WO2011071344A2 - Method for controlling the charging of segments for an online electric vehicle - Google Patents

Method for controlling the charging of segments for an online electric vehicle Download PDF

Info

Publication number
WO2011071344A2
WO2011071344A2 PCT/KR2010/008863 KR2010008863W WO2011071344A2 WO 2011071344 A2 WO2011071344 A2 WO 2011071344A2 KR 2010008863 W KR2010008863 W KR 2010008863W WO 2011071344 A2 WO2011071344 A2 WO 2011071344A2
Authority
WO
WIPO (PCT)
Prior art keywords
segment
vehicle
charging
speed
electric vehicle
Prior art date
Application number
PCT/KR2010/008863
Other languages
French (fr)
Korean (ko)
Other versions
WO2011071344A3 (en
Inventor
조동호
정방철
장우혁
이종민
김진규
김영민
전현우
박미현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090134956A external-priority patent/KR101204500B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2011071344A2 publication Critical patent/WO2011071344A2/en
Publication of WO2011071344A3 publication Critical patent/WO2011071344A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/42Current collectors for power supply lines of electrically-propelled vehicles for collecting current from individual contact pieces connected to the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/02Details
    • B60M1/10Arrangements for energising and de-energising power line sections using magnetic actuation by the passing vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention relates to a segment charging control method for an electric vehicle, in particular, in a method of supplying power to an electric vehicle in a self-induced manner by a feeder composed of one or more segments buried under the road, considering the charging response time of the segment
  • the present invention relates to a segment charging control method for an on-line electric vehicle that reduces power consumption by controlling an inverter.
  • an on-line electric vehicle has been proposed to install a power feeding device under the road and charge the battery in a self-induction manner.
  • a self-induction electric vehicle has the advantage of being driven by the charging power of the mounted battery when the power supply is interrupted from the power supply device.
  • the power supply line was extended along the entire road, and the electric power was supplied to the entire feeding device, but recently, a method of implementing the power supply unit in a segment form, which is a predetermined unit module for feeding, has been proposed.
  • FIG. 1 is a diagram schematically illustrating an example of a power feeding method between a current collector of a conventional online electric vehicle and a segment power feeding device embedded in a road to supply electric power to an electric vehicle.
  • the current collector of the conventional on-line electric vehicle is located at the center lower end of the electric vehicle 100 and has a square shape of about 1/3 of the length of the vehicle as shown.
  • the power feeding device includes one or more power feeding segments 30 for generating a magnetic field as a unit module, and includes a vehicle detection sensor 32 for detecting a vehicle entering a road above the power feeding segment 30, and a power supply from a power source. And a switch 36 for transferring or interrupting the power to the feed segment 30.
  • the switch of the electric power feeding segment 32a is connected by the vehicle detection sensor 32a of the electric power feeding segment 36a which detects the electric vehicle 10 and the magnetic field ( 20) occurs and the electric vehicle 10 is powered.
  • the switch of each of the power feeding segments 36b through which the electric vehicle 10 passes is in an 'ON' state when the electric vehicle 10 enters the corresponding segment, thereby supplying power to the electric vehicle 10 and leaving it. When it is in 'OFF' state, it cuts off power supply.
  • a response delay time occurs according to hardware characteristics.
  • This response time delay is due to the internal circuit capacitor charge / discharge characteristics of the inverter to supply the power, the internal switch method, the vehicle detection sensor error, and the time required to transmit and receive the inverter ON / OFF control signal.
  • the internal switch of the inverter is an electronic switch, it takes several tens of us, but in the case of a mechanical switch, it takes several hundred ms. If the mechanical switch is applied, the time when the power supply segment is 100% at 'ON' operation is about 2 seconds, and when it is 'OFF' operation, it takes about 1 second to complete discharge.
  • inefficiency due to the charge / discharge response delay time occurs according to the power segment length and the vehicle moving speed. If the power supply segment is 'ON' after entering the vehicle, the efficiency can be reduced because the vehicle can pass through the power supply segment before the power supply voltage reaches 100%. There is a problem that the energy loss occurs.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to overcome efficiency degradation and power waste caused by delayed response of charging and discharging segments of an on-line electric vehicle.
  • the segment charging control method of an on-line electric vehicle (a) receiving the speed and location information of the vehicle entering from the segment; And (b) controlling the charge / discharge timing of the segment into which the vehicle is currently advancing and the next segment to be entered in correspondence with the speed and the position information.
  • the step (b) may include the steps of: (b1) discharging the advancing segment prior to the full entry of the vehicle, according to the discharge response time of the segment; And (b2) charging the segment to be entered next before entering the vehicle, according to the charging response time of the segment.
  • the segment charging control method of a plurality of online electric vehicles (a) of the plurality of vehicles, N (N is a natural number of one or more) according to the entry of the front vehicle Starting to charge the segment; (b) receiving the speed and location information of the rear vehicle from the N-th segment; (c) receiving a discharge request according to advance of the front vehicle from the N-th segment; And (d) determining whether the N-th segment is discharged in response to the speed and position information of the front vehicle and the rear vehicle.
  • step (a) Prior to the step (a), receiving speed and position information of the front vehicle from an N + 1th segment; And charging the N-th segment in response to the speed and the position information.
  • the step (d) may include: (d1) maintaining the charged state of the N-th segment when it is determined that the rear vehicle enters before the N-th segment starts to discharge and is completely discharged; Or (d2) if it is determined that the rear vehicle enters after the time point at which the Nth segment starts to discharge and is completely discharged, the Nth third
  • step (d2) according to the charging response time of the N-th segment, further comprising the step of charging the segment to be entered next before entering the rear vehicle.
  • the segment charging control method of an on-line electric vehicle includes (a) defining a front vehicle, which is the first vehicle among the vehicles forming the cluster, as a header vehicle step; (b) initiating charging by the Nth segment (where N is a natural number of 1 or more) as the header vehicle enters; (c) receiving speed and position information of a next vehicle, which is the next vehicle of the header vehicle, among the vehicles in the cluster from an N-1 th segment; (d) receiving a discharge request according to advance of the header vehicle from the N-th segment; And (e) determining whether to discharge the N-th segment in response to the speed and position information of the header vehicle and the next vehicle.
  • the cluster may be a group of vehicles that are determined according to previously registered information between each vehicle, a vehicle ID, or a moving speed of each vehicle.
  • step (a) receiving speed and position information of the header vehicle from an N + 1th segment; And the N-th segment corresponding to the speed and location information.
  • the step (e) may include: (e1) maintaining the state of charge of the N-th segment when it is determined that the next vehicle is entered before the N-th segment starts to discharge and is fully discharged; Alternatively, (e2) if it is determined that the next vehicle enters after a time point at which the Nth segment starts to discharge and is completely discharged, the Nth segment is discharged.
  • the charging response time of the N-th segment characterized in that it further comprises the step of charging the segment to be entered next before entering the next vehicle.
  • FIG. 1 is a view schematically illustrating an example of a power feeding method between a current collector of a conventional online electric vehicle and a segment type power feeding device embedded in a road and supplying power to two electric vehicles.
  • FIG. 2 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a first embodiment of the present invention.
  • FIG 3 is a graph illustrating a relationship between magnitudes of voltages according to time for defining charge and discharge response time in the first embodiment of the present invention.
  • FIG. 4 is a view showing a segment filling method according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a second embodiment of the present invention.
  • FIG. 6 is a graph showing a relationship between magnitudes of voltages according to time for defining a continuous passage time in a second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a segment filling method according to a second embodiment of the present invention.
  • FIG. 8 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a third embodiment of the present invention.
  • mode 1 a case where one vehicle runs alone (mode 1), a plurality of vehicles run continuously (mode 2), and a plurality of vehicles form a cluster (mode 3). do.
  • FIG. 2 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a first embodiment of the present invention.
  • the current collector is generated when the switch 360 of the feed segment is connected. Power is supplied by the magnetic field 200.
  • the electric vehicle 100 includes an information transceiver 120 for transmitting and receiving the power supply segment and the power related information.
  • the information transmitted by the information transceiver 120 includes ID of a power feeding segment transmitted to the vehicle, 'ON / OFF' status information, vehicle ID received from the vehicle, vehicle speed information, and the like.
  • the power supply segment 300 receives the above-described information from the information transceiver 120 and provides the power supply segment to the inverter 400 that controls the power supply, and the inverter 400 responds to the provided information.
  • the charge / discharge response time of the segment as well as the aforementioned speed Vi of the vehicle is considered.
  • the charge / discharge response time described above is defined as the voltage 100% attainment time of the segment after the inverter 'ON' command and the voltage 0% fall time at the segment after the 'OFF' command.
  • Figure 3 is a graph of the relationship between the magnitude of the voltage over time defining the charge and discharge response time. Therefore, for the segment where the vehicle is expected to enter the next, the vehicle starts to charge the next segment in advance so that the voltage of the segment can achieve 100% immediately after the vehicle enters.
  • a segment ⁇ k (k is a natural number of 1 or more) ⁇ is a vehicle ID, a moving speed, and a segment from the electric vehicle 100. If the location information is provided (S310), the k-th segment provides the received information to the inverter 400 (S320). Thereafter, the inverter 400 controls to charge the N (N is a natural number of 1 or more) th segment (k + N) in response to the transmitted information (S330).
  • Mode 2 When a plurality of vehicles are running continuously
  • FIG. 5 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a second embodiment of the present invention.
  • the current collector may switch the feed segment. When connected, it is powered by the magnetic field generated by the feed segments 334 and 336.
  • the segment control should be performed in consideration of the vehicle speed and the response time before and after the segment charging and discharging, as well as the distance between the vehicles.
  • the power supply segment 334 which is in the 'ON' state according to the entry of the front vehicle 100i, enters the segment according to the continuous passage time since the rear vehicle 100j is continuously entered. It is efficient to remain 'ON' even after entry.
  • the above-described continuous passage time is defined as the time taken for the continuous rear vehicle to enter the segment after the 'OFF' command to the segment charging the front vehicle when the electric vehicle moves continuously.
  • 6 is a graph illustrating a relationship between the magnitudes of voltages according to time for defining the continuous passage time.
  • the discharge response time t d which is a time at which the front vehicle enters 2 and the power supply segment starts to be discharged and is completely discharged, and the charge response that the power supply segment starts charging after the rear vehicle enters after a predetermined time
  • the time t c and the continuous passage time ⁇ which is the time of full charge after discharge, are shown. That is, if the continuous passage time ( ⁇ ) is less than the charge / discharge response time (t c + t d ), it means that the rear vehicle enters before the full discharge of the segment. Therefore, the feeding segment is kept in the “ON” state.
  • the time ( ⁇ ) is greater than the charge / discharge response time (t c + t d ), it means that the rear vehicle enters after the full discharge of the corresponding segment. Therefore, the predetermined time ( ⁇ -t c ) after switching the feed segment to 'OFF' state It is efficient to switch it back to the ON state after the elapsed time.
  • the inverter determines 'ON / OFF' of each segment at time t + ⁇ based on the moving speed V i of the front vehicle passing through each segment at time t and the distance d ij between the front and rear vehicles. To control.
  • the moving speed of each vehicle is the constant speed, the following Equation 1 is satisfied.
  • the inverter is then when the ⁇ value is less than t c + t d values continue to 'ON' state of the segment and, when the ⁇ value greater than t c + t d values control the segment to 'OFF' state When the rear vehicle enters, control the segment to 'ON' again.
  • the inverter maintains the state of charge of the segment 334, or If it is determined that the rear vehicle enters after a time point at which the segment starts to discharge and is completely discharged, the segment 334 starts to discharge, and according to the charge response time of the segment, the segment into which the rear vehicle advances ( 336 begins to discharge and charges the next segment 335 to enter before entering.
  • FIG. 7 is a diagram illustrating a segment charging method according to a second embodiment of the present invention.
  • the front vehicle 100i enters the N-th segment (S610), and the N-th segment is the rear vehicle 100j.
  • the N-th segment reports the entry of the front vehicle (100i) to the inverter 400 (S630)
  • N-1 segment is the speed information (V j (t) is reported to the inverter 400 (S640).
  • the inverter 400 compares the value of ⁇ with the value of t c + t d (S660), ⁇ If the value is smaller than the value of t c + t d , the segment is 'ON' (S662). If the value of ⁇ is greater than the value of t c + t d , the segment is controlled to the 'OFF' state. When the vehicle enters again, the segment is controlled to the 'ON' state (S664).
  • Mode 3 When a large number of vehicles are driving in a cluster
  • FIG. 8 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a third embodiment of the present invention.
  • a plurality of cars 100i, 100j, 100k forming a cluster travel at a speed of V i , V j , and V k , each of which has a segment-type feeder embedded at intervals d ij and d jk , respectively. If so, each vehicle is powered by the magnetic field generated by the feed segments 434, 436, 438, similar to the embodiments described above.
  • the clusters formed by the plurality of vehicles may be formed according to pre-registered information between each vehicle, or may be determined as a cluster based on vehicle ID and moving speed information in the central control system connected to the inverter. Can be.
  • the head vehicle is set as the header of the cluster in the vehicle group, and the feed segment is controlled to be equally applied to all the vehicles based on the header vehicle and the next vehicle following the header vehicle. That is, according to the charge / discharge timing of the segment 434 into which the header vehicle enters and the segment 436 into which the next vehicle enters, the subsequent segments 438 are controlled in the same manner.
  • the inverter is then when the ⁇ value is less than t c + t d values continue to 'ON' state of the segment and, when the ⁇ value greater than t c + t d values control the segment to 'OFF' state According to the charging response time of the segment, the next segment to charge before entering the vehicle is charged.
  • the segment charging method according to the third embodiment corresponds to the charging method according to the above-described second embodiment except that the segment charging method is based on the speed of the header vehicle.

Abstract

The present invention relates to a method for controlling the charging of segments for an online electric vehicle. More particularly, the present invention relates to a method for controlling the charging of segments for an online electric vehicle, which controls an inverter with due consideration for the charging response time of segments so as to reduce the waste of electricity in a system that supplies electricity to the electric vehicle through magnetic induction using a power-supplying device including one or more segments buried under a road surface. According to a preferred embodiment of the present invention, the method for controlling the charging operation of segments for an online electric vehicle comprises the following steps: (a) receiving, from segments, information on the speed and position of the vehicle entering the range of the power-supplying device; and (b) controlling the charging / discharging timing of the current segment from which the vehicle is leaving and the next segment into the range of which the vehicle is to enter, in accordance with the information on the speed and position of the vehicle. The method of the present invention controls the operation timing of segments of the power-supplying device in accordance with the travel speed of the online electric vehicle with due consideration for the charging / discharging response delay characteristics of the segments, thereby improving efficiency and preventing a waste of electricity.

Description

온라인 전기자동차용 세그먼트 충전 제어방법Segment charge control method for online electric vehicle
본 발명은 전기자동차용 세그먼트 충전 제어방법에 관한 것으로, 특히 도로 밑에 매설된 하나이상의 세그먼트로 구성된 급전장치에 의해 자기유도 방식으로 전기자동차에 전력을 공급하는 방식에 있어서, 세그먼트의 충전 응답시간을 고려하여 인버터를 제어함으로서 전력낭비를 감소시키는 온라인 전기자동차용 세그먼트 충전 제어방법에 관한 것이다.The present invention relates to a segment charging control method for an electric vehicle, in particular, in a method of supplying power to an electric vehicle in a self-induced manner by a feeder composed of one or more segments buried under the road, considering the charging response time of the segment The present invention relates to a segment charging control method for an on-line electric vehicle that reduces power consumption by controlling an inverter.
환경오염 문제를 유발하는 화석연료를 바탕으로 동작하는 기존의 자동차를 대체하기 위해 개발중인 대체 에너지 자동차 중, 배터리 모듈을 탑재한 전기 자동차는 배터리 용량의 한계로 인하여 장거리 주행이 어려우며, 또한 배터리의 충전을 위해 소정시간동안 전력공급수단에 연결하여 기다려야한다는 단점이 있다. 뿐만 아니라, 1회 충전으로 주행할 수 있는 거리가 제한적이다.Among alternative energy vehicles that are being developed to replace existing vehicles operating on fossil fuels that cause environmental pollution problems, electric vehicles equipped with battery modules are difficult to drive over long distances due to the limitation of battery capacity. There is a drawback to wait for a predetermined time by connecting to the power supply means. In addition, the distance that can be driven on a single charge is limited.
이러한 단점을 극복하기 위해, 배터리의 용량을 늘리고 충전 시스템의 효율을 높이는 기술이 개발되었으나, 차량 무게의 증가로 효율이 떨어지고, 차량 단가가 상승하며, 배터리의 수명이 짧아지는 다른 문제점이 발생하였다.In order to overcome these disadvantages, a technology for increasing the capacity of the battery and increasing the efficiency of the charging system has been developed, but other problems occur that increase efficiency of the vehicle, decrease the efficiency, increase the unit cost, and shorten the battery life.
이에 따라, 전술한 배터리 모듈 탑재형 전기자동차의 개선된 형태로서, 도로 밑에 급전장치를 설치하고 이를 통한 자기유도방식으로 배터리를 충전하는 온라인 전기자동차가 제안되었다. 이러한 자기유도방식 전기자동차는 급전장치로부터 전력 공급이 중단되는 경우에는 탑재된 배터리의 충전 전력으로 구동되는 장점이 있다.Accordingly, as an improved form of the aforementioned battery module-mounted electric vehicle, an on-line electric vehicle has been proposed to install a power feeding device under the road and charge the battery in a self-induction manner. Such a self-induction electric vehicle has the advantage of being driven by the charging power of the mounted battery when the power supply is interrupted from the power supply device.
초창기 제시된 급전장치는, 급전선이 도로 전체를 따라 연장되어 매설된 급전장치 전체에 일괄적으로 전력이 공급되는 형태였으나, 최근에는 급전을 위한 소정의 단위 모듈인 세그먼트 형태로 구현하는 방식이 제안되었다.In the initial feeding device, the power supply line was extended along the entire road, and the electric power was supplied to the entire feeding device, but recently, a method of implementing the power supply unit in a segment form, which is a predetermined unit module for feeding, has been proposed.
도 1은 종래의 온라인 전기자동차의 집전장치와, 도로에 매설되어 전기자동차에 전력을 공급하는 세그먼트 급전장치간의 급전방식에 대한 일예를 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating an example of a power feeding method between a current collector of a conventional online electric vehicle and a segment power feeding device embedded in a road to supply electric power to an electric vehicle.
먼저, 종래의 온라인 전기자동차의 집전장치는, 도시한 바와 같이 전기자동차(100) 중앙 하단에 위치하고 길이가 자동차 길이의 약 1/3 정도의 정사각형 모양을 가진다. 또한, 급전장치는 단위 모듈로서 자기장을 발생시키는 하나 이상의 급전 세그먼트(30)를 포함하며, 해당 급전 세그먼트(30) 위의 도로로 진입하는 차량을 감지하는 차량감지센서(32)와, 전력원으로부터 공급되는 전력을 급전 세그먼트(30)에 전달 또는 차단시키는 스위치(36)를 구비한다.First, the current collector of the conventional on-line electric vehicle is located at the center lower end of the electric vehicle 100 and has a square shape of about 1/3 of the length of the vehicle as shown. In addition, the power feeding device includes one or more power feeding segments 30 for generating a magnetic field as a unit module, and includes a vehicle detection sensor 32 for detecting a vehicle entering a road above the power feeding segment 30, and a power supply from a power source. And a switch 36 for transferring or interrupting the power to the feed segment 30.
전술한 구성에 따라, 종래의 온라인 전기자동차의 급전방식은 전기자동차(10)를 감지한 급전 세그먼트(36a)의 차량 감지센서(32a)에 의해 해당 급전 세그먼트(32a)의 스위치가 연결되어 자기장(20)이 발생하고 전기자동차(10)가 전력을 공급받는다. 이러한 전기자동차(10)가 지나온 각각의 급전 세그먼트들(36b)의 스위치는 전기자동차(10)가 해당 세그먼트 위에 진입했을 때 'ON' 상태로 되어 전기자동차(10)에 전력을 공급하고, 이탈할 때 ‘OFF' 상태로 되어 전력공급을 차단한다.According to the above-described configuration, in the conventional electric power feeding method of the online electric vehicle, the switch of the electric power feeding segment 32a is connected by the vehicle detection sensor 32a of the electric power feeding segment 36a which detects the electric vehicle 10 and the magnetic field ( 20) occurs and the electric vehicle 10 is powered. The switch of each of the power feeding segments 36b through which the electric vehicle 10 passes is in an 'ON' state when the electric vehicle 10 enters the corresponding segment, thereby supplying power to the electric vehicle 10 and leaving it. When it is in 'OFF' state, it cuts off power supply.
이때, 급전 세그먼트는 차량이 진출입하는 시점에 따라 차량 감지센서에 의해 스위치가 동작하여 'ON' 또는 'OFF'가 시작되기 때문에, 하드웨어 특성에 따라 응답 지연시간이 발생하게 된다. 이러한 응답시간 지연은 전원을 공급하는 인버터의 내부회로 캐패시터 충방전 특성, 내부 스위치 방식, 차량 감지센서 오차 및, 인버터 ON/OFF 제어신호를 송수신 및 처리하는 데 소요되는 시간 등에 기인한다. 일 예로서, 인버터 내부 스위치가 전자식 스위치일 경우에는 수십 us의 시간이 소요되지만, 기계식 스위치일 경우에는 수백 ms의 시간이 소요된다. 만약 기계식 스위치가 적용된 경우, 급전 세그먼트가 'ON' 동작시 전압 100%가 달성되는 시간은 약 2초정도이며, 'OFF' 동작시 완전방전까지는 약 1초정도의 시간이 소요된다.In this case, since the power supply segment is switched by the vehicle sensor according to the time when the vehicle enters and exits, 'ON' or 'OFF' starts, a response delay time occurs according to hardware characteristics. This response time delay is due to the internal circuit capacitor charge / discharge characteristics of the inverter to supply the power, the internal switch method, the vehicle detection sensor error, and the time required to transmit and receive the inverter ON / OFF control signal. As an example, when the internal switch of the inverter is an electronic switch, it takes several tens of us, but in the case of a mechanical switch, it takes several hundred ms. If the mechanical switch is applied, the time when the power supply segment is 100% at 'ON' operation is about 2 seconds, and when it is 'OFF' operation, it takes about 1 second to complete discharge.
즉, 급전 세그먼트 길이와 차량이동 속도에 따라 충방전 응답 지연시간에 의한 비효율이 발생하게 된다. 차량 진입 후 급전 세그먼트가 'ON' 상태가 되면 급전 전압이 100%에 도달하기 전에 차량이 급전 세그먼트를 통과할 수 있으므로 효율이 저하되며, 차량 진출 후 급전 세그먼트가 'OFF'상태가 되면 잔여 전력으로 인해 에너지 손실이 발생하는 문제점이 있다.That is, inefficiency due to the charge / discharge response delay time occurs according to the power segment length and the vehicle moving speed. If the power supply segment is 'ON' after entering the vehicle, the efficiency can be reduced because the vehicle can pass through the power supply segment before the power supply voltage reaches 100%. There is a problem that the energy loss occurs.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로, 세그먼트형 온라인 전기자동차의 급전 세그먼트 충방전 응답지연에 따른 효율저하 및 전력낭비를 극복하는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object thereof is to overcome efficiency degradation and power waste caused by delayed response of charging and discharging segments of an on-line electric vehicle.
전술한 목적을 달성하기 위해, 본 발명의 바람직한 실시예에 따른 온라인 전기자동차의 세그먼트 충전 제어방법은, (a) 세그먼트로부터 진입중인 차량의 속도 및 위치정보를 수신하는 단계; 및, (b) 상기 속도 및 위치정보에 대응하여 상기 차량이 현재 진출중인 세그먼트와, 이후 진입할 차기 세그먼트의 충방전 시점을 제어하는 단계를 포함한다.In order to achieve the above object, the segment charging control method of an on-line electric vehicle according to a preferred embodiment of the present invention, (a) receiving the speed and location information of the vehicle entering from the segment; And (b) controlling the charge / discharge timing of the segment into which the vehicle is currently advancing and the next segment to be entered in correspondence with the speed and the position information.
상기 단계 (b)는, (b1) 세그먼트의 방전 응답시간에 따라, 상기 차량의 완전진출이전에 진출중인 세그먼트를 방전하는 단계; 및, (b2) 세그먼트의 충전 응답시간에 따라, 상기 차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계를 포함하는 것을 특징으로 한다.The step (b) may include the steps of: (b1) discharging the advancing segment prior to the full entry of the vehicle, according to the discharge response time of the segment; And (b2) charging the segment to be entered next before entering the vehicle, according to the charging response time of the segment.
전술한 목적을 달성하기 위해, 본 발명의 실시예에 따른 복수의 온라인 전기자동차의 세그먼트 충전 제어방법은, (a) 복수의 차량 중, 앞차량의 진입에 따라 N(N은 1이상의 자연수)번째 세그먼트의 충전을 시작하는 단계; (b) N-1번째 세그먼트로부터 뒷차량의 속도 및 위치정보를 수신하는 단계; (c) 상기 N번째 세그먼트로부터 상기 앞차량의 진출에 따른 방전요청을 수신하는 단계; 및, (d) 상기 앞차량 및 뒷차량의 속도 및 위치정보에 대응하여 상기 N번째 세그먼트의 방전여부를 결정하는 단계를 포함한다.In order to achieve the above object, the segment charging control method of a plurality of online electric vehicles according to an embodiment of the present invention, (a) of the plurality of vehicles, N (N is a natural number of one or more) according to the entry of the front vehicle Starting to charge the segment; (b) receiving the speed and location information of the rear vehicle from the N-th segment; (c) receiving a discharge request according to advance of the front vehicle from the N-th segment; And (d) determining whether the N-th segment is discharged in response to the speed and position information of the front vehicle and the rear vehicle.
상기 단계 (a) 이전에, N+1번째 세그먼트로부터 상기 앞차량의 속도 및 위치 정보를 수신하는 단계; 및, 상기 속도 및 위치정보에 대응하여 상기 N번째 세그먼트를 충전하는 단계를2포함하는 것을 특징으로 한다.Prior to the step (a), receiving speed and position information of the front vehicle from an N + 1th segment; And charging the N-th segment in response to the speed and the position information.
상기 단계 (d)는, (d1) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이전에 상기 뒷차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트의 충전상태를 유지하는 단계; 또는, (d2) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이후에 상기 뒷차량이 진입하는 것으로 판단되면, 상기 N번째 세The step (d) may include: (d1) maintaining the charged state of the N-th segment when it is determined that the rear vehicle enters before the N-th segment starts to discharge and is completely discharged; Or (d2) if it is determined that the rear vehicle enters after the time point at which the Nth segment starts to discharge and is completely discharged, the Nth third
그먼트를 방전하는 단계인 것을 특징으로 한다.Characterized in that the discharge step.
상기 단계 (d2) 이후, 상기 N번째 세그먼트의 충전 응답시간에 따라, 상기 뒷차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계를 더 포함하는 것을 특징으로 한다.After the step (d2), according to the charging response time of the N-th segment, further comprising the step of charging the segment to be entered next before entering the rear vehicle.
전술한 목적을 달성하기 위해, 본 발명의 바람직한 실시예에 따른 군집을 이루는 온라인 전기자동차의 세그먼트 충전 제어방법은, (a) 상기 군집을 이루는 차량 중, 가장 선두인 앞차량을 헤더차량으로 정의하는 단계; (b) 상기 헤더차량의 진입에 따라 N(N은 1이상의 자연수)번째 세그먼트가 충전을 시작하는 단계; (c) N-1번째 세그먼트로부터 상기 군집을 이루는 차량 중, 상기 헤더차량의 다음차량인 차기차량의 속도 및 위치정보를 수신하는 단계; (d) 상기 N번째 세그먼트로부터 상기 헤더차량의 진출에 따른 방전요청을 수신하는 단계; 및, (e) 상기 헤더차량 및 차기차량의 속도 및 위치정보에 대응하여 상기 N번째 세그먼트의 방전여부를 결정하는 단계를 포함한다.In order to achieve the above object, according to a preferred embodiment of the present invention, the segment charging control method of an on-line electric vehicle according to a preferred embodiment of the present invention includes (a) defining a front vehicle, which is the first vehicle among the vehicles forming the cluster, as a header vehicle step; (b) initiating charging by the Nth segment (where N is a natural number of 1 or more) as the header vehicle enters; (c) receiving speed and position information of a next vehicle, which is the next vehicle of the header vehicle, among the vehicles in the cluster from an N-1 th segment; (d) receiving a discharge request according to advance of the header vehicle from the N-th segment; And (e) determining whether to discharge the N-th segment in response to the speed and position information of the header vehicle and the next vehicle.
상기 군집은, 각 차량간에 기 등록된 정보, 차량아이디, 또는 각 차량의 이동속도에 따라 판단되는 차량들의 그룹인 것을 특징으로 한다.The cluster may be a group of vehicles that are determined according to previously registered information between each vehicle, a vehicle ID, or a moving speed of each vehicle.
상기 단계 (a) 이전에, N+1번째 세그먼트로부터 상기 헤더차량의 속도 및 위치정보를 수신하는 단계; 및, 상기 속도 및 위치정보에 대응하여 상기 N번째 세그Before the step (a), receiving speed and position information of the header vehicle from an N + 1th segment; And the N-th segment corresponding to the speed and location information.
먼트를 충전하는 단계를 포함하는 것을 특징으로 한다.Charging the process.
상기 단계 (e)는, (e1) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이전에 상기 차기차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트의 충전상태를 유지하는 단계; 또는, (e2) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이후에 상기 차기차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트를 방전하는 단계인 것을 특징으로 한다.The step (e) may include: (e1) maintaining the state of charge of the N-th segment when it is determined that the next vehicle is entered before the N-th segment starts to discharge and is fully discharged; Alternatively, (e2) if it is determined that the next vehicle enters after a time point at which the Nth segment starts to discharge and is completely discharged, the Nth segment is discharged.
상기 단계 (e2) 이후, 상기 N번째 세그먼트의 충전 응답시간에 따라, 상기 차기차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계를 더 포함하는 것을 특징으로 한다.After the step (e2), the charging response time of the N-th segment, characterized in that it further comprises the step of charging the segment to be entered next before entering the next vehicle.
본 발명의 바람직한 실시예에 따르면, 급전 세그먼트 충방전 응답지연 특성을 고려하여 온라인 전기자동차의 이동속도에 따른 급전 세그먼트의 동작시점을 제어함으로서, 효율을 향상시키고 전력낭비를 방지할 수 있는 효과가 있다.According to a preferred embodiment of the present invention, by controlling the operation time of the power supply segment according to the moving speed of the online electric vehicle in consideration of the power supply segment charge and discharge response delay characteristics, there is an effect that can improve the efficiency and prevent power consumption .
도 1은 종래의 온라인 전기자동차의 집전장치와, 도로에 매설되어2전기자동차에 전력을 공급하는 세그먼트형 급전장치간의 급전방식에 대한 일예를 개략적으로 도시한 도면이다.1 is a view schematically illustrating an example of a power feeding method between a current collector of a conventional online electric vehicle and a segment type power feeding device embedded in a road and supplying power to two electric vehicles.
도 2는 본 발명의 제1 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다. 2 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에서 충방전 응답시간을 정의하는 시간에 따른 전압의 크기간의 관계에 대한 그래프이다. 3 is a graph illustrating a relationship between magnitudes of voltages according to time for defining charge and discharge response time in the first embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 세그먼트 충전방법을 도시한 도면이다.4 is a view showing a segment filling method according to an embodiment of the present invention.
도 5는 본 발명의 제2 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다.5 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a second embodiment of the present invention.
도 6는 본 발명의 제2 실시예에서 연속통과시간을 정의하는 시간에 따른 전압의 크기간의 관계에 대한 그래프이다.FIG. 6 is a graph showing a relationship between magnitudes of voltages according to time for defining a continuous passage time in a second embodiment of the present invention.
도 7은 본 발명의 제2 실시예에 따른 세그먼트 충전방법을 도시한 도면이다.7 is a diagram illustrating a segment filling method according to a second embodiment of the present invention.
도 8은 본 발명의 제3 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다.8 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a third embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 바람직한 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해설되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것을 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, a segment charging control method and apparatus for an electric vehicle according to a preferred embodiment of the present invention will be described with reference to the drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. On the basis of the principle that can be defined should be described in the meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 실시예에서는 하나의 차량이 단독으로 주행하는 경우(모드 1), 복수의 차량이 연속으로 주행하는 경우(모드 2) 및 다수의 차량이 군집을 형성하여 주행하는 경우(모드 3)를 나누어 설명한다.In the present embodiment, the description will be made of a case where one vehicle runs alone (mode 1), a plurality of vehicles run continuously (mode 2), and a plurality of vehicles form a cluster (mode 3). do.
모드 1 : 하나의 차량이 단독으로 주행하는 경우Mode 1: When one vehicle is driving alone
도 2는 본 발명의 제1 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다.2 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a first embodiment of the present invention.
도시한 바와 같이, 하나의 전기자동차(100)가 세그먼트 형 급전장치(300)가 매설된 도로를 Vi의 속도로 주행하고 있다고 하면, 집전장치는 급전 세그먼트의 스위치(360)가 연결되었을 때 발생하는 자기장(200)에 의해 전력을 공급받게 된다.As illustrated, when one electric vehicle 100 is driving on a road where the segment type feeder 300 is embedded at a speed of Vi, the current collector is generated when the switch 360 of the feed segment is connected. Power is supplied by the magnetic field 200.
여기서, 전기자동차(100)는 급전 세그먼트와 급전에 관련된 정보를 송수신하는 정보 송수신기(120)를 구비한다. 정보 송수신기(120)가 송부하는 정보에는, 차량으로 전달하는 급전 세그먼트의 아이디, 'ON/OFF' 상태정보, 차량으로부터 수신하는 차량 아이디, 차량속도정보 등이 있다. 급전 세그먼트(300)는 정보 송수신기(120)로부터 전술한 정보를 수신하여 전력공급을 제어하는 인버터(400)에 제공하고, 인버터(400)는 제공된 정보에 대응하여 현재 차량이 진입중인 급전 세그먼트(364) 및 이후 진입 예상되는 급전 세그먼트(362)에 스위치 'ON' 명령을 내리고, 또한, 현재 차량이 진출중인 급전 세그먼트(367)에 스위치 'OFF' 명령을 내린다.Here, the electric vehicle 100 includes an information transceiver 120 for transmitting and receiving the power supply segment and the power related information. The information transmitted by the information transceiver 120 includes ID of a power feeding segment transmitted to the vehicle, 'ON / OFF' status information, vehicle ID received from the vehicle, vehicle speed information, and the like. The power supply segment 300 receives the above-described information from the information transceiver 120 and provides the power supply segment to the inverter 400 that controls the power supply, and the inverter 400 responds to the provided information. ) And a switch 'ON' command to the feed segment 362 that is expected to enter later, and also a switch 'OFF' command to the feed segment 367 into which the vehicle is currently advancing.
이러한 급전 세그먼트의 제어는 전술한 차량의 속도(Vi) 뿐만 아니라, 세그먼트의 충방전 응답시간이 고려된다. 전술한 충방전 응답시간은, 인버터 'ON' 명령 후 세그먼트의 전압 100% 달성시간과, 'OFF' 명령후 세그먼트의 전압 0% 하강시간으로 정의된다. 충방전 응답시간을 정의하는 시간에 따른 전압의 크기간의 관계 그래프는 도 3과 같다. 따라서, 차량이 차기 진입예정인 세그먼트에 대해 차량이 진입직후 세그먼트의 전압이 100%를 달성할 수 있도록 미리 차기 세그먼트를 충전하기 시작한다.In the control of the power supply segment, the charge / discharge response time of the segment as well as the aforementioned speed Vi of the vehicle is considered. The charge / discharge response time described above is defined as the voltage 100% attainment time of the segment after the inverter 'ON' command and the voltage 0% fall time at the segment after the 'OFF' command. Figure 3 is a graph of the relationship between the magnitude of the voltage over time defining the charge and discharge response time. Therefore, for the segment where the vehicle is expected to enter the next, the vehicle starts to charge the next segment in advance so that the voltage of the segment can achieve 100% immediately after the vehicle enters.
도 4는 본 발명의 제1 실시예에 따른 세그먼트 충전방법을 도시한 도면으로서, 도시한 바와 같이, 세그먼트{k(k는 1이상의 자연수)}가 전기자동차(100)로부터 차량 아이디, 이동속도 및 위치정보를 제공받으면(S310), k번째 세그먼트는 수신한 정보들을 인버터(400)에 제공한다(S320). 이후, 인버터(400)가 전송된 정보에 대응하여 N(N은 1이상의 자연수)번째 세그먼트(k+N)를 충전하도록 제어한다(S330). 4 is a diagram illustrating a segment charging method according to a first embodiment of the present invention. As shown in the drawing, a segment {k (k is a natural number of 1 or more)} is a vehicle ID, a moving speed, and a segment from the electric vehicle 100. If the location information is provided (S310), the k-th segment provides the received information to the inverter 400 (S320). Thereafter, the inverter 400 controls to charge the N (N is a natural number of 1 or more) th segment (k + N) in response to the transmitted information (S330).
모드 2 : 복수의 차량이 연속으로 주행하는 경우Mode 2: When a plurality of vehicles are running continuously
도 5는 본 발명의 제2 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다.5 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a second embodiment of the present invention.
도시한 바와 같이, 복수의 전기자동차(100i, 100j)가 dij 간격으로 세그먼트형 급전장치가 매설된 도로를 각각 Vi, Vj의 속도로 주행하고 있다고 하면, 집전장치는 급전 세그먼트의 스위치가 연결되었을 때 해당 급전 세그먼트(334, 336)에 발생하는 자기장에 의해 전력을 공급받게 된다.As shown in the drawing, when a plurality of electric vehicles 100i and 100j are traveling on a road in which segment-type feeders are embedded at intervals of d ij , respectively, at a speed of V i and V j , the current collector may switch the feed segment. When connected, it is powered by the magnetic field generated by the feed segments 334 and 336.
이때, 연속된 두 차량이 세그먼트 통과시에는, 차량 속도 및 세그먼트 충방 전 응답시간 뿐만 아니라, 차량간 거리도 고려하여 세그먼트의 제어를 수행하여야 한다. 상세하게는, 현재 앞차량(100i)의 진입에 따라 'ON'상태인 급전 세그먼트(334)는 뒷차량(100j)이 연속적으로 진입하게 되기 때문에 연속통과시간에 따라 세그먼트를 앞차량(100i)의 진출 이후에도 'ON'상태를 유지하는 것이 효율적이다.At this time, when two consecutive vehicles pass through the segment, the segment control should be performed in consideration of the vehicle speed and the response time before and after the segment charging and discharging, as well as the distance between the vehicles. In detail, the power supply segment 334, which is in the 'ON' state according to the entry of the front vehicle 100i, enters the segment according to the continuous passage time since the rear vehicle 100j is continuously entered. It is efficient to remain 'ON' even after entry.
이러한 사항은 중간의 스위치(335)들도 동일하게 적용된다. 전술한 연속통과시간은, 전기자동차 차량이 연속하여 이동하는 경우에 앞차량을 충전하는 세그먼트에 'OFF'명령 후, 연속된 뒷차량이 이어서 그 세그먼트에 진입하는 데 소요되는 시간으로 정의된다. 이러한 연속통과시간을 정의하는 시간에 따른 전압의 크기간의 관계 그래프는 도 6과 같다.This applies equally to the intermediate switches 335. The above-described continuous passage time is defined as the time taken for the continuous rear vehicle to enter the segment after the 'OFF' command to the segment charging the front vehicle when the electric vehicle moves continuously. 6 is a graph illustrating a relationship between the magnitudes of voltages according to time for defining the continuous passage time.
도 6을 참조하면, 앞차량이2진출하여 급전 세그먼트가 방전을 시작하여 완전 방전되는 시간인 방전응답시간(td) 및, 소정시간 후 뒷차량이 진입하여 급전 세그먼트가 충전을 시작하는 충전응답시간(tc)과 방전후 완전충전되는 시간인 연속통과시간(τ)을 도시하고 있다. 즉, 연속통과시간(τ)이 충방전 응답시간(tc+td)보다 작으면 뒷 차량이 해당 세그먼트 완전방전 이전에 진입한다는 의미이므로 급전 세그먼트를 "ON"상태로 유지시키고, 반대로 연속통과시간(τ)이 충방전 응답시간(tc+td)보다 크면 뒷차량이 해당 세그먼트 완전방전 이후에 진입한다는 의미이므로 급전 세그먼트를 'OFF'상태로 전환한 뒤 소정시간(τ-tc)경과 후 다시 'ON' 상태로 전환하는 것이 효율적이다.Referring to FIG. 6, the discharge response time t d , which is a time at which the front vehicle enters 2 and the power supply segment starts to be discharged and is completely discharged, and the charge response that the power supply segment starts charging after the rear vehicle enters after a predetermined time The time t c and the continuous passage time τ, which is the time of full charge after discharge, are shown. That is, if the continuous passage time (τ) is less than the charge / discharge response time (t c + t d ), it means that the rear vehicle enters before the full discharge of the segment. Therefore, the feeding segment is kept in the “ON” state. If the time (τ) is greater than the charge / discharge response time (t c + t d ), it means that the rear vehicle enters after the full discharge of the corresponding segment. Therefore, the predetermined time (τ-t c ) after switching the feed segment to 'OFF' state It is efficient to switch it back to the ON state after the elapsed time.
따라서, 다시 도 5를 참조하면 인버터는 t 시점에서 각 세그먼트를 통과하는 앞차량의 이동속도 Vi와, 앞뒤차량간 거리 dij를 바탕으로 t+τ시점의 각 세그먼트의 'ON/OFF'를 제어한다. 여기서 각 차량의 이동속도가 등속도일 경우에는 아래의 수학식 1을 만족한다.Therefore, referring back to FIG. 5, the inverter determines 'ON / OFF' of each segment at time t + τ based on the moving speed V i of the front vehicle passing through each segment at time t and the distance d ij between the front and rear vehicles. To control. Here, when the moving speed of each vehicle is the constant speed, the following Equation 1 is satisfied.
수학식 1
Figure PCTKR2010008863-appb-M000001
Equation 1
Figure PCTKR2010008863-appb-M000001
또한, 차량의 이동속도가 등가속도일 경우에는 아래의 수학식 2를 만족한다.In addition, when the moving speed of the vehicle is equivalent speed, the following equation (2) is satisfied.
수학식 2
Figure PCTKR2010008863-appb-M000002
Equation 2
Figure PCTKR2010008863-appb-M000002
(단, τ>0)(Where τ> 0)
따라서, 인버터는 τ값이 tc+td 값보다 작을 때는 해당 세그먼트의 'ON'상태를 지속시키고, τ값이 tc+td 값보다 클 때는 해당 세그먼트를 'OFF'상태로 제어한 후, 뒷차량이 진입하면 다시 세그먼트를 'ON'상태로 제어한다.Therefore, the inverter is then when the τ value is less than t c + t d values continue to 'ON' state of the segment and, when the τ value greater than t c + t d values control the segment to 'OFF' state When the rear vehicle enters, control the segment to 'ON' again.
즉, 인버터는 앞차량이 진출에 따라, 해당 세그먼트가 방전을 시작하여 완전 방전되는 시점 이전에 상기 뒷차량이 진입하는 것으로 판단되면, 해당 세그먼트(334)의 충전상태를 유지하는 단계하고, 또는 해당 세그먼트가 방전을 시작하여 완전 방전되는 시점 이후에 상기 뒷차량이 진입하는 것으로 판단되면, 해당 세그먼트(334)의 방전을 시작하고, 이후 해당 세그먼트의 충전 응답시간에 따라, 뒷차량이 진출하는 세그먼트(336)를 방전하기 시작하며 진입이전에 차기 진입할 세그먼트(335)를 충전한다.That is, when it is determined that the rear vehicle enters before the time when the segment starts to discharge and is fully discharged as the front vehicle enters, the inverter maintains the state of charge of the segment 334, or If it is determined that the rear vehicle enters after a time point at which the segment starts to discharge and is completely discharged, the segment 334 starts to discharge, and according to the charge response time of the segment, the segment into which the rear vehicle advances ( 336 begins to discharge and charges the next segment 335 to enter before entering.
도 7은 본 발명의 제2 실시예에 따른 세그먼트 충전방법을 도시한 도면으로서, 먼저 앞차량(100i)이 N번째 세그먼트에 진입하고(S610), N-1번째 세그먼트가 뒷차량(100j)으로부터 속도정보(Vj(t))를 전송받으면(S620), N번째 세그먼트는 앞차량(100i)의 진입사실을 인버터(400)에 보고하고(S630), N-1번째 세그먼트는 속도정보(Vj(t))를 인버터(400)에 알린다(S640). 이후, 앞차량(100i)이 진출함에 따라, N번째 세그먼트가 인버터에 방전을 요청하면(S650), 인버터(400)는 인버터는 τ값과 tc+td 값을 비교하여(S660), τ 값이 tc+td 값보다 작을 때는 해당 세그먼트의 'ON'상태를 지속시키고(S662), τ값이 tc+td값보다 클 때는 해당 세그먼트를 'OFF'상태로 제어한 후, 뒷차량이 진입하면 다시 세그먼트를 'ON'상태로 제어한다(S664).FIG. 7 is a diagram illustrating a segment charging method according to a second embodiment of the present invention. First, the front vehicle 100i enters the N-th segment (S610), and the N-th segment is the rear vehicle 100j. When receiving the speed information (V j (t)) (S620), the N-th segment reports the entry of the front vehicle (100i) to the inverter 400 (S630), N-1 segment is the speed information (V j (t) is reported to the inverter 400 (S640). Then, when the vehicle 100i advances, when the N-th segment requests the inverter to discharge (S650), the inverter 400 compares the value of τ with the value of t c + t d (S660), τ If the value is smaller than the value of t c + t d , the segment is 'ON' (S662). If the value of τ is greater than the value of t c + t d , the segment is controlled to the 'OFF' state. When the vehicle enters again, the segment is controlled to the 'ON' state (S664).
모드 3 : 다수의 차량이 군집을 형성하여 주행하는 경우Mode 3: When a large number of vehicles are driving in a cluster
도 8은 본 발명의 제3 실시예에 따른 전기자동차용 세그먼트 충전 제어방법 및 장치를 설명하기 위한 도면이다.8 is a view for explaining a segment charging control method and apparatus for an electric vehicle according to a third embodiment of the present invention.
도시한 바와 같이, 군집을 형성하는 다수의 자동차(100i, 100j, 100k)가 dij 및 djk 간격으로 세그먼트 형 급전장치가 매설된 도로를 각각 Vi, Vj, Vk의 속도로 주행하고 있다고 하면, 전술한 실시예들과 동일하게 각 차량들은 해당 급전 세그먼트(434, 436, 438)에 발생하는 자기장에 의해 전력을 공급받게 된다.As shown, a plurality of cars 100i, 100j, 100k forming a cluster travel at a speed of V i , V j , and V k , each of which has a segment-type feeder embedded at intervals d ij and d jk , respectively. If so, each vehicle is powered by the magnetic field generated by the feed segments 434, 436, 438, similar to the embodiments described above.
여기서, 다수의 차량이 형성하는 군집은 각 차량간에 주행전 미리 등록된 정보에 따라 형성될 수도 있고, 인버터와 연결된 중앙제어시스템에서 차량아이디, 이동속도 정보 등을 통해 군집으로 판단하여 군집으로 판단할 수 있다. 이러한 군집주행 전기자동차들의 경우, 차량 그룹에서 선두차량을 군집의 헤더로 설정하고, 헤더차량 및 헤더차량을 따르는 차기차량을 기준으로 모든 차량에 동일하게 급전 세그먼트를 제어한다. 즉, 헤더 차량이 진입하는 세그먼트(434) 및 차기차량이 진입하는 세그먼트(436)의 충방전 타이밍에 따라, 이후의 세그먼트(438)을 동일하게 제어한다.Here, the clusters formed by the plurality of vehicles may be formed according to pre-registered information between each vehicle, or may be determined as a cluster based on vehicle ID and moving speed information in the central control system connected to the inverter. Can be. In the case of such group-driven electric vehicles, the head vehicle is set as the header of the cluster in the vehicle group, and the feed segment is controlled to be equally applied to all the vehicles based on the header vehicle and the next vehicle following the header vehicle. That is, according to the charge / discharge timing of the segment 434 into which the header vehicle enters and the segment 436 into which the next vehicle enters, the subsequent segments 438 are controlled in the same manner.
이러한 동일 군집의 차량은 모두 동일한 속도{Vi(t)=Vj(t)=Vk(t)} 및 동일한 간격의 거리{dij(t)=djk(t)}를 가진다고 가정하면, 등속도는 아래의 수학식 3을 만족한다.Suppose all vehicles in the same cluster have the same speed {V i (t) = V j (t) = V k (t)} and equal distances {d ij (t) = d jk (t)} , The constant velocity satisfies Equation 3 below.
수학식 3
Figure PCTKR2010008863-appb-M000003
Equation 3
Figure PCTKR2010008863-appb-M000003
또한, 차량의 이동속도가 등가속도일 경우에는 아래의 수학식 4를 만족한다.In addition, when the moving speed of the vehicle is the equivalent speed, the following equation (4) is satisfied.
수학식 4
Figure PCTKR2010008863-appb-M000004
Equation 4
Figure PCTKR2010008863-appb-M000004
(단, τ>0)(Where τ> 0)
따라서, 인버터는 τ값이 tc+td 값보다 작을 때는 해당 세그먼트의 'ON'상태를 지속시키고, τ값이 tc+td 값보다 클 때는 해당 세그먼트를 'OFF'상태로 제어한 후, 세그먼트의 충전 응답시간에 따라, 상기 뒷차량의 진입이전에 차기 진입할 세그먼트를 충전한다. 이러한 제3 실시예에 따른 세그먼트 충전방법은 헤더차량의 속도를 기준으로 한다는 점 이외에는 전술한 제2 실시예에 따른 충전방법에 대응한다.Therefore, the inverter is then when the τ value is less than t c + t d values continue to 'ON' state of the segment and, when the τ value greater than t c + t d values control the segment to 'OFF' state According to the charging response time of the segment, the next segment to charge before entering the vehicle is charged. The segment charging method according to the third embodiment corresponds to the charging method according to the above-described second embodiment except that the segment charging method is based on the speed of the header vehicle.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명과 기술사상과 다음에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited Example and drawing, this invention is not limited by this and this invention and the technical thought, and the following by those of ordinary skill in the art to which this invention belongs. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (11)

  1. 온라인 전기자동차의 세그먼트 충전 제어방법으로서,As a segment charging control method for an online electric vehicle,
    (a) 세그먼트로부터 진입중인 차량의 속도 및 위치정보를 수신하는 단계;및,(a) receiving speed and position information of a vehicle entering from a segment; and
    (b) 상기 속도 및 위치정보에 대응하여 상기 차량이 현재 진출중인 세그먼트와, 이후 진입할 차기 세그먼트의 충방전 시점을 제어하는 단계(b) controlling charging and discharging timings of the segment into which the vehicle is currently advancing and the next segment to be entered according to the speed and location information;
    를 포함하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 단계 (b)는,Step (b) is,
    (b1) 세그먼트의 방전 응답시간에 따라, 상기 차량의 완전 진출이전에 진출중인 세그먼트를 방전하는 단계; 및, (b1) discharging the segment that is advanced before the vehicle fully advances, according to the discharge response time of the segment; And,
    (b2) 세그먼트의 충전 응답시간에 따라, 상기 차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계를 포함하는 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.and (b2) charging the segment to be entered next before the vehicle enters according to the charging response time of the segment.
  3. 복수의 온라인 전기자동차의 세그먼트 충전 제어방법으로서,As a segment charging control method for a plurality of online electric vehicles,
    (a) 복수의 차량 중, 앞차량의 진입에 따라 N(N은 1이상의 자연수)번째 세그먼트의 충전을 시작하는 단계;(a) starting charging of the N (N is a natural number of 1 or more) segments according to the entry of the preceding vehicle among the plurality of vehicles;
    (b) N-1번째 세그먼트로부터 뒷차량의 속도 및 위치정보를 수신하는 단계;(b) receiving the speed and location information of the rear vehicle from the N-th segment;
    (c) 상기 N번째 세그먼트로부터 상기 앞차량의 진출에 따른 방전요청을 수신하는 단계; 및, (c) receiving a discharge request according to advance of the front vehicle from the N-th segment; And,
    (d) 상기 앞차량 및 뒷차량의 속도 및 위치정보에 대응하여 상기 N번째 세그먼트의 방전여부를 결정하는 단계(d) determining whether the N-th segment is discharged in response to the speed and location information of the front vehicle and the rear vehicle;
    를 포함하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle comprising a.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (a) 이전에,Before step (a) above,
    N+1번째 세그먼트로부터 상기 앞차량의 속도 및 위치정보를 수신하는 단계; 및, Receiving speed and location information of the front vehicle from an N + 1th segment; And,
    상기 속도 및 위치정보에 대응하여 상기 N번째 세그먼트를 충전하는 단계Charging the N-th segment in response to the speed and location information
    를 포함하는 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charging control method for an online electric vehicle comprising a.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 단계 (d)는,Step (d) is,
    (d1) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이전에 상기 뒷차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트의 충전상태를 유지하는 단계; 또는,(d1) maintaining the charged state of the N-th segment if it is determined that the rear vehicle enters before the N-th segment starts to discharge and is fully discharged; or,
    (d2) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이후에 상기 뒷차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트를 방전하는 단계(d2) discharging the N-th segment if it is determined that the rear vehicle enters after a point where the N-th segment starts to discharge and is completely discharged;
    인 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle, characterized in that.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 단계 (d2) 이후,After the step (d2),
    상기 N번째 세그먼트의 충전 응답시간에 따라, 상기 뒷차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계Charging a segment to be entered next before entering the rear vehicle according to the charging response time of the N-th segment;
    를 더 포함하는 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle further comprising a.
  7. 군집을 이루는 온라인 전기자동차의 세그먼트 충전 제어방법으로서,As a segment charging control method for clustered online electric vehicles,
    (a) 상기 군집을 이루는 차량 중, 가장 선두인 앞차량을 헤더차량으로 정의하는 단계;(a) defining, as a header vehicle, the front vehicle that is the most leading vehicle among the vehicles forming the cluster;
    (b) 상기 헤더차량의 진입에 따라 N(N은 1이상의 자연수)번째 세그먼트가 충전을 시작하는 단계;(b) initiating charging by the Nth segment (where N is a natural number of 1 or more) as the header vehicle enters;
    (c) N-1번째 세그먼트로부터 상기 군집을 이루는 차량 중, 상기 헤더차량의 다음차량인 차기차량의 속도 및 위치정보를 수신하는 단계;(c) receiving speed and position information of a next vehicle, which is the next vehicle of the header vehicle, among the vehicles in the cluster from an N-1 th segment;
    (d) 상기 N번째 세그먼트로부터 상기 헤더차량의 진출에 따른 방전요청을 수신하는 단계; 및,(d) receiving a discharge request according to advance of the header vehicle from the N-th segment; And,
    (e) 상기 헤더차량 및 차기차량의 속도 및 위치정보에 대응하여 상기 N번째 세그먼트의 방전여부를 결정하는 단계(e) determining whether the N-th segment is discharged in response to the speed and location information of the header vehicle and the next vehicle;
    를 포함하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle comprising a.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 군집은,The cluster is,
    각 차량간에 기 등록된 정보, 차량아이디, 또는 각 차량의 이동속도에 따라 판단되는 차량들의 그룹인 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.And a group of vehicles determined according to previously registered information, vehicle ID, or moving speed of each vehicle.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단계 (a) 이전에,Before step (a) above,
    N+1번째 세그먼트로부터 상기 헤더차량의 속도 및 위치정보를 수신하는 단계; 및,Receiving speed and location information of the header vehicle from an N + 1th segment; And,
    상기 속도 및 위치정보에 대응하여 상기 N번째 세그먼트를 충전하는 단계Charging the N-th segment in response to the speed and location information
    를 포함하는 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charging control method for an online electric vehicle comprising a.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 단계 (e)는,Step (e),
    (e1) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이전에 상기 차기차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트의 충전상태를 유지하는 단계; 또는,(e1) maintaining the state of charge of the N-th segment when it is determined that the next vehicle enters the time point before the N-th segment starts to discharge and is completely discharged; or,
    (e2) 상기 N번째 세그먼트가 방전을 시작하여 완전 방전되는 시점 이후에 상기 차기차량이 진입하는 것으로 판단되면, 상기 N번째 세그먼트를 방전하는 단계인 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.(e2) if it is determined that the next vehicle enters after a time point at which the Nth segment starts to discharge and is completely discharged, the Nth segment is discharged to the on-line electric vehicle segment charging control method.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 단계 (e2) 이후,After the above step (e2),
    상기 N번째 세그먼트의 충전 응답시간에 따라, 상기 차기차량의 진입이전에 차기 진입할 세그먼트를 충전하는 단계Charging a segment to be entered next before the next vehicle is entered according to the charge response time of the N-th segment;
    를 더 포함하는 것을 특징으로 하는 온라인 전기자동차용 세그먼트 충전 제어방법.Segment charge control method for an online electric vehicle further comprising a.
PCT/KR2010/008863 2009-12-11 2010-12-10 Method for controlling the charging of segments for an online electric vehicle WO2011071344A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0123560 2009-12-11
KR20090123560 2009-12-11
KR1020090134956A KR101204500B1 (en) 2009-12-11 2009-12-30 Method for Controlling Charging of Segment for Online Electric Vehicle
KR10-2009-0134956 2009-12-30

Publications (2)

Publication Number Publication Date
WO2011071344A2 true WO2011071344A2 (en) 2011-06-16
WO2011071344A3 WO2011071344A3 (en) 2011-10-27

Family

ID=44146072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008863 WO2011071344A2 (en) 2009-12-11 2010-12-10 Method for controlling the charging of segments for an online electric vehicle

Country Status (1)

Country Link
WO (1) WO2011071344A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497826A (en) * 2011-12-21 2013-06-26 Ampium Ltd Electric roadway having safety element
RU2702485C1 (en) * 2017-09-20 2019-10-08 Тойота Дзидося Кабусики Кайся Non-contact power supply system and power receiving device
JP2020188649A (en) * 2019-05-17 2020-11-19 株式会社デンソー System for feeding power during travelling
WO2021089633A1 (en) * 2019-11-08 2021-05-14 Alstom Transport Technologies Ground-powering system and method for unguided electric vehicles
WO2022209832A1 (en) * 2021-03-31 2022-10-06 株式会社デンソー Abnormality sensing device and abnormality sensing method for non-contact power feed system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163088A (en) * 1999-10-25 2001-06-19 Alstom Static system feeding current to electric rolling stock via ground, and electric rolling stock intended to be fed by such feeding system
JP2001177916A (en) * 1999-12-10 2001-06-29 Toyota Motor Corp Energy-supplying apparatus
KR20060064372A (en) * 2004-12-08 2006-06-13 현대자동차주식회사 Communication system of between vehicle and method thereof
JP2007135335A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Energy supply apparatus, energy supply method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163088A (en) * 1999-10-25 2001-06-19 Alstom Static system feeding current to electric rolling stock via ground, and electric rolling stock intended to be fed by such feeding system
JP2001177916A (en) * 1999-12-10 2001-06-29 Toyota Motor Corp Energy-supplying apparatus
KR20060064372A (en) * 2004-12-08 2006-06-13 현대자동차주식회사 Communication system of between vehicle and method thereof
JP2007135335A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Energy supply apparatus, energy supply method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497826A (en) * 2011-12-21 2013-06-26 Ampium Ltd Electric roadway having safety element
RU2702485C1 (en) * 2017-09-20 2019-10-08 Тойота Дзидося Кабусики Кайся Non-contact power supply system and power receiving device
US11052781B2 (en) 2017-09-20 2021-07-06 Toyota Jidosha Kabushiki Kaisha Non-contact power supply system and power reception device
JP2020188649A (en) * 2019-05-17 2020-11-19 株式会社デンソー System for feeding power during travelling
JP7081566B2 (en) 2019-05-17 2022-06-07 株式会社デンソー Power supply system while driving
WO2021089633A1 (en) * 2019-11-08 2021-05-14 Alstom Transport Technologies Ground-powering system and method for unguided electric vehicles
FR3102956A1 (en) * 2019-11-08 2021-05-14 Alstom Transport Technologies Ground power system and method for unguided electric vehicles
WO2022209832A1 (en) * 2021-03-31 2022-10-06 株式会社デンソー Abnormality sensing device and abnormality sensing method for non-contact power feed system
JP7459832B2 (en) 2021-03-31 2024-04-02 株式会社デンソー Anomaly detection device and method for non-contact power supply system

Also Published As

Publication number Publication date
WO2011071344A3 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2011071344A2 (en) Method for controlling the charging of segments for an online electric vehicle
US6087806A (en) Electric vehicle
WO2012018204A2 (en) Electric vehicle and charging control method for battery thereof
WO2012018206A2 (en) Battery management apparatus for an electric vehicle, and method for managing same
WO2016080751A1 (en) Wireless power transfer apparatus and foreign object detection method thereof
WO2019160330A1 (en) Charging control device for electric vehicle
WO2011046401A2 (en) Control system and method for controlling electrically-driven vehicle
WO2013125850A1 (en) System and method for allocating identifier to multi-bms
WO2014181983A1 (en) System for preheating batteries and method for preheating batteries using same
WO2011046400A2 (en) Method and apparatus for transporting power to electric vehicle with segments of power supply road
KR101204500B1 (en) Method for Controlling Charging of Segment for Online Electric Vehicle
WO2019088558A1 (en) Battery pack
WO2012138173A2 (en) Electric vehicle and method for controlling the speed thereof
WO2013035963A1 (en) Battery charging device adaptively varying charging voltage and method for controlling battery charging thereof
WO2017018656A1 (en) Apparatus and method for coating electrode active material slurry
CN111231763A (en) Double-source battery pack switching method and system
WO2009154355A4 (en) Display drive circuit and drive method
WO2023033240A1 (en) Artificial intelligence iot edge computing apparatus for efficient management of solar street lamps, and big data service platform system using same
WO2016064224A1 (en) Apparatus and method for controlling electric currents
WO2021049752A1 (en) Power-saving battery management apparatus and method
WO2013047973A1 (en) Power supply device for cell balancing using outer battery cells and cell balancing method thereof
WO2023287112A1 (en) Battery device, battery management system, and precharge method
WO2020032537A1 (en) Integrated wired/wireless power reception system
WO2013035962A1 (en) Battery charging device actively varying battery cells to be separated and charged, and method for controlling battery charging
WO2018139734A1 (en) Method and system for managing battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836239

Country of ref document: EP

Kind code of ref document: A2