)~(D)は、NANAアルドラーゼ活性を保持する限り、特に限定されないが、上述の1以上の特性(例、pH安定性)をさらに保持していてもよい。ただし、タンパク質(B)~(D)の場合、50℃、pH8.5の条件下で、タンパク質(A)の半分程度以上、より好ましくは80%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上のNANAアルドラーゼ活性を保持していることが望ましい。 In the present invention, substantially the same protein as the protein (A) can also be used. The proteins shown in (B) to (D) are provided as substantially the same protein as the protein (A). The term “one or several” indicates a range that does not significantly impair the three-dimensional structure and activity of the amino acid residue protein, although it depends on the position and type of the three-dimensional structure of the amino acid residue protein. The number “1 or several” in the case of protein is, for example, 1 to 100, preferably 1 to 70, more preferably 1 to 40, more preferably 1 to 20, and preferably 1 to The number is 10, more preferably 1 to 5. The proteins (B) to (D) are not particularly limited as long as they retain NANA aldolase activity, but may further retain one or more of the above-described properties (eg, pH stability). However, in the case of proteins (B) to (D), under conditions of 50 ° C. and pH 8.5, about half or more of protein (A), more preferably 80% or more, still more preferably 90% or more, and even more preferably It is desirable to maintain NANA aldolase activity of 95% or more.
 本発明のタンパク質は、土壌サンプル(例、日本国京都府京都市左京区の鴨川河川敷の土壌サンプル)からNANA資化性微生物(例、バチルス属の細菌)を単離することにより、NANA資化性微生物を入手できる。NANA資化性微生物の単離は、強アルカリ条件の培地(例、実施例に記載される培地iおよび培地ii)を用いることにより行われてもよい。 The protein of the present invention can be obtained by isolating a NANA-assimilating microorganism (eg, a bacterium belonging to the genus Bacillus) from a soil sample (eg, a soil sample of Kamogawa Riverbed in Sakyo-ku, Kyoto, Japan). Sex microorganisms are available. Isolation of a NANA-assimilating microorganism may be performed by using a medium under strong alkaline conditions (eg, medium i and medium ii described in Examples).
 本発明のタンパク質はまた、部位特異的変異法等の変異導入法により、または精製用配列等のタグ配列を有する発現ベクターに、当該タンパク質をコードするポリヌクレオチドを挿入することにより得られる。また、上記のような改変されたアミノ酸配列を有するタンパク質は、従来知られている突然変異処理によって取得してもよい。突然変異処理としては、タンパク質(A)をコードするDNAをヒドロキシルアミン等でインビトロ処理する方法、及びタンパク質(A)をコードするDNAを保持するエシェリヒア属細菌を、紫外線照射またはN-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)もしくは亜硝酸等の通常人工突然変異に用いられている変異剤によって処理する方法が挙げられる。 The protein of the present invention can also be obtained by a mutagenesis method such as a site-specific mutagenesis method or by inserting a polynucleotide encoding the protein into an expression vector having a tag sequence such as a purification sequence. Moreover, you may acquire the protein which has the above modified amino acid sequences by the conventionally known mutation process. Mutation treatment includes a method of in vitro treatment of DNA encoding protein (A) with hydroxylamine or the like, and Escherichia bacterium carrying the DNA encoding protein (A) by ultraviolet irradiation or N-methyl-N ′. -A method of treating with a mutating agent usually used for artificial mutation, such as nitro-N-nitrosoguanidine (NTG) or nitrous acid.
 また、上記のような変異には、微生物の種あるいは菌株による差等、天然に生じる変異も含まれる。上記のような変異を有するDNAを適当な細胞で発現させ、発現産物の本酵素活性を調べることにより、タンパク質(A)と実質的に同一のタンパク質をコードするDNAが得られる。 In addition, the mutations as described above include naturally occurring mutations such as differences in microorganism species or strains. DNA encoding the protein substantially the same as protein (A) can be obtained by expressing the DNA having the mutation as described above in a suitable cell and examining the enzyme activity of the expression product.
 アミノ酸残基が置換により変異される場合、アミノ酸残基の置換は、保存的置換であってもよい。本明細書中で用いられる場合、用語「保存的置換」とは、所定のアミノ酸残基を、類似の側鎖を有するアミノ酸残基で置換することをいう。類似の側鎖を有するアミノ酸残基のファミリーは、当該分野で周知である。例えば、このようなファミリーとしては、塩基性側鎖を有するアミノ酸(例、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例、アスパラギン酸、グルタミン酸)、非荷電性極性側鎖を有するアミノ酸(例、グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖を有するアミノ酸(例、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β位分岐側鎖を有するアミノ酸(例、スレオニン、バリン、イソロイシン)、芳香族側鎖を有するアミノ酸(例、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)、ヒドロキシル基(例、アルコール性、フェノール性)含有側鎖を有するアミノ酸(例、セリン、スレオニン、チロシン)、及び硫黄含有側鎖を有するアミノ酸(例、システイン、メチオニン)が挙げられる。好ましくは、アミノ酸の保存的置換は、アスパラギン酸とグルタミン酸との間での置換、アルギニンとリジンとヒスチジンとの間での置換、トリプトファンとフェニルアラニンとの間での置換、フェニルアラニンとバリンとの間での置換、ロイシンとイソロイシンとアラニンとの間での置換、及びグリシンとアラニンとの間での置換であってもよい。 When an amino acid residue is mutated by substitution, the amino acid residue substitution may be a conservative substitution. As used herein, the term “conservative substitution” refers to the replacement of a given amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues with similar side chains are well known in the art. For example, such families include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having uncharged polar side chains (Eg, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chain Amino acids (eg, threonine, valine, isoleucine), amino acids having aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine), amino acids having side groups containing hydroxyl groups (eg, alcoholic, phenolic) ( Example, serine, thread Nin, tyrosine), and amino acids (e.g. having sulfur-containing side chains, cysteine, methionine) and the like. Preferably, the conservative substitution of amino acids is a substitution between aspartic acid and glutamic acid, a substitution between arginine and lysine and histidine, a substitution between tryptophan and phenylalanine, and between phenylalanine and valine. Or a substitution between leucine, isoleucine and alanine, and a substitution between glycine and alanine.
 また、タンパク質(A)とそれぞれ実質的に同一のタンパク質として、80%以上、好ましくは85%以上、より好ましくは90%以上、さらにより好ましくは95%、96%、97%、98%または99%以上のアミノ酸配列同一性(identity)を有するタンパク質が挙げられる。なお、本明細書において、アミノ酸配列の同一性の計算は、株式会社ゼネティックスのソフトウェアGENETYX Ver7.0.9を使用し、ORFにコードされるポリペプチド鎖全長を用いて、Unit Size to Compare=2の設定でMarching countをpercentage計算させた際の数値である。 In addition, the protein substantially the same as the protein (A) is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95%, 96%, 97%, 98% or 99 % Of proteins having an amino acid sequence identity of at least%. In the present specification, the identity of amino acid sequences is calculated by using the software GENENETYX Ver 7.0.9 from GENETICS, Inc., using the full length polypeptide chain encoded by the ORF, and the unit size to compare = 2. This is the numerical value when the percentage calculation of the Marching count is performed.
 本発明はまた、下記(a)~(e)からなる群より選ばれるいずれかであるポリヌクレオチドを提供する:
(a)配列番号1により表されるヌクレオチド配列からなるポリヌクレオチド;
(b)配列番号1により表されるヌクレオチド配列を含むポリヌクレオチド;
(c)配列番号1により表されるアミノ酸配列に対して少なくとも80%以上のヌクレオチド配列同一性を有するヌクレオチド配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;
(d)配列番号1により表されるヌクレオチド配列に対して相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;あるいは
(e)上記〔1〕~〔3〕のいずれかのタンパク質をコードするポリヌクレオチド。
The present invention also provides a polynucleotide that is any one selected from the group consisting of the following (a) to (e):
(A) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
(B) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
(C) a polymorph encoding a protein comprising a nucleotide sequence having at least 80% nucleotide sequence identity to the amino acid sequence represented by SEQ ID NO: 1 and having N-acetyl-D-neuraminic acid aldolase activity nucleotide;
(D) encodes a protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 and has N-acetyl-D-neuraminic acid aldolase activity Or (e) a polynucleotide encoding the protein of any one of [1] to [3] above.
 本発明のポリヌクレオチドは、DNAまたはRNA、またはそれらの混合物であってもよい。 The polynucleotide of the present invention may be DNA or RNA, or a mixture thereof.
 本発明のポリヌクレオチドの単離方法について説明する。配列番号1により表されるヌクレオチド配列からなるDNAは、Bacillus sp.の染色体DNA、もしくはDNAライブラリーから、PCRまたはハイブリダイゼーションによって取得することができる。PCRに用いるプライマーは、例えば本発明の方法における反応を触媒する活性を有する精製タンパク質に基づいて決定された内部アミノ酸配列に基づいて設計することができる。また、配列番号1に記載されたヌクレオチド配列に基づいてプライマーまたはハイブリダイゼーション用のプローブを設計することもでき、あるいはプローブを使って単離することもできる。 The method for isolating the polynucleotide of the present invention will be described. DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 is Bacillus sp. From a chromosomal DNA or a DNA library by PCR or hybridization. Primers used for PCR can be designed based on an internal amino acid sequence determined based on a purified protein having an activity of catalyzing the reaction in the method of the present invention, for example. In addition, a primer or a probe for hybridization can be designed based on the nucleotide sequence described in SEQ ID NO: 1, or can be isolated using the probe.
 また、上記ポリヌクレオチド(a)と実質的に同一のポリヌクレオチドも本発明のポリヌクレオチドに含まれる。ポリヌクレオチド(a)と実質的に同一のポリヌクレオチドとして、例えば、上記ポリヌクレオチド(b)~(e)が挙げられる。 In addition, polynucleotides substantially the same as the polynucleotide (a) are also included in the polynucleotides of the present invention. Examples of the polynucleotide substantially the same as the polynucleotide (a) include the polynucleotides (b) to (e) described above.
 上記の上記ポリヌクレオチド(d)では、ポリヌクレオチド(a)に対するヌクレオチド配列同一性が、80%以上、好ましくは85%以上、より好ましくは90%以上、さらにより好ましくは95%、96%、97%、98%または99%以上であってもよい。なお、本明細書において、ヌクレオチド配列同一性は、ORF全体(終止コドンを含む)において、株式会社ゼネティックスのソフトウェアGENETYX Ver7.0.9を使用し、Unit Size to Compare = 6、pick up location=1の設定でpercentage計算させた数値により判定することができる。 In the above polynucleotide (d), the nucleotide sequence identity to the polynucleotide (a) is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95%, 96%, 97 %, 98% or 99% or more. In this specification, nucleotide sequence identity refers to the entire ORF (including the stop codon) using GENETYX software GENETYX Ver 7.0.9, Unit Size to Compare = 6, pick up location = 1 It can be determined by the numerical value calculated by percentage.
 「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このような条件は、例えば、6×SSC(塩化ナトリウム/クエン酸ナトリウム)中、約45℃でのハイブリダイゼーション、続いて、0.2×SSC、0.1%SDS中、50~65℃での1または2回以上の洗浄である。このような条件でハイブリダイズする遺伝子の中には途中にストップコドンが発生したものや、活性中心の変異により活性を失ったものも含まれるが、それらについては、市販の発現ベクターにつなぎ、適当な宿主で発現させて、発現産物の酵素活性を後述の方法で測定することによって容易に取り除くことができる。 “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Such conditions include, for example, hybridization at about 45 ° C. in 6 × SSC (sodium chloride / sodium citrate), followed by 50 × 65 ° C. in 0.2 × SSC, 0.1% SDS. 1 or 2 times of washing. The genes that hybridize under these conditions include those that have generated stop codons in the middle and those that have lost activity due to mutations in the active center. It can be easily removed by expressing in an appropriate host and measuring the enzyme activity of the expression product by the method described below.
 なお、上記ポリヌクレオチド(b)~(d)は、それらによりコードされるタンパク質がNANAアルドラーゼ活性を保持する限り、特に限定されないが、上述の1以上の特性(例、pH安定性)をさらに保持するタンパク質をコードしていてもよい。ただし、上記ポリヌクレオチド(b)~(d)の場合、50℃、pH8.5の条件下で、タンパク質(A)の半分程度以上、より好ましくは80%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上のNANAアルドラーゼ活性を保持しているタンパク質をコードすることが望ましい。 The polynucleotides (b) to (d) are not particularly limited as long as the protein encoded by them retains NANA aldolase activity, but further retains one or more of the above properties (eg, pH stability). It may also encode a protein that However, in the case of the above polynucleotides (b) to (d), at 50 ° C. and pH 8.5, about half or more of the protein (A), more preferably 80% or more, more preferably 90% or more, More preferably, it encodes a protein having 95% or more of NANA aldolase activity.
 次に本発明のタンパク質の製造方法、並びにこれに用いられる発現ベクターおよび形質転換体の作製方法について、上記(A)のタンパク質を一例として説明する。他の変異型タンパク質についても同様に実施できる。 Next, a method for producing the protein of the present invention, and an expression vector used for the method and a method for producing a transformant will be described using the protein (A) as an example. The same can be applied to other mutant proteins.
 上記(A)のタンパク質を発現する形質転換体は、上記のいずれかのヌクレオチド配列を有するポリヌクレオチドを組み込んだ発現ベクターを作製し、これを用いて作製することができる。例えば、配列番号1に示されるヌクレオチド配列を有するDNAを組み込んだ発現ベクターを作製して適切な宿主に導入することにより、(A)のタンパク質を発現する形質転換体を得ることができる。配列番号1により表されるヌクレオチド配列からなるDNAにより特定されるタンパク質を発現させるための宿主としては、例えばエシェリヒア・コリ(Escherichia coli)等のエシェリヒア属細菌、コリネバクテリウム属細菌、及びバチルス・ズブチリス(Bacillus subtilis)をはじめとする種々の原核細胞、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、ピヒア・スティピティス(Pichia stipitis)、アスペルギルス・オリゼ(Aspergillus oryzae)をはじめとする種々の真核細胞を用いることができる。 The transformant expressing the protein (A) can be prepared using an expression vector incorporating a polynucleotide having any one of the above nucleotide sequences. For example, a transformant that expresses the protein (A) can be obtained by preparing an expression vector incorporating a DNA having the nucleotide sequence shown in SEQ ID NO: 1 and introducing it into an appropriate host. Examples of hosts for expressing a protein specified by the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 include Escherichia bacteria such as Escherichia coli, Corynebacterium bacteria, and Bacillus subtilis. Various prokaryotic cells including Bacillus subtilis, Saccharomyces cerevisiae, Pichia stititis, and Aspergillus oryzae can be used as true cells such as Aspergillus oryzae. .
 配列番号1により表されるヌクレオチド配列からなるDNAを宿主に導入するために用いる発現ベクターは、発現させようとする宿主の種類に応じたベクターに、これらのDNAを、DNAがコードするタンパク質が発現可能な形態で挿入することで調製することができる。タンパク質を発現させるためのプロモータとしては、Bacillus属の細菌に由来する上記酵素をコードする遺伝子固有のプロモータが宿主細胞で機能する場合には、そのプロモータを使用することができる。また、必要に応じて宿主細胞で働く他のプロモータを、配列番号1などのDNAに連結し、そのプロモータ制御下で発現させるようにしてもよい。 The expression vector used for introducing the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 into the host is expressed in a vector according to the type of the host to be expressed, and the protein encoded by the DNA is expressed. It can be prepared by inserting in a possible form. As a promoter for expressing a protein, when a promoter specific to a gene encoding the enzyme derived from a bacterium belonging to the genus Bacillus functions in a host cell, the promoter can be used. Further, if necessary, another promoter that works in the host cell may be linked to DNA such as SEQ ID NO: 1 and expressed under the control of the promoter.
 目的のタンパク質を組換えDNA技術を用いて大量生産する場合、そのタンパク質を生産する形質転換体内でそのタンパク質を会合させたタンパク質の封入体(inclusion body)を形成させる形態も好ましい一実施形態として挙げられる。この発現生産方法の利点は、目的のタンパク質を菌体内に存在するプロテアーゼによる消化から保護する点および目的のタンパク質を菌体破砕に続く遠心分離操作によって簡単に精製できる点等である。タンパク質封入体から活性型タンパク質を得るためには、可溶化および活性再生等の一連の操作が必要であり、直接活性型タンパク質を生産する場合よりも操作が複雑になる。しかし、菌体の生育に影響を及ぼすようなタンパク質を菌体内で大量に生産させる場合は、不活性なタンパク質封入体として菌体内に蓄積させることにより、その影響を抑えることができる。目的タンパク質を封入体として大量生産させる方法として、強力なプロモータの制御下、目的のタンパク質を単独で発現させる方法の他、大量発現することが知られているタンパク質との融合タンパク質として発現させる方法がある。 In the case where the target protein is mass-produced using recombinant DNA technology, a form in which an inclusion body of the protein is formed by associating the protein in a transformant producing the protein is given as a preferred embodiment. It is done. Advantages of this expression production method are that the target protein is protected from digestion by proteases present in the microbial cells, and that the target protein can be easily purified by centrifugation following cell disruption. In order to obtain an active protein from a protein inclusion body, a series of operations such as solubilization and activity regeneration are required, and the operation becomes more complicated than when directly producing an active protein. However, when a large amount of a protein that affects the growth of bacterial cells is produced in the bacterial cells, the effect can be suppressed by accumulating them in the bacterial cells as inactive protein inclusion bodies. As a method for mass production of the target protein as inclusion bodies, there is a method of expressing the target protein alone under the control of a strong promoter, or a method of expressing it as a fusion protein with a protein known to be expressed in large quantities. is there.
 形質転換される宿主は、上述したとおりであるが、大腸菌について詳述すると、大腸菌K12株亜種のエシェリヒア コリ JM109株、DH5α株、HB101株、BL21(DE3)株などから選択することが出来る。形質転換を行う方法、および形質転換体を選別する方法はMolecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor press(2001/01/15)などにも記載されている。以下、形質転換された大腸菌を作製し、これを用いて所定の酵素を製造する方法を、一例としてより具体的に説明する。 The host to be transformed is as described above, but in detail about E. coli, it can be selected from Escherichia coli JM109 strain, DH5α strain, HB101 strain, BL21 (DE3) strain, etc. Methods for performing transformation and methods for selecting transformants are also described in Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor press (2001/01/15) and the like. Hereinafter, a method for producing transformed E. coli and producing a predetermined enzyme using the same will be described more specifically as an example.
 本発明で用いられる触媒活性を有するタンパク質をコードするDNAを発現させるプロモータとしては、通常大腸菌における異種タンパク質生産に用いられるプロモータを使用することができ、例えば、T7プロモータ、lacプロモータ、trpプロモータ、trcプロモータ、tacプロモータ、ラムダファージのPRプロモータ、PLプロモータ、T5プロモータ等の強力なプロモータが挙げられる。また、ベクターとしては、例えば、pUC19、pUC18、pBR322、pHSG299、pHSG298、pHSG399、pHSG398、RSF1010、pACYC177、pACYC184、pMW119、pMW118、pMW219、pMW218、pQE30およびその誘導体等を用いてもよい。他のベクターとしては、ファージDNAのベクターを利用してもよい。さらに、プロモータを含み、挿入DNA配列を発現させることができる発現ベクターを使用してもよい。 As a promoter for expressing DNA encoding a protein having a catalytic activity used in the present invention, a promoter usually used for heterologous protein production in Escherichia coli can be used. For example, T7 promoter, lac promoter, trp promoter, trc Strong promoters such as promoter, tac promoter, lambda phage PR promoter, PL promoter, T5 promoter, and the like can be mentioned. Examples of the vector include pUC19, pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSF1010, pACYC177, pACYC184, pMW119, pMW118, pMW219, pMW218, pQE30, and derivatives thereof. As other vectors, phage DNA vectors may be used. Furthermore, an expression vector containing a promoter and capable of expressing the inserted DNA sequence may be used.
 本発明で用いられるタンパク質を融合タンパク質封入体として生産させるためには、そのタンパク質の上流あるいは下流に、他のタンパク質、好ましくは親水性であるペプチドをコードする遺伝子を連結して、融合タンパク質遺伝子とする。このような他のタンパク質をコードする遺伝子としては、融合タンパク質の蓄積量を増加させ、変性および再生工程後に融合タンパク質の溶解性を高めるものであればよく、例えば、T7gene 10、β-ガラクトシダーゼ遺伝子、デヒドロ葉酸還元酵素遺伝子、インターフェロンγ遺伝子、インターロイキン-2遺伝子、プロキモシン遺伝子等が候補として挙げられる。 In order to produce the protein used in the present invention as a fusion protein inclusion body, a gene encoding another protein, preferably a hydrophilic peptide, is linked upstream or downstream of the protein, and the fusion protein gene and To do. Such a gene encoding another protein may be any gene that increases the accumulation amount of the fusion protein and enhances the solubility of the fusion protein after the denaturation and regeneration steps. For example, T7gene 10, β-galactosidase gene, Dehydrofolate reductase gene, interferon γ gene, interleukin-2 gene, prochymosin gene and the like are listed as candidates.
 これらの遺伝子とタンパク質をコードする遺伝子とを連結する際には、コドンの読み取りフレームが一致するようにする。適当な制限酵素部位で連結するか、あるいは適当な配列の合成DNAを利用すればよい。 When linking these genes and genes encoding proteins, the codon reading frames should be matched. Ligation may be performed at an appropriate restriction enzyme site, or synthetic DNA having an appropriate sequence may be used.
 また、生産量を増大させるためには、融合タンパク質遺伝子の下流に転写終結配列であるターミネータを連結することが好ましい場合がある。このターミネータとしては、T7ターミネータ、fdファージターミネータ、T4ターミネータ、テトラサイクリン耐性遺伝子のターミネータ、大腸菌trpA遺伝子のターミネータ等が挙げられる。 In order to increase the production amount, it may be preferable to link a terminator, which is a transcription termination sequence, downstream of the fusion protein gene. Examples of the terminator include T7 terminator, fd phage terminator, T4 terminator, tetracycline resistance gene terminator, E. coli trpA gene terminator, and the like.
 触媒活性を有するタンパク質またはその融合タンパク質をコードする遺伝子を大腸菌に導入するためのベクターとしては、いわゆるマルチコピー型のものが好ましく、ColE1由来の複製開始点を有するプラスミド、例えばpUC系のプラスミドやpBR322系のプラスミドあるいはその誘導体が挙げられる。ここで、「誘導体」とは、塩基の置換、欠失、挿入、付加および/または逆位などによってプラスミドに改変を施したものを意味する。なお、ここでいう「改変」とは、変異剤やUV照射などによる変異処理、あるいは自然変異などによる改変をも含む。 As a vector for introducing a gene encoding a protein having a catalytic activity or a fusion protein thereof into Escherichia coli, a so-called multicopy type is preferable, and a plasmid having a replication origin derived from ColE1, such as a pUC-type plasmid or pBR322, is used. A plasmid of the system or a derivative thereof. Here, the “derivative” means one obtained by modifying a plasmid by base substitution, deletion, insertion, addition and / or inversion. The “modification” here includes modification by mutation treatment, UV irradiation, natural mutation, or the like.
 また、形質転換体を選別するために、ベクターがアンピシリン耐性遺伝子等のマーカーを有することが好ましい。このようなプラスミドとして、強力なプロモータを持つ発現ベクターが市販されている(例、pUC系(タカラバイオ社製)、pPROK系(クローンテック製)、pKK233-2(クローンテック製))。 Further, it is preferable that the vector has a marker such as an ampicillin resistance gene in order to select transformants. As such a plasmid, an expression vector having a strong promoter is commercially available (eg, pUC system (manufactured by Takara Bio Inc.), pPROK system (manufactured by Clontech), pKK233-2 (manufactured by Clontech)).
 プロモータ、所定の活性を有する目的タンパク質またはその目的タンパク質と他のタンパク質との融合タンパク質をコードする遺伝子、場合によってはターミネータの順に連結したDNA断片と、ベクターDNAとを連結して発現ベクターを得る。 An expression vector is obtained by ligating a promoter, a gene encoding a target protein having a predetermined activity or a fusion protein of the target protein and another protein, or, in some cases, a terminator-linked DNA fragment, and vector DNA.
 得られた発現ベクターを用いて大腸菌を形質転換し、この大腸菌を培養すると、所定のタンパク質またはその融合タンパク質が発現生産される。 When the obtained expression vector is used to transform E. coli and the E. coli is cultured, a predetermined protein or a fusion protein thereof is expressed and produced.
 融合タンパク質として発現させた場合、血液凝固因子Xa、カリクレインなどの、目的タンパク質内に存在しない配列を認識配列とする制限プロテアーゼを用いて目的タンパク質を切り出せるようにしてもよい。 When expressed as a fusion protein, the target protein may be excised using a restriction protease such as blood coagulation factor Xa, kallikrein, etc., which has a sequence not present in the target protein as a recognition sequence.
 生産培地としては、M9-カザミノ酸培地、LB培地など、大腸菌を培養するために通常用いる培地を用いてもよい。また、培養条件、生産誘導条件は、用いたベクターのマーカー、プロモータ、宿主菌等の種類に応じて適宜選択する。 As the production medium, a medium usually used for culturing Escherichia coli such as M9-casamino acid medium and LB medium may be used. The culture conditions and production induction conditions are appropriately selected according to the type of the marker, promoter, host fungus and the like used.
 目的のタンパク質またはこれを含む融合タンパク質を回収するには、以下の方法などがある。目的タンパク質あるいはその融合タンパク質が菌体内に可溶化されていれば、菌体を回収した後、菌体を破砕あるいは溶菌させ、粗酵素液として使用できる。さらに、必要に応じて、通常の沈澱、濾過、カラムクロマトグラフィー等の手法により、目的タンパク質あるいはその融合タンパク質を精製して用いることも可能である。この場合、目的タンパク質あるいは融合タンパク質の抗体を利用した精製法も利用できる。タンパク質封入体が形成される場合には、変性剤でこれを可溶化し、変性剤を透析等により除去して目的タンパク質を得ることができる。 There are the following methods for recovering the target protein or a fusion protein containing the protein. If the target protein or its fusion protein is solubilized in the microbial cells, the microbial cells can be recovered and then disrupted or lysed to be used as a crude enzyme solution. Furthermore, if necessary, the target protein or a fusion protein thereof can be purified and used by a conventional method such as precipitation, filtration or column chromatography. In this case, a purification method using an antibody of the target protein or fusion protein can also be used. When a protein inclusion body is formed, the protein of interest can be obtained by solubilizing it with a denaturing agent and removing the denaturing agent by dialysis or the like.
2.本発明に係るNANAの製造方法
 本発明は、本発明のタンパク質を用いる、NANAの製造方法を提供する。本発明の製造方法は、製造方法(I)、および製造方法(II)に分類できる。先ず、製造方法(I)の概要を説明し、次いで製造方法(II)の概要を説明する。
2. Method for Producing NANA According to the Present Invention The present invention provides a method for producing NANA using the protein of the present invention. The production method of the present invention can be classified into production method (I) and production method (II). First, the outline of the production method (I) will be explained, and then the outline of the production method (II) will be explained.
 本発明の製造方法(I)は、本発明のタンパク質の存在下で、NAMおよびPyrからNANAを合成する工程(背景技術において示した上記(2)の反応工程に相当)を含む。製造方法(I)は、本発明のタンパク質がNANAアルドラーゼ活性を有する任意の条件で行われるが、後述するような工程と組み合わされて、製造方法(II)の形態で行われる場合には、アルカリ性条件下の反応液中で行われる。 The production method (I) of the present invention includes a step of synthesizing NANA from NAM and Pyr in the presence of the protein of the present invention (corresponding to the reaction step (2) shown in the background art). The production method (I) is carried out under any conditions in which the protein of the present invention has NANA aldolase activity. However, when the production method (I) is carried out in the form of the production method (II) in combination with the steps described later, it is alkaline. It is carried out in a reaction solution under conditions.
 アルカリ性条件下の反応液としては、アルカリ性緩衝液が用いられる。アルカリ性緩衝液は、アルカリ金属水酸化物(例、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化マグネシウム)、アルカリ金属炭酸塩(例、炭酸ナトリウム、炭酸カリウム)、アルカリ金属炭酸水素塩(例、炭酸水素ナトリウム、炭酸水素カリウム)、アンモニアなどのアルカリ性物質を用いて作製してもよいし、あるいはリン酸緩衝液、トリス-塩酸緩衝液、ホウ酸緩衝液、ベロナール塩酸緩衝液、グッド緩衝液、ジエタノールアミン塩酸緩衝液などの周知のアルカリ性緩衝液を用いてもよい。 An alkaline buffer is used as the reaction solution under alkaline conditions. Alkaline buffers include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide), alkali metal carbonates (eg, sodium carbonate, potassium carbonate), alkali metals It may be prepared using an alkaline substance such as bicarbonate (eg, sodium bicarbonate, potassium bicarbonate), ammonia, or phosphate buffer, Tris-HCl buffer, borate buffer, veronal hydrochloride buffer. Well-known alkaline buffers such as liquid, Good buffer, and diethanolamine hydrochloride buffer may be used.
 製造方法(I)におけるアルカリ性条件下の反応液のpHは、より多量のNANAをNAMおよびPyrから効率的に製造するという観点からは、本発明のタンパク質のpH安定性および至適pHを考慮して、上記の工程を行うことが好ましい。このようなpH領域は、上記のpH安定性および至適pHの記載から明らかであるが、例えばpHpH8.0~10.0、好ましくはpH8.0~9.0、より好ましくはpH8.0~8.5であってもよい。 From the viewpoint of efficiently producing a larger amount of NANA from NAM and Pyr, the pH of the reaction solution under alkaline conditions in the production method (I) takes into consideration the pH stability and optimum pH of the protein of the present invention. Thus, it is preferable to perform the above steps. Such a pH range is apparent from the above description of pH stability and optimum pH. For example, pH pH 8.0 to 10.0, preferably pH 8.0 to 9.0, more preferably pH 8.0 to It may be 8.5.
 反応液中の各基質の濃度は、特に制限されない。具体的には、製造方法(I)におけるNAMおよびPyrの濃度は、適宜設定できる。各基質はまた、反応中に適宜補充されてもよい。さらに、NAMは、遊離の塩基および塩(例、塩酸塩、硫酸塩)のいずれの形態でも用いることができる。Pyrは、遊離の酸および塩(例、ナトリウム塩、カリウム塩)のいずれの形態でも用いることができる。 The concentration of each substrate in the reaction solution is not particularly limited. Specifically, the concentrations of NAM and Pyr in the production method (I) can be set as appropriate. Each substrate may also be supplemented as appropriate during the reaction. Furthermore, NAM can be used in any form of free base and salt (eg, hydrochloride, sulfate). Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
 反応液中の本発明のタンパク質の濃度は、反応が進行する限り、特に限定されない。本発明のタンパク質はまた、上記のような反応を触媒できる状態で反応系内に存在すれば、その形態に特に限定はない。すなわち、タンパク質の存在下で反応を行う際の、反応系内におけるタンパク質の具体的な存在形態としては、例えば、タンパク質を生産する微生物を含む培養物、その培養物から分離された微生物菌体、菌体処理物(抽出タンパク質)などが含まれる。微生物を含む培養物とは、微生物を培養して得られる物のことであり、より具体的には、微生物菌体、その微生物の培養に用いた培地および培養された微生物により生成された物質、及びこれらの混合物などのことをいう。また、微生物菌体は洗浄し、洗浄菌体として用いてもよい。また、菌体処理物には、菌体を破砕、溶菌、凍結乾燥したものなどが含まれ、さらに菌体などを処理して回収される無細胞抽出物や粗精製タンパク質、これらをさらに精製した精製タンパク質などの抽出タンパク質が含まれる。精製処理されたタンパク質としては、各種精製法によって得られる部分精製タンパク質等を使用してもよいし、これらを共有結合法、吸着法、包括法等によって固定化した固定化タンパク質を使用してもよい。また、使用する微生物によっては、培養中に一部、溶菌するものもあるので、この場合には培養液上清もタンパク質含有物として利用できる。 The concentration of the protein of the present invention in the reaction solution is not particularly limited as long as the reaction proceeds. The form of the protein of the present invention is not particularly limited as long as it exists in the reaction system in a state capable of catalyzing the above reaction. That is, when the reaction is performed in the presence of the protein, the specific form of the protein in the reaction system includes, for example, a culture containing a microorganism producing the protein, a microbial cell separated from the culture, Processed bacterial cells (extracted protein) and the like are included. A culture containing microorganisms is a product obtained by culturing microorganisms. More specifically, microbial cells, a medium used for culturing the microorganisms, and substances produced by the cultured microorganisms, And a mixture thereof. Further, the microbial cells may be washed and used as washed cells. In addition, cell-treated products include those obtained by crushing, lysing, and lyophilizing the cells, and further purifying the cell-free extracts and crude proteins recovered by treating the cells. Extracted proteins such as purified protein are included. As the purified protein, partially purified proteins obtained by various purification methods may be used, or immobilized proteins obtained by immobilizing these by a covalent bond method, an adsorption method, a comprehensive method, or the like may be used. Good. In addition, some microorganisms lyse during culture, and in this case, the culture supernatant can also be used as a protein-containing material.
 製造方法(I)において、より多量のNANAをNAMおよびPyrから効率的に製造するという観点からは、本発明のタンパク質の温度安定性および至適温度を考慮して、上記の工程を行うことが好ましい。このような温度範囲は、当業者であれば適宜決定できるが、例えば30~60℃が用いられる。 In the production method (I), from the viewpoint of efficiently producing a larger amount of NANA from NAM and Pyr, the above steps may be performed in consideration of the temperature stability and optimum temperature of the protein of the present invention. preferable. Such a temperature range can be appropriately determined by those skilled in the art. For example, 30 to 60 ° C. is used.
 製造方法(I)において、反応時間は、製造されるべきNANA量に応じて適宜設定できる。反応は、静置または攪拌状態で行うことができる。 In the production method (I), the reaction time can be appropriately set according to the amount of NANA to be produced. The reaction can be performed in a stationary state or with stirring.
 製造方法(I)は、本発明のタンパク質に加えて、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で、行なわれてもよい。4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼは、アルカリ性条件下におけるピルビン酸の縮合に起因する4-ヒドロキシ-4-メチル-2-オキソグルタル酸の生成を抑制できる。したがって、NANA収率の向上という観点からは、本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で、製造方法(I)を行うことが好ましい。4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼは、EC4.1.3.17に分類される酵素であり、4-ヒドロキシ-4-メチル-2-オキソグルタル酸ピルビン酸-リアーゼまたはProAアルドラーゼ(WO2003/091396)、あるいは4-ヒドロキシ-4-メチル-2-ケトグルタル酸アルドラーゼ、γ-メチル-γ-ヒドロキシ-α-ケトグルタリックアルドラーゼ、KDPGアルドラーゼ、MHKアルドラーゼ、MHKGアルドラーゼまたはピルビン酸アルドラーゼ(BRENDA:http://www.brenda-enzymes.org/index.php4)とも呼ばれる。 The production method (I) may be performed in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in addition to the protein of the present invention. 4-Hydroxy-4-methyl-2-oxoglutarate aldolase can suppress the production of 4-hydroxy-4-methyl-2-oxoglutarate caused by condensation of pyruvic acid under alkaline conditions. Therefore, from the viewpoint of improving the NANA yield, the production method (I) is preferably performed in the presence of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase. 4-Hydroxy-4-methyl-2-oxoglutarate aldolase is an enzyme classified as EC 4.1.3.17, which is 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase or ProA aldolase ( WO2003 / 091396), or 4-hydroxy-4-methyl-2-ketoglutarate aldolase, γ-methyl-γ-hydroxy-α-ketoglutarate aldolase, KDPG aldolase, MHK aldolase, MHKG aldolase or pyruvate aldolase (BRENDA: (http://www.brenda-enzymes.org/index.php4).
 4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼとしては、種々の酵素(例、微生物または動植物由来)が知られている。例えば、このようなアルドラーゼとしては、コマモマス属、シュードモナス属、およびアラキス属に由来するものが挙げられる。具体的には、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼとしては、コマモマス・テストステローニ(Comamonas testosteroni)(WO2003/091396)、シュードモナス・プチダ(Pseudomonas putida)〔Tack,J.Biol.Chem.vol.247,p.6444-6449(1972);Dagley et al.,Methods Enzymol.vol.90,p.272-276(1982)〕、シュードモナス・テストステローニ(Pseudomonas testosteroni)〔Schuld Ritter et al.,J.Bacteriol.vol.113,p.1064-1065(1973)〕、シュードモナス・オクラセア(Pseudomonas ochraceae)〔Maruyama,J.Biochem.vol.10,p.334-340(1990);Maruyama,J.Biochem.vol.108,p.327-333(1990);Maruyama,J.Biochem.vol.110,p.976-981(1991);Maruyama et al.,Biotechnol.,Biochem.,vol.65,p.2701-2709(2001)〕、アラキス・ヒポゲア(Arachis hypogaea)〔Wood,The Enzymes(3rd Ed)(Boyer,P.D.,ed.),vol.7,p.281-302(1972);Shannon et al.,J.Biol.Chem.vol.237,p.3342-3347(1962)〕に由来するものが挙げられる。 As 4-hydroxy-4-methyl-2-oxoglutarate aldolase, various enzymes (eg, derived from microorganisms or animals and plants) are known. For example, such aldolases include those derived from the genus Komamomas, Pseudomonas, and Arakis. Specifically, examples of 4-hydroxy-4-methyl-2-oxoglutarate aldolase include Comomas testosteroni (WO2003 / 091396), Pseudomonas putida [Tack, J. et al. Biol. Chem. vol. 247, p. 6444-6449 (1972); Dagley et al. , Methods Enzymol. vol. 90, p. 272-276 (1982)], Pseudomonas testosteroni [Schul Ritter et al. , J .; Bacteriol. vol. 113, p. 1064-1065 (1973)], Pseudomonas ochracea [Maruyama, J. et al. Biochem. vol. 10, p. 334-340 (1990); Maruyama, J. et al. Biochem. vol. 108, p. 327-333 (1990); Maruyama, J. et al. Biochem. vol. 110, p. 976-981 (1991); Maruyama et al. Biotechnol. Biochem. , Vol. 65, p. 2701-2709 (2001)], Arachis hypogaea [Wood, The Enzymes (3rd Ed) (Boyer, PD, ed.), Vol. 7, p. 281-302 (1972); Shannon et al. , J .; Biol. Chem. vol. 237, p. 3342-3347 (1962)].
 反応液中の4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの濃度は、反応が進行する限り、特に限定されない。4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼはまた、上記のような反応を触媒できる状態で反応系内に存在すれば、その形態に特に限定はない。すなわち、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で反応を行う際の、反応系内におけるアルドラーゼの具体的な存在形態としては、例えば、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを生産する微生物を含む培養物、その培養物から分離された微生物菌体、菌体処理物(抽出タンパク質)などが含まれる。 The concentration of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in the reaction solution is not particularly limited as long as the reaction proceeds. The form of 4-hydroxy-4-methyl-2-oxoglutarate aldolase is not particularly limited as long as it is present in the reaction system in a state capable of catalyzing the above reaction. That is, when the reaction is carried out in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase, the specific form of aldolase present in the reaction system is, for example, 4-hydroxy-4-methyl-2 -Cultures containing microorganisms producing oxoglutarate aldolase, microbial cells isolated from the cultures, treated cells (extracted proteins), etc. are included.
 形質転換体を利用して製造方法(I)が行われる場合、形質転換体としては、例えば、(i)本発明のタンパク質を産生する形質転換体、(ii)4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを産生する形質転換体、(iii)本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの両方を産生する形質転換体が挙げられる。 When the production method (I) is performed using a transformant, examples of the transformant include (i) a transformant producing the protein of the present invention, (ii) 4-hydroxy-4-methyl- A transformant producing 2-oxoglutarate aldolase, (iii) a transformant producing both the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
 製造方法(I)において本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの両方が使用される場合、本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼは、以下の様式で反応液中に提供されてもよい。
・本発明のタンパク質(抽出酵素)および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼ(抽出酵素)
・本発明のタンパク質を産生する形質転換体および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼ(抽出酵素)
・本発明のタンパク質(抽出酵素)および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを産生する形質転換体
・本発明のタンパク質を産生する形質転換体および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを産生する形質転換体
・本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを産生する形質転換体
When both the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase are used in the production method (I), the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase May be provided in the reaction in the following manner.
-Protein of the present invention (extracting enzyme) and 4-hydroxy-4-methyl-2-oxoglutarate aldolase (extracting enzyme)
-Transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase (extraction enzyme)
A transformant producing the protein of the present invention (extracting enzyme) and 4-hydroxy-4-methyl-2-oxoglutarate aldolase. A transformant producing the protein of the present invention and 4-hydroxy-4-methyl-2. -Transformant producing oxoglutarate aldolase-Protein of the present invention and transformant producing 4-hydroxy-4-methyl-2-oxoglutarate aldolase
 上述した形質転換体は、例えば、i)本発明のタンパク質の発現ベクターを、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの産生菌に導入することにより、ii)4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの発現ベクターを、本発明のタンパク質の産生菌に導入することにより、iii)本発明のタンパク質の第1の発現ベクターおよび4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの第2の発現ベクターを、宿主の微生物に導入することにより、iv)本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの発現ベクターを、宿主の微生物に導入することにより、作製できる。本発明のタンパク質および4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの発現ベクターとしては、例えば、i’)本発明のタンパク質をコードする第1のポリヌクレオチド、および当該第1のポリヌクレオチドに機能可能に連結された第1のプロモーターから構成される第1の発現単位、ならびに4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼをコードする第2のポリヌクレオチド、および当該第2のポリヌクレオチドに機能可能に連結された第2のプロモーターから構成される第2の発現単位を含む発現ベクター、ならびにii’)本発明のタンパク質をコードする第1のポリヌクレオチドおよび4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼをコードする第2のポリヌクレオチド、ならびに当該第1および第2のポリヌクレオチドに機能可能に連結されたプロモーターを含む発現ベクター(ポリシストロニックmRNAを発現し得るベクター)が挙げられる。本発明のタンパク質をコードする第1のポリヌクレオチドは、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼをコードする第2のポリヌクレオチドに対して上流に位置していてもよいし、下流に位置していてもよい。 The above-mentioned transformant can be obtained by, for example, i) introducing the expression vector of the protein of the present invention into a 4-hydroxy-4-methyl-2-oxoglutarate aldolase producing bacterium, ii) 4-hydroxy-4- By introducing an expression vector of methyl-2-oxoglutarate aldolase into a bacterium producing the protein of the present invention, iii) the first expression vector of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate Introducing the second expression vector of aldolase into the host microorganism, iv) introducing the protein of the present invention and the expression vector of 4-hydroxy-4-methyl-2-oxoglutarate aldolase into the host microorganism. Can be produced. Examples of the expression vector of the protein of the present invention and 4-hydroxy-4-methyl-2-oxoglutarate aldolase include, for example, i ′) the first polynucleotide encoding the protein of the present invention, and the first polynucleotide. A first expression unit composed of a first promoter operably linked; a second polynucleotide encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase; and the second polynucleotide An expression vector comprising a second expression unit composed of a second promoter operably linked to ii ′) a first polynucleotide encoding a protein of the invention and 4-hydroxy-4-methyl- Second polynucleoside encoding 2-oxoglutarate aldolase De, and expression vectors comprising a promoter operably linked to the first and second polynucleotide (vector capable of expressing the polycistronic mRNA) are exemplified. The first polynucleotide encoding the protein of the present invention may be located upstream or downstream of the second polynucleotide encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase. May be located.
 製造方法(I)により製造されたNANAは、公知の方法により容易に反応液から分離精製できる。例えば、イオン交換カラムクロマトグラフィーにより精製後、濃縮し、水中あるいは有機溶媒中から結晶体を得ることができる。 NANA produced by the production method (I) can be easily separated and purified from the reaction solution by a known method. For example, it can be purified by ion exchange column chromatography and then concentrated to obtain a crystal from water or an organic solvent.
 本発明の製造方法(II)は、アルカリ性条件下での異性化反応により、NAGからNAMを生成する第1工程(背景技術において示した上記(1)の反応工程に相当)、および本発明のタンパク質の存在下で、NAMおよびPyrからNANAを合成する第2工程(上記(2)の反応工程に相当)を含む。製造方法(II)は、アルカリ性条件下の反応液中で行われる。本発明の製造方法(II)で用いられるアルカリ性条件下の反応液は、原料となる基質をNAMからNAGに変更する事を除いて、本発明の製造方法(I)で用いられるアルカリ性条件下の反応液と同様である。本発明の製造方法(II)においてもまた、本発明の製造方法(I)と同様に、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で、反応を行なってもよい。 The production method (II) of the present invention comprises a first step (corresponding to the reaction step (1) shown in the background art) for producing NAM from NAG by an isomerization reaction under alkaline conditions, and A second step of synthesizing NANA from NAM and Pyr in the presence of protein (corresponding to the reaction step (2) above) is included. Production method (II) is carried out in a reaction solution under alkaline conditions. The reaction solution under alkaline conditions used in the production method (II) of the present invention is the same under the alkaline conditions used in the production method (I) of the present invention except that the raw material substrate is changed from NAM to NAG. It is the same as the reaction solution. Also in the production method (II) of the present invention, the reaction may be carried out in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase as in the production method (I) of the present invention.
 製造方法(II)におけるアルカリ性条件下の反応液のpHは、両工程を同時に進行させる場合、より多量のNANAをNAGおよびPyrから効率的に製造するという観点からは、NAGからNAMへの化学的異性化に必要なpH領域、ならびに本発明のタンパク質のpH安定性および至適pHを考慮して、上記の両工程を行うことが好ましい。このようなpH領域は、NAGからNAMへの化学的異性化に必要な上記のpH、ならびに上記のpH安定性および至適pHの記載から明らかであるが、例えばpH9.5~10.0、好ましくはpH10.0が用いられる。 In the production method (II), the pH of the reaction solution under alkaline conditions is such that when both steps proceed simultaneously, from the viewpoint of efficiently producing a larger amount of NANA from NAG and Pyr, the chemical from NAG to NAM In consideration of the pH range necessary for isomerization and the pH stability and optimum pH of the protein of the present invention, it is preferable to carry out both of the above steps. Such a pH region is apparent from the above-mentioned pH necessary for chemical isomerization of NAG to NAM, and the above-mentioned pH stability and optimum pH. For example, pH 9.5 to 10.0, Preferably pH 10.0 is used.
 一方、製造方法(II)におけるアルカリ性条件下の反応は、各工程において、複数のpHで行われてもよい。例えば、先ず、NAGからNAMへの化学的異性化に必要なpH領域において第1工程が行われ、次いで、本発明のタンパク質のpH安定性および至適pHを考慮したpH領域において第2工程が行われる。この場合、第1工程のpH領域は、pH9.5以上であり、第2工程のpH領域は、製造方法(I)におけるpH領域と同様である。 On the other hand, the reaction under alkaline conditions in the production method (II) may be performed at a plurality of pHs in each step. For example, first, the first step is performed in the pH range necessary for chemical isomerization from NAG to NAM, and then the second step is performed in the pH range considering the pH stability and optimum pH of the protein of the present invention. Done. In this case, the pH region in the first step is pH 9.5 or higher, and the pH region in the second step is the same as the pH region in the production method (I).
 さらに、製造方法(II)におけるアルカリ性条件下の反応は、NAGからNAMへの化学的異性化により好ましいpH(例、pH11.5)で第1工程を行ない、次いで、反応液のpHを、pH安定性および至適pHを考慮したpHであって、NAGからNAMへの化学的異性化に必要なpH(例、pH10)に調整し、かつ本発明のタンパク質をpH調整後の反応液に追加することにより、第2工程のみならず、第1工程もまた同時に進行させる形式であってもよい。本形式によれば、より多量のNANAを効率的に製造できるという利点を有する。 Furthermore, the reaction under alkaline conditions in the production method (II) is carried out by performing the first step at a preferred pH (eg, pH 11.5) by chemical isomerization from NAG to NAM, and then the pH of the reaction solution is changed to pH Adjust pH to the pH required for chemical isomerization from NAG to NAM (eg, pH 10) considering stability and optimum pH, and add the protein of the present invention to the reaction solution after pH adjustment By doing so, not only the second step but also the first step may be performed simultaneously. This format has the advantage that a larger amount of NANA can be efficiently manufactured.
 反応液中の各基質の濃度は、特に制限されない。具体的には、製造方法(II)におけるNAGおよびPyrの濃度は、適宜設定できる。各基質はまた、反応中に適宜補充されてもよい。さらに、NAGは、遊離の塩基および塩(例、塩酸塩、硫酸塩)のいずれの形態でも用いることができる。Pyrは、遊離の酸および塩(例、ナトリウム塩、カリウム塩)のいずれの形態でも用いることができる。 The concentration of each substrate in the reaction solution is not particularly limited. Specifically, the concentrations of NAG and Pyr in the production method (II) can be set as appropriate. Each substrate may also be supplemented as appropriate during the reaction. Furthermore, NAG can be used in any form of free base and salt (eg, hydrochloride, sulfate). Pyr can be used in any form of free acid and salt (eg, sodium salt, potassium salt).
 反応液中の本発明のタンパク質の濃度は、反応が進行する限り、特に限定されない。製造方法(II)における本発明のタンパク質の形態は、製造方法(I)における本発明のタンパク質の形態と同様である。 The concentration of the protein of the present invention in the reaction solution is not particularly limited as long as the reaction proceeds. The form of the protein of the present invention in production method (II) is the same as the form of the protein of the present invention in production method (I).
 製造方法(II)において、より多量のNANAをNAMおよびPyrから効率的に製造するという観点からは、NAGからNAMへの化学的異性化に好ましい温度、ならびに本発明のタンパク質の温度安定性および至適温度を考慮して、上記の工程を行うことが好ましい。このような温度範囲は、当業者であれば適宜決定できるが、例えば30~60℃が用いられる。 In the production method (II), from the viewpoint of efficiently producing a larger amount of NANA from NAM and Pyr, the preferred temperature for the chemical isomerization of NAG to NAM, and the temperature stability and optimum of the protein of the present invention. It is preferable to perform the above steps in consideration of an appropriate temperature. Such a temperature range can be appropriately determined by those skilled in the art. For example, 30 to 60 ° C. is used.
 製造方法(II)において、反応時間は、製造されるべきNANA量に応じて適宜設定できる。反応は、静置または攪拌状態で行うことができる。 In the production method (II), the reaction time can be appropriately set according to the amount of NANA to be produced. The reaction can be performed in a stationary state or with stirring.
 製造方法(II)により製造されたNANAは、製造方法(I)により製造されたNANAと同様に公知の方法により容易に反応液から分離精製できる。 The NANA produced by the production method (II) can be easily separated and purified from the reaction solution by a known method in the same manner as the NANA produced by the production method (I).
 以下、本発明を実施例により詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these examples.
(材料)
 全ての化学物質は、市販業者から得たものであり、試薬グレードであった。
(material)
All chemicals were obtained from commercial suppliers and were reagent grade.
(HPCL解析)
 N-アセチル-D-ノイラミン酸(NANA)、N-アセチル-D-グルコサミン(NAG)、N-アセチル-D-マンノサミン(NAM)およびピルビン酸(Pyr)を、HPX-87Hイオン排除カラム(300mm×7.8mm;BIO-RAD、米国)のカラム上でのHPLCにより解析した。移動相は、流速0.6ml/分の5mM HSO緩衝液であり、溶出液は、210mm UV検出にてモニターした。温度は40℃であった。
(HPCL analysis)
N-acetyl-D-neuraminic acid (NANA), N-acetyl-D-glucosamine (NAG), N-acetyl-D-mannosamine (NAM) and pyruvic acid (Pyr) were mixed with an HPX-87H ion exclusion column (300 mm × 7.8 mm; BIO-RAD, USA). The mobile phase was 5 mM H 2 SO 4 buffer with a flow rate of 0.6 ml / min, and the eluate was monitored by 210 mm UV detection. The temperature was 40 ° C.
(微生物の単離)
 N-アセチル-D-ノイラミン酸を炭素源として資化する微生物を、日本国京都府京都市左京区の鴨川河川敷の土壌サンプルから単離し、スクリーニングに用いた。単離用培地(培地i)は、0.3%(w/v)NANA、0.3%(w/v)(NHSO、0.3%(w/v)KHPO、0.05%(w/v)酵母抽出物、0.05%(w/v)MgSO・7HO、0.001%(w/v)FeSO・7HO、0.001%(w/v)MnSO・5HO、0.75%(w/v)NaCOを水道水中に含んでいた(pH10.5)。土壌サンプルを、28℃で8または24時間振盪しながら、本培地中でインキュベートし、その後、培養物を、培地iiの2.0%アガープレート上に塗布し、次いで、28℃で12時間インキュベートした。培地iiは、0.1%(w/v)NANA、0.5%(w/v)フマル酸ナトリウム、1.0%(w/v)ペプトン、1.0%(w/v)酵母抽出物、0.3%(w/v)NaCl、0.75%(w/v)NaCOを水道水中に含んでいた(pH10.5)。出現したコロニーを、培地iiのアガープレート上に単離した。次いで、0.3%(w/v)NANAを含む培地iiのアガープレートに再度移して、28℃で24時間培養し、スクリーニング反応に十分な量の細胞を得た。
(Isolation of microorganisms)
Microorganisms that assimilate N-acetyl-D-neuraminic acid as a carbon source were isolated from soil samples from Kamogawa Riverbed in Sakyo-ku, Kyoto, Kyoto, Japan, and used for screening. The isolation medium (medium i) is 0.3% (w / v) NANA, 0.3% (w / v) (NH 4 ) 2 SO 4 , 0.3% (w / v) K 2 HPO 4 , 0.05% (w / v) yeast extract, 0.05% (w / v) MgSO 4 .7H 2 O, 0.001% (w / v) FeSO 4 .7H 2 O, 0.001 % (W / v) MnSO 4 .5H 2 O, 0.75% (w / v) Na 2 CO 3 was contained in tap water (pH 10.5). Soil samples are incubated in this medium with shaking for 8 or 24 hours at 28 ° C., after which the culture is spread on a 2.0% agar plate of medium ii and then incubated at 28 ° C. for 12 hours did. Medium ii is 0.1% (w / v) NANA, 0.5% (w / v) sodium fumarate, 1.0% (w / v) peptone, 1.0% (w / v) yeast extraction Product, 0.3% (w / v) NaCl, 0.75% (w / v) Na 2 CO 3 was contained in tap water (pH 10.5). Appearing colonies were isolated on agar plates of medium ii. Subsequently, it was transferred again to an agar plate of medium ii containing 0.3% (w / v) NANA and cultured at 28 ° C. for 24 hours to obtain a sufficient amount of cells for the screening reaction.
(NANA生産菌株のスクリーニング)
 反応混合液は、100μl中に、100mM Pyr、100mM NAM、50mMホウ酸緩衝液(pH10.0)、および上記のアガープレートから採取された湿菌体5mgを含んでいた。反応混合液を、28℃で8時間または24時間インキュベートし、10,000×gで5分間遠心分離した。上清中のNANAの生成を、HPLCにより分析した。
(Screening of NANA-producing strains)
The reaction mixture contained 100 mM Pyr, 100 mM NAM, 50 mM borate buffer (pH 10.0) and 5 mg of wet cells collected from the agar plate in 100 μl. The reaction mixture was incubated at 28 ° C. for 8 or 24 hours and centrifuged at 10,000 × g for 5 minutes. Production of NANA in the supernatant was analyzed by HPLC.
(プラスミド、使用菌株および培養条件)
 プラスミドであるT-ベクター(Novagen、米国)を、通例のDNAクローニングベクターとして用いた。プラスミドであるpKK223-3(GE Healthcare Bio-Sciences Corp、米国)を、タンパク質発現ベクターとして用いた。
 それ以外の記載がない限り、エシェリヒア・コリJM109を、通例のクローニング宿主として採用し、タンパク質発現用の宿主株であるJM109を、Luria-Bertani(LB)培地(1%トリプトン、0.5%酵母抽出物および1%NaCl)中において37℃で増殖させた。必要な場合、50μg/mlアンピシリンを加えた。
(Plasmid, strain used and culture conditions)
The plasmid T-vector (Novagen, USA) was used as a customary DNA cloning vector. The plasmid pKK223-3 (GE Healthcare Bio-Sciences Corp, USA) was used as a protein expression vector.
Unless otherwise noted, Escherichia coli JM109 was employed as the usual cloning host, and JM109, a host strain for protein expression, was added to Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast). Extract and 1% NaCl). If necessary, 50 μg / ml ampicillin was added.
(一般的なDNA技術、DNA配列決定および解析)
 全ての基本的な組換えDNA手順(例、DNAの単離および精製、制限酵素消化、DNAのライゲーション、およびE.coliの形質転換)は、標準的なプロトコルに従った(Sambrook et al.,Molecular Cloning:A Laboratory Manual,2nd ed.Cold Spring Harbor Laboratory Press,New York)。DNAを、サーマルサイクラーを用いたPCR技術により増幅した。DNA配列を、CEQ ダイ・ターミネータ・サイクル・シークエンス・キット(Beckman Coulter、米国)を自動化シークエンサDNA解析システムCEQ 2000XL(Beckman Coulter、米国)と共に用いた、ジデオキシ鎖ターミネーション法(Sanger et al.,Proc Natl Acad Sci USA 74 (1977) 5463-5467)により決定した。配列データを、Genetyxプログラム(Software Development、日本)およびBlastプログラムで解析した。
(General DNA technology, DNA sequencing and analysis)
All basic recombinant DNA procedures (eg, DNA isolation and purification, restriction enzyme digestion, DNA ligation, and E. coli transformation) followed standard protocols (Sambrook et al.,). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York). DNA was amplified by PCR technique using a thermal cycler. The DNA sequence was analyzed by the dideoxy chain termination method (Sanger et al., Proc Natl) using the CEQ Die Terminator Cycle Sequence Kit (Beckman Coulter, USA) with the automated sequencer DNA analysis system CEQ 2000XL (Beckman Coulter, USA). Acad Sci USA 74 (1977) 5463-5467). Sequence data was analyzed with the Genetyx program (Software Development, Japan) and the Blast program.
(バチルス・エスピーYKR由来nanAのゲノムクローンの単離)
 nanA遺伝子のヌクレオチドフラグメントを、バチルス・エスピーYKRのゲノムDNAを用いて、PCRにより増幅した。バチルス・エスピーYKRから総DNAを抽出した(Ausbel et al.,Current protocols in molecular biology,John Wiley and Sons,New York.)。バチルス・エスピーYKRゲノムDNAを、以下の上流プライマーおよび下流プライマーを用いて増幅した。
(Isolation of Bacillus sp. YKR-derived nanA genomic clone)
The nucleotide fragment of the nanA gene was amplified by PCR using the genomic DNA of Bacillus sp. YKR. Total DNA was extracted from Bacillus sp. YKR (Ausbel et al., Current protocols in molecular biology, John Wiley and Sons, New York.). Bacillus sp. YKR genomic DNA was amplified using the following upstream and downstream primers.
上流プライマー:5’-GCNGTNACNCCNTTYTAYTA-3’(配列番号3)〔AVTPFYY(配列番号4)に対応〕
下流プライマー:5’-AANGTNSWNCCDATNGCNCCRTC-3’(配列番号5)〔FTSGIAGD(配列番号6)に対応〕
Upstream primer: 5′-GCNGTNACNCCNTTYTAYTA-3 ′ (SEQ ID NO: 3) [corresponding to AVTPFYY (SEQ ID NO: 4)]
Downstream primer: 5′-AANGTNSWNCCATNGCNCCRTC-3 ′ (SEQ ID NO: 5) [corresponds to FTSGIAGD (SEQ ID NO: 6)]
 増幅は、以下のように行った(45℃で30秒間のアニーリング、72℃で60秒間の伸長および98℃で10秒間の変性を、全体として40サイクル)。PCR産物(pNANA)を、pMD20-Tベクター中にクローニングし、ヌクレオチド配列解析に供し、次いで、プローブとして用いた。pNANAを、DNA標識キット(Roche)を用いてジゴキシゲニン-UTPで標識し、標識したpNANAを、DNA検出キット(Roche)を用いて検出した。 Amplification was carried out as follows (annealing at 45 ° C. for 30 seconds, extension at 72 ° C. for 60 seconds and denaturation at 98 ° C. for 10 seconds for a total of 40 cycles). The PCR product (pNANA) was cloned into the pMD20-T vector, subjected to nucleotide sequence analysis, and then used as a probe. pNANA was labeled with digoxigenin-UTP using a DNA labeling kit (Roche), and the labeled pNANA was detected using a DNA detection kit (Roche).
 バチルス・エスピーYKRゲノムDNAを、BamHI、EcoRI、HindIII、PstI、SacI、SalI、またはSpeIで消化し、0.7%アガロースゲル上で分離し、ナイロン膜に移した。膜を、ハイブリダイゼーション緩衝液(Roche)中において、40℃で30分間予めハイブリダイズさせ、DNA標識キット(Roche)を用いて標識されたpNANA標識ジゴキシゲニン-UTPと65℃で一晩ハイブリダイズさせた。2×SSC(SSC:333mM NaCl、333mM CNa・2HO)、0.1%SDS中において20℃で、および0.5×SSC、0.1%SDS中において55℃で洗浄後、標識pNANAを、DNA検出キット(Roche)により検出した。発光を、X線フィルムに曝すことにより記録した。 Bacillus sp. YKR genomic DNA was digested with BamHI, EcoRI, HindIII, PstI, SacI, SalI, or SpeI, separated on a 0.7% agarose gel and transferred to a nylon membrane. Membranes were prehybridized in hybridization buffer (Roche) for 30 minutes at 40 ° C. and hybridized overnight at 65 ° C. with pNANA-labeled digoxigenin-UTP labeled using a DNA labeling kit (Roche). . 2 × SSC (SSC: 333mM NaCl , 333mM C 6 H 5 O 7 Na 3 · 2H 2 O), 55 at 20 ° C. in a 0.1% SDS, and 0.5 × SSC, during 0.1% SDS After washing at 0 ° C., labeled pNANA was detected with a DNA detection kit (Roche). Luminescence was recorded by exposure to X-ray film.
 バチルス・エスピーYKRゲノムライブラリを、EcoRIにより消化されたゲノムDNAを用いて調製した。pNANAを用いたサザンブロッティングハイブリダイゼーションの結果に基づいて、nanA遺伝子を含むDNAフラグメントのサイズを、2.0kbであると見積った。フラグメントを、EcoRIでゲノムDNAを消化した後、0.7%アガロースゲム電気泳動の手段によりサイズ分画した。2.0kbの分子サイズに対応するゲル部分を切り出した。このように分離されたDNAフラグメントを、精製し、pUK118にライゲートした。約5×10の組換え体を、ジゴキシゲニン標識pNANAを用いてスクリーニングした。上記条件下でのコロニーハイブリダイゼーション後に、ナイロン膜を、2×SSC、0.1%SDS中において40℃で、および0.5×SSC、0.1%SDS中において55℃で洗浄し、次いで、DNAを、検出キット(Roche)を用いて調べた。発光を、X線フィルムに晒すことにより記録した。 A Bacillus sp. YKR genomic library was prepared using genomic DNA digested with EcoRI. Based on the results of Southern blotting hybridization using pNANA, the size of the DNA fragment containing the nanA gene was estimated to be 2.0 kb. Fragments were size fractionated by means of 0.7% agarose gem electrophoresis after digesting genomic DNA with EcoRI. A gel part corresponding to a molecular size of 2.0 kb was cut out. The DNA fragment thus isolated was purified and ligated into pUK118. Approximately 5 × 10 3 recombinants were screened with digoxigenin-labeled pNANA. After colony hybridization under the above conditions, the nylon membrane was washed at 40 ° C. in 2 × SSC, 0.1% SDS and 55 ° C. in 0.5 × SSC, 0.1% SDS, then The DNA was examined using a detection kit (Roche). Luminescence was recorded by exposure to X-ray film.
(エシェリヒア・コリJM109におけるnanAの発現)
 バチルス・エスピーYKR nanA遺伝子のタンパク質コーディング領域を保有するDNAフラグメントを、下記の2つのオリゴヌクレオチドプライマーを用いてPCRにより増幅した。
(Expression of nanA in Escherichia coli JM109)
A DNA fragment carrying the protein coding region of the Bacillus sp. YKR nanA gene was amplified by PCR using the following two oligonucleotide primers.
5’-GGGAATTCATGAAAGGTGTTATAACAGCATT-3’(配列番号7)
(P、EcoRI部位を付加した、ヌクレオチド残基663-685)
5’-CCAAGCTTTCATAAATAGCTATTAGCTAATT-3’(配列番号8)
(P、HindIII部位を付加した、相補的な残基1507-1526)
5′-GGGAATTCATGAAAGGGTTTATAACAGCATT-3 ′ (SEQ ID NO: 7)
(P 1 , nucleotide residues 663-685 with EcoRI site added)
5′-CCAAGCTTTCATAATATAGCATTTAGGCTAATT-3 ′ (SEQ ID NO: 8)
(P 2 , complementary residues 1507-1526 with the addition of a HindIII site)
 反応混合液は、鋳型としての100ngバチルス・エスピーYKRゲノムDNA、ならびに各50pmolのP1およびP2を、製造業者の反応緩衝液中に含んでいた。反応を、90℃で30秒、50℃で30秒、および72℃で2分の30サイクルを介して行った。PCR産物およびpKK223-3を、EcoRIおよびHindIIIにより消化した。PCR産物を、pKK223-3のEcoRIおよびHindIII部位中に挿入した。 The reaction mixture contained 100 ng Bacillus sp. YKR genomic DNA as a template and 50 pmol each of P1 and P2 in the manufacturer's reaction buffer. The reaction was carried out through 30 cycles of 90 ° C. for 30 seconds, 50 ° C. for 30 seconds, and 72 ° C. for 2 minutes. The PCR product and pKK223-3 were digested with EcoRI and HindIII. The PCR product was inserted into the EcoRI and HindIII sites of pKK223-3.
 nanA活性を全く有しないエシェリヒア・コリJM109を、得られたプラスミドで形質転換し、定常期まで増殖させた。細胞を、10,000×gで15分間の遠心分離により回収し、50mM Tris-HCl緩衝液(pH8.0)中に懸濁し、細胞破壊システム(Micro Smash、TOMY、日本)を用いて3000rpmで180秒間(30秒×6)破砕した。細胞片を、10,000×gで5分間の遠心分離により除去し、上清を、nanA特性解析、酵素精製およびNANA製造反応用の無細胞抽出液として用いた。 Escherichia coli JM109 having no nanA activity was transformed with the obtained plasmid and grown to stationary phase. Cells are collected by centrifugation at 10,000 × g for 15 minutes, suspended in 50 mM Tris-HCl buffer (pH 8.0), and 3000 rpm using a cell disruption system (Micro Smash, TOMY, Japan). It was crushed for 180 seconds (30 seconds × 6). Cell debris was removed by centrifugation at 10,000 × g for 5 minutes, and the supernatant was used as a cell-free extract for nanA characterization, enzyme purification and NANA production reactions.
(nanAアッセイ)
 NAMおよびPyrからのNANAの生成を測定することによりnanAの酵素活性値を決定した。基本反応は50mM緩衝液(Tris-HCl緩衝液(pH8.5)、100mM NAM、100mM Pyrおよび酵素を含む反応混合液(100μl)を、30℃で30分間インキュベートした。1ユニットの酵素活性を、30℃で1分間あたり1μmol NANAの形成を触媒する量として定義した。
(NanA assay)
The enzyme activity value of nanA was determined by measuring the production of NANA from NAM and Pyr. In the basic reaction, a reaction mixture (100 μl) containing 50 mM buffer (Tris-HCl buffer (pH 8.5), 100 mM NAM, 100 mM Pyr and enzyme) was incubated at 30 ° C. for 30 minutes. Defined as the amount catalyzing the formation of 1 μmol NANA per minute at 30 ° C.
(nanAの精製)
 以下の操作を、0~5℃で行った。精製に用いた緩衝液は、Tris-HCl緩衝液(pH8.0)であった。
(Purification of nanA)
The following operations were performed at 0-5 ° C. The buffer used for purification was Tris-HCl buffer (pH 8.0).
 ステップ1:粗抽出液の調製
 洗浄した湿菌体6.7gを、50mM Tris-HCl緩衝液(pH8.0)中に懸濁し、次いでビーズ式細胞破壊装置(Micro Smash、TOMY、日本)を用いて、3000rpm,180秒間(30秒×6)破砕した。10,000×gで15分間の遠心分離後、上清溶液を、50mM Tris-HCl緩衝液(pH8.0)に対して透析した。透析中に形成した沈殿を、10,000×gでの15分間の遠心分離により除去した。上清溶液を、無細胞抽出液として用いた。
Step 1: Preparation of crude extract 6.7 g of washed wet cells were suspended in 50 mM Tris-HCl buffer (pH 8.0), and then using a bead-type cell disrupter (Micro Smash, TOMY, Japan). And crushed at 3000 rpm for 180 seconds (30 seconds × 6). After centrifugation at 10,000 × g for 15 minutes, the supernatant solution was dialyzed against 50 mM Tris-HCl buffer (pH 8.0). The precipitate that formed during dialysis was removed by centrifugation at 10,000 × g for 15 minutes. The supernatant solution was used as a cell-free extract.
 ステップ2:HiPrep 16/10 DEAE FFカラムクロマトグラフィー
 上記無細胞抽出液4.5mlを、50mM NaClを含む50mM Tris-HCl緩衝液(pH8.0)で平衡化したHiPrep 16/10 DEAE FFカラム(GEヘルスケア社製)アプライした。このカラムを、平衡緩衝液で洗浄した。酵素を、直線勾配のNaCl(緩衝液中で50~250mM)で溶出させた。4.5mlの画分を収集した。活性画分を合わせた酵素溶液を50mM Tris-HCl緩衝液(pH8.0)に対して透析し、1mlに濃縮した。
Step 2: HiPrep 16/10 DEAE FF column chromatography A HiPrep 16/10 DEAE FF column (GE) in which 4.5 ml of the above cell-free extract was equilibrated with 50 mM Tris-HCl buffer (pH 8.0) containing 50 mM NaCl. Applied by Healthcare). The column was washed with equilibration buffer. The enzyme was eluted with a linear gradient of NaCl (50-250 mM in buffer). 4.5 ml fractions were collected. The enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) and concentrated to 1 ml.
 ステップ3:Mono Q HR 5/5カラムクロマトグラフィー
 上記酵素濃縮溶液mlを、50mM Tris-HCl緩衝液(pH8.0)で平衡化したMono Q HR 5/5カラム(GEヘルスケア社製)にアプライした。カラムを、200mM NaClを含む50mM Tris-HCl緩衝液(pH8.0)で洗浄した。酵素を、直線勾配のNaCl(緩衝液中で200~300mM)で溶出させた。0.5mlずつ画分を収集した。活性画分を合わせた酵素溶液を50mM Tris-HCl緩衝液(pH8.0)に対して透析し、活性画分1mlを得た。
Step 3: Mono Q HR 5/5 Column Chromatography The above enzyme concentrated solution ml was applied to a Mono Q HR 5/5 column (manufactured by GE Healthcare) equilibrated with 50 mM Tris-HCl buffer (pH 8.0). did. The column was washed with 50 mM Tris-HCl buffer (pH 8.0) containing 200 mM NaCl. The enzyme was eluted with a linear gradient of NaCl (200-300 mM in buffer). Fractions were collected in 0.5 ml aliquots. The enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) to obtain 1 ml of the active fraction.
 ステップ4:Mono Qカラムクロマトグラフィー
 上記酵素濃縮溶液25μlを、50mM Tris-HCl緩衝液(pH8.0)で平衡化したMono Qカラムにアプライした(GEヘルスケア社製)。カラムを、200mM NaClを含む50mMTris-HCl緩衝液(pH8.0)で洗浄した。酵素を、直線勾配のNaCl(緩衝液中で200~300mM)で溶出させた。0.1mlずつ画分を収集した。活性画分を合わせた酵素溶液を50mM Tris-HCl緩衝液(pH8.0)に対して透析し、濃縮液1mlを得た。
Step 4: Mono Q column chromatography 25 μl of the above enzyme concentrated solution was applied to a Mono Q column equilibrated with 50 mM Tris-HCl buffer (pH 8.0) (manufactured by GE Healthcare). The column was washed with 50 mM Tris-HCl buffer (pH 8.0) containing 200 mM NaCl. The enzyme was eluted with a linear gradient of NaCl (200-300 mM in buffer). Fractions were collected in 0.1 ml portions. The enzyme solution combined with the active fraction was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) to obtain 1 ml of a concentrated solution.
(NAMおよびPyrからのNANA製造反応)
 標準的な反応混合液(100μl)は、0.5mg/mlタンパク質の無細胞抽出液、50mMのTris-HCl緩衝液(pH8.5)、またはCAPS緩衝液(pH10.0)、100mMのNAMおよび100mMのPyrを含有していた。30℃でインキュベートした。
(NANA production reaction from NAM and Pyr)
A standard reaction mixture (100 μl) is a cell-free extract of 0.5 mg / ml protein, 50 mM Tris-HCl buffer (pH 8.5), or CAPS buffer (pH 10.0), 100 mM NAM and Contained 100 mM Pyr. Incubated at 30 ° C.
(NAGおよびPyrからのNANA製造反応)
 第1に、0.7mlの容量中において、1000mM NAGを、pH11.5で3時間40℃インキュベートして、NAGからNAMを調製した。化学的異性化反応によってNAGとNAMはそれぞれ855mMと205mMとなった。第2に、反応混合液に、100mMのCAPS(pH10.0)、700mMのPyrおよび0.5mg/mlタンパク質の組換えエシェリヒア・コリ由来の無細胞抽出液を、1mlの最終容量において加え、40℃でインキュベートした。
(NANA production reaction from NAG and Pyr)
First, NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 for 3 hours at 40 ° C. in a volume of 0.7 ml. NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively. Second, cell-free extract from recombinant Escherichia coli of 100 mM CAPS (pH 10.0), 700 mM Pyr and 0.5 mg / ml protein was added to the reaction mixture in a final volume of 1 ml, Incubated at 0 ° C.
 タンパク質濃度を、ウシ血清アルブミンを標品として用いて、タンパク質アッセイキット(Bio-Rad Laboratories、米国)で測定した(Bradford,M.M.,Anal Biochem72(1976)248-254)。SDS-PAGEを、KingおよびLaemmli(King et al.,J.Mol.Biol.62(1971)465-477)に記載されるような、Tris-グリシン緩衝液系を用いた12.5%ポリアクリルアミドスラブゲルにおいて行った。 Protein concentration was measured with a protein assay kit (Bio-Rad Laboratories, USA) using bovine serum albumin as a standard (Bradford, MM, Anal Biochem 72 (1976) 248-254). SDS-PAGE was performed using 12.5% polyacrylamide using a Tris-glycine buffer system as described by King and Laemmli (King et al., J. Mol. Biol. 62 (1971) 465-477). Performed in slab gel.
[実施例1]アルカリ性条件下でのN-アセチル-D-ノイラミン酸アルドラーゼのスクリーニング [Example 1] Screening of N-acetyl-D-neuraminic acid aldolase under alkaline conditions
1-1 アルカリ性条件下でのNAGの化学的異性化
 化学的異性化の条件を調べた。NAGからNAMへの異性化を、30℃で18時間、pH8.5とpH12.0との間で測定した(図1)。NAMは、pH9.0未満では検出不能であった。NAMは、pH9.5よりも高いpHで検出された。
1-1 Chemical isomerization of NAG under alkaline conditions The conditions of chemical isomerization were investigated. The isomerization of NAG to NAM was measured between pH 8.5 and pH 12.0 at 30 ° C. for 18 hours (FIG. 1). NAM was not detectable below pH 9.0. NAM was detected at a pH higher than pH 9.5.
 NAGからNAMへの化学的異性化について反応温度の影響を調べた。反応はpH11.5において20℃から80℃の間で3時間インキュベートした。40℃以下の温度ではNAGならびにNAMが分解されること無くNAMへの異性化が進行した。しかしながら、45℃以上の温度ではNAGおよびNAMの分解が認められた。このため化学的異性化の至適温度は、40℃であった。
 異性化の至適pHは、pH11.5~12.0であった。しかしながら、予備的な実験研究では、殆どの微生物は、pH11.0より高いpHで増殖できなかった。したがって、培地i条件を、pH10.5に決定した。
The effect of reaction temperature on the chemical isomerization of NAG to NAM was investigated. The reaction was incubated at 20 ° C. to 80 ° C. for 3 hours at pH 11.5. At temperatures below 40 ° C., isomerization to NAM proceeded without decomposition of NAG and NAM. However, decomposition of NAG and NAM was observed at temperatures above 45 ° C. Therefore, the optimum temperature for chemical isomerization was 40 ° C.
The optimum pH for isomerization was pH 11.5 to 12.0. However, in preliminary experimental studies, most microorganisms could not grow at a pH higher than pH 11.0. Therefore, the medium i condition was determined at pH 10.5.
1-2 NANA生産のためのNANA資化性微生物のスクリーニング
 NANA資化性微生物は、炭素源としてNAMおよび/またはPyr(これらは、nanAによりNANAから分解される)を利用している。NANA資化性微生物は、nanAを有する。単一炭素源としてNANAを含む培地iを、nanAのスクリーニングに用いた。
1-2 Screening for NANA-utilizing microorganisms for NANA production NANA-utilizing microorganisms utilize NAM and / or Pyr (which are degraded from NANA by nanA) as a carbon source. The NANA-assimilating microorganism has nanA. Medium i containing NANA as a single carbon source was used for screening of nanA.
 約1500個のNANA資化性微生物を、0.3%NANAを含むアルカリ培地i(pH10.5)での集積培養により土壌から単離した。これらの株のうち30個の株が、アルカリ性条件下でNAMおよびPyrからNANAを生成した。アルカリ性条件下でこれらの株によるNANAの生成を調べた(表1)。これらの株を、アルカリ培地ii上で28℃で24時間インキュベートした。この湿菌体5mgを0.1M Pyr、0.1M NAMを含む反応混合液(100μl)に加え、pH10.0で4時間インキュベートした。6個の株I、II、V、VI、VIIおよびYKRが、より多量のNANAを生成した。これらの6個の株は、16S rRNA配列の結果に基づいて、バチルス・エスピー(Bacillus sp.)であると同定された。16S rRNA配列の結果は、バチルス・エスピーD6、バチルス・エスピーD6、バチルス・エスピーOS13、バチルス・エスピーD6、バチルス・エスピーOS13およびバチルス・エスピー、シュードファームス(pseudofirmus)の16S rRNA配列に対して、それぞれ98%、97%、96%、94%、95%および97%の類似性を示していた。これらの6個の株を、以下において用いた。 About 1500 NANA-assimilating microorganisms were isolated from soil by enrichment culture in an alkaline medium i (pH 10.5) containing 0.3% NANA. Thirty of these strains produced NANA from NAM and Pyr under alkaline conditions. The production of NANA by these strains was examined under alkaline conditions (Table 1). These strains were incubated for 24 hours at 28 ° C. on alkaline medium ii. 5 mg of this wet cell was added to a reaction mixture (100 μl) containing 0.1 M Pyr and 0.1 M NAM, and incubated at pH 10.0 for 4 hours. Six strains I, II, V, VI, VII and YKR produced higher amounts of NANA. These six strains were identified as Bacillus sp. Based on 16S rRNA sequence results. The results of the 16S rRNA sequence were compared to the 16S rRNA sequence of Bacillus sp D6, Bacillus sp D6, Bacillus sp OS13, Bacillus sp D6, Bacillus sp OS13 and Bacillus sp, pseudofarmus (pseudofarmus), It showed 98%, 97%, 96%, 94%, 95% and 97% similarity, respectively. These 6 strains were used in the following.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例2]新たに単離されたバチルス・エスピー由来のN-アセチル-D-ノイラミン酸アルドラーゼをコードする遺伝子のクローニング、およびエシェリヒア・コリJM109における酵素の発現 [Example 2] Cloning of a gene encoding N-acetyl-D-neuraminic acid aldolase derived from newly isolated Bacillus sp. And expression of the enzyme in Escherichia coli JM109
2-1 バチルス・エスピーYKR由来のnanAのクローニング
 PCRクローニングを行い、土壌から単離された6個の微生物のゲノムDNAから、nanAをコードする遺伝子の一部を得た。種々の微生物(Shigella dysenteriae、Escherichia coli K-12、Salmonella entericaserovar、Haemophilus influenza、Actinobacillus pleuropneumoniae、Fusobacterium nucleatum、Lactobacillus plantarum、Clostridium perfringens、Staphlocpccus aureus、Streptococcus pneumonia、Pasteurella multocide、Trichomonas vaginalis、Mycoplasma capricolum、およびPseudoalteromonas haloplanktis)由来の14個の既知nanAのアミノ酸配列を整列させ、縮合オリゴヌクレオチドを、保存領域上で設計した。バチルス・エスピーYKR nanA遺伝子のヌクレオチドフラグメントを、PCRにより増幅した。271bpのサイズを有する、増幅した遺伝子フラグメントのヌクレオチド配列は、Clostridium perfringens由来のnanAと相同性を示した。他の5種のバチルス・エスピーの遺伝子DNA(鋳型)の遺伝子増幅産物は、有意な相同性を有する既知タンパク質の類似配列を示さなかった。プローブとしてこのフラグメントを用いたサザンブロッティングハイブリダイゼーションは、BamHI、EcoRI、HindIII、PstI、SacI、SalIまたはSpeIでのバチルス・エスピーYKR DNAの消化により生じた単一バンドを示した。
2-1 Cloning of nanA derived from Bacillus sp. YKR PCR cloning was performed, and a part of the gene encoding nanA was obtained from the genomic DNA of six microorganisms isolated from soil. Various microorganisms (Shigella dysenteriae, Escherichia coli K-12, Salmonella entericaserovar, Haemophilus influenza, Actinobacillus pleuropneumoniae, Fusobacterium nucleatum, Lactobacillus plantarum, Clostridium perfringens, Staphlocpccus aureus, Streptococcus pneumonia, Pasteurella multocide, Trichomonas vaginalis, Mycoplasma capricolum, and Pseudoalteromonas Haloplan tis) aligning the 14 amino acid sequence of a known nanA from the condensation oligonucleotides were designed on conserved regions. A nucleotide fragment of the Bacillus sp. YKR nanA gene was amplified by PCR. The nucleotide sequence of the amplified gene fragment having a size of 271 bp showed homology with nanA from Clostridium perfringens. The gene amplification products of the other five Bacillus sp. Gene DNAs (templates) did not show similar sequences of known proteins with significant homology. Southern blotting hybridization using this fragment as a probe showed a single band generated by digestion of Bacillus sp. YKR DNA with BamHI, EcoRI, HindIII, PstI, SacI, SalI or SpeI.
 EcoRI消化後のサイズ分画により回収した2.0~3.0kbのDNAフラグメントを用いて、部分的バチルス・エスピーYKR遺伝子ライブラリーを構築し、次いで、プローブDNAを用いて、それをスクリーニングした。陽性クローンから、プラスミドDNAを単離した。EcoRIでの消化により得られた2.2kbフラグメント全体を、配列決定した。単離された遺伝子の配列データは、クローニングされたフラグメント上に構造遺伝子全体が位置することを示した。バチルス・エスピーYKR由来のnanAのペプチドフラグメントについて決定された全てのアミノ酸配列が、DNA配列から予測されたアミノ酸配列と厳密に一致した。オープンリーディングフレームは、864bpからなり、それは、32,643Daの計算分子量を有する、288個のアミノ酸のタンパク質をコードしていた(配列番号1により表されるヌクレオチド配列、および配列番号2により表されるアミノ酸配列を参照)。 A 2.0-3.0 kb DNA fragment recovered by size fractionation after EcoRI digestion was used to construct a partial Bacillus sp. YKR gene library, which was then screened using probe DNA. Plasmid DNA was isolated from positive clones. The entire 2.2 kb fragment obtained by digestion with EcoRI was sequenced. The sequence data of the isolated gene showed that the entire structural gene is located on the cloned fragment. All amino acid sequences determined for the nanA peptide fragment from Bacillus sp. YKR closely matched the amino acid sequence predicted from the DNA sequence. The open reading frame consisted of 864 bp, which encoded a protein of 288 amino acids with a calculated molecular weight of 32,643 Da (the nucleotide sequence represented by SEQ ID NO: 1 and represented by SEQ ID NO: 2) See amino acid sequence).
2-2 エシェリヒア・コリJM109におけるnanAの発現
 nanA遺伝子を、tacプロモータを有するpKK223-3中にライゲーションした。得られたプラスミドであるpKKnanAを、エシェリヒア・コリJM109中に導入した。組換えタンパク質の発現のために、エシェリヒア・コリJM109細胞を、0.1mM IPTGを用いて、37℃で誘導した。発現したタンパク質は、SDS-PAGEにより検出された。主要なバンドは、約30kDaの分子量を示した。この値は、nanA遺伝子の計算分子量と一致していた。
2-2 Expression of nanA in Escherichia coli JM109 The nanA gene was ligated into pKK223-3 with the tac promoter. The resulting plasmid, pKKnanA, was introduced into Escherichia coli JM109. For expression of the recombinant protein, Escherichia coli JM109 cells were induced at 37 ° C. with 0.1 mM IPTG. The expressed protein was detected by SDS-PAGE. The main band showed a molecular weight of about 30 kDa. This value was consistent with the calculated molecular weight of the nanA gene.
 nanAの発現に対するIPTG濃度の効果を調べた。組換えタンパク質の発現のために、エシェリヒア・コリJM109細胞を、種々の濃度のIPTG(0.05~5.0mM)を用いて、37℃で誘導した。しかしながら、タンパク質の発現の差異は、SDS-PAGE上では検出されなかった。 The effect of IPTG concentration on the expression of nanA was examined. For expression of the recombinant protein, E. coli JM109 cells were induced at 37 ° C. with various concentrations of IPTG (0.05-5.0 mM). However, no difference in protein expression was detected on SDS-PAGE.
2-3 バチルス・エスピーYKR由来のnanAの酵素特性
(1)粗酵素の特性
 本酵素の活性に対する温度およびpHの効果を調べた(図2、4)。基本反応は50mM緩衝液(Tris-HCl緩衝液(pH8.5)、100mM NAM、100mM Pyrおよび酵素を含む反応混合液(100μl)を、30℃で30分間インキュベートした。種々の温度および緩衝液の条件下で活性を測定した。pH8.5で30℃の活性に対する相対活性を百分率で表した。酵素活性は、pH8.0~8.5で至適であり、最大活性の60%を超える活性が、pH7.0~pH10.0で観察された。この酵素は、50℃で最も活性であり、最大活性の60%を超える活性が、40~70℃で見出された。本酵素の安定性に対する温度およびpHの効果を調べた(図3、5)。温度安定性については粗酵素溶液(1mg/ml)を0℃から80℃で1時間インキュベートし、活性を測定した。酵素を40℃までの温度で1時間インキュベートした場合には、如何なる活性の損失も観察されなかった。45、50、55、60、65、70および80℃での処理は、それぞれ、初期活性の30、28、35、47、63、82および99%の損失を引き起こした。本酵素を、Tris-HCl緩衝液(pH8.0、8.5および9.0)、ホウ酸緩衝液(pH9.0、9.5および10.0)およびCAPS(pH10.0、10.5および11.0)緩衝液と共に、4℃で一晩(16時間)インキュベートした場合には、如何なる活性の損失も観察されなかった。酢酸緩衝液(pH5.0および6.0)およびリン酸ナトリウム緩衝液(pH6.0~pH8.0)での処理は、初期活性の20%を超える活性の損失を引き起こした。nanAの反応に対する速度研究を行った。粗酵素は、NANA、NAMおよびPyrについて、それぞれ2.0mM、23.3mMおよび42.7mMのKm値を示した(表2)。
2-3 Enzyme characteristics of nanA derived from Bacillus sp. YKR (1) Characteristics of crude enzyme The effects of temperature and pH on the activity of this enzyme were examined (FIGS. 2 and 4). In the basic reaction, a reaction mixture (100 μl) containing 50 mM buffer (Tris-HCl buffer (pH 8.5), 100 mM NAM, 100 mM Pyr and enzyme) was incubated at 30 ° C. for 30 minutes. The activity was measured under conditions, expressed as a percentage relative to the activity at pH 8.5 at 30 ° C. The enzyme activity was optimal at pH 8.0-8.5, with activity exceeding 60% of the maximum activity. Was observed at pH 7.0 to pH 10.0 This enzyme was most active at 50 ° C. and more than 60% of the maximum activity was found at 40-70 ° C. Stability of the enzyme The effects of temperature and pH on sex were examined (Figures 3 and 5.) For temperature stability, the crude enzyme solution (1 mg / ml) was incubated at 0 ° C to 80 ° C for 1 hour and the activity was measured. No loss of activity was observed when incubated for 1 hour at temperatures up to 40 ° C. Treatments at 45, 50, 55, 60, 65, 70 and 80 ° C., respectively, showed an initial activity of 30, Loss of 28, 35, 47, 63, 82 and 99% The enzyme was added to Tris-HCl buffer (pH 8.0, 8.5 and 9.0), borate buffer (pH 9.0, 9.5 and 10.0) and CAPS (pH 10.0, 10.5 and 11.0) buffers, no activity loss was observed when incubated overnight (16 hours) at 4 ° C. Treatment with acetate buffer (pH 5.0 and 6.0) and sodium phosphate buffer (pH 6.0 to pH 8.0) caused a loss of activity that exceeded 20% of the initial activity. It was velocity studies on the reaction. The crude enzyme, NANA, the NAM and Pyr, showed 2.0 mM, the Km value of 23.3mM and 42.7mM respectively (Table 2).
(2)精製酵素の特性
 本酵素の精製の概要を、表3に示す。本酵素の精製倍率は、約2.5倍であり、精製収率は24%であった。精製酵素は、SDS-PAGE上で単一なバンドが確認された。
(2) Characteristics of purified enzyme Table 3 shows an outline of purification of this enzyme. The purification rate of this enzyme was about 2.5 times, and the purification yield was 24%. As for the purified enzyme, a single band was confirmed on SDS-PAGE.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例3]エシェリヒア・コリJM109 YKRによる、N-アセチル-D-グルコサミンからのN-アセチル-D-ノイラミン酸の生産 [Example 3] Production of N-acetyl-D-neuraminic acid from N-acetyl-D-glucosamine by Escherichia coli JM109 YKR
3-1 NAMおよびPyrからのNANAの生産
(1)等モル濃度のNAMおよびPyrの条件下でのNANAの生産
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 pH8.5にて、100mM NAMおよび100mM Pyrから6時間で40.2mMのNANAが生産された。一方、pH10.0で100mM NAMおよび100mM Pyrから6時間で52.7mMのNANAが生産され、その時、11.2mMのNAGが蓄積された(図6)。反応の6時間後、NAMからNANAへの変換率は、それぞれ、40.2%および52.7%に到達した。
3-1 Production of NANA from NAM and Pyr (1) Production of NANA under conditions of equimolar concentrations of NAM and Pyr Details of the following reaction conditions are as described in the brief description of the drawings.
40.2 mM NANA was produced in 6 hours from 100 mM NAM and 100 mM Pyr at pH 8.5. On the other hand, 52.7 mM NANA was produced in 6 hours from 100 mM NAM and 100 mM Pyr at pH 10.0, and at that time, 11.2 mM NAG was accumulated (FIG. 6). After 6 hours of reaction, NAM to NANA conversion reached 40.2% and 52.7%, respectively.
(2)NAMに対する過剰モル濃度のPyrの条件下でのNANAの生産
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 NAMに対する過剰モル濃度のPyrの条件の効果を調べた(図7、8)。これらの反応は、2時間で平衡に到達した。反応平衡をNANA合成側にシフトさせるために、Pyrを反応の途中で添加した。pH8.5およびpH10.0にて7時間で100mM NAMおよび100mM Pyrを含む反応混合液において、それぞれ、54.8mMおよび50.8mMのNANAが生産された。NAMの初期量とPyrの総量との比率は、1:1.7であった。pH10.0では、7.0mMのNAGが7時間で蓄積された。
(2) Production of NANA under conditions of excess molar concentration of Pyr relative to NAM Details of the following reaction conditions are as described in the brief description of the drawings.
The effect of excess molar Pyr conditions on NAM was examined (FIGS. 7 and 8). These reactions reached equilibrium in 2 hours. In order to shift the reaction equilibrium toward the NANA synthesis side, Pyr was added during the reaction. In a reaction mixture containing 100 mM NAM and 100 mM Pyr at pH 8.5 and pH 10.0 for 7 hours, 54.8 mM and 50.8 mM NANA were produced, respectively. The ratio between the initial amount of NAM and the total amount of Pyr was 1: 1.7. At pH 10.0, 7.0 mM NAG accumulated in 7 hours.
(3)高濃度のNAMおよびPyrからのNANAの生産
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 485.7mMのNAMおよび242.3mMのPyrからpH10.0で394.0mMのNANAが生産され、この反応では、490mMおよび310mMのPyrを、1.5および5時間後に加えた(図9)。7時間の反応後、NAMからのNANA変換率は、84.3%であった。NAMの初期量とPyrの総量との比率は、1:2.1であった。この反応では、5.7mMのNAGが、7時間で蓄積された。
(3) Production of NANA from high concentrations of NAM and Pyr Details of the following reaction conditions are as described in the brief description of the drawings.
484.0 mM NAM and 242.3 mM Pyr produced 394.0 mM NANA at pH 10.0, and in this reaction 490 mM and 310 mM Pyr were added after 1.5 and 5 hours (FIG. 9). After 7 hours of reaction, the NANA conversion rate from NAM was 84.3%. The ratio between the initial amount of NAM and the total amount of Pyr was 1: 2.1. In this reaction, 5.7 mM NAG accumulated in 7 hours.
3-2 無細胞抽出液を用いた、NAGおよびPyrからのNANAの生産
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 NAGおよびPyrからのNANAの生産を行った(図10)。第1に、0.7mlの容量中において、1000mM NAGを、pH11.5で40℃、3時間インキュベートして、NAGからNAMを調製した。第2に、この反応混合液に、100mMのCAPS(pH10.0)、836.2mMのPyrおよび0.5mg/mlの組換えエシェリヒア・コリの無細胞抽出液を、1mlの最終容量において加えた。1000mM、1000mMおよび500mMのPyrをそれぞれ、23、45および76時間後に加えた場合、316.7mMのNANAが96時間の反応により生産され、NAGに対するモル変換率は50.3%であった(96時間あたりの、[NANA]/[NANA]+[NAM]+[NAG])。初期量のNAGと総量のPyrとの比率は、1:4.8であった。
3-2 Production of NANA from NAG and Pyr using cell-free extract The details of the following reaction conditions are as described in the brief description of the drawings.
NANA was produced from NAG and Pyr (FIG. 10). First, NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 at 40 ° C. for 3 hours in a volume of 0.7 ml. Second, 100 mM CAPS (pH 10.0), 836.2 mM Pyr and 0.5 mg / ml recombinant Escherichia coli cell-free extract were added to the reaction mixture in a final volume of 1 ml. . When 1000 mM, 1000 mM and 500 mM Pyr were added after 23, 45 and 76 hours, respectively, 316.7 mM NANA was produced in a 96 hour reaction and the molar conversion to NAG was 50.3% (96 [NANA] / [NANA] + [NAM] + [NAG] per hour). The ratio between the initial amount of NAG and the total amount of Pyr was 1: 4.8.
3-3 菌体を用いた、NAGおよびPyrからのNANAの生産
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 NAGおよびPyrからのNANAの生産を行った(図11)。まず、0.7mlの容量中において、1000mM NAGを、pH11.5で40℃、3時間インキュベートして、NAGからNAMを調製した。化学的異性化反応によってNAGとNAMはそれぞれ855mMと205mMとなった。次に、この反応混合液に、50mMのCAPS(pH10.0)、700mMのPyrおよび組換えエシェリヒア・コリの休止菌体(5ml培養量)を、1mlの最終容量において加えた。400mM、300mM、300mM、300mM、400mMおよび300mMのPyrをそれぞれ、4.5、7.5、25、30、34、48時間後に加えた場合、358mMのNANAが57時間の反応により生産され、NAGに対するモル変換率は51.6%であった(57時間あたりの、[NANA]/[NANA]+[NAM]+[NAG])。初期量のNAGと総量のPyrとの比率は、1:3.8であった。
 また、1ml培養菌体(組換えエシェリヒア・コリ)を用いた休止菌体反応においても50時間で293mMのNANAが生産された。このときのNAGに対するモル変換率は43.2%であった。
3-3 Production of NANA from NAG and Pyr using microbial cells Details of the following reaction conditions are as described in the brief description of the drawings.
NANA was produced from NAG and Pyr (FIG. 11). First, in a volume of 0.7 ml, 1000 mM NAG was incubated at pH 11.5 at 40 ° C. for 3 hours to prepare NAM from NAG. NAG and NAM became 855 mM and 205 mM by the chemical isomerization reaction, respectively. Next, 50 mM CAPS (pH 10.0), 700 mM Pyr and recombinant Escherichia coli resting cells (5 ml culture volume) were added to the reaction mixture in a final volume of 1 ml. When 400 mM, 300 mM, 300 mM, 300 mM, 400 mM and 300 mM Pyr were added after 4.5, 7.5, 25, 30, 34, 48 hours, respectively, 358 mM NANA was produced in a 57 hour reaction, and NAG The molar conversion ratio with respect to was 51.6% ([NANA] / [NANA] + [NAM] + [NAG] per 57 hours). The ratio of the initial amount of NAG to the total amount of Pyr was 1: 3.8.
In addition, 293 mM NANA was produced in 50 hours in the resting cell reaction using 1 ml cultured cells (recombinant Escherichia coli). The molar conversion ratio with respect to NAG at this time was 43.2%.
3-4 NAMに対するPyr濃度の影響
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 反応混合液におけるNANAの合成に対する平衡をシフトさせるために、NANA生産におけるPyr濃度の影響を調べた。NAM100mMにおいてPyrを100mMから900mM変化させ、反応は37℃で24時間反応を行った。pH8.0にて100mM NAMから100mM、300mM、500mM、700mM、900mMの種々の濃度のPyrを含む反応混合液において、それぞれ、46.8mM、76.5mM、86.0mM、89.7mM、92.5mMのNANAが生産された(図12)。NAMからのNANA変換率は、最高92.5%であった。
3-4 Effect of Pyr concentration on NAM Details of the following reaction conditions are as described in the brief description of the drawings.
In order to shift the equilibrium for NANA synthesis in the reaction mixture, the effect of Pyr concentration on NANA production was investigated. In NAM 100 mM, Pyr was changed from 100 mM to 900 mM, and the reaction was performed at 37 ° C. for 24 hours. In reaction mixtures containing various concentrations of Pyr from 100 mM NAM to 100 mM, 300 mM, 500 mM, 700 mM, 900 mM at pH 8.0, 46.8 mM, 76.5 mM, 86.0 mM, 89.7 mM, 92. 5 mM NANA was produced (FIG. 12). The maximum NANA conversion rate from NAM was 92.5%.
3-5 高濃度NAMに対するPyr濃度の影響
 下記の反応条件の詳細は、図面の簡単な説明に記載したとおりである。
 反応混合液におけるNANAの合成に対する平衡をシフトさせるために、NANA生産におけるPyr濃度の影響を調べた。NAM500mMにおいてPyrを100mMから900mM変化させ、反応は37℃で24時間反応を行った。pH8.0にて500mM NAMから100mM、300mM、500mM、700mM、900mMの種々の濃度のPyrを含む反応混合液において、それぞれ、139.1mM、311.8mM、397.1mM、437.4mM、453.2mMのNANAが生産された(図13)。
3-5 Influence of Pyr Concentration on High Concentration NAM Details of the following reaction conditions are as described in the brief description of the drawings.
In order to shift the equilibrium for NANA synthesis in the reaction mixture, the effect of Pyr concentration on NANA production was investigated. In NAM 500 mM, Pyr was changed from 100 mM to 900 mM, and the reaction was performed at 37 ° C. for 24 hours. In reaction mixtures containing various concentrations of Pyr from 500 mM NAM to 100 mM, 300 mM, 500 mM, 700 mM, 900 mM at pH 8.0, 139.1 mM, 311.8 mM, 397.1 mM, 437.4 mM, 453. 2 mM NANA was produced (FIG. 13).
(実施例1~3のまとめ)
 NAGからのNAMへの効率的な異性化反応が、pH9.5以上のアルカリ性条件下で確認された。したがって、NAGからのNAMの異性化反応、ならびにNAMおよびPyrからのNANAの合成反応を同時に効率的に進行させるためには、pH9.5以上のアルカリ性条件下で活性を有するnanAを用いることが望ましい。
(Summary of Examples 1 to 3)
An efficient isomerization reaction from NAG to NAM was confirmed under alkaline conditions at pH 9.5 or higher. Therefore, it is desirable to use nanA that is active under alkaline conditions of pH 9.5 or higher in order to simultaneously proceed efficiently the isomerization reaction of NAM from NAG and the synthesis reaction of NANA from NAM and Pyr. .
 酵素の性質:バチルス・エスピーYKR由来のnanAの活性は、pH8.0~8.5で至適であり、最大活性の60%を超える活性が、pH7.0~pH10.0で観察された。そして、バチルス・エスピーYKR由来のnanAの活性は、pH8.0とpH11.0との間で安定であった。一方、エシェリヒア・コリ由来のnanAの活性は、pH7.7で至適であり、最大活性の50%を超える活性が、pH6.0~pH9.0で観察された。そして、エシェリヒア・コリ由来のnanAの活性は、pH6.0とpH9.0との間で安定である(非特許文献2)。これらの結果は、上記(1)(2)の反応工程を含むアルカリ性条件反応下の反応系では、本発明のタンパク質が、エシェリヒア・コリ由来のnanAに対して利点を有することを示す。 Properties of enzyme: The activity of nanA derived from Bacillus sp. YKR was optimal at pH 8.0 to 8.5, and activity exceeding 60% of the maximum activity was observed at pH 7.0 to pH 10.0. The activity of nanA derived from Bacillus sp. YKR was stable between pH 8.0 and pH 11.0. On the other hand, the activity of nanA derived from Escherichia coli was optimal at pH 7.7, and activity exceeding 50% of the maximum activity was observed at pH 6.0 to pH 9.0. And the activity of nanA derived from Escherichia coli is stable between pH 6.0 and pH 9.0 (Non-patent Document 2). These results show that the protein of the present invention has an advantage over nanA derived from Escherichia coli in a reaction system under an alkaline condition reaction including the reaction steps (1) and (2) above.
 一次構造についての類似性検索の結果は、バチルス・エスピーYKR由来のnanAが、Clostridium perfringens、Fusobacterium nucleatum、Haemophilus parasuis、Pasteurella multocide、Haemophilus influenza、Actinobacillus pleuropneumoniae、Staphlocpccus aureus、Lactobacillus plantarum、Mycoplasma capricolum、Salmonella entericaserovar、Escherichia coli K-12、Shigella dysenteriae、Streptococcus pneumoniaおよびPseudoalteromonas haloplanktisのnanAに対してそれぞれ、73、71、71、70、69、67、56、53、48、35、35、35、29および25%の類似性を有することを示した。 Result of similarity search for the primary structure, the nanA derived from Bacillus sp YKR, Clostridium perfringens, Fusobacterium nucleatum, Haemophilus parasuis, Pasteurella multocide, Haemophilus influenza, Actinobacillus pleuropneumoniae, Staphlocpccus aureus, Lactobacillus plantarum, Mycoplasma capricolum, Salmonella entericaserovar, Escherichia coli K-12, Shigella dysenteriae, Streptococ Respectively nanA of us pneumonia and Pseudoalteromonas haloplanktis, was shown to have 73,71,71,70,69,67,56,53,48,35,35,35,29 and 25% similarity.
 バチルス・エスピーYKR由来のnanAを用いたとき、等モル濃度のNAM(100mM)およびPyr(100mM)の条件下で、pH8.5およびpH10.0で反応を行ったとき、NANAの生成が確認された(図6)。pH10.0においてもNANAの生成量は、pH8.5の場合と同様であった。バチルス・エスピーYKR由来のnanAのNAMおよびPyrに対するK値は、それぞれ23.3mMおよび42.7mMと大きな値を示した事から、NAMおよびPyrの反応初発の基質濃度を増やし、さらに反応途中でPyrを添加する事でNANA生成量が大幅に増加した(図9)。NAMおよびPyrからのNANAへの変換率は、92.5%(NAMに対して)に到達した(図12)。NAMおよびPyrからのNANA生成量では453.2mMに達した(図13)。 When nanA derived from Bacillus sp. YKR was used, NANA formation was confirmed when the reaction was carried out at pH 8.5 and pH 10.0 under equimolar concentrations of NAM (100 mM) and Pyr (100 mM). (FIG. 6). Even at pH 10.0, the amount of NANA produced was the same as that at pH 8.5. K m values for nanA of NAM and Pyr from Bacillus sp YKR from it showed a large value and 23.3mM and 42.7mM respectively, increasing substrate concentration of the reaction incipient NAM and Pyr, further reaction in the middle The addition of Pyr greatly increased the amount of NANA produced (FIG. 9). The conversion rate from NAM and Pyr to NANA reached 92.5% (relative to NAM) (FIG. 12). The amount of NANA produced from NAM and Pyr reached 453.2 mM (FIG. 13).
 ATPを要しない新規ワンポット(one-pot)反応により、アルカリ性条件下で、NAGおよびPyrからNANAが製造された。NAGおよびPyrからのNANAの大規模製造のためのエシェリヒア・コリ由来nanAを用いるプロセスでは、多量のATPが必要とされる。ATPは、比較的不安定な分子であり、かつ非常に高価である。酵素的異性化の代わりに化学的異性化を異性化反応に用いる場合、ATPは不要である。 NANA was produced from NAG and Pyr under alkaline conditions by a novel one-pot reaction that does not require ATP. Processes using Escherichia coli derived nanA for large scale production of NANA from NAG and Pyr require large amounts of ATP. ATP is a relatively unstable molecule and is very expensive. ATP is not required if chemical isomerization is used in the isomerization reaction instead of enzymatic isomerization.
 NAGとPyrからのNANAの生産における収率は、57時間で51.6%(NAGに対して)であった。NAGからのNAMの異性化反応、ならびにNAMおよびPyrからのNANAの合成反応からなる新規ワンポット反応では、368mMのNANAを生産するのに57時間を要した。このことは、本発明の製造方法が、少なくとも6.3mM/hのNANA生産速度を有することを意味する。 The yield of NANA production from NAG and Pyr was 51.6% (relative to NAG) in 57 hours. In the novel one-pot reaction consisting of NAM isomerization reaction from NAG and NANA synthesis reaction from NAM and Pyr, it took 57 hours to produce 368 mM NANA. This means that the production method of the present invention has a NANA production rate of at least 6.3 mM / h.
[実施例4]4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを添加したNAGおよびPyrからのNANA製造反応
 アルカリ性の反応条件においてはピルビン酸の減少と副産物の生成が認められ、この副反応を抑制することが重要であると考えた。この生成した副産物をLC/MSを用いて分析したところ、ピルビン酸が重合した4-ヒドロキシ-4-メチル-2-オキソグルタル酸であることが判明した。この化合物の生成を抑制するために、反応における4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの使用について検討した。4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼについては、Comamonas testosteroniが4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを有することが判明している(WO2003/091396)。そこで、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの高発現組換え体大腸菌を作成し、NANA生産に対する4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの影響を調べた。
 NANAの生産に及ぼす4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの影響を調べた。第1に、0.5mlの容量中において、1000mM NAGを、pH11.5で40℃、3時間インキュベートして、NAGからNAMを調製した。第2に、この反応混合液に、50mMのCAPS(pH10.0)、1000mMのPyr、0.1mM MgS0、0.5mg/ml4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼタンパク質の組換えエシェリヒア・コリ由来の無細胞抽出液および0.5mg/ml N-アセチル-D-ノイラミン酸アルドラーゼの組換えエシェリヒア・コリ由来の無細胞抽出液を、1mlの最終容量において加えた。上記の反応条件から0.5mg/mlの4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼタンパク質の組換えエシェリヒア・コリ由来の無細胞抽出液を抜いたものをコントロールとした。
 コントロールでは6時間の反応で26.8mMのNANAが生産され、一方、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼを添加した反応では6時間で43.2mMのNANAが生産された。したがって、4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの使用により、NANAの収率が改善されることが示された。
[Example 4] NANA production reaction from NAG and Pyr added with 4-hydroxy-4-methyl-2-oxoglutarate aldolase Under the alkaline reaction conditions, reduction of pyruvic acid and formation of by-products were observed. We thought that it was important to suppress. The generated by-product was analyzed using LC / MS, and it was found that pyruvic acid was polymerized 4-hydroxy-4-methyl-2-oxoglutaric acid. In order to suppress the formation of this compound, the use of 4-hydroxy-4-methyl-2-oxoglutarate aldolase in the reaction was investigated. For 4-hydroxy-4-methyl-2-oxoglutarate aldolase, it has been found that Comonas testosteroni has 4-hydroxy-4-methyl-2-oxoglutarate aldolase (WO2003 / 091396). Therefore, a recombinant Escherichia coli with high expression of 4-hydroxy-4-methyl-2-oxoglutarate aldolase was prepared, and the influence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase on NANA production was examined.
The effect of 4-hydroxy-4-methyl-2-oxoglutarate aldolase on NANA production was investigated. First, NAM was prepared from NAG by incubating 1000 mM NAG at pH 11.5 at 40 ° C. for 3 hours in a volume of 0.5 ml. Second, the reaction mixture, 50 mM of CAPS (pH 10.0), Pyr of 1000 mM, 0.1 mM MgSO 4, recombinant 0.5mg / ml4- hydroxy-4-methyl-2-oxoglutarate aldolase protein A cell-free extract from Escherichia coli and a cell-free extract from 0.5 mg / ml N-acetyl-D-neuraminic acid aldolase recombinant Escherichia coli were added in a final volume of 1 ml. A control obtained by removing the cell-free extract derived from recombinant Escherichia coli of 0.5 mg / ml 4-hydroxy-4-methyl-2-oxoglutarate aldolase protein from the above reaction conditions was used as a control.
In the control, 26.8 mM NANA was produced in the reaction for 6 hours, while in the reaction to which 4-hydroxy-4-methyl-2-oxoglutarate aldolase was added, 43.2 mM NANA was produced in 6 hours. Thus, it was shown that the use of 4-hydroxy-4-methyl-2-oxoglutarate aldolase improves the yield of NANA.
 本発明のタンパク質は、NAGからNAMへの化学的異性化の反応工程において必要とされる高pHのアルカリ性条件下でpH安定性を示すため、原料としてNAGおよびPyrを用いるNANAの効率的な大量製造を可能にするという利点を有する。
 本発明のポリヌクレオチド、発現ベクター、形質転換体および細菌は、本発明のタンパク質の製造に有用であり、また、それ自体、原料としてNAGおよびPyrを用いる多量のNANAの効率的な製造を可能にするという利点を有する。
 本発明の製造方法は、原料としてNAGおよびPyrを用いることにより、多量のNANAを効率的に製造できる。本発明の製造方法はまた、NAGからNAMの化学的異性化を利用するため高価なATPを要しないことから、多量のNANAの効率的な製造を安価に行うことができるという利点を有する。
Since the protein of the present invention exhibits pH stability under the alkaline conditions of high pH required in the chemical isomerization reaction from NAG to NAM, an efficient large amount of NANA using NAG and Pyr as raw materials It has the advantage of allowing manufacturing.
The polynucleotide, expression vector, transformant and bacterium of the present invention are useful for the production of the protein of the present invention, and as such enable efficient production of large amounts of NANA using NAG and Pyr as raw materials. Has the advantage of
The production method of the present invention can efficiently produce a large amount of NANA by using NAG and Pyr as raw materials. The production method of the present invention also has an advantage that an efficient production of a large amount of NANA can be carried out at low cost because expensive ATP is not required because chemical isomerization of NAM to NAM is used.

Claims (13)

  1.  pH8.0~11.0においてpH安定性を示し、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質。 A protein that exhibits pH stability at pH 8.0 to 11.0 and has N-acetyl-D-neuraminic acid aldolase activity.
  2.  下記(A)~(D)からなる群より選ばれるいずれかである、タンパク質:
    (A)配列番号2により表されるアミノ酸配列からなるタンパク質;
    (B)配列番号2により表されるアミノ酸配列を含むタンパク質;
    (C)配列番号2により表されるアミノ酸配列において、アミノ酸残基の欠失、置換、付加および挿入からなる群より選ばれる、1または数個のアミノ酸残基の変異を含むアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質;ならびに
    (D)配列番号2により表されるアミノ酸配列に対して少なくとも80%以上のアミノ酸配列同一性を有するアミノ酸配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有する、タンパク質。
    A protein selected from the group consisting of the following (A) to (D):
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
    (B) a protein comprising the amino acid sequence represented by SEQ ID NO: 2;
    (C) the amino acid sequence represented by SEQ ID NO: 2, consisting of an amino acid sequence containing a mutation of one or several amino acid residues selected from the group consisting of deletion, substitution, addition and insertion of amino acid residues; And a protein having N-acetyl-D-neuraminic acid aldolase activity; and (D) an amino acid sequence having at least 80% or more amino acid sequence identity to the amino acid sequence represented by SEQ ID NO: 2, and N A protein having acetyl-D-neuraminic acid aldolase activity;
  3.  前記タンパク質がpH8.0~11.0においてpH安定性を示す、請求項2記載のタンパク質。 The protein according to claim 2, wherein the protein exhibits pH stability at pH 8.0 to 11.0.
  4.  下記(a)~(e)からなる群より選ばれるいずれかである、ポリヌクレオチド:
    (a)配列番号1により表されるヌクレオチド配列からなるポリヌクレオチド;
    (b)配列番号1により表されるヌクレオチド配列を含むポリヌクレオチド;
    (c)配列番号1により表されるアミノ酸配列に対して少なくとも80%以上のヌクレオチド配列同一性を有するヌクレオチド配列からなり、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;
    (d)配列番号1により表されるヌクレオチド配列に対して相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつN-アセチル-D-ノイラミン酸アルドラーゼ活性を有するタンパク質をコードする、ポリヌクレオチド;ならびに
    (e)請求項1~3のいずれか一項記載のタンパク質をコードするポリヌクレオチド。
    A polynucleotide selected from the group consisting of the following (a) to (e):
    (A) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
    (B) a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1;
    (C) a polymorph encoding a protein comprising a nucleotide sequence having at least 80% nucleotide sequence identity to the amino acid sequence represented by SEQ ID NO: 1 and having N-acetyl-D-neuraminic acid aldolase activity nucleotide;
    (D) encodes a protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 and has N-acetyl-D-neuraminic acid aldolase activity And (e) a polynucleotide encoding the protein of any one of claims 1-3.
  5.  請求項4記載のポリヌクレオチドを含む発現ベクター。 An expression vector comprising the polynucleotide according to claim 4.
  6.  請求項5記載の発現ベクターが導入された形質転換体。 A transformant into which the expression vector according to claim 5 has been introduced.
  7.  形質転換体の宿主がエシェリヒア・コリである、請求項6記載の形質転換体。 The transformant according to claim 6, wherein the host of the transformant is Escherichia coli.
  8.  請求項1~3のいずれか一項記載のタンパク質を産生する能力を有する、バチルス属由来の細菌。 A bacterium derived from the genus Bacillus having the ability to produce the protein according to any one of claims 1 to 3.
  9.  請求項6または7記載の形質転換体および/または請求項8記載の細菌を培地中で培養して、請求項1~3のいずれか一項記載のタンパク質を得ることを含む、N-アセチル-D-ノイラミン酸アルドラーゼの製造方法。 N-acetyl-, comprising culturing the transformant according to claim 6 or 7 and / or the bacterium according to claim 8 in a medium to obtain the protein according to any one of claims 1 to 3. A method for producing D-neuraminic acid aldolase.
  10.  請求項1~3項のいずれか一項記載のタンパク質の存在下で、N-アセチル-D-マンノサミンおよびピルビン酸からN-アセチル-D-ノイラミン酸を合成することを含む、N-アセチル-D-ノイラミン酸の製造方法。 Synthesis of N-acetyl-D-neuraminic acid from N-acetyl-D-mannosamine and pyruvic acid in the presence of the protein according to any one of claims 1 to 3. -A method for producing neuraminic acid.
  11.  さらに4-ヒドロキシ-4-メチル-2-オキソグルタル酸アルドラーゼの存在下で合成が行われる、請求項10記載の製造方法。 The method according to claim 10, wherein the synthesis is further performed in the presence of 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
  12.  前記方法がpH8.0~11.0の条件下で行われる、請求項10または11記載の製造方法。 The production method according to claim 10 or 11, wherein the method is carried out under conditions of pH 8.0 to 11.0.
  13.  pH9.5以上のアルカリ性条件下での異性化反応により、N-アセチル-D-グルコサミンからN-アセチル-D-マンノサミンを生成することをさらに含む、請求項10~12のいずれか1項記載の製造方法。 The method according to any one of claims 10 to 12, further comprising producing N-acetyl-D-mannosamine from N-acetyl-D-glucosamine by an isomerization reaction under an alkaline condition of pH 9.5 or higher. Production method.
PCT/JP2010/073379 2010-01-15 2010-12-24 Process for production of n-acetyl-d-neuraminic acid WO2011086834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-007274 2010-01-15
JP2010007274 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011086834A1 true WO2011086834A1 (en) 2011-07-21

Family

ID=44304121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073379 WO2011086834A1 (en) 2010-01-15 2010-12-24 Process for production of n-acetyl-d-neuraminic acid

Country Status (1)

Country Link
WO (1) WO2011086834A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060302A (en) * 2011-10-20 2013-04-24 中国科学院微生物研究所 N-acetyl-D-neuraminic acid (Neu5Ac) aldolase from shigella dysenteriae, coding gene and application
CN104996986A (en) * 2015-07-10 2015-10-28 武汉中科光谷绿色生物技术有限公司 Food application of N-acetylneuraminic acid fermented from E. coli
WO2015183099A1 (en) * 2014-05-27 2015-12-03 Universitetet I Tromsø - Norges Arktiske Universitet Use of a n-acetylneuraminate lyase derived from the bacterium aliivibrio salmonicida in the production of neuraminic acid and derivatives thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219384A (en) * 1985-03-27 1986-09-29 Toyobo Co Ltd Production of n-acylneuraminic acid aldolase
JPH05211884A (en) * 1992-02-03 1993-08-24 Marukin Shoyu Kk Production of n-acetylneuraminic acid
WO1994029476A1 (en) * 1993-06-09 1994-12-22 Glaxo Group Limited Process for the preparation of n-acetylneuraminic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219384A (en) * 1985-03-27 1986-09-29 Toyobo Co Ltd Production of n-acylneuraminic acid aldolase
JPH05211884A (en) * 1992-02-03 1993-08-24 Marukin Shoyu Kk Production of n-acetylneuraminic acid
WO1994029476A1 (en) * 1993-06-09 1994-12-22 Glaxo Group Limited Process for the preparation of n-acetylneuraminic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLAYER S. ET AL.: "Alkaline biocatalysis for the direct synthesis of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc)", BIOTECHNOL. BIOENG., vol. 66, no. 2, 1999, pages 131 - 136 *
TRAVING C. ET AL.: "Cloning, sequencing and expression of the acylneuraminate lyase gene from Clostridium perfringens A99", GLYCOCONJ. J., vol. 14, no. 7, 1997, pages 821 - 830 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060302A (en) * 2011-10-20 2013-04-24 中国科学院微生物研究所 N-acetyl-D-neuraminic acid (Neu5Ac) aldolase from shigella dysenteriae, coding gene and application
WO2015183099A1 (en) * 2014-05-27 2015-12-03 Universitetet I Tromsø - Norges Arktiske Universitet Use of a n-acetylneuraminate lyase derived from the bacterium aliivibrio salmonicida in the production of neuraminic acid and derivatives thereof
US10378034B2 (en) 2014-05-27 2019-08-13 Universitetet I Tromsø—Norges Arktiske Universitet Use of a N-acetylneuraminate lyase derived from the bacterium Aliivibrio salmonicida in the production of neuraminic acid and derivatives thereof
CN104996986A (en) * 2015-07-10 2015-10-28 武汉中科光谷绿色生物技术有限公司 Food application of N-acetylneuraminic acid fermented from E. coli

Similar Documents

Publication Publication Date Title
JP7331691B2 (en) Genetically modified microorganism for producing 3-hydroxyadipic acid, α-hydromuconic acid and/or adipic acid and method for producing said chemical
JP4289151B2 (en) Method for producing dipeptide, L-amino acid amide hydrolase used therefor, and method for producing L-amino acid amide hydrolase
JP5246639B2 (en) Process for producing 4-hydroxy-L-isoleucine
KR101188432B1 (en) Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same
US7354746B1 (en) Method for producing optically active IHOG and monatin
JP6020706B2 (en) DNA encoding dipeptide synthase (variant), bacteria belonging to the genus Escherichia, and method for producing dipeptod using them
JP6582997B2 (en) Method for producing mutant glutamate-cysteine ligase and γ-glutamylvalylglycine
US11788109B2 (en) Microorganism and method for producing gamma-glutamyl-valyl-glycine
WO2011086834A1 (en) Process for production of n-acetyl-d-neuraminic acid
JP6690529B2 (en) γ-Glutamylvaline synthase and method for producing γ-glutamyl valylglycine
JP6394061B2 (en) Method for producing 1,5-pentanediamine using lysine decarboxylase capable of catalyzing the reaction under alkaline conditions
WO2021187533A1 (en) Genetically modified microorganism for producing 3-hydroxyhexanedioic acid and/or (e)-hex-2-enedioic acid and production method for said chemicals
WO2020226087A1 (en) Vanillin production method
WO2021230222A1 (en) Genetically modified microorganism and method for producing organic acid
JP2017046673A (en) γ-GLUTAMYLVALINE SYNTHETASE AND METHOD FOR PRODUCING γ-GLUTAMYLVALYLGLYCINE
JP6487852B2 (en) 2-deoxy-shiro-inosose reductase
JP4485734B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
US20140234916A1 (en) Method for producing monatin using an l-amino acid aminotransferase
RU2560980C2 (en) DIPEPTIDE-SYNTHESISING ENZYME CODING DNA (VERSIONS), Escherichia BACTERIA AND METHOD OF PRODUCING DIPEPTIDES USING SAME
JP2023111889A (en) Method for producing 3-hydroxy 3-methylbutyric acid
WO2022181654A1 (en) Variant acyl-coa hydrolase
WO2009096541A1 (en) Method of producing cysteine derivative
JP2005278468A (en) Method for producing optically active amino acid
JP5407124B2 (en) L-glutamic acid producing bacterium and method for producing L-glutamic acid
JP2024052995A (en) How vanillin is produced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP