WO2011081479A2 - Non-contact segment block for electric vehicle - Google Patents

Non-contact segment block for electric vehicle Download PDF

Info

Publication number
WO2011081479A2
WO2011081479A2 PCT/KR2010/009569 KR2010009569W WO2011081479A2 WO 2011081479 A2 WO2011081479 A2 WO 2011081479A2 KR 2010009569 W KR2010009569 W KR 2010009569W WO 2011081479 A2 WO2011081479 A2 WO 2011081479A2
Authority
WO
WIPO (PCT)
Prior art keywords
segment block
power
main power
electric vehicle
magnetic material
Prior art date
Application number
PCT/KR2010/009569
Other languages
French (fr)
Korean (ko)
Other versions
WO2011081479A3 (en
Inventor
서남표
장순흥
조동호
임재하
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2011081479A2 publication Critical patent/WO2011081479A2/en
Publication of WO2011081479A3 publication Critical patent/WO2011081479A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a feed segment for an electric vehicle, and more particularly, in a method of supplying power to an electric vehicle in a self-induced manner by at least one feed segment block embedded under a road,
  • the present invention relates to a non-contact feed segment block for an online electric vehicle for an electric vehicle in which the main power supply means is implemented in a contactless manner without using a connector.
  • online electric vehicles install a power feeding device under the road and charge the battery in a self-inducing manner.
  • a self-induction electric vehicle has an advantage of being driven by the charging power of the mounted battery when the power supply is interrupted from the power feeding device.
  • the electric power supply line was extended along the entire road, and the electric power was supplied to the entire feeding device, but recently, a method of implementing a segment block, which is a predetermined unit module for feeding, has been proposed.
  • FIG. 1 is a diagram illustrating the structure of a conventional online electric vehicle and a power supply segment block.
  • a power feeding segment block 200 divided into one or more unit modules is buried along the road under the road on which the vehicle 100 runs.
  • the inverter ( 400 applies a voltage to the feed segment block 200 via the main power line 300.
  • the electric power is induced by the induced electromotive force 170 between the feed segment block 200 and the current collector 110 provided in the vehicle under the control of the switch 230 connected through the feed segment block 200 and the connector 260. It is a way to charge.
  • the online electric vehicle and its power supply system having the above-described structure, especially in the urban area, it is desirable to build a power supply system so that the segment block is as short as possible in order to satisfy the domestic and international standards related to electromagnetic waves and to ensure the health and safety of citizens. desirable.
  • the technical problem to be solved is to use a main power feeder for supplying power to each feed segment block, and a large power connector having a large number of expensive waterproof functions to connect the feeder in each feed segment block, It is necessary to design and install expensive structures in order to prepare for vibration and rainfall. If there are many mechanical connections using the above connectors, the mean time between failures (MTBF) of the entire system is shortened, causing frequent failures of the system. Accordingly, there is a problem in that it takes a long time when replacing a broken segment, and the maintenance and repair costs increase.
  • MTBF mean time between failures
  • the present invention has been made to solve the above-described problems, in order to more efficiently improve the electric power feed segment block for an online electric vehicle, the existing feed segment block and the main power line is composed of a segment feed block and the main power feed block, The power transfer between the two blocks is easy to maintain the whole system by minimizing the number of mechanical fastening parts without using a mechanical connection device such as a connector, and also to replace the failed feed segment block more easily.
  • the purpose is to provide a non-contact feed segment block system for an electric vehicle.
  • the main power segment block is connected to the inverter to generate a magnetic field when the vehicle recognizes the driving; And a power feeding segment block disposed below the road at a predetermined distance and supplying power to the vehicle corresponding to the magnetic field.
  • the main power segment block may include: a main power line connected to the inverter to transfer current between each main power segment; A main power coil for generating a collector field in response to the current flowing through the main power line; And a main power magnetic material that focuses and strengthens the main electric field coil and transfers it to the power supply segment block.
  • the main power segment block may further include a shielding network that cancels the current collector field to the outside of the main power magnetic material.
  • the power feeding segment block may include a current collecting magnetic material that focuses a power feeding magnetic field transmitted from the main power segment block; A current collector coil configured to be provided inside the current collector magnetic material and convert the focused electromagnetic field into electric power; A current collecting line provided inside the current collecting magnetic material to transfer a current corresponding to the electric power between each feeding segment block; A feeder for generating a segment feeder field in response to a current flowing through the current collector; A power switch connected to the current collecting line and the feeding line to conduct and cut off current; A communication module for controlling the power switch according to the movement of the vehicle; And a feeding magnetic body positioned above the current collecting magnetic material and focusing and strengthening the feeding electromagnetic field generated from the feeding line provided inside.
  • the switch may be a relay circuit or an electronic switch for power.
  • the main power magnetic material, the current collecting magnetic material and the feeding magnetic material is characterized in that composed of ferrite.
  • the main power segment block and the feed segment block is characterized in that mounted in an enclosure of a solid material.
  • the enclosure is characterized in that the concrete material.
  • a power supply segment block of an electric vehicle according to a preferred embodiment of the present invention, a current collecting magnetic body for generating electric power corresponding to the main power feed magnetic field from the magnetic field generating means connected to the inverter; A feeding magnetic material connected to the current collecting magnetic material to generate a segment feeding magnetic field corresponding to the electric power; A power switch connecting the current collecting magnetic material and the feeding magnetic material; And a communication module for controlling the power switch.
  • the current collector magnetic body may include a current collector coil configured to convert the main power feed magnetic field into electric power; And a current collecting line configured to transfer a current corresponding to the electric power converted by the current collecting coil between each feeding segment block.
  • the feed magnetic material may include a feed line connected to the current collector coil to generate a segment feed magnetic field corresponding to the current.
  • the feed segment block may include: a power switch connected to the current collecting line and the feed line to conduct or cut off the current; And, characterized in that it comprises a communication module for controlling the power switch.
  • the power switch is a relay circuit or a power electronic switch.
  • the current collecting magnetic material and the feeding magnetic material are characterized by consisting of ferrite.
  • the feed segment block is mounted in an enclosure of a solid material.
  • the enclosure is characterized in that the concrete material.
  • the main power magnetic body is connected to the inverter to transfer the power supply magnetic field to the power supply segment block for supplying power to the vehicle and
  • the main power magnetic material is located inward and receives power from the inverter;
  • a main power coil for generating the feed magnetic field corresponding to the power.
  • the main power segment block may further include a shielding network that cancels the feeding magnetic field to the outside of the main power magnetic material.
  • the main power magnetic material is characterized by consisting of ferrite.
  • the main power segment block is mounted in an enclosure of a solid material.
  • the enclosure is characterized in that the concrete material.
  • a segment system by physically separating the segment feed block and the main power line of the existing online electric vehicle, it is possible to mass-produce the feed segment block in various sizes at a factory inexpensively according to the needs of customers.
  • mechanical connections such as connectors, it is possible to minimize failure points and reduce operating costs.
  • segment system construction can be performed by stacking the power supply segment block to the upper part after installing the main power segment block, thus simplifying the existing complex segment system construction work to reduce work time and construction cost in the field. It has the effect of reducing it.
  • FIG. 1 is a diagram illustrating the structure of a conventional online electric vehicle and a power supply segment block.
  • FIG. 2 is a diagram illustrating an on-line electric vehicle and a contactless feeding segment block according to a preferred embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a power supply segment block and a main power segment block according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an on-line electric vehicle and a contactless feeding segment block according to a preferred embodiment of the present invention.
  • the main power segment block 500 is installed under the power supply segment block 200 and the power supply segment block 200 buried under the road on which the vehicle 100 travels.
  • the power supply segment block 200 is configured to supply power to the current collector 110 of the vehicle 100
  • the main power segment block 500 is configured to supply power to the power supply segment block 200.
  • the information transceiver 120 of the vehicle 100 provides the vehicle information to the power supply segment block 200
  • the vehicle detection sensor 220 installed in the power supply segment block 200 is passed through the vehicle.
  • the power supply segment block 200 is applied with a voltage according to the magnetic field 275 induced from the main power segment block 500 and supplies power to the current collector 110 of the vehicle 100.
  • the above-described installation method of the power supply segment block 200 and the main power segment block 500 first install the main power segment block 500 at the bottom grooved on the road where the system will be installed, and then the designer If the number of the number of feed segment blocks 200 are independently arranged as a prefabricated block above the main power segment block 500, the installation of the non-contact segment feed road for the electric vehicle is completed.
  • the length of the above-described main power segment block may vary depending on the designer's intention, but it is preferably several times longer than the unit length of the feed segment block to be installed together.
  • the length of the feed segment block may vary from 1m, 2m, 3m or 10m, etc., depending on the intention of the designer, and can be mass produced in the same size in the production plant. Accordingly, for example, when constructing a feed road having a length of 600 m, if the length of the main power segment is determined to be 40 m for optimal efficiency due to the characteristics of the power feeding inverter, 15 main power feeding blocks are required. If the optimal feed segment block length determined by the designer on top of the main power segment block is 4m, 10 feed segment blocks are installed on the main power segment.
  • FIG 3 is a cross-sectional view of a power supply segment block and a main power segment block according to a preferred embodiment of the present invention.
  • the present invention is a main power segment including a feed segment block 200 including a feed magnetic material 210 and a current collecting magnetic material 240 buried beneath the road asphalt 190, and a main power magnetic material 520 It is composed of a segment block 500.
  • the feeding magnetic material 210 of the aforementioned feeding segment block 200 includes a segment feeding line 211 that supplies electric power to a current collector of the vehicle by using a magnetic field inward, and drives the power switch ( 213 and the communication module 215.
  • the power switch 213 receives a control signal from the communication module 215 and performs a function of connecting or disconnecting the segment feed line 211 and the current collector line 242 in response thereto.
  • the power switch 213 may be implemented as a relay circuit or an electronic switch for power.
  • the current collector magnetic body 240 is connected to the power switch 213 inward, and receives the power from the main power segment block 500, and collects the current collector line 242 and the current collector coil 244 to supply the segment feed line 211. Include.
  • the current collector magnetic body 240 may be connected in the form of three “ ⁇ ” characters, and the current collector line 242 and the current collector coil 244 are positioned inside the center portion.
  • the main power segment block 500 may include a main power magnetic body 510 including a main power line 522 and a main power coil 524, and a magnetic field shielding network that shields a magnetic field generated from the main power magnetic material 510. 520).
  • the main power magnetic body 510 is in the form of an “industrial” character, and the main power line 522 and the main power coil 524 are positioned inward, and the upper portion thereof is positioned to correspond to the lower portion of the current collector magnetic body 240.
  • the magnetic field shielding network 520 minimizes the magnetic field generated on the side of the main power magnetic material 210 in the main power segment block 200 and affects the magnetic field related to other steel structures or electrical facilities installed nearby, As shielding means for shielding magnetic field radiation, it is preferable to use a copper mesh or an aluminum mesh.
  • the magnetic field shielding network 520 is provided in a form of being embedded together in a concrete enclosure while maintaining a proper spacing necessary to avoid induction heating of the main power line 522.
  • the aforementioned feeding magnetic material 210, current collecting magnetic material 240 and main power magnetic material 510 is preferably made of ferrite or the like.
  • the feed segment block 200 and the main power segment block 500 is preferably surrounded by an enclosure of a solid material such as concrete.
  • the magnetic field generated by the main power line 522 in the main power segment block 500 is generated by the main power magnetic material 510. It is reinforced and focused and delivered to the feed segment block 200.
  • the current collecting magnetic material 240 of the power feeding segment block 200 focuses the focused magnetic field sent from the main power segment block 500 toward the current collecting coil 244, and the current collecting coil 244 is focused by the current collecting magnetic material 240. Converts a magnetic field into power
  • the power converted through the current collector coil 244 is provided to the current collector provided in the vehicle on the power supply road via the segment feed line 211, according to the control signal of the communication module 215 in the power supply segment block 200.
  • Electric power for propulsion of the vehicle is transmitted to the current collector of the electric vehicle in a non-contact manner. That is, the power input to the segment feed line 211 through the switch 213 is converted back to a magnetic field, concentrated and reinforced through the segment magnetic material 210 and transmitted to the current collector of the vehicle running on the road 190 in a non-contact manner. do.
  • the current collector of the vehicle focuses and receives a magnetic field again using its own magnetic material, converts the received magnetic field into AC power, and uses the driving power of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention opens a feeding segment for electric vehicles. In more detail, the present invention relates to a non-contact feeding segment block for online electric vehicles, wherein the segment block and a main power supply means for supplying power to the same are embodied in a non-contact method without using a connector in a method for supplying power to an electric vehicle in a magnetic induction method with one or more feeding segment blocks embedded under the road. The feeding device of an online electric vehicle comprises a main power line segment block which is connected to an inverter and generates a magnetic field when recognizing the moving of the vehicle; and a feeding segment block which is installed in the upper part of the main power segment block at a fixed distance and supplies power for the magnetic field to the vehicle. According to the embodiment of the present invention, it is able to facilitate installation and minimize failure, and reduce operation costs since various sizes of the feeding segment block can be mass-produced at a factory and a mechanical connection means such as a connector can be minimized according to the request of the customer by physically separating the segment feeding block and the main power line of a conventional online electric vehicle for the formation of the main power segment block.

Description

전기자동차용 비접촉식 세그먼트 블록Contactless segment blocks for electric vehicles
본 발명은 전기자동차용 급전 세그먼트에 관한 것으로, 보다 상세하게는 도로 밑에 매설된 하나이상의 급전 세그먼트 블록에 의해 자기유도 방식으로 전기자동차에 전력을 공급하는 방식에 있어서, 세그먼트 블록과 이에 전력을 공급하는 주전력 공급수단을 커넥터를 이용하지 않고 비접촉 방식으로 구현한 전기자동차용 온라인 전기자동차용 비접촉 급전 세그먼트 블록에 관한 것이다.The present invention relates to a feed segment for an electric vehicle, and more particularly, in a method of supplying power to an electric vehicle in a self-induced manner by at least one feed segment block embedded under a road, The present invention relates to a non-contact feed segment block for an online electric vehicle for an electric vehicle in which the main power supply means is implemented in a contactless manner without using a connector.
환경오염 문제를 유발하는 화석연료를 바탕으로 동작하는 기존의 자동차를 대체하기 위해 개발중인 대체 에너지 자동차로서 온라인 전기자동차는 도로 밑에 급전장치를 설치하고 이를 통한 자기유도방식으로 배터리를 충전하는 방식이다. 이러한 자기유도방식 전기자동차는 급전장치로부터 전력공급이 중단되는 경우에는 탑재된 배터리의 충전 전력으로 구동되는 장점이 있다.As an alternative energy vehicle that is being developed to replace existing vehicles operating on fossil fuels that cause environmental pollution problems, online electric vehicles install a power feeding device under the road and charge the battery in a self-inducing manner. Such a self-induction electric vehicle has an advantage of being driven by the charging power of the mounted battery when the power supply is interrupted from the power feeding device.
초창기 제시된 급전장치는, 급전선이 도로 전체를 따라 연장되어 매설된 급전장치 전체에 일괄적으로 전력이 공급되는 형태였으나, 최근에는 급전을 위한 소정의 단위 모듈인 세그먼트 블록으로 구현하는 방식이 제안되었다.In the initial feeding device, the electric power supply line was extended along the entire road, and the electric power was supplied to the entire feeding device, but recently, a method of implementing a segment block, which is a predetermined unit module for feeding, has been proposed.
도 1은 종래의 온라인 전기자동차 및 급전 세그먼트 블록의 구조를 도시한 도면이다.1 is a diagram illustrating the structure of a conventional online electric vehicle and a power supply segment block.
도시한 바와 같이, 종래의 온라인 전기자동차의 급전시스템은 차량(100)이 주행하는 도로 밑에는 하나이상의 단위모듈로 구분되는 급전 세그먼트 블록(200)이 도로를 따라 매설된다. 차량(100)의 정보 송수신기(120)가 차량정보를 급전 세그먼트 블록에 제공하고, 또한 급전 세그먼트 블록(200)에 설치된 차량감지센서(220)가 차량(100)이 통과하는 것을 인식하면, 인버터(400)는 주전력선(300)을 통해 급전 세그먼트 블록(200)에 전압을 인가한다. 이때, 급전 세그먼트 블록(200)과 컨넥터(260)를 통해 연결된 스위치(230)의 제어에 따라 해당 급전 세그먼트 블록(200)과 차량에 구비된 집전장치(110)간의 유도 기전력(170)에 의해 전력을 충전하게 되는 방식이다.As shown, in the conventional electric power feeding system of the online electric vehicle, a power feeding segment block 200 divided into one or more unit modules is buried along the road under the road on which the vehicle 100 runs. When the information transceiver 120 of the vehicle 100 provides the vehicle information to the power supply segment block, and the vehicle detection sensor 220 installed in the power supply segment block 200 recognizes that the vehicle 100 passes, the inverter ( 400 applies a voltage to the feed segment block 200 via the main power line 300. At this time, the electric power is induced by the induced electromotive force 170 between the feed segment block 200 and the current collector 110 provided in the vehicle under the control of the switch 230 connected through the feed segment block 200 and the connector 260. It is a way to charge.
전술한 구조의 온라인 전기자동차 및 이의 급전시스템은 특히, 도심지역에 구축되는 경우, 전자파 관련 국내외 규격 만족 및 시민의 건강과 안전을 확보하기 위해 가급적 세그먼트 블록의 길이가 짧도록 급전시스템을 구축하는 것이 바람직하다. 이때 해결해야 되는 기술적 문제는 각 급전용 세그먼트 블록에 전원을 공급하는 주전력 급전선과, 각 급전 세그먼트 블록내의 급전선과의 연결을 위해 다수의 값비싼 방수기능을 갖는 대전력 컨넥터를 사용해야만 하고, 도로의 진동 및 강우 등에 대비하여 값비싼 구조물을 설계 및 설치해야 한다는 점이다. 전술한 컨넥터를 이용한 기계적인 연결부위가 다수 존재하면 시스템 전체의 고장 간 평균시간(MTBF)은 짧아지고, 시스템의 잦은 고장의 원인이 된다. 이에 따라, 고장난 세그먼트를 교체할 때 시간이 많이 소요되고, 유지보수 및 수리비용이 증가하게 되는 문제점이 있다.In the case of the online electric vehicle and its power supply system having the above-described structure, especially in the urban area, it is desirable to build a power supply system so that the segment block is as short as possible in order to satisfy the domestic and international standards related to electromagnetic waves and to ensure the health and safety of citizens. desirable. The technical problem to be solved is to use a main power feeder for supplying power to each feed segment block, and a large power connector having a large number of expensive waterproof functions to connect the feeder in each feed segment block, It is necessary to design and install expensive structures in order to prepare for vibration and rainfall. If there are many mechanical connections using the above connectors, the mean time between failures (MTBF) of the entire system is shortened, causing frequent failures of the system. Accordingly, there is a problem in that it takes a long time when replacing a broken segment, and the maintenance and repair costs increase.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 온라인 전기 자동차용 급전 세그먼트 블록을 보다 효율적으로 개선하기 위해, 기존의 급전 세그먼트 블록 및 주전력선을 세그먼트 급전블럭과 주전력 급전블럭으로 구성하고, 전술한 두 블럭간의 전력전달을 컨넥터와 같은 기계적 연결장치를 사용하지 않고 기계적 체결 부위의 개수를 최소화함으로서 시스템 전체의 유지보수를 용이하게 하며, 또한 고장난 급전 세그먼트 블록의 교체작업을 보다 간단하게 수행할 수 있도록 한 전기자동차용 비접촉식 급전 세그먼트 블록시스템을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-described problems, in order to more efficiently improve the electric power feed segment block for an online electric vehicle, the existing feed segment block and the main power line is composed of a segment feed block and the main power feed block, The power transfer between the two blocks is easy to maintain the whole system by minimizing the number of mechanical fastening parts without using a mechanical connection device such as a connector, and also to replace the failed feed segment block more easily. The purpose is to provide a non-contact feed segment block system for an electric vehicle.
전술한 목적을 달성하기 위해, 본 발명의 바람직한 실시예에 따른 전기자동차의 급전장치는, 인버터와 연결되어 차량의 주행 인지시 자기장을 발생하는 주전력 세그먼트 블록; 및, 도로밑 상기 세그먼트 블록의 상부로 소정거리 이격되어 설치되며, 상기 자기장에 대응하는 전력을 상기 차량에 공급하는 급전 세그먼트 블록을 포함한다.In order to achieve the above object, a power supply device for an electric vehicle according to a preferred embodiment of the present invention, the main power segment block is connected to the inverter to generate a magnetic field when the vehicle recognizes the driving; And a power feeding segment block disposed below the road at a predetermined distance and supplying power to the vehicle corresponding to the magnetic field.
상기 주전력 세그먼트 블록은, 상기 인버터와 연결되어 각 주전력 세그먼트간에 전류를 전달하는 주전력선; 상기 주전력선에 흐르는 전류에 대응하여 집전자기장을 생성하는 주전력 코일; 및, 상기 주전력코일 상기 집전자기장을 집속 및 강화하여 상기 급전 세그먼트 블록에 전달하는 주전력 자성체를 포함하는 것을 특징으로 한다.The main power segment block may include: a main power line connected to the inverter to transfer current between each main power segment; A main power coil for generating a collector field in response to the current flowing through the main power line; And a main power magnetic material that focuses and strengthens the main electric field coil and transfers it to the power supply segment block.
상기 주전력 세그먼트 블록은, 상기 주전력 자성체의 외측으로 상기 집전자기장을 상쇄시키는 차폐망을 더 포함하는 것을 특징으로 한다.The main power segment block may further include a shielding network that cancels the current collector field to the outside of the main power magnetic material.
상기 급전 세그먼트 블록은, 상기 주전력 세그먼트 블록으로부터 전달되는 급전 자기장을 집속하는 집전 자성체; 상기 집전 자성체 내측으로 구비되어 집속된 상기 급전자기장을 전력으로 변환하는 집전코일; 상기 집전 자성체 내측으로 구비되어 상기 전력에 대응하는 전류를 각 급전 세그먼트 블록간에 전달하는 집전선; 상기 집전선에 흐르는 전류에 대응하여 세그먼트 급전자기장을 생성하는 급전선; 상기 집전선 및 급전선에 연결되어 전류를 도통 및 차단하는 전력 스위치; 상기 차량의 이동에 따라 상기 전력 스위치를 제어하는 통신모듈; 및, 상기 집전 자성체의 상부에 위치하고, 내측에 구비된 상기 급전선으로부터 생성된 상기 급전자기장을 집속 및 강화하여 상기 차량에 전달하는 급전 자성체를 포함하는 것을 특징으로 한다.The power feeding segment block may include a current collecting magnetic material that focuses a power feeding magnetic field transmitted from the main power segment block; A current collector coil configured to be provided inside the current collector magnetic material and convert the focused electromagnetic field into electric power; A current collecting line provided inside the current collecting magnetic material to transfer a current corresponding to the electric power between each feeding segment block; A feeder for generating a segment feeder field in response to a current flowing through the current collector; A power switch connected to the current collecting line and the feeding line to conduct and cut off current; A communication module for controlling the power switch according to the movement of the vehicle; And a feeding magnetic body positioned above the current collecting magnetic material and focusing and strengthening the feeding electromagnetic field generated from the feeding line provided inside.
상기 스위치는, 릴레이 회로(relay circuit) 또는 전력용 전자스위치인 것을 특징으로 한다.The switch may be a relay circuit or an electronic switch for power.
상기 주전력 자성체, 집전 자성체 및 급전 자성체는 페라이트로 구성되는 것을 특징으로 한다.The main power magnetic material, the current collecting magnetic material and the feeding magnetic material is characterized in that composed of ferrite.
상기 주전력 세그먼트 블록 및 상기 급전 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 한다.The main power segment block and the feed segment block is characterized in that mounted in an enclosure of a solid material.
상기 외함은, 콘크리트 재질인 것을 특징으로 한다.The enclosure is characterized in that the concrete material.
전술한 목적을 달성하기 위해, 본 발명의 바람직한 실시예에 따른 전기자동차의 급전 세그먼트 블록은, 인버터와 연결된 자기장 발생수단으로부터 주전력 급전 자기장에 대응하는 전력을 생성하는 집전 자성체; 상기 집전 자성체와 연결되어 상기 전력에 대응하는 세그먼트 급전 자기장을 발생시키는 급전 자성체; 상기 집전 자성체 및 급전 자성체를 연결하는 전력 스위치; 및, 상기 전력 스위치를 제어하는 통신모듈을 포함한다.In order to achieve the above object, a power supply segment block of an electric vehicle according to a preferred embodiment of the present invention, a current collecting magnetic body for generating electric power corresponding to the main power feed magnetic field from the magnetic field generating means connected to the inverter; A feeding magnetic material connected to the current collecting magnetic material to generate a segment feeding magnetic field corresponding to the electric power; A power switch connecting the current collecting magnetic material and the feeding magnetic material; And a communication module for controlling the power switch.
상기 집전 자성체는, 상기 주전력 급전 자기장을 전력으로 변환하는 집전코일; 및, 상기 집전코일이 변환한 상기 전력에 대응하는 전류를 각 급전 세그먼트 블록간에 전달하는 집전선을 포함하는 것을 특징으로 한다.The current collector magnetic body may include a current collector coil configured to convert the main power feed magnetic field into electric power; And a current collecting line configured to transfer a current corresponding to the electric power converted by the current collecting coil between each feeding segment block.
상기 급전 자성체는, 상기 집전코일과 연결되어 상기 전류에 대응하는 세그먼트 급전 자기장을 생성하는 급전선을 포함하는 것을 특징으로 한다.The feed magnetic material may include a feed line connected to the current collector coil to generate a segment feed magnetic field corresponding to the current.
상기 급전 세그먼트 블록은, 상기 집전선 및 급전선에 연결되어 상기 전류를 도통 또는 차단하는 전력 스위치; 및, 상기 전력 스위치를 제어하는 통신모듈을 포함하는 것을 특징으로 한다.The feed segment block may include: a power switch connected to the current collecting line and the feed line to conduct or cut off the current; And, characterized in that it comprises a communication module for controlling the power switch.
상기 전력 스위치는, 릴레이 회로(relay circuit) 또는 전력용 전자스위치인 것을 특징으로 한다.The power switch is a relay circuit or a power electronic switch.
상기 집전 자성체 및 급전 자성체는 페라이트로 구성되는 것을 특징으로 한다.The current collecting magnetic material and the feeding magnetic material are characterized by consisting of ferrite.
상기 급전 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 한다.The feed segment block is mounted in an enclosure of a solid material.
상기 외함은, 콘크리트 재질인 것을 특징으로 한다.The enclosure is characterized in that the concrete material.
전술한 목적을 달성하기 위해, 본 발명의 바람직한 실시예에 따른 전기자동차의 주전력 세그먼트 블록은, 인버터와 연결되어 차량에 전력을 공급하는 급전 세그먼트 블록에 급전 자기장을 전달하는 주전력 자성체를 구비하고, 상기 주전력 자성체는 내측으로 위치하여 상기 인버터부터 전력을 전달받는 주전력선; 및, 상기 전력에 대응하는 상기 급전 자기장을 생성하는 주전력코일을 포함한다.In order to achieve the above object, the main power segment block of the electric vehicle according to a preferred embodiment of the present invention, the main power magnetic body is connected to the inverter to transfer the power supply magnetic field to the power supply segment block for supplying power to the vehicle and The main power magnetic material is located inward and receives power from the inverter; And a main power coil for generating the feed magnetic field corresponding to the power.
상기 주전력 세그먼트 블록은, 상기 주전력 자성체 외측으로 상기 급전 자기장을 상쇄시키는 차폐망을 더 포함하는 것을 특징으로 한다.The main power segment block may further include a shielding network that cancels the feeding magnetic field to the outside of the main power magnetic material.
상기 주전력 자성체는 페라이트로 구성되는 것을 특징으로 한다.The main power magnetic material is characterized by consisting of ferrite.
상기 주전력 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 한다.The main power segment block is mounted in an enclosure of a solid material.
상기 외함은, 콘크리트 재질인 것을 특징으로 한다.The enclosure is characterized in that the concrete material.
본 발명의 바람직한 실시예에 따르면, 기존 온라인 전기자동차의 세그먼트 급전블록과 주전력선을 물리적으로 분리하여 세그먼트 시스템을 형성함으로서, 고객의 요구에 따라 다양한 사이즈별로 급전세그먼트 블록을 공장에서 저렴하게 대량 제작이 가능하고 컨넥터와 같은 기계적 연결수단을 최소화함으로써 고장부위 최소화와 운용 비용절감 효과를 얻을 수 있다.According to a preferred embodiment of the present invention, by forming a segment system by physically separating the segment feed block and the main power line of the existing online electric vehicle, it is possible to mass-produce the feed segment block in various sizes at a factory inexpensively according to the needs of customers. By minimizing mechanical connections, such as connectors, it is possible to minimize failure points and reduce operating costs.
또한, 급전시스템 구축시 주전력 세그먼트 블록 설치 후 상부로 급전 세그먼트 블록을 쌓는 형태로 세그먼트 시스템 구축작업을 수행할 수 있으므로, 기존의 복잡한 세그먼트 시스템 구축작업을 단순화하여 현장에서의 작업시간과 공사비용을 줄이는 효과가 있다.In addition, when installing the power supply system, segment system construction can be performed by stacking the power supply segment block to the upper part after installing the main power segment block, thus simplifying the existing complex segment system construction work to reduce work time and construction cost in the field. It has the effect of reducing it.
또한, 급전 및 주전력 장치의 블록화에 따라, 하나의 세그먼트 블럭에 이상이 발생하면, 해당 세그먼트 블록을 새 세그먼트 블록으로 단순 교체한 후 별도의 현장 조정과정 없이 다시 시스템을 정상 운영 할 수 있다. 따라서 시스템의 유지비용 및 시간을 대폭 절감할 수 있는 효과가 있다.In addition, according to the blockage of the power supply and the main power device, if an error occurs in one segment block, simply replace the segment block with a new segment block and operate the system again without additional field adjustment process. Therefore, there is an effect that can significantly reduce the maintenance cost and time of the system.
도 1은 종래의 온라인 전기자동차 및 급전 세그먼트 블록의 구조를 도시한 도면이다.1 is a diagram illustrating the structure of a conventional online electric vehicle and a power supply segment block.
도 2는 본 발명의 바람직한 실시예에 따른 온라인 전기자동차 및 비접촉식 급전 세그먼트 블록을 도시한 도면이다.2 is a diagram illustrating an on-line electric vehicle and a contactless feeding segment block according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 급전 세그먼트 블록 및 주전력 세그먼트 블록의 단면도를 도시한 도면이다. 3 is a cross-sectional view of a power supply segment block and a main power segment block according to a preferred embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
100 : 차량 110 : 집전장치100: vehicle 110: current collector
120 : 정보송수신기 200 : 급전 세그먼트 블록120: information transmitter 200: feed segment block
275 : 집전자기장 500 : 주전력 세그먼트 블록 275: current collector 500: main power segment block
이하, 도면을 참조하여 본 발명의 바람직한 실시예에 따른 전기자동차 급전부 및 집전부의 자기장 차폐장치를 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해설되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, a magnetic field shielding device of an electric vehicle feeder and a collector according to a preferred embodiment of the present invention will be described with reference to the drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. On the basis of the principle that can be defined should be described in the meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 2는 본 발명의 바람직한 실시예에 따른 온라인 전기자동차 및 비접촉식 급전 세그먼트 블록을 도시한 도면이다.2 is a diagram illustrating an on-line electric vehicle and a contactless feeding segment block according to a preferred embodiment of the present invention.
도시한 바와 같이, 본 발명은 차량(100)이 주행하는 도로 밑에 매설된 급전 세그먼트 블록(200) 및 급전 세그먼트 블록(200) 하부로 주전력 세그먼트 블록(500)이 설치된다. 상세하게는 차량(100)의 집전장치(110)에 전력을 공급하는 급전 세그먼트 블록(200)과, 급전 세그먼트 블록(200)에 전력을 공급하는 주전력 세그먼트 블록(500)으로 구성된다. 이러한 구성에 따라, 차량(100)의 정보 송수신기(120)가 차량정보를 급전 세그먼트 블록(200)에 제공하고, 또한 급전 세그먼트 블록(200)에 설치된 차량감지센서(220)가 차량이 통과하는 것을 인식하면, 해당 급전 세그먼트 블록(200)은 주전력 세그먼트 블록(500)로부터 유기되는 자기장(275)에 따라 전압이 인가되고 차량(100)의 집전장치(110)에 전력을 공급하게 된다.As shown, in the present invention, the main power segment block 500 is installed under the power supply segment block 200 and the power supply segment block 200 buried under the road on which the vehicle 100 travels. Specifically, the power supply segment block 200 is configured to supply power to the current collector 110 of the vehicle 100, and the main power segment block 500 is configured to supply power to the power supply segment block 200. According to this configuration, the information transceiver 120 of the vehicle 100 provides the vehicle information to the power supply segment block 200, and the vehicle detection sensor 220 installed in the power supply segment block 200 is passed through the vehicle. When recognizing, the power supply segment block 200 is applied with a voltage according to the magnetic field 275 induced from the main power segment block 500 and supplies power to the current collector 110 of the vehicle 100.
전술한 급전 세그먼트 블록(200) 및 주전력 세그먼트 블록(500)의 설치방법은, 먼저 주전력 세그먼트 블록(500)을 시스템이 설치될 도로에 홈처럼 파여진 하단에 먼저 설치하고, 이후 설계자가 원하는 개수만큼의 급전 세그먼트 블록(200)을 주전력 세그먼트 블록(500) 상부로 각각 독립적으로 조립식 블록처럼 나열하면 전기자동차용 비접촉 세그먼트 급전도로의 설치가 완료된다. The above-described installation method of the power supply segment block 200 and the main power segment block 500, first install the main power segment block 500 at the bottom grooved on the road where the system will be installed, and then the designer If the number of the number of feed segment blocks 200 are independently arranged as a prefabricated block above the main power segment block 500, the installation of the non-contact segment feed road for the electric vehicle is completed.
전술한 주전력 세그먼트 블록의 길이는 설계자의 의도에 따라 가변적일 수 있으나, 함께 설치될 급전 세그먼트 블록의 단위길이보다 수 배가 긴 것이 바람직하다. 일반적으로 급전 세그먼트 블록의 길이는 설계자의 의도에 따라 1m, 2m, 3m 또는 10m 등으로 다양하며, 생산공장에서 동일한 크기로 대량 제작될 수 있다. 이에 따라, 예를 들어 길이가 600m인 급전도로를 구성하고자 할 때, 전원인 급전 인버터의 특성상 최적의 효율을 위해 주전력 세그먼트의 길이가 40m로 결정되면 주전력 급전 블록은 15개가 필요하며, 각각의 주전력 세그먼트 블록 상부로 설계자가 판단하는 최적의 급전 세그먼트 블록 길이가 4m라면 10개의 급전세그먼트 블록을 주전력 세그먼트 위에 설치한다.The length of the above-described main power segment block may vary depending on the designer's intention, but it is preferably several times longer than the unit length of the feed segment block to be installed together. In general, the length of the feed segment block may vary from 1m, 2m, 3m or 10m, etc., depending on the intention of the designer, and can be mass produced in the same size in the production plant. Accordingly, for example, when constructing a feed road having a length of 600 m, if the length of the main power segment is determined to be 40 m for optimal efficiency due to the characteristics of the power feeding inverter, 15 main power feeding blocks are required. If the optimal feed segment block length determined by the designer on top of the main power segment block is 4m, 10 feed segment blocks are installed on the main power segment.
도 3은 본 발명의 바람직한 실시예에 따른 급전 세그먼트 블록 및 주전력 세그먼트 블록의 단면도를 도시한 도면이다. 3 is a cross-sectional view of a power supply segment block and a main power segment block according to a preferred embodiment of the present invention.
도시한 바와 같이, 본 발명은 도로 아스팔트(190) 밑으로 매설되는 급전 자성체(210) 및 집전 자성체(240)를 포함하는 급전 세그먼트 블록(200)과, 주전력 자성체(520)를 포함하는 주전력 세그먼트 블록(500)으로 구성된다. As shown, the present invention is a main power segment including a feed segment block 200 including a feed magnetic material 210 and a current collecting magnetic material 240 buried beneath the road asphalt 190, and a main power magnetic material 520 It is composed of a segment block 500.
보다 상세하게는, 전술한 급전 세그먼트 블록(200)의 급전 자성체(210)는 내측으로 차량의 집전장치에 자기장을 이용하여 전력을 공급하는 세그먼트 급전선(211)을 포함하고, 이를 구동하는 전력 스위치(213) 및 통신모듈(215)과 연결된다.In more detail, the feeding magnetic material 210 of the aforementioned feeding segment block 200 includes a segment feeding line 211 that supplies electric power to a current collector of the vehicle by using a magnetic field inward, and drives the power switch ( 213 and the communication module 215.
전력 스위치(213)는 통신모듈(215)로부터 제어신호를 수신하고, 이에 대응하여 세그먼트 급전선(211)과 집전선(242)을 연결 또는 차단하는 기능을 수행한다. 이러한 전력 스위치(213)는 릴레이 회로(relay circuit) 또는 전력용 전자스위치로 구현될 수 있다.The power switch 213 receives a control signal from the communication module 215 and performs a function of connecting or disconnecting the segment feed line 211 and the current collector line 242 in response thereto. The power switch 213 may be implemented as a relay circuit or an electronic switch for power.
집전 자성체(240)는 내측으로 전력 스위치(213)와 연결되고, 주전력 세그먼트 블록(500)으로부터 전력을 공급받아, 세그먼트 급전선(211)에 공급하는 집전선(242) 및 집전코일(244)을 포함한다.The current collector magnetic body 240 is connected to the power switch 213 inward, and receives the power from the main power segment block 500, and collects the current collector line 242 and the current collector coil 244 to supply the segment feed line 211. Include.
이러한 집전 자성체(240)는 3개의 “工” 자 형태로 연결된 형태가 가능하며, 중심부의 내측으로 집전선(242) 및 집전코일(244)이 위치한다.The current collector magnetic body 240 may be connected in the form of three “工” characters, and the current collector line 242 and the current collector coil 244 are positioned inside the center portion.
주전력 세그먼트 블록(500)은 내측으로 주전력선(522) 및 주전력코일(524)을 포함하는 주전력 자성체(510)와, 주전력 자성체(510)에서 발생하는 자기장을 차폐하는 자기장 차폐망(520)을 포함한다.The main power segment block 500 may include a main power magnetic body 510 including a main power line 522 and a main power coil 524, and a magnetic field shielding network that shields a magnetic field generated from the main power magnetic material 510. 520).
주전력 자성체(510)는 “工”자 형태로서, 내측으로 주전력선(522) 및 주전력코일(524)이 위치하며, 상부가 집전 자성체(240)의 하부와 대응되도록 위치한다.The main power magnetic body 510 is in the form of an “industrial” character, and the main power line 522 and the main power coil 524 are positioned inward, and the upper portion thereof is positioned to correspond to the lower portion of the current collector magnetic body 240.
또한, 자기장 차폐망(520)은 주전력 세그먼트 블록(200)에서 주전력 자성체(210)의 측면에 발생되는 자기장이 근처에 설치된 타 철 구조물이나 전기 시설물에 자기장과 관련된 영향을 주는 것을 최소화하고 하단부 자기장 방사의 차폐를 위한 차폐수단으로써, 구리망(Copper Mesh)이나 알루미늄 망(Aluminum Mesh)이 이용되는 것이 바람직하다. 이러한 자기장 차폐망(520)은 주전력선(522)의 유도가열을 피하기 위해 필요한 적절한 간격을 유지한 채 콘크리트 함내에 함께 내장하는 형태로 구비된다.In addition, the magnetic field shielding network 520 minimizes the magnetic field generated on the side of the main power magnetic material 210 in the main power segment block 200 and affects the magnetic field related to other steel structures or electrical facilities installed nearby, As shielding means for shielding magnetic field radiation, it is preferable to use a copper mesh or an aluminum mesh. The magnetic field shielding network 520 is provided in a form of being embedded together in a concrete enclosure while maintaining a proper spacing necessary to avoid induction heating of the main power line 522.
여기서, 전술한 급전 자성체(210), 집전 자성체(240) 및 주전력 자성체(510)는 페라이트 등으로 구성되는 것이 바람직하다.Here, the aforementioned feeding magnetic material 210, current collecting magnetic material 240 and main power magnetic material 510 is preferably made of ferrite or the like.
이러한 급전 세그먼트 블록(200) 및 주전력 세그먼트 블록(500)은 콘크리트 와 같이 견고한 재질의 외함으로 둘러싸이는 것이 바람직하다.The feed segment block 200 and the main power segment block 500 is preferably surrounded by an enclosure of a solid material such as concrete.
전술한 구조의 급전 세그먼트 블록(200) 및 주전력 세그먼트 블록(500)의 구동을 설명하면, 주전력 세그먼트 블록(500)내의 주전력선(522)이 발생시킨 자기장은 주전력 자성체(510)에 의해 강화되고 집속되어 급전 세그먼트 블록(200)으로 전달된다. 급전 세그먼트 블록(200)의 집전 자성체(240)는 주전력 세그먼트 블록(500)에서 보내 온 집속된 자기장을 집전코일(244)쪽으로 집속시키고 집전코일(244)은 집전 자성체(240)에 의해 집속된 자기장을 전력으로 변환시킨다. Referring to the driving of the power supply segment block 200 and the main power segment block 500 having the above-described structure, the magnetic field generated by the main power line 522 in the main power segment block 500 is generated by the main power magnetic material 510. It is reinforced and focused and delivered to the feed segment block 200. The current collecting magnetic material 240 of the power feeding segment block 200 focuses the focused magnetic field sent from the main power segment block 500 toward the current collecting coil 244, and the current collecting coil 244 is focused by the current collecting magnetic material 240. Converts a magnetic field into power
이후, 집전코일(244)을 통해 변환된 전력은 세그먼트 급전선(211)을 통해 급전 도로상의 차량에 구비된 집전장치로 제공되며, 급전 세그먼트 블록(200)내의 통신모듈(215)의 제어신호에 따라 비접촉 방식으로 전기자동차의 집전장치로 자동차 추진용 전력이 전달된다. 즉, 스위치(213)를 통해 세그먼트 급전선(211)에 입력된 전력은 다시 자기장으로 변환되어 세그먼트 자성체(210)를 통해 집속되고 강화되어 도로(190)상에서 주행하는 차량의 집전장치에 비접촉 방식으로 전달된다. 도시하지는 않았지만 차량의 집전장치는 자체의 자성체를 이용하여 자기장을 다시 집속하여 수신하고, 수신된 자기장을 다시 AC 전력으로 변환하여 자동차의 구동전원으로 사용한다. Then, the power converted through the current collector coil 244 is provided to the current collector provided in the vehicle on the power supply road via the segment feed line 211, according to the control signal of the communication module 215 in the power supply segment block 200. Electric power for propulsion of the vehicle is transmitted to the current collector of the electric vehicle in a non-contact manner. That is, the power input to the segment feed line 211 through the switch 213 is converted back to a magnetic field, concentrated and reinforced through the segment magnetic material 210 and transmitted to the current collector of the vehicle running on the road 190 in a non-contact manner. do. Although not shown, the current collector of the vehicle focuses and receives a magnetic field again using its own magnetic material, converts the received magnetic field into AC power, and uses the driving power of the vehicle.
전술한 구동에 따라, 자기장을 통해 비접촉 방식으로 주전력 세그먼트 블록에서 자기장을 통해 급전 세그먼트 블록으로 필요한 AC 전력을 보냄으로써 컨넥터와 같은 기계적 연결장치를 사용하지 않고 온라인 전기자동차의 충전을 수행할 수 있다.According to the above-described driving, it is possible to charge the online electric vehicle without using a mechanical connection device such as a connector by sending the necessary AC power from the main power segment block to the feed segment block through the magnetic field in a non-contact manner through the magnetic field. .
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명과 기술사상과 다음에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited Example and drawing, this invention is not limited by this and this invention and the technical thought, and the following by those of ordinary skill in the art to which this invention belongs. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (21)

  1. 전기자동차의 급전장치에 있어서,In the electric power feeding device of the electric vehicle,
    인버터와 연결되어 차량의 주행 인지시 자기장을 발생하는 주전력 세그먼트 블록; 및,A main power segment block connected to the inverter and generating a magnetic field when the vehicle recognizes driving; And,
    도로밑 상기 세그먼트 블록의 상부로 소정거리 이격되어 설치되며, 상기 자기장에 대응하는 전력을 상기 차량에 공급하는 급전 세그먼트 블록A power supply segment block under the road spaced apart a predetermined distance from the top, and supplies electric power corresponding to the magnetic field to the vehicle.
    을 포함하는 전기자동차용 비접촉식 세그먼트 블록.Contactless segment block for an electric vehicle comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 주전력 세그먼트 블록은,The main power segment block,
    상기 인버터와 연결되어 각 주전력 세그먼트간에 전류를 전달하는 주전력선;A main power line connected to the inverter to transfer current between each main power segment;
    상기 주전력선에 흐르는 전류에 대응하여 집전자기장을 생성하는 주전력 코일; 및,A main power coil for generating a collector field in response to the current flowing through the main power line; And,
    상기 주전력코일 상기 집전자기장을 집속 및 강화하여 상기 급전 세그먼트 블록에 전달하는 주전력 자성체A main power magnetic material that focuses and strengthens the main electric coil and collects the electric field to the power supply segment block.
    를 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.Non-contact segment block for an electric vehicle comprising a.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 주전력 세그먼트 블록은,The main power segment block,
    상기 주전력 자성체의 외측으로 상기 집전자기장을 상쇄시키는 차폐망을 더 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The non-contact segment block for an electric vehicle, further comprising a shielding net that offsets the current collector field to the outside of the main power magnetic material.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 급전 세그먼트 블록은,The feed segment block,
    상기 주전력 세그먼트 블록으로부터 전달되는 급전 자기장을 집속하는 집전 자성체;A current collecting magnetic body that focuses a feeding magnetic field transmitted from the main power segment block;
    상기 집전 자성체 내측으로 구비되어 집속된 상기 급전자기장을 전력으로 변환하는 집전코일;A current collector coil configured to be provided inside the current collector magnetic material and convert the focused electromagnetic field into electric power;
    상기 집전 자성체 내측으로 구비되어 상기 전력에 대응하는 전류를 각 급전 세그먼트 블록간에 전달하는 집전선;A current collecting line provided inside the current collecting magnetic material to transfer a current corresponding to the electric power between each feeding segment block;
    상기 집전선에 흐르는 전류에 대응하여 세그먼트 급전자기장을 생성하는 급전선;A feeder for generating a segment feeder field in response to a current flowing through the current collector;
    상기 집전선 및 급전선에 연결되어 전류를 도통 및 차단하는 전력 스위치;A power switch connected to the current collecting line and the feeding line to conduct and cut off current;
    상기 차량의 이동에 따라 상기 전력 스위치를 제어하는 통신모듈; 및,A communication module for controlling the power switch according to the movement of the vehicle; And,
    상기 집전 자성체의 상부에 위치하고, 내측에 구비된 상기 급전선으로부터 생성된 상기 급전자기장을 집속 및 강화하여 상기 차량에 전달하는 급전 자성체A magnetic feeder that is located above the current collector magnetic body and focuses and strengthens the electromagnetic field generated from the feeder line provided therein to the vehicle.
    를 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.Non-contact segment block for an electric vehicle comprising a.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 스위치는, 릴레이 회로(relay circuit) 또는 전력용 전자스위치인 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The switch is a non-contact segment block for an electric vehicle, characterized in that the relay circuit (power relay) or an electronic switch for power.
  6. 제 2 항 또는 제 4 항 중 하나의 항에 있어서,The method according to claim 2 or 4, wherein
    상기 주전력 자성체, 집전 자성체 및 급전 자성체는 페라이트로 구성되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The main power magnetic material, the current collector magnetic material and the feed magnetic material is a non-contact segment block for an electric vehicle, characterized in that consisting of ferrite.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 주전력 세그먼트 블록 및 상기 급전 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The main power segment block and the feed segment block is a non-contact segment block for an electric vehicle, characterized in that mounted in a solid material enclosure.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 외함은, 콘크리트 재질인 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The enclosure is a non-contact segment block for an electric vehicle, characterized in that the concrete material.
  9. 전기자동차의 급전 세그먼트 블록으로서,As a feed segment block of an electric vehicle,
    인버터와 연결된 자기장 발생수단으로부터 주전력 급전 자기장에 대응하는 전력을 생성하는 집전 자성체; A current collecting magnetic body for generating electric power corresponding to the main electric power feeding magnetic field from the magnetic field generating means connected to the inverter;
    상기 집전 자성체와 연결되어 상기 전력에 대응하는 세그먼트 급전 자기장을 발생시키는 급전 자성체; A feeding magnetic material connected to the current collecting magnetic material to generate a segment feeding magnetic field corresponding to the electric power;
    상기 집전 자성체 및 급전 자성체를 연결하는 전력 스위치; 및,A power switch connecting the current collecting magnetic material and the feeding magnetic material; And,
    상기 전력 스위치를 제어하는 통신모듈Communication module for controlling the power switch
    을 포함하는 온라인 전기자동차용 비접촉식 세그먼트 블록.Contactless segment block for an online electric vehicle comprising a.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 집전 자성체는,The current collector magnetic material,
    상기 주전력 급전 자기장을 전력으로 변환하는 집전코일; 및,A current collecting coil for converting the main electric power feeding magnetic field into electric power; And,
    상기 집전코일이 변환한 상기 전력에 대응하는 전류를 각 급전 세그먼트 블록간에 전달하는 집전선Current collecting line for transferring the current corresponding to the power converted by the current collector coil between each feed segment block
    을 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.Non-contact segment block for an electric vehicle comprising a.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 급전 자성체는,The feeding magnetic material,
    상기 집전코일과 연결되어 상기 전류에 대응하는 세그먼트 급전 자기장을 생성하는 급전선을 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.And a feeder line connected to the current collector coil to generate a segment feed magnetic field corresponding to the current.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 급전 세그먼트 블록은, 상기 집전선 및 급전선에 연결되어 상기 전류를 도통 또는 차단하는 전력 스위치; 및,The feed segment block may include: a power switch connected to the current collecting line and the feed line to conduct or cut off the current; And,
    상기 전력 스위치를 제어하는 통신모듈Communication module for controlling the power switch
    을 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.Non-contact segment block for an electric vehicle comprising a.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 전력 스위치는, 릴레이 회로(relay circuit) 또는 전력용 전자스위치인 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The power switch is a non-contact segment block for an electric vehicle, characterized in that the relay circuit (relay circuit) or a power electronic switch.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 집전 자성체 및 급전 자성체는 페라이트로 구성되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The current collecting magnetic material and the feeding magnetic material is a non-contact segment block for an electric vehicle, characterized in that composed of ferrite.
  15. 제 9 항에 있어서,The method of claim 9,
    상기 급전 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The feed segment block is a non-contact segment block for an electric vehicle, characterized in that mounted in an enclosure of a solid material.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 외함은, 콘크리트 재질인 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The enclosure is a non-contact segment block for an electric vehicle, characterized in that the concrete material.
  17. 전기자동차의 주전력 세그먼트 블록으로서,As the main power segment block of electric vehicles,
    인버터와 연결되어 차량에 전력을 공급하는 급전 세그먼트 블록에 급전 자기장을 전달하는 주전력 자성체를 구비하고,A main power magnetic material connected to an inverter to transfer a feed magnetic field to a feed segment block for supplying power to a vehicle,
    상기 주전력 자성체는 내측으로 위치하여 상기 인버터부터 전력을 전달받는 주전력선; 및,The main power magnetic material is located inward and receives power from the inverter; And,
    상기 전력에 대응하는 상기 급전 자기장을 생성하는 주전력코일A main power coil for generating said fed magnetic field corresponding to said power;
    을 포함하는 전기자동차용 비접촉식 세그먼트 블록.Contactless segment block for an electric vehicle comprising a.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 주전력 세그먼트 블록은,The main power segment block,
    상기 주전력 자성체 외측으로 상기 급전 자기장을 상쇄시키는 차폐망을 더 포함하는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The non-contact segment block for an electric vehicle, characterized in that it further comprises a shielding net to cancel the power supply magnetic field outside the main power magnetic material.
  19. 제 17 항에 있어서,The method of claim 17,
    상기 주전력 자성체는 페라이트로 구성되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The main power magnetic material is a non-contact segment block for an electric vehicle, characterized in that consisting of ferrite.
  20. 제 17 항에 있어서,The method of claim 17,
    상기 주전력 세그먼트 블록은 견고한 재질의 외함내에 실장되는 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The main power segment block is a non-contact segment block for an electric vehicle, characterized in that mounted in an enclosure of a solid material.
  21. 제 20 항에 있어서,The method of claim 20,
    상기 외함은, 콘크리트 재질인 것을 특징으로 하는 전기자동차용 비접촉식 세그먼트 블록.The enclosure is a non-contact segment block for an electric vehicle, characterized in that the concrete material.
PCT/KR2010/009569 2009-12-30 2010-12-30 Non-contact segment block for electric vehicle WO2011081479A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0134967 2009-12-30
KR1020090134967A KR101177552B1 (en) 2009-12-30 2009-12-30 non-contacting type segment block for OLEV

Publications (2)

Publication Number Publication Date
WO2011081479A2 true WO2011081479A2 (en) 2011-07-07
WO2011081479A3 WO2011081479A3 (en) 2011-11-03

Family

ID=44227065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009569 WO2011081479A2 (en) 2009-12-30 2010-12-30 Non-contact segment block for electric vehicle

Country Status (2)

Country Link
KR (1) KR101177552B1 (en)
WO (1) WO2011081479A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107775A (en) * 2014-11-18 2017-08-29 罗伯特·博世有限公司 The device for induction type energy transmission with supervising device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252591B1 (en) * 2011-08-19 2013-04-10 한국과학기술원 Power supplying road system optimized for driving environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284905A (en) * 1996-04-17 1997-10-31 Daifuku Co Ltd Non-contact power supply equipment
JP2007267577A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Energy supply device and system
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2009303316A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Electric power receiver for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284905A (en) * 1996-04-17 1997-10-31 Daifuku Co Ltd Non-contact power supply equipment
JP2007267577A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Energy supply device and system
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2009303316A (en) * 2008-06-11 2009-12-24 Mitsubishi Heavy Ind Ltd Electric power receiver for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107775A (en) * 2014-11-18 2017-08-29 罗伯特·博世有限公司 The device for induction type energy transmission with supervising device

Also Published As

Publication number Publication date
KR20110078216A (en) 2011-07-07
WO2011081479A3 (en) 2011-11-03
KR101177552B1 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
WO2011046400A2 (en) Method and apparatus for transporting power to electric vehicle with segments of power supply road
WO2012050345A2 (en) Non-contact power transmission device, magnetic induction-type power supply device, magnetic induction-type power collector, and moving object using same
WO2013180324A1 (en) Multi-functional electric vehicle charging device for dc distribution networks utilizing high capacity dc/dc converter
WO2015012589A1 (en) Apparatus for transmitting wireless power for electric car
WO2013048004A1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
WO2011049352A2 (en) Wireless charging system for an electric vehicle, and charging method for same
CN105356562A (en) Segmented transmission type electric automobile online dynamic wireless power supply system
WO2012074166A1 (en) Coil resonant coupler for short range wireless power transmission and apparatus for transmitting short range wireless power containing same
CN104682581A (en) Dynamic wireless power supply device used for mobile equipment and based on balanced field intensity of segmental guide rails and dynamic wireless power supply method based on dynamic wireless power supply device
WO2022114624A1 (en) Photovoltaic power generation system
WO2011081479A2 (en) Non-contact segment block for electric vehicle
CN107962961B (en) Wireless charging system for vehicle and wireless charging method thereof
WO2011081461A2 (en) Magnetic field shielding device of on-line electric vehicle
CN101708799B (en) Lift drive electrical device
CN1172814C (en) Safeguarding plant for level crossing
WO2011071344A2 (en) Method for controlling the charging of segments for an online electric vehicle
KR101091989B1 (en) segment block including structure for magnetic field shielding for OLEV
WO2023068702A1 (en) Wireless charging and discharging module having charging function
CN105790395A (en) Electric vehicle alternating current charging control method and system thereof
WO2011081457A2 (en) Magnetic field communication device of online electric vehicle using electromagnetic induction
WO2022114457A1 (en) V2g system with command signal conversion means and v2g control method using same
CN202110432U (en) Remote monitoring feeder terminal
CN113530567B (en) Electric control system for segment assembly of shield tunneling machine and control method thereof
CN208337240U (en) A kind of wireless power supply system and transportation system for the vehicles
CN103795156A (en) Rail transit non-contact power supply device with honeycomb-type coils and power supply method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841311

Country of ref document: EP

Kind code of ref document: A2