WO2011085587A1 - 微波传输同步数字体系信号的方法、系统及设备 - Google Patents

微波传输同步数字体系信号的方法、系统及设备 Download PDF

Info

Publication number
WO2011085587A1
WO2011085587A1 PCT/CN2010/075855 CN2010075855W WO2011085587A1 WO 2011085587 A1 WO2011085587 A1 WO 2011085587A1 CN 2010075855 W CN2010075855 W CN 2010075855W WO 2011085587 A1 WO2011085587 A1 WO 2011085587A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency information
microwave
adjustment frequency
adjustment
information
Prior art date
Application number
PCT/CN2010/075855
Other languages
English (en)
French (fr)
Inventor
罗欣
张贻华
涂拥军
胡正超
漆凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES10842870.7T priority Critical patent/ES2455972T3/es
Priority to IN4907KON2011 priority patent/IN2011KN04907A/en
Priority to EP10842870.7A priority patent/EP2432146B1/en
Priority to CN201080003594.1A priority patent/CN102439883B/zh
Priority to RU2013107763/08A priority patent/RU2530298C1/ru
Priority to AU2010342694A priority patent/AU2010342694B2/en
Priority to PCT/CN2010/075855 priority patent/WO2011085587A1/zh
Priority to CA2804418A priority patent/CA2804418C/en
Publication of WO2011085587A1 publication Critical patent/WO2011085587A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0623Synchronous multiplexing systems, e.g. synchronous digital hierarchy/synchronous optical network (SDH/SONET), synchronisation with a pointer process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/003Medium of transmission, e.g. fibre, cable, radio
    • H04J2203/0035Radio

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system and device for transmitting signals of a synchronous digital system by microwave. Background technique
  • Microwave communication is a communication means for transmitting information by using microwave as a carrier. Because it has good disaster resistance performance and relatively simple requirements for the geographical environment of base station construction, it has broad application prospects.
  • the prior art first demaps VC (Virtual Container) _4 by the microwave source device.
  • the obtained 2048 kbit/s data stream E1 is mapped to the microwave frame, and is transmitted to the microwave sink device through the air interface, so that the microwave sink device demaps the microwave frame, extracts the El, and then performs mapping to realize the VC-4 reorganization.
  • the TU (Tributary Unit) -12 is solved from the VC-4 by the microwave source device, and the TU-12 is encapsulated into the microwave frame and transmitted to the microwave sink device.
  • the microwave sink device is Compared with the E1 sent by the microwave source device, the phase offset is larger, that is, the E1 of the microwave sink device reorganizes has a large drift; whereas the prior art 2 transmits the TU-12, the microwave sink.
  • the TU-12 that the device can solve from the microwave frame can maintain the consistency with the microwave source device, so that its clock performance is not damaged during the transmission process.
  • the TU-12 contains management information such as pointers and overheads, it is encapsulated to The microwave frame occupies a lot of valuable bandwidth, thus reducing bandwidth utilization. Summary of the invention
  • the embodiment of the invention provides a method, system and device for transmitting a synchronous digital system signal by microwave.
  • the technical solution is as follows:
  • a method of transmitting a synchronous digital system signal by microwave comprising:
  • the microwave source device demaps the synchronous digital system SDH signal received in one microwave frame period, and obtains positive and negative adjustment state values of the service information and the asynchronous bit mapping of the service information;
  • a system for transmitting a data stream by microwave comprising:
  • a microwave source device configured to demap the synchronous digital system SDH signal received in one microwave frame period, to obtain a positive and negative adjustment state value of the service information and the asynchronous bit map of the service information; and adjust the state value according to the positive and negative values Generating the adjustment frequency information; encapsulating the de-mapped service information and the generated adjustment frequency information into a microwave frame and transmitting the same; the microwave sink device, configured to receive the service information and the adjustment frequency sent by the microwave source device a microwave frame of the degree information; and reorganizing the service information according to the adjustment frequency information.
  • microwave device comprising:
  • a demapping module configured to demap the synchronous digital system SDH signal received in one microwave frame period, to obtain a positive and negative adjustment state value of the service information and the asynchronous bit mapping of the service information;
  • a generating module configured to generate adjustment frequency information according to the positive and negative adjustment state values obtained by the demapping module de-mapping; a transmission module, the service information used to demap the demapping module, and the generated by the generating module The adjustment frequency information is transmitted to the microwave sink device, so that the microwave sink device reorganizes the service information according to the adjustment frequency information.
  • microwave device comprising:
  • a receiving module configured to receive service information and adjust frequency information sent by the microwave source device
  • a reassembly module configured to reassemble the service information received by the receiving module according to the adjustment frequency information received by the receiving module.
  • the SDH signal is demapped by the microwave source device, and the adjusted frequency information is generated after the demapping positive and negative adjustment state values are generated, and only the demapped service information and the generated adjustment frequency information are transmitted to the microwave sink.
  • the end device enables the microwave sink device to reorganize the service information according to the adjusted frequency information, which not only ensures high utilization of the microwave bandwidth, but also satisfies the drift performance requirement of the service information after the reorganization of the microwave sink device, and realizes the long-chain group.
  • the network transmits, and further realizes the long-distance transmission of the SDH signal in the microwave.
  • FIG. 1 is a flow chart of a method for transmitting a synchronous digital system signal by microwave according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of a method for transmitting a synchronous digital system signal by microwave according to a second embodiment of the present invention
  • Embodiment 3 is a schematic structural diagram of an SDH multiplexing mapping provided by Embodiment 2 of the present invention.
  • Embodiment 4 is a schematic diagram of service information demapping provided by Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram showing the principle of a microwave transmission synchronous digital system signal according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a system for transmitting a synchronous digital system signal of a microwave transmission according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic structural diagram of a microwave device according to Embodiment 4 of the present invention
  • Embodiment 8 is a schematic structural diagram of a microwave device according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram of another microwave device according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of still another microwave device according to Embodiment 5 of the present invention. detailed description
  • the embodiment provides a method for transmitting a synchronous digital system signal by microwave.
  • the method is specifically as follows: 101: A microwave source device demaps a synchronous digital system SDH signal received in a microwave frame period to obtain a service. Positive and negative adjustment state values of asynchronous bit mapping of information and service information;
  • the service information obtained by the demapping and the generated adjustment frequency information are transmitted to the microwave sink device, so that the microwave sink device reorganizes the service information according to the adjustment frequency information.
  • the SDH signal is demapped by the microwave source device, and after the adjustment frequency information is generated by using the positive and negative adjustment state values obtained by the demapping, only the service information obtained by the demapping and the generated adjustment are obtained.
  • the frequency information is transmitted to the microwave sink device, so that the microwave sink device reorganizes the service information according to the adjustment frequency information, which not only ensures the high utilization of the microwave bandwidth, but also enables the service information transmitted between any two microwave devices.
  • the drift performance requirement is met, so that long-chain networking transmission can be realized, and then the long-distance transmission of the SDH signal can be realized in the microwave.
  • the embodiment provides a method for transmitting a synchronous digital system signal by microwave.
  • the service information in the SDH signal transmitted by the microwave in this embodiment is 2048 kbit/s data stream E1, and the frame structure STM of the SDH signal is adopted.
  • the solution is a low-order channel signal transmission. Correct El, G. 823 (The control of jitter and wander within digital networks which are based on the 2048 k bit/s hierarchy) clearly sets the jitter drift performance of El.
  • microwave transmission since the microwave can only be transmitted in a straight line within the line of sight range, the transmission distance between the two microwave stations cannot be very far, and the long chain is required when the transmission distance is long, and the E1 service is After long-chain transmission, the drift will increase greatly. If you want to maintain good drift performance, you need to transmit additional clock information and take up valuable microwave bandwidth.
  • the method provided in this embodiment separates the service information and the clock information, and independently transmits the different channels in the microwave frame to enable the microwave sink device.
  • the service information is reorganized according to the received clock information, so that the original clock information can be maintained on each microwave device of the long-chain transmission. Referring to FIG. 2, the process of the method provided in this embodiment is specifically as follows:
  • the microwave source device is demapped from the VC-4 to obtain the positive and negative adjustment states of the E1 and E1 asynchronous bit maps.
  • mapping is to process the service information of various rates into the corresponding standard container by the code rate adjustment, and then add the channel overhead to form the virtual container.
  • the frame phase deviation is called the frame offset; the positioning is to receive the frame offset information.
  • the process of entering the branch unit or the management unit; multiplexing is to pass multiple low-cost channel layer signals through the code rate adjustment to enter the high-priced channel or to pass multiple high-priced channel layer signals through the code rate adjustment to enter the multiplexing layer process.
  • C is a container
  • VC is a virtual container
  • TU is a tributary unit
  • TUG is a tributary unit group
  • AU is a management unit
  • AUG is a management unit group.
  • the subscript indicates the signal level corresponding to this multiplexing unit.
  • E1 has a rate range of 2. 046 Mbit/s to 2.050 Mbit/s and can be loaded into a standard C-12 container.
  • C-12 needs to be repackaged, that is, the corresponding channel overhead (lower-order channel overhead) is added, making it the information structure of VC-12.
  • the corresponding channel overhead lower-order channel overhead
  • M C1C2RRRRRS1
  • R is a fixed insertion non-information bit
  • I is an information bit
  • 0 is an overhead bit
  • the adjustment frequency information of the C-12 is generated, according to the values of the positive and negative adjustment states C1 and C2 obtained by the demapping, the adjustment frequency information of the C-12; wherein, from the schematic diagram of the SDH multiplexing mapping structure shown in FIG. 3, a VC-4 corresponds to 63 TU_12, each TU12 has two adjustment information bits of C1 and C2, and the values of positive and negative adjustment states Cl and C2 obtained according to the demapping
  • the method provided in this embodiment is to accumulate the values of the positive and negative adjustment states Cl and C2 of each TU-12 corresponding to all VC-4s in one frame period, and accumulate the values. The result is used as the adjustment frequency information.
  • the microwave source device receives M VC-4s in one frame period. Since each VC-4 corresponds to 63 TU_12s, the positive and negative of each TU-12 corresponding to all VC-4s in one frame period.
  • the values of the adjustment states C1 and C2 are respectively accumulated, the values of Cl and C2 in the first TU-12 corresponding to each of the M VC-4s may be accumulated, and the second TU corresponding to each of the M VC-4s is added.
  • Cl, C2 are accumulated in -12, and so on, until the values of Cl and C2 in the 63th TU-12 corresponding to each of the M VC-4s are accumulated, and 63 accumulated results are obtained, and each accumulated result is used as the adjustment frequency.
  • an accumulating/subtracting counter can be used; when the forward adjustment is made once in the microwave source device, the value is increased by 1, and 2 positive adjustments occur, then the value is increased by 2, and so on; When the negative direction adjustment occurs in the microwave source device, the value is decremented by 1, and when the negative adjustment occurs twice, the value is decremented by 2, and so on.
  • the adjustment frequency information may further include a parity check, so that the subsequent step of transmitting the adjustment frequency information to the microwave sink device enables the microwave sink device to check the received adjustment frequency information. To ensure the correctness of the received adjustment frequency information, see the next steps.
  • the number of bits of the adjustment frequency information is K (including the check digit), and the number of VC4 frames received by the microwave source device in one microwave frame period is M, and both M and K are integers greater than 0.
  • This embodiment does not limit the specific values of M and K. Since each frame VC4 has 63 TU12s, each TU12 has two adjustment information bits of C1 and C2. If the method provided by the prior art is used, the air interface needs to transmit (M*63*2) bits, and if this embodiment is provided, The method requires that the air port needs to pass (63*K) bits; in a typical application, the range of ( ⁇ *2) is in the range of 8-18 according to the microwave frame modulation mode, and when it is set to 5, it can meet the actual application requirements. Therefore, the method provided by this embodiment can save bandwidth compared to the prior art.
  • the E1 encapsulated by the demapping may be encapsulated into a microwave frame by using an air interface in an asynchronous byte mapping manner, and transmitted to the microwave sink device.
  • the method provided in this embodiment further needs to add a C-12 adjustment frequency information in the microwave frame, and transmit it to the microwave sink device together with the E1 using different channels.
  • the specific location of the E1 and the adjustment frequency information encapsulated in the microwave frame may be determined in advance by the microwave source device and the microwave sink device. For example, the microwave source device and the microwave sink device are pre-negotiated.
  • the first byte in the microwave frame carries the El
  • the second byte carries the adjustment frequency information.
  • the microwave sink device After the microwave source device sends the microwave frame to the microwave sink device, the microwave sink device according to the first and the second after the mapping The two bytes get E1 and the adjustment frequency information. In addition, you can choose other bytes to carry E1 and adjust the frequency information, or you can choose other ways to make the microwave sink device Determining the specific location of the El and the adjustment frequency information in the microwave frame is not limited in this embodiment. After the microwave sink device receives the microwave frame, it can demap the microwave frame to obtain the E1 and adjust the frequency information. can.
  • the transmission frequency of the adjustment frequency information is sent once every microwave frame period, and only contains C-12 bit mapping adjustment information, and does not include other information of the TU-12, so the bandwidth occupation rate is far. Less than the way to directly transmit TU-12.
  • the microwave sink device reorganizes E1 according to the adjustment frequency information of C-12.
  • the microwave sink device also stores a reserved adjustment frequency information locally; when the microwave sink device decapsulates the microwave frame to obtain the adjustment frequency information, it needs to refresh the local storage according to the received adjustment frequency information. Adjust the frequency information. Therefore, before the re-combining the service information by the microwave sink device according to the adjustment frequency information, the method further includes: comparing the received adjustment frequency information with the locally stored adjustment frequency information;
  • the local storage adjustment frequency information is positively adjusted
  • the locally stored adjustment frequency information is negatively adjusted
  • the locally stored adjustment frequency information is maintained.
  • the adjustment range is the difference between the received adjustment frequency information and the locally stored adjustment frequency information. For example: If the received adjustment frequency information is 2, and the locally stored adjustment frequency information is 1, the locally stored adjustment frequency information is forwardly adjusted by one amplitude; if the received adjustment frequency information is 1 The locally stored adjustment frequency information is 2, and the locally stored adjustment frequency information is negatively adjusted by one amplitude.
  • the microwave sink device needs to perform parity check on the received adjustment frequency information, and when the received adjustment frequency information is guaranteed to have no parity error, Then, the comparison is performed, and the locally stored adjustment frequency information is refreshed according to the comparison result. If there is an error in the parity, the received adjustment frequency information is ignored.
  • the adjustment frequency information (difference value) of the C-12 the E1 obtained by de-mapping from the microwave frame is mapped to the C-12 according to the same adjustment frequency as when transmitting by the microwave source device, and is sequentially multiplexed. , packaged into VC-4.
  • the microwave sink device reorganizes E1 according to the adjustment frequency information of C-12, if the microwave source device is synchronized with the system clock of the microwave sink device, it is not necessary to adjust the generated TU-12 pointer.
  • the microwave source device is asynchronous with the system clock of the microwave sink device, the microwave sink device needs to adjust the clock according to the E1 FIFO (First In First Out) watermark to absorb the clock difference, that is, according to the E1.
  • the buffer status is adjusted by pointer; the specific process is as follows:
  • the pointer If the buffer status of E1 (ie, the FIFO water line) is higher than the upper threshold, the pointer is negatively adjusted; If the buffer state of El (ie, the FIFO watermark) is below the lower threshold, the pointer is forward adjusted.
  • the upper limit and the lower line of the threshold are not specifically limited in this embodiment.
  • the SDH signal is demapped by the microwave source device, and after the adjustment frequency information is generated by using the positive and negative adjustment state values obtained by the demapping, only the service information obtained by the demapping and the generated adjustment are obtained.
  • the frequency information is transmitted to the microwave sink device, so that the microwave sink device maps the received service information to the C-12 according to the adjustment frequency when the microwave source device transmits, and performs the step-by-stage multiplexing and then encapsulates into VC- 4, thereby realizing the reorganization of the service information according to the adjustment frequency information, not only ensuring high utilization of the microwave bandwidth, but also enabling the service information transmitted between any two microwave devices to meet the drift performance requirement, thereby realizing the long chain group
  • the network transmits, and further realizes the long-distance transmission of the SDH signal in the microwave.
  • this embodiment provides a system for transmitting a synchronous digital system signal by microwave, the system comprising: a microwave source device 601 and a microwave sink device 602;
  • the microwave source device 601 is configured to demap the synchronous digital system SDH signal received in one microwave frame period, and obtain the positive and negative adjustment state values of the service information and the service information asynchronous bit map; generate the adjustment frequency according to the positive and negative adjustment state values. Degree information; encapsulating the service information obtained by the demapping and the generated adjustment frequency information into a microwave frame and transmitting;
  • the microwave sink device 602 is configured to receive a microwave frame that includes the service information and the adjustment frequency information sent by the microwave source device 601, and reassemble the service information according to the adjustment frequency information.
  • the microwave source device 601 is configured to accumulate all the positive and negative adjustment state values obtained by demapping in one microwave frame period to generate the adjustment frequency information when generating the adjustment frequency information according to the positive and negative adjustment state values.
  • the microwave sink device 602 is further configured to compare the received adjustment frequency information with the locally stored adjustment frequency information according to the adjusted frequency information, and compare the received adjustment frequency information to be greater than
  • the locally stored adjustment frequency information is adjusted in the forward direction; when the received adjustment frequency information is compared to the locally stored adjustment frequency information, the locally stored adjustment frequency information is negatively adjusted.
  • the locally stored adjustment frequency information is maintained.
  • the microwave sink device 602 When the microwave sink device 602 reassembles the service information according to the adjustment frequency information, when the microwave source device 601 and the microwave sink device 602 are asynchronous, if the cache state of the service information is higher than the upper threshold, the The pointer is adjusted negatively; if the cache status of the service information is lower than the lower threshold, the pointer is adjusted positively.
  • the system for transmitting a synchronous digital system signal by microwave in the embodiment provides the SDH signal through the microwave source device After the demapping map is generated, and the adjustment frequency information is generated by the decimated positive and negative adjustment state values, only the service information obtained by the demapping and the generated adjustment frequency information are transmitted to the microwave sink device, so that the microwave sink device.
  • the reorganization of the service information according to the adjustment frequency information not only ensures the high utilization of the microwave bandwidth, but also satisfies the drift performance requirement of the service information, so that it can realize long-chain networking transmission, and then realize the SDH signal in the microwave. Long distance transmission.
  • this embodiment provides a microwave device, where the microwave device includes:
  • the demapping module 701 is configured to demap the synchronous digital system SDH signal received in one microwave frame period, and obtain the positive and negative adjustment state values of the service information and the asynchronous bit mapping of the service information;
  • the generating module 702 is configured to generate, according to the positive and negative adjustment state values obtained by the demapping module 701, the adjustment frequency information;
  • the transmission module 703 is configured to transmit the service information obtained by the demapping module 701 and the adjustment frequency information generated by the generating module 702 to the microwave sink device, so that the microwave sink device reorganizes the service information according to the adjustment frequency information.
  • the generating module 702 is specifically configured to accumulate all the positive and negative adjustment state values obtained by de-mapping the demapping module 701 in one microwave frame period to obtain the adjustment frequency information.
  • the microwave device In the microwave device provided by the embodiment, after the SDH signal is demapped, and the adjusted frequency information is generated by using the positive and negative adjustment state values obtained by the demapping, only the service information obtained by the demapping and the generated adjustment frequency information are generated.
  • the device is transmitted to the microwave sink device, so that the microwave sink device reorganizes the service information according to the adjustment frequency information, which not only ensures high utilization of the microwave bandwidth, but also satisfies the drift performance requirement of the service information, so that the long-chain group can be realized.
  • the network transmits, and further realizes the long-distance transmission of the SDH signal in the microwave.
  • this embodiment provides a microwave device, where the microwave device includes:
  • the receiving module 801 is configured to receive service information and adjustment frequency information sent by the microwave source device.
  • the reassembly module 802 is configured to reassemble the service information received by the receiving module 801 according to the adjustment frequency information received by the receiving module 801.
  • the microwave device further includes:
  • the comparing module 803 is configured to compare the adjustment frequency information received by the receiving module 801 with the locally stored adjustment frequency information;
  • the refreshing module 804 is configured to: when the comparison module 803 determines that the adjustment frequency information received by the receiving module 801 is greater than the locally stored adjustment frequency information, adjust the locally stored adjustment frequency information in a forward direction; Mode When the adjustment frequency information received by the block 801 is smaller than the locally stored adjustment frequency information, the locally stored adjustment frequency information is negatively adjusted; and the comparison module 803 determines that the adjustment frequency information received by the receiving module 801 is equal to the local storage. When the frequency information is adjusted, the locally stored adjustment frequency information is maintained.
  • the microwave device further includes:
  • the pointer adjustment module 805 is configured to: if the buffer status of the service information is higher than the upper threshold, the pointer is negatively adjusted; if the cache status of the service information is lower than the lower threshold, Then the pointer is adjusted in the forward direction.
  • the microwave device provided by the embodiment can receive the service information and the adjustment frequency information sent by the microwave source device, and reorganize the service information according to the adjustment frequency information, thereby ensuring high utilization of the microwave bandwidth and satisfying the service.
  • the drift performance of the information requires that it can carry out long-chain networking transmission, and then realize long-distance transmission of SDH signals in the microwave.
  • the microwave device provided by the foregoing embodiment transmits the synchronous digital system signal and reorganizes the service information, only the division of the foregoing functional modules is illustrated. In actual applications, the foregoing functions may be allocated differently according to requirements.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • system and the micro-wave device for transmitting the synchronous digital system signal of the microwave transmission are all in the same concept as the method for the method of transmitting the synchronous digital system signal by the microwave.
  • the specific implementation process is described in the method embodiment, and details are not described herein again.
  • Some of the steps in the embodiment of the present invention may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

微波传输同歩数字体系信号的方法、 系统及设备 技术领域
本发明涉及通信领域, 特别涉及一种微波传输同步数字体系信号的方法、 系统及设备。 背景技术
微波通信是用微波作为载体传送说信息的一种通信手段, 因其具有良好的抗灾性能, 且 对基站建设的地理环境等因素的要求相对简单, 因而具有广泛的应用前景。
针对通过微波传输 SDH ( Synchronous Digital Hierarchy, 同步数字体系) 信号的应 用场景, 现有技术一先由微波源端设备对 VC (Virtual Container, 虚容器) _4解映射, 书
将得到的 2048k bit/s数据流 E1映射到微波帧中, 通过空口传递到微波宿端设备, 使微波 宿端设备对微波帧解映射, 取出其中的 El, 再经过映射实现 VC-4的重组; 而现有技术二则 由微波源端设备从 VC-4中解出 TU (Tributary Unit,支路单元) -12, 将 TU-12封装到微波帧 中传递到微波宿端设备。
在实现本发明的过程中, 发明人发现现有技术至少存在以下缺点:
现有技术一仅将 E1映射到微波帧中进行传输, 而不附带时钟信息, 由于 E1在 VC-4中 是动态调整的, 且通过异步映射方式适配到微波帧中, 所以微波宿端设备重组后的 E1与微 波源端设备发送的 E1相比, 相位偏移较大, 即微波宿端设备重组后的 E1具有较大漂移; 而现有技术二传输的是 TU-12,微波宿端设备从微波帧中解出来的 TU-12可以保持与微波源 端设备的一致性, 令其时钟性能在传递过程中不受损害,但由于 TU-12中含有指针、 开销等 管理信息, 封装到微波帧后占用了大量宝贵的带宽, 因而降低了带宽利用率。 发明内容
为了保证微波带宽的高利用率, 且满足业务信息的漂移性能要求, 本发明实施例提供 了一种微波传输同步数字体系信号的方法、 系统及设备。 所述技术方案如下:
一方面, 提供了一种微波传输同步数字体系信号的方法, 所述方法包括:
微波源端设备对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到业务 信息及所述业务信息异步比特映射的正负调整状态值;
根据所述正负调整状态值生成调整频度信息; 将解映射得到的业务信息及生成的调整频度信息传输给微波宿端设备, 使所述微波宿 端设备根据所述调整频度信息对所述业务信息进行重组。
另一方面, 还提供了一种微波传输数据流的系统, 所述系统包括:
微波源端设备, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得 到业务信息及所述业务信息异步比特映射的正负调整状态值; 根据所述正负调整状态值生 成调整频度信息; 将解映射得到的业务信息及生成的调整频度信息封装到微波帧中并发送; 微波宿端设备, 用于接收所述微波源端设备发送的包含业务信息及调整频度信息的微 波帧; 并根据所述调整频度信息对所述业务信息进行重组。
还提供了一种微波设备, 所述微波设备包括:
解映射模块, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到 业务信息及所述业务信息异步比特映射的正负调整状态值;
生成模块, 用于根据所述解映射模块解映射得到的正负调整状态值生成调整频度信息; 传输模块, 用于将所述解映射模块解映射得到的业务信息及所述生成模块生成的调整 频度信息传输给微波宿端设备, 使所述微波宿端设备根据所述调整频度信息对所述业务信 息进行重组。
还提供了一种微波设备, 所述微波设备包括:
接收模块, 用于接收微波源端设备发送的业务信息及调整频度信息;
重组模块, 用于根据所述接收模块接收到的调整频度信息对所述接收模块接收到的业 务信息进行重组。
本发明实施例提供的技术方案的有益效果是:
通过微波源端设备对 SDH信号进行解映射, 并在将解映射得到的正负调整状态值生成 调整频度信息后, 仅将解映射得到的业务信息及生成的调整频度信息传输给微波宿端设备, 使微波宿端设备根据调整频度信息对业务信息进行重组, 不仅能够保证微波带宽的高利用 率, 还能使微波宿端设备重组后的业务信息满足漂移性能要求, 实现长链组网传输, 进而 在微波中实现 SDH信号的较远距离传输。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。 图 1是本发明实施例一提供的微波传输同步数字体系信号的方法流程图; 图 2是本发明实施例二提供的微波传输同步数字体系信号的方法流程图;
图 3是本发明实施例二提供的 SDH复用映射结构示意图;
图 4是本发明实施例二提供的业务信息解映射示意图;
图 5是本发明实施例二提供的微波传输同步数字体系信号的原理示意图;
图 6是本发明实施例三提供的微波传输同步数字体系信号的系统结构示意图; 图 7是本发明实施例四提供的微波设备结构示意图;
图 8是本发明实施例五提供的微波设备结构示意图;
图 9是本发明实施例五提供的另一种微波设备结构示意图;
图 10是本发明实施例五提供的又一种微波设备结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
实施例一
参见图 1,本实施例提供了一种微波传输同步数字体系信号的方法,方法流程具体如下: 101: 微波源端设备对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到 业务信息及业务信息异步比特映射的正负调整状态值;
102: 根据正负调整状态值生成调整频度信息;
103: 将解映射得到的业务信息及生成的调整频度信息传输给微波宿端设备, 使微波宿 端设备根据调整频度信息对业务信息进行重组。
本实施例提供的方法, 通过微波源端设备对 SDH信号进行解映射, 并在将解映射得到 的正负调整状态值生成调整频度信息后, 仅将解映射得到的业务信息及生成的调整频度信 息传输给微波宿端设备, 使微波宿端设备根据调整频度信息对业务信息进行重组, 不仅能 够保证微波带宽的高利用率, 还能使任意两个微波设备之间传送的业务信息满足漂移性能 要求, 因而能够实现长链组网传输, 进而在微波中实现 SDH信号的较远距离传输。 实施例二
本实施例提供了一种微波传输同步数字体系信号的方法, 为了便于说明, 本实施例以 微波传输的 SDH信号中的业务信息为 2048k bit/s数据流 El,通过将 SDH信号的帧结构 STM ( Synchronous Transfer Module , 同步传输模块) 解为低阶通道信号进行传输为例。 对 于 El, G. 823 (The control of jitter and wander within digital networks which are based on the 2048 k bit/s hierarchy) 对 El 的抖动漂移性能做了明确的要求。 在微波 传输中, 由于微波在使用上仅能在视距范围内作直线传输, 导致两个微波站之间的传输距 离不能很远, 在传输距离较远时需要组长链, 而 E1业务在经过长链传输以后漂移会有较大 增长, 如果想保持漂移性能好, 则要额外传输时钟信息, 占用宝贵的微波带宽。
为了保证微波带宽的高利用率, 且满足数据流的漂移性能要求, 本实施例提供的方法, 通过将业务信息及时钟信息分割开, 通过微波帧中的不同通道独立传输, 使微波宿端设备 根据收到的时钟信息对业务信息重组, 从而可以在长链传输的每个微波设备上都保持原始 的时钟信息。 参见图 2, 本实施例提供的方法流程具体如下:
201: 微波源端设备从 VC-4中解映射得出 E1及 E1异步比特映射的正负调整状态 Cl、
C2的值;
针对该步骤, SDH信号中的各种业务信息要进入 SDH帧都要经过映射、 定位和复用 三个步骤。 映射是将各种速率的业务信息先经过码速调整装入相应的标准容器, 再加入 通道开销形成虚容器的过程, 帧相位发生偏差称为帧偏移; 定位即是将帧偏移信息收进 支路单元或管理单元的过程; 复用则是将多个低价通道层信号通过码速调整使之进入高 价通道或将多个高价通道层信号通过码速调整使之进入复用层的过程。
如图 3所示的 SDH复用映射结构示意图, C为容器、 VC为虚容器、 TU为支路单元、 TUG 为支路单元组、 AU 为管理单元、 AUG 为管理单元组, 这些复用单元的下标表示与此复用单 元相应的信号级别。 E1的速率范围在 2. 046Mbit/s-2. 050Mbit/s 的范围内, 则可以将其装 载进标准的 C-12容器中。 为了在 SDH网的传输中能实时监测任一个 2Mbit/s通道信号的性 能, 需将 C-12再打包, 即加入相应的通道开销 (低阶通道开销) , 使其成为 VC-12的信息 结构。 为了使接收到该信号的设备能正确定位 VC-12的帧, 在 VC-12复帧的 4个缺口上再 加上 4个字节的 TU-PTR, 此时信号的信息结构就变成了 TU12。
图 4给出了从 TU-12解出 El净荷的过程, 其中, VI、 V2、 V3、 V4是低阶指针, V5、 J2、 N2、 K4是低阶开销, Y=RRRRRRRR (填充字节) , G=C1C20000RR (C1是负向调整控制比特, C1=0时, S1是有效信息, Cl=l时, S1是填充比特; C2是正向调整控制比特, C2=0时, S2 是有效信息, C2=l时, S2是填充比特; ) , M=C1C2RRRRRS1,
R为固定插入非信息比特, I为信息比特, 0为开销比特。
202: 根据解映射得到的正负调整状态 Cl、 C2的值生成 C-12的调整频度信息; 其中,从图 3所示的 SDH复用映射结构示意图中可以看出,一个 VC-4对应 63个 TU_12, 每个 TU12有 C1和 C2两个调整信息比特, 根据解映射得到的正负调整状态 Cl、 C2的值生 成 C-12的调整频度信息时, 本实施例提供的方法是将一个帧周期内所有 VC-4对应的每个 TU-12的正负调整状态 Cl、 C2的值分别累加, 并将累加后的结果作为调整频度信息。
例如,微波源端设备在一个帧周期内接收到 M个 VC-4,由于每个 VC-4对应 63个 TU_12, 则在将一个帧周期内所有 VC-4对应的各个 TU-12的正负调整状态 Cl、 C2的值分别累加时, 具体可将 M个 VC-4各自对应的第一个 TU-12中的 Cl、 C2的值累加, 将 M个 VC-4各自对应 的第二个 TU-12中的 Cl、 C2累加, 依次类推, 直至将 M个 VC-4各自对应的第 63个 TU-12 中的 Cl、 C2的值累加, 得到 63个累加结果, 将各个累加结果作为调整频度信息, 得到 63 个调整频度信息。
具体累加时, 可采用一个累加 /减的计数器; 在微波源端设备发生 1次正向调整, 则其 值加 1, 发生 2次正向调整, 则其值加 2, 以此类推; 同理, 在微波源端设备发生 1次负向 调整, 则其值减 1, 发生 2次负向调整, 则其值减 2, 以此类推。
优选地, 该调整频度信息中还可以包含奇偶校验, 以便后续步骤将该调整频度信息发 送给微波宿端设备时, 使微波宿端设备可对接收到的调整频度信息进行校验, 从而保证接 收到的调整频度信息的正确性, 详见后续步骤。
以调整频度信息的比特位位数为 K (包括校验位) , 且微波源端设备在一个微波帧周期 内接收到的 VC4帧数为 M为例, M和 K均为大于 0的整数, 本实施例不对 M和 K的具体数值 进行限定。 由于每帧 VC4有 63个 TU12, 每个 TU12有 C1和 C2两个调整信息比特, 如果采 用现有技术提供的方法, 空口需要传递 (M*63*2)比特, 而如果采用本实施例提供的方法, 空口需要传递 (63*K)比特; 在典型的应用中, (Μ*2)范围根据微波帧调制模式不同处于 8-18 区间内, 而 Κ设为 5时即可满足实际应用需求, 因此, 本实施例提供的方法较现有技术而 言可节省带宽。
203: 将解映射得到的 E1及生成的 C-12的调整频度信息封装到微波帧中, 传输给微波 宿端设备;
具体地, 可采用空口按照异步字节映射方式将解映射得到的 E1封装到微波帧中, 并传 输给微波宿端设备。 另外, 为了保证 E1的漂移性能, 本实施例提供的方法还需要在微波帧 中增加一个 C-12的调整频度信息, 将其与 E1采用不同的信道一同传输给微波宿端设备。 关于 E1与调整频度信息封装到微波帧中的具体位置, 具体实现时, 可以由微波源端设备及 微波宿端设备预先协商确定, 例如, 微波源端设备及微波宿端设备预先协商出将微波帧中 的第一字节携带 El, 第二字节携带调整频度信息, 则微波源端设备将微波帧发送给微波宿 端设备之后, 微波宿端设备根据解映射后的第一、 第二字节得到 E1及调整频度信息。 除此 之外, 还可以选择其他字节携带 E1及调整频度信息, 也可以选择其他方式使微波宿端设备 确定 El及调整频度信息封装到微波帧中的具体位置, 本实施例对此不作具体限定, 保证微 波宿端设备接收到微波帧后, 能够对微波帧解映射得到 E1及调整频度信息即可。
需要说明的是, 此处的调整频度信息的发送频率是每一个微波帧周期发送一次, 且只 含有 C-12比特映射调整信息, 不包括 TU-12的其他信息, 因而带宽占用率远远小于直接传 送 TU-12的方式。
204: 微波宿端设备根据 C-12的调整频度信息对 E1进行重组。
针对该步骤, 微波宿端设备本地也存储有一个保留的调整频度信息; 当微波宿端设备 对微波帧解封装得到调整频度信息时, 需要根据接收到的调整频度信息刷新本地存储的调 整频度信息。 因此, 微波宿端设备根据调整频度信息对业务信息进行重组之前, 还包括: 将接收到的调整频度信息与本地存储的调整频度信息进行比较;
在比较得出接收到的调整频度信息大于本地存储的调整频度信息时, 正向调整本地存 储的调整频度信息;
在比较得出接收到的调整频度信息小于本地存储的调整频度信息时, 负向调整本地存 储的调整频度信息;
在比较得出接收到的调整频度信息等于本地存储的调整频度信息时, 保持本地存储的 调整频度信息。
其中, 无论是正向调整还是负向调整, 调整的幅度即为接收到的调整频度信息与本地 存储的调整频度信息的差值。 例如: 如果接收到的调整频度信息为 2, 而本地存储的调整频 度信息为 1, 则将本地存储的调整频度信息正向调整 1个幅度; 如果接收到的调整频度信息 为 1, 而本地存储的调整频度信息为 2, 则将本地存储的调整频度信息负向调整 1个幅度。
针对接收到的调整频度信息中包含奇偶校验的情况, 微波宿端设备需要对接收到的调 整频度信息进行奇偶校验, 在保证接收到的调整频度信息无奇偶校验错误时, 再进行比较, 并根据比较结果刷新本地存储的调整频度信息。 如果奇偶校验有错误, 则忽略接收到的调 整频度信息。 根据 C-12的调整频度信息 (差值) , 把从微波帧中解映射后得到的 E1按照 和微波源端设备发送时同样的调整频度, 映射到 C-12中, 逐级复用, 封装成 VC-4。
另外, 在微波宿端设备根据 C-12的调整频度信息对 E1进行重组时, 如果微波源端设 备与微波宿端设备的系统时钟同步, 无需对生成的 TU-12 指针进行调整。 而当微波源端设 备与微波宿端设备的系统时钟异步时, 微波宿端设备需要根据 E1的 FIFO (First In First Out, 先进先出)水线进行指针调整来吸收时钟差异, 即根据 E1的缓存状态进行指针调整; 具体过程如下:
若 E1的缓存状态 (即 FIFO水线) 高于阈值上限, 进行指针负向调整; 若 El的缓存状态 (即 FIFO水线) 低于阈值下限, 进行指针正向调整。
关于阈值的上限及下线, 本实施例不作具体限定。 经过上述步骤 201至步骤 204, 在微 波宿端设备封装得到 VC-4之后, 即可意味着完成了 SDH信号从微波源端设备到微波宿端设 备之间的传输, 其原理可如图 5所示。
本实施例提供的方法, 通过微波源端设备对 SDH信号进行解映射, 并在将解映射得到 的正负调整状态值生成调整频度信息后, 仅将解映射得到的业务信息及生成的调整频度信 息传输给微波宿端设备, 使微波宿端设备将接收到的业务信息按照微波源端设备发送时的 调整频度映射到 C-12中, 并进行逐级复用之后封装成 VC-4, 从而实现根据调整频度信息对 业务信息进行重组, 不仅能够保证微波带宽的高利用率, 还能使任意两个微波设备之间传 送的业务信息满足漂移性能要求, 因而能够实现长链组网传输, 进而在微波中实现 SDH信 号的较远距离传输。 实施例三
参见图 6, 本实施例提供了一种微波传输同步数字体系信号的系统, 该系统包括: 微波 源端设备 601和微波宿端设备 602;
微波源端设备 601, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到业务信息及业务信息异步比特映射的正负调整状态值; 根据正负调整状态值生成调整 频度信息; 将解映射得到的业务信息及生成的调整频度信息封装到微波帧中并发送;
微波宿端设备 602,用于接收微波源端设备 601发送的包含业务信息及调整频度信息的 微波帧; 并根据调整频度信息对业务信息进行重组。
其中, 微波源端设备 601 在根据正负调整状态值生成调整频度信息时, 具体用于将一 个微波帧周期内解映射得到的所有正负调整状态值累加, 得到调整频度信息。
微波宿端设备 602 根据调整频度信息对业务信息进行重组之前, 还用于将接收到的调 整频度信息与本地存储的调整频度信息进行比较; 在比较出接收到的调整频度信息大于本 地存储的调整频度信息时, 正向调整本地存储的调整频度信息; 在比较出接收到的调整频 度信息小于本地存储的调整频度信息时, 负向调整本地存储的调整频度信息; 在比较出接 收到的调整频度信息等于本地存储的调整频度信息时, 则保持本地存储的调整频度信息。
微波宿端设备 602 根据调整频度信息对业务信息进行重组时, 还用于当微波源端设备 601与微波宿端设备 602的时钟异步时, 如果业务信息的缓存状态高于阈值上限, 则进行指 针负向调整; 如果业务信息的缓存状态低于阈值下限, 则进行指针正向调整。
本实施例提供的微波传输同步数字体系信号的系统, 通过微波源端设备对 SDH信号进 行解映射, 并在将解映射得到的正负调整状态值生成调整频度信息后, 仅将解映射得到的 业务信息及生成的调整频度信息传输给微波宿端设备, 使微波宿端设备根据调整频度信息 对业务信息进行重组, 不仅能够保证微波带宽的高利用率, 还能满足业务信息的漂移性能 要求, 使其能够实现长链组网传输, 进而在微波中实现 SDH信号的较远距离传输。 实施例四
参见图 7, 本实施例提供了一种微波设备, 该微波设备包括:
解映射模块 701, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得 到业务信息及业务信息异步比特映射的正负调整状态值;
生成模块 702,用于根据解映射模块 701解映射得到的正负调整状态值生成调整频度信 息;
传输模块 703,用于将解映射模块 701解映射得到的业务信息及生成模块 702生成的调 整频度信息传输给微波宿端设备, 使微波宿端设备根据调整频度信息对业务信息进行重组。
其中, 生成模块 702, 具体用于将一个微波帧周期内解映射模块 701解映射得到的所有 正负调整状态值累加, 得到调整频度信息。
本实施例提供的微波设备, 通过对 SDH信号进行解映射, 并在将解映射得到的正负调 整状态值生成调整频度信息后, 仅将解映射得到的业务信息及生成的调整频度信息传输给 微波宿端设备, 使微波宿端设备根据调整频度信息对业务信息进行重组, 不仅能够保证微 波带宽的高利用率, 还能满足业务信息的漂移性能要求, 使其能够实现长链组网传输, 进 而在微波中实现 SDH信号的较远距离传输。 实施例五
参见图 8, 本实施例提供了一种微波设备, 该微波设备包括:
接收模块 801, 用于接收微波源端设备发送的业务信息及调整频度信息;
重组模块 802,用于根据接收模块 801接收到的调整频度信息对接收模块 801接收到的 业务信息进行重组。
参见图 9, 该微波设备, 还包括:
比较模块 803,用于将接收模块 801接收到的调整频度信息与本地存储的调整频度信息 进行比较;
刷新模块 804,用于在比较模块 803得出接收模块 801接收到的调整频度信息大于本地 存储的调整频度信息时, 正向调整本地存储的调整频度信息; 在比较模块 803 得出接收模 块 801 接收到的调整频度信息小于本地存储的调整频度信息时, 负向调整本地存储的调整 频度信息; 在比较模块 803得出接收模块 801接收到的调整频度信息等于本地存储的调整 频度信息时, 则保持本地存储的调整频度信息。
参见图 10, 该微波设备, 还包括:
指针调整模块 805, 用于当微波源端设备与微波宿端设备的时钟异步时, 如果业务信息 的缓存状态高于阈值上限, 进行指针负向调整; 如果业务信息的缓存状态低于阈值下限, 则进行指针正向调整。
本实施例提供的微波设备, 通过接收微波源端设备发送的业务信息及调整频度信息, 并根据调整频度信息对业务信息进行重组, 不仅能够保证微波带宽的高利用率, 还能满足 业务信息的漂移性能要求, 使其能进行长链组网传输, 进而在微波中实现 SDH信号的较远 距离传输。 需要说明的是: 上述实施例提供的微波设备在传输同步数字体系信号, 重组业务信息 时, 仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能 分配由不同的功能模块完成, 即将设备的内部结构划分成不同的功能模块, 以完成以上描 述的全部或者部分功能。 另外, 上述实施例提供的微波传输同步数字体系信号的系统、 微 波设备均与微波传输同步数字体系信号的方法实施例属于同一构思, 其具体实现过程详见 方法实施例, 这里不再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本发明实施例中的部分步骤, 可以利用软件实现, 相应的软件程序可以存储在可读取 的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种微波传输同步数字体系信号的方法, 其特征在于, 所述方法包括:
微波源端设备对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到业务信 息及所述业务信息异步比特映射的正负调整状态值;
根据所述正负调整状态值生成调整频度信息;
将解映射得到的业务信息及生成的调整频度信息传输给微波宿端设备, 使所述微波宿端 设备根据所述调整频度信息对所述业务信息进行重组。
2、根据权利要求 1所述的方法, 其特征在于, 所述根据所述正负调整状态值生成调整频 度信息, 具体包括:
将一个微波帧周期内解映射得到的所有正负调整状态值累加, 得到调整频度信息。
3、根据权利要求 1所述的方法, 其特征在于, 所述微波宿端设备根据所述调整频度信息 对所述业务信息进行重组之前, 还包括:
将接收到的调整频度信息与本地存储的调整频度信息进行比较;
在比较得出所述接收到的调整频度信息大于所述本地存储的调整频度信息时, 正向调整 所述本地存储的调整频度信息;
在比较得出所述接收到的调整频度信息小于所述本地存储的调整频度信息时, 负向调整 所述本地存储的调整频度信息;
在比较得出所述接收到的调整频度信息等于所述本地存储的调整频度信息时, 保持所述 本地存储的调整频度信息。
4、根据权利要求 1所述的方法, 其特征在于, 所述微波宿端设备根据所述调整频度信息 对所述业务信息进行重组时, 还包括:
当所述微波源端设备与所述微波宿端设备的时钟异步时, 如果所述业务信息的缓存状态 高于阈值上限, 进行指针负向调整; 如果所述业务信息的缓存状态低于阈值下限, 则进行指 针正向调整。
5、 一种微波传输同步数字体系信号的系统, 其特征在于, 所述系统包括:
微波源端设备, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到 业务信息及所述业务信息异步比特映射的正负调整状态值; 根据所述正负调整状态值生成调 整频度信息; 将解映射得到的业务信息及生成的调整频度信息封装到微波帧中并发送; 微波宿端设备, 用于接收所述微波源端设备发送的包含业务信息及调整频度信息的微波 帧; 并根据所述调整频度信息对所述业务信息进行重组。
6、根据权利要求 5所述的系统, 其特征在于, 所述微波源端设备在根据所述正负调整状 态值生成调整频度信息时, 具体用于将一个微波帧周期内解映射得到的所有正负调整状态值 累加, 得到调整频度信息。
7、根据权利要求 5所述的系统, 其特征在于, 所述微波宿端设备根据所述调整频度信息 对所述业务信息进行重组之前, 还用于将接收到的调整频度信息与本地存储的调整频度信息 进行比较; 在比较出所述接收到的调整频度信息大于所述本地存储的调整频度信息时, 正向 调整所述本地存储的调整频度信息; 在比较出所述接收到的调整频度信息小于所述本地存储 的调整频度信息时, 负向调整所述本地存储的调整频度信息; 在比较出所述接收到的调整频 度信息等于所述本地存储的调整频度信息时, 则保持所述本地存储的调整频度信息。
8、 一种微波设备, 其特征在于, 所述微波设备包括:
解映射模块, 用于对一个微波帧周期内接收到的同步数字体系 SDH信号解映射, 得到业 务信息及所述业务信息异步比特映射的正负调整状态值;
生成模块, 用于根据所述解映射模块解映射得到的正负调整状态值生成调整频度信息; 传输模块, 用于将所述解映射模块解映射得到的业务信息及所述生成模块生成的调整频 度信息传输给微波宿端设备, 使所述微波宿端设备根据所述调整频度信息对所述业务信息进 行重组。
9、 根据权利要求 8所述的微波设备, 其特征在于,
所述生成模块, 具体用于将一个微波帧周期内所述解映射模块解映射得到的所有正负调 整状态值累加, 得到调整频度信息。
10、 一种微波设备, 其特征在于, 所述微波设备包括:
接收模块, 用于接收微波源端设备发送的业务信息及调整频度信息; 重组模块, 用于根据所述接收模块接收到的调整频度信息对所述接收模块接收到的业务 信息进行重组。
11、 根据权利要求 10所述的微波设备, 其特征在于, 所述微波设备, 还包括: 比较模块, 用于将所述接收模块接收到的调整频度信息与本地存储的调整频度信息进行 比较;
刷新模块, 用于在所述比较模块得出所述接收模块接收到的调整频度信息大于所述本地 存储的调整频度信息时, 正向调整所述本地存储的调整频度信息; 在所述比较模块得出所述 接收模块接收到的调整频度信息小于所述本地存储的调整频度信息时, 负向调整所述本地存 储的调整频度信息; 在所述比较模块得出所述接收模块接收到的调整频度信息等于所述本地 存储的调整频度信息时, 则保持所述本地存储的调整频度信息。
PCT/CN2010/075855 2010-08-10 2010-08-10 微波传输同步数字体系信号的方法、系统及设备 WO2011085587A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES10842870.7T ES2455972T3 (es) 2010-08-10 2010-08-10 Método, sistema y dispositivo para enviar señales de Jerarquía Digital Síncrona mediante microondas
IN4907KON2011 IN2011KN04907A (zh) 2010-08-10 2010-08-10
EP10842870.7A EP2432146B1 (en) 2010-08-10 2010-08-10 Method, system and device for transmitting synchronous digital hierarchy signals by microwave
CN201080003594.1A CN102439883B (zh) 2010-08-10 2010-08-10 微波传输同步数字体系信号的方法、系统及设备
RU2013107763/08A RU2530298C1 (ru) 2010-08-10 2010-08-10 Способ, система и устройство передачи сигналов синхронной цифровой иерархии по микроволне
AU2010342694A AU2010342694B2 (en) 2010-08-10 2010-08-10 Method, system and device for transmitting Synchronous Digital Hierarchy signals by microwave
PCT/CN2010/075855 WO2011085587A1 (zh) 2010-08-10 2010-08-10 微波传输同步数字体系信号的方法、系统及设备
CA2804418A CA2804418C (en) 2010-08-10 2010-08-10 Method, system and device for transmitting synchronous digital hierarchy signals through microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075855 WO2011085587A1 (zh) 2010-08-10 2010-08-10 微波传输同步数字体系信号的方法、系统及设备

Publications (1)

Publication Number Publication Date
WO2011085587A1 true WO2011085587A1 (zh) 2011-07-21

Family

ID=44303823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075855 WO2011085587A1 (zh) 2010-08-10 2010-08-10 微波传输同步数字体系信号的方法、系统及设备

Country Status (8)

Country Link
EP (1) EP2432146B1 (zh)
CN (1) CN102439883B (zh)
AU (1) AU2010342694B2 (zh)
CA (1) CA2804418C (zh)
ES (1) ES2455972T3 (zh)
IN (1) IN2011KN04907A (zh)
RU (1) RU2530298C1 (zh)
WO (1) WO2011085587A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979433A (zh) * 2017-12-25 2018-05-01 苏州布罗安电子科技有限公司 一种sdh传输系统
CN108959143A (zh) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 一种光传输网设备和业务处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060467A (ja) * 2004-08-19 2006-03-02 Nec Corp ディジタル変復調装置
CN1968065A (zh) * 2006-06-23 2007-05-23 华为技术有限公司 一种微波通信业务传输方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87713A1 (de) * 1989-08-31 1990-07-24 Siemens Ag Kreuzschaltungsverfahren(cross-connect)fuer stm-1-signale der synchron-digital-multiplexhierarchie
GB9127116D0 (en) * 1991-12-20 1992-02-19 Jahromi Fazlollah R Interconnecting communications networks
FI90485C (fi) * 1992-06-03 1999-08-11 Nokia Telecommunications Oy Menetelmä osoittimia sisältävien kehysrakenteiden purkamiseksi ja muodostamiseksi
JPH1070780A (ja) * 1996-08-27 1998-03-10 Uniden Corp データ収集システム
US6389036B1 (en) * 1998-12-17 2002-05-14 Harris Breedband Wireless Access, Inc. Airlink transport container
RU2300842C2 (ru) * 2005-05-16 2007-06-10 Федеральное Государственное Унитарное Предприятие Ленинградский отраслевой научно-исследовательский институт связи Способ синхронизации кольцевой транспортной сети, построенной на базе системы передачи синхронной цифровой иерархии
RU2390100C2 (ru) * 2008-07-21 2010-05-20 ФГУ 16 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации имени маршала войск связи А.И. Белова Комплексная аппаратная связи

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060467A (ja) * 2004-08-19 2006-03-02 Nec Corp ディジタル変復調装置
CN1968065A (zh) * 2006-06-23 2007-05-23 华为技术有限公司 一种微波通信业务传输方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108959143A (zh) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 一种光传输网设备和业务处理方法
CN107979433A (zh) * 2017-12-25 2018-05-01 苏州布罗安电子科技有限公司 一种sdh传输系统
CN107979433B (zh) * 2017-12-25 2024-03-22 江苏黑马高科股份有限公司 一种sdh传输系统

Also Published As

Publication number Publication date
AU2010342694A1 (en) 2013-01-24
EP2432146B1 (en) 2014-01-15
RU2530298C1 (ru) 2014-10-10
EP2432146A1 (en) 2012-03-21
CA2804418A1 (en) 2011-07-21
IN2011KN04907A (zh) 2015-07-10
CN102439883B (zh) 2014-08-06
EP2432146A4 (en) 2012-06-20
CA2804418C (en) 2016-05-31
RU2013107763A (ru) 2014-09-20
ES2455972T3 (es) 2014-04-16
AU2010342694B2 (en) 2014-08-21
CN102439883A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
CN100589365C (zh) 一种光传输网中光净荷单元的时隙划分与开销处理的方法
WO2019071369A1 (zh) 光网络中数据传输方法及光网络设备
KR102383297B1 (ko) 서비스 주파수를 투명하게 전송하기 위한 방법 및 디바이스
WO2008122218A1 (fr) Procédé de multiplexage et de démultiplexage de service de faible débit binaire
US20090263131A1 (en) Method and system for transmitting ethernet data in an optical transport network
WO2008125060A1 (en) A method for transporting the client signal in the optical transport network and an equipment thereof
JP4215355B2 (ja) 通信システム
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
JP5078878B2 (ja) 光トランスポート・ネットワーク信号の同期交換のための方法および装置
WO2011057545A1 (zh) 传输多路业务的方法和装置
US7944941B1 (en) High speed Ethernet based on SONET technology
US20110318001A1 (en) Method and device for sending and receiving service data
CN102055727A (zh) 多业务传送网中的数据封装方法、封装设备和支路单元
US11412508B2 (en) Data transmission method and device
WO2004002076A1 (fr) Procede de mise en correspondance et de cessation de correspondance entre des paquets de donnees gigabit ethernet et une structure de trame sdh
WO2021208718A1 (zh) 一种带宽调整的方法以及相关设备
WO2011085587A1 (zh) 微波传输同步数字体系信号的方法、系统及设备
WO2017050027A1 (zh) 一种信号发送、接收方法、装置及系统
US20080101377A1 (en) Efficient Scalable Implementation of VCAT/LCAS for SDH and PDH Signals
CN101039157B (zh) 微波帧适配装置和方法
CN115811388A (zh) 一种通信方法、相关装置以及存储介质
CN102025438B (zh) 一种适用于微波通信的增强型pdh帧格式以及映射方法
WO2007076700A1 (fr) Dispositif de transmission sur un reseau de transmission numerique par synchronisation de fibres separees a services multiples et procede de transmission
WO2004109979A1 (fr) Procede de transmission de service dans un reseau a hierarchie numerique synchrone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003594.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4907/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010842870

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2804418

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010342694

Country of ref document: AU

Date of ref document: 20100810

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013107763

Country of ref document: RU

Kind code of ref document: A