WO2011085653A1 - 用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒 - Google Patents

用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒 Download PDF

Info

Publication number
WO2011085653A1
WO2011085653A1 PCT/CN2011/070050 CN2011070050W WO2011085653A1 WO 2011085653 A1 WO2011085653 A1 WO 2011085653A1 CN 2011070050 W CN2011070050 W CN 2011070050W WO 2011085653 A1 WO2011085653 A1 WO 2011085653A1
Authority
WO
WIPO (PCT)
Prior art keywords
interferon
disease
thyroid
patients
expression
Prior art date
Application number
PCT/CN2011/070050
Other languages
English (en)
French (fr)
Inventor
李立新
旷苗
Original Assignee
中国科学院上海生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海生命科学研究院 filed Critical 中国科学院上海生命科学研究院
Publication of WO2011085653A1 publication Critical patent/WO2011085653A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention belongs to the fields of molecular biology and medicine, and more specifically, to molecular biological indicators having guiding significance for the classification, clinical use and prognosis of Graves' disease, and a new way of preventing and treating Greifs' disease. Background technique
  • Graves' disease is a typical thyroid autoimmune disease characterized by hyperthyroidism and goiter, and some patients are accompanied by eye diseases and skin diseases.
  • the disease is organ-specific, mainly due to the presence of stimulatory antibodies against the thyroid stimulating hormone receptor (TSHR) in the peripheral circulation. This antibody, once combined with TSHR, stimulates thyroid cell synthesis.
  • TSHR thyroid stimulating hormone receptor
  • cAMP which promotes the intake of iodine, thereby secreting excess thyroid hormone (Thyroid hormone;).
  • TH thyroid hormone
  • GD Because of the multiple factors involved in GD, there are some difficulties in the treatment and prognosis of GD patients in this field.
  • the specific performance of GD is significant biological heterogeneity, and patients' response to treatment can be significantly different.
  • type I interferons play a key role in certain autoimmune diseases [16].
  • the interferon family includes type I, type II and the recently discovered three subtypes of type III interferon.
  • the type I interferon subgroup includes various subtypes of IFN a, IFNp, IFNO IFNT, IFNS, IFNK and IFNs, and has a wide range of immunomodulatory functions. Interferons play an important role in innate immunity, but when they are not properly secreted in time and space, they can also cause harm to the host itself [17, 18].
  • kits for use in the classification of a Graves' disease, selection of a treatment regimen and/or prognosis in a subject comprising:
  • kits (b) a container containing the reagent.
  • the kit further comprises one or more reagents for detecting the level of the TSHR antibody.
  • the biological sample is: peripheral blood mononuclear cells, thyroid cells or thyroid tissue.
  • the biological sample is: a freshly obtained sample, a fixed sample, or a paraffin-embedded sample.
  • the subject has been or has not been clinically treated, preferably without clinical treatment.
  • the subject has been diagnosed or has not been diagnosed with Graves' disease.
  • the interferon-inducing gene is one or more selected from the group consisting of IFIT 1, IFIT 4, MX 1, OAS, LY6E or PRKR.
  • the interferon-inducing gene is one or more selected from the group consisting of IFIT 1, IFIT 4 and MX 1, preferably IFIT 1.
  • the reagent is a reagent for a detection method selected from the group consisting of: real-time quantitative PCR detection, immunohistochemistry detection or immunoblotting detection.
  • the reagent is a reagent for real-time quantitative PCR detection, comprising a specific primer for an interferon-inducing gene, preferably the primer pair is selected from the group consisting of: SEQ ID NO: 1 and SEQ ID NO: 2; SEQ ID NO: 3 and SEQ ID NO: 4; or SEQ ID NO: 5 and SEQ ID NO: 6.
  • the kit further comprises other agents clinically useful for diagnosing or detecting Graves' disease.
  • the other reagent is used to detect the level of one or more substances selected from the group consisting of: free T3, free ⁇ 4, thyroid stimulating hormone, anti-thyroglobulin antibody, anti-thyroid stimulating A hormone receptor antibody or an anti-thyroid peroxidase antibody, preferably an anti-thyroid stimulating hormone receptor antibody.
  • the kit further comprises one or more substances selected from the group consisting of instructions, positive controls, negative controls, buffers, diluents, or immunological aids.
  • the specification states that: when the test result indicates that the interferon-inducible gene expression level is significantly higher than the normal level, it indicates that the subject is a type I interferon-sensitive type, and optionally prompts the object. It is suitable for treatment or prognosis using drugs or methods that block the type I interferon/interferon-inducible gene pathway.
  • the interferon-inducing gene expression level is 2-100 times, preferably 5-80 times, more preferably 10-50 times the normal level.
  • the type I interferon is selected from the group consisting of: INF a, IFN p, IFN ⁇ , IFN T:, IFN ⁇ , IFN K or IFN s, preferably INF a.
  • an interferon-inducible gene test reagent or kit of reagents in the kit for preparing a genotype for Graves' disease, selection of a treatment regimen and/or prognosis.
  • the use of an interferon-inducing gene in a molecular marker for the selection of a Graves' disease, the selection of a treatment regimen and/or a prognostic evaluation is provided.
  • the interferon-inducing gene is one or more selected from the group consisting of: IFIT 1, IFIT 4, MX 1, OAS, LY6E or PRKR, preferably IFIT 1, IFIT 4 and MX 1, More preferably, IFIT 1 or IFIT 4.
  • a method of gating, selection of a treatment regimen and/or prognosis of Graves' disease comprising:
  • the interferon-inducible gene expression level is 2-100 times normal, preferably
  • the method further includes:
  • the subject has an anti-thyroid stimulating hormone receptor antibody level that is 1-3 times, preferably 1.5-2.5 times higher than that in the non-type I interferon sensitive subject.
  • the step (a) is carried out using the kit of the present invention.
  • a Type I interferon/interferon-inducible gene signaling pathway blocker for the manufacture of a medicament for the treatment of Graves' disease.
  • the Type I interferon is selected from the group consisting of: INF a, IFN ⁇ , IFN ⁇ , IFN ⁇ , IFN K or IFN s, preferably INF a.
  • the interferon-inducing gene is selected from the group consisting of: IFIT 1, IFIT 4, MX 1, OAS, LY6E or PRKR, preferably IFIT 1, IFIT 4 and MX 1, more preferably IFIT 1.
  • the blocker is selected from the group consisting of: an antibody against type I interferon, an antibody against an expression product of an anti-interferon-inducing gene, an interfering RNA of type I interferon or an interferon-inducing gene, and/or an anti-interference A substance which induces gene expression, preferably an anti-IFNoc antibody.
  • the medicament is for use in a patient with Graves' disease who is susceptible to type I interferon.
  • a patient with Graves' disease is typed as a type I interferon sensitive using the kit or method of the invention.
  • Other aspects of the invention will be apparent to those skilled in the art from this disclosure.
  • Figure 1 Analysis of the expression of interferon-inducible genes IFIT 1 (Fig. la) and IFIT 4 (Fig. 1b) in peripheral blood mononuclear cells (PBMC) of 54 GD patients and 20 normal controls by quantitative PCR. The level of induced gene expression in normal human controls was used as a baseline, and the data analysis was performed using the T test.
  • Figure 2 GD patients with high expression of IFIG (including 33 patients, the average expression level is higher than 2 times;) GD patients with low expression of IFIG (including 21 patients, the average expression level is less than 2 times;) serum Analysis of the mean expression levels of autoantibodies TSHR-Ab (; anti-thyroid stimulating hormone receptor antibody;), TPO-Ab (; anti-thyroid peroxidase antibody;) and TG-Ab (anti-thyroglobulin antibody;
  • TSHR-Ab anti-thyroid stimulating hormone receptor antibody
  • TPO-Ab anti-thyroid peroxidase antibody
  • TG-Ab anti-thyroglobulin antibody
  • FIG. 3 Stimulation of IFIG expression in thyroid cells by recombinant IFNoc.
  • Thyroid cells were isolated from GD patients and non-GD patients. After 100 U/ml recombinant IFNoc stimulation, the expression levels of interferon-inducible genes IFIT 1, IFIT 4 and MX 1 were detected by quantitative PCR. among them:
  • Figure 4 Recombinant IFNoc stimulates the expression of MHC class II molecules and TSHR in thyroid cells of GD patients. GD patients and non-GD thyroid cells were tested for gene expression levels of HLA-DR3, HLA-DR5 and TSHR by quantitative PCR after receiving recombinant IFNoc.
  • Figure 5 Expression of HLA-DR, TSHR and IFNoc receptors in thyroid tissue of GD patients. The expression levels of the above molecules in GD patients and non-GD thyroid tissues were detected by quantitative PCR and immunohistochemistry, respectively.
  • Figure 5a Two GD patients were separated from non-GD thyroid tissue and their gene expression levels were determined by quantitative PCR.
  • Figure 5b-c Frozen sections of GD patients and non-GD thyroid tissue by immunohistochemistry
  • IFIG type I interferons and their induction genes
  • an interferon can act at an extremely low concentration.
  • the expression of the interferon-inducible gene can be induced within a few hours.
  • Interferon-inducible genes such as IFIT l, OAS, LY6E, IFIT 4, MX 1 and PRKR are highly expressed in autoimmune diseases such as systemic lupus erythematosus [27,28]. Although most of the functions of interferon-inducible genes are not well understood, studies have shown that they play an important role in the host's defense system [29].
  • the inventors studied the expression of interferon and interferon-inducing genes in a large number of patients with GD, and linked the expression of these genes to the clinical symptoms and serological testing criteria of GD disease.
  • the inventors also used IFN a to stimulate thyroid cells in GD patients and normal people, and observed that IFN a induced the expression of TSHR and MHC class II molecules in these cells.
  • Experimental data indicate that there is a high expression of interferon-inducible genes in peripheral lymphocytes of most GD patients, and that high expression of interferon-inducible genes is positively correlated with high levels of anti-TSHR antibodies.
  • the data also showed that type I interferon induced high expression of TSHR and MHC class II molecules in GD patients.
  • type 1 interferon can be induced by interferon in some patients' thyroid cells.
  • the high expression of the miRNA (IGG) makes thyroid cells in GD patients highly express MHC class II molecules and TSHR, resulting in GD in these patients.
  • the present invention discloses that type I interferons and their induced genes play an important role in the immunomodulatory process of GD diseases, which explains the reason why type I interferons and their induced genes promote the pathological immune process of GD. Molecular marker
  • molecular markers In the present invention, "molecular markers”, “grival markers of treatment options and/or prognostic indicators of Graves' disease” are used interchangeably, and both indicate that the present invention can be used to indicate GD treatment and/or prognosis. And select molecules that have guiding significance for their clinical treatment options.
  • the molecular marker of the present invention is
  • the type I interferon/interferon induces an interferon-inducing gene or an expression product thereof in the gene signal transduction pathway, such as IFIT 1, IFIT 4 or MX 1 and the like.
  • the level of interferon-inducible gene in GD patients can be classified into “type I interferon-sensitive type” or "non-type I interferon-sensitive type".
  • type I interferon-sensitive means that the level of interferon-inducible gene expression in a biological sample of a patient with GD is significantly higher than that of a normal control, for example, 2-100 fold, 5-80 fold, 10-50 fold.
  • non-type I interferon-sensitive means that the level of interferon-inducible gene expression in a biological sample of a patient with GD has not changed significantly or changed by a factor of two (e.g., 1.7-fold) compared to a normal control.
  • the inventors also found that the level of anti-TSHR antibody in the "type I interferon-sensitive" patients was significantly improved compared with "non-type I interferon-sensitive” patients, for example, 1-3 times, 1.5- 2.5 times.
  • This anti-TSHR antibody level can also be used as one of the molecular biomarkers for further identification of "type I interferon-sensitive” patients.
  • GD patients can be further typed, which has guiding significance for prognosis evaluation and treatment plan selection.
  • type I interferon induces high expression of interferon-inducible gene (IFIG) in "type I interferon-sensitive" GD patients, thereby activating type I interferon/interferon-inducible gene signaling pathway, resulting in Downstream anti-TSHR antibodies are highly expressed, resulting in GD in such patients.
  • IFIG interferon-inducible gene
  • the present invention also provides a novel GD (preferably "type I interferon sensitive") therapeutic method for administering a type I interferon/interferon-inducible gene pathway blocker to a patient with GD.
  • the pathway blocker may include, but is not limited to;: an antibody against type I interferon, an antibody against an interferon-inducible gene expression product, an interferon type I interferon or an interferon-inducible gene interfering RNA and/or an antibody A substance which induces gene expression by interferon, preferably an anti-IFNoc antibody. Kit
  • kits comprising: (a) detecting a level of interferon-inducible gene expression in a biological sample One or more reagents; and (b) a container containing the reagent.
  • the biological sample may be fresh tissue obtained from a GD patient, fixed (eg, formalin, acetone; or paraffin embedded tissue, body fluid, blood or cells, etc., preferably fresh tissue, formalin fixed or paraffin embedded) organization.
  • a GD patient fixed (eg, formalin, acetone; or paraffin embedded tissue, body fluid, blood or cells, etc., preferably fresh tissue, formalin fixed or paraffin embedded) organization.
  • These samples may be in various forms suitable for detection such as slicing, smears, suspensions, solutions, etc., for example, in the detection of immunohistochemistry, paraffin section specimens are preferably employed.
  • the patient is not clinically treated prior to collecting the sample.
  • the detection method used in the present invention may employ a detection method commonly used in the art as long as the method can detect significant changes in the expression level of the interferon-inducible gene, including but not limited to: real-time quantitative PCR, immunohistochemical detection
  • a quantitative detection method such as a method, a Western blotting method, an ELISA method, a flow cytometry method, a biochip method, or the like can be selected as needed by those skilled in the art.
  • reagent set refers to a combination of reagents containing a plurality of reagents required for detection.
  • kit of the present invention may further include, as needed, a container, a control (including a positive or negative control;), instructions for use, a buffer, an immunological adjuvant, and the like, which can be selected by those skilled in the art depending on the specific circumstances.
  • interferon-inducible genes such as IFIT1 and IFIT4
  • IFIT1 and IFIT4 can be used for GD typing and can be used as molecular markers for clinical diagnosis, drug use, and prognosis of GD;
  • hyperthyroidism met the following conditions: none of them were treated with drugs; typical conditions with hyperthyroidism, such as heat, fatigue, increased appetite, hyperhidrosis and weight loss; goiter; clinical diagnosis including increased serum TSH , thyroid hormone content increased.
  • PBMC peripheral blood mononuclear cells
  • PBMC peripheral blood mononuclear cells
  • PBMC blood samples were analyzed or processed immediately after collection and were operated at 4 °C. Each sample contained 5 ml of blood that was anticoagulated with heparin, and plasma was separated after centrifugation. The remaining cells were centrifuged and separated by Ficoll density gradient centrifugation (300 g, 20 minutes) to obtain PBMC.
  • the isolated PBMC was lysed and extracted with RNeasy Mini Kit (Qiagen, Valencia, CA) to obtain total RNA. Part of the separated plasma is stored at -80 ° C, and the other part is tested with a test kit.
  • TSHR-Ab RSR Ltd, UK
  • free T3 Abbott Laboratories, IL
  • free T4 Abbott Laboratories, IL
  • TSH Abbott Laboratories, IL
  • TG-Ab and anti-TPO-Ab Biomerica, Inc. CA
  • IFIG including IFIT 1, IFIT 4, MX 1
  • IFIG was detected by quantitative PCR.
  • Each microgram of total RNA was inverted into cDNA using a Reverse Transcriptase System (Promega, WI) in a 20 ⁇ system. Dilute the inversion system to 100 ⁇ l ( ⁇ ⁇ 5 : 5 dilution), add 0.5 ⁇ l of cDNA (ie, the diluted inversion system) to 5 ⁇ SYBR green reagent (Applied Biosystems, Foster City, CA) and 10 ⁇ Real-time quantitative PCR reactions of forward and reverse primers (ABI Prism 7900 Sequence Detector i.
  • the RP13A gene was used as a housekeeping gene internal reference. At each cycle, the fluorescence information of IFIT 1, IFIT 4, MX 1 and RP 13A was automatically collected (ABI 7900), resulting in a Ct value. The size of the Ct value is inversely proportional to the amount of the gene.
  • the activity of the disease and the tissue damage associated with the disease are assessed and recorded by the attending physician at the time of the patient's visit. These clinical data are also based on records of medical records and corrections of clinical test data. 5. Separation of thyroid tissue and thyroid cells
  • Thyroid tissue in patients with GD is obtained from surgical resection of patients with hyperthyroidism.
  • Thyroid tissue in non-GD patients was obtained from surgical removal of patients with nodules. In the surgical removal, the patients signed an informed consent form, and the entire study was also supervised by the Ethics Committee of Shanghai Jiaotong University. The removed thyroid tissue is used to extract total RNA or to separate thyroid cells.
  • thyroid tissue was mechanically cut into small pieces and then digested with a type I collagenase (Invitrogen, CA) 3 ⁇ 4 HBSS (Hanks balanced saline solution, Invitrogen) medium (37 ° C, 20 hours;).
  • a type I collagenase Invitrogen, CA
  • 3 ⁇ 4 HBSS Hort balanced saline solution, Invitrogen
  • the digested tissue cells were contained in 10% FBS (Hyclone), 25 mM HEPES (Invitrogen), 2 mM L-glutamic acid (Invitrogen), 100 U/ml penicillin (Invitrogen) and 100 The cells were cultured overnight in g/ml streptomycin (Invitrogen) in RPMI-1640 (Hyclone, UT), and then thoroughly rinsed with the culture medium to wash off the unattached cells. The fresh 1640 medium was added to the adherent cells and culture was continued for 6 days to obtain thyroid cells.
  • the resulting cells were assayed with anti-thyroglobulin antibody (PBL biomedical Laboratories, Piscataway, NJ) with a purity of over 98%. 6.
  • the thyroid cells isolated from the IFN ⁇ stimulation assay were trypsinized in RPMI 1640 (containing 10% FCS, 2 mM glutamate, 25 mM HEPES, 100 U/ml penicillin, and 100 g/ml streptomycin). Diluted to 10 5 cells/ml and cultured at 37 °C for 18 hours (5 % CO 2 ). After the cells are fully attached, carefully pour off the medium and rinse several times with the medium to remove non-adherent cells.
  • Preparation of anti-human IFN ⁇ antibody 244 After immunizing a mouse with human IFN a 2a protein according to a conventional method, the obtained hybridoma cell is secreted by the cell to obtain antibody 244. The secreted antibody was isolated and purified on an A Sepharose column, and then subjected to an ion exchange column (Pharmacia, N.Y.) according to the manufacturer's instructions to obtain a pure antibody.
  • This antibody has the same structure and function as a commercially available product such as INTERFERON ALFA-2B, Schering-Plough.
  • the tissue pieces (0.5 cm 2 ) separated during the operation were immediately frozen. After 5 ⁇ of serial sections of frozen tissue, the frozen sections were fixed in acetone for 10 minutes, dried and then blocked with goat serum for 2 hours at room temperature, and then added with anti-MHC class II antibody (PBL biomedical Laboratories, Piscataway, NJ) or IFN receptor. The antibody (Biomeda Corp., Foster City, CA) was used as a primary antibody (100 ⁇ l in addition) and incubated overnight at 4 °C.
  • Example 1 Expression of interferon-inducible gene in peripheral blood mononuclear cells (PBMC) of GD patients
  • IFIT 1 and IFIT 4 were selected as the detection targets because these two genes are considered to be the most important interferon-inducing genes in systemic lupus erythematosus (SLE) such as autoimmune disease caused by IFNoc [27].
  • Example 2. The expression level of interferon-inducible gene IFIG is positively correlated with the level of anti-TSHR antibody in serum of GD patients.
  • GD patients were divided into two groups according to the expression level of IFIT 1, one group was IFIT 1 high expression group (the average expression level was higher than 2 times, including 33 patients) ;), the other group is the IFIT 1 low expression group (average expression level is less than 2 times, including 21 patients).
  • the IFIT 1 expression level in the IFIT 1 high expression group was 18.3 (2-74.2) on average, and the IFIT 1 expression level in the IFIT 1 low expression group was 1 (0.2-1.7) on average.
  • Table 3 shows the basic data and test results of these two groups of patients, including 42 female patients and 12 male patients.
  • the mean age of the two groups was 31 years (13-57) and 34 years (20-59 years), with an average duration of 2 months and 3 months.
  • the average expression levels of autoantibodies such as TSHR-Ab, TPO-Ab and TG-Ab in the serum of two groups of GD patients were determined and compared with the method described in "Test Methods and Materials 2".
  • IFNoc is able to rapidly induce expression of IFIG (Fig. 3).
  • IFIT 1 was most strongly induced by IFNoc, up to 158-fold.
  • the induced levels of IFIT 4 and MX 1 were 81 and 36 times, respectively.
  • the level of induction of IFIG was completely blocked by IFNoc antibodies (Fig. 3).
  • Fig. 3 we can also see that the induction level of IFIG in normal thyroid cells is significantly higher than that in thyroid cells of GD patients.
  • IFNoc can induce the expression of IFIG in thyroid tissue.
  • the thyroid cells of patients with GD have been stimulated by IFNoc, so the re-challenge of IFNoc is not as pronounced as normal thyroid tissue that is not IFNoc-excited.
  • Example 4 Expression of MHC class II molecules and TSHR in thyroid cells of GD patients with high expression of IFIT 1 induced by IFNoc
  • Thyroid cells in GD patients are exposed to 100 U/ml IFNoc for 12 hours (total The total stimulation time was 24 hours, and the data shown was the data at 12 hours of stimulation; after that, the expression levels of HLA-DR3, HLA-DR5 and TSHR increased by 1.5 times, 2.3 times and 2.8 times, respectively. difference.
  • thyroid cells in non-GD patients do not express MHC class II molecules and TSHR after IFNoc stimulation.
  • the background expression levels of HLA-DR3 and HLA-DR5 were significantly higher in GD patients than in non-GD patients (data not shown;).
  • IFIG showed high expression, and the expression level of IFIG was directly proportional to the level of TSHR-Ab in serum.
  • Recombinant IFN ⁇ induces IFIG in thyroid cells of non-GD and GD patients, and further induces expression of MHC class II molecules (HLA-DR2 and HLA-DR3) and TSHR in thyroid cells of GD patients.
  • MHC class II molecules HLA-DR2 and HLA-DR3
  • IFN ⁇ /IFIG pathway acts as an activating factor in GD.
  • IFIGs showed high expression in GD patients, we also failed to detect free IFN a in the serum of GD patients, which indicates that IFIGs play an important role in the pathogenesis of GD.
  • IFN a binds to its receptor, it can induce the expression of a variety of genes, including several large GTPases and proteins containing the IFITs domain, but the function of these proteins is poorly known in the prior art. Previous studies have focused on the antiviral effects of these genes.
  • an IFN-induced GTPases protein MX can inhibit the spread of influenza and VSV viruses [30, 31]; viral RNA can induce OAS expression, thereby blocking the virus and the host itself. RNAa transcription [32].
  • IFIGs play an important role in host antiviral, they may also contribute to the development of human diseases.
  • TSH binds to its receptor TSHR leading to proliferation of thyroid cells and secretion of thyroid hormones.
  • TSHR autoantibodies mimic the function of TSH, leading to excessive secretion of thyroid hormone.
  • the detection of TSHR antibodies is effective in predicting the efficacy of antithyroid drugs (41-44).
  • TSHR antibody levels are reduced when GD patients are treated with antithyroid drugs [25,43,45].
  • the level of IFN ⁇ /IFIGs was directly proportional to the level of TSHR antibody, suggesting that IFIGs are associated with the activity of GD disease and also serve as an indicator of disease prediction.
  • MHC class II molecules play an important role in autoantigen presentation and immunomodulation.
  • HLA-DR expression is restricted to antigen-presenting cells such as B cells, DCs, and macrophages, whereas human endocrine cells do not express MHC class II molecules under normal conditions.
  • Recognition of HLA-DR is an important condition for immune activation.
  • HLA-DR expressed by thyroid cells in GD patients may stimulate T cell activation. Therefore, clinical blocking of IFN a/IFIGs can be one of the means to control GD autoimmunity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒 技术领域
本发明属于分子生物学及医疗领域, 更具体而言, 涉及对葛瑞夫兹氏病的 分型、 临床用药及预后具有指导意义的分子生物学指标, 以及防治葛瑞夫兹氏 病的新途径。 背景技术
葛瑞夫兹氏病 (Graves ' disease, GD)是一种典型的甲状腺自身免疫性疾病, 其主要特征是甲亢和甲状腺肿大, 有的患者还伴随有眼病和皮肤病。 这种疾病 具有器官特异性, 主要是由于外周循环中存在着针对甲状腺剌激激素受体 (thyroid stimulating hormone receptor, TSHR)的剌激性抗体, 该抗体一旦结合 TSHR之后, 会剌激甲状腺细胞合成 cAMP, 促进碘的摄入, 从而分泌过量的甲 状腺激素 (Thyroid hormone;)。 分泌甲状腺激素 (TH)过多, 会造成以机体的神经、 循环及消化等系统兴奋性增高和代谢亢进为主要表现的临床综合征。
GD疾病的产生原因至今还是不为人所知, 但是有证据表明 GD的发生是一 个多因素共同作用的结果, 基因因素和环境因素在疾病的发生中都起着重要作 用。
有研究表明, 在高加索人种中, GD的发生与 MHC II类分子的血清学分型 存在相关 [1,2], 拥有 HLA-DR3单倍型的个体更容易发生 GD[3]。 另外, 也有研 究组观察到, 有的 GD患者的甲状腺细胞上异常表达 MHC II类分子, 并且能激 活免疫细胞 [4-6]。 遗传连锁分析也表明, GD的发生与 HLA-DR3的表达存在着 强关联, 这提示我们 HLA-DR3的表达与 GD的遗传易感有关, 它的存在能够抑 制 GD的发生 [7-10]。 甲状腺滤泡状细胞能够表达 MHC II类分子表明甲状腺细胞 本身也能向 T细胞呈递抗原, 从而促进了疾病的发生。
此外, 环境因素 (比如感染性因素;)也在 GD的发生中发挥了作用。 例如, 在 新诊断的 GD患者中,有 36%的个体中能够检测出一系列的针对细菌或者病毒的 抗体, 与之对应的是, 正常人的这一比例只有 10%,这表明在 GD症状出现之前, 患者受到过细菌或者病毒的感染 [11]。 更深入的研究显示, GD患者体内存在的 针对 B型流感病毒抗体的频率相对于正常人群, 也有显著的提高 [12]。 最新研究 也表明, 病毒性感染因素与甲状腺疾病的发生密切相关 [13-15]。 比如, 当原代 培养的甲状腺细胞被巨细胞病毒感染后, HLD-DR分子的表达发生上调 [14]。大 鼠甲状腺细胞感染呼肠孤病毒后, 也能诱导表达 MHC II类分子 [15]。
正因为 GD发生涉及到多种因素, 本领域中对于 GD患者的治疗和预后存在 着一定的难度, 具体表现在 GD具有显著的生物学异质性, 患者对治疗的反应可 存在显著差异。
因此, 对 GD患者进行分型对于其治疗和预后而言具有极为重要的意义。 本领域中迫切需要寻找出针对 GD患者的分型方法和分子标志物。
现在人们普遍认为, I型干扰素在某些自身免疫性疾病中发挥着关键作用 [16]。 干扰素家族包括 I型、 II型和最近发现的 III型干扰素三个亚群。 I型干扰素 亚群包括 IFN a、 IFNp、 IFNO IFNT, IFNS、 IFNK和 IFNs多种亚型, 并且具有 广泛的免疫调节功能。 干扰素在天然免疫中发挥着重要作用, 但是当它们分泌 的时间和空间不恰当的话, 也会对宿主本身造成危害 [17, 18]。
在过去的 20年中, 已经有很多证据表明, I型干扰素与甲状腺异常存在一定 的关系。 最先把 IFN α与甲状腺异常联系起来, 是在用 IFN α治疗的黑色素瘤或 者乳腺癌患者中有部分患者发生甲状腺异常 [19,20]。 此后, 陆续有研究报道在 接受 IFN a治疗的患者中, 甲状腺疾病的发生率大大提高了 [21,22]。在几次对用 重组人 IFN α作为主要治疗手段治疗的丙型肝炎患者的预期研究中, 针对 TSHR 抗体的产生率最高可以达到 40%[23-26]。 以上证据表明, IFN a促进了慢性病毒 感染性患者中甲状腺疾病的发生。
然而,现有技术中未揭示过 I型干扰素 (;尤其是 IFN a)与 GD发生之间的关系。 因此, 本领域迫切需要进一步明确 GD发生中的更多相关因素, 并寻找对 对 GD患者进行分型和个性化治疗的新方法和手段。 发明内容
本发明的目的之一正是提供一种 GD患者分型的新指标和方法。 本发明的 另一目的是提供 GD患者治疗的新方法。 在本发明的第一方面中, 提供了一种试剂盒, 其用于对象中葛瑞夫兹氏病 的分型、 治疗方案的选择和 /或预后评估, 所述试剂盒包含:
(a) 检测生物样品中干扰素诱导基因表达水平的一种或多种试剂; 和
(b) 容纳所述试剂的容器。 任选地, 所述试剂盒还包含检测 TSHR抗体水平的一种或多种试剂。
在本发明的一个实施方式中, 所述生物样品是: 外周血单核细胞、 甲状腺细 胞或甲状腺组织。
在一个优选例中, 所述生物样品是: 新鲜获取的样品、 固定的样品或石蜡包 埋的样品。
在另一优选例中, 所述对象已经过临床治疗或未经过临床治疗, 优选未经过 临床治疗。
在另一优选例中, 所述对象已确诊或尚未确诊患有葛瑞夫兹氏病。
在本发明的另一个实施方式中, 所述干扰素诱导基因是选自下组中的一种或 多种: IFIT 1、 IFIT 4、 MX 1、 OAS, LY6E或 PRKR。
在一个优选例中, 所述干扰素诱导基因是选自下组中的一种或多种: IFIT 1、 IFIT 4和 MX 1, 优选为 IFIT 1。
在本发明的另一个实施方式中, 所述试剂是用于选自下组的检测方法的试剂: 实时定量 PCR检测、 免疫组化检测或免疫印迹检测。
在一个优选例中, 所述试剂是用于实时定量 PCR检测的试剂, 其中包含干扰 素诱导基因的特异性引物, 优选所述引物对选自: SEQ ID NO: 1和 SEQ ID NO: 2; SEQ ID NO: 3和 SEQ ID NO: 4; 或 SEQ ID NO: 5和 SEQ ID NO: 6。
在本发明的另一个实施方式中, 所述试剂盒还包含临床上用于诊断或检测葛 瑞夫兹氏病的其它试剂。
在一个优选例中, 所述其它试剂用于检测样品中选自下组的一种或多种物 质的水平: 游离 T3、 游离 Τ4、 甲状腺剌激激素、 抗甲状腺球蛋白抗体、 抗甲状 腺剌激激素受体抗体或抗甲状腺过氧化物酶抗体, 优选抗甲状腺剌激激素受体 抗体。
在另一优选例中,所述试剂盒还包含选自下组的一种或多种物质:说明书、 阳性对照物、 阴性对照物、 缓冲剂、 稀释剂、 或免疫助剂。
在另一优选例中, 所述说明书上记载了: 当检测结果显示干扰素诱导基因 表达水平显著高于正常水平, 则表明所述对象为 I型干扰素敏感型, 并任选提示对 该对象适于使用阻断 I型干扰素 /干扰素诱导基因通路的药物或方法进行治疗或预 后。
在另一个优选例中, 所述干扰素诱导基因表达水平是正常水平的 2-100倍, 优 选 5-80倍, 更优选 10-50倍。 在另一优选例中, 所述 I型干扰素选自: INF a、 IFN p、 IFN ω、 IFN T:、 IFN δ、 IFN K或 IFN s, 优选 INF a。 在本发明的第二方面中,提供了干扰素诱导基因测试试剂或试剂组在制备用 于葛瑞夫兹氏病的分型、 治疗方案的选择和 /或预后评估的试剂盒中的用途。 在本发明的第三方面中, 提供了干扰素诱导基因在作为葛瑞夫兹氏病的分 型、 治疗方案的选择和 /或预后评估的分子标志物中的用途。
在一个优选例中, 所述干扰素诱导基因是选自下组中的一种或多种: IFIT 1、 IFIT 4、 MX 1、 OAS, LY6E或 PRKR, 优选 IFIT 1、 IFIT 4和 MX 1, 更优选 IFIT 1 或 IFIT 4。 在本发明的第四方面中, 提供了一种对葛瑞夫兹氏病的分型、 治疗方案的 选择和 /或预后评估的方法, 所述方法包括:
(a) 检测对象中干扰素诱导基因的表达水平;
(b) 将 (a)中检测的干扰素诱导基因的表达水平与正常对照进行比较; 若所述对象的干扰素诱导基因表达水平显著高于正常对照, 则表明所述对象 为 I型干扰素敏感型,提示对该对象适于使用阻断 I型干扰素 /干扰素诱导基因通路的 药物或方法进行治疗或预后。
在一个优选例中, 所述干扰素诱导基因表达水平是正常水平的 2-100倍, 优选
5-80倍, 更优选 10-50倍。
在另一个优选例中, 所述方法还包括:
(c) 检测对象中抗甲状腺剌激激素受体抗体的水平;
(d) 将 (c)中检测的抗甲状腺剌激激素受体抗体的水平与非 I型干扰素敏感型 对象中的水平进行比较;
(e) 若所述对象的抗甲状腺剌激激素受体抗体水平显著高于非 I型干扰素敏 感型对象中的水平, 则进一步验证了所述对象为 I型干扰素敏感型, 且对该对象适 于使用阻断 I型干扰素 /干扰素诱导基因通路的药物或方法进行治疗或预后。
优选所述对象的抗甲状腺剌激激素受体抗体水平比非 I型干扰素敏感型对象 中的水平提高 1-3倍, 优选 1.5-2.5倍。
在另一优选例中, 所述步骤 (a)是采用本发明的试剂盒进行的。 在本发明的第五方面中,提供了 I型干扰素 /干扰素诱导基因信号通路阻断剂在 制备治疗葛瑞夫兹氏病的药物中的用途。
在一个优选例中, 所述 I型干扰素选自: INF a、 IFN β、 IFN ω、 IFN τ、 IFN δ、 IFN K或 IFN s, 优选 INF a。
在另一个优选例中,所述干扰素诱导基因选自: : IFIT 1、 IFIT 4、 MX 1、 OAS, LY6E或 PRKR, 优选 IFIT 1、 IFIT 4和 MX 1, 更优选 IFIT 1。
在另一个优选例中, 所述阻断剂选自: 抗 I型干扰素的抗体、 抗干扰素诱导基 因表达产物的抗体、 I型干扰素或干扰素诱导基因的干扰 RNA和 /或抗干扰素诱导基 因表达的物质, 优选抗 IFNoc抗体。
在本发明的一个实施方式中,所述药物用于对 I型干扰素敏感的葛瑞夫兹氏病 患者。
在一个优选例中, 采用本发明的试剂盒或方法将葛瑞夫兹氏病患者分型为 I型干扰素敏感型。 本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而 易见的。 附图说明
图 1 : 通过定量 PCR检测的 54例 GD患者和 20例正常人外周血单核细胞 (PBMC)中干扰素诱导基因 IFIT 1(图 la)和 IFIT 4(图 lb)表达情况分析。 以正常人 对照中的诱导基因表达水平为基线, 数据分析应用的是 T检验。
图 2 : IFIG高表达的 GD患者 (;包括 33位患者, 平均表达水平高于 2倍;)与 IFIG低表达的 GD患者 (;包括 21位患者,平均表达水平低于 2倍;)血清中自身抗 体 TSHR-Ab (;抗甲状腺剌激激素受体抗体;)、 TPO-Ab (;抗甲状腺过氧化物酶抗体;) 和 TG-Ab (抗甲状腺球蛋白抗体;)的平均表达水平分析。
图 3 : 重组 IFNoc对甲状腺细胞中 IFIG表达的剌激作用。 由 GD患者和非 GD患者体内分离得到甲状腺细胞, 用 100U/ml重组 IFNoc剌激后, 用定量 PCR 检测干扰素诱导基因 IFIT 1、 IFIT 4和 MX 1的表达水平。 其中:
(;國)表示单独用重组 IFNoc剌激; (▲)表示同时加入重组 IFNoc和 IFNoc抗体 244 (20 μ8/ηι1); (Τ)表示加入的是对照抗体 G3 ; (令)表示, 只有培养液, 没有 加干扰素剌激。
图 4 : 重组 IFNoc对 GD患者甲状腺细胞表达 MHC II类分子和 TSHR的剌 激作用。 GD 患者和非 GD 甲状腺细胞在接受重组 IFNoc剌激后, 用定量 PCR 检测 HLA-DR3、 HLA-DR5禾卩 TSHR的基因表达水平。
图 5 : HLA-DR、 TSHR和 IFNoc受体在 GD患者甲状腺组织中的表达。 用 定量 PCR和免疫组化分别对 GD患者和非 GD甲状腺组织中上述分子的表达水 平进行检测。
图 5a: 两例 GD患者和非 GD甲状腺组织分离后, 用定量 PCR检测其 中的基因表达水平。
图 5b-c :通过免疫组化对 GD患者和非 GD甲状腺组织的冰冻切片进行
HLA-DR、 TSHR和 IFNoc受体染色的结果, 箭头表示阳性细胞。 具体实施方式
本发明人经过长期而深入的研究发现: I型干扰素和它们的诱导基因 (IFIG) 在 GD疾病的免疫调节过程中发挥着重要作用。发明人通过进一步研究揭示了这 些物质在 GD患者中诱发 GD的免疫调节原理,从而为 GD的分型和个性化治疗提 供了新的分子标志物和方法。 在此基础上, 本发明人完成了本发明。
具体而言, 作为细胞因子, 干扰素能够在极低的浓度起作用。 当用干扰素 剌激效应细胞时, 能够在几小时内诱导干扰素诱导基因的表达。 在自身免疫性 疾病,比如系统性红斑狼疮患者体内,干扰素诱导基因比如 IFIT l、OAS、LY6E、 IFIT 4、 MX 1和 PRKR呈现高表达 [27,28]。虽然人们对大多数干扰素诱导基因的 功能还不太了解, 但是已经有研究表明, 它们在宿主的防御体系内起着重要作 用 [29]。
在本次研究中, 发明人在大量的 GD患者中研究了干扰素及干扰素诱导基 因的表达情况,并且把这些基因的表达情况与 GD疾病的临床症状和血清学检测 标准联系起来。 同时, 发明人还用 IFN a剌激了 GD患者和正常人的甲状腺细胞, 观察 IFN a诱导这些细胞表达 TSHR和 MHC II类分子的情况。 实验数据表明, 在 大部分 GD患者的外周淋巴细胞中, 存在着干扰素诱导基因的高表达, 同时, 干 扰素诱导基因的高表达与抗 TSHR抗体的高水平存在正相关。 并且, 数据还显 示 I型干扰素可诱导 GD患者中 TSHR和 MHC II类分子的高表达。
这些数据显示了:1型干扰素可在部分患者甲状腺细胞中通过诱导干扰素诱 导基因 (IFIG)的高表达,使得 GD患者甲状腺细胞高表达 MHC II类分子和 TSHR, 从而导致这些患者产生 GD。
本发明揭示了 I型干扰素和它们的诱导基因在 GD疾病的免疫调节过程中发 挥着重要作用, 这就解释了 I型干扰素及其诱导基因推动 GD的病理性免疫过程 的原因。 分子标志物
在本发明中, "分子标志物"、 "葛瑞夫兹氏病治疗方案选择和 /或预后指 标的分子标志物"可互换使用, 均表示本发明中可用于指示 GD治疗和 /或预后 效果、 并对其临床治疗方案选择具有指导意义的分子。 本发明的分子标志物为
I型干扰素 /干扰素诱导基因信号转导通路中的干扰素诱导基因或其表达产物, 例如 IFIT 1、 IFIT 4或 MX 1等。
根据本发明人的研究, 可根据 GD患者中干扰素诱导基因水平的高低, 将 其划分为 " I型干扰素敏感型"或 "非 I型干扰素敏感型" 。 如本文所用, 术语 " I型干扰素敏感型" 是指 GD 患者生物样品中干扰素诱导基因表达水平较正 常对照显著提高, 例如提高 2-100倍, 5-80倍, 10-50倍。 术语 "非 I型干扰素 敏感型" 是指 GD患者生物样品中干扰素诱导基因表达水平与正常对照相比未 发生显著变化或变化小于 2倍 (例如 1.7倍)。
通过比较发明人还发现, 所述 " I型干扰素敏感型" 患者中的抗 TSHR抗 体水平与"非 I型干扰素敏感型"患者相比有显著提高,例如提高 1-3倍、 1.5-2.5 倍。 该抗 TSHR抗体水平也可作为进一步确定 " I型干扰素敏感型" 患者的分 子生物学指标之一。 治疗方案选择和预后评估
通过本发明的上述分子标志物, 可对 GD患者进行进一步分型, 对其预后 评估和治疗方案选择具有指导意义。
本发明人的研究表明: 在 " I型干扰素敏感型" GD患者中, I型干扰素诱 导干扰素诱导基因 (IFIG)高表达, 从而激活 I型干扰素 /干扰素诱导基因信号通 路, 导致下游的抗 TSHR抗体高表达, 由此造成此类患者中发生 GD。
因此, 当检测结果显示干扰素诱导基因表达水平显著高于正常水平, 则表明 所述对象为 I型干扰素敏感型,提示对该对象使用阻断 I型干扰素 /干扰素诱导基因通 路的药物或方法进行治疗或预后可获得较佳的效果。
相应的, 本发明还提供了一种新的 GD (优选 " I型干扰素敏感型")治疗方 法, 即给予 GD患者 I型干扰素 /干扰素诱导基因通路阻断剂。 所述的通路阻断剂可 包括 (但不限于;): 抗 I型干扰素的抗体、 抗干扰素诱导基因表达产物的抗体、 I型干 扰素或干扰素诱导基因的干扰 RNA和 /或抗干扰素诱导基因表达的物质, 优选抗 IFNoc抗体。 试剂盒
本发明中还提供了用于对象中葛瑞夫兹氏病的分型、 治疗方案的选择和 /或 预后评估, 所述试剂盒包含: (a) 检测生物样品中干扰素诱导基因表达水平的一 种或多种试剂; 和 (b) 容纳所述试剂的容器。
生物样品可以是获自 GD患者的新鲜组织、 固定 (例如福尔马林、 丙酮;)或石 蜡包埋组织、 体液、 血液或细胞等, 优选为新鲜组织、 福尔马林固定或石蜡包 埋组织。 这些样品可为切片、 涂片、 悬液、 溶液等适于检测的各种形式存在, 例如在结合免疫组织化学的检测中, 优选采用石蜡切片标本。 优选在采集样品 前, 所述患者未经临床治疗。
用于本发明中的检测方法可采用本领域中常用的检测方法, 只要该方法可 检测出干扰素诱导基因表达水平的明显变化, 这些方法包括但不限于: 实时定量 PCR法、 免疫组织化学检测法、 蛋白质印迹法、 ELISA法、 流式细胞法、 生物 芯片法等定量检测方法, 本领域技术人员可根据需要进行选择。
可根据多种检测原理和方法, 按照需要在试剂盒中配备检测干扰素诱导基 因表达水平的试剂或试剂组。 在本发明中, "试剂组" 是指包含了检测所需的 多种试剂的试剂组合。
此外, 本发明的试剂盒还可根据需要包括: 容器、 对照物 (包括阳性或阴性对 照;)、 使用说明书、 缓冲剂、 免疫助剂等, 本领域技术人员可根据具体情况对其进 行选择。 本发明的优点
1. 揭示了干扰素诱导基因 (;例如 IFIT1和 IFIT4)可用于 GD分型, 可用作 GD临床诊断、 用药和预后的分子标志物;
2. 证明了 I型干扰素 (例如 IFN o 及干扰素诱导基因在 GD疾病的发生中所 起的重要作用, 提示通过阻断 I型干扰素 /干扰素诱导基因信号通路可用于治疗 GD。 实施例
下面结合具体实施例, 进一步阐述本发明。 以下实施例仅用于说明本发明 而不用于限制本发明的范围。 下面实施例中未注明具体条件的实验方法, 通常 按照常规条件,如《分子克隆实验手册》 (Molecular cloning: A laboratory manual, 3 rd ed., Sambrook等, Cold Spring Harbor Laboratory, 2001)中所述的条件, 或 按照制造厂商所建议的条件。
除非另外说明, 否则百分比和份数按重量计算。 除非另行定义, 文中所使 用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。 此外, 任何与 所记载内容相似或均等的方法及材料皆可应用于本发明中。 文中所述的较佳实 施方法与材料仅作示范之用。 试验方法与材料
1. 患者和对照的选用
此项研究从 2006年 3月一直持续到 2007年 3月, 研究组陆续从上海交通大学 附属瑞金医院收集到 54例初发甲亢患者样本。 所有患者都签订了知情同意书并 且整个项目通过了伦理委员会的审批。
所选用的初发甲亢病例, 都符合以下条件: 都没有经过药物治疗; 具有甲 亢的典型病症, 比如怕热、 疲劳、 食欲增加、 多汗和消瘦等; 甲状腺肿大; 临 床诊断包括血清 TSH增加, 甲状腺激素含量增加。
另外, 还收集了 20例正常人对照的样本。 所有样本都包括收集血清和外周 血单核细胞 (PBMC)的 RNA抽提。
2. PBMC(外周血单个核细胞)和血清样本
所有血样都在采集后马上进行分析或处理, 全程在 4°C条件下才进行操作。 每个样本包含 5毫升用肝素抗凝的血液, 离心后分离得到血浆。 离心剩下的细 胞用 Ficoll密度梯度离心 (300g, 20分钟)分离得到 PBMC。
分离得到的 PBMC经过裂解后, 用 RNeasy Mini Kit(Qiagen, Valencia, CA)抽 提得到总 RNA。分离得到的血浆一部分保存在 -80°C, 另一部分用检测试剂盒对 TSHR-Ab (RSR Ltd, UK)、 游离 T3(Abbott Laboratories, IL)、 游离 T4(Abbott Laboratories, IL)、 TSH( Abbott Laboratories, IL)、 TG-Ab和抗 -TPO-Ab(Biomerica, Inc. CA)水平进行临床检验。 3. 定量 PCR检测干扰素诱导基因的表达
为了检测 GD患者和正常人对照 PBMC中干扰素通路的活化情况, 用定量 PCR的方法, 对这些细胞中的 IFIG (包括 IFIT 1、 IFIT 4、 MX 1)进行检测。 每微 克总 RNA用 Reverse Transcriptase System(Promega, WI)在 20 μΐ体系中反转成 cDNA。 把反转体系稀释到 100 μ1(§Ρ ΐ : 5稀释), 取 0.5微升 cDNA (即稀释后的反 转体系)加入 5 μΐ SYBR green reagent (Applied Biosystems, Foster City, CA)禾口 10 μΜ的正向和反向引物进行实时定量 PCR反应(ABI Prism 7900 Sequence Detector i. 50 °C 2分钟 ii. 95 °C 5分钟 iii. 95 °C 15秒 iv. 55 °C 30秒 v. 72 °C 30秒)。 以 RP13A基因作为管家基因内参。 在每个循环, IFIT 1、 IFIT 4、 MX 1 和 RP 13A的荧光信息都被自动收集 (ABI 7900),从而得到一个 Ct值。 Ct值的大小, 与基因的含量成反比。
用于上述实时定量 PCR反应的引物序列如表 1所示: 表 1. 用于 IFIT实时定量 PCR检测的引物
Figure imgf000011_0001
4. 临床数据的采集
疾病的活动情况和疾病相关的组织损伤在病人就诊的时候, 由主治医师评 估并记录。 这些临床数据还根据病历的记录和临床检测数据的校正。 5. 甲状腺组织和甲状腺细胞的分离
GD患者的甲状腺组织由甲亢患者的手术切除中得到。 非 GD患者的甲状腺 组织由结节病人的手术摘除中取得。患者在手术摘除中,都签订了知情同意书, 整个研究还得到了上海交通大学伦理委员会的监督。 取下的甲状腺组织分别用 来提取总 RNA或者用于分离甲状腺细胞。
为了分离甲状腺细胞,将甲状腺组织机械切割成小块, 然后用 I型胶原酶 (Invitrogen, CA)¾HBSS (Hanks balanced saline solution,Invitrogen)培养液中消化 (37 °C , 20小时;)。 为了除去非贴壁细胞, 将消化后的组织细胞在含有 10% FBS(Hyclone)、 25 mM HEPES(Invitrogen), 2 mM L-谷氨酸 (Invitrogen)、 100 U/ml 青霉素(Invitrogen)和 100 g/ml 链霉素(Invitrogen)的 RPMI-1640(Hyclone, UT) 中培养过夜, 然后用培养液充分冲洗, 洗掉没有贴壁的细胞。 在贴壁细胞中加 入新鲜 1640培养基继续培养 6天, 得到甲状腺细胞。 所得细胞用抗甲状腺球蛋 白抗体 (PBL biomedical Laboratories, Piscataway, NJ)检测, 纯度超过 98%。 6. IFN α剌激实验 分离得到的甲状腺细胞经过胰酶消化后, 在 RPMI 1640(含 10% FCS、 2 mM 谷氨酸、 25 mM HEPES、 100 U/ml青霉素和 100 g/ml链霉素)中稀释到 105个细 胞 /ml, 37 °C培养 18小时 (5 %CO2)。 待细胞完全贴壁后, 小心的倒掉培养液, 并 用培养液冲洗几次,去除非贴壁细胞。然后,分别加入 0 U/ml或者 100 U/ml的 IFN α, 其中含有 /不含有 20 g/ml抗 IFNa抗体 244。 以无关抗体 IgGl用作对照抗体。 继续培养 24小时后, 用 RNeasy ^1^ 1^1提取总1^八, 然后反转录成 cDNA(反转 录系统如 3中所述;), 并用实时定量 PCR法 (;方法如 3中所述;)检测 MHC II类分子和 TSHR。
抗人 IFN α抗体 244的制备: 根据常规方法, 用人的 IFN a 2a蛋白免疫小鼠 后, 得到的杂交瘤细胞, 由该细胞分泌得到抗体 244。分泌的抗体用 A Sepharose 柱分离纯化, 再用离子交换柱 (Pharmacia, N.Y.)根据厂商提供的说明书操作, 得 到纯的抗体。 该抗体与市售的同类产品(例如 INTERFERON ALFA-2B, S chering-Plough)的结构与作用相同。
实时定量 PCR中所用引物序列如表 2所示: 表 2. 用于 MHC II类分子和 TSHR实时定量 PCR检测的引物
Figure imgf000013_0001
7. 冰冻切片和免疫组化
取手术中分离的组织块 (0.5 cm2)马上进行冷冻。 对冷冻组织进行 5 μΜ连续 切片后, 将冷冻切片在丙酮中固定 10分钟, 干燥后用山羊血清室温封闭 2小时, 然后加入抗 MHC II类抗体 (PBL biomedical Laboratories, Piscataway, NJ)或者 IFN受体抗体 (Biomeda Corp., Foster City, CA)做一抗 (加入量分别为 100 μ1), 4°C 孵育过夜。 第二天洗掉抗体, 用 AP偶联的抗小鼠抗体(PBL biomedical Laboratories, Piscataway, NJ)做二抗(100 μ1), 室温孵育 2小时, 对照为无关抗体 IgG。 显色后用苏木精复染, 封片观察。 实施例 1. 干扰素诱导基因在 GD患者外周血单个核细胞 (PBMC)中的表达
为了研究 IFNoc或者干扰素诱导基因在 GD患者外周血白细胞中的表达情 况, 采用灵敏的实时定量 PCR方法 (;参照 "试验方法与材料 3 ";)检测了 54例 GD 患者和 20例正常人外周血白细胞中的干扰素诱导基因 IFIT 1(图 la, 检测全部 54 例 GD患者样本)和 IFIT 4(图 lb, 仅检测了其中 30例 GD患者样本)表达情况。
所有的 GD患者都来自同一种族, 并且没有经过抗甲状腺药物治疗。 以正常 人对照中的诱导基因表达水平为基线, 数据分析应用的是 T检验。 选取 IFIT 1和 IFIT 4作为检测目标, 是因为在诸如由 IFNoc导致的自身免疫性疾病系统性红斑 狼疮 (; SLE)中, 这两个基因被认为是最重要的干扰素诱导基因 [27]。
数据表明, IFIT 1和 IFIT 4的 mRNA水平在部分 GD患者的 PBMC中呈现高表 达 (;图 1)。 对于 IFIT 1, 54例 GD患者中, 有 33例 (60%)呈现高表达, 并且平均表 达水平相比正常人提高了 12倍 ( <0.05)。 并且, IFIT 1高表达的患者中, IFIT 4 也发生高表达。 没有在任何样本中检测到游离 IFN oc蛋白的存在。 实施例 2. 干扰素诱导基因 IFIG的表达水平与 GD患者血清中抗 TSHR抗体水平 存在正相关
为了比较 IFIG的表达水平与 GD患者血清中自身抗体水平, 根据 IFIT 1的表 达水平把 GD患者分成两组, 一组是 IFIT 1高表达组 (;平均表达水平高于 2倍, 包 括 33位患者;), 另外一组是 IFIT 1低表达组 (平均表达水平低于 2倍, 包括 21位患 者)。 IFIT 1高表达组的 IFIT 1表达水平平均为 18.3(2-74.2), IFIT 1低表达组的 IFIT 1表达水平平均为 1(0.2-1.7)。
表 3显示了这两组患者的基本数据及检测结果, 其中共包括 42位女性患者 和 12位男性患者。 这两组患者的平均年龄分别为 31岁(13-57)和 34岁 (20-59岁), 平均患病时间是 2个月和 3个月。 参照 "试验方法与材料 2 " 中所述方法, 测定 并比较了两组 GD患者血清中自身抗体如 TSHR-Ab、 TPO-Ab和 TG-Ab的平均表 达水平。
表 3. IFIG高表达组和低表达组患者的基本数据及血清生化检测结果
Figure imgf000014_0001
由上述结果并未观察到 IFIG的表达水平与患者性别或者年龄之间的关系。 在这两组患者中, IFIG高表达组的 TSHR抗体平均水平为 17.91±14.18 U/L (n=33), 显著高于 IFIG低表达组的 8.04±11.27 U/L (n=21) (p=0.01) (图 2)。 该结果 明确表明: IFIG的表达水平与 GD患者体内 TSHR抗体水平呈正相关。
与之相反的是,通过上述结果并未观察到 IFIG的表达水平与 GD患者体内甲 状腺素 T3或者 T4之间存在关联 (;表 3)。 两组患者之间的血清 TSH水平 (;浓度分别 为 0.01 uIU/mL和 0.02 uIU/mL) , 抗甲状腺球蛋白抗体(比例分别为 37.81%和 32.09%)和抗 TPO抗体(浓度分别 129.72 pmol/L和 148.28 pmol/L)都没有显著差 升。 实施例 3. IFNoc能够诱导干扰素诱导基因在甲状腺细胞中的表达
为了与实施例 2中对 GD患者 PBMC的基因研究做比较, 我们分离培养了 3 例 GD患者和 3例正常甲状腺组织的细胞, 经过 100 U/ml的 IFNoc剌激 24小时后, 用实时定量 PCR的方法对 IFIT 1、 IFIT 4和 MX 1的表达水平做了分析 (;参照 "试 验方法与材料 2 " ) o
试验表明, IFNoc能够快速诱导 IFIG的表达 (图 3)。 在所检测的 3个基因中, IFIT 1受 IFNoc的诱导水平最强, 最高达到 158倍。 IFIT 4和 MX 1的受诱导水平分 别为 81倍和 36倍。 并且, IFIG的诱导水平能够被 IFNoc抗体完全阻断 (;图 3)。 我们 还能看到, 正常甲状腺细胞中 IFIG的受诱导水平要显著高于 GD患者甲状腺细 胞。
结果表明: IFNoc能够诱导甲状腺组织中 IFIG的表达。 GD患者的甲状腺细 胞已受到过 IFNoc的剌激, 所以对于 IFNoc的再剌激没有未受 IFNoc剌激的正常甲 状腺组织那么明显。 实施例 4. IFNoc能诱导 IFIT 1高表达的 GD患者甲状腺细胞中 MHC II类分子和 TSHR的表达
为了研究 IFNoc在 GD发生中起的作用, 我们对比了 IFIT 1高表达的 GD患者 和正常甲状腺组织在受到 IFNoc剌激后, MHC II类分子 (HLA-DR3和 HLA-DR5) 和 TSHR的表达水平。
实验结果显示: 重组 IFNoc能够诱导甲状腺细胞中 HLA-DR3、 HLA-DR5和
TSHR的表达(图 4)。 GD患者甲状腺细胞在受到 100 U/ml的 IFNoc剌激 12小时 (总 共剌激时间为 24小时, 所示数据为剌激 12小时时的数据;)后, HLA-DR3、 HLA-DR5和 TSHR的表达水平分别升高了 1.5倍、 2.3倍和 2.8倍, 存在显著差异。 与之相反的是,非 GD患者甲状腺细胞在受到 IFNoc剌激后,则基本不表达 MHC II 类分子和 TSHR。 HLA-DR3、 HLA-DR5的本底表达水平在 GD患者体内要显著高 于非 GD患者 (;数据未显示;)。
以上结果表明:IFNoc能够调节 GD患者甲状腺细胞中 MHC II类分子和 TSHR 的表达。 实施例 5. IFIT 1高表达的 GD患者的甲状腺组织高表达 HLA-DR、 TSHR和 IFNoc 受体
为了研究 IFIT 1高表达的 GD患者甲状腺组织中是否高表达 MHC II类分子 和 TSHR,我们分别用实时定量 PCR和免疫组化的方法对 GD患者和非 GD甲状腺 组织中上述分子的表达情况进行了分析。
实时定量 PCR的结果显示, 相比于非 GD患者, GD患者的甲状腺组织中高 表达 HLA-DR3、 HLA-DR5和 TSHR (;图 5a;)。 免疫组化的结果也显示, 在 GD患者 甲状腺组织中, 阳性细胞率 (平均一个视野里 20个;)要显著高于非 GD甲状腺组织 (整张片子就一个阳性细胞 X图 5b和 5c)。 对于 IFNoc受体水平的研究结果显示出 同样的趋势 (图 5b和 5c)。 结果讨论
在本研究中,本发明人发现在 60%的 GD患者中, IFIG出现高表达,并且 IFIG 的表达水平与血清中的 TSHR-Ab水平成正比。重组 IFN α可在非 GD和 GD患者的 甲状腺细胞中诱导 IFIG, 而在 GD患者的甲状腺细胞中则可进一步引起 MHC II 类分子 (HLA-DR2和 HLA-DR3)和 TSHR的表达。
以上数据表明, IFN α/IFIG通路在 GD中起着活化因子的作用。 虽然 GD患 者中 IFIGs表现出高表达, 我们也没能在 GD患者血清中检测出游离的 IFN a, 这 正说明了 IFIGs在 GD发病中起到了重要作用。 IFN a与其受体结合后, 能诱导多 种基因的表达, 包括几个大的 GTPases和包含 IFITs结构域的蛋白, 但是这些蛋 白的功能现有技术中知之甚少。 以前进行的研究, 基本都集中在这些基因的抗 病毒作用中。 比如, 一种 IFN诱导的 GTPases蛋白 MX, 就能抑制流感和 VSV病 毒的传播 [30,31] ; 病毒 RNA能有诱导 OAS的表达, 从而阻断病毒和宿主本身的 RNAa转录 [32]。 虽然 IFIGs在宿主抗病毒中发挥了重要作用, 同时也可能促进 人类疾病的发生。
最近的研究也表明, ITIGs中的 OAS、 MX 1和 IFIT 1与自身免疫性疾病系统 性红斑狼疮 (; SLE)的发病存在关联, 其中 IFIT 1可能通过与 R o/Rac作用, 激活 R o从而促进了 SLE的发生 [27,33]。 虽然 IFIGs能够诱导 MHC II类分子和 TSHR 的表达的原因还不是很清楚, 但是我们有理由相信, 它们在 GD的发病中, 发挥 了重要作用。
GD的发病机理和自身抗体的产生我们还不是很了解, 但是已经有证据表 明感染性因素可能会促进疾病的发生 [11-13]。 很多的因子, 包括病毒、 LPS[37,38]、 天然或合成的 RNA都能促进内源性 IFN的表达 [39,40], 以前的研究 表明被感染的细胞通过自分泌或者旁分泌来警告旁边的细胞 [34-36]。 因此, GD 患者甲状腺组织中 IFIGs的表达可能是由于感染因素引起。 已经有研究表明 IFN α在自身免疫性疾病中起到重要作用 [17]。 在 SLE中, 自身免疫可能的两种途径 分别是: 过量表达的 IFN通过激活 DC引起自身免疫性 Τ,Β细胞的活化; 和包含 核酸的免疫复合物通过与 TLR-7或者 TLR-的结合激活 DC的途径。
TSH通过与其受体 TSHR的结合导致甲状腺细胞的增殖和甲状腺激素的分 泌。 在 GD患者中, TSHR自身抗体能模拟 TSH的功能, 从而导致甲状腺激素的 过量分泌。 临床上, TSHR抗体的检测对于预测用抗甲状腺素药物的治疗效果 很有效 [41-44]。 由于抗甲状腺药物具有免疫抑制作用, 并且用药之后, 甲状腺 自身抗原表达的降低, 当 GD患者用抗甲状腺药物治疗后 TSHR抗体水平会下降 [25,43,45]。 在这次研究中, IFN α/IFIGs的水平与 TSHR抗体水平呈正比, 这提 示 IFIGs与 GD疾病的活动存在相关, 也使之成为疾病预测的一个指标。
有趣的是, IFN/IFIGs的激活能诱导 MHC II类分子的表达, 并且相对于非 GD, GD患者甲状腺受到 IFN剌激后, MHC II类分子表达程度更高。 MHC II类 分子在自身抗原呈递和免疫调剂方面起着重要作用。 通常情况下, HLA-DR的 表达只限于 B细胞、 DC、 巨噬细胞等抗原呈递细胞, 而人类内分泌细胞在通常 条件下, 不表达 MHC II类分子。 HLA-DR的识别是免疫激活的重要条件。 GD 患者甲状腺细胞表达的 HLA-DR可能会剌激 T细胞活化。 因此, 临床上阻断 IFN a/IFIGs, 能成为控制 GD自身免疫的手段之一。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献 被单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申 请所附权利要求书所限定的范围。
参考文献
1. Farid, N.R., Sampson, L., Noel, E.P., Barnard, J.M., Mandeville, R., Larsen, B., Marshall, W.H.,禾口 Carter, N.D. 1979. A study of human leukocyte D locus related antigens in Graves' disease. J. Clin. Invest. 63: 108- 113.
2. Farid, N.R., 禾卩 Thompson, C. 1986. HLA and autoimmune endocrine disease 1985. Mol. Biol. Med. 3:85-97.
3. Farid, N.R., Stone, E., 禾卩 Johnson. G. 1980. Graves' disease and HLA: clinical and epidemiologic associations. Clin. Endocrinol. (Oxf). 13:535-544. 4. Hanafusa, T., Pujol-Borrell, R., Chiovato, L., Russell, R.C., Doniach, D., 和 Bottazzo, G.F. 1983. Aberrant expression of HLA-DR antigen on thyrocytes in Graves' disease: relevance for autoimmunity. Lancet 2: 1 111- 1115.
5. Pujo-Borrell, R., Hanafusa, T., Chiovato, L., 禾口 Bottazzo, G.F. 1983.
Lectin-induced expression of DR antigen on human cultured follicular thyroid cells. Nature 304:71-73.
6. Sospedra, M., Obiols, G., Babi, L.F., Tolosa, E., Vargas, F., Roura-Mir, C, Lucas-Martin, A., Ercilla, G., 禾口 Pujol-Borrell, R. 1995. Hyperinducibility of HLA class II expression of thyroid follicular cells from Graves' disease. A primary defect? J. Immunol. 154:4213-4222.
7. Bech, K., Lumholtz, B., Nerup, J., Thomsen, M., Platz, P., Ryder, L.P., Svejgaard, A., Siersbaek-Nielsen, K., Hansen, J.M., 禾口 Larsen, J.H. 1977. HLA antigens in Graves' disease. Acta. Endocrinol. (Copenh) 86:510-516.
8. Zamani, M., Spaepen, M., Bex, M., Bouillon, R., 禾口 Cassiman, J.J. 2000.
Primary role of the HLA class II DRB 1*0301 allele in Graves disease. Am. J. Med. Genet. 95:432-437.
9. Shields, D.C., Ratanachaiyavong, S., McGregor, A.M., Collins, A., 和 Morton, N.E. 1994. Combined segregation and linkage analysis of Graves disease with a thyroid autoantibody diathesis. Am. J. Hum. Genet. 55:540-554.
10. Roman, S.H., Greenberg, D., Rubinstein, P., Wallenstein, S., 禾口 Davies, T.F.
1992. Genetics of autoimmune thyroid disease: lack of evidence for linkage to
HLA within families. J. Clin. Endocrinol. Metab. 74:496-503.
11. Valtonen, V.V., Ruutu, P., Varis, K., Ranki, M., Malkamaki, M., 禾卩 Makela, P.H. 1986. Serological evidence for the role of bacterial infections in the pathogenesis of thyroid diseases. Acta. Med. Scand. 219: 105- 111.
12. Joasoo, A., Robertson, P., 禾口 Murray, LP. 1975. Letter: Viral antibodies in thyrotoxicosis. Lancet 2: 125.
13. Testa, A., Castaldi, P., Fant, V., Fiore, G.F., Grieco, V., De Rosa, A., Pazardjiklian, M.G., 禾口 De Rosa, G. 2006. Prevalence of HCV antibodies in autoimmune thyroid disease. Eur. Rev. Med. Pharmacol. Sci. 10: 183-186.
14. Khoury, E ., Pereira, L., 禾口 Greenspan, F.S. 1991. Induction of HLA-DR expression on thyroid follicular cells by cytomegalovirus infection in vitro. Evidence for a dual mechanism of induction. Am. J. Pathol. 138: 1209- 1223. 15. Neufeld, D.S., Platzer, M., 禾口 Davies, T.F. 1989. Reovirus induction of MHC class II antigen in rat thyroid cells. Endocrinology 124:543-545. 16. Banchereau, J., 禾口 Pascual, V. 2006. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383-392.
17. Vilcek, J. 2006. Fifty years of interferon research: aiming at a moving target.
Immunity 25:343-348.
18. Stetson, D.B., 禾口 Medzhitov, R. 2006. Type I interferons in host defense.
Immunity 25:373-381.
19. Burman, P., Totterman, T.H., Oberg, K., 和 Karlsson, F.A. 1986. Thyroid autoimmunity in patients on long term therapy with leukocyte-derived interferon. J. Clin. Endocrinol. Metab. 63: 1086-1090.
20. Fentiman, I.S., Thomas, B.S., Balkwill, F.R., Rubens, R.D., 禾口 Hayward, J.L.
1985. Primary hypothyroidism associated with interferon therapy of breast cancer. Lancet 1 : 1166.
21. Prummel, M.F., 禾口 Laurberg, P. 2003. Interferon- alpha and autoimmune thyroid disease. Thyroid 13:547-551.
22. Koh, L.K., Greenspan, F.S., 禾口 Yeo, P.P. 1997. Interferon-alpha induced thyroid dysfunction: three clinical presentations and a review of the literature. Thyroid 7:891-896.
23. Mandac, J.C., Chaudhry, S., Sherman, K.E., 禾口 Tomer, Y. 2006. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43:661-672.
24. Preziati, D., La Rosa, L., Covini, G., Marcelli, R., Rescalli, S., Persani, L., Del Ninno, E., Meroni, P.L., Colombo, M., 和 Beck-Peccoz, P. 1995. Autoimmunity and thyroid function in patients with chronic active hepatitis treated with recombinant interferon alpha-2a. Eur. J. Endocrinol. 132:587-593. 25. Carella, C" Mazziotti, G., Morisco, F., Manganella, G., Rotondi, M., Tuccillo, C, Sorvillo, F., Caporaso, N., 禾卩 Amato, G. 2001. Long-term outcome of interferon-alpha-induced thyroid autoimmunity and prognostic influence of thyroid autoantibody pattern at the end of treatment.
J. Clin. Endocrinol. Metab. 86: 1925- 1929.
26. Watanabe, U" Hashimoto, E., Hisamitsu, T., Obata, H., 禾口 Hayashi, N. 1994.
The risk factor for development of thyroid disease during interferon-alpha therapy for chronic hepatitis C. Am. J. Gastroenterol. 89:399-403.
27. Bennett, L., Palucka, A.K., Arce, E., Cantrell, V., Borvak, J., Banchereau, J., 禾口 Pascual, V. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:71 1-723.
28. Crow, M.K., 禾口 Wohlgemuth, J. 2003. Micro array analysis of gene expression in lupus. Arthritis. Res. Ther. 5:279-287.
29. de Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J.M., Silverman, R.H., 禾口 Williams, B.R. 2001. Functional classification of interferon- stimulated genes identified using microarrays. J. Leukoc. Biol.
69:912-920.
30. Arnheiter, H., 禾口 Haller, O. 1988. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J. 7: 13 15- 1320. 3 1. Pavlovic, J., Schroder, A., Blank, A., Pitossi, F., 禾口 Staeheli, P. 1993. Mx proteins: GTPases involved in the interferon-induced antiviral state. Ciba Found Symp. 176:233-243.
32. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., 和 Schreiber, R.D.
1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227-264.
33. Ye, S" Pang, H., Gu, Y.Y., Hua, J., Chen, X.G., Bao, CD., Wang, Y., Zhang, W., Qian, J., Tsao, B.P., 等 . 2003. Protein interaction for an interferon-inducible systemic lupus associated gene, IFIT 1. Rheumatology (Oxford) 42: 1 155- 1 163.
34. Isaacs, A., 禾口 Lindenmann, J. 1957. Virus interference. I. The interferon.
Proc. R. Soc. Lond. B Biol. Sci. 147:258-267.
35. Isaacs, A., Lindenmann, J., 禾口 Valentine, R.C. 1957. Virus interference. II.
Some properties of interferon. Proc. R. Soc. Lond. B Biol. Sci. 147:268-273.
36. Nagano, Y., 禾口 Kojima, Y. 1958. [Inhibition of vaccinia infection by a liquid factor in tissues infected by homologous virus.]. C. R. Seances. Soc. Biol. Fil.
152: 1627- 1629.
37. Ho, M. 1964. Interferon-Like Viral Inhibitor in Rabbits after Intravenous Administration of Endotoxin. Science 146: 1472- 1474.
38. Stinebring, W.R., 禾口 Youngner, J. S. 1964. Patterns of Interferon Appearance in Mice Infected with Bacteria or Bacterial Endotoxin. Nature 204:712.
39. Kleinschmidt, W.J., Cline, J.C., 禾卩 Murphy, E.B. 1964. Interferon Production Induced by Statolon. Proc. Natl. Acad. Sci. U S A 52:741-744.
40. Field, A.K., Lampson, G.P., Tytell, A.A., Nemes, M.M., 禾卩 Hilleman, M.R.
1967. Inducers of interferon and host resistance, IV. Double-stranded replicative form RNA (MS2-Ff-RNA) from E. coli infected with MS2 coliphage. Proc. Natl. Acad. Sci. U S A 58:2102-2108.
41. Szkudlinski, M.W., Fremont, V., Ronin, C" 禾口 Weintraub, B.D. 2002.
Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev. 82:473-502.
42. Van Vliet, G. 2003. Development of the thyroid gland: lessons from congenitally hypothyroid mice and men. Clin. Genet. 63:445-455.
43. De Felice, M., Postiglione, M.P., 禾口 Di Lauro, R. 2004. Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 145:4062-4067.
44. Postiglione, M.P., Parlato, R., Rodriguez-Mallon, A., Rosica, A., Mithbaokar, P., Maresca, M., Marians, R.C, Davies, T.F., Zannini, M. S., De Felice, M.,等. 2002. Role of the thyroid- stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc. Natl. Acad. Sci. U S A 99: 15462- 15467.
45. Brown, R. S. 2004. Minireview: developmental regulation of thyrotropin receptor gene expression in the fetal and newborn thyroid. Endocrinology
145:4058-4061.

Claims

权 利 要 求
1. 一种试剂盒, 其用于对象中葛瑞夫兹氏病的分型、 治疗方案的选择和 /或 预后评估, 所述试剂盒包含:
(a) 检测生物样品中干扰素诱导基因表达水平的一种或多种试剂;
(b) 容纳所述试剂的容器; 以及
(c) 任选的检测生物样品中抗 TSHR抗体水平的一种或多种试剂。
2. 如权利要求 1所述的试剂盒, 其特征在于, 所述生物样品是: 外周血单核细 胞、 甲状腺细胞或甲状腺组织。
3. 如权利要求 1所述的试剂盒, 其特征在于, 所述干扰素诱导基因是选自下组 中的一种或多种: IFIT 1、 IFIT 4、 MX OAS, LY6E或 PRKR。
4. 如权利要求 1所述的试剂盒, 其特征在于, 所述试剂是用于选自下组的检测 方法的试剂: 实时定量 PCR检测、 免疫组化检测或免疫印迹检测。
5. 如权利要求 1所述的试剂盒, 其特征在于, 所述试剂盒还包含临床上用于诊 断或检测葛瑞夫兹氏病的其它试剂。
6. 干扰素诱导基因测试试剂或试剂组在制备用于葛瑞夫兹氏病的分型、 治 疗方案的选择和 /或预后评估的试剂盒中的用途。
7. 干扰素诱导基因在作为葛瑞夫兹氏病的分型、治疗方案的选择和 /或预后 评估的分子标志物中的用途。
8. 一种对葛瑞夫兹氏病的分型、 治疗方案的选择和 /或预后评估的方法, 所述方法包括:
(a) 检测对象中干扰素诱导基因的表达水平;
(b) 将 (a)中检测的干扰素诱导基因的表达水平与正常对照进行比较; 若所述对象的干扰素诱导基因表达水平显著高于正常对照, 则表明所述对象 为 I型干扰素敏感型,提示对该对象适于使用阻断 I型干扰素 /干扰素诱导基因通路的 药物或方法进行治疗或预后。
9. I型干扰素 /干扰素诱导基因信号通路阻断剂在制备治疗葛瑞夫兹氏病的药 物中的用途。
10. 如权利要求 9所述的用途, 其特征在于, 所述药物用于对 I型干扰素敏感 的葛瑞夫兹氏病患者。
PCT/CN2011/070050 2010-01-12 2011-01-06 用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒 WO2011085653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010022648.0 2010-01-12
CN201010022648 2010-01-12

Publications (1)

Publication Number Publication Date
WO2011085653A1 true WO2011085653A1 (zh) 2011-07-21

Family

ID=44303832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070050 WO2011085653A1 (zh) 2010-01-12 2011-01-06 用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒

Country Status (2)

Country Link
CN (1) CN102154458A (zh)
WO (1) WO2011085653A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081950A (ko) * 2021-11-30 2023-06-08 가톨릭대학교 산학협력단 갑상선 안병증의 진단을 위한 바이오마커 및 이의 용도

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636418A (zh) * 2016-12-30 2017-05-10 河北德路通生物科技有限公司 荧光定量RT‑PCR检测促甲状腺激素受体基因mRNA表达的试剂盒及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326290A (zh) * 2005-09-27 2008-12-17 数字基因组学株式会社 用于预测急性髓系白血病病人对抗癌药物应答的标记物
CN101473045A (zh) * 2006-04-24 2009-07-01 健泰科生物技术公司 用于检测自身免疫性病症的方法和组合物
CN101594882A (zh) * 2006-12-06 2009-12-02 米迪缪尼有限公司 干扰素α诱导的药代动力学标记物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326290A (zh) * 2005-09-27 2008-12-17 数字基因组学株式会社 用于预测急性髓系白血病病人对抗癌药物应答的标记物
CN101473045A (zh) * 2006-04-24 2009-07-01 健泰科生物技术公司 用于检测自身免疫性病症的方法和组合物
CN101594882A (zh) * 2006-12-06 2009-12-02 米迪缪尼有限公司 干扰素α诱导的药代动力学标记物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081950A (ko) * 2021-11-30 2023-06-08 가톨릭대학교 산학협력단 갑상선 안병증의 진단을 위한 바이오마커 및 이의 용도
KR102638210B1 (ko) 2021-11-30 2024-02-19 가톨릭대학교 산학협력단 갑상선 안병증의 진단을 위한 바이오마커 및 이의 용도

Also Published As

Publication number Publication date
CN102154458A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
Nezos et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis
Kuang et al. Expression of IFNα-inducible genes and modulation of HLA-DR and thyroid stimulating hormone receptors in Graves’ disease
WO2008106451A2 (en) Methods of using single nucleotide polymorphisms in the tl1a gene to predict or diagnose inflammatory bowel disease
EP2513336B1 (en) Method for characterizing host immune function by ex vivo induction of offensive and defensive immune markers
KR20080080525A (ko) 유전자 전사에 대한 fgfr3의 억제제의 효과
US20140155280A1 (en) Method of diagnosing neoplasms
WO2009130176A1 (en) Antiviral Therapy
EP3922641A1 (en) Methods for detecting and treating covid patients requiring intensive care
Jiang et al. The value of MiR-146a and MiR-4484 expressions in the diagnosis of anti-SSA antibody positive Sjogren syndrome and the correlations with prognosis.
WO2011085653A1 (zh) 用于鉴定和治疗葛瑞夫兹氏病的方法和试剂盒
EP4073521A2 (en) Materials and methods for monitoring inflammation
Blanchard Gene expression profiling of early involuting mammary gland reveals novel genes potentially relevant to human breast cancer anne blanchard, robert shiu 2, stephanie booth 4, garrett sorensen 4, nicole decorby1, andreea nistor1, paul wong 5, etienne leygue3 and yvonne myal
Hu et al. Association of ulcerative colitis with TNF-related apoptosis inducing ligand (TRAIL) gene polymorphisms and plasma soluble TRAIL levels in Chinese Han population.
US20070117105A1 (en) Interferon assay
JP2005536212A (ja) 慢性拒絶反応の診断法
JP2021505634A (ja) 膀胱がんインターフェロン療法のためのCDKN2aコンパニオン診断
WO2011159970A2 (en) Method for predicting a therapy response in subjects with multiple sclerosis
Fadel et al. Fas/Fas Ligand pathways gene polymorphisms in pediatric renal allograft rejection
Peng et al. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies
Lykowska-Szuber et al. Variants of the CASP9 gene as candidate markers for primary response to anti-TNF therapy in Crohn’s disease patients
JP2017502663A (ja) Hbv治療反応に関するバイオマーカー
Fischer et al. Sex‐differences in the association of interleukin‐10 and interleukin‐12 variants with the progression of hepatitis B virus infection in Caucasians
Ibrahim et al. Tumor Necrosis Factor Superfamily Member 15 (TNFSF15) rs4979462 Variant and TNFSF15 Serum Levels Evaluation in Systemic Lupus Erythematosus
Tang et al. Analysis of differential gene expression between chronic hepatitis B patients and asymptomatic hepatitis B carriers
Ghazalah et al. Genetic study of I kappa B alpha gene promoter polymorphism associated with hepatitis C virus in Egyptian patients

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732643

Country of ref document: EP

Kind code of ref document: A1