WO2011086013A2 - Flügelzellenpumpe - Google Patents

Flügelzellenpumpe Download PDF

Info

Publication number
WO2011086013A2
WO2011086013A2 PCT/EP2011/050069 EP2011050069W WO2011086013A2 WO 2011086013 A2 WO2011086013 A2 WO 2011086013A2 EP 2011050069 W EP2011050069 W EP 2011050069W WO 2011086013 A2 WO2011086013 A2 WO 2011086013A2
Authority
WO
WIPO (PCT)
Prior art keywords
vane pump
pump according
housing body
wing
rotor
Prior art date
Application number
PCT/EP2011/050069
Other languages
English (en)
French (fr)
Other versions
WO2011086013A3 (de
Inventor
Torsten Helle
Benjamin Pyrdok
Willi Schneider
Dirk Ehrenfeld
Original Assignee
Joma-Polytec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joma-Polytec Gmbh filed Critical Joma-Polytec Gmbh
Priority to US13/521,878 priority Critical patent/US20130022487A1/en
Priority to EP11700120A priority patent/EP2524111A2/de
Priority to CN2011800062816A priority patent/CN102844525A/zh
Publication of WO2011086013A2 publication Critical patent/WO2011086013A2/de
Publication of WO2011086013A3 publication Critical patent/WO2011086013A3/de

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0881Construction of vanes or vane holders the vanes consisting of two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • F04C27/004Radial sealing elements specially adapted for intermeshing-engagement type pumps, e.g. gear pumps

Definitions

  • the invention relates to a vane pump with a sleeve-shaped housing body, a bottom and a lid having a pump housing, the bottom and the lid axially close the housing body, with a eccentrically arranged in the housing body and rotatably mounted in the bottom and cover rotor, and one or more wings , which are mounted displaceably in the rotor in the axial direction.
  • Vane pumps are known in multiple configurations. They serve to compress gaseous media to create a negative pressure or to promote gaseous or liquid media.
  • a plurality of vanes are slidably supported in a rotor eccentrically arranged in the pump housing, so that between the vanes and between the rotor and the inner peripheral surface of the stator housing forming a pump housing, the work spaces are formed, whose volume is constantly changing, i. is enlarged and reduced.
  • the blades are thrown outwards with the rotor rotating due to the centrifugal force and rub against the inner circumferential surface of the pump housing. As a result, the respective working space is sealed off from the adjacent work spaces.
  • the seal is supported by the fact that the surfaces of the components are wetted with lubricating oil. But this lubricating oil also serves to reduce the friction forces, whereby the power loss of the pump is reduced. As a disadvantage, however, considered that inevitably the pumped fluid is wetted with lubricant and may need to be cleaned before it is either reused or discharged into the open. In addition, lubricant is consumed.
  • the invention has for its object to provide a vane pump, which has a lower lubricant consumption and in which the funded fluid is lubricant-free.
  • each wing has at its axial end sides bearing journals which engage in the bottom and the lid.
  • the wing is not only slidably mounted in the rotor in the radial direction, so that it can oscillate in the radial direction in accordance with the eccentric arrangement of the rotor in the pump housing with respect to the rotor, but it also has journals which are in the ground and in engage the lid, so that the wing can be selectively controlled via these journals. This is possible because both the bottom and the lid are stationary and thus rotate around the journals in the bottom and in the lid.
  • the bottom and the lid each have a guideway for the bearing pin, wherein the bearing pins engage clearance or with little play in the guideways.
  • the guideways are formed as a groove, wherein the guideway in particular has a circular shape and is coaxial with the inner peripheral surface of the housing body.
  • the wings always have a defined position with respect to the inner peripheral surface of the housing body, which has the advantage that this position is taken even if the rotor does not rotate. At low speeds, where the centrifugal force is also low, this ensures that the wings still occupy a defined position, so that even at low speeds, optimal delivery results are achieved. This is e.g. at the start of an internal combustion engine advantageous if the vane pump works as a lubricant pump. In this case, the lubricant is already promoted at the start of the engine and not only at higher speeds.
  • the bearing pin is formed by a bolt mounted in the wing.
  • the wing can be prepared as usual, for example as an injection molded part or as a die-cast part, and only has to be provided with the bearing journal. This can for example be injected directly into the injection molded part.
  • the free end of the bolt which projects axially beyond the wing, carries a bearing, in particular a deep groove ball bearing.
  • This deep groove ball bearing engages in the guideway and runs around in the bottom and in the lid.
  • the deep groove ball bearing is preferably self-lubricating, so that can be dispensed with additional lubrication.
  • An essential feature of the invention is seen in the fact that there is a gap between the radially outer wing tip and the inner peripheral surface of the housing body. This gap ensures that no frictional forces between the wing and the housing body arise, whereby on the one hand the wing is not subject to wear, on the other hand, the power loss of the pump is low.
  • the gap is in a range between 5 .mu.m to 100 .mu.m and in particular between 10 .mu.m and 50 .mu.m.
  • a sealing strip may be disposed on the radially outer wing tip.
  • In one embodiment extends in the radially outer wing tip extending in the longitudinal direction of the wing groove in which a wing tip projecting sealing strip is arranged.
  • This sealing strip is floatingly mounted in the groove so that it can perform relative movements with respect to the wing. When the rotor rotates, this sealing strip is pressed or thrown against the inner peripheral surface of the housing body and thereby seals the working space completely. Since the sealing strip has an almost negligible weight compared to the wing, the frictional forces are minimal.
  • the sealing strip made of metal, in particular of light metal or a plastic, which is fiber-reinforced, for example.
  • Such sealing strips on the one hand have a low weight and on the other hand are sufficiently resistant to wear.
  • the vane pump according to the invention without lubricant, that is operated dry.
  • the advantage is achieved that the pumped medium is not contaminated, and thus oil separator and the like at the output of the vane pump are not required.
  • Figure 1 is a perspective view of the vane pump according to the invention.
  • Figure 2 is a side view in the direction of arrow II of Figure 1;
  • Figure 3 is a perspective view of Figure 1 with the housing cover removed;
  • FIG. 4 shows a section IV-IV according to FIG. 2;
  • FIG. 5 shows a section V-V according to FIG. 4
  • FIG. 6 shows a section VI-VI according to FIG. 4.
  • Figure 7 is a perspective view of a wing, partially cut away.
  • FIG. 1 shows a vane pump 10, which essentially has a housing body 12 with cooling ribs 14, a bottom 16 with attachment tabs 18 and a cover 20 with a fastening tab 22.
  • outlet and inlet openings 24 and 26 in the cover 20 and a flange 28 can be seen, on which a (not shown) drive can be fastened, which engages on a drive shaft 30.
  • the housing body 12 is constructed substantially sleeve-like and surrounds a rotor 32 which is mounted eccentrically in the housing body 12 and from which the drive shaft 30 protrudes.
  • the rotor 32 has a substantially cylindrical shape and is provided with receiving slots 34 which extend in the axial direction and are open edge both on the circumference of the rotor 32 and on its end faces.
  • the rotor 32 is provided with a plurality of axial bores 36 and 38, wherein the bores 38 are located at the bottom of the receiving slots 34 and the bores 36 between the receiving slots 34.
  • wings 40 which are mounted so that they can move in the radial direction.
  • Two adjacent wings 40, the peripheral surface 42 of the rotor 32 and the inner peripheral surface 44 of the housing body 12 each form a working space 46, in which the trapped fluid is transported from the inlet opening 26 to the outlet opening 24.
  • inlet opening 26 and the outlet opening 24 are connected via overflow channels 48 in the housing body 12 to crescent-shaped inlets and outlets 50 and 52 opening into the working spaces 46.
  • FIG. 5 clearly shows that the working spaces 46 permanently increase and decrease and that the wings 40 protrude more or less far into the receiving slots 34 of the rotor 32.
  • FIG. 7 shows such a wing 40, which is provided at its two end faces 54 with bearing pins 56 which are formed by bolts 58 which engage in the wing 40 and protrude beyond the end face 54 and a bearing 60, for example a deep groove ball bearing 62nd , wear.
  • the cover 20 has a guide track 66 formed as a groove 64, in which the deep groove ball bearings 62 are guided.
  • the groove 64 thus forms a positive control for the wings 40, since the groove 64 is coaxial with the inner peripheral surface of the housing body 12 and thus eccentrically to the rotor 32 and its drive shaft 30.
  • the position of the guide track 66 and the radial dimension of the wings 40 and their position in the rotor 32 are dimensioned so that the wing tip 68 ( Figure 7) permanently has a distance from the inner peripheral surface 44 of the housing body 12, which is in the range of 5 .mu.m to 100 .mu.m lies.
  • the guideway 66 accordingly has a position ensuring this gap or distance from the inner circumferential surface 44, taking into account that the vanes 40 are arranged radially in the rotor 32 but are inclined with respect to the housing body 12, in particular its inner peripheral surface 44, to the orthogonal. This means that with a consistently large gap, the inner circumferential surface 44 and / or the guide track 66 has or deviate from the circular shape.
  • the gap can vary within certain limits, however.
  • the wing tip 68 has a groove 70 extending in the longitudinal direction of the wing 40 into which a sealing strip 72 is inserted, which in turn slightly projects beyond the wing tip 68.
  • the sealing strip 72 is floating in the groove 70 and can move in particular in the direction of the inner peripheral surface 44 of the housing body 12.
  • the sealing strip 72 has the task that it bridges the gap between the wing 40 and the inner peripheral surface 44 of the housing body 12 and seals. In particular, in the case of a permanently changing gap, the latter is effectively closed, it being ensured that the wing tip 68 does not touch the inner peripheral surface 44 of the housing body 12. Since the sealing strip 72 consists in particular of plastic, it has a low weight, so that the friction forces are negligible. In addition, the sealing strip 72 is easily and easily replaceable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Die Erfindung betrifft eine Flügelzellenpumpe mit einem einen hülsenförmigen Gehäusekörper, einen Boden und einen Deckel aufweisenden Pumpengehäuse, wobei der Boden und der Deckel den Gehäusekörper axial verschließen, einen im Gehäusekörper exzentrisch angeordneten und im Boden und Deckel drehbar gelagerten Rotor, sowie einem oder mehreren Flügeln, die im Rotor in axialer Richtung verschieblich gelagert sind, wobei jeder Flügel an seinen axialen Stirnseiten Lagerzapfen aufweist, die in den Boden und den Deckel eingreifen.

Description

Titel: Flügelzellenpumpe
Die Erfindung betrifft eine Flügelzellenpumpe mit einem einen hülsenförmigen Gehäusekörper, einen Boden und einen Deckel aufweisenden Pumpengehäuse, wobei der Boden und der Deckel den Gehäusekörper axial verschließen, mit einen im Gehäusekörper exzentrisch angeordneten und im Boden und Deckel drehbar gelagerten Rotor, sowie einem oder mehreren Flügeln, die im Rotor in axialer Richtung verschieblich gelagert sind.
Flügelzellenpumpen sind in vielfachen Ausgestaltungen bekannt. Sie dienen dazu, um gasförmige Medien zu verdichten, um einen Unterdruck zu erzeugen oder um gasförmige oder flüssige Medien zu fördern. Bei diesen Flügelzellenpumpen sind in einem im Pumpengehäuse exzentrisch angeordneten Rotor mehrere Flügel verschieblich gelagert, so dass zwischen den Flügeln und zwischen dem Rotor und der Innenumfangsfläche des einen Stator bildenden Pumpengehäuses die Arbeitsräume gebildet werden, deren Volumen sich ständig ändert, d.h. vergrößert und verkleinert wird. Die Flügel werden bei sich drehendem Rotor aufgrund der Fliehkraft nach außen geschleudert und streifen an der Innenumfangsfläche des Pumpengehäuses. Dadurch wird der jeweilige Arbeitsraum gegenüber den benachbarten Arbeitsräumen abgedichtet. Die Abdichtung wird dadurch unterstützt, dass die Oberflächen der Bauteile mit Schmieröl benetzt sind. Dieses Schmieröl dient aber auch dazu, die Reibungskräfte zu verringern, wodurch die Verlustleistung der Pumpe verringert wird. Als Nachteil wird aber angesehen, dass zwangsläufig das geförderte Fluid mit Schmiermittel benetzt wird und unter Umständen gereinigt werden muss, bevor es entweder weiterverwendet wird oder ins Freie abgegeben wird. Außerdem wird Schmiermittel verbraucht.
Der Erfindung liegt die Aufgabe zugrunde, eine Flügelzellenpumpe bereit zu stellen, welche einen geringeren Schmiermittelverbrauch aufweist und bei der das geförderte Fluid schmiermittelfrei ist.
Diese Aufgabe wird bei einer Flügelzellenpumpe der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass jeder Flügel an seinen axialen Stirnseiten Lagerzapfen aufweist, die in den Boden und den Deckel eingreifen.
Bei der erfindungsgemäßen Flügelzellenpumpe ist der Flügel nicht nur in radialer Richtung verschieblich im Rotor gelagert, so dass er gemäß der exzentrischen Anordnung des Rotors im Pumpengehäuse bezüglich des Rotors in radialer Richtung oszillieren kann, sondern er weist auch Lagerzapfen auf, die in den Boden und in den Deckel eingreifen, so dass der Flügel über diese Lagerzapfen gezielt angesteuert werden kann. Dies ist möglich, da sowohl der Boden als auch der Deckel stationär sind und somit die Lagerzapfen im Boden und im Deckel umlaufen.
Hierfür weisen der Boden und der Deckel jeweils eine Führungsbahn für die Lagerzapfen auf, wobei die Lagerzapfen spielfrei oder mit geringem Spiel in die Führungsbahnen eingreifen. Bevorzugt sind die Führungsbahnen als Nut ausgebildet, wobei die Führungsbahn insbesondere eine Kreisform aufweist und koaxial zur Innenumfangsfläche des Gehäusekörpers liegt. Auf diese Weise besitzen die Flügel stets eine definierte Position bezüglich der Innenumfangsfläche des Gehäusekörpers, was den Vorteil hat, dass diese Position auch dann eingenommen wird, wenn der Rotor nicht umläuft. Bei geringen Drehzahlen, bei denen die Fliehkraft ebenfalls gering ist, wird dadurch sichergestellt, dass die Flügel dennoch eine definierte Position einnehmen, so dass schon bei geringen Drehzahlen, optimale Förderergebnisse erzielt werden. Dies ist z.B. beim Start eines Verbrennungsmotors von Vorteil, wenn die Flügelzellenpumpe als Schmiermittelpumpe arbeitet. In diesem Fall wird das Schmiermittel bereits beim Start des Motors gefördert und nicht erst bei höheren Drehzahlen.
Bei einem bevorzugten Ausführungsbeispiel wird der Lagerzapfen von einem im Flügel gelagerten Bolzen gebildet. Auf diese Weise kann der Flügel wie üblich hergestellt werden, zum Beispiel als Spritzgussteil oder als Druckgussteil, und muss lediglich mit dem Lagerzapfen versehen werden. Dieser kann zum Beispiel direkt in das Spritzgussteil eingespritzt sein.
Bei einer Weiterbildung ist vorgesehen, dass das freie, den Flügel axial überragende Ende des Bolzens ein Lager, insbesondere ein Rillenkugellager, trägt. Dieses Rillenkugellager greift in die Führungsbahn ein und läuft im Boden und im Deckel um. Das Rillenkugellager ist bevorzugt selbstschmierend, so dass auf eine zusätzliche Schmierung verzichtet werden kann.
Ein wesentliches Merkmal der Erfindung wird darin gesehen, dass zwischen der radial äußeren Flügelspitze und der Innenumfangsfläche des Gehäusekörpers ein Spalt existiert. Dieser Spalt gewährleistet, dass keine Reibungskräfte zwischen Flügel und Gehäusekörper entstehen, wodurch einerseits der Flügel keiner Abnutzung unterliegt, andererseits die Verlustleistung der Pumpe gering ist. Dabei liegt der Spalt in einem Bereich zwischen 5 µm bis 100 µm und insbesondere zwischen 10 µm und 50 µm.
Falls eine vollständige Abdichtung gewünscht oder erforderlich ist, an der radial äußeren Flügelspitze eine Dichtleiste angeordnet sein. Bei einem Ausführungsbeispiel erstreckt sich in der radial äußeren Flügelspitze eine in Längsrichtung des Flügels verlaufende Nut, in welcher eine die Flügelspitze überragende Dichtleiste angeordnet ist. Diese Dichtleiste ist in der Nut schwimmend gelagert, so dass sie Relativbewegungen bezüglich des Flügels ausführen kann. Bei sich drehendem Rotor wird diese Dichtleiste an die Innenumfangsfläche des Gehäusekörpers gedrückt bzw. geschleudert und dichtet dadurch den Arbeitsraum vollständig ab. Da die Dichtleiste im Vergleich zum Flügel ein nahezu vernachlässigbares Gewicht aufweist, sind die Reibungskräfte minimal.
Bevorzugt besteht die Dichtleiste aus Metall, insbesondere aus Leichtmetall oder einem Kunststoff, welcher zum Beispiel faserverstärkt ist. Derartige Dichtleisten weisen einerseits ein geringes Gewicht auf und sind andererseits ausreichend verschleißfest.
Bevorzugt wird die erfindungsgemäße Flügelzellenpumpe ohne Schmiermittel, das heißt trocken betrieben. Hierdurch wird der Vorteil erzielt, dass das geförderte Medium nicht verunreinigt wird, und damit Ölabscheider und dergleichen am Ausgang der Flügelzellenpumpe nicht erforderlich sind.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein besonders bevorzugtes Ausführungsbeispiel im Einzelnen beschrieben ist. Dabei können die in der Zeichnung dargestellten sowie in der Beschreibung und in den Ansprüchen erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
In der Zeichnung zeigen:
Figur 1 eine perspektivische Ansicht der erfindungsgemäßen Flügelzellenpumpe;
Figur 2 eine Seitenansicht in Richtung des Pfeils II gemäß Figur 1;
Figur 3 eine perspektivische Ansicht gemäß Figur 1 mit abgenommenem Gehäusedeckel;
Figur 4 einen Schnitt IV-IV gemäß Figur 2;
Figur 5 einen Schnitt V-V gemäß Figur 4;
Figur 6 einen Schnitt VI-VI gemäß Figur 4; und
Figur 7 eine perspektivische Ansicht eines Flügels, teilweise aufgeschnitten.
In der Figur 1 ist eine Flügelzellenpumpe 10 dargestellt, die im Wesentlichen einen Gehäusekörper 12 mit Kühlrippen 14, einen Boden 16 mit Befestigungslaschen 18 und einen Deckel 20 mit einer Befestigungslasche 22 aufweist. Außerdem sind Auslass- und Einlassöffnungen 24 und 26 im Deckel 20 sowie ein Flansch 28 erkennbar, an welchem ein (nicht dargestellter) Antrieb befestigbar ist, welcher an einer Antriebswelle 30 angreift.
In der Figur 3 ist erkennbar, dass der Gehäusekörper 12 im Wesentlichen hülsenartig aufgebaut ist und einen Rotor 32 umgreift, welcher exzentrisch im Gehäusekörper 12 gelagert ist und von welchem die Antriebswelle 30 abragt. Der Rotor 32 besitzt eine im Wesentlichen zylindrische Form und ist mit Aufnahmeschlitzen 34 versehen, welche sich in axialer Richtung erstrecken und sowohl am Umfang des Rotors 32 als auch an dessen Stirnseiten randoffen sind. Außerdem ist der Rotor 32 mit einer Vielzahl von axialen Bohrungen 36 und 38 versehen, wobei die Bohrungen 38 am Grund der Aufnahmeschlitze 34 und die Bohrungen 36 zwischen den Aufnahmeschlitzen 34 liegen. Diese Bohrungen 36 und 38 reduzieren das Gewicht und des Rotors 32 somit dessen Trägheitsmoment. In den Aufnahmeschlitzen 34 liegen Flügel 40, die derart gelagert sind, dass sie sich in radialer Richtung bewegen können. Zwei benachbarte Flügel 40, die Umfangsfläche 42 des Rotors 32 sowie die Innenumfangsfläche 44 des Gehäusekörpers 12 bilden jeweils einen Arbeitsraum 46, in welchem das eingeschlossene Fluid von der Einlassöffnung 26 zur Auslassöffnung 24 transportiert wird.
Aus Figur 4 ist erkennbar, dass die Einlassöffnung 26 und die Auslassöffnung 24 über Überströmkanäle 48 im Gehäusekörper 12 mit in die Arbeitsräume 46 einmündenden, sichelförmigen Einlässen und Auslässen 50 und 52 verbunden sind.
Die Figur 5 zeigt deutlich, dass sich die Arbeitsräume 46 permanent vergrößern und verkleinern und dass die Flügel 40 mehr oder weniger weit in die Aufnahmeschlitze 34 des Rotors 32 hineinragen.
Die Figur 7 zeigt einen derartigen Flügel 40, der an seinen beiden Stirnseiten 54 mit Lagerzapfen 56 versehen ist, welche von Bolzen 58 gebildet werden, die in den Flügel 40 eingreifen und über die Stirnseite 54 hervorstehen und ein Lager 60, zum Beispiel ein Rillenkugellager 62, tragen.
Wie aus Figur 6 erkennbar, weist der Deckel 20 eine als Nut 64 ausgebildete Führungsbahn 66 auf, in welcher die Rillenkugellager 62 geführt sind. Die Nut 64 bildet demnach eine Zwangssteuerung für die Flügel 40, da die Nut 64 koaxial zur Innenumfangsfläche des Gehäusekörpers 12 und somit exzentrisch zum Rotor 32 und seiner Antriebswelle 30 liegt. Die Lage der Führungsbahn 66 und die radiale Abmessung der Flügel 40 sowie deren Lage im Rotor 32 sind so bemessen, dass die Flügelspitze 68 (Figur 7) permanent einen Abstand zur Innenumfangsfläche 44 des Gehäusekörpers 12 besitzt, der im Bereich von 5 µm bis 100 µm liegt. Die Führungsbahn 66 weist demnach eine diesen Spalt oder Abstand zur Innenumfangsfläche 44 gewährleistende Lage auf, wobei berücksichtigt ist, dass die Flügel 40 zwar im Rotor 32 radial angeordnet sind, bezüglich des Gehäusekörpers 12, insbesondere dessen Innenumfangsfläche 44, zur Orthogonalen aber geneigt sind. Dies bedeutet, dass bei einem gleichbleibend großen Spalt die Innenumfangsfläche 44 und/oder die Führungsbahn 66 eine von der Kreisform abweichende Form aufweist beziehungsweise aufweisen. Der Spalt kann in gewissen Grenzen aber auch schwanken.
Aus Figur 7 ist noch erkennbar, dass die Flügelspitze 68 eine in Längsrichtung des Flügels 40 verlaufende Nut 70 aufweist, in welche eine Dichtleiste 72 eingesetzt ist, die ihrerseits die Flügelspitze 68 geringfügig überragt. Die Dichtleiste 72 liegt schwimmend in der Nut 70 und kann sich insbesondere in Richtung auf die Innenumfangsfläche 44 des Gehäusekörpers 12 bewegen. Die Dichtleiste 72 besitzt die Aufgabe, dass sie den zwischen dem Flügel 40 und der Innenumfangsfläche 44 des Gehäusekörpers 12 bestehenden Spalt überbrückt und abdichtet. Insbesondere bei einem sich permanent ändernden Spalt wird dieser effektiv geschlossen, wobei gewährleistet bleibt, dass die Flügelspitze 68 die Innenumfangsfläche 44 des Gehäusekörpers 12 nicht berührt. Da die Dichtleiste 72 insbesondere aus Kunststoff besteht, weist sie ein geringes Gewicht auf, so dass die Reibungskräfte vernachlässigbar klein sind. Außerdem ist die Dichtleiste 72 ohne Weiteres und leicht auswechselbar.

Claims (14)

  1. Flügelzellenpumpe (10) mit einem einen hülsenförmigen Gehäusekörper (12), einen Boden (16) und einen Deckel (20) aufweisenden Pumpengehäuse, wobei der Boden (16) und der Deckel (20) den Gehäusekörper (12) axial verschließen, mit einen im Gehäusekörper (12) exzentrisch angeordneten und im Boden (16) und Deckel (20) drehbar gelagerten Rotor (32), sowie einem oder mehreren Flügeln (40), die im Rotor (32) in axialer Richtung verschieblich gelagert sind, dadurch gekennzeichnet, dass jeder Flügel (40) an seinen axialen Stirnseiten Lagerzapfen (56) aufweist, die in den Boden (16) und den Deckel (20) eingreifen.
  2. Flügelzellenpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerzapfen (56) von einem im Flügel (40) gebildeten Bolzen (58) gebildet wird.
  3. Flügelzellenpumpe nach Anspruch 2, dadurch gekennzeichnet, dass das freie, den Flügel (40) axial überragende Ende des Bolzens (58) ein Lager (60), insbesondere ein Rillenkugellager (62), trägt.
  4. Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Boden (16) und der Deckel (20) eine Führungsbahn (66) für den Lagerzapfen (56) aufweisen.
  5. Flügelzellenpumpe nach Anspruch 4, dadurch gekennzeichnet, dass die Führungsbahn (66) eine Nut (64) ist.
  6. Flügelzellenpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Führungsbahn (66) eine Kreisbahn ist.
  7. Flügelzellenpumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Führungsbahn (66) koaxial zur Innenumfangsfläche (44) des Gehäusekörpers (12) liegt.
  8. Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der radial äußeren Flügelspitze (68) und der Innenumfangsfläche (44) des Gehäusekörpers (12) ein Spalt existiert.
  9. Flügelzellenpumpe nach Anspruch 8, dadurch gekennzeichnet, dass der Spalt eine Größe von 5 µm bis 100 µm, insbesondere von 10 µm bis 50 µm aufweist.
  10. Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich in der radial äußeren Flügelspitze (68) eine in Längsrichtung des Flügels (40) verlaufende Nut (70) erstreckt.
  11. Flügelzellenpumpe nach Anspruch 10, dadurch gekennzeichnet, dass in der Nut (70) eine die Flügelspitze (68) überragende Dichtleiste (72) angeordnet ist.
  12. Flügelzellenpumpe nach Anspruch 11, dadurch gekennzeichnet, dass die Dichtleiste (72) schwimmend in der Nut (70) gelagert ist.
  13. Flügelzellenpumpe nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Dichtleiste (72) aus Metall, insbesondere aus Leichtmetall, oder aus Kunststoff besteht.
  14. Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine trocken laufende Pumpe (10) ist.
PCT/EP2011/050069 2010-01-15 2011-01-04 Flügelzellenpumpe WO2011086013A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/521,878 US20130022487A1 (en) 2010-01-15 2011-01-04 Vane pump
EP11700120A EP2524111A2 (de) 2010-01-15 2011-01-04 Flügelzellenpumpe
CN2011800062816A CN102844525A (zh) 2010-01-15 2011-01-04 叶轮泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010000947.4A DE102010000947B4 (de) 2010-01-15 2010-01-15 Flügelzellenpumpe
DE102010000947.4 2010-01-15

Publications (2)

Publication Number Publication Date
WO2011086013A2 true WO2011086013A2 (de) 2011-07-21
WO2011086013A3 WO2011086013A3 (de) 2012-05-10

Family

ID=44304719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/050069 WO2011086013A2 (de) 2010-01-15 2011-01-04 Flügelzellenpumpe

Country Status (6)

Country Link
US (1) US20130022487A1 (de)
EP (1) EP2524111A2 (de)
KR (1) KR20120112790A (de)
CN (1) CN102844525A (de)
DE (1) DE102010000947B4 (de)
WO (1) WO2011086013A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159158A1 (it) * 2015-12-23 2017-06-23 Vhit Spa Pompa volumetrica a palette
CN107218213A (zh) * 2017-08-03 2017-09-29 太原科技大学 摆动叶片泵
CN117212143A (zh) * 2023-10-31 2023-12-12 福力德泰克(上海)泵业有限公司 一种抑制间隙回流的叶片泵

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626533B (zh) * 2015-12-25 2017-12-15 常州市武进广宇花辊机械有限公司 旋片式真空泵
CN106640648A (zh) * 2017-01-13 2017-05-10 南通荣恒环保设备有限公司 一种滑片根部滚轮限位的回转式风机
DE102017117988A1 (de) * 2017-08-08 2019-02-14 Kameliya Filipova Ganeva Pneumatische oder hydraulische Vorrichtung
CN108005900A (zh) * 2017-11-23 2018-05-08 陈永辉 一种偏心曲线转子装置
CN108590772A (zh) * 2018-03-20 2018-09-28 罗德凯 一种提高机械效率的防磨损叶片式转子机械结构
CN108501915B (zh) * 2018-04-25 2021-02-02 罗德凯 一种叶片式刹车制动系统
EP3617512B1 (de) * 2018-08-28 2022-11-30 Pfeiffer Vacuum Gmbh Drehschieber-vakuumpumpe
KR102223283B1 (ko) * 2018-11-16 2021-03-05 엘지전자 주식회사 베인 로터리 압축기
KR102370499B1 (ko) 2020-03-25 2022-03-04 엘지전자 주식회사 로터리 압축기
KR102370523B1 (ko) * 2020-03-25 2022-03-04 엘지전자 주식회사 로터리 압축기
KR102301479B1 (ko) 2020-03-27 2021-09-13 엘지전자 주식회사 로터리 압축기
KR102387189B1 (ko) 2020-05-22 2022-04-15 엘지전자 주식회사 로터리 압축기
KR102349747B1 (ko) 2020-05-22 2022-01-11 엘지전자 주식회사 로터리 압축기
KR102367895B1 (ko) * 2020-05-22 2022-02-25 엘지전자 주식회사 로터리 압축기
KR102378399B1 (ko) 2020-07-03 2022-03-24 엘지전자 주식회사 로터리 압축기

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008531A1 (de) 1978-08-18 1980-03-05 Ronald Edward Smolinski Drehkolbenmaschine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294454A (en) * 1964-09-30 1966-12-27 Eugene E Foerster Reciprocating vane type rotary pump
DE2742217A1 (de) * 1977-09-20 1979-03-22 Josef Bertrams Prinzip eines einzellaeufer-differenzkraftmotor, mehrstufen-einzellaeufer- differenzkraftmotor und varianten von motor- und pumpenlaeufer
WO1982001032A1 (en) * 1980-09-11 1982-04-01 Kathmann P Rotary piston machine
DE3108819A1 (de) * 1981-03-09 1982-11-25 Kommanditgesellschaft RMC Rotationsmaschinen GmbH + Co, 2000 Hamburg Verfahren zur ausbildung eines kompressionsraumes in einer rotationskolbenmaschine
DE8313036U1 (de) * 1983-05-03 1985-09-26 Kathmann, Peter B., Solothurn Rotationskolbenmaschine
DE3575007D1 (de) * 1984-03-23 1990-02-01 Volkswagenwerk Ag Dichtung fuer eine verdraengermaschine fuer kompressible medien.
US4958995A (en) * 1986-07-22 1990-09-25 Eagle Industry Co., Ltd. Vane pump with annular recesses to control vane extension
JPH0244075Y2 (de) * 1986-11-21 1990-11-22
US4859163A (en) * 1987-06-25 1989-08-22 Steven Schuller Performance Inc. Rotary pump having vanes guided by bearing blocks
US5051078A (en) * 1989-07-05 1991-09-24 Lew Hyok S Rotary pump-flowmeter
US5242285A (en) * 1989-12-12 1993-09-07 Acd, Inc. Cryogenic vane pump
US5160252A (en) * 1990-06-07 1992-11-03 Edwards Thomas C Rotary vane machines with anti-friction positive bi-axial vane motion controls
US5087183A (en) * 1990-06-07 1992-02-11 Edwards Thomas C Rotary vane machine with simplified anti-friction positive bi-axial vane motion control
US5181843A (en) * 1992-01-14 1993-01-26 Autocam Corporation Internally constrained vane compressor
US6821099B2 (en) * 2002-07-02 2004-11-23 Tilia International, Inc. Rotary pump
US7077098B2 (en) * 2003-08-26 2006-07-18 Shuba Yaroslav M Vane-type piston, four-cycle multi-chamber rotary internal combustion engine
EP1637739A1 (de) * 2004-09-20 2006-03-22 Maso Process-Pumpen GmbH Schieberpumpe mit zweiteiligem Stator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008531A1 (de) 1978-08-18 1980-03-05 Ronald Edward Smolinski Drehkolbenmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2524111A2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159158A1 (it) * 2015-12-23 2017-06-23 Vhit Spa Pompa volumetrica a palette
WO2017109606A1 (en) * 2015-12-23 2017-06-29 Vhit S.P.A. Positive displacement vane pump
CN107218213A (zh) * 2017-08-03 2017-09-29 太原科技大学 摆动叶片泵
CN117212143A (zh) * 2023-10-31 2023-12-12 福力德泰克(上海)泵业有限公司 一种抑制间隙回流的叶片泵
CN117212143B (zh) * 2023-10-31 2024-02-13 福力德泰克(上海)泵业有限公司 一种抑制间隙回流的叶片泵

Also Published As

Publication number Publication date
CN102844525A (zh) 2012-12-26
WO2011086013A3 (de) 2012-05-10
DE102010000947A1 (de) 2011-07-21
KR20120112790A (ko) 2012-10-11
DE102010000947B4 (de) 2015-09-10
US20130022487A1 (en) 2013-01-24
EP2524111A2 (de) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2011086013A2 (de) Flügelzellenpumpe
DE2938276A1 (de) Fluegelzellenverdichter
DE102008036273B4 (de) Rotationskolbenpumpe mit Taschen für Schmiermittel
WO2010119141A2 (de) Steuerung der flügel einer flügelzellenmaschine
DE2246901A1 (de) Von fluid durchstroemte fluegelzellenmaschine
EP2662570B1 (de) Vakuumpumpe
DE102012103888A1 (de) Verdrängerpumpe
DE102009017452B4 (de) Ölförderpumpe
DE102008045440B4 (de) Drehkolben einer Drehkolbenpumpe und Drehkolbenpumpe
DE3639943C2 (de) Flügelzellenpumpe
DE102006016790B3 (de) Zellenpumpe
WO2013045302A2 (de) Verdrängerpumpe
EP2619416B1 (de) Flügelzellenpumpe
EP0474001B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE3411487A1 (de) Fluegelpumpe mit einem zwischendrehgehaeuse
DE19827924B4 (de) Hydraulikpumpe
EP1789682B1 (de) Hybridpumpe
DE3324878A1 (de) Fluegelzellen-vakuumpumpe
DE3740365A1 (de) Fluegelzellenverdichter fuer druckluft
DE102014002524B3 (de) Flügelzellenpumpe
EP0473025A1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE2714475A1 (de) Fluessigkeitsringpumpe
CH322416A (de) Drehkolbenmaschine
DE2403011A1 (de) Fluegelzellenmaschine
DE8533392U1 (de) Flügelzellenpumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006281.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11700120

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011700120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011700120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13521878

Country of ref document: US