WO2011083933A2 - Mutant strain for producing l-ornithine or l-arginine, and method for producing same - Google Patents

Mutant strain for producing l-ornithine or l-arginine, and method for producing same Download PDF

Info

Publication number
WO2011083933A2
WO2011083933A2 PCT/KR2010/009521 KR2010009521W WO2011083933A2 WO 2011083933 A2 WO2011083933 A2 WO 2011083933A2 KR 2010009521 W KR2010009521 W KR 2010009521W WO 2011083933 A2 WO2011083933 A2 WO 2011083933A2
Authority
WO
WIPO (PCT)
Prior art keywords
arginine
ornithine
producing
strain
activity
Prior art date
Application number
PCT/KR2010/009521
Other languages
French (fr)
Korean (ko)
Other versions
WO2011083933A3 (en
Inventor
조진만
김혜원
이지혜
조재용
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to BR112012016535-6A priority Critical patent/BR112012016535B1/en
Priority to EP10842313.8A priority patent/EP2522720B1/en
Priority to US13/512,956 priority patent/US8883460B2/en
Priority to CN201080055961.2A priority patent/CN102712910B/en
Priority to ES10842313.8T priority patent/ES2672894T3/en
Priority to JP2012543031A priority patent/JP5732469B2/en
Publication of WO2011083933A2 publication Critical patent/WO2011083933A2/en
Publication of WO2011083933A3 publication Critical patent/WO2011083933A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01001Amino-acid N-acetyltransferase (2.3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01016Acetylornithine deacetylase (3.5.1.16)

Definitions

  • the present invention relates to L-ornithine or L-arginine production mutant strains and a method for preparing the same, and more specifically, to acetylglutamate synthase and acetylornithinase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum.
  • L-amino acids are used in human medicine, especially in the pharmaceutical industry, food industry and animal nutrition.
  • L-ornithine in L-amino acids is known as a pharmaceutical ingredient that promotes liver function as an intermediate of arginine biosynthesis (Salvatore et al., 1964).
  • L-arginine is freely contained in plant seeds and garlic, and is also used as an amino acid-enhancing agent and widely used in medicine and food. It is used in medicine for liver function promoter, brain function enhancer, male infertility drug, synthetic amino acid preparation, etc., and for food, fish jelly additive, health drink additive, and salt substitute for hypertension patients have recently been spotlighted.
  • Coryneform bacteria especially corynebacterium glutamicum, can produce amino acids by fermentation of strains. Because of its great importance, the production method has been continuously improved, and for example, there has been a methodological improvement in culture medium composition such as stirring and oxygen introduction or sugar concentration during fermentation.
  • strains are obtained that are nutritionally demanding for metabolites that are resistant to, or regulated by, anti-metabolites and produce L-amino acids.
  • glutamic acid method of producing (glutamate) producing strain of Brevibacterium (Brevibacterium) or Corynebacterium (Corynebacterium) tin ornithine by using a mutant strain derived from a microorganism of the genus (EP 0 393 708 A3) are reported It became.
  • the carbon source there is provided a method of producing L- arginine directly from nitrogen source, glutamic acid (glutamate) producing strain of Brevibacterium (Brevibacterium) or Corynebacterium, a method using a mutant strain derived from the (Corynebacterium) in microorganisms (Japanese Published Unexamined Patent digests 57-163487, 60-83593, 62-265988).
  • Recombinant DNA technology is a method that is further used to improve the inherent properties of L-amino acid producing strains of Corynebacterium.
  • there is a method using a strain amplified ornithine biosynthetic gene argCJBD in a strain that can not synthesize arginine and proline (Hwang et al., 2008).
  • a method using a recombinant strain in which the gene argR that suppresses the expression of arginine biosynthetic operon is used US Patent Application No. 2002 / 0045223A1 has been reported.
  • L-arginine can be produced at high yield by overexpressing the argD2 gene (Ncgl2355) or the gene (Ncgl0990), which are presumed to be the genes of acetylornithine amino group transferase related to arginine biosynthesis in Corynebacterium glutamicum strains.
  • a method for producing arginine is disclosed (Korean Patent Nos. 10-0830289 and 10-0830290).
  • biosynthetic genes need to be strengthened, and in particular, the biosynthetic enzymes, acetylglutamate synthase and acetylornithinase, need to be strengthened.
  • the present inventors have identified a gene that performs the function of acetylglutamate synthase. At the same time, it was confirmed that this gene has similar activity to acetylornithase encoded by argJ . In addition, the present invention was completed by confirming that the concentration of ornithine or arginine is improved by enhancing the present gene.
  • Another object of the present invention is to provide a strain with improved expression of ornithine or arginine by overexpressing the gene.
  • Still another object of the present invention is to provide a method for producing ornithine or arginine at high concentration using the microorganism.
  • one aspect of the present invention is to provide a polypeptide having the activity of acetyl glutamate synthase and acetyl ornitinase derived from Corynebacterium glutamicum.
  • the gene number Ncgl1469 deposited in the "National Insititute of Health" which is a publicly accessible database for identifying genes encoding acetylglutamate synthase and acetylornithase encodes acetylglutamate synthase and acetylornithase. It was confirmed that. There is no known gene encoding acetylglutamate, and acetylornithase has been reported to be encoded by argJ (Sakayan et al., 1996). However, reports of the Ncgl1469 gene encoding two enzymes were previously unknown. The amino acid sequence is listed in SEQ ID NO: 1, and the nucleotide sequence is listed in SEQ ID NO: 2.
  • Another aspect of the invention is to provide a vector comprising a gene encoding acetylglutamate synthase and acetylornithase.
  • the vector comprises an acetylglutamate synthase and an acetylornithase gene.
  • Plasmids that can be used above include pZ1 (menkel et al), pEkEx1 (Eikmarms et al), pHS2-1 (Sonnen et al), pCG4 (US pat. No. 4,489,190) or pNG2 (Serwold-Davis et al) and pEKO (Eikmanns et al).
  • pEKO is used in the present invention.
  • the vector comprises an amino acid of SEQ ID NO: 1 or a nucleotide of SEQ ID NO: 2. Specifically, the vector shown in FIG. 1 may be mentioned.
  • Another aspect of the invention is to provide a microorganism or transfected cell or recombinant cell enriched in acetylglutamate synthase and acetylornithase.
  • the strains used may employ strains that already produce L-ornithine or L-arginine prior to enrichment of acetylglutamate synthase and acetylornithase.
  • the transformant can be easily prepared by those skilled in the art according to any transformation method.
  • "transformation” refers to a phenomenon in which DNA is introduced into a host so that DNA can be reproduced as a factor of a chromosome or by chromosome integration, thereby causing an artificial genetic change by introducing an external DNA into a cell. Means.
  • the Hanahan method the electroporation method, the calcium phosphate precipitation method, the protoplast fusion method, and silicon carbide, were used for the transformation method by using CaCl 2 precipitation method and CaCl 2 method using a reducing material called DMSO (dimethyl sulfoxide).
  • DMSO dimethyl sulfoxide
  • a transformant was prepared by introducing the recombinant vector pEK-Ptrc :: 1469 into a host microorganism using electroporation, and a strain containing the recombinant vector was isolated using antibiotic resistance.
  • the concept of "enhancement rather than intrinsic activity” means that the intracellular activities of the above-mentioned enzymes acetylglutamate synthase and acetylornithase are improved compared to those naturally occurring.
  • the method for increasing the activity of the enzyme may be to increase the number of gene copies.
  • a method using a vector such as a plasmid or inserting an additional gene into a chromosome may be used. It can also be further enhanced by enhancing regulatory factors that positively affect gene expression. Regulatory elements can thus be enhanced at the level of transcription, particularly for enhanced transcriptional signals.
  • translation can also be enhanced, thereby improving the stability of, for example, mRNA.
  • a gene encoded by a corresponding enzyme having high activity may be used. Overexpression of the genes of interest can also be reached by changing the medium composition. Another way could be to enhance the promoter or to replace the stronger promoter. What can be used as a strong promoter can be used, for example, the Tac-promoter (Amann et al). Another way to increase the activity of the enzyme is to increase the endogenous activity in the microorganism through mutation. Mutations of this kind can be generated, for example, by traditional methods such as UV rays or mutational mitigation chemicals or by genetic engineering methods such as deletions, insertions and / or nucleotide exchanges. In order to enhance the activity of the enzyme it is possible to combine all the above-mentioned measures possible.
  • Coryne or Brevi bacterium can be used among Coryneform bacteria, and specifically suitable starting strains of Corynebacterium glutamicum type are, for example, the following known wild type strains.
  • the microorganisms described above can be cultured for the purpose of production of L-ornithine or L-arginine. Cultivation process of the microorganism may be made according to the appropriate medium and culture conditions known in the art. This culture process can be used by those skilled in the art can be easily adjusted according to the strain selected. Examples of the culture method include, but are not limited to, batch culture, cintinuous culture, and fed-batch culture. Such various culture methods are disclosed, for example, in "Biochemical Engineering” (James M. Lee, Prentice-Hall International Editions, pp 138-176, 1991).
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation.
  • oxygen or an oxygen-containing gas eg, air
  • the temperature of the culture is usually 20 ° C to 45 ° C, preferably 25 ° C to 40 ° C. The incubation period can continue until the desired amount of L-arginine methionine production is obtained, preferably 10 to 160 hours.
  • Isolation of L-ornithine or L-arginine from the culture can be separated by conventional methods known in the art.
  • methods such as centrifugation, filtration, ion exchange chromatography, and crystallization may be used.
  • the supernatant obtained by removing the biomass by centrifugation of the culture at low speed can be separated by ion exchange chromatography.
  • the present invention relates to a polynucleotide having activity on acetylglutamate synthase and acetylornithase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum, a polypeptide encoded by the polynucleotide, the polynucleotide Recombinant vector comprising a transformant transformed by introducing the recombinant vector into the L-arginine producing host microorganism and the effect of providing a method for producing L- ornithine or L-arginine by culturing the transformant have.
  • the transformant of the present invention is capable of producing L-ornithine or L-arginine in high yield by enhancing the activity of acetylglutamate synthase and acetylornithase than intrinsic activity, and thus have a useful effect in the biopharmaceutical industry. have.
  • FIG. 1 is a diagram showing the structure of a pEK-Ptrc :: Ncgl1469 vector according to the present invention.
  • PCR was performed using a trc promoter as a template of pTrc99A (Amann et al. 1988) and oligonucleotides of SEQ ID NOs: 3 and 4 as primers to prepare an overexpression vector.
  • PCR was performed using rrnB terminator as a template of pTrc99A and oligonucleotides of SEQ ID NO: 5 and 6 as primers.
  • the polymerase is PfuUltra TM high-trust DNA polymerase (stratagene) and PCR conditions were denatured 95 ° C., 30 seconds; Annealing 55 ° C., 30 seconds; And 25 degreeC of the polymerization reaction 68 degreeC was repeated 1 time.
  • NCgl1469 gene Base sequence information of the NCgl1469 gene was obtained based on NIH GenBank, and primers were synthesized based on this (SEQ ID NOS: 7 and 8). Using the synthesized primers, PCR is performed in the same manner as above using the gene DNA of the Corynebacterium glutamicum ATCC13032 strain as a template. PCR conditions were denatured 95 °C, 30 seconds; Annealing 55 ° C., 30 seconds; And 25 minutes of polymerization reaction at 68 ° C. for 1 minute 30 seconds.
  • the pEKO E. coli-C.glutamicum shuttle vector, Eikmanns et al. 1991
  • the ptrc promoter fraction and 1469 ORF obtained above were subjected to restriction enzyme treatment with Xba1, NdeI / NedI, and xba1, respectively, and then three-piece conjugation with the enzyme-treated vector to obtain a recombinant vector.
  • the obtained recombinant vector was enzymatically treated with HincII and EcoRI again, and the rrnB terminator fraction obtained by PCR was treated with SmaI / EcoRI restriction enzyme to obtain pEK-Ptrc :: 1469 recombinant vector with promoter-1469 ORF-terminator inserted. It was.
  • Ncgl1469 cloned in Example 1 In order to confirm the activity of the gene, it is necessary to prepare a strain argJ crushed of Corynebacterium glutamicum ATCC13032 strain first.
  • the pK18mobsacB integration vector (Schafer et al. 1994) was used to prepare a strain lacking argJ.
  • PCR was performed using ATCC13032 as a template and SEQ ID NOs. 7 and 8, 9 and 10 as primers, respectively. PCR conditions were denatured 95 °C, 30 seconds; Annealing 55 ° C., 30 seconds; And 25 minutes of polymerization reaction at 68 ° C. for 1 minute 30 seconds.
  • the recombinant vector was transformed into ATCC13032 strain by electric pulse method, and then, the strain inserted by homology with nucleotides on the chromosome was selected in a selection medium containing 25 mg / L of kanamicin.
  • the primary chromosome inserted strains were shaken in nutrient medium (30 ° C., 4 hours), and then plated on solid medium containing sucrose from 10 ⁇ 4 to 10 ⁇ 10 , respectively. By selecting the colonies where most colonies were killed by sucrose and appearing at a low rate, strains from which vector sequences on the chromosomes inserted by secondary crossover were removed were selected.
  • the strains selected as described above were finally selected through the gene structure confirmation process through confirmation of susceptibility to the antibiotic kanamycin and PCR using SEQ ID NOS: 7 and 10.
  • Example 3 Determination of Acetylglutamate synthase and acetylornithase activity of Ncgl1469
  • the cells were collected by centrifugation. The cells were prepared by washing twice in 100 mM Tris / Hcl buffer (pH 7.5), and cell walls were removed by the method using glass beads.
  • acetylglutamate activity was measured by measuring the amount of 5-thio-2-nitrobanzonate formed at 412 nm using a spectrophotometer (Errey and Blanchard, 2005). The activity of acetylornithase was also measured by conventional methods (Vogel and Mcleelan, 1970).
  • ArgJ-deficient strains reported to encode acetylornithase were prepared to overexpress Ncgl1469, and acetylglutamate and acetylornithase activity were measured to confirm that Ncgl1469 had activity against both enzymes.
  • Ncgl1469 gene ornithine strain SJ8074 (argF-argR-proB ⁇ , Hwang et al. 2008) strain was used as a parent strain.
  • Recombinant vector pEK-Ptrc Ncgl1469 to C.
  • the transformant obtained by introducing into glutamicum SJ8074 strain was named Corynebacterium glutamicum CA06-0020, and was assigned to the Korean Culture Center of Microorganisms (hereinafter abbreviated as "KCCM") as of December 23, 2009. Deposited with KCCM 11057P.
  • KCCM Korean Culture Center of Microorganisms
  • a strain was prepared by crushing argR, which is an arginine inhibitor, of the ATCC21831 strain, which is an arginine producing strain, and used as a parent strain.
  • KCCM 11058P (abbreviated as "KCCM”).
  • the present invention relates to a polynucleotide having activity on acetylglutamate synthase and acetylornithase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum, a polypeptide encoded by the polynucleotide, the polynucleotide Recombinant vector comprising a, transformant transformed by introducing the recombinant vector into the L-arginine producing host microorganism and the effect of providing a method for producing L- ornithine or L-arginine by culturing the transformant have.
  • the transformant of the present invention is capable of producing L-ornithine or L-arginine in high yield by enhancing the activity of acetylglutamate synthase and acetylornithase than intrinsic activity, and thus have a useful effect in the biopharmaceutical industry. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a polynucleotide that is active to an acetyl glutamate synthase and acetyl ornithinase which are associated with ornithine or arginine biosynthesis from Corynebacterium glutamicum. The present invention also relates to a polypeptide encoded by said polynucleotide, a recombinant vector comprising said polynucleotide, to a transformant obtained by introducing said recombinant vector to a host microorganism for producing L-ornithine or L-arginine, and transforming the recombinant vector, and to a method for producing L-ornithine or L-arginine by culturing said transformant. The activity of the transformant of the present invention to an acetyl glutamate synthase and acetyl ornithinase is increased as compared to an intrinsic activity, and thus L-ornithine or L-arginine can be produced, at a high yield rate, from the transformant of the present invention.

Description

L-오르니틴 또는 L-아르기닌 생산 변이주 및 이의 제조방법L-ornithine or L-arginine production mutant strain and preparation method thereof
본 발명은 L-오르니틴 또는 L-아르기닌 생산 변이주 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 코리네박테리움 글루타미쿰에서 오르니틴 또는 아르기닌 생합성과 관련된 아세틸글루타메이트 신타제 및 아세틸오르니티나제에 활성을 갖는 폴리뉴클레오티드, 상기 폴리뉴클레오티드에 의해 암호화되는 폴리펩티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 L-아르기닌 생산 숙주 미생물에 도입하여 형질전환시킨 형질전환체 및 상기 형질전환체를 배양하여 L-오르니틴 또는 L-아르기닌을 제조하는 방법에 관한 것이다.The present invention relates to L-ornithine or L-arginine production mutant strains and a method for preparing the same, and more specifically, to acetylglutamate synthase and acetylornithinase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum. A polynucleotide having an activity, a polypeptide encoded by the polynucleotide, a recombinant vector comprising the polynucleotide, a transformant transformed by introducing the recombinant vector into an L-arginine producing host microorganism, and culturing the transformant To produce L-ornithine or L-arginine.
L-아미노산은 사람의 의약에 사용되는데, 특히 약학 산업, 식품 산업 및 동물 영양보급에 사용된다. 특히, L-아미노산 중 L-오르니틴은 아르기닌 생합성 과정의 중간 물질로 간기능을 촉진시키는 의약성분으로 알려져 있다 (Salvatore et al., 1964). 또한 L-아르기닌은 식물 종자나 마늘 중에 유리 상태로 함유되어 있으며, 아미노산류 강화제로도 사용되고, 의약품, 식품 등에도 널리 이용된다. 의약용으로는 간 기능 촉진제, 뇌기능 촉진제, 남성 불임 치료제, 종합 아미노산 제제 등에 사용되고 있으며, 식품용으로는 생선묵 첨가제, 건강 음료 첨가제, 고혈압 환자의 식염 대체용으로 최근 각광받고 있는 물질이다.L-amino acids are used in human medicine, especially in the pharmaceutical industry, food industry and animal nutrition. In particular, L-ornithine in L-amino acids is known as a pharmaceutical ingredient that promotes liver function as an intermediate of arginine biosynthesis (Salvatore et al., 1964). In addition, L-arginine is freely contained in plant seeds and garlic, and is also used as an amino acid-enhancing agent and widely used in medicine and food. It is used in medicine for liver function promoter, brain function enhancer, male infertility drug, synthetic amino acid preparation, etc., and for food, fish jelly additive, health drink additive, and salt substitute for hypertension patients have recently been spotlighted.
코리네형 세균(coryneform bacteria), 특히 코리네박테리움 글루타미컴(coryenbacterium glutamicum)은 균주의 발효에 의해 아미노산을 생산할 수 있다. 그 중요성이 크기 때문에 그 제조 방법은 지속적인 개선이 이루어지고 있으며, 예를 들어, 교반 및 산소 도입, 또는 발효 중의 당 농도와 같은 배양 배지 조성에 대한 방법적 개선이 이루어지고 있다. Coryneform bacteria, especially corynebacterium glutamicum, can produce amino acids by fermentation of strains. Because of its great importance, the production method has been continuously improved, and for example, there has been a methodological improvement in culture medium composition such as stirring and oxygen introduction or sugar concentration during fermentation.
이들 미생물의 아미노산 생산성을 증가시키기 위해, 미생물 선별 및 변이체 선별법이 사용된다. 이런 식으로, 항대사물질에 내성이거나 조절 관련성을 갖는 대사물질들에 대한 영양 요구성이고 L-아미노산을 생산하는 균주가 얻어진다. 예를 들면, 글루타민산(glutamate) 생산 균주인 브레비박테리움(Brevibacterium) 또는 코리네박테리움(Corynebacterium) 속 미생물로부터 유도된 변이주를 이용하여 오르니틴을 생산하는 방법 (EP 0 393 708 A3)이 보고되었다. 또한, 탄소원, 질소원으로부터 직접 L-아르기닌을 생산하는 방법으로서, 글루타민산(glutamate) 생산 균주인 브레비박테리움(Brevibacterium) 또는 코리네박테리움(Corynebacterium) 속 미생물로부터 유도된 변이주를 이용하는 방법(일본공개특허 소화 제57-163487호, 제60-83593호, 제62-265988호)이 보고되었다. To increase the amino acid productivity of these microorganisms, microbial screening and variant screening methods are used. In this way, strains are obtained that are nutritionally demanding for metabolites that are resistant to, or regulated by, anti-metabolites and produce L-amino acids. For example, the glutamic acid method of producing (glutamate) producing strain of Brevibacterium (Brevibacterium) or Corynebacterium (Corynebacterium) tin ornithine by using a mutant strain derived from a microorganism of the genus (EP 0 393 708 A3) are reported It became. Further, the carbon source, there is provided a method of producing L- arginine directly from nitrogen source, glutamic acid (glutamate) producing strain of Brevibacterium (Brevibacterium) or Corynebacterium, a method using a mutant strain derived from the (Corynebacterium) in microorganisms (Japanese Published Unexamined Patent digests 57-163487, 60-83593, 62-265988).
재조합체 DNA 기술은 코리네박테리움의 L-아미노산 생산 균주의 고유한 성질을 개선하기 위해 추가로 사용되는 방법이다. 예를 들면, 아르기닌과 프롤린 합성을 하지 못하는 균주에 오르니틴 생합성 유전자인 argCJBD를 증폭한 균주를 이용한 방법이 있다 (Hwang et al., 2008). 또, 아르기닌 생합성 오페론의 발현을 억제하는 유전자 argR을 불활성화시킨 유전자 재조합 균주를 이용하는 방법(미국특허출원 제2002/0045223A1호) 이 보고되어 있다. Recombinant DNA technology is a method that is further used to improve the inherent properties of L-amino acid producing strains of Corynebacterium. For example, there is a method using a strain amplified ornithine biosynthetic gene argCJBD in a strain that can not synthesize arginine and proline (Hwang et al., 2008). In addition, a method using a recombinant strain in which the gene argR that suppresses the expression of arginine biosynthetic operon is used (US Patent Application No. 2002 / 0045223A1) has been reported.
한편, 개선된 생산능 증가는 또한 생합성 유전자의 강화에 의해 달성된다. 생합성 유전자의 증가된 발현에 의해 수율이 향상될 수 있다는 것은 알려져 있다. 예를 들어, 아르기닌 생합성 유전자인 argF를 과발현(over-expression)시키는 방법(대한민국 특허출원 제10-2004-107215호) 이 보고되어 있다. On the other hand, improved production capacity is also achieved by strengthening the biosynthetic genes. It is known that the yield can be improved by increased expression of biosynthetic genes. For example, a method of over-expressing argF , which is an arginine biosynthesis gene (Korean Patent Application No. 10-2004-107215), has been reported.
또한 코리네박테리움 글루타미쿰 균주에서 아르기닌 생합성에 관련된 아세틸오르니틴 아미노기 전이효소의 유전자로 추정되는 argD2 유전자(Ncgl2355) 또는 유전자(Ncgl0990) 를 과발현시켜 고수율로 L-아르기닌을 생산할 수 있는 L-아르기닌의 제조 방법이 개시되어있다(대한민국 등록특허 제10-0830289호 및 제10-0830290호). In addition, L-arginine can be produced at high yield by overexpressing the argD2 gene (Ncgl2355) or the gene (Ncgl0990), which are presumed to be the genes of acetylornithine amino group transferase related to arginine biosynthesis in Corynebacterium glutamicum strains. A method for producing arginine is disclosed (Korean Patent Nos. 10-0830289 and 10-0830290).
이와 같이 고수율의 오르니틴 또는 아르기닌 생산주를 만들기 위해 생합성 유전자의 강화가 필요하고 특히 생합성 효소인 아세틸글루타메이트 신타아제 및 아세틸오르니티나제를 강화해줄 필요가 있다. In order to make high yields of ornithine or arginine producers, the biosynthetic genes need to be strengthened, and in particular, the biosynthetic enzymes, acetylglutamate synthase and acetylornithinase, need to be strengthened.
그러나 코리네박테리움 속 미생물에서 현재까지 보고된 바로는 아세틸글루타메이트 신타아제 유전자가 알려져 있지 않기 때문에 본 발명자들은 아세틸글루타메이트 신타아제의 기능을 수행하는 유전자를 규명하였다. 동시에 본 유전자가 argJ에 의해 암호화되는 아세틸오르니티나제와 유사한 활성을 갖는 것을 확인하였다. 또, 본 유전자를 강화함으로써 오르니틴 또는 아르기닌의 농도가 향상되는 것을 확인함으로써 본 발명을 완성하였다. However, since the acetylglutamate synthase gene has not been known to date in microorganisms of Corynebacterium, the present inventors have identified a gene that performs the function of acetylglutamate synthase. At the same time, it was confirmed that this gene has similar activity to acetylornithase encoded by argJ . In addition, the present invention was completed by confirming that the concentration of ornithine or arginine is improved by enhancing the present gene.
본 발명의 목적은 코리네박테리아 속 유래의 아세틸글루타메이트 신타아제 또는 아세틸오르니티나제의 활성을 가지는 폴리펩티드 또는 폴리 뉴클레오티드를 신규 규명하는 것이다. It is an object of the present invention to novelly identify polypeptides or polynucleotides having the activity of acetylglutamate synthase or acetylornithase from the genus Corynebacteria.
또한 본 발명의 다른 목적은 상기 유전자를 과발현 시켜 오르니틴 또는 아르기닌 생산능이 향상된 균주를 제공하는 것이다. In addition, another object of the present invention is to provide a strain with improved expression of ornithine or arginine by overexpressing the gene.
또한 본 발명의 또 다른 목적은 상기 미생물을 이용하여 오르니틴 또는 아르기닌을 고농도로 생산하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method for producing ornithine or arginine at high concentration using the microorganism.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 양태는 코리네박테리움 글루타미컴 유래의 아세틸글루타메이트 신타아제 및 아세틸오르니티나제의 활성을 갖는 것을 특징으로 하는 폴리펩티드를 제공하는데 있다. In order to achieve the above object, one aspect of the present invention is to provide a polypeptide having the activity of acetyl glutamate synthase and acetyl ornitinase derived from Corynebacterium glutamicum.
본 발명에서는 아세틸글루타메이트 신타아제 및 아세틸오르니티나제를 암호화하는 유전자를 규명하기 위해 일반이 접근가능한 데이터베이스인 "National Insititute of Health"에 기탁된 유전자 번호 Ncgl1469가 아세틸글루타메이트 신타아제 및 아세틸오르니티나제를 암호화하는 것을 확인하였다. 아세틸글루타메이트를 암호화하는 유전자에 대해서는 알려진 바가 없었고, 아세틸오르니티나제는 argJ에 의해 암호화 된다고 보고 되었다 (Sakayan et al., 1996). 하지만 Ncgl1469 유전자가 두 가지 효소를 암호화하는 것에 대한 보고는 이전에는 알려져 있지 않았다. 아미노산 서열은 서열번호 1에 열거되어 있고, 뉴클레오티드 서열은 서열번호 2에 열거되어 있다. In the present invention, the gene number Ncgl1469 deposited in the "National Insititute of Health" which is a publicly accessible database for identifying genes encoding acetylglutamate synthase and acetylornithase encodes acetylglutamate synthase and acetylornithase. It was confirmed that. There is no known gene encoding acetylglutamate, and acetylornithase has been reported to be encoded by argJ (Sakayan et al., 1996). However, reports of the Ncgl1469 gene encoding two enzymes were previously unknown. The amino acid sequence is listed in SEQ ID NO: 1, and the nucleotide sequence is listed in SEQ ID NO: 2.
본 발명의 또 하나의 양태는 아세틸글루타메이트 신타아제 및 아세틸오르니티나제를 암호화하는 유전자를 포함하는 벡터를 제공하는데 있다. 상기 벡터는 아세틸글루타메이트 신타아제 및 아세틸오르니티나제 유전자를 포함한다. 상기에서 사용될 수 있는 플라스미드는 pZ1 (menkel et al), pEkEx1 (Eikmarms et al), pHS2-1 (Sonnen et al), pCG4 (U.S pat. No. 4,489,190) or pNG2 (Serwold-Davis et al) 및 pEKO (Eikmanns et al) 등이 가능하다. 바람직하게는 본 발명에서는 pEKO를 사용하였다. 더욱 바람직하게 당해 벡터는 서열번호 1의 아미노산 또는 서열번호 2의 뉴클레오티드를 포함한다. 구체적으로 도 1에 나타나는 벡터를 예로 들 수 있다.Another aspect of the invention is to provide a vector comprising a gene encoding acetylglutamate synthase and acetylornithase. The vector comprises an acetylglutamate synthase and an acetylornithase gene. Plasmids that can be used above include pZ1 (menkel et al), pEkEx1 (Eikmarms et al), pHS2-1 (Sonnen et al), pCG4 (US pat. No. 4,489,190) or pNG2 (Serwold-Davis et al) and pEKO (Eikmanns et al). Preferably pEKO is used in the present invention. More preferably the vector comprises an amino acid of SEQ ID NO: 1 or a nucleotide of SEQ ID NO: 2. Specifically, the vector shown in FIG. 1 may be mentioned.
본 발명의 다른 양태는 아세틸글루타메이트 신타아제 및 아세틸오르니티나제가 강화된 미생물 또는 형질전화된 세포 또는 재조합 세포를 제공하는데 있다. 사용된 균주는 아세틸글루타메이트 신타아제 및 아세틸오르니티나제의 강화 이전에 이미 L-오르니틴 또는 L-아르기닌을 생산하는 균주를 사용할 수 있다. 상기 형질전환체는 임의의 형질전환 방법에 따라 당업자가 용이하게 제조할 수 있다. 본 발명에서 "형질전환(transformation)"은 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다. Another aspect of the invention is to provide a microorganism or transfected cell or recombinant cell enriched in acetylglutamate synthase and acetylornithase. The strains used may employ strains that already produce L-ornithine or L-arginine prior to enrichment of acetylglutamate synthase and acetylornithase. The transformant can be easily prepared by those skilled in the art according to any transformation method. In the present invention, "transformation" refers to a phenomenon in which DNA is introduced into a host so that DNA can be reproduced as a factor of a chromosome or by chromosome integration, thereby causing an artificial genetic change by introducing an external DNA into a cell. Means.
일반적으로 형질전환방법에는 CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로 박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 있다. In general, the Hanahan method, the electroporation method, the calcium phosphate precipitation method, the protoplast fusion method, and silicon carbide, were used for the transformation method by using CaCl 2 precipitation method and CaCl 2 method using a reducing material called DMSO (dimethyl sulfoxide). Agitation with fibers, agro bacteria mediated transformation, transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
구체적으로 본 발명에서는, 전기천공법을 이용하여 상기 재조합 벡터 pEK-Ptrc::1469를 숙주미생물에 도입하여 형질전환체를 제조하였으며, 항생제 내성을 이용하여 재조합 벡터를 포함하는 균주를 분리하였다.  Specifically, in the present invention, a transformant was prepared by introducing the recombinant vector pEK-Ptrc :: 1469 into a host microorganism using electroporation, and a strain containing the recombinant vector was isolated using antibiotic resistance.
본 발명에서 "내재적 활성보다 강화"라는 개념은 상기에서 언급한 효소인 아세틸글루타메이트 신타아제 및 아세틸오르니티나제의 세포내 활성이 천연적으로 가지는 활성에 비해 향상된 것을 의미한다. 효소의 활성을 높이기 위한 방법으로는 유전자 복제수를 높이는 것일 수 있다. 유전자의 복제 수를 높이기 위해는 플라스미드와 같은 벡터를 이용하는 방법 또는 염색체에 추가적인 유전자를 삽입하는 방법이 사용될 수 있다. 또, 유전자 발현에 긍정적인 영향을 주는 조절 인자를 강화시킴으로써 더욱 높일 수 있다. 그래서 조절 인자 요소는 전사 수준에서 강화시킬 수 있으며, 특히 강화된 전사 신호에 사용된다. 상기 이외에도 또한 번역이 강화될 수 있으며, 이로 인하여 예를 들면 mRNA 의 안정성도 향상된다. 또한 높은 활성을 가지는 해당 효소로 코드화되는 유전자도 사용될 수 있다. 또한 해당하는 유전자의 과발현은 배지 조성을 변화시킴으로써 도달할 수 있다. 또 다른 방법으로는 프로모터를 강화시키는 것 또는 더 강한 프로모터를 교체하는 방법일 수 있다. 강한 프로모터로 사용할 수 있는 것은 예를 들어, Tac-프로모터 (Amann et al)을 사용할 수 있다. 효소의 활성을 높이기 위한 다른 방법으로는 돌연변이를 통하여 미생물에서 내인적 활성을 높이는 방법이 가능하다. 상기 종류의 돌연변이는 예를 들면, UV 광선 또는 돌연변이 해소 화학물질과 같은 전통적인 방법 또는 결실, 삽입 및/또는 뉴클레오티드 교환과 같은 유전공학적 방법으로 발생시킬 수 있다. 효소의 활성을 강화시키기 위해서는 상기에 언급한 조치를 모두 가능하게 조합하는 것이 가능하다.In the present invention, the concept of "enhancement rather than intrinsic activity" means that the intracellular activities of the above-mentioned enzymes acetylglutamate synthase and acetylornithase are improved compared to those naturally occurring. The method for increasing the activity of the enzyme may be to increase the number of gene copies. To increase the number of copies of a gene, a method using a vector such as a plasmid or inserting an additional gene into a chromosome may be used. It can also be further enhanced by enhancing regulatory factors that positively affect gene expression. Regulatory elements can thus be enhanced at the level of transcription, particularly for enhanced transcriptional signals. In addition to the above, translation can also be enhanced, thereby improving the stability of, for example, mRNA. In addition, a gene encoded by a corresponding enzyme having high activity may be used. Overexpression of the genes of interest can also be reached by changing the medium composition. Another way could be to enhance the promoter or to replace the stronger promoter. What can be used as a strong promoter can be used, for example, the Tac-promoter (Amann et al). Another way to increase the activity of the enzyme is to increase the endogenous activity in the microorganism through mutation. Mutations of this kind can be generated, for example, by traditional methods such as UV rays or mutational mitigation chemicals or by genetic engineering methods such as deletions, insertions and / or nucleotide exchanges. In order to enhance the activity of the enzyme it is possible to combine all the above-mentioned measures possible.
본 발명에 따르면, 코리네형 세균 중에서 코리네 속 또는 브레비 속 박테리움이 사용될 수 있고, 구체적으로 코리네박테리움 글루타미컴 유형의 적합한 출발 균주는, 예를 들면 다음의 공지의 야생형 균주들이다. 코리네박테리움 글루타미컴(corynebacterium glutamicum) ATCC13032, 코리네박테리움 아세토글루타미컴(corynebacterium acetoglutamicum) ATCC15806, 코리네박테리움 아세토아시도필럼(corynebacterium acetoacidophilum) ATCC13870, 코리네박테리움 써모아미노제네스(corynebacterium thermoaminogenaes) FERM BP-1539, 브레비박테리움 플라붐(Brevibacterium flavum) ATCC14067, 브레비박테리움 락토퍼멘툼(Brevibacterium lactofermentum) ATCC13869, 브레비박테리움 디바리카툼(Brevibacterium divaricatum) ATCC14020 그리고 그들로부터 만들어진, 오르니틴 생합성 경로에 관여하는 오르니틴 카바모일크랜스퍼라제 결손, 알지닌 리프레서 결손 및 글루타메이트 키나제가 결손된 과량의 L-오르니틴을 생산하는 변이체 또는 알지닌 생합성에 관여하는 알지닌 리프레서가 결손된 과량의 L-아르기닌을 개선된 농도로 생산하는 변이체일 수 있다. According to the invention, Coryne or Brevi bacterium can be used among Coryneform bacteria, and specifically suitable starting strains of Corynebacterium glutamicum type are, for example, the following known wild type strains. Corynebacterium glutamicum ATCC13032, Corynebacterium acetoglutamicum ATCC15806, Corynebacterium acetoacidophilum ATCC13870, Corynebacterium bacteriumium thermoaminogenaes) FERM BP-1539, Brevibacterium flavum ATCC14067, Brevibacterium lactofermentum ATCC13869, Brevibacterium divaricatum ATCC14020 and from them Deficient ornithine carbamoyltransferase deficiency involved in chitin biosynthesis pathway, deficiency in arginine repressor and variant producing glutamate kinase or deficiency in arginine repressor involved in arginine biosynthesis Number of variants that produce excess L-arginine at improved concentrations have.
본 발명의 또 다른 양태로써, 상기 기술된 미생물을 L-오르니틴 또는 L-아르기닌의 생산을 목적으로 배양할 수 있다. 상기 미생물의 배양 과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양과정은 당업자라면 선택되는 균주에 따라 용이하게 조정하여 사용할 수 있다. 상기 배양방법의 예에는, 회분식 배양(batch culture), 연속식 배양(cintinuous culture) 및 유가식 배양(fed-batch culture)이 포함되나, 여기에 한정되는 것은 아니다. 이러한 다양한 배양 방법은, 예를 들면, "Biochemical Engineering" (James M. Lee, Prentice-Hall International Editions, pp138-176, 1991) 등에 개시되어 있다. 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기상태(aerobic condition)를 유지하기 위하여, 배양물내로 산소 또는 산소-함유 기체 (예, 공기)를 주입한다. 배양물의 온도는 보통 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃이다. 배양기간은 원하는 L-아르기닌 메티오닌의 생성량이 얻어질 때까지 계속할 수 있으며, 바람직하게는 10 내지 160 시간이다. 배양물로부터의 L-오르니틴 또는 L-아르기닌의 분리는 당업계에 알려진 통상적인 방법에 의하여 분리될 수 있다. 이러한 분리 방법에는, 원심분리, 여과, 이온교환 크로마토그래피 및 결정화 등의 방법이 이용될 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온교환 크로마토그래피를 통하여 분리할 수 있다.In another embodiment of the invention, the microorganisms described above can be cultured for the purpose of production of L-ornithine or L-arginine. Cultivation process of the microorganism may be made according to the appropriate medium and culture conditions known in the art. This culture process can be used by those skilled in the art can be easily adjusted according to the strain selected. Examples of the culture method include, but are not limited to, batch culture, cintinuous culture, and fed-batch culture. Such various culture methods are disclosed, for example, in "Biochemical Engineering" (James M. Lee, Prentice-Hall International Editions, pp 138-176, 1991). During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, during the culture, antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation. In addition, in order to maintain the aerobic condition of the culture, oxygen or an oxygen-containing gas (eg, air) is injected into the culture. The temperature of the culture is usually 20 ° C to 45 ° C, preferably 25 ° C to 40 ° C. The incubation period can continue until the desired amount of L-arginine methionine production is obtained, preferably 10 to 160 hours. Isolation of L-ornithine or L-arginine from the culture can be separated by conventional methods known in the art. In such a separation method, methods such as centrifugation, filtration, ion exchange chromatography, and crystallization may be used. For example, the supernatant obtained by removing the biomass by centrifugation of the culture at low speed can be separated by ion exchange chromatography.
상기한 바와 같이 본 발명은 코리네박테리움 글루타미쿰에서 오르니틴 또는 아르기닌 생합성과 관련된 아세틸글루타메이트 신타제 및 아세틸오르니티나제에 활성을 갖는 폴리뉴클레오티드, 상기 폴리뉴클레오티드에 의해 암호화되는 폴리펩티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 L-아르기닌 생산 숙주 미생물 에 도입하여 형질전환시킨 형질전환체 및 상기 형질전환체를 배양하여 L-오르니틴 또는 L-아르기닌을 제조하는 방법을 제공하는 효과가 있다. 본 발명의 형질전환체는 아세틸글루타메이트 신타제 및 아세틸오르니티나제의 활성이 내재적 활성 보다 강화됨으로써 고수율로 L-오르니틴 또는 L-아르기닌을 생산할 수 있으므로 생물의약 산업상 유용하게 사용할 수 있는 효과가 있다.As described above, the present invention relates to a polynucleotide having activity on acetylglutamate synthase and acetylornithase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum, a polypeptide encoded by the polynucleotide, the polynucleotide Recombinant vector comprising a transformant transformed by introducing the recombinant vector into the L-arginine producing host microorganism and the effect of providing a method for producing L- ornithine or L-arginine by culturing the transformant have. The transformant of the present invention is capable of producing L-ornithine or L-arginine in high yield by enhancing the activity of acetylglutamate synthase and acetylornithase than intrinsic activity, and thus have a useful effect in the biopharmaceutical industry. have.
도 1은 본 발명에 따른 pEK-Ptrc::Ncgl1469 벡터의 구조를 나타낸 도이다.1 is a diagram showing the structure of a pEK-Ptrc :: Ncgl1469 vector according to the present invention.
이하. 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 실시하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Below. The present invention will be described in more detail with reference to Examples. However, these examples are only for carrying out the present invention by way of example, but the scope of the present invention is not limited to these examples.
< 실시예 ><Example>
실시예 1: Ncgl1469 클로닝 Example 1: Ncgl1469 Cloning
본 실시예에서는 과발현 벡터를 제작하기 위해 먼저 trc 프로모터를 pTrc99A (Amann et al. 1988)을 주형으로 하고 서열 번호 3 및 4번의 올리고 뉴클레오타이드를 프라이머로 하여 PCR을 수행하였다. 또, rrnB 터미네이터를 pTrc99A를 주형으로 하고 서열 5 및 6번의 올리고 뉴클레오타이드를 프라이머로 하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (stratagene)이고, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 68℃, 1분을 25회 반복하였다. NIH GenBank를 근거로 하여 NCgl1469 유전자의 염기서열 정보를 확보하고, 이에 근거하여 프라이머를 합성하였다(서열 7 및 8). 합성한 프라이머를 이용하여 코리네박테리움 글루타미컴 ATCC13032 균주의 유전자 DNA를 주형으로 하여 PCR을 위와 동일한 방법으로 수행한다. PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 68℃, 1분 30초를 25회 반복하였다. In this example, PCR was performed using a trc promoter as a template of pTrc99A (Amann et al. 1988) and oligonucleotides of SEQ ID NOs: 3 and 4 as primers to prepare an overexpression vector. In addition, PCR was performed using rrnB terminator as a template of pTrc99A and oligonucleotides of SEQ ID NO: 5 and 6 as primers. The polymerase is PfuUltra high-trust DNA polymerase (stratagene) and PCR conditions were denatured 95 ° C., 30 seconds; Annealing 55 ° C., 30 seconds; And 25 degreeC of the polymerization reaction 68 degreeC was repeated 1 time. Base sequence information of the NCgl1469 gene was obtained based on NIH GenBank, and primers were synthesized based on this (SEQ ID NOS: 7 and 8). Using the synthesized primers, PCR is performed in the same manner as above using the gene DNA of the Corynebacterium glutamicum ATCC13032 strain as a template. PCR conditions were denatured 95 ℃, 30 seconds; Annealing 55 ° C., 30 seconds; And 25 minutes of polymerization reaction at 68 ° C. for 1 minute 30 seconds.
pEKO (E.coli-C.glutamicum shuttle vector, Eikmanns et al.1991) 벡터를 XbaI으로 제한효소 처리하였다. 상기에서 얻어진 ptrc 프로모터 분획과 1469 ORF를 Xba1, NdeI / NedI 및 xba1으로 각각 제한효소 처리한 후, 효소 처리된 벡터와 3조각 접합하여 재조합 벡터를 얻었다. 얻어진 재조합 벡터를 HincII과 EcoRI으로 다시 효소 처리하고, PCR을 이용하여 획득한 rrnB 터미네이터 분획을 SmaI/EcoRI 제한 효소로 처리하여 프로모터 - 1469 ORF - 터미네이터가 삽입된 pEK-Ptrc::1469 재조합 벡터를 획득하였다. The pEKO (E. coli-C.glutamicum shuttle vector, Eikmanns et al. 1991) vector was subjected to restriction enzyme treatment with XbaI. The ptrc promoter fraction and 1469 ORF obtained above were subjected to restriction enzyme treatment with Xba1, NdeI / NedI, and xba1, respectively, and then three-piece conjugation with the enzyme-treated vector to obtain a recombinant vector. The obtained recombinant vector was enzymatically treated with HincII and EcoRI again, and the rrnB terminator fraction obtained by PCR was treated with SmaI / EcoRI restriction enzyme to obtain pEK-Ptrc :: 1469 recombinant vector with promoter-1469 ORF-terminator inserted. It was.
실시예 2 : Ncgl1469 과발현Example 2 Ncgl1469 Overexpression
상기 실시예 1에서 클로닝한 Ncgl1469 유전자의 활성을 확인하기 위해 먼저 코리네박테리움 글루타미컴 ATCC13032 균주의 argJ가 파쇄된 균주를 제작할 필요가 있다. argJ가 결손된 균주를 제작하기 위해서 pK18mobsacB 인터그레이션(intergration) 벡터(Schafer et al.1994)를 이용하였다. ATCC13032를 주형으로 하여 각각 서열번호 7 및 8과 9 및 10을 프라이머로 하여 PCR을 수행하였다. PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 68℃, 1분 30초를 25회 반복하였다. pK18mobsacB 벡터를 XbaI으로 제한효소 처리한 후, 얻어진 두 개의 PCR 분획을 각각 XbaI/ApaI, ApaI/XbaI으로 처리하여 3조각 접합으로 재조합 벡터를 제작하였다.Ncgl1469 cloned in Example 1 In order to confirm the activity of the gene, it is necessary to prepare a strain argJ crushed of Corynebacterium glutamicum ATCC13032 strain first. The pK18mobsacB integration vector (Schafer et al. 1994) was used to prepare a strain lacking argJ. PCR was performed using ATCC13032 as a template and SEQ ID NOs. 7 and 8, 9 and 10 as primers, respectively. PCR conditions were denatured 95 ℃, 30 seconds; Annealing 55 ° C., 30 seconds; And 25 minutes of polymerization reaction at 68 ° C. for 1 minute 30 seconds. After restriction enzyme treatment of the pK18mobsacB vector with XbaI, the two PCR fractions were treated with XbaI / ApaI and ApaI / XbaI, respectively, to construct a recombinant vector by three-piece conjugation.
제작된 재조합 벡터를 ATCC13032 균주에 전기펄스법으로 형질전환 후 카나마이신 (kanamicin) 25mg/L를 함유한 선별 배지에서 염색체상의 뉴클레오티드와 상동성에 의해 삽입된 균주를 선별하였다. 1차 염색체 삽입된 균주를 영양배지에서 진탕 배양 (30℃, 4시간) 한 후, 각각 10-4으로부터 10-10으로 자당(sucrose)을 포함하고 있는 고체배지에 도말하였다. 대부분의 콜로니가 자당에 의해 사멸하고 낮은 비율로 나타나는 콜로니를 선별함으로써, 2차 교차 (crossover)에 의해 삽입된 염색체상의 벡터 서열이 제거된 균주를 선별하였다. 이상과 같이 선별된 균주는 최종적으로 항생제 카나마이신에 대한 감수성 여부의 확인 및 서열 7 과 10를 이용한 PCR을 통하여 유전자 구조 확인 과정을 거쳐 최종 선정되었다. The recombinant vector was transformed into ATCC13032 strain by electric pulse method, and then, the strain inserted by homology with nucleotides on the chromosome was selected in a selection medium containing 25 mg / L of kanamicin. The primary chromosome inserted strains were shaken in nutrient medium (30 ° C., 4 hours), and then plated on solid medium containing sucrose from 10 −4 to 10 −10 , respectively. By selecting the colonies where most colonies were killed by sucrose and appearing at a low rate, strains from which vector sequences on the chromosomes inserted by secondary crossover were removed were selected. The strains selected as described above were finally selected through the gene structure confirmation process through confirmation of susceptibility to the antibiotic kanamycin and PCR using SEQ ID NOS: 7 and 10.
실시예 3: Ncgl1469의 아세틸글루타메이트 신타아제 및 아세틸오르니티나제 활성 측정Example 3: Determination of Acetylglutamate synthase and acetylornithase activity of Ncgl1469
상기 실시예 2에서 선정된 균주를 액체 배지에서 배양한 후, 원심분리하여 균체를 모았다. 균체는 100mM Tris/Hcl buffer (pH 7.5)에 2번 세척하여 준비하고, 유리 비드를 이용한 방법으로 세포벽을 제거하였다. After culturing the strain selected in Example 2 in a liquid medium, the cells were collected by centrifugation. The cells were prepared by washing twice in 100 mM Tris / Hcl buffer (pH 7.5), and cell walls were removed by the method using glass beads.
기존에 알려진 방법에 따라 분광흡광기를 이용하여 412nm에서 5-thio-2-nitrobanzonate의 형성양을 측정하여(Errey and Blanchard, 2005) 아세틸글루타메이트 활성을 측정하였다. 아세틸오르니티나제의 활성 또한 종래의 방법(Vogel and Mcleelan , 1970)에 의해서 측정하였다.According to a known method, acetylglutamate activity was measured by measuring the amount of 5-thio-2-nitrobanzonate formed at 412 nm using a spectrophotometer (Errey and Blanchard, 2005). The activity of acetylornithase was also measured by conventional methods (Vogel and Mcleelan, 1970).
위의 방법을 통해서 ATCC13032, argJΔ 균주에 pEKO 벡터, pEK-Ptrc::1469 을 과발현시킨 균주의 활성을 각각 측정한 결과는 아래 표1과 같다. Through the above method, the results of measuring the activity of the strain overexpressing the pEKO vector and pEK-Ptrc :: 1469 in the ATCC13032 and argJΔ strains are shown in Table 1 below.
표 1
균주 플라스미드 특이 활성(units/mg protein)*
아세틸글루타메이트 신타제 a 아세틸오르티네이즈b
C. glutamicum argJ pEK0 0.03 ND
pEK-Ptrc::1469 0.17 0.07
Table 1
Strain Plasmid Specific activity (units / mg protein) *
Acetylglutamate synthase a Acetyl ortase b
C. glutamicum argJ pEK0 0.03 ND
pEK-P trc :: 1469 0.17 0.07
아세틸오르니티나제를 암호화하는 것으로 보고된 argJ가 결손된 균주를 제작하여 Ncgl1469을 과발현시키고 아세틸글루타메이트 및 아세틸오르니티나제 활성을 측정한 결과 Ncgl1469가 두 효소에 대한 활성을 갖는 것을 확인하였다. ArgJ-deficient strains reported to encode acetylornithase were prepared to overexpress Ncgl1469, and acetylglutamate and acetylornithase activity were measured to confirm that Ncgl1469 had activity against both enzymes.
실시예 4: SJ8073-pEK-Ptrc::1469 균주의 오르니틴 생산Example 4: Ornithine Production of SJ8073-pEK-Ptrc :: 1469 Strain
Ncgl1469 유전자가 과발현된 균주의 오르니틴 생산능을 확인하기 위해서 오르니틴 생산주인 SJ8074 (argF-argR-proBΔ, Hwang et al. 2008) 균주를 모균주로 사용하였다. In order to confirm ornithine production of the overexpressed strain Ncgl1469 gene ornithine strain SJ8074 (argF-argR-proBΔ, Hwang et al. 2008) strain was used as a parent strain.
균주는 0.8 g/L KH2PO4, 10g/L (NH4)2SO4, 1g/L MgSO4·7H2O, 1.2 g/L Na2HPO4, 2 mg/L MnSO4·H2O, 10 mg/L ZnSO4·7H2O, 10 g 효모 추출물, 20g/L CaCO3, 60g/L 포도당 및10 mM IPTG 를 넣고 250 mL 배플 플라스크에서 진탕 배양하였다. 배양액 중의 오르니틴 농도는 아래 표2와 같다. Strains 0.8 g / L KH 2 PO 4 , 10 g / L (NH 4 ) 2 SO 4 , 1 g / L MgSO 4 · 7H 2 O, 1.2 g / L Na 2 HPO 4 , 2 mg / L MnSO 4 · H 2 O, 10 mg / L ZnSO 4 · 7H 2 O, 10 g yeast extract, 20 g / L CaCO 3 , 60 g / L glucose and 10 mM IPTG was added to shake culture in a 250 mL baffle flask. Ornithine concentration in the culture is shown in Table 2 below.
표 2
균주 플라스미드 l-오르니틴 농도 (mg/l)a
글루타메이트 (0 mM) 글루타메이트 (50 mM)
C. glutamicum SJ8074 pEK0 137.57 145.27
pEK-Ptrc::1469 178.81 207.84
TABLE 2
Strain Plasmid l-ornithine concentration (mg / l) a
Glutamate (0 mM) Glutamate (50 mM)
C. glutamicum SJ8074 pEK0 137.57 145.27
pEK-P trc :: 1469 178.81 207.84
오르니틴 생산균주인 SJ8074균주에 Ncgl1469를 과발현시킨 결과 오르니틴 생산량이 약 20% 이상 증가하였음을 확인하였다.As a result of overexpressing Ncgl1469 in SJ8074, an ornithine-producing strain, ornithine production was increased by more than 20%.
재조합 벡터 pEK-Ptrc::Ncgl1469를 C. glutamicum SJ8074균주에 도입하여 얻은 형질전환체를 Corynebacterium glutamicum CA06-0020라 명명하고, 2009년 12월 23일자로 한국미생물보존센터 (Korean Culture center of Microorganisms, 이하, "KCCM"으로 약칭함)에 수탁번호 KCCM 11057P로 기탁하였다.Recombinant vector pEK-Ptrc :: Ncgl1469 to C. The transformant obtained by introducing into glutamicum SJ8074 strain was named Corynebacterium glutamicum CA06-0020, and was assigned to the Korean Culture Center of Microorganisms (hereinafter abbreviated as "KCCM") as of December 23, 2009. Deposited with KCCM 11057P.
실시예 5: ATCC21831, argR Δ - pEK-Ptrc::1469 균주의 아르기닌 생산 Example 5: Arginine Production of ATCC21831, argR Δ -pEK-Ptrc :: 1469 Strain
TL2 유전자가 과발현된 균주의 아르기닌 생산능을 확인하기 위해서 아르기닌 생산 균주인 ATCC21831 균주의 아르기닌 억제인자인 argR을 파쇄한 균주를 제작하여 모균주로 사용하였다. In order to confirm the arginine production capacity of the strain overexpressing the TL2 gene, a strain was prepared by crushing argR, which is an arginine inhibitor, of the ATCC21831 strain, which is an arginine producing strain, and used as a parent strain.
균주는 0.8 g/L KH2PO4, 10g/L (NH4)2SO4, 1g/L MgSO4·7H2O, 1.2 g/L Na2HPO4, 2 mg/L MnSO4·H2O, 10 mg/L ZnSO4·7H2O, 10 g 효모 추출물, 20g/L CaCO3 및 60g/L 포도당을 넣고 250 mL baffled flask 에서 진탕 배양한다. 배양액 중의 아르기닌 농도는 아래 표3와 같다. Strains 0.8 g / L KH 2 PO 4 , 10 g / L (NH 4 ) 2 SO 4 , 1 g / L MgSO 4 · 7H 2 O, 1.2 g / L Na 2 HPO 4 , 2 mg / L MnSO 4 · H 2 O, 10 mg / L ZnSO 4 · 7H 2 O, 10 g yeast extract, 20 g / L CaCO 3 and 60 g / L glucose are added and shake incubated in a 250 mL baffled flask. Arginine concentration in the culture is shown in Table 3 below.
표 3
균주 플라스미드 l-아르기닌 농도(mg/l)a
IPTG (0 mM) IPTG (10 mM)
ATCC21831 argRΔ pEK0 1.42 1.39
pEK-Ptrc::1469 1.39 1.56
TABLE 3
Strain Plasmid l-arginine concentration (mg / l) a
IPTG (0 mM) IPTG (10 mM)
ATCC21831 argRΔ pEK0 1.42 1.39
pEK-P trc :: 1469 1.39 1.56
아르기닌 생산 균주인 ATCC21831-argRΔ 균주에 Ncgl1469를 과발현 시킨 결과 아르기닌 생산량이 약 10% 증가하였음을 확인하였다.As a result of overexpressing Ncgl1469 in the ATCC21831-argRΔ strain, which is an arginine producing strain, it was confirmed that the arginine production was increased by about 10%.
재조합 벡터 pEK-Ptrc::Ncgl1469를 ATCC21831 argRΔ 균주에 도입하여 얻은 형질전환체를 Corynebacterium glutamicum CA06-0021라 명명하고, 2009년 12월 23일자로 한국미생물보존센터 (Korean Culture center of Microorganisms, 이하, "KCCM"으로 약칭함)에 수탁번호 KCCM 11058P로 기탁하였다.The transformant obtained by introducing the recombinant vector pEK-Ptrc :: Ncgl1469 into the ATCC21831 argRΔ strain was named Corynebacterium glutamicum CA06-0021, and as of December 23, 2009, the Korean Culture Center of Microorganisms, hereinafter, " KCCM 11058P (abbreviated as "KCCM").
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있음을 이해할 수 있다. 이와 관련하여, 이상에서 기술한 실시예 및 실험예들은 모든 면에서 예시적인 것이며 제한적인 것이 아닌 것으로 이해하여야 한다. 본 발명의 범위는 전술한 상세한 설명보다는 후술되는 특허청구범위의 의미 및 범위, 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.  From the above description, those skilled in the art can understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, it should be understood that the examples and experimental examples described above are exemplary in all respects and not restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the claims and the equivalent concept described below are included in the scope of the present invention rather than the foregoing detailed description.
상기한 바와 같이 본 발명은 코리네박테리움 글루타미쿰에서 오르니틴 또는 아르기닌 생합성과 관련된 아세틸글루타메이트 신타제 및 아세틸오르니티나제에 활성을 갖는 폴리뉴클레오티드, 상기 폴리뉴클레오티드에 의해 암호화되는 폴리펩티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 L-아르기닌 생산 숙주 미생물 에 도입하여 형질전환시킨 형질전환체 및 상기 형질전환체를 배양하여 L-오르니틴 또는 L-아르기닌을 제조하는 방법을 제공하는 효과가 있다. 본 발명의 형질전환체는 아세틸글루타메이트 신타제 및 아세틸오르니티나제의 활성이 내재적 활성 보다 강화됨으로써 고수율로 L-오르니틴 또는 L-아르기닌을 생산할 수 있으므로 생물의약 산업상 유용하게 사용할 수 있는 효과가 있다.As described above, the present invention relates to a polynucleotide having activity on acetylglutamate synthase and acetylornithase related to ornithine or arginine biosynthesis in Corynebacterium glutamicum, a polypeptide encoded by the polynucleotide, the polynucleotide Recombinant vector comprising a, transformant transformed by introducing the recombinant vector into the L-arginine producing host microorganism and the effect of providing a method for producing L- ornithine or L-arginine by culturing the transformant have. The transformant of the present invention is capable of producing L-ornithine or L-arginine in high yield by enhancing the activity of acetylglutamate synthase and acetylornithase than intrinsic activity, and thus have a useful effect in the biopharmaceutical industry. have.
Figure PCTKR2010009521-appb-I000001
Figure PCTKR2010009521-appb-I000001
Figure PCTKR2010009521-appb-I000002
Figure PCTKR2010009521-appb-I000002
Figure PCTKR2010009521-appb-I000003
Figure PCTKR2010009521-appb-I000003
Figure PCTKR2010009521-appb-I000004
Figure PCTKR2010009521-appb-I000004

Claims (7)

  1. 코리네박테리움 글루타미컴 유래 아세틸글루타메이트 신타제 및 아세틸오르니티나제의 활성을 갖는 것을 특징으로 하는 아미노산 서열 1로 표시되는 폴리펩티드.A polypeptide represented by amino acid sequence 1 having the activities of Corynebacterium glutamicum-derived acetylglutamate synthase and acetylornithase.
  2. 제 1항의 폴리펩티드를 암호화하는 서열번호 2로 표시되는 폴리뉴클레오티드.A polynucleotide represented by SEQ ID NO: 2 encoding the polypeptide of claim 1.
  3. 상기 제2항의 뉴클레오티드를 포함하는 도 1의 재조합 벡터 pEK-Ptrc::Ncgl1469.Recombinant vector pEK-Ptrc :: Ncgl1469 of FIG. 1 comprising the nucleotide of claim 2.
  4. 제 3항의 벡터로 형질전환되어 아세틸글루타메이트 신타제 및 아세틸오르니티나제의 활성이 내재적 활성보다 강화된 아미노산 생산능을 가지는 코리네박테리움 속 미생물. A microorganism of the genus Corynebacterium transformed with the vector of claim 3, wherein the activity of acetylglutamate synthase and acetylornithase has an enhanced amino acid production ability than the intrinsic activity.
  5. 제 4항에 있어서, 상기 코리네박테리움 속 미생물이 코리네박테리움 글루타미쿰인 것을 특징으로 하는 코리네박테리움 속 미생물.5. The microorganism of the genus Corynebacterium according to claim 4, wherein the microorganism of the genus Corynebacterium is Corynebacterium glutamicum.
  6. 제 4항에 있어서, 상기 아미노산은 L-오르니틴 또는 L-아르기닌인 것을 특징으로 하는 코리네박테리움 속 미생물.5. The microorganism of the genus Corynebacterium according to claim 4, wherein the amino acid is L-ornithine or L-arginine.
  7. 제 4항의 형질전환 된 코리네박테리움 글루타미쿰 속 미생물을 배양하는 단계 및 상기 미생물로부터 오르니틴 또는 아르기닌을 회수하는 단계를 포함하는 L-오르니틴 또는 L-아르기닌의 제조 방법.A method for preparing L-ornithine or L-arginine, comprising culturing the transformed Corynebacterium glutamicum genus microorganism of claim 4 and recovering ornithine or arginine from the microorganism.
PCT/KR2010/009521 2010-01-06 2010-12-29 Mutant strain for producing l-ornithine or l-arginine, and method for producing same WO2011083933A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012016535-6A BR112012016535B1 (en) 2010-01-06 2010-12-29 RECOMBINANT CORYNEBACTERIUM SP CEPA AND METHOD FOR PRODUCING L-ORNITHINE OR LARGININE
EP10842313.8A EP2522720B1 (en) 2010-01-06 2010-12-29 Mutant strain for producing l-ornithine or l-arginine, and method for producing same
US13/512,956 US8883460B2 (en) 2010-01-06 2010-12-29 L-ornithine or L-arginine producing strain and method for producing L-ornithine or L-arginine
CN201080055961.2A CN102712910B (en) 2010-01-06 2010-12-29 Mutant strain for producing L-ornithine or L-arginine, and method for producing same
ES10842313.8T ES2672894T3 (en) 2010-01-06 2010-12-29 Mutant strain to produce L-ornithine or L-arginine, and its production process
JP2012543031A JP5732469B2 (en) 2010-01-06 2010-12-29 L-ornithine or L-arginine production mutant and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0000726 2010-01-06
KR1020100000726A KR101174267B1 (en) 2010-01-06 2010-01-06 Corynebacterium glutamicum Variety Producing L-ornithine or L-Arginine and Method for Fabricating the Same

Publications (2)

Publication Number Publication Date
WO2011083933A2 true WO2011083933A2 (en) 2011-07-14
WO2011083933A3 WO2011083933A3 (en) 2011-11-10

Family

ID=44305914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009521 WO2011083933A2 (en) 2010-01-06 2010-12-29 Mutant strain for producing l-ornithine or l-arginine, and method for producing same

Country Status (8)

Country Link
US (1) US8883460B2 (en)
EP (1) EP2522720B1 (en)
JP (1) JP5732469B2 (en)
KR (1) KR101174267B1 (en)
CN (1) CN102712910B (en)
BR (1) BR112012016535B1 (en)
ES (1) ES2672894T3 (en)
WO (1) WO2011083933A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507479A (en) * 2012-01-11 2015-03-12 シージェイ チェイルジェダン コーポレーション Recombinant microorganism with improved putrescine production ability and method for producing putrescine using the same
CN114990039A (en) * 2022-06-01 2022-09-02 南京工业大学 Recombinant corynebacterium glutamicum for synthesizing L-ornithine from galactose raw material and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481782B1 (en) * 2012-12-28 2015-01-13 대상 주식회사 Mutant Strain with improved Amino acid production by inactivating GOGAT
KR101735935B1 (en) * 2015-07-20 2017-05-16 씨제이제일제당 (주) Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
KR20230054183A (en) * 2021-10-15 2023-04-24 씨제이제일제당 (주) A genus of Corynebacterium microorganism for producing L- arginine and a method for producing L-arginine using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163487A (en) 1981-04-02 1982-10-07 Ajinomoto Co Inc Production of l-arginine through fermentation process
JPS6083593A (en) 1983-10-12 1985-05-11 Ajinomoto Co Inc Production of l-arginine by fermentation method
JPS62265988A (en) 1986-05-14 1987-11-18 Kyowa Hakko Kogyo Co Ltd Production of l-arginine by fermentation
EP0393708A2 (en) 1989-04-20 1990-10-24 Ajinomoto Co., Inc. Process for producing L-ornithine by fermentation
US20020045223A1 (en) 2000-04-28 2002-04-18 Ajinomoto Co., Inc. Arginine repressor deficient strain of coryneform bacterium and method for producing L-arginine
KR20040107215A (en) 2003-06-13 2004-12-20 주식회사 하이닉스반도체 Semiconductor memory device having storage node electrode with surface recess and method for manufacturing the same
KR100830290B1 (en) 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same
KR100830289B1 (en) 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440118C1 (en) * 1994-11-11 1995-11-09 Forschungszentrum Juelich Gmbh Gene expression in coryneform bacteria regulating DNA
JP4623825B2 (en) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 Novel polynucleotide
DE60038560T2 (en) * 2000-10-27 2009-06-25 Ajinomoto Co., Inc. Process for the fermentative production of L-arginine
EP2949755B1 (en) * 2004-07-15 2018-03-28 DSM IP Assets B.V. Biochemical synthesis of 1,4-butanediamine
KR100620092B1 (en) 2004-12-16 2006-09-08 씨제이 주식회사 Novel promoter nucleic acid derived from corynebacterium genus bacteria expression cassette comprising the promoter and vector comprising the cassette host cell comprising the vector and method for expressing a gene using the cell
DE102005020538A1 (en) * 2005-05-03 2006-11-23 Degussa Ag Process for the preparation of L-amino acids using improved strains of the family Enterobacteriaceae
CN101389765B (en) * 2006-03-30 2012-08-22 巴斯夫欧洲公司 Process for the production of cadaverine
JP5395063B2 (en) * 2008-04-25 2014-01-22 公益財団法人地球環境産業技術研究機構 Transformants of coryneform bacteria having the ability to produce isopropanol
KR101189622B1 (en) 2008-06-25 2012-10-10 주식회사 엘지화학 Anisotropic conductive adhesive comprising anthracene type epoxy resin and circuit connection structure using the same
CN101586130A (en) * 2009-06-23 2009-11-25 广东肇庆星湖生物科技股份有限公司 Method for preparing L-arginine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163487A (en) 1981-04-02 1982-10-07 Ajinomoto Co Inc Production of l-arginine through fermentation process
JPS6083593A (en) 1983-10-12 1985-05-11 Ajinomoto Co Inc Production of l-arginine by fermentation method
JPS62265988A (en) 1986-05-14 1987-11-18 Kyowa Hakko Kogyo Co Ltd Production of l-arginine by fermentation
EP0393708A2 (en) 1989-04-20 1990-10-24 Ajinomoto Co., Inc. Process for producing L-ornithine by fermentation
US20020045223A1 (en) 2000-04-28 2002-04-18 Ajinomoto Co., Inc. Arginine repressor deficient strain of coryneform bacterium and method for producing L-arginine
KR20040107215A (en) 2003-06-13 2004-12-20 주식회사 하이닉스반도체 Semiconductor memory device having storage node electrode with surface recess and method for manufacturing the same
KR100830290B1 (en) 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same
KR100830289B1 (en) 2007-01-18 2008-05-16 씨제이제일제당 (주) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAMES M. LEE: "Biochemical Engineering", 1991, PRENTICE-HALL INTERNATIONAL EDITIONS, pages: 138 - 176
See also references of EP2522720A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507479A (en) * 2012-01-11 2015-03-12 シージェイ チェイルジェダン コーポレーション Recombinant microorganism with improved putrescine production ability and method for producing putrescine using the same
EP2803721A4 (en) * 2012-01-11 2015-08-26 Cj Cheiljedang Corp Recombinant microorganism having improved putrescine producing ability and method for producing putrescine by using same
CN114990039A (en) * 2022-06-01 2022-09-02 南京工业大学 Recombinant corynebacterium glutamicum for synthesizing L-ornithine from galactose raw material and application thereof
CN114990039B (en) * 2022-06-01 2023-07-04 南京工业大学 Recombinant corynebacterium glutamicum for synthesizing L-ornithine by using galactose raw material and application thereof

Also Published As

Publication number Publication date
JP5732469B2 (en) 2015-06-10
CN102712910B (en) 2015-05-27
EP2522720A2 (en) 2012-11-14
JP2013512687A (en) 2013-04-18
KR20110080475A (en) 2011-07-13
KR101174267B1 (en) 2012-08-14
WO2011083933A3 (en) 2011-11-10
EP2522720A4 (en) 2013-06-12
EP2522720B1 (en) 2018-03-28
US8883460B2 (en) 2014-11-11
BR112012016535A2 (en) 2017-03-21
BR112012016535B1 (en) 2021-10-26
US20130023016A1 (en) 2013-01-24
CN102712910A (en) 2012-10-03
ES2672894T3 (en) 2018-06-18

Similar Documents

Publication Publication Date Title
EP2102337B1 (en) A microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
US8426577B2 (en) Promoter and a production method for L-lysine using the same
US8058036B2 (en) Microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
EP1792976B1 (en) Microorganism of corynebacterium genus having enhanced L-lysine production ability and method of producing L-lysine using the same
KR102150041B1 (en) Microorganism having increased glycine productivity and method for producing fermented composition using the same
US20120021466A1 (en) Microorganisms of Corynebacterium with Improved 5&#39;-Inosinic Acid Productivity, and Method for Producing Nucleic Acids Using Same
US7135313B2 (en) Method for producing L-lysine or L-lysine containing feed additives with a cornebacteria containing a mutated lysC
WO2011083933A2 (en) Mutant strain for producing l-ornithine or l-arginine, and method for producing same
EP3498854B1 (en) Method for the fermentative production of l-lysine
WO2022124671A1 (en) Shewanella oneidensis-derived protein expressing microorganism and l-amino acid producing method using same
EP1456363A1 (en) Alleles of the siga gene from coryneform bacteria
CN113994003B (en) Novel promoter and use thereof
WO2022124670A1 (en) Shewanella atlantica-derived protein-expressing microorganism and l-amino acid production method using same
CN113994002A (en) Novel promoter and use thereof
KR20140128174A (en) Microorganism having improved L-ornithin production by increasing the aminotransferase activity and process for preparing the L-ornithin employing the same
WO2016060437A1 (en) Microorganism of genus corynebacterium for producing l-arginine, and l-arginine production method using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055961.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010842313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012543031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1920/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13512956

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016535

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012016535

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120704