WO2011080991A1 - Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil - Google Patents

Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil Download PDF

Info

Publication number
WO2011080991A1
WO2011080991A1 PCT/JP2010/071817 JP2010071817W WO2011080991A1 WO 2011080991 A1 WO2011080991 A1 WO 2011080991A1 JP 2010071817 W JP2010071817 W JP 2010071817W WO 2011080991 A1 WO2011080991 A1 WO 2011080991A1
Authority
WO
WIPO (PCT)
Prior art keywords
base oil
cooling
ether
aliphatic
ester
Prior art date
Application number
PCT/JP2010/071817
Other languages
French (fr)
Japanese (ja)
Inventor
坪内 俊之
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010180475A external-priority patent/JP2012031359A/en
Priority claimed from JP2010180476A external-priority patent/JP2011157541A/en
Priority claimed from JP2010180477A external-priority patent/JP2011157542A/en
Priority claimed from JP2010180474A external-priority patent/JP2011157540A/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP10840849.3A priority Critical patent/EP2520637A4/en
Priority to CN2010800604586A priority patent/CN102695782A/en
Priority to US13/519,792 priority patent/US20120283162A1/en
Publication of WO2011080991A1 publication Critical patent/WO2011080991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/40Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • C10M2207/2855Esters of aromatic polycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • C10M2207/2895Partial esters containing free hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/017Specific gravity or density
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to an equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil.
  • Motor cooling methods can be broadly divided into air cooling, water cooling and oil cooling.
  • the air cooling method is excellent in that it is not necessary to prepare a cooling medium, but it is difficult to ensure a large cooling capacity.
  • the water-cooling method is excellent in cooling because of the high thermal conductivity of water, but because of the conductivity, the motor coil cannot be directly cooled, and the necessity to stretch the cooling pipes arises, so the cooling device becomes large There is.
  • the oil cooling system has excellent cooling efficiency and low electrical conductivity, so that the motor can be directly cooled and a compact design can be achieved. Therefore, if it is necessary to lubricate the rotating member at the same time, the motor cooling oil can be used as the dual-purpose oil by forming the same package.
  • a mechanism for circulating a transmission oil and simultaneously cooling a motor has been put into practical use.
  • the wheel drive motor of an electric vehicle has been devised in a design that serves as both lubrication of a planetary gear and motor coil cooling by circulating lubricating oil.
  • a lubricating oil composition (see Patent Document 2) having a temperature of °C or higher or an ester-based synthetic oil in an amount of 10% by mass to 100% by mass based on the total amount of the base oil, a kinematic viscosity at 40 ° C of less than 15 mm 2 / s, a viscosity
  • Patent Document 3 having a heat transfer coefficient of 780 W / m 2 ⁇ ° C. or higher using a lubricating base oil having an index of 120 or higher and a density of 0.85 g / cm 3 or higher at 15 ° C. It has been proposed as a combined oil.
  • the proposed lubricating oil composition is excellent in electric insulation, cooling and lubricity, and can be suitably used for an electric motor-equipped vehicle such as an electric vehicle or a hybrid vehicle. is there.
  • Patent Document 1 mentions only that the viscosity of the lubricating oil composition is low, and does not disclose any data regarding the cooling performance. Also, neopentyl glycol 2-ethylhexanoic acid diester and alkylbenzene described as base oils in the examples cannot be said to have low thermal conductivity and good cooling properties. Patent Document 2 describes in paragraph [0020] of the specification that “as a urea adduct, a component that deteriorates thermal conductivity is collected accurately and reliably”. .
  • Patent Document 2 discloses a lubricating oil composition having excellent cooling performance.
  • ester compounds specifically disclosed in Patent Document 3 are azelaic acid di-2-ethylhexyl, neopentyl glycol 2-ethylhexanoic acid diester, and oleic acid 2-ethylhexyl, which are not preferable because of low thermal conductivity. .
  • an object of the present invention is to provide a base oil for equipment cooling excellent in electrical insulation and thermal conductivity, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment using the cooling oil It is to provide a cooling method.
  • heat transfer coefficient unit area, unit temperature, amount of heat transfer per unit time
  • the heat transfer coefficient is not a physical property value but a value that changes depending on conditions such as a flow velocity and a material
  • a design device has been devised to increase this value.
  • the Nusselt number, Reynolds number, and Prandtl number are related, so the physical properties of the fluid are kinematic viscosity, thermal conductivity, specific heat, and density. Affect.
  • the cooling performance improves when the viscosity is lowered, but a sufficient oil film thickness cannot be secured, resulting in poor lubrication. Therefore, the necessary minimum limit viscosity is determined by the condition of the lubrication part such as a transmission. Therefore, even with the same kinematic viscosity, a lubricating oil with higher thermal conductivity, specific heat, and density has better cooling performance.
  • the heat transfer coefficient due to forced convection of a plate with uniform temperature is proportional to the thermal conductivity of 2/3, specific heat of 1/3, and density of 1/3. Is the largest.
  • a base oil with high thermal conductivity is desired as a cooling oil used in equipment such as motors.
  • Basic low molecular weight compounds are listed in the chemical handbook, that is, are known to have high thermal conductivity of alcohols such as glycerin, ethylene glycol, and methanol.
  • polar compounds such as alcohol have a low volume resistivity (poor electrical insulation) and cannot be used as a cooling oil for directly cooling devices such as motors.
  • lubricity as a lubricating oil cannot be expected.
  • the present inventor has intensively studied from the viewpoint of molecular design, and found that a compound having a predetermined molecular structure is excellent in cooling property, electrical insulation property and lubricity. That is, the present invention provides the following equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil. .
  • An equipment cooling base oil containing at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether in an amount of 30% by mass or more, wherein the oleyl ester and the oleyl ether are mainly
  • the total number of terminal methyl groups, methylene groups and ether groups in the chain is 23 or more
  • the total number of methyl branches and ethyl branches in the oleyl ester and the oleyl ether is 1 or less
  • the 40 ° C. kinematic viscosity of the base oil is 4 mm 2 / s or more and 30 mm 2 / s or less.
  • the above-described base oil for motor cooling contains 50% by mass or more of the oleyl ester and the oleyl ether.
  • An equipment cooling base oil containing at least one of aliphatic monoesters and aliphatic monoethers in an amount of 30% by mass or more in the main chain of the aliphatic monoesters and the aliphatic monoethers The total number of terminal methyl groups, methylene groups, and ether groups of is 18 or more, and the total number of methyl branches and ethyl branches in the aliphatic monoester and the aliphatic monoether is 2 or less.
  • a base oil for equipment cooling having a viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less.
  • At least one of the aliphatic monoester and the aliphatic monoether has a chain structure.
  • Equipment cooling base oil containing at least one of aliphatic diesters and aliphatic diethers in an amount of 30% by mass or more, and terminal methyl groups in the main chain of the aliphatic diesters and the aliphatic diethers
  • the total number of methylene groups and ether groups is 20 or more
  • the total number of methyl branches and ethyl branches in the aliphatic diester and the aliphatic diether is 2 or less
  • the 40 ° C. kinematic viscosity of the base oil is 4 mm 2 / s.
  • the base oil for apparatus cooling characterized by the above-mentioned.
  • (6) Aliphatic triester, aliphatic triether, aliphatic tri (ether ester), aliphatic tetraester, aliphatic tetraether, aliphatic tetra (ether ester), aromatic diester, aromatic diether, and aromatic
  • a base oil for equipment cooling containing 30% by mass or more of at least any one of di (ether esters), wherein each ester, each ether, and a terminal methyl group in the main chain in each ether ester,
  • the total number of methylene groups and ether groups is 18 or more, the total number of methyl branches and ethyl branches in each ester, each ether and each ether ester is 1 or less, and the 40 ° C.
  • kinematic viscosity of the base oil is 4 mm 2
  • the base oil for equipment cooling characterized by being at least / s and not more than 30 mm 2 / s.
  • a base oil for equipment cooling wherein the base oil for equipment cooling described above has a thermal conductivity at 25 ° C of 0.142 W / (m ⁇ K) or more.
  • a base oil for equipment cooling wherein the volume resistivity at 25 ° C. is 10 10 ⁇ ⁇ cm or more in the base oil for equipment cooling described above.
  • An equipment cooling oil comprising the equipment cooling base oil described above.
  • the above-described device is for an electric vehicle or a hybrid vehicle.
  • the device described above, wherein the device is at least one of a motor, a battery, an inverter, an engine, and a battery.
  • a device cooling method using the above-described device cooling oil is 4 mm 2
  • the base oil for equipment cooling characterized by being at
  • the equipment cooling oil obtained by blending the equipment cooling base oil of the present invention is excellent in electrical insulation and thermal conductivity, so that motors, batteries, inverters, engines, batteries, etc. mounted on electric cars, hybrid cars, etc. Suitable for cooling.
  • the base oil for equipment cooling in each embodiment of the present invention the equipment cooling oil blended with the base oil, the equipment cooled by the cooling, and the equipment cooling method using the cooling oil will be described.
  • an oleyl ester or oleyl ether in which the total number of terminal methyl groups, methylene groups, and ether groups in the main chain is 23 or more, and the total number of methyl branches and ethyl branches in the molecule is 1 or less, Used as the main component of base oil.
  • the number of methylene groups in the oleyl ester or oleyl ether described above is preferably 22 or more, and more preferably 24 or more.
  • the above oleyl ester and oleyl ether preferably have a chain structure as a whole from the viewpoint of improving the cooling performance as a base oil, and more preferably a linear structure.
  • Such an oleyl ester can be obtained by a generally known ester production method, and is not particularly limited.
  • dehydration condensation reaction between oleic acid and alcohol dehydration condensation reaction between carboxylic acid and oleyl alcohol, condensation reaction between oleic acid halide and alcohol, condensation reaction between carboxylic acid halide and oleyl alcohol, or transesterification reaction Etc.
  • a raw material alcohol having a long linear alkyl chain or a raw material carboxylic acid having a long linear alkyl chain is used, and the total number of terminal methyl groups, methylene groups, and ether groups in the main chain, which is the longest chain portion of the molecule, is 23.
  • it is preferable to synthesize by reacting so that the total number of short alkyl side chains (methyl branch, ethyl branch) in the molecule is 1 or less.
  • Examples of the raw material carboxylic acid include oleic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, and ethylhexane.
  • Examples thereof include monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid.
  • monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid.
  • Examples of the starting alcohol include oleyl alcohol, n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Diethylene glycol monopropyl ether, diethylene glycol Monobutyl ether, tri
  • esterification catalyst a catalyst such as titanium tetraisopropoxide may be used, or no catalyst may be used.
  • the oleyl ether described above may be produced by a general ether production method such as an ordinary Williamson ether synthesis method, and is not particularly limited.
  • the base oil of the present embodiment contains 30% by mass or more of at least one of the above-described esters and ethers, but the content as the base oil is preferably 50% by mass or more, and 60% by mass or more. More preferably, it is more preferably 70% by mass or more, and particularly preferably 80% by mass or more. If a base oil having a total content of the above-described ester or ether of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
  • the base oil of this embodiment has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less.
  • the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient.
  • the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
  • the base oil of this embodiment preferably has a thermal conductivity at 25 ° C. of 0.142 W / (m ⁇ K) or more from the viewpoint of cooling properties, and more preferably 0.144 W / (m ⁇ K) or more. It is.
  • the base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega ⁇ cm or more, more preferably 10 11 Omega ⁇ cm or more, 10 12 More preferably, it is ⁇ ⁇ cm or more, and particularly preferably 10 13 ⁇ ⁇ cm or more.
  • base oil of this embodiment other components can also be mixed and used for the above-mentioned ester and ether.
  • other components there are no particular limitations on the types of other components, but components that do not impair the above-described viscosity range and that do not impair the cooling performance, insulating properties, and lubricity are mixed to such an extent that the effects of the present invention are not impaired.
  • Preferred examples of such other components include mineral oil and synthetic oil.
  • the mineral oil include naphthenic mineral oil, paraffinic mineral oil, GTL mineral oil, WAX isomerized mineral oil, and the like. Specific examples include light neutral oil, medium neutral oil, heavy neutral oil, bright stock and the like by solvent refining or hydrogenation refining.
  • Synthetic oils include polybutene or its hydride, poly ⁇ -olefin (1-octene oligomer, 1-decene oligomer, etc.) or its hydride, ⁇ -olefin copolymer, alkylbenzene, polyol ester, dibasic acid ester, poly Examples thereof include oxyalkylene glycol, polyoxyalkylene glycol ester, polyoxyalkylene glycol ether, hindered ester, and silicone oil.
  • the equipment cooling oil comprising the base oil of this embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like. In addition, various additives can be mix
  • viscosity index improvers For example, viscosity index improvers, antioxidants, detergent dispersants, friction modifiers (oiliness agents, extreme pressure agents), antiwear agents, metal deactivators, pour point depressants, and antifoaming agents are required It can be blended accordingly.
  • equipment cooling oil when equipment cooling oil is used as a dual-purpose oil, care should be taken so as to have a blended formulation that exhibits lubricating performance without impairing electrical insulation. Therefore, as equipment cooling oil, the thermal conductivity at 25 ° C. is 0.142 W / (m ⁇ K) or more, the volume resistivity at 25 ° C. is 10 10 ⁇ ⁇ cm or more, and the kinematic viscosity at 40 ° C. It is desirable that the formulation is determined so that it is 4 mm 2 / s or more and 30 mm 2 / s or less.
  • viscosity index improver examples include non-dispersed polymethacrylate, dispersed polymethacrylate, olefin copolymer (eg, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer. (For example, styrene-diene hydrogenated copolymer).
  • the mass average molecular weight of these viscosity index improvers is preferably 5,000 or more and 300,000 or less for, for example, dispersed and non-dispersed polymethacrylates. In the case of an olefin copolymer, about 800 or more and 100,000 or less are preferable.
  • These viscosity index improvers can be blended alone or in any combination of two or more, but the blending amount is preferably in the range of 0.1% by mass or more and 20% by mass or less based on the total amount of cooling oil. .
  • Antioxidants include amine-based antioxidants such as alkylated diphenylamine, phenyl- ⁇ -naphthylamine, alkylated phenyl- ⁇ -naphthylamine, 2,6-di-t-butylphenol, 4,4′-methylenebis (2, 6-di-t-butylphenol), isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, n-octadecyl-3- (3,5-di-t-butyl-4- Phenol antioxidants such as hydroxyphenyl) propionate, sulfur antioxidants such as dilauryl-3,3′-thiodipropionate, phosphorus antioxidants such as phosphite, and molybdenum antioxidants. . These antioxidants can be contained alone or in any combination of two or more, but usually two or more combinations are preferable, and the blending amount is 0.01% by mass or
  • cleaning dispersants include metal detergents such as alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, alkenyl succinimides, benzyl amines, alkyl polyamines, alkenyl succinates.
  • metal detergents such as alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, alkenyl succinimides, benzyl amines, alkyl polyamines, alkenyl succinates.
  • ashless dispersants such as acid esters.
  • friction modifiers and antiwear agents include sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate esters.
  • sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate esters.
  • Phosphorus compounds such as amine salts and phosphite amine salts, chlorinated oils and fats, chlorinated paraffins, chlorinated fatty acid esters, chlorinated fatty acid and other chlorinated compounds, alkyl or alkenyl maleic acid esters, alkyl or alkenyl succinic acid esters Ester compounds such as alkyl, alkenyl maleic acid, organic acid compounds such as alkyl or alkenyl succinic acid, naphthenate, zinc dithiophosphate (ZnDTP), dithiocarbamine Zinc (ZnDTC), sulfurized oxymolybdenum organo phosphorodithioate (MoDTP), and an organic metal-based compounds such as sulfurized oxymolybdenum dithiocarbamate (MoDTC).
  • the blending amount is preferably 0.1% by mass or more and 5% by mass or less based on the total amount of cooling oil.
  • the metal deactivator examples include benzotriazole, triazole derivatives, benzotriazole derivatives, thiadiazole derivatives, and the like, and the blending amount is preferably 0.01% by mass or less and 3% by mass or less based on the total amount of the cooling oil.
  • the pour point depressant examples include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, etc. Methacrylate is preferably used. These blending amounts are preferably 0.01% by mass or more and 5% by mass or less based on the total amount of the cooling oil.
  • liquid silicone is suitable, for example, methyl silicone, fluorosilicone, polyacrylate and the like are suitable.
  • a preferable blending amount of these antifoaming agents is 0.0005% by mass or more and 0.01% by mass or less based on the total amount of cooling oil.
  • Example 1 In a four-necked flask equipped with a 500 mL Dean-Stark apparatus, 127 g of oleic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 145 g of oleyl alcohol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 mL of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 0.1 g of titanium tetraisopropoxide (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was reacted at 140 ° C. for 2 hours while distilling off water while stirring under a nitrogen stream.
  • Example 2 184 g of oleic acid n-dodecyl was obtained in the same manner as in Example 1 except that 101 g of n-dodecyl alcohol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 3 It carried out like Example 1 except having used 71 g of n octyl alcohol (Tokyo Chemical Industry Co., Ltd. reagent) instead of 145 g of oleyl alcohol, and obtained 162 g of n octyl oleates. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • n octyl alcohol Tokyo Chemical Industry Co., Ltd. reagent
  • Example 4 16-Methylheptadecyl oleate in the same manner as in Example 1 except that 147 g of 16-methylheptadecanol (trade name: Isostearyl Alcohol EX manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol. 212 g were obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density ratio) of this compound were measured.
  • Example 5 The same procedure as in Example 1 was performed except that 65 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 107 g of oleyl alcohol were used instead of 127 g of oleic acid and 145 g of oleyl alcohol, and 143 g of oleyl n-octanoate. Got. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 6 In a 1 L glass flask, 107 g of oleyl alcohol, 120 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 10 g of tetrabutylammonium bromide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of aqueous sodium hydroxide solution (60 g of sodium hydroxide) Was dissolved in 140 g of water) and stirred at 70 ° C. for 20 hours for reaction.
  • aqueous sodium hydroxide solution 60 g of sodium hydroxide
  • reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then the organic phase was distilled to obtain 103 g of n-octyl oleyl ether.
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • Example 7 158 g of butoxyethyl oleate was obtained in the same manner as in Example 1 except that 65 g of ethylene glycol monobutyl ether (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol.
  • ethylene glycol monobutyl ether a reagent manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 1 The same procedure as in Example 1 was carried out except that 71 g of 2-ethylhexanol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol to obtain 161 g of 2-ethylhexyl oleate.
  • Various physical properties thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity
  • the base oils (compounds) of this embodiment shown in Examples 1 to 7 are predetermined esters or ethers, both of which are terminal methyl groups and methylene groups in the main chain.
  • the total number of ether groups is 23 or more and the total number of methyl branches and ethyl branches in the molecule is 1 or less, both thermal conductivity (cooling property) and electrical insulation are excellent.
  • the kinematic viscosity is within a predetermined range, the lubricating performance is excellent.
  • the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles. It can be understood that it is also suitable.
  • Comparative Example 1 is an ester with an alcohol having 8 carbon atoms as in Example 3, but is poor in thermal conductivity because the total number of terminal methyl groups, methylene groups and ether groups in the main chain is small.
  • the comparative example 2 is a case where refined mineral oil is used, since it is a mixture of many types of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
  • the base oil in the first embodiment has at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component.
  • the equipment cooling base oil according to the second embodiment of the present invention contains at least one of an aliphatic monoester and an aliphatic monoether as a basic component.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain in the monoester and the monoether is 18 or more, and the total number of methyl branches and ethyl branches in the monoester molecule and the monoether molecule. Are both 2 or less.
  • the main chain refers to the longest chain structure in the molecule.
  • an aliphatic monoester and an aliphatic monoether are used as main components of the base oil.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain in the above-mentioned ester or ether is 18 or more.
  • the total number of methyl branches and ethyl branches in the above-described ester or ether molecules is 2 or less from the viewpoint of improving the cooling performance.
  • the number of methylene groups in the above-mentioned ester or ether is preferably 17 or more.
  • the above-described ester or ether is preferably a chain structure, and more preferably a linear structure that does not include a branch.
  • Such an ester can be obtained by a generally known ester production method, and is not particularly limited.
  • Examples thereof include a dehydration condensation reaction between a carboxylic acid and an alcohol, a condensation reaction between a carboxylic acid halide and an alcohol, or a transesterification reaction.
  • a dehydration condensation reaction between a carboxylic acid and an alcohol e.g., a condensation reaction between a carboxylic acid halide and an alcohol
  • a transesterification reaction e.g., a dehydration condensation reaction between a carboxylic acid and an alcohol
  • a condensation reaction between a carboxylic acid halide and an alcohol e.g., a condensation reaction between a carboxylic acid halide and an alcohol
  • a transesterification reaction e.g., a transesterification reaction.
  • the total number of terminal methyl groups, methylene groups, and ether groups in the main chain which is the longest chain part of the molecule, is 18 or more, and short
  • Examples of the raw material carboxylic acid include n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, oleic acid, and ethylhexane.
  • Examples thereof include monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid.
  • monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid.
  • carboxylic acid esters and carboxylic acid chlorides which are derivatives of these carboxylic acids can also be used.
  • Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Diethylene glycol monopropyl ether, diethylene glycol Monobutyl ether, tri
  • esterification catalyst a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
  • the above-mentioned ether may be produced by a general ether production method such as a usual Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
  • the base oil of this embodiment contains 30% by mass or more of the above-described ester or ether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more, and 70 The content is more preferably at least mass%, particularly preferably at least 80 mass%. If a base oil having an ester or ether content of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
  • the base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above.
  • the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient.
  • the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
  • the thermal conductivity at 25 ° C. is preferably 0.142 W / (m ⁇ K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M ⁇ K) or more.
  • the base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega ⁇ cm or more, more preferably 10 11 Omega ⁇ cm or more, 10 12 More preferably, it is ⁇ ⁇ cm or more, and particularly preferably 10 13 ⁇ ⁇ cm or more.
  • base oil of this embodiment the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
  • the equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments.
  • the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
  • the same additive as what was demonstrated in 1st Embodiment can be mix
  • each base oil as shown in Table 2 was prepared and subjected to various evaluations.
  • the method for preparing the base oil is as follows. In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
  • Example 1 In a 500 mL four-necked flask equipped with a Dean-Stark apparatus, 128 g of 16-methylheptadecanoic acid (trade name: isostearic acid EX manufactured by Higher Alcohol Industry Co., Ltd.) and 101 g of 1-dodecyl alcohol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 100 ml of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) are added, and the reaction is carried out at 140 ° C. for 2 hours while distilling off water while stirring with a nitrogen stream. I let you.
  • 16-methylheptadecanoic acid trade name: isostearic acid EX manufactured by Higher Alcohol Industry Co., Ltd.
  • 1-dodecyl alcohol 100 ml of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.1
  • Example 2 180 g of 2-heptylundecanoic acid n-dodecyl was obtained in the same manner as in Example 1 except that 128 g of 2-heptylundecanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 128 g of 16-methylheptadecanoic acid. .
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • Example 3 16-methylheptadecanoic acid was prepared in the same manner as in Example 1 except that 134 g of 16-methylheptadecyl alcohol (trade name: Isostearyl Alcohol EX manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of 101 g of 1-dodecyl alcohol. 206 g of 16-methylheptadecyl was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 4 Other than using 128 g of 16-methylheptadecanoic acid, 78 g of n-decanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 86 g of 1-decyl alcohol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) Was carried out in the same manner as in Example 1 to obtain 132 g of n-decyl n-decanoate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 5 128 g of 16-methylheptadecanoic acid, 72 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 119 g of 2-octyldodecanol (New Nippon Rika Co., Ltd., trade name: NJECOAL 200A) Except that was used, the same procedure as in Example 1 was performed to obtain 132 g of 2-octyldodecyl n-octanoate.
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • Example 6 To a 2 L glass flask, 300 g of 2-octyldodecanol (Shin Nippon Chemical Co., Ltd., trade name: NJECOAL 200A), 300 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), tetrabutylammonium bromide (Tokyo Chemical Industry Co., Ltd.) (Reagent) 30 g and sodium hydroxide aqueous solution 500 g (150 g of sodium hydroxide dissolved in 350 g of water) were added and stirred at 50 ° C. for 20 hours for reaction.
  • 2-octyldodecanol Shin Nippon Chemical Co., Ltd., trade name: NJECOAL 200A
  • 1-bromooctane reagent manufactured by Tokyo Chemical Industry Co., Ltd.
  • tetrabutylammonium bromide Tokyo Chemical Industry Co., Ltd.
  • Reagent sodium hydroxide aqueous solution
  • reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 500 mL of water, and then the organic phase was distilled to obtain 266 g of 2-octyldodecyl n octyl ether.
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • Example 7 128 g of 16-methylheptadecanoic acid, 144 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 165 g of triethylene glycol monobutyl ether (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 101 g of 1-dodecyl alcohol.
  • Example 7 was performed in the same manner as in Example 1 to obtain 188 g of n-octanoic acid ester of triethylene glycol monobutyl ether.
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • the base oils (compounds) of this embodiment shown in Examples 1 to 7 all have a total number of terminal methyl groups, methylene groups and ether groups in the main chain of 18 or more.
  • the total number of methyl branches and ethyl branches in the molecule is 2 or less, both thermal conductivity (cooling property) and electrical insulation are excellent.
  • the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles.
  • Comparative Example 1 is the same ester of 2-octyldodecanol as Example 5, but is inferior in thermal conductivity because of many methyl branches. Since the ester of Comparative Example 2 has very many methyl branches, the thermal conductivity is extremely poor. Since Comparative Example 3 is an alcohol, its thermal conductivity is good, but its electrical insulation is poor. Although the comparative example 4 is a case where refined mineral oil is used, since it is a mixture of many kinds of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
  • the base oil in the first embodiment includes at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component
  • the base oil in the second embodiment includes an aliphatic monoester and a fat. At least one of the group monoethers was used as a basic component.
  • the base oil for equipment cooling according to the third embodiment of the present invention contains at least one of aliphatic dihydric carboxylic acid diester, aliphatic dihydric alcohol diester, and aliphatic dihydric alcohol diether as a basic component.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain in the aliphatic diester and aliphatic diether is 20 or more, and the total number of methyl branches and ethyl branches in the aliphatic diester and aliphatic diether is 2 It is as follows.
  • the main chain refers to the longest chain structure in the molecule.
  • the third embodiment of the present invention will be described in detail below. In the present embodiment, the description of the same contents as those of the first embodiment and the second embodiment described above will be omitted or simplified.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain is 20 or more, and the total number of methyl branches and ethyl branches in the molecule is 2 or less. At least one of them is used as the main component of the base oil.
  • the number of methylene groups in the above-mentioned diester or diether is preferably 18 or more, and more preferably 19 or more.
  • the above-mentioned diesters and diethers are preferably linear from the viewpoint of improving the cooling performance as a base oil.
  • Such an aliphatic diester can be obtained by a generally known ester production method, and is not particularly limited.
  • a dehydration condensation reaction between a divalent carboxylic acid and an alcohol a dehydration condensation reaction between a dihydric alcohol and a carboxylic acid, a condensation reaction between a divalent carboxylic acid dihalide and an alcohol, or a dihydric alcohol and a carboxylic acid halide.
  • a condensation reaction, a transesterification reaction, etc. are mentioned.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain, which is the longest chain part of the molecule, is 20 or more, and short alkyl side chains (methyl) It is preferable to synthesize by reacting so that the total number of branches and ethyl branches is 2 or less.
  • Examples of the carboxylic acid as a raw material include dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and 1,10-decamethylene dicarboxylic acid, n-butanoic acid, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, and n-octanoic acid. , N-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, ethylhexanoic acid, butyloctanoic acid and the like.
  • carboxylic acid esters and carboxylic acid chlorides which are derivatives of these carboxylic acids can also be used.
  • Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Monols such as hexyl decanol, heptyl undecanol, octyl dodecanol, and methyl heptadecanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane Examples include diols such as diol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, and polytetram
  • esterification catalyst a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
  • the above-mentioned diether may be produced by a general ether production method such as an ordinary Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
  • the base oil of the present embodiment contains 30% by mass or more of the above-mentioned diester or diether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more, and 70 The content is more preferably at least mass%, particularly preferably at least 80 mass%. If a base oil having a content of the above diester or diether of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
  • the base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above.
  • the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient.
  • the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
  • the thermal conductivity at 25 ° C. is preferably 0.142 W / (m ⁇ K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M ⁇ K) or more.
  • the base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega ⁇ cm or more, more preferably 10 11 Omega ⁇ cm or more, 10 12 More preferably, it is ⁇ ⁇ cm or more.
  • base oil of this embodiment the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
  • the equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments.
  • the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
  • the same additive as what was demonstrated in 1st Embodiment can be mix
  • the third embodiment will be described in more detail by way of examples.
  • the present embodiment is not limited to these examples.
  • various base oils as shown in Table 3 were prepared and subjected to various evaluations.
  • the method for preparing the base oil is as follows. In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
  • Example 1 In a 500 mL four-necked flask equipped with a Dean-Stark apparatus, 94 g of azelaic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 156 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 mL of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) ), 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was reacted at 140 ° C. for 2 hours while distilling off water under stirring with a nitrogen stream.
  • Example 2 Example except that 94 g of azelaic acid and 75 g of azelaic acid, 53 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 65 g of 2-ethylhexanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol.
  • Example 2 In the same manner as in Example 1, 145 g of a mixture composed of 30% by mass of di-n-octyl azelate, 45% by mass of n-octyl 2-ethylhexyl azelate, and 25% by mass of di-2-ethylhexyl azelate was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this mixture were measured.
  • Example 3 Various properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of dodecanedioic acid di-2-ethylhexyl (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
  • Example 4 Example except that 94 g of azelaic acid and 81 g of sebacic acid, 53 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 65 g of 2-ethylhexanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol.
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density
  • Example 5 In a 1 L glass flask, 27 g of 1,4-butanediol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 174 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) (Reagent) 10 g and 200 g of aqueous sodium hydroxide solution (60 g of sodium hydroxide dissolved in 140 g of water) were added and stirred at 70 ° C. for 20 hours for reaction.
  • aqueous sodium hydroxide solution 60 g of sodium hydroxide dissolved in 140 g of water
  • reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then excess 1-bromooctane was distilled off to obtain 76 g of bis-n-octyl 1,4-butanediether. .
  • Various physical properties thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 6 Example 1 except that 94 g of azelaic acid and 130 g of 2-ethylhexanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 75 g of polytetrahydrofuran 250 (a reagent manufactured by Sigma-Aldrich) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. And 126 g of 2-ethylhexanoic acid diester of polytetrahydrofuran 250 was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this ester were measured.
  • Example 7 The same procedure as in Example 1 was conducted, except that 94 g of azelaic acid and 180 g of n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 75 g of triethylene glycol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. As a result, 163 g of n-octanoic acid diester of triethylene glycol was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this ester were measured.
  • Example 2 In the same manner as in Example 1 except that 94 g of azelaic acid and 173 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 52 g of neopentyl glycol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of 1-octanol. To obtain 160 g of neopentyl glycol n-octanoic acid diester. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 1 except that 94 g of azelaic acid and 165 g of 2-ethylhexanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 52 g of neopentyl glycol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 156 g of azelaic acid In the same manner, 160 g of neopentyl glycol 2-ethylhexanoic acid diester was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • the base oil (compound) of the present embodiment shown in Examples 1 to 7 is a predetermined ester or ether, both of which are terminal methyl groups and methylene groups in the main chain.
  • the total number of ether groups is 20 or more and the total number of methyl branches and ethyl branches in the molecule is 2 or less, both thermal conductivity (cooling property) and electrical insulation are excellent.
  • the kinematic viscosity is within a predetermined range, the lubricating performance is excellent.
  • the equipment cooling oil using the base oil of the present embodiment is also used for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles, and also for lubrication of transmissions, etc. It can be understood that the oil is also suitable.
  • the esters of Comparative Examples 1 and 2 are inferior in thermal conductivity because the main chain is short and the number of methylene groups is small.
  • the ester of Comparative Example 3 has a short main chain and a small number of methylene groups, and is very inferior in thermal conductivity because of many methyl branches and ethyl branches.
  • the comparative example 4 is a case where refined mineral oil is used, since it is a mixture of many kinds of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
  • the base oil in the first embodiment includes at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component
  • the base oil in the second embodiment includes an aliphatic monoester and a fat
  • the base oil according to the third embodiment includes at least one of the aliphatic monoethers as a basic component
  • the base oil in the third embodiment is at least one of aliphatic dihydric carboxylic acid diesters, aliphatic dihydric alcohol diesters, and aliphatic dihydric alcohol diethers. Any one of them was used as a basic component.
  • the equipment cooling base oil according to the fourth embodiment of the present invention includes an aliphatic triester, an aliphatic triether, an aliphatic tri (ether ester), an aliphatic tetraester, an aliphatic tetraether, and an aliphatic tetra (ether ester).
  • At least one of aromatic diester, aromatic diether, and aromatic di (ether ester) is used as the main component of the base oil.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain in each of the above ester molecules, each ether molecule, and each ether ester molecule is 18 or more, and methyl in each of the above ester molecules and each ether molecule.
  • the total number of branches and ethyl branches is 1 or less.
  • the main chain refers to the longest chain structure portion in a molecule that may pass through an aromatic ring.
  • aliphatic tri (ether ester) refers to a compound having a total of three ether groups and ester groups
  • aliphatic tetra (ether ester) refers to a compound having a total of four ether groups and ester groups
  • Aromatic di (ether ester) refers to a compound having a total of two ether groups and ester groups.
  • esters and ethers having a long chain structure are advantageous in order to improve thermal conductivity by liquid molecules and to increase the collision frequency between molecules.
  • the aromatic ring is very rigid and does not diffuse molecular vibration energy so much, even if long chain structures are connected via the aromatic ring, the thermal conductivity is not lowered so much. Therefore, in this embodiment, in the case of an aromatic compound, the longest chain structure via an aromatic ring is the main chain.
  • aliphatic triester aliphatic triether, aliphatic tri (ether ester), aliphatic tetraester, aliphatic tetraether, aliphatic tetra (ether ester), aromatic diester, aromatic diether And at least any one compound of aromatic di (ether ester) is used as the main component of the base oil.
  • the total number of terminal methyl groups, methylene groups and ether groups in the main chain in each of the above-mentioned esters, ethers and ether esters is 18 or more.
  • each ester, each ether and each ether ester is 1 or less from the viewpoint of improving the cooling performance. Moreover, it is preferable that neither the above-mentioned methyl branch and ethyl branch have from a viewpoint of a cooling improvement.
  • Such an ester can be obtained by a generally known ester production method, and is not particularly limited.
  • Examples thereof include a dehydration condensation reaction between a carboxylic acid and an alcohol, a condensation reaction between a carboxylic acid halide and an alcohol, or a transesterification reaction.
  • a dehydration condensation reaction between a carboxylic acid and an alcohol e.g., a condensation reaction between a carboxylic acid halide and an alcohol
  • a transesterification reaction e.g., a dehydration condensation reaction between a carboxylic acid and an alcohol
  • a condensation reaction between a carboxylic acid halide and an alcohol e.g., a condensation reaction between a carboxylic acid halide and an alcohol
  • a transesterification reaction e.g., a transesterification reaction.
  • the total number of terminal methyl groups, methylene groups, and ether groups in the main chain which is the longest chain part of the molecule, is 18 or more, and short
  • Examples of the raw material carboxylic acid include aliphatic carboxylic acids and aromatic carboxylic acids.
  • Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether Ether, diethylene glycol monobutyl ether Monools such as
  • esterification catalyst a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
  • the above-mentioned ether may be produced by a general ether production method such as a usual Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
  • the base oil of the present embodiment contains 30% by mass or more of the above-mentioned ester or ether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more. % Or more is more preferable, and 80% by mass or more is particularly preferable. If a base oil having an ester or ether content of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
  • the base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above.
  • the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient.
  • the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
  • the thermal conductivity at 25 ° C. is preferably 0.142 W / (m ⁇ K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M ⁇ K) or more.
  • the base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega ⁇ cm or more, more preferably 10 11 Omega ⁇ cm or more, 10 12 More preferably, it is ⁇ ⁇ cm or more, and particularly preferably 10 13 ⁇ ⁇ cm or more.
  • base oil of this embodiment the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
  • the equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments.
  • the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
  • the same additive as what was demonstrated in 1st Embodiment can be mix
  • the fourth embodiment will be described in more detail by way of examples.
  • the present embodiment is not limited to these examples.
  • various base oils as shown in Table 4 were prepared and subjected to various evaluations.
  • the method for preparing the base oil is as follows. In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
  • Example 1 In a four-necked flask equipped with a 500 ML Dean-Stark apparatus, 173 g of n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 34 g of pentaerythritol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 ml of mixed xylene (manufactured by Tokyo Chemical Industry Co., Ltd.) Reagent) and 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were added and reacted at 140 ° C. for 2 hours while distilling off water while stirring under a nitrogen stream.
  • Trimethylolpropane tri-n was prepared in the same manner as in Example 1 except that 173 g of n-octanoic acid, 159 g of n-octanoic acid instead of 34 g of pentaerythritol, and 40 g of trimethylolpropane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used. 139 g of octanoic acid ester was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 3 Example 1 except that 173 g of n-octanoic acid, 44 g of phthalic anhydride (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 149 g of 1-dodecanol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 34 g of pentaerythritol To obtain 137 g of di-n-decyl phthalate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 4 Example 1 except that 173 g of n-octanoic acid and 50 g of isophthalic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 104 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 34 g of pentaerythritol. To obtain 107 g of di-n-octyl isophthalate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
  • Example 5 In a 1 L glass flask, 34 g of trimethylolpropane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 217 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 10 g of tetrabutylammonium bromide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 200 g of an aqueous sodium hydroxide solution (60 g of sodium hydroxide dissolved in 140 g of water) was added, and the mixture was stirred at 70 ° C. for 20 hours for reaction.
  • an aqueous sodium hydroxide solution 60 g of sodium hydroxide dissolved in 140 g of water
  • reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then excess 1-bromooctane was distilled off and n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 50 g, 100 ml of mixed xylene (reagent made by Tokyo Chemical Industry Co., Ltd.), 0.1 g of titanium tetraisopropoxide (reagent made by Tokyo Chemical Industry Co., Ltd.) are put into a 500 mL four-necked flask equipped with a Dean-Stark device, and stirred with a nitrogen stream. The reaction was carried out at 140 ° C.
  • the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles. It can be understood that it is also suitable.
  • Comparative Example 1 is the same trimethylolpropane triester as in Example 2. However, since the main chain is short and there are many ethyl branches, the thermal conductivity is poor. Comparative Example 2 is the same phthalic acid ester as Example 3, but is inferior in thermal conductivity because the main chain is short and there are many ethyl branches. Although the comparative example 3 is a case where refined mineral oil is used, since it is a mixture of many types of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
  • the present invention can be used for equipment cooling base oil, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil.

Abstract

Disclosed is a base oil for cooling a device, which contains 30 mass% or more of at least one compound selected from an oleyl ester (an oleic acid ester and an oleyl alcohol ester) and an oleyl ether, wherein each of the oleyl ester and the oleyl ether has a terminal methyl group, a methylene group and an ether group in the total number of 23 or more in the main chain thereof, the total number of methyl branches and ethyl branches in the oleyl ester and the oleyl ether is 1 or less, and the kinematic viscosity of the base oil is 4 to 30 mm2/s or less at 40˚C. A device-cooling oil containing the base oil has excellent electrical insulation properties and excellent heat conductivity and is therefore suitable for cooling a motor, a battery, an inverter, an engine, an electric cell or the like in an electric-powered car or a hybrid car.

Description

機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法Equipment cooling base oil, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil
 本発明は、機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法に関する。 The present invention relates to an equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil.
 電気自動車やハイブリッド車の高性能化によりモーターの出力密度が上がり、発熱量も増えてきている。そのため、コイルや磁石等の耐熱性の向上を図るだけではなく、モーターの高効率化による発熱量の低減など、モーター設計上も種々の工夫がなされている。
 モーターの冷却法としては、大きく分けて空冷、水冷および油冷の3方式がある。これらの中で、空冷方式は、冷却媒体を特に準備する必要がないという点では優れるが、大きな冷却容量を確保することが難しい。水冷方式は、水の熱伝導率が高いので冷却性には優れるが、導電性があるためモーターコイルを直接冷却できず冷却パイプを張り巡らせる必要性が生じるので冷却装置が大きくなってしまうという問題がある。
 これらの冷却方式に対し、油冷方式では、用いられる油が冷却効率に優れるとともに導電性も低いのでモーターを直接冷却できコンパクトな設計が可能となる。それ故、回転部材の潤滑も同時に必要な場合、同一パッケージ化によりモーター冷却油を兼用油として使用することも可能になる。例えば、ハイブリッド車では、変速機油を循環させてモーターの冷却を同時に行う機構が実用化されている。また、電気自動車のホイール駆動モーターでは、潤滑油を循環させて遊星歯車の潤滑とモーターコイル冷却とを兼ねる設計上の工夫もなされている。
Due to the high performance of electric and hybrid vehicles, the output density of motors has increased and the amount of heat generated has also increased. For this reason, various designs have been made in the motor design, such as not only improving the heat resistance of coils and magnets, but also reducing the amount of heat generated by increasing the efficiency of the motor.
Motor cooling methods can be broadly divided into air cooling, water cooling and oil cooling. Among these, the air cooling method is excellent in that it is not necessary to prepare a cooling medium, but it is difficult to ensure a large cooling capacity. The water-cooling method is excellent in cooling because of the high thermal conductivity of water, but because of the conductivity, the motor coil cannot be directly cooled, and the necessity to stretch the cooling pipes arises, so the cooling device becomes large There is.
In contrast to these cooling systems, the oil cooling system has excellent cooling efficiency and low electrical conductivity, so that the motor can be directly cooled and a compact design can be achieved. Therefore, if it is necessary to lubricate the rotating member at the same time, the motor cooling oil can be used as the dual-purpose oil by forming the same package. For example, in a hybrid vehicle, a mechanism for circulating a transmission oil and simultaneously cooling a motor has been put into practical use. In addition, the wheel drive motor of an electric vehicle has been devised in a design that serves as both lubrication of a planetary gear and motor coil cooling by circulating lubricating oil.
 このように変速機等の潤滑とモーター冷却を同時に行う兼用油としては、例えば、低粘度の鉱物油や合成油に(A)炭化水素基含有ジチオリン酸亜鉛、(B)トリアリールホスフェート、および(C)トリアリールチオホスフェートのうち少なくともいずれかを配合してなる潤滑油組成物が提案されている(特許文献1参照)。また、尿素アダクト値が4質量%以下であり、40℃における動粘度が25mm/s以下であり、粘度指数が100以上である潤滑油基油を用いた熱伝達係数が720W/m・℃以上である潤滑油組成物(特許文献2参照)や、エステル系合成油を基油全量基準で10質量%以上、100質量%以下含有し、40℃における動粘度15mm/s未満、粘度指数120以上、15℃における密度0.85g/cm以上である潤滑油基油を用いた熱伝達係数が780W/m・℃以上である潤滑油組成物(特許文献3参照)も同様の兼用油として提案されている。上述の各文献には、提案された潤滑油組成物は、電気絶縁性、冷却性および潤滑性に優れており、電気自動車またはハイブリッド車等の電動モーター装着車に好適に用いられるとの記載がある。 As the dual-purpose oil that simultaneously performs lubrication of the transmission and the motor cooling as described above, for example, (A) a hydrocarbon group-containing zinc dithiophosphate, (B) a triaryl phosphate, and ( C) A lubricating oil composition comprising at least one of triarylthiophosphates has been proposed (see Patent Document 1). The heat transfer coefficient using a lubricating base oil having a urea adduct value of 4% by mass or less, a kinematic viscosity at 40 ° C. of 25 mm 2 / s or less, and a viscosity index of 100 or more is 720 W / m 2. A lubricating oil composition (see Patent Document 2) having a temperature of ℃ or higher or an ester-based synthetic oil in an amount of 10% by mass to 100% by mass based on the total amount of the base oil, a kinematic viscosity at 40 ° C of less than 15 mm 2 / s, a viscosity The same applies to a lubricating oil composition (see Patent Document 3) having a heat transfer coefficient of 780 W / m 2 · ° C. or higher using a lubricating base oil having an index of 120 or higher and a density of 0.85 g / cm 3 or higher at 15 ° C. It has been proposed as a combined oil. In each of the above-mentioned documents, it is described that the proposed lubricating oil composition is excellent in electric insulation, cooling and lubricity, and can be suitably used for an electric motor-equipped vehicle such as an electric vehicle or a hybrid vehicle. is there.
WO2002/097017号公報WO2002 / 097017 特開2009-161604号公報JP 2009-161604 A 特開2009-242547号公報JP 2009-242547 A
 しかしながら、特許文献1では、潤滑油組成物の冷却性については低粘度にすることしか触れておらず、冷却性能に関しては何のデータも開示されていない。また、実施例に基油として記載されているネオペンチルグリコール2-エチルヘキサン酸ジエステルやアルキルベンゼンは、熱伝導率が低く冷却性がよいとは言えない。また、特許文献2では、明細書段落〔0020〕に、「尿素アダクト物として・・・熱伝導性を悪化させる成分・・・が、精度よくかつ確実に捕集される」と記載されている。すなわち、尿素アダクト成分は熱伝導性を悪化させる成分であると言及しているが、実際の熱伝導性の面からは正反対であり、「パラフィン主鎖が長い成分は熱伝導性が悪い」との見解は誤りであると思われる。それ故、特許文献2に、冷却性に優れる潤滑油組成物が開示されているといえるかは疑問が残る。また、特許文献3において具体的に開示されているエステル化合物は、アゼライン酸ジ2-エチルヘキシル、ネオペンチルグリコール2-エチルヘキサン酸ジエステル、オレイン酸2-エチルヘキシルであるが、熱伝導率が低く好ましくない。 However, Patent Document 1 mentions only that the viscosity of the lubricating oil composition is low, and does not disclose any data regarding the cooling performance. Also, neopentyl glycol 2-ethylhexanoic acid diester and alkylbenzene described as base oils in the examples cannot be said to have low thermal conductivity and good cooling properties. Patent Document 2 describes in paragraph [0020] of the specification that “as a urea adduct, a component that deteriorates thermal conductivity is collected accurately and reliably”. . That is, although the urea adduct component is mentioned as a component that deteriorates the thermal conductivity, it is the opposite from the actual thermal conductivity aspect, and “a component with a long paraffin main chain has poor thermal conductivity”. This view seems to be wrong. Therefore, it remains doubtful whether Patent Document 2 discloses a lubricating oil composition having excellent cooling performance. Further, ester compounds specifically disclosed in Patent Document 3 are azelaic acid di-2-ethylhexyl, neopentyl glycol 2-ethylhexanoic acid diester, and oleic acid 2-ethylhexyl, which are not preferable because of low thermal conductivity. .
 そこで、本発明の目的は、電気絶縁性と熱伝導性に優れる機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法を提供することにある。 Therefore, an object of the present invention is to provide a base oil for equipment cooling excellent in electrical insulation and thermal conductivity, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment using the cooling oil It is to provide a cooling method.
 流体による冷却性を示す尺度として「熱伝達係数(単位面積、単位温度、単位時間あたりの伝熱量)」があり、この値が大きいほど冷却性がよい。ただし、熱伝達係数は物性値ではなく流速や材質などの条件により変化する値なので、この値を高めるような設計上の工夫がなされている。
 一方、流体側の工夫で熱伝達係数を増大させるには、ヌッセルト数、レイノルズ数およびプラントル数が関係するので、流体の物性値としては、動粘度、熱伝導率、比熱および密度が冷却性に影響する。具体的には、動粘度は小さいほど、熱伝導率、比熱および密度は大きいほど流体としての冷却性に優れる。それ故、従来は流体(潤滑油等)の低粘度化により冷却性能を上げることが検討されてきた。しかしながら、潤滑油の場合、低粘度化すると冷却性能は向上するが、十分な油膜厚さを確保できず潤滑不良となる。そのため、必要最低限の限界粘度は変速機等の潤滑部分の条件により決まることになる。よって、同じ動粘度でも、熱伝導率、比熱および密度の大きい潤滑油ほど冷却性能に優れる。例えば、温度が均一な板の強制対流による熱伝達係数は、熱伝導率の3分の2乗、比熱の3分の1乗、密度の3分の1乗に比例するので熱伝導率の影響が最も大きい。
There is a “heat transfer coefficient (unit area, unit temperature, amount of heat transfer per unit time)” as a scale indicating the cooling performance by the fluid, and the larger this value, the better the cooling performance. However, since the heat transfer coefficient is not a physical property value but a value that changes depending on conditions such as a flow velocity and a material, a design device has been devised to increase this value.
On the other hand, in order to increase the heat transfer coefficient with a device on the fluid side, the Nusselt number, Reynolds number, and Prandtl number are related, so the physical properties of the fluid are kinematic viscosity, thermal conductivity, specific heat, and density. Affect. Specifically, the smaller the kinematic viscosity, the greater the thermal conductivity, specific heat, and density, and the better the cooling performance as a fluid. Therefore, conventionally, it has been studied to improve the cooling performance by reducing the viscosity of the fluid (lubricating oil or the like). However, in the case of lubricating oil, the cooling performance improves when the viscosity is lowered, but a sufficient oil film thickness cannot be secured, resulting in poor lubrication. Therefore, the necessary minimum limit viscosity is determined by the condition of the lubrication part such as a transmission. Therefore, even with the same kinematic viscosity, a lubricating oil with higher thermal conductivity, specific heat, and density has better cooling performance. For example, the heat transfer coefficient due to forced convection of a plate with uniform temperature is proportional to the thermal conductivity of 2/3, specific heat of 1/3, and density of 1/3. Is the largest.
 そこで、モーター等の機器で使用される冷却油としても熱伝導率の高い基油が望まれるが、これまで基油の分子構造と熱伝導率との相関については検討された例も知見もなかった。基本的な低分子化合物については、化学便覧に載っている程度、すなわちグリセリン、エチレングリコール、メタノールなどのアルコール類の熱伝導率が高い事が知られている程度である。しかし、アルコールなどの極性化合物は体積抵抗率が低く(電気絶縁性が悪く)、モーター等の機器を直接冷却する冷却油としては全く使用できない。また潤滑油としての潤滑性も期待できない。
 これに対して、本発明者は、分子設計の観点より鋭意検討を行い、所定の分子構造を有する化合物が冷却性、電気絶縁性および潤滑性に優れることを見出した。
 すなわち、本発明は以下のような機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法を提供するものである。
Therefore, a base oil with high thermal conductivity is desired as a cooling oil used in equipment such as motors. However, there have been no studies or knowledge on the correlation between the molecular structure of the base oil and the thermal conductivity. It was. Basic low molecular weight compounds are listed in the chemical handbook, that is, are known to have high thermal conductivity of alcohols such as glycerin, ethylene glycol, and methanol. However, polar compounds such as alcohol have a low volume resistivity (poor electrical insulation) and cannot be used as a cooling oil for directly cooling devices such as motors. Also, lubricity as a lubricating oil cannot be expected.
On the other hand, the present inventor has intensively studied from the viewpoint of molecular design, and found that a compound having a predetermined molecular structure is excellent in cooling property, electrical insulation property and lubricity.
That is, the present invention provides the following equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil. .
(1)オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、前記オレイルエステルおよび前記オレイルエーテルは、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が23以上であり、前記オレイルエステルおよび前記オレイルエーテルにおけるメチル分岐およびエチル分岐の総数が1以下であり、該基油の40℃動粘度が4mm/s以上、30mm/s以下であることを特徴とする機器冷却用基油。
(2)上述のモーター冷却用基油において、前記オレイルエステルおよび前記オレイルエーテルを50質量%以上含有することを特徴とする機器冷却用基油。
(3)脂肪族モノエステルおよび脂肪族モノエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、前記脂肪族モノエステルおよび前記脂肪族モノエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が18以上であり、前記脂肪族モノエステルおよび前記脂肪族モノエーテルにおけるメチル分岐およびエチル分岐の総数が2以下であり、該基油の40℃動粘度が4mm/s以上、30mm/s以下であることを特徴とする機器冷却用基油。
(4)上述の機器冷却用基油において、前記脂肪族モノエステルおよび前記脂肪族モノエーテルのうち少なくともいずれかが鎖状構造であることを特徴とする機器冷却用基油。
(5)脂肪族ジエステルおよび脂肪族ジエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、前記脂肪族ジエステルおよび前記脂肪族ジエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が20以上であり、前記脂肪族ジエステルおよび前記脂肪族ジエーテルにおけるメチル分岐およびエチル分岐の総数が2以下であり、該基油の40℃動粘度が4mm/s以上、30mm/s以下であることを特徴とする機器冷却用基油。
(6)脂肪族トリエステル、脂肪族トリエーテル、脂肪族トリ(エーテルエステル)、脂肪族テトラエステル、脂肪族テトラエーテル、脂肪族テトラ(エーテルエステル)、芳香族ジエステル、芳香族ジエーテル、および芳香族ジ(エーテルエステル)のうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、前記各エステル、前記各エーテル、および前記各エーテルエステルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が18以上であり、前記各エステル、前記各エーテルおよび前記各エーテルエステルにおけるメチル分岐およびエチル分岐の総数が1以下であり、該基油の40℃動粘度が4mm/s以上、30mm/s以下であることを特徴とする機器冷却用基油。
(7)上述の機器冷却用基油において、25℃における熱伝導率が0.142W/(m・K)以上であることを特徴とする機器冷却用基油。
(8)上述の機器冷却用基油において、25℃における体積抵抗率が1010Ω・cm以上であることを特徴とする機器冷却用基油。
(9)上述の機器冷却用基油を配合してなることを特徴とする機器冷却油。
(10)上述の機器冷却油により冷却されることを特徴とする機器。
(11)上述の機器が電気自動車用またはハイブリッド車用であることを特徴とする機器。
(12)上述の機器がモーター、バッテリー、インバーター、エンジンおよび電池の少なくともいずれかであることを特徴とする機器。
(13)上述の機器冷却油を用いることを特徴とする機器冷却方法。
(1) An equipment cooling base oil containing at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether in an amount of 30% by mass or more, wherein the oleyl ester and the oleyl ether are mainly The total number of terminal methyl groups, methylene groups and ether groups in the chain is 23 or more, the total number of methyl branches and ethyl branches in the oleyl ester and the oleyl ether is 1 or less, and the 40 ° C. kinematic viscosity of the base oil is 4 mm 2 / s or more and 30 mm 2 / s or less.
(2) The above-described base oil for motor cooling contains 50% by mass or more of the oleyl ester and the oleyl ether.
(3) An equipment cooling base oil containing at least one of aliphatic monoesters and aliphatic monoethers in an amount of 30% by mass or more in the main chain of the aliphatic monoesters and the aliphatic monoethers The total number of terminal methyl groups, methylene groups, and ether groups of is 18 or more, and the total number of methyl branches and ethyl branches in the aliphatic monoester and the aliphatic monoether is 2 or less. A base oil for equipment cooling having a viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less.
(4) In the above-described base oil for equipment cooling, at least one of the aliphatic monoester and the aliphatic monoether has a chain structure.
(5) Equipment cooling base oil containing at least one of aliphatic diesters and aliphatic diethers in an amount of 30% by mass or more, and terminal methyl groups in the main chain of the aliphatic diesters and the aliphatic diethers The total number of methylene groups and ether groups is 20 or more, the total number of methyl branches and ethyl branches in the aliphatic diester and the aliphatic diether is 2 or less, and the 40 ° C. kinematic viscosity of the base oil is 4 mm 2 / s. As mentioned above, it is 30 mm < 2 > / s or less, The base oil for apparatus cooling characterized by the above-mentioned.
(6) Aliphatic triester, aliphatic triether, aliphatic tri (ether ester), aliphatic tetraester, aliphatic tetraether, aliphatic tetra (ether ester), aromatic diester, aromatic diether, and aromatic A base oil for equipment cooling containing 30% by mass or more of at least any one of di (ether esters), wherein each ester, each ether, and a terminal methyl group in the main chain in each ether ester, The total number of methylene groups and ether groups is 18 or more, the total number of methyl branches and ethyl branches in each ester, each ether and each ether ester is 1 or less, and the 40 ° C. kinematic viscosity of the base oil is 4 mm 2 The base oil for equipment cooling characterized by being at least / s and not more than 30 mm 2 / s.
(7) A base oil for equipment cooling, wherein the base oil for equipment cooling described above has a thermal conductivity at 25 ° C of 0.142 W / (m · K) or more.
(8) A base oil for equipment cooling, wherein the volume resistivity at 25 ° C. is 10 10 Ω · cm or more in the base oil for equipment cooling described above.
(9) An equipment cooling oil comprising the equipment cooling base oil described above.
(10) A device that is cooled by the above-described device cooling oil.
(11) The above-described device is for an electric vehicle or a hybrid vehicle.
(12) The device described above, wherein the device is at least one of a motor, a battery, an inverter, an engine, and a battery.
(13) A device cooling method using the above-described device cooling oil.
 本発明の機器冷却用基油を配合してなる機器冷却油は、電気絶縁性と熱伝導性に優れるので、電気自動車やハイブリッド車等に搭載されるモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適である。 The equipment cooling oil obtained by blending the equipment cooling base oil of the present invention is excellent in electrical insulation and thermal conductivity, so that motors, batteries, inverters, engines, batteries, etc. mounted on electric cars, hybrid cars, etc. Suitable for cooling.
 以下に、本発明の各実施形態における機器冷却用基油、該基油を配合してなる機器冷却油、該冷却により冷却される機器、および該冷却油による機器冷却方法について説明する。 Hereinafter, the base oil for equipment cooling in each embodiment of the present invention, the equipment cooling oil blended with the base oil, the equipment cooled by the cooling, and the equipment cooling method using the cooling oil will be described.
 <第1実施形態>
 本発明の第1実施形態の機器冷却用基油(以下、単に「基油」ともいう。)は、オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を基本成分とする。
 また、前記オレイルエステルおよび前記オレイルエーテルは、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が23以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下である。ここで、主鎖とは分子中で一番長い鎖状構造部分をいう。
 以下に、本発明の第1実施形態を詳細に説明する。
<First Embodiment>
The base oil for equipment cooling (hereinafter also simply referred to as “base oil”) according to the first embodiment of the present invention is based on at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether. Ingredients.
Further, in the oleyl ester and the oleyl ether, the total number of terminal methyl groups, methylene groups, and ether groups in the main chain is 23 or more, and the total number of methyl branches and ethyl branches in the molecule is 1 or less. Here, the main chain refers to the longest chain structure in the molecule.
The first embodiment of the present invention will be described in detail below.
 液体分子による熱伝導性を向上させるためには、分子間の衝突による熱振動エネルギーの授受を良くすることと、分子内で振動エネルギーが拡散しないような構造とする分子設計が重要である。また、分子間の衝突頻度を増やすには、分子の主鎖を長くして炭素-炭素結合間の回転運動により、分子末端の可動範囲を広くすることが有効である。具体的には、分子内で振動エネルギーを拡散させずに、分子主鎖に集約されたままにするために、振動エネルギーを拡散させる短いメチル分岐、エチル分岐を少なくする。メチル基、エチル基は可動範囲も小さいので隣接分子への衝突(エネルギー授受)にも不利である。このような構造を有する分子としては、長い鎖状構造を有するエステルやエーテルが考えられる。 In order to improve the thermal conductivity of liquid molecules, it is important to improve the transfer of thermal vibration energy due to collisions between molecules and to design the molecule so that vibration energy does not diffuse within the molecules. In order to increase the collision frequency between molecules, it is effective to lengthen the main chain of the molecule and widen the movable range of the molecule end by the rotational motion between carbon-carbon bonds. Specifically, short methyl branches and ethyl branches that diffuse vibrational energy are reduced so that vibrational energy is not diffused in the molecule and remains concentrated in the molecular main chain. The methyl group and ethyl group are also disadvantageous for collision (energy transfer) with adjacent molecules because of their small movable range. As a molecule having such a structure, an ester or ether having a long chain structure can be considered.
 そこで、本実施形態では、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が23以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下であるオレイルエステルあるいはオレイルエーテルを、基油の主要成分として用いる。また、冷却性向上の観点より、上述のオレイルエステルやオレイルエーテルにおけるメチレン基の数は22以上であることが好ましく、24以上であることがより好ましい。
 さらに、上述のオレイルエステルやオレイルエーテルは、基油としての冷却性能向上の観点より全体が鎖状構造であることが好ましく、直鎖状であるとさらに好ましい。
Therefore, in this embodiment, an oleyl ester or oleyl ether in which the total number of terminal methyl groups, methylene groups, and ether groups in the main chain is 23 or more, and the total number of methyl branches and ethyl branches in the molecule is 1 or less, Used as the main component of base oil. Further, from the viewpoint of improving the cooling performance, the number of methylene groups in the oleyl ester or oleyl ether described above is preferably 22 or more, and more preferably 24 or more.
Furthermore, the above oleyl ester and oleyl ether preferably have a chain structure as a whole from the viewpoint of improving the cooling performance as a base oil, and more preferably a linear structure.
 このようなオレイルエステルは、通常知られたエステル製造法で得ることができ、特に制限はない。例えば、オレイン酸とアルコールとの脱水縮合反応あるいはカルボン酸とオレイルアルコールとの脱水縮合反応、オレイン酸ハロゲン化物とアルコールとの縮合反応あるいはカルボン酸ハロゲン化物とオレイルアルコールとの縮合反応、あるいはエステル交換反応などが挙げられる。例えば、直鎖アルキル鎖が長い原料アルコールや直鎖アルキル鎖が長い原料カルボン酸を用い、分子の一番長い鎖状部分である主鎖中の末端メチル基、メチレン基、エーテル基の総数が23以上、分子中の短いアルキル側鎖(メチル分岐、エチル分岐)の総数が1以下となる様に反応させ合成するのが好ましい。 Such an oleyl ester can be obtained by a generally known ester production method, and is not particularly limited. For example, dehydration condensation reaction between oleic acid and alcohol, dehydration condensation reaction between carboxylic acid and oleyl alcohol, condensation reaction between oleic acid halide and alcohol, condensation reaction between carboxylic acid halide and oleyl alcohol, or transesterification reaction Etc. For example, a raw material alcohol having a long linear alkyl chain or a raw material carboxylic acid having a long linear alkyl chain is used, and the total number of terminal methyl groups, methylene groups, and ether groups in the main chain, which is the longest chain portion of the molecule, is 23. As mentioned above, it is preferable to synthesize by reacting so that the total number of short alkyl side chains (methyl branch, ethyl branch) in the molecule is 1 or less.
 原料のカルボン酸としては、例えば、オレイン酸、nヘキサン酸、nヘプタン酸、nオクタン酸、nノナン酸、nデカン酸、nウンデカン酸、nドデカン酸、nトリデカン酸、nテトラデカン酸、エチルヘキサン酸、ブチルオクタン酸、ペンチルノナン酸、ヘキシルデカン酸、ヘプチルウンデカン酸、オクチルドデカン酸、メチルヘプタデカン酸、安息香酸などのモノカルボン酸が挙げられる。 Examples of the raw material carboxylic acid include oleic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, and ethylhexane. Examples thereof include monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid.
 原料のアルコールとしては、例えば、オレイルアルコール、nヘキサノール、nヘプタノール、nオクタノール、nノナノール、nデカノール、nウンデカノール、nドデカノール、nトリデカノール、nテトラデカノール、エチルヘキサノール、ブチルオクタノール、ペンチルノナノール、ヘキシルデカノール、ヘプチルウンデカノール、オクチルドデカノール、メチルヘプタデカノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、およびトリエチレングリコールモノブチルエーテルなどが挙げられる。
 エステル化触媒としては、チタンテトライソプロポキシドなどの触媒を用いてもよいし、無触媒でもよい。
 また、上述のオレイルエーテルは、通常のウイリアムソンエーテル合成法などの一般的なエーテル製造法で製造すればよく、特に制限はない。
Examples of the starting alcohol include oleyl alcohol, n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Diethylene glycol monopropyl ether, diethylene glycol Monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, and triethylene glycol monobutyl ether.
As the esterification catalyst, a catalyst such as titanium tetraisopropoxide may be used, or no catalyst may be used.
The oleyl ether described above may be produced by a general ether production method such as an ordinary Williamson ether synthesis method, and is not particularly limited.
 本実施形態の基油は、上述のエステルやエーテルのうち少なくともいずれか1種を30質量%以上含むが、基油としての含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。上述のエステルやエーテルの合計含有量が30質量%未満であるような基油を用いると、冷却性能を十分に発揮できないおそれがある。もちろん、機器冷却用基油として本実施形態の基油を単独(100質量%)で用いてもよい。 The base oil of the present embodiment contains 30% by mass or more of at least one of the above-described esters and ethers, but the content as the base oil is preferably 50% by mass or more, and 60% by mass or more. More preferably, it is more preferably 70% by mass or more, and particularly preferably 80% by mass or more. If a base oil having a total content of the above-described ester or ether of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
 本実施形態の基油は、40℃動粘度が4mm/s以上、30mm/s以下であり、好ましくは4mm/s以上、20mm/s以下である。40℃動粘度が4mm/s未満であると、例えば、モーターと変速機等との兼用油として用いた場合に潤滑性が不足するおそれがある。一方、40℃動粘度が30mm/sを超えると、冷却性が不足するおそれがあり、また、モーター等の冷却油としての系内循環等に支障をきたすおそれがある。 The base oil of this embodiment has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient. On the other hand, if the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
 本実施形態の基油は、25℃における熱伝導率が0.142W/(m・K)以上であることが冷却性の点で好ましく、より好ましくは、0.144W/(m・K)以上である。
 また、本実施形態の基油は、電気絶縁性の観点より25℃における体積抵抗率が1010Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましく、1012Ω・cm以上であることがさらに好ましく、1013Ω・cm以上であることが特に好ましい。
The base oil of this embodiment preferably has a thermal conductivity at 25 ° C. of 0.142 W / (m · K) or more from the viewpoint of cooling properties, and more preferably 0.144 W / (m · K) or more. It is.
The base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega · cm or more, more preferably 10 11 Omega · cm or more, 10 12 More preferably, it is Ω · cm or more, and particularly preferably 10 13 Ω · cm or more.
 本実施形態の基油としては、上述のエステルやエーテルに他の成分(基油)を混合して使用することもできる。その場合、他の成分の種類としては特に制限はないが、上述した粘度範囲を損なわず、さらに冷却性、絶縁性および潤滑性を損なわない成分を、本発明の効果を損なわない程度に混合する必要がある。
 このような他の成分としては、鉱油あるいは合成油が好ましく挙げられる。鉱油としては、例えばナフテン系鉱油、パラフィン系鉱油、GTL鉱油、WAX異性化鉱油などが挙げられる。具体的には、溶剤精製あるいは水添精製による軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストックなどが例示できる。
 一方、合成油としては、ポリブテンまたはその水素化物、ポリα-オレフィン(1-オクテンオリゴマー、1-デセンオリゴマー等)またはその水素化物、α-オレフィンコポリマー、アルキルベンゼン、ポリオールエステル、二塩基酸エステル、ポリオキシアルキレングリコール、ポリオキシアルキレングリコールエステル、ポリオキシアルキレングリコールエーテル、ヒンダードエステル、シリコーンオイルなどが挙げられる。
As base oil of this embodiment, other components (base oil) can also be mixed and used for the above-mentioned ester and ether. In that case, there are no particular limitations on the types of other components, but components that do not impair the above-described viscosity range and that do not impair the cooling performance, insulating properties, and lubricity are mixed to such an extent that the effects of the present invention are not impaired. There is a need.
Preferred examples of such other components include mineral oil and synthetic oil. Examples of the mineral oil include naphthenic mineral oil, paraffinic mineral oil, GTL mineral oil, WAX isomerized mineral oil, and the like. Specific examples include light neutral oil, medium neutral oil, heavy neutral oil, bright stock and the like by solvent refining or hydrogenation refining.
Synthetic oils include polybutene or its hydride, poly α-olefin (1-octene oligomer, 1-decene oligomer, etc.) or its hydride, α-olefin copolymer, alkylbenzene, polyol ester, dibasic acid ester, poly Examples thereof include oxyalkylene glycol, polyoxyalkylene glycol ester, polyoxyalkylene glycol ether, hindered ester, and silicone oil.
 上述した本実施形態の基油からなる機器冷却油は、電気自動車やハイブリッド車等のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適に使用できる。また、基油の40℃粘度も所定の範囲にあるので、潤滑性にも優れており、遊星歯車や変速機等の潤滑も行う兼用油としても好ましい。
 なお、本実施形態の機器冷却油に対しては、本発明の目的を阻害しない範囲で種々の添加剤を配合することができる。例えば、粘度指数向上剤、酸化防止剤、清浄分散剤、摩擦調整剤(油性剤、極圧剤)、耐摩耗剤、金属不活性化剤、流動点降下剤、および消泡剤などを必要に応じて配合することができる。ただし、機器冷却油を兼用油として用いる場合は、電気絶縁性を損なわずに潤滑性能を発揮させるような配合処方とするよう留意すべきである。それ故、機器冷却油として、25℃における熱伝導率が0.142W/(m・K)以上であり、25℃における体積抵抗率が1010Ω・cm以上であって、さらに40℃動粘度も4mm/s以上、30mm/s以下であるように配合処方を決定することが望ましい。
The equipment cooling oil comprising the base oil of this embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
In addition, various additives can be mix | blended with the apparatus cooling oil of this embodiment in the range which does not inhibit the objective of this invention. For example, viscosity index improvers, antioxidants, detergent dispersants, friction modifiers (oiliness agents, extreme pressure agents), antiwear agents, metal deactivators, pour point depressants, and antifoaming agents are required It can be blended accordingly. However, when equipment cooling oil is used as a dual-purpose oil, care should be taken so as to have a blended formulation that exhibits lubricating performance without impairing electrical insulation. Therefore, as equipment cooling oil, the thermal conductivity at 25 ° C. is 0.142 W / (m · K) or more, the volume resistivity at 25 ° C. is 10 10 Ω · cm or more, and the kinematic viscosity at 40 ° C. It is desirable that the formulation is determined so that it is 4 mm 2 / s or more and 30 mm 2 / s or less.
 粘度指数向上剤としては、例えば、非分散型ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン水素化共重合体など)などが挙げられる。これら粘度指数向上剤の質量平均分子量は、例えば分散型および非分散型ポリメタクリレートでは5千以上、30万以下が好ましい。また、オレフィン系共重合体では800以上、10万以下程度が好ましい。これらの粘度指数向上剤は、単独でまたは複数種を任意に組合せて配合させることができるが、その配合量は、冷却油全量基準で0.1質量%以上、20質量%以下の範囲が好ましい。 Examples of the viscosity index improver include non-dispersed polymethacrylate, dispersed polymethacrylate, olefin copolymer (eg, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer. (For example, styrene-diene hydrogenated copolymer). The mass average molecular weight of these viscosity index improvers is preferably 5,000 or more and 300,000 or less for, for example, dispersed and non-dispersed polymethacrylates. In the case of an olefin copolymer, about 800 or more and 100,000 or less are preferable. These viscosity index improvers can be blended alone or in any combination of two or more, but the blending amount is preferably in the range of 0.1% by mass or more and 20% by mass or less based on the total amount of cooling oil. .
 酸化防止剤としては、アルキル化ジフェニルアミン、フェニル-α-ナフチルアミン、アルキル化フェニル-α-ナフチルアミン等のアミン系酸化防止剤、2,6-ジ-t-ブチルフェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤、ジラウリル-3,3’-チオジプロピオネイト等の硫黄系酸化防止剤、ホスファイト等のリン系酸化防止剤、さらにモリブデン系酸化防止剤が挙げられる。これらの酸化防止剤は単独でまたは複数種を任意に組合せて含有させることができるが、通常2種以上の組み合わせが好ましく、その配合量は、冷却油全量基準で0.01質量%以上、5質量%以下が好ましい。 Antioxidants include amine-based antioxidants such as alkylated diphenylamine, phenyl-α-naphthylamine, alkylated phenyl-α-naphthylamine, 2,6-di-t-butylphenol, 4,4′-methylenebis (2, 6-di-t-butylphenol), isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, n-octadecyl-3- (3,5-di-t-butyl-4- Phenol antioxidants such as hydroxyphenyl) propionate, sulfur antioxidants such as dilauryl-3,3′-thiodipropionate, phosphorus antioxidants such as phosphite, and molybdenum antioxidants. . These antioxidants can be contained alone or in any combination of two or more, but usually two or more combinations are preferable, and the blending amount is 0.01% by mass or more based on the total amount of the cooling oil. The mass% or less is preferable.
 清浄分散剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリチレート、アルカリ土類金属ホスホネート等の金属系洗浄剤、並びにアルケニルコハク酸イミド、ベンジルアミン、アルキルポリアミン、アルケニルコハク酸エステル等の無灰系分散剤が挙げられる。これらの清浄分散剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。その配合量は、冷却油全量基準で、0.1質量%以上、30質量%以下が好ましい。 Examples of cleaning dispersants include metal detergents such as alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, alkenyl succinimides, benzyl amines, alkyl polyamines, alkenyl succinates. Examples include ashless dispersants such as acid esters. These detergent dispersants may be used alone or in combination of two or more. The blending amount is preferably 0.1% by mass or more and 30% by mass or less based on the total amount of cooling oil.
 摩擦調整剤や耐摩耗剤としては、例えば硫化オレフィン、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、ジアリールポリスルフィドなどの硫黄系化合物、リン酸エステル、チオリン酸エステル、亜リン酸エステル、アルキルハイドロゲンホスファイト、リン酸エステルアミン塩、亜リン酸エステルアミン塩などのリン系化合物、塩素化油脂、塩素化パラフィン、塩素化脂肪酸エステル、塩素化脂肪酸などの塩素系化合物、アルキル若しくはアルケニルマレイン酸エステル、アルキル若しくはアルケニルコハク酸エステルなどのエステル系化合物、アルキル若しくはアルケニルマレイン酸、アルキル若しくはアルケニルコハク酸などの有機酸系化合物、ナフテン酸塩、ジチオリン酸亜鉛(ZnDTP)、ジチオカルバミン酸亜鉛(ZnDTC)、硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)、硫化オキシモリブデンジチオカルバメート(MoDTC)などの有機金属系化合物などが挙げられる。その配合量は、冷却油全量基準で0.1質量%以上、5質量%以下が好ましい。 Examples of friction modifiers and antiwear agents include sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate esters. Phosphorus compounds such as amine salts and phosphite amine salts, chlorinated oils and fats, chlorinated paraffins, chlorinated fatty acid esters, chlorinated fatty acid and other chlorinated compounds, alkyl or alkenyl maleic acid esters, alkyl or alkenyl succinic acid esters Ester compounds such as alkyl, alkenyl maleic acid, organic acid compounds such as alkyl or alkenyl succinic acid, naphthenate, zinc dithiophosphate (ZnDTP), dithiocarbamine Zinc (ZnDTC), sulfurized oxymolybdenum organo phosphorodithioate (MoDTP), and an organic metal-based compounds such as sulfurized oxymolybdenum dithiocarbamate (MoDTC). The blending amount is preferably 0.1% by mass or more and 5% by mass or less based on the total amount of cooling oil.
 金属不活性化剤としては、ベンゾトリアゾール、トリアゾール誘導体、ベンゾトリアゾール誘導体、チアジアゾール誘導体等が挙げられ、その配合量は、冷却油全量基準で0.01質量%以下、3質量%以下が好ましい。
 流動点降下剤としては、例えばエチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられ、特に、ポリメタクリレートが好ましく用いられる。これらの配合量は、冷却油全量基準で0.01質量%以上、5質量%以下が好ましい。
 消泡剤としては、液状シリコーンが適しており、例えば、メチルシリコーン、フルオロシリコーン、ポリアクリレートなどが好適である。これら消泡剤の好ましい配合量は、冷却油全量基準で0.0005質量%以上、0.01質量%以下である。
Examples of the metal deactivator include benzotriazole, triazole derivatives, benzotriazole derivatives, thiadiazole derivatives, and the like, and the blending amount is preferably 0.01% by mass or less and 3% by mass or less based on the total amount of the cooling oil.
Examples of the pour point depressant include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, etc. Methacrylate is preferably used. These blending amounts are preferably 0.01% by mass or more and 5% by mass or less based on the total amount of the cooling oil.
As the antifoaming agent, liquid silicone is suitable, for example, methyl silicone, fluorosilicone, polyacrylate and the like are suitable. A preferable blending amount of these antifoaming agents is 0.0005% by mass or more and 0.01% by mass or less based on the total amount of cooling oil.
 <第1実施形態の実施例>
 次に、第1実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの例によってなんら限定されるものではない。
 具体的には、表1に示すような各基油を調製して、各種の評価を行った。基油の調製方法および評価方法(物性測定方法)は以下の通りである。
<Example of the first embodiment>
Next, although a 1st embodiment is described still in detail by an example, this embodiment is not limited at all by these examples.
Specifically, various base oils as shown in Table 1 were prepared and subjected to various evaluations. The base oil preparation method and evaluation method (physical property measurement method) are as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
 500mLのDean-Stark装置付き四つ口フラスコにオレイン酸(東京化成工業株式会社製 試薬)127g、オレイルアルコール(東京化成工業株式会社製 試薬)145g,混合キシレン100mL(東京化成工業株式会社製 試薬)、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1gを入れ,窒素気流攪拌下に水を留去しながら140℃で2時間反応させた。その後、飽和食塩水洗浄、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウム(東京化成工業株式会社製 試薬)で乾燥した。硫酸マグネシウムを濾過した後、過剰の原料アルコールを留去して、オレイン酸オレイル215gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。結果を表1に示す。以下の各実施例、各比較例についても同様に結果を表1に示す。
[Example 1]
In a four-necked flask equipped with a 500 mL Dean-Stark apparatus, 127 g of oleic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 145 g of oleyl alcohol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 mL of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 0.1 g of titanium tetraisopropoxide (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was reacted at 140 ° C. for 2 hours while distilling off water while stirring under a nitrogen stream. Thereafter, washing with a saturated saline solution and washing with a 0.1 N aqueous sodium hydroxide solution were performed three times each, followed by drying over anhydrous magnesium sulfate (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.). After filtering the magnesium sulfate, excess raw material alcohol was distilled off to obtain 215 g of oleyl oleate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured. The results are shown in Table 1. The results are also shown in Table 1 for the following examples and comparative examples.
〔実施例2〕
 オレイルアルコール145gの代わりに、nドデシルアルコール(東京化成工業株式会社製 試薬)101gを用いた以外は実施例1と同様に行って、オレイン酸nドデシル184gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Example 2]
184 g of oleic acid n-dodecyl was obtained in the same manner as in Example 1 except that 101 g of n-dodecyl alcohol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例3〕
 オレイルアルコール145gの代わりに,nオクチルアルコール(東京化成工業株式会社製 試薬)71gを用いた以外は実施例1と同様に行って、オレイン酸nオクチル162gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 3
It carried out like Example 1 except having used 71 g of n octyl alcohol (Tokyo Chemical Industry Co., Ltd. reagent) instead of 145 g of oleyl alcohol, and obtained 162 g of n octyl oleates. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例4〕
 オレイルアルコール145gの代わりに、16-メチルヘプタデカノール(高級アルコール工業株式会社製 商品名:イソステアリルアルコールEX)147gを用いた以外は実施例1と同様に行って、オレイン酸16-メチルヘプタデシル212gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度率)を測定した。
Example 4
16-Methylheptadecyl oleate in the same manner as in Example 1 except that 147 g of 16-methylheptadecanol (trade name: Isostearyl Alcohol EX manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol. 212 g were obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density ratio) of this compound were measured.
〔実施例5〕
 オレイン酸127g、オレイルアルコール145gの代わりに、nオクタン酸(東京化成工業株式会社製 試薬)65gと、オレイルアルコール107gを用いたこと以外は、実施例1と同様に行って、nオクタン酸オレイル143gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 5
The same procedure as in Example 1 was performed except that 65 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 107 g of oleyl alcohol were used instead of 127 g of oleic acid and 145 g of oleyl alcohol, and 143 g of oleyl n-octanoate. Got. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例6〕
 1Lガラス製フラスコに、オレイルアルコール107g、1-ブロモオクタン(東京化成工業株式会社製 試薬)120g、テトラブチルアンモニウムブロマイド(東京化成工業株式会社製 試薬)10g、水酸化ナトリウム水溶液200g(水酸化ナトリウム60gを水140gに溶解したもの)を入れ、70℃で20時間攪拌し反応させた。反応終了後、反応混合物を分液ロートに移し、有機相を水300mLで5回洗浄した後、有機相を蒸留してnオクチルオレイルエーテル103gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 6
In a 1 L glass flask, 107 g of oleyl alcohol, 120 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 10 g of tetrabutylammonium bromide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of aqueous sodium hydroxide solution (60 g of sodium hydroxide) Was dissolved in 140 g of water) and stirred at 70 ° C. for 20 hours for reaction. After completion of the reaction, the reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then the organic phase was distilled to obtain 103 g of n-octyl oleyl ether. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例7〕
 オレイルアルコール145gの代わりに,エチレングリコールモノブチルエーテル(東京化成工業株式会社製 試薬)65gを用いた以外は実施例1と同様に行って、オレイン酸ブトキシエチル158gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 7
158 g of butoxyethyl oleate was obtained in the same manner as in Example 1 except that 65 g of ethylene glycol monobutyl ether (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例1〕
 オレイルアルコール145gの代わりに、2-エチルヘキサノール(東京化成工業株式会社製 試薬)71gを用いた以外は実施例1と同様に行って、オレイン酸2-エチルヘキシル161gを得た。この化合物について各種の物性(熱伝導率、動粘度、粘度指数、密度、体積抵抗率)を測定した。
[Comparative Example 1]
The same procedure as in Example 1 was carried out except that 71 g of 2-ethylhexanol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 145 g of oleyl alcohol to obtain 161 g of 2-ethylhexyl oleate. Various physical properties (thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity) of this compound were measured.
〔比較例2〕
 グループII精製鉱油(出光興産(株)製)について各種の物性(熱伝導率、動粘度、粘度指数、密度、体積抵抗率)を測定した。
[Comparative Example 2]
Various physical properties (thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity) of Group II refined mineral oil (manufactured by Idemitsu Kosan Co., Ltd.) were measured.
〔物性測定方法〕
(1)熱伝導率
 デカゴン社製 熱特性計KD2proを用い、シングルニードルセンサーにて室温25℃で測定した。
[Method of measuring physical properties]
(1) Thermal conductivity Using a thermal characteristic meter KD2pro manufactured by Decagon Co., Ltd., it was measured at room temperature of 25 ° C. with a single needle sensor.
(2)体積抵抗率
 JIS C 2101の24(体積抵抗率試験)に準拠し,室温25℃で測定した。
(3)動粘度
 JIS K 2283に規定される「石油製品動粘度試験方法」に準拠して測定した。
(4)粘度指数
 JIS K 2283に規定される「石油製品動粘度試験方法」に準拠して測定した。
(5)密度
 JIS K2249「原油および石油製品-密度試験方法」に準拠して測定した。
(6)主鎖中の末端メチル基、メチレン基、およびエーテル基の総数、および分子中のメチル分岐とエチル分岐の総数
 Agilent Technologies製6850型ガスクロマトグラフと、JEOL製AL-400型NMRで目的物の生成を確認した後、構造式から求めた。
(2) Volume resistivity Measured at room temperature of 25 ° C. according to JIS C 2101 No. 24 (volume resistivity test).
(3) Kinematic viscosity It measured based on the "petroleum product kinematic viscosity test method" prescribed | regulated to JISK2283.
(4) Viscosity index It measured based on the "petroleum product kinematic viscosity test method" prescribed | regulated to JISK2283.
(5) Density The density was measured according to JIS K2249 “Crude oil and petroleum products—Density test method”.
(6) The total number of terminal methyl groups, methylene groups, and ether groups in the main chain, and the total number of methyl branches and ethyl branches in the molecule 6850 type gas chromatograph manufactured by Agilent Technologies and the target product by AL-400 type NMR manufactured by JEOL After confirming the formation of, it was determined from the structural formula.
〔評価結果〕
 表1の結果からわかるように、実施例1から7までに示される本実施形態の基油(化合物)は、所定のエステルあるいはエーテルであって、いずれも主鎖中の末端メチル基、メチレン基およびエーテル基の総数が23以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下であるので、熱伝導性(冷却性)および電気絶縁性の双方に優れる。さらに、動粘度も所定の範囲内であるので潤滑性能にも優れる。それ故、本実施形態の基油を用いた機器冷却油は、電気自動車やハイブリッド車用のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として、さらに変速機等の潤滑も兼ねた兼用油としても好適であることが理解できる。
 一方、比較例1は、実施例3と同じく炭素数8のアルコールとのエステルではあるが、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が少ないので熱伝導性に劣る。また、比較例2は、精製鉱油を用いた場合であるが、多種類の異性体混合物であり、前記した主鎖や分子中の各種パラメータが所定の範囲にないので、熱伝導性に劣る。
〔Evaluation results〕
As can be seen from the results in Table 1, the base oils (compounds) of this embodiment shown in Examples 1 to 7 are predetermined esters or ethers, both of which are terminal methyl groups and methylene groups in the main chain. In addition, since the total number of ether groups is 23 or more and the total number of methyl branches and ethyl branches in the molecule is 1 or less, both thermal conductivity (cooling property) and electrical insulation are excellent. Furthermore, since the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles. It can be understood that it is also suitable.
On the other hand, Comparative Example 1 is an ester with an alcohol having 8 carbon atoms as in Example 3, but is poor in thermal conductivity because the total number of terminal methyl groups, methylene groups and ether groups in the main chain is small. Moreover, although the comparative example 2 is a case where refined mineral oil is used, since it is a mixture of many types of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
 <第2実施形態>
 第1実施形態における基油は、オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を基本成分とした。
 本発明の第2実施形態の機器冷却用基油は、脂肪族モノエステルおよび脂肪族モノエーテルのうち少なくともいずれか1種を基本成分とする。
 また、当該モノエステルおよび当該モノエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数はいずれも18以上であり、当該モノエステル分子および当該モノエーテル分子におけるメチル分岐およびエチル分岐の総数はいずれも2以下である。ここで、主鎖とは分子中で一番長い鎖状構造部分をいう。
 以下に、本発明の第2実施形態を詳細に説明する。
 なお、本実施形態において、前述した第1実施形態と同一の内容については、その説明を省略または簡略化する。
Second Embodiment
The base oil in the first embodiment has at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component.
The equipment cooling base oil according to the second embodiment of the present invention contains at least one of an aliphatic monoester and an aliphatic monoether as a basic component.
The total number of terminal methyl groups, methylene groups and ether groups in the main chain in the monoester and the monoether is 18 or more, and the total number of methyl branches and ethyl branches in the monoester molecule and the monoether molecule. Are both 2 or less. Here, the main chain refers to the longest chain structure in the molecule.
The second embodiment of the present invention will be described in detail below.
In the present embodiment, the description of the same contents as those of the first embodiment described above is omitted or simplified.
 本実施形態では、脂肪族モノエステルおよび脂肪族モノエーテルを基油の主要成分として用いる。また、冷却性向上の観点より、上述のエステルやエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数は18以上である。さらに、上述のエステルやエーテルの分子中のメチル分岐およびエチル分岐の総数は、冷却性向上の観点より2以下である。また、冷却性向上の観点より、上述のエステルやエーテルにおけるメチレン基の数は17以上であることが好ましい。そして、冷却性の観点より、上述のエステルやエーテルは鎖状構造であることが好ましく、分岐を含まない直鎖状構造であることがさらに好ましい。 In this embodiment, an aliphatic monoester and an aliphatic monoether are used as main components of the base oil. Further, from the viewpoint of improving cooling performance, the total number of terminal methyl groups, methylene groups and ether groups in the main chain in the above-mentioned ester or ether is 18 or more. Furthermore, the total number of methyl branches and ethyl branches in the above-described ester or ether molecules is 2 or less from the viewpoint of improving the cooling performance. Further, from the viewpoint of improving cooling performance, the number of methylene groups in the above-mentioned ester or ether is preferably 17 or more. From the viewpoint of cooling properties, the above-described ester or ether is preferably a chain structure, and more preferably a linear structure that does not include a branch.
 このようなエステルは、通常知られたエステル製造法で得ることができ、特に制限はない。例えば、カルボン酸とアルコールとの脱水縮合反応、カルボン酸ハロゲン化物とアルコールとの縮合反応、あるいはエステル交換反応などが挙げられる。例えば、直鎖アルキル鎖が長い原料を用い、分子の一番長い鎖状部分である主鎖中の末端メチル基、メチレン基、エーテル基の総数が18以上、分子中の短いアルキル側鎖(メチル分岐、エチル分岐)の総数が2以下となる様に反応させ合成するのが好ましい。 Such an ester can be obtained by a generally known ester production method, and is not particularly limited. Examples thereof include a dehydration condensation reaction between a carboxylic acid and an alcohol, a condensation reaction between a carboxylic acid halide and an alcohol, or a transesterification reaction. For example, using a raw material with a long linear alkyl chain, the total number of terminal methyl groups, methylene groups, and ether groups in the main chain, which is the longest chain part of the molecule, is 18 or more, and short alkyl side chains (methyl) It is preferable to synthesize by reacting so that the total number of branches and ethyl branches is 2 or less.
 原料のカルボン酸としては、例えば、nヘキサン酸、nヘプタン酸、nオクタン酸、nノナン酸、nデカン酸、nウンデカン酸、nドデカン酸、nトリデカン酸、nテトラデカン酸、オレイン酸、エチルヘキサン酸、ブチルオクタン酸、ペンチルノナン酸、ヘキシルデカン酸、ヘプチルウンデカン酸、オクチルドデカン酸、メチルヘプタデカン酸、安息香酸などのモノカルボン酸が挙げられる。また、エステル製造用原料としては、これらのカルボン酸の誘導体であるカルボン酸エステル、カルボン酸塩化物なども使用できる。 Examples of the raw material carboxylic acid include n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, oleic acid, and ethylhexane. Examples thereof include monocarboxylic acids such as acid, butyloctanoic acid, pentylnonanoic acid, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, and benzoic acid. Moreover, as raw materials for ester production, carboxylic acid esters and carboxylic acid chlorides which are derivatives of these carboxylic acids can also be used.
 原料のアルコールとしては、例えば、nヘキサノール、nヘプタノール、nオクタノール、nノナノール、nデカノール、nウンデカノール、nドデカノール、nトリデカノール、nテトラデカノール、オレイルアルコール、エチルヘキサノール、ブチルオクタノール、ペンチルノナノール、ヘキシルデカノール、ヘプチルウンデカノール、オクチルドデカノール、メチルヘプタデカノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、およびトリエチレングリコールモノブチルエーテルなどのモノオールが挙げられる。
 エステル化触媒としては、前述した実施形態と同様にチタンテトライソプロポキシドなどの触媒を用いてもよいし、無触媒でもよい。
 また、上述のエーテルは、前述した実施形態と同様に通常のウイリアムソンエーテル合成法などの一般的なエーテル製造法で製造すればよく、特に制限はない。
Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Diethylene glycol monopropyl ether, diethylene glycol Monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, and include monools such as triethylene glycol monobutyl ether.
As the esterification catalyst, a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
Moreover, the above-mentioned ether may be produced by a general ether production method such as a usual Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
 本実施形態の基油は、上述のエステルやエーテルを30質量%以上含むが、基油としての含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。上述のエステルやエーテルの含有量が30質量%未満であるような基油を用いると、冷却性能を十分に発揮できないおそれがある。もちろん、機器冷却用基油として本実施形態の基油を単独(100質量%)で用いてもよい。 The base oil of this embodiment contains 30% by mass or more of the above-described ester or ether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more, and 70 The content is more preferably at least mass%, particularly preferably at least 80 mass%. If a base oil having an ester or ether content of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
 本実施形態の基油は、前述した実施形態と同様に40℃動粘度が4mm/s以上、30mm/s以下であり、好ましくは4mm/s以上、20mm/s以下である。40℃動粘度が4mm/s未満であると、例えば、モーターと変速機等との兼用油として用いた場合に潤滑性が不足するおそれがある。一方、40℃動粘度が30mm/sを超えると、冷却性が不足するおそれがあり、また、モーター等の冷却油としての系内循環等に支障をきたすおそれがある。 The base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient. On the other hand, if the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
 本実施形態の基油は、前述した実施形態と同様に25℃における熱伝導率が0.142W/(m・K)以上であることが冷却性の点で好ましく、より好ましくは、0.144W/(m・K)以上である。
 また、本実施形態の基油は、電気絶縁性の観点より25℃における体積抵抗率が1010Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましく、1012Ω・cm以上であることがさらに好ましく、1013Ω・cm以上であることが特に好ましい。
In the base oil of this embodiment, the thermal conductivity at 25 ° C. is preferably 0.142 W / (m · K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M · K) or more.
The base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega · cm or more, more preferably 10 11 Omega · cm or more, 10 12 More preferably, it is Ω · cm or more, and particularly preferably 10 13 Ω · cm or more.
 本実施形態の基油としては、上述のエステルやエーテルに第1実施形態にて説明したものと同じ他の成分(基油)を混合して使用することもできる。 As the base oil of this embodiment, the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
 上述した本実施形態の基油からなる機器冷却油は、前述した実施形態と同様に電気自動車やハイブリッド車等のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適に使用できる。また、基油の40℃粘度も所定の範囲にあるので、潤滑性にも優れており、遊星歯車や変速機等の潤滑も行う兼用油としても好ましい。
 なお、本実施形態の機器冷却油に対しては、本発明の目的を阻害しない範囲で第1実施形態にて説明したものと同じ添加剤を配合することができる。
The equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
In addition, the same additive as what was demonstrated in 1st Embodiment can be mix | blended with the equipment cooling oil of this embodiment in the range which does not inhibit the objective of this invention.
 <第2実施形態の実施例>
 次に、第2実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの例によってなんら限定されるものではない。
 具体的には、表2に示すような各基油を調製して、各種の評価を行った。基油の調製方法は以下の通りである。
 なお、評価については、第1実施形態の実施例における物性測定方法と同様の方法で行った。
<Example of the second embodiment>
Next, the second embodiment will be described in more detail by way of examples. However, the present embodiment is not limited to these examples.
Specifically, each base oil as shown in Table 2 was prepared and subjected to various evaluations. The method for preparing the base oil is as follows.
In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔実施例1〕
 500mLのDean-Stark装置付き四つ口フラスコに16-メチルヘプタデカン酸(高級アルコール工業株式会社製 商品名:イソステアリン酸EX)128gと、1-ドデシルアルコール(東京化成工業株式会社製 試薬)101g、混合キシレン100ml(東京化成工業株式会社製 試薬)、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1gを入れ、窒素気流攪拌下に水を留去しながら140℃で2時間反応させた。その後、飽和食塩水洗浄、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウム(東京化成工業株式会社製 試薬)で乾燥した。硫酸マグネシウムを濾過した後、過剰の原料アルコールを留去して、16-メチルヘプタデカン酸nドデシル182gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。結果を表2に示す。以下の各実施例、各比較例についても同様に結果を表2に示す。
[Example 1]
In a 500 mL four-necked flask equipped with a Dean-Stark apparatus, 128 g of 16-methylheptadecanoic acid (trade name: isostearic acid EX manufactured by Higher Alcohol Industry Co., Ltd.) and 101 g of 1-dodecyl alcohol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 100 ml of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) are added, and the reaction is carried out at 140 ° C. for 2 hours while distilling off water while stirring with a nitrogen stream. I let you. Thereafter, washing with a saturated saline solution and washing with a 0.1 N aqueous sodium hydroxide solution were performed three times each, followed by drying over anhydrous magnesium sulfate (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.). After filtering the magnesium sulfate, excess raw material alcohol was distilled off to obtain 182 g of n-dodecyl 16-methylheptadecanoate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured. The results are shown in Table 2. The results are similarly shown in Table 2 for the following examples and comparative examples.
〔実施例2〕
 16-メチルヘプタデカン酸128gの代わりに2-ヘプチルウンデカン酸(東京化成工業株式会社製 試薬)128gを用いた以外は実施例1と同様に行って、2-ヘプチルウンデカン酸nドデシル180gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Example 2]
180 g of 2-heptylundecanoic acid n-dodecyl was obtained in the same manner as in Example 1 except that 128 g of 2-heptylundecanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 128 g of 16-methylheptadecanoic acid. . Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例3〕
 1-ドデシルアルコール101gの代わりに16-メチルヘプタデシルアルコール(高級アルコール工業株式会社製 商品名:イソステアリルアルコールEX)134gを用いた以外は実施例1と同様に行って、16-メチルヘプタデカン酸16-メチルヘプタデシル206gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 3
16-methylheptadecanoic acid was prepared in the same manner as in Example 1 except that 134 g of 16-methylheptadecyl alcohol (trade name: Isostearyl Alcohol EX manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of 101 g of 1-dodecyl alcohol. 206 g of 16-methylheptadecyl was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例4〕
 16-メチルヘプタデカン酸128gと、1-ドデシルアルコール101gの代わりにnデカン酸(東京化成工業株式会社製 試薬)78gと、1-デシルアルコール(東京化成工業株式会社製 試薬)86gを用いた以外は実施例1と同様に行って、nデカン酸nデシル132gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 4
Other than using 128 g of 16-methylheptadecanoic acid, 78 g of n-decanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 86 g of 1-decyl alcohol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) Was carried out in the same manner as in Example 1 to obtain 132 g of n-decyl n-decanoate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例5〕
 16-メチルヘプタデカン酸128gと、1-ドデシルアルコール101gの代わりにnオクタン酸(東京化成工業株式会社製 試薬)72gと、2-オクチルドデカノール(新日本理化株式会社 商品名:エヌジェコール200A)119gを用いた以外は実施例1と同様に行って、nオクタン酸2-オクチルドデシル132gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 5
128 g of 16-methylheptadecanoic acid, 72 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 119 g of 2-octyldodecanol (New Nippon Rika Co., Ltd., trade name: NJECOAL 200A) Except that was used, the same procedure as in Example 1 was performed to obtain 132 g of 2-octyldodecyl n-octanoate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例6〕
 2Lガラス製フラスコに、2-オクチルドデカノール(新日本理化株式会社 商品名:エヌジェコール200A)300g、1-ブロモオクタン(東京化成工業株式会社製 試薬)300g、テトラブチルアンモニウムブロマイド(東京化成工業株式会社製 試薬)30g、水酸化ナトリウム水溶液500g(水酸化ナトリウム150gを水350gに溶解したもの)を入れ、50℃で20時間攪拌し反応させた。反応終了後、反応混合物を分液ロートに移し、有機相を水500mLで5回洗浄した後、有機相を蒸留して2-オクチルドデシルnオクチルエーテル266gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 6
To a 2 L glass flask, 300 g of 2-octyldodecanol (Shin Nippon Chemical Co., Ltd., trade name: NJECOAL 200A), 300 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), tetrabutylammonium bromide (Tokyo Chemical Industry Co., Ltd.) (Reagent) 30 g and sodium hydroxide aqueous solution 500 g (150 g of sodium hydroxide dissolved in 350 g of water) were added and stirred at 50 ° C. for 20 hours for reaction. After completion of the reaction, the reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 500 mL of water, and then the organic phase was distilled to obtain 266 g of 2-octyldodecyl n octyl ether. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例7〕
 16-メチルヘプタデカン酸128gと、1-ドデシルアルコール101gの代わりにnオクタン酸(東京化成工業株式会社製 試薬)144gと、トリエチレングリコールモノブチルエーテル(東京化成工業株式会社製 試薬)165gを用いた以外は実施例1と同様に行って、トリエチレングリコールモノブチルエーテルのnオクタン酸エステル188gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 7
128 g of 16-methylheptadecanoic acid, 144 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 165 g of triethylene glycol monobutyl ether (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 101 g of 1-dodecyl alcohol. Was performed in the same manner as in Example 1 to obtain 188 g of n-octanoic acid ester of triethylene glycol monobutyl ether. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例1〕
 16-メチルヘプタデカン酸128gと、1-ドデシルアルコール101gの代わりに3,5,5-トリメチルヘキサン酸(東京化成工業株式会社製 試薬)79gと、2-オクチルドデカノール(新日本理化株式会社 商品名:エヌジェコール200A)119gを用いた以外は実施例1と同様に行って、3,5,5-トリメチルヘキサン酸2-オクチルドデシル139gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 1]
128 g of 16-methylheptadecanoic acid, 79 g of 3,5,5-trimethylhexanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 2-octyldodecanol (Shin Nippon Rika Co., Ltd.) Name: Engecol 200A) 139 g of 2-octyldodecyl 3,5,5-trimethylhexanoate was obtained in the same manner as in Example 1 except that 119 g was used. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例2〕
 16-メチルヘプタデカン酸128gと、1-ドデシルアルコール101gの代わりに2,2,4,8,10,10-ヘキサメチル-5-ウンデカン酸(東京化成工業株式会社製 試薬)114gと、3,5,5-トリメチルヘキサノール(東京化成工業株式会社製 試薬)72gを用いた以外は実施例1と同様に行って、2,2,4,8,10,10-ヘキサメチル-5-ウンデカン酸3,5,5-トリメチルヘキシル148gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 2]
128 g of 16-methylheptadecanoic acid, 114 g of 2,2,4,8,10,10-hexamethyl-5-undecanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 101 g of 1-dodecyl alcohol, and 3,5 2,2,4,8,10,10-hexamethyl-5-undecanoic acid 3,5, except that 72 g of 1,5-trimethylhexanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used. , 148 g of 5-trimethylhexyl was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例3〕
 1-デカノール(東京化成工業株式会社製 試薬)について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 3]
Various properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of 1-decanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例4〕
 グループII精製鉱油(出光興産(株)製)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 4]
Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of Group II refined mineral oil (Idemitsu Kosan Co., Ltd.) were measured.
〔評価結果〕
 表2の結果からわかるように、実施例1から7までに示される本実施形態の基油(化合物)は、いずれも主鎖中の末端メチル基,メチレン基およびエーテル基の総数が18以上であり、分子中のメチル分岐およびエチル分岐の総数が2以下であるので、熱伝導性(冷却性)および電気絶縁性の双方に優れる。さらに、動粘度も所定の範囲内であるので潤滑性能にも優れる。それ故、本実施形態の基油を用いた機器冷却油は、電気自動車やハイブリッド車用のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として、さらに変速機等の潤滑も兼ねた兼用油としても好適であることが理解できる。
 一方、比較例1は、実施例5と同じ2-オクチルドデカノールのエステルであるが、メチル分岐が多いため熱伝導性に劣る。比較例2のエステルは、メチル分岐が非常に多いため、熱伝導性が極端に劣る。比較例3は、アルコールなので熱伝導性はよいが、電気絶縁性に劣る。比較例4は、精製鉱油を用いた場合であるが、多種類の異性体混合物であり、前記した主鎖や分子中の各種パラメータが所定の範囲にないので、熱伝導性に劣る。
〔Evaluation results〕
As can be seen from the results in Table 2, the base oils (compounds) of this embodiment shown in Examples 1 to 7 all have a total number of terminal methyl groups, methylene groups and ether groups in the main chain of 18 or more. In addition, since the total number of methyl branches and ethyl branches in the molecule is 2 or less, both thermal conductivity (cooling property) and electrical insulation are excellent. Furthermore, since the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles. It can be understood that it is also suitable.
On the other hand, Comparative Example 1 is the same ester of 2-octyldodecanol as Example 5, but is inferior in thermal conductivity because of many methyl branches. Since the ester of Comparative Example 2 has very many methyl branches, the thermal conductivity is extremely poor. Since Comparative Example 3 is an alcohol, its thermal conductivity is good, but its electrical insulation is poor. Although the comparative example 4 is a case where refined mineral oil is used, since it is a mixture of many kinds of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
 <第3実施形態>
 第1実施形態における基油は、オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を基本成分とし、第2実施形態における基油は、脂肪族モノエステルおよび脂肪族モノエーテルのうち少なくともいずれか1種を基本成分とした。
 本発明の第3実施形態の機器冷却用基油は、脂肪族二価カルボン酸ジエステル、脂肪族二価アルコールジエステルおよび脂肪族二価アルコールのジエーテルのうち少なくともいずれか1種を基本成分とする。
 また、前記脂肪族ジエステルおよび脂肪族ジエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が20以上であり、前記脂肪族ジエステルおよび脂肪族ジエーテルにおけるメチル分岐およびエチル分岐の総数が2以下である。ここで、主鎖とは分子中で一番長い鎖状構造部分をいう。
 以下に、本発明の第3実施形態を詳細に説明する。
 なお、本実施形態において、前述した第1実施形態および第2実施形態と同一の内容については、その説明を省略または簡略化する。
<Third Embodiment>
The base oil in the first embodiment includes at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component, and the base oil in the second embodiment includes an aliphatic monoester and a fat. At least one of the group monoethers was used as a basic component.
The base oil for equipment cooling according to the third embodiment of the present invention contains at least one of aliphatic dihydric carboxylic acid diester, aliphatic dihydric alcohol diester, and aliphatic dihydric alcohol diether as a basic component.
The total number of terminal methyl groups, methylene groups and ether groups in the main chain in the aliphatic diester and aliphatic diether is 20 or more, and the total number of methyl branches and ethyl branches in the aliphatic diester and aliphatic diether is 2 It is as follows. Here, the main chain refers to the longest chain structure in the molecule.
The third embodiment of the present invention will be described in detail below.
In the present embodiment, the description of the same contents as those of the first embodiment and the second embodiment described above will be omitted or simplified.
 本実施形態では、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が20以上であり、分子中のメチル分岐およびエチル分岐の総数が2以下である脂肪族ジエステルおよび脂肪族ジエーテルのうち少なくともいずれか1種を、基油の主要成分として用いる。また、冷却性向上の観点より、上述のジエステルやジエーテルにおけるメチレン基の数は18以上であることが好ましく、19以上であることがより好ましい。
 さらに、上述のジエステルやジエーテルは、基油としての冷却性能向上の観点より直鎖状であることが好ましい。
In this embodiment, the total number of terminal methyl groups, methylene groups and ether groups in the main chain is 20 or more, and the total number of methyl branches and ethyl branches in the molecule is 2 or less. At least one of them is used as the main component of the base oil. Further, from the viewpoint of improving the cooling performance, the number of methylene groups in the above-mentioned diester or diether is preferably 18 or more, and more preferably 19 or more.
Furthermore, the above-mentioned diesters and diethers are preferably linear from the viewpoint of improving the cooling performance as a base oil.
 このような脂肪族ジエステルは、通常知られたエステル製造法で得ることができ、特に制限はない。例えば、二価カルボン酸とアルコールとの脱水縮合反応あるいは二価アルコールとカルボン酸との脱水縮合反応、二価カルボン酸二ハロゲン化物とアルコールとの縮合反応あるいは二価アルコールとカルボン酸ハロゲン化物との縮合反応、あるいはエステル交換反応などが挙げられる。例えば、直鎖アルキル鎖が長い原料を用い、分子の一番長い鎖状部分である主鎖中の末端メチル基、メチレン基、エーテル基の総数が20以上、分子中の短いアルキル側鎖(メチル分岐、エチル分岐)の総数が2以下となる様に反応させ合成するのが好ましい。 Such an aliphatic diester can be obtained by a generally known ester production method, and is not particularly limited. For example, a dehydration condensation reaction between a divalent carboxylic acid and an alcohol, a dehydration condensation reaction between a dihydric alcohol and a carboxylic acid, a condensation reaction between a divalent carboxylic acid dihalide and an alcohol, or a dihydric alcohol and a carboxylic acid halide. A condensation reaction, a transesterification reaction, etc. are mentioned. For example, using a raw material with a long linear alkyl chain, the total number of terminal methyl groups, methylene groups and ether groups in the main chain, which is the longest chain part of the molecule, is 20 or more, and short alkyl side chains (methyl) It is preferable to synthesize by reacting so that the total number of branches and ethyl branches is 2 or less.
 原料のカルボン酸としては、例えば、アジピン酸、アゼライン酸、セバシン酸、1,10-デカメチレンジカルボン酸などのジカルボン酸、nブタン酸、nペンタン酸、nヘキサン酸、nヘプタン酸、nオクタン酸、nノナン酸、nデカン酸、nウンデカン酸、nドデカン酸、nトリデカン酸、nテトラデカン酸、エチルヘキサン酸、ブチルオクタン酸などのモノカルボン酸が挙げられる。また、エステル製造用原料としては、これらのカルボン酸の誘導体であるカルボン酸エステル、カルボン酸塩化物なども使用できる。 Examples of the carboxylic acid as a raw material include dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and 1,10-decamethylene dicarboxylic acid, n-butanoic acid, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, and n-octanoic acid. , N-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, ethylhexanoic acid, butyloctanoic acid and the like. Moreover, as raw materials for ester production, carboxylic acid esters and carboxylic acid chlorides which are derivatives of these carboxylic acids can also be used.
 原料のアルコールとしては、例えば、nヘキサノール、nヘプタノール、nオクタノール、nノナノール、nデカノール、nウンデカノール、nドデカノール、nトリデカノール、nテトラデカノール、オレイルアルコール、エチルヘキサノール、ブチルオクタノール、ペンチルノナノール、ヘキシルデカノール、ヘプチルウンデカノール、オクチルドデカノール、およびメチルヘプタデカノールなどのモノオール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、およびポリテトラメチレングリコールなどのジオールが挙げられる。
 エステル化触媒としては、前述した実施形態と同様にチタンテトライソプロポキシドなどの触媒を用いてもよいし、無触媒でもよい。
 また、上述のジエーテルは、前述した実施形態と同様に通常のウイリアムソンエーテル合成法などの一般的なエーテル製造法で製造すればよく、特に制限はない。
Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Monols such as hexyl decanol, heptyl undecanol, octyl dodecanol, and methyl heptadecanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane Examples include diols such as diol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, and polytetramethylene glycol.
As the esterification catalyst, a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
Further, the above-mentioned diether may be produced by a general ether production method such as an ordinary Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
 本実施形態の基油は、上述のジエステルやジエーテルを30質量%以上含むが、基油としての含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。上述のジエステルやジエーテルの含有量が30質量%未満であるような基油を用いると、冷却性能を十分に発揮できないおそれがある。もちろん、機器冷却用基油として本実施形態の基油を単独(100質量%)で用いてもよい。 The base oil of the present embodiment contains 30% by mass or more of the above-mentioned diester or diether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more, and 70 The content is more preferably at least mass%, particularly preferably at least 80 mass%. If a base oil having a content of the above diester or diether of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
 本実施形態の基油は、前述した実施形態と同様に40℃動粘度が4mm/s以上、30mm/s以下であり、好ましくは4mm/s以上、20mm/s以下である。40℃動粘度が4mm/s未満であると、例えば、モーターと変速機等との兼用油として用いた場合に潤滑性が不足するおそれがある。一方、40℃動粘度が30mm/sを超えると、冷却性が不足するおそれがあり、また、モーター等の冷却油としての系内循環等に支障をきたすおそれがある。 The base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient. On the other hand, if the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
 本実施形態の基油は、前述した実施形態と同様に25℃における熱伝導率が0.142W/(m・K)以上であることが冷却性の点で好ましく、より好ましくは、0.144W/(m・K)以上である。
 また、本実施形態の基油は、電気絶縁性の観点より25℃における体積抵抗率が1010Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましく、1012Ω・cm以上であることがさらに好ましい。
In the base oil of this embodiment, the thermal conductivity at 25 ° C. is preferably 0.142 W / (m · K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M · K) or more.
The base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega · cm or more, more preferably 10 11 Omega · cm or more, 10 12 More preferably, it is Ω · cm or more.
 本実施形態の基油としては、上述のエステルやエーテルに第1実施形態にて説明したものと同じ他の成分(基油)を混合して使用することもできる。 As the base oil of this embodiment, the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
 上述した本実施形態の基油からなる機器冷却油は、前述した実施形態と同様に電気自動車やハイブリッド車等のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適に使用できる。また、基油の40℃粘度も所定の範囲にあるので、潤滑性にも優れており、遊星歯車や変速機等の潤滑も行う兼用油としても好ましい。
 なお、本実施形態の機器冷却油に対しては、本発明の目的を阻害しない範囲で第1実施形態にて説明したものと同じ添加剤を配合することができる。
The equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
In addition, the same additive as what was demonstrated in 1st Embodiment can be mix | blended with the equipment cooling oil of this embodiment in the range which does not inhibit the objective of this invention.
 <第3実施形態の実施例>
 次に、第3実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの例によってなんら限定されるものではない。
 具体的には、表3に示すような各基油を調製して、各種の評価を行った。基油の調製方法は以下の通りである。
 なお、評価については、第1実施形態の実施例における物性測定方法と同様の方法で行った。
<Example of the third embodiment>
Next, the third embodiment will be described in more detail by way of examples. However, the present embodiment is not limited to these examples.
Specifically, various base oils as shown in Table 3 were prepared and subjected to various evaluations. The method for preparing the base oil is as follows.
In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔実施例1〕
 500mLのDean-Stark装置付き四つ口フラスコにアゼライン酸(東京化成工業株式会社製 試薬)94g,1-オクタノール(東京化成工業株式会社製 試薬)156g、混合キシレン100mL(東京化成工業株式会社製 試薬)、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1gを入れ、窒素気流攪拌下に水を留去しながら140℃で2時間反応させた。その後、飽和食塩水洗浄、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウム(東京化成工業株式会社製 試薬)で乾燥した。硫酸マグネシウムを濾過した後、過剰の原料アルコールを留去してアゼライン酸ジnオクチル188gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。結果を表3に示す。以下の各実施例、各比較例についても同様に結果を表3に示す。
[Example 1]
In a 500 mL four-necked flask equipped with a Dean-Stark apparatus, 94 g of azelaic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 156 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 mL of mixed xylene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) ), 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was reacted at 140 ° C. for 2 hours while distilling off water under stirring with a nitrogen stream. Thereafter, washing with a saturated saline solution and washing with a 0.1 N aqueous sodium hydroxide solution were performed three times each, followed by drying over anhydrous magnesium sulfate (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.). After filtering the magnesium sulfate, excess raw material alcohol was distilled off to obtain 188 g of di-n-octyl azelate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured. The results are shown in Table 3. The results are also shown in Table 3 for the following examples and comparative examples.
〔実施例2〕
 アゼライン酸94g、1-オクタノール156gの代わりにアゼライン酸75g、1-オクタノール(東京化成工業株式会社製 試薬)53gと2-エチルヘキサノール(東京化成工業株式会社製 試薬)65gを用いた以外は実施例1と同様に行って、アゼライン酸ジnオクチル30質量%、アゼライン酸nオクチル2-エチルヘキシル45質量%、およびアゼライン酸ジ2-エチルヘキシル25質量%からなる混合物145gを得た。この混合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Example 2]
Example except that 94 g of azelaic acid and 75 g of azelaic acid, 53 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 65 g of 2-ethylhexanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. In the same manner as in Example 1, 145 g of a mixture composed of 30% by mass of di-n-octyl azelate, 45% by mass of n-octyl 2-ethylhexyl azelate, and 25% by mass of di-2-ethylhexyl azelate was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this mixture were measured.
〔実施例3〕
 ドデカン二酸ジ2-エチルヘキシル(東京化成工業株式会社製 試薬)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 3
Various properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of dodecanedioic acid di-2-ethylhexyl (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔実施例4〕
 アゼライン酸94g、1-オクタノール156gの代わりにセバシン酸81g、1-オクタノール(東京化成工業株式会社製 試薬)53gと2-エチルヘキサノール(東京化成工業株式会社製 試薬)65gを用いた以外は実施例1と同様に行って、セバシン酸ジnオクチル32質量%、セバシン酸nオクチル2-エチルヘキシル46質量%、およびセバシン酸ジ2-エチルヘキシル22質量%の混合物147gを得た。この混合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 4
Example except that 94 g of azelaic acid and 81 g of sebacic acid, 53 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 65 g of 2-ethylhexanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. In the same manner as in Example 1, 147 g of a mixture of 32% by mass of di-n-octyl sebacate, 46% by mass of n-octyl 2-ethylhexyl sebacate and 22% by mass of di-ethylhexyl sebacate was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this mixture were measured.
〔実施例5〕
 1Lのガラス製フラスコに、1,4-ブタンジオール(東京化成工業株式会社製 試薬)27g、1-ブロモオクタン(東京化成工業株式会社製 試薬)174g、テトラブチルアンモニウムブロマイド(東京化成工業株式会社製 試薬)10g、水酸化ナトリウム水溶液200g(水酸化ナトリウム60gを水140gに溶解したもの)を入れ、70℃で20時間攪拌し反応させた。反応終了後、反応混合物を分液ロートに移し、有機相を水300mLで5回洗浄した後、過剰の1-ブロモオクタンを留去してビスnオクチル 1,4-ブタンジエーテル76gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 5
In a 1 L glass flask, 27 g of 1,4-butanediol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 174 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) (Reagent) 10 g and 200 g of aqueous sodium hydroxide solution (60 g of sodium hydroxide dissolved in 140 g of water) were added and stirred at 70 ° C. for 20 hours for reaction. After completion of the reaction, the reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then excess 1-bromooctane was distilled off to obtain 76 g of bis-n-octyl 1,4-butanediether. . Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例6〕
 アゼライン酸94g、1-オクタノール156gの代わりに2-エチルヘキサン酸(東京化成工業株式会社製 試薬)130g、ポリテトラヒドロフラン250(シグマ-アルドリッチ社製 試薬)75gを用いた以外は実施例1と同様に行って、ポリテトラヒドロフラン250の2-エチルヘキサン酸ジエステル126gを得た。このエステルについて各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 6
Example 1 except that 94 g of azelaic acid and 130 g of 2-ethylhexanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 75 g of polytetrahydrofuran 250 (a reagent manufactured by Sigma-Aldrich) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. And 126 g of 2-ethylhexanoic acid diester of polytetrahydrofuran 250 was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this ester were measured.
〔実施例7〕
 アゼライン酸94g、1-オクタノール156gの代わりにnオクタン酸(東京化成工業株式会社製 試薬)180g、トリエチレングリコール(東京化成工業株式会社製 試薬)75gを用いた以外は実施例1と同様に行って、トリエチレングリコールのnオクタン酸ジエステル163gを得た。このエステルについて各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 7
The same procedure as in Example 1 was conducted, except that 94 g of azelaic acid and 180 g of n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 75 g of triethylene glycol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of azelaic acid and 156 g of 1-octanol. As a result, 163 g of n-octanoic acid diester of triethylene glycol was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this ester were measured.
〔比較例1〕
 アゼライン酸ジ2-エチルヘキシル(東京化成工業株式会社製 試薬)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 1]
Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of azelaic acid di-2-ethylhexyl (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例2〕
 アゼライン酸94g、1-オクタノール156gの代わりにnオクタン酸(東京化成工業株式会社製 試薬)173gと、ネオペンチルグリコール(東京化成工業株式会社製 試薬)52gを用いた以外は実施例1と同様に行って、ネオペンチルグリコールnオクタン酸ジエステル160gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 2]
In the same manner as in Example 1 except that 94 g of azelaic acid and 173 g of n-octanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 52 g of neopentyl glycol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 94 g of 1-octanol. To obtain 160 g of neopentyl glycol n-octanoic acid diester. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例3〕
 アゼライン酸94g、1-オクタノール156gの代わりに2-エチルヘキサン酸(東京化成工業株式会社製 試薬)165gと、ネオペンチルグリコール(東京化成工業株式会社製 試薬)52gを用いた以外は実施例1と同様に行って、ネオペンチルグリコール2-エチルヘキサン酸ジエステル160gを得た。この化合物について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 3]
Example 1 except that 94 g of azelaic acid and 165 g of 2-ethylhexanoic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 52 g of neopentyl glycol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 156 g of azelaic acid In the same manner, 160 g of neopentyl glycol 2-ethylhexanoic acid diester was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例4〕
 グループII精製鉱油(出光興産(株)製)について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 4]
Various properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of group II refined mineral oil (manufactured by Idemitsu Kosan Co., Ltd.) were measured.
〔評価結果〕
 表3の結果からわかるように、実施例1から7までに示される本実施形態の基油(化合物)は、所定のエステルあるいはエーテルであって、いずれも主鎖中の末端メチル基、メチレン基およびエーテル基の総数が20以上であり、分子中のメチル分岐およびエチル分岐の総数が2以下であるので、熱伝導性(冷却性)および電気絶縁性の双方に優れる。さらに、動粘度も所定の範囲内であるので潤滑性能にも優れる。それ故、本実施形態の基油を用いた機器冷却油は、電気自動車やハイブリッド車用のモーター、バッテリー、インバーター、エンジンおよび電池等の部材冷却用として、さらに変速機等の潤滑も兼ねた兼用油としても好適であることが理解できる。
 一方、比較例1、2のエステルは、主鎖が短く、メチレン基の数が少ないため熱伝導性に劣る。また、比較例3のエステルは、主鎖が短く、メチレン基の数が少ないだけでなく、メチル分岐、エチル分岐が多いため熱伝導性に非常に劣る。比較例4は、精製鉱油を用いた場合であるが、多種類の異性体混合物であり、前記した主鎖や分子中の各種パラメータが所定の範囲にないので、熱伝導性に劣る。
〔Evaluation results〕
As can be seen from the results in Table 3, the base oil (compound) of the present embodiment shown in Examples 1 to 7 is a predetermined ester or ether, both of which are terminal methyl groups and methylene groups in the main chain. In addition, since the total number of ether groups is 20 or more and the total number of methyl branches and ethyl branches in the molecule is 2 or less, both thermal conductivity (cooling property) and electrical insulation are excellent. Furthermore, since the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the equipment cooling oil using the base oil of the present embodiment is also used for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles, and also for lubrication of transmissions, etc. It can be understood that the oil is also suitable.
On the other hand, the esters of Comparative Examples 1 and 2 are inferior in thermal conductivity because the main chain is short and the number of methylene groups is small. In addition, the ester of Comparative Example 3 has a short main chain and a small number of methylene groups, and is very inferior in thermal conductivity because of many methyl branches and ethyl branches. Although the comparative example 4 is a case where refined mineral oil is used, since it is a mixture of many kinds of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
 <第4実施形態>
 第1実施形態における基油は、オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を基本成分とし、第2実施形態における基油は、脂肪族モノエステルおよび脂肪族モノエーテルのうち少なくともいずれか1種を基本成分とし、第3実施形態のおける基油は、脂肪族二価カルボン酸ジエステル、脂肪族二価アルコールジエステルおよび脂肪族二価アルコールのジエーテルのうち少なくともいずれか1種を基本成分とした。
 本発明の第4実施形態の機器冷却用基油は、脂肪族トリエステル、脂肪族トリエーテル、脂肪族トリ(エーテルエステル)、脂肪族テトラエステル、脂肪族テトラエーテル、脂肪族テトラ(エーテルエステル)、芳香族ジエステル、芳香族ジエーテル、および芳香族ジ(エーテルエステル)のうち少なくともいずれか1種を基油の主成分とする。
 また、上述の各エステル分子、各エーテル分子、各エーテルエステル分子における主鎖中の末端メチル基、メチレン基およびエーテル基の総数は18以上であり、さらに上述の各エステル分子および各エーテル分子におけるメチル分岐およびエチル分岐の総数は1以下である。ここで、主鎖とは芳香環を経由してもよい分子中で一番長い鎖状構造部分をいう。また、脂肪族トリ(エーテルエステル)とは、エーテル基とエステル基を合計3つ有する化合物をいい、脂肪族テトラ(エーテルエステル)とは、エーテル基とエステル基を合計4つ有する化合物をいい、芳香族ジ(エーテルエステル)とは,エーテル基とエステル基を合計2つ有する化合物をいう。
 以下に、本発明の第4実施形態を詳細に説明する。
 なお、本実施形態において、前述した第1実施形態ないし第3実施形態と同一の内容については、その説明を省略または簡略化する。
<Fourth embodiment>
The base oil in the first embodiment includes at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether as a basic component, and the base oil in the second embodiment includes an aliphatic monoester and a fat. The base oil according to the third embodiment includes at least one of the aliphatic monoethers as a basic component, and the base oil in the third embodiment is at least one of aliphatic dihydric carboxylic acid diesters, aliphatic dihydric alcohol diesters, and aliphatic dihydric alcohol diethers. Any one of them was used as a basic component.
The equipment cooling base oil according to the fourth embodiment of the present invention includes an aliphatic triester, an aliphatic triether, an aliphatic tri (ether ester), an aliphatic tetraester, an aliphatic tetraether, and an aliphatic tetra (ether ester). At least one of aromatic diester, aromatic diether, and aromatic di (ether ester) is used as the main component of the base oil.
In addition, the total number of terminal methyl groups, methylene groups and ether groups in the main chain in each of the above ester molecules, each ether molecule, and each ether ester molecule is 18 or more, and methyl in each of the above ester molecules and each ether molecule. The total number of branches and ethyl branches is 1 or less. Here, the main chain refers to the longest chain structure portion in a molecule that may pass through an aromatic ring. In addition, aliphatic tri (ether ester) refers to a compound having a total of three ether groups and ester groups, and aliphatic tetra (ether ester) refers to a compound having a total of four ether groups and ester groups, Aromatic di (ether ester) refers to a compound having a total of two ether groups and ester groups.
The fourth embodiment of the present invention will be described in detail below.
In the present embodiment, the description of the same contents as those of the first to third embodiments described above is omitted or simplified.
 第1実施形態にて説明したように、液体分子による熱伝導性を向上させるため、および分子間の衝突頻度を増やすには、長い鎖状構造を有するエステルやエーテルが有利である。また芳香族環は非常に剛直で分子振動エネルギーをあまり拡散させないので、長い鎖状構造が芳香族環を介して繋がっていても熱伝導率をあまり低下させない。それ故、本実施形態では、芳香族化合物の場合、芳香族環を介する最も長い鎖状構造を主鎖とする。 As described in the first embodiment, esters and ethers having a long chain structure are advantageous in order to improve thermal conductivity by liquid molecules and to increase the collision frequency between molecules. In addition, since the aromatic ring is very rigid and does not diffuse molecular vibration energy so much, even if long chain structures are connected via the aromatic ring, the thermal conductivity is not lowered so much. Therefore, in this embodiment, in the case of an aromatic compound, the longest chain structure via an aromatic ring is the main chain.
 そこで、本実施形態では、脂肪族トリエステル、脂肪族トリエーテル、脂肪族トリ(エーテルエステル)、脂肪族テトラエステル、脂肪族テトラエーテル、脂肪族テトラ(エーテルエステル)、芳香族ジエステル、芳香族ジエーテル、および芳香族ジ(エーテルエステル)のうち少なくともいずれか1種の化合物を基油の主要成分として用いる。また、冷却性向上の観点より、上述の各エステル、各エーテルおよび各エーテルエステルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数は18以上である。さらに、上述の各エステル、各エーテルおよび各エーテルエステルの分子中のメチル分岐およびエチル分岐の総数は、冷却性向上の観点より1以下である。また、冷却性向上の観点より、上述のメチル分岐およびエチル分岐をいずれも有さないことが好ましい。 Therefore, in this embodiment, aliphatic triester, aliphatic triether, aliphatic tri (ether ester), aliphatic tetraester, aliphatic tetraether, aliphatic tetra (ether ester), aromatic diester, aromatic diether And at least any one compound of aromatic di (ether ester) is used as the main component of the base oil. Further, from the viewpoint of improving the cooling performance, the total number of terminal methyl groups, methylene groups and ether groups in the main chain in each of the above-mentioned esters, ethers and ether esters is 18 or more. Further, the total number of methyl branches and ethyl branches in the molecule of each ester, each ether and each ether ester is 1 or less from the viewpoint of improving the cooling performance. Moreover, it is preferable that neither the above-mentioned methyl branch and ethyl branch have from a viewpoint of a cooling improvement.
 このようなエステルは、通常知られたエステル製造法で得ることができ、特に制限はない。例えば、カルボン酸とアルコールとの脱水縮合反応、カルボン酸ハロゲン化物とアルコールとの縮合反応、あるいはエステル交換反応などが挙げられる。例えば、直鎖アルキル鎖が長い原料を用い、分子の一番長い鎖状部分である主鎖中の末端メチル基、メチレン基、エーテル基の総数が18以上、分子中の短いアルキル側鎖(メチル分岐、エチル分岐)の総数が1以下となる様に反応させ合成してもよい。 Such an ester can be obtained by a generally known ester production method, and is not particularly limited. Examples thereof include a dehydration condensation reaction between a carboxylic acid and an alcohol, a condensation reaction between a carboxylic acid halide and an alcohol, or a transesterification reaction. For example, using a raw material with a long linear alkyl chain, the total number of terminal methyl groups, methylene groups, and ether groups in the main chain, which is the longest chain part of the molecule, is 18 or more, and short alkyl side chains (methyl) It may be synthesized by reacting so that the total number of branches and ethyl branches is 1 or less.
 原料のカルボン酸としては、脂肪族カルボン酸や芳香族カルボン酸が挙げられる。例えば、nヘキサン酸、nヘプタン酸、nオクタン酸、nノナン酸、nデカン酸、nウンデカン酸、nドデカン酸、nトリデカン酸、nテトラデカン酸、オレイン酸、エチルヘキサン酸、ブチルオクタン酸、ペンチルノナン酸、ヘキシルデカン酸、ヘプチルウンデカン酸、オクチルドデカン酸、メチルヘプタデカン酸、サリチル酸、4-ヒドロキシ安息香酸、安息香酸、フェニル酢酸などのモノカルボン酸や、フタル酸,イソフタル酸,テレフタル酸などのジカルボン酸などが挙げられる。また、エステル製造用原料としては、これらのカルボン酸の誘導体であるカルボン酸エステル、カルボン酸塩化物なども使用できる。 Examples of the raw material carboxylic acid include aliphatic carboxylic acids and aromatic carboxylic acids. For example, n hexanoic acid, n heptanoic acid, n octanoic acid, n nonanoic acid, n decanoic acid, n undecanoic acid, n dodecanoic acid, n tridecanoic acid, n tetradecanoic acid, oleic acid, ethyl hexanoic acid, butyl octanoic acid, pentyl nonane Acids, hexyldecanoic acid, heptylundecanoic acid, octyldodecanoic acid, methylheptadecanoic acid, salicylic acid, 4-hydroxybenzoic acid, benzoic acid, phenylacetic acid and other monocarboxylic acids and phthalic acid, isophthalic acid, terephthalic acid and other dicarboxylic acids Etc. Moreover, as raw materials for ester production, carboxylic acid esters and carboxylic acid chlorides which are derivatives of these carboxylic acids can also be used.
 原料のアルコールとしては、例えば、nヘキサノール、nヘプタノール、nオクタノール、nノナノール、nデカノール、nウンデカノール、nドデカノール、nトリデカノール、nテトラデカノール、オレイルアルコール、エチルヘキサノール、ブチルオクタノール、ペンチルノナノール、ヘキシルデカノール、ヘプチルウンデカノール、オクチルドデカノール、メチルヘプタデカノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、およびトリエチレングリコールモノブチルエーテルなどのモノオールやトリメチロールプロパン、トリメチロールエタンのようなトリオール、ペンタエリスリトールのようなテトラオールが挙げられる。
 エステル化触媒としては、前述した実施形態と同様にチタンテトライソプロポキシドなどの触媒を用いてもよいし、無触媒でもよい。
 また、上述のエーテルは、前述した実施形態と同様に通常のウイリアムソンエーテル合成法などの一般的なエーテル製造法で製造すればよく、特に制限はない。
Examples of the starting alcohol include n hexanol, n heptanol, n octanol, n nonanol, n decanol, n undecanol, n dodecanol, n tridecanol, n tetradecanol, oleyl alcohol, ethyl hexanol, butyl octanol, pentyl nonanol, Hexyl decanol, heptyl undecanol, octyl dodecanol, methyl heptadecanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether Ether, diethylene glycol monobutyl ether Monools such as triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, and triethylene glycol monobutyl ether, triols such as trimethylolpropane and trimethylolethane, tetraols such as pentaerythritol Is mentioned.
As the esterification catalyst, a catalyst such as titanium tetraisopropoxide may be used as in the above-described embodiment, or no catalyst may be used.
Moreover, the above-mentioned ether may be produced by a general ether production method such as a usual Williamson ether synthesis method as in the above-described embodiment, and there is no particular limitation.
 本実施形態の基油は、上述のエステルやエーテルを30質量%以上含むが、基油としての含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。上述のエステルやエーテルの含有量が30質量%未満であるような基油を用いると、冷却性能を十分に発揮できないおそれがある。もちろん、機器冷却用基油として本実施形態の基油を単独(100質量%)で用いてもよい。 The base oil of the present embodiment contains 30% by mass or more of the above-mentioned ester or ether, but the content as the base oil is preferably 50% by mass or more, more preferably 60% by mass or more. % Or more is more preferable, and 80% by mass or more is particularly preferable. If a base oil having an ester or ether content of less than 30% by mass is used, the cooling performance may not be sufficiently exhibited. Of course, you may use the base oil of this embodiment independently (100 mass%) as a base oil for apparatus cooling.
 本実施形態の基油は、前述した実施形態と同様に40℃動粘度が4mm/s以上、30mm/s以下であり、好ましくは4mm/s以上、20mm/s以下である。40℃動粘度が4mm/s未満であると、例えば、モーターと変速機等との兼用油として用いた場合に潤滑性が不足するおそれがある。一方、40℃動粘度が30mm/sを超えると、冷却性が不足するおそれがあり、また、モーター等の冷却油としての系内循環等に支障をきたすおそれがある。 The base oil of this embodiment has a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less, as in the embodiment described above. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient. On the other hand, if the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
 本実施形態の基油は、前述した実施形態と同様に25℃における熱伝導率が0.142W/(m・K)以上であることが冷却性の点で好ましく、より好ましくは、0.144W/(m・K)以上である。
 また、本実施形態の基油は、電気絶縁性の観点より25℃における体積抵抗率が1010Ω・cm以上であることが好ましく、1011Ω・cm以上であることがより好ましく、1012Ω・cm以上であることがさらに好ましく、1013Ω・cm以上であることが特に好ましい。
In the base oil of this embodiment, the thermal conductivity at 25 ° C. is preferably 0.142 W / (m · K) or more in the same manner as in the above-described embodiment, and more preferably 0.144 W. / (M · K) or more.
The base oil of the present embodiment is preferably a volume resistivity at 25 ° C. from the viewpoint of electrical insulation is 10 10 Omega · cm or more, more preferably 10 11 Omega · cm or more, 10 12 More preferably, it is Ω · cm or more, and particularly preferably 10 13 Ω · cm or more.
 本実施形態の基油としては、上述のエステルやエーテルに第1実施形態にて説明したものと同じ他の成分(基油)を混合して使用することもできる。 As the base oil of this embodiment, the same other components (base oils) as described in the first embodiment can be mixed and used in the above-described ester or ether.
 上述した本実施形態の基油からなる機器冷却油は、前述した実施形態と同様に電気自動車やハイブリッド車等のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適に使用できる。また、基油の40℃粘度も所定の範囲にあるので、潤滑性にも優れており、遊星歯車や変速機等の潤滑も行う兼用油としても好ましい。
 なお、本実施形態の機器冷却油に対しては、本発明の目的を阻害しない範囲で第1実施形態にて説明したものと同じ添加剤を配合することができる。
The equipment cooling oil composed of the base oil of the present embodiment described above can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles as in the above-described embodiments. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
In addition, the same additive as what was demonstrated in 1st Embodiment can be mix | blended with the equipment cooling oil of this embodiment in the range which does not inhibit the objective of this invention.
 <第4実施形態の実施例>
 次に、第4実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの例によってなんら限定されるものではない。
 具体的には、表4に示すような各基油を調製して、各種の評価を行った。基油の調製方法は以下の通りである。
 なお、評価については、第1実施形態の実施例における物性測定方法と同様の方法で行った。
<Example of the fourth embodiment>
Next, the fourth embodiment will be described in more detail by way of examples. However, the present embodiment is not limited to these examples.
Specifically, various base oils as shown in Table 4 were prepared and subjected to various evaluations. The method for preparing the base oil is as follows.
In addition, about evaluation, it performed by the method similar to the physical-property measuring method in the Example of 1st Embodiment.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔実施例1〕
 500MLのDean-Stark装置付き四つ口フラスコにnオクタン酸(東京化成工業株式会社製 試薬)173gと、ペンタエリスリトール(東京化成工業株式会社製 試薬)34g、混合キシレン100ml(東京化成工業株式会社製 試薬)、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1gを入れ、窒素気流攪拌下に水を留去しながら140℃で2時間反応させた。その後、飽和食塩水洗浄、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウム(東京化成工業株式会社製 試薬)で乾燥した。硫酸マグネシウムを濾過した後、過剰の原料アルコールを留去して、ペンタエリスリトールテトラnオクタン酸エステル148gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。結果を表4に示す。以下の各実施例、各比較例についても同様に結果を表4に示す。
[Example 1]
In a four-necked flask equipped with a 500 ML Dean-Stark apparatus, 173 g of n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 34 g of pentaerythritol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 100 ml of mixed xylene (manufactured by Tokyo Chemical Industry Co., Ltd.) Reagent) and 0.1 g of titanium tetraisopropoxide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were added and reacted at 140 ° C. for 2 hours while distilling off water while stirring under a nitrogen stream. Thereafter, washing with a saturated saline solution and washing with a 0.1 N aqueous sodium hydroxide solution were performed three times each, followed by drying over anhydrous magnesium sulfate (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.). After filtering the magnesium sulfate, excess raw material alcohol was distilled off to obtain 148 g of pentaerythritol tetra-n-octanoic acid ester. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured. The results are shown in Table 4. The results are also shown in Table 4 for the following examples and comparative examples.
〔実施例2〕
 nオクタン酸173gと,ペンタエリスリトール34gの代わりにnオクタン酸159gと、トリメチロールプロパン(東京化成工業株式会社製 試薬)40gを用いた以外は実施例1と同様に行って、トリメチロールプロパントリnオクタン酸エステル139gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Example 2]
Trimethylolpropane tri-n was prepared in the same manner as in Example 1 except that 173 g of n-octanoic acid, 159 g of n-octanoic acid instead of 34 g of pentaerythritol, and 40 g of trimethylolpropane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used. 139 g of octanoic acid ester was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例3〕
 nオクタン酸173gと、ペンタエリスリトール34gの代わりに無水フタル酸(東京化成工業株式会社製 試薬)44gと、1-ドデカノール(東京化成工業株式会社製 試薬)149gを用いた以外は実施例1と同様に行って、フタル酸ジnドデシル137gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 3
Example 1 except that 173 g of n-octanoic acid, 44 g of phthalic anhydride (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 149 g of 1-dodecanol (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 34 g of pentaerythritol To obtain 137 g of di-n-decyl phthalate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例4〕
 nオクタン酸173gと、ペンタエリスリトール34gの代わりにイソフタル酸(東京化成工業株式会社製 試薬)50gと、1-オクタノール(東京化成工業株式会社製 試薬)104gを用いた事以外は実施例1と同様に行って、イソフタル酸ジnオクチル107gを得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 4
Example 1 except that 173 g of n-octanoic acid and 50 g of isophthalic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and 104 g of 1-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 34 g of pentaerythritol. To obtain 107 g of di-n-octyl isophthalate. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔実施例5〕
 1Lのガラス製フラスコに、トリメチロールプロパン(東京化成工業株式会社製 試薬)34g、1-ブロモオクタン(東京化成工業株式会社製 試薬)217g、テトラブチルアンモニウムブロマイド(東京化成工業株式会社製 試薬)10g、水酸化ナトリウム水溶液200g(水酸化ナトリウム60gを水140gに溶解したもの)を入れ、70℃で20時間攪拌し反応させた。反応終了後、反応混合物を分液ロートに移し、有機相を水300mLで5回洗浄した後、過剰の1-ブロモオクタンを留去した反応混合物とnオクタン酸(東京化成工業株式会社製 試薬)50g、混合キシレン100ml(東京化成工業株式会社製 試薬)、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1gを500MLのDean-Stark装置付き四つ口フラスコに入れ、窒素気流攪拌下に水を留去しながら140℃で2時間反応させ,トリメチロールプロパンの未反応アルコール部分をエステル化した。飽和食塩水洗浄後、過剰のnオクタン酸を留去して、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウム(東京化成工業株式会社製 試薬)で乾燥した。硫酸マグネシウムを濾過した後、溶媒を留去して、トリメチロールプロパンのnオクチルトリエーテル24%,トリメチロールプロパンのnオクチルジエーテルnオクタン酸モノエステル58%,トリメチロールプロパンのnオクチルモノエーテルnオクタン酸ジエステル18%の混合物を102g得た。この化合物について、各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
Example 5
In a 1 L glass flask, 34 g of trimethylolpropane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 217 g of 1-bromooctane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 10 g of tetrabutylammonium bromide (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 200 g of an aqueous sodium hydroxide solution (60 g of sodium hydroxide dissolved in 140 g of water) was added, and the mixture was stirred at 70 ° C. for 20 hours for reaction. After completion of the reaction, the reaction mixture was transferred to a separatory funnel, and the organic phase was washed 5 times with 300 mL of water, and then excess 1-bromooctane was distilled off and n-octanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 50 g, 100 ml of mixed xylene (reagent made by Tokyo Chemical Industry Co., Ltd.), 0.1 g of titanium tetraisopropoxide (reagent made by Tokyo Chemical Industry Co., Ltd.) are put into a 500 mL four-necked flask equipped with a Dean-Stark device, and stirred with a nitrogen stream. The reaction was carried out at 140 ° C. for 2 hours while distilling off water to esterify the unreacted alcohol portion of trimethylolpropane. After washing with a saturated saline solution, excess n-octanoic acid was distilled off, and a 0.1 N aqueous sodium hydroxide solution was washed three times, followed by drying over anhydrous magnesium sulfate (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.). After filtering the magnesium sulfate, the solvent was distilled off to obtain 24% of n-octyl triether of trimethylolpropane, n-octyl diether of trimethylolpropane, 58% of octanoic acid monoester, n-octyl monoether of trimethylolpropane. 102 g of a mixture of 18% octanoic acid diester was obtained. Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of this compound were measured.
〔比較例1〕
 トリメチロールプロパン2-エチルヘキサン酸トリエステル(東京化成工業株式会社製 試薬)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 1]
Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of trimethylolpropane 2-ethylhexanoic acid triester (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例2〕
 フタル酸ジ2-エチルヘキシル(東京化成工業株式会社製 試薬)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 2]
Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of di-2-ethylhexyl phthalate (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例3〕
 グループII精製鉱油(出光興産(株)製)について各種の物性(熱伝導率、体積抵抗率、動粘度、粘度指数、密度)を測定した。
[Comparative Example 3]
Various physical properties (thermal conductivity, volume resistivity, kinematic viscosity, viscosity index, density) of Group II refined mineral oil (manufactured by Idemitsu Kosan Co., Ltd.) were measured.
〔評価結果〕
 表4の結果からわかるように、実施例1から5までに示される本実施形態の基油(化合物)は、いずれも主鎖中の末端メチル基およびメチレン基の総数が18以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下であるので、熱伝導性(冷却性)および電気絶縁性の双方に優れる。さらに、動粘度も所定の範囲内であるので潤滑性能にも優れる。それ故、本実施形態の基油を用いた機器冷却油は、電気自動車やハイブリッド車用のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として、さらに変速機等の潤滑も兼ねた兼用油としても好適であることが理解できる。
 一方、比較例1は、実施例2と同じトリメチロールプロパンのトリエステルであるが、主鎖が短くエチル分岐が多いので熱伝導性に劣る。比較例2は、実施例3と同じフタル酸エステルであるが、主鎖が短くエチル分岐が多いので熱伝導性に劣る。比較例3は、精製鉱油を用いた場合であるが、多種類の異性体混合物であり、前記した主鎖や分子中の各種パラメータが所定の範囲にないので、熱伝導性に劣る。
〔Evaluation results〕
As can be seen from the results in Table 4, all of the base oils (compounds) of the present embodiment shown in Examples 1 to 5 have a total number of terminal methyl groups and methylene groups in the main chain of 18 or more. Since the total number of methyl branches and ethyl branches is 1 or less, both thermal conductivity (coolability) and electrical insulation are excellent. Furthermore, since the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the equipment cooling oil using the base oil of this embodiment is a combined oil that also serves as a lubricant for transmissions and the like for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles. It can be understood that it is also suitable.
On the other hand, Comparative Example 1 is the same trimethylolpropane triester as in Example 2. However, since the main chain is short and there are many ethyl branches, the thermal conductivity is poor. Comparative Example 2 is the same phthalic acid ester as Example 3, but is inferior in thermal conductivity because the main chain is short and there are many ethyl branches. Although the comparative example 3 is a case where refined mineral oil is used, since it is a mixture of many types of isomers and the above-mentioned main chain and various parameters in the molecule are not within a predetermined range, it is inferior in thermal conductivity.
 本発明は、機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法に利用できる。 The present invention can be used for equipment cooling base oil, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil.

Claims (13)

  1.  オレイルエステル(オレイン酸エステル、オレイルアルコールエステル)およびオレイルエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、
     前記オレイルエステルおよび前記オレイルエーテルは、主鎖中の末端メチル基、メチレン基およびエーテル基の総数が23以上であり、
     前記オレイルエステルおよび前記オレイルエーテルにおけるメチル分岐およびエチル分岐の総数が1以下であり、
     該基油の40℃動粘度が4mm/s以上、30mm/s以下である
     ことを特徴とする機器冷却用基油。
    A base oil for equipment cooling containing 30% by mass or more of at least one of oleyl ester (oleic acid ester, oleyl alcohol ester) and oleyl ether,
    The oleyl ester and the oleyl ether have a total number of terminal methyl groups, methylene groups and ether groups in the main chain of 23 or more,
    The total number of methyl and ethyl branches in the oleyl ester and the oleyl ether is 1 or less,
    The base oil for equipment cooling, wherein the base oil has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less.
  2.  請求項1に記載の機器冷却用基油において、
     前記オレイルエステルおよび前記オレイルエーテルを50質量%以上含有する
     ことを特徴とする機器冷却用基油。
    In the base oil for equipment cooling according to claim 1,
    A base oil for equipment cooling, comprising 50% by mass or more of the oleyl ester and the oleyl ether.
  3.  脂肪族モノエステルおよび脂肪族モノエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、
     前記脂肪族モノエステルおよび前記脂肪族モノエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が18以上であり、
     前記脂肪族モノエステルおよび前記脂肪族モノエーテルにおけるメチル分岐およびエチル分岐の総数が2以下であり、
     該基油の40℃動粘度が4mm/s以上、30mm/s以下である
     ことを特徴とする機器冷却用基油。
    A base oil for equipment cooling containing 30% by mass or more of at least one of an aliphatic monoester and an aliphatic monoether,
    The total number of terminal methyl groups, methylene groups and ether groups in the main chain of the aliphatic monoester and the aliphatic monoether is 18 or more;
    The total number of methyl and ethyl branches in the aliphatic monoester and the aliphatic monoether is 2 or less;
    The base oil for equipment cooling, wherein the base oil has a kinematic viscosity at 40 ° C. of 4 mm 2 / s to 30 mm 2 / s.
  4.  請求項3に記載の機器冷却用基油において、
     前記脂肪族モノエステルおよび前記脂肪族モノエーテルのうち少なくともいずれかが鎖状構造である
     ことを特徴とする機器冷却用基油。
    In the equipment cooling base oil according to claim 3,
    A base oil for equipment cooling, wherein at least one of the aliphatic monoester and the aliphatic monoether has a chain structure.
  5.  脂肪族ジエステルおよび脂肪族ジエーテルのうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、
     前記脂肪族ジエステルおよび前記脂肪族ジエーテルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が20以上であり、
     前記脂肪族ジエステルおよび前記脂肪族ジエーテルにおけるメチル分岐およびエチル分岐の総数が2以下であり、
     該基油の40℃動粘度が4mm/s以上、30mm/s以下である
     ことを特徴とする機器冷却用基油。
    A base oil for equipment cooling containing 30% by mass or more of at least one of an aliphatic diester and an aliphatic diether,
    The total number of terminal methyl groups, methylene groups and ether groups in the main chain of the aliphatic diester and the aliphatic diether is 20 or more;
    The total number of methyl and ethyl branches in the aliphatic diester and the aliphatic diether is 2 or less;
    The base oil for equipment cooling, wherein the base oil has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less.
  6.  脂肪族トリエステル、脂肪族トリエーテル、脂肪族トリ(エーテルエステル)、脂肪族テトラエステル、脂肪族テトラエーテル、脂肪族テトラ(エーテルエステル)、芳香族ジエステル、芳香族ジエーテル、および芳香族ジ(エーテルエステル)のうち少なくともいずれか1種を30質量%以上含有する機器冷却用基油であって、
     前記各エステル、前記各エーテル、および前記各エーテルエステルにおける主鎖中の末端メチル基、メチレン基およびエーテル基の総数が18以上であり、 前記各エステル、前記各エーテルおよび前記各エーテルエステルにおけるメチル分岐およびエチル分岐の総数が1以下であり、
     該基油の40℃動粘度が4mm/s以上、30mm/s以下である
     ことを特徴とする機器冷却用基油。
    Aliphatic triester, aliphatic triether, aliphatic tri (ether ester), aliphatic tetraester, aliphatic tetraether, aliphatic tetra (ether ester), aromatic diester, aromatic diether, and aromatic di (ether) A base oil for equipment cooling containing 30% by mass or more of at least one of ester),
    The total number of terminal methyl groups, methylene groups, and ether groups in the main chain of each ester, each ether, and each ether ester is 18 or more, and methyl branching in each ester, each ether, and each ether ester And the total number of ethyl branches is 1 or less,
    The base oil for equipment cooling, wherein the base oil has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less.
  7.  請求項1から請求項6までのいずれか1項に記載の機器冷却用基油において、
     25℃における熱伝導率が0.142W/(m・K)以上である
     ことを特徴とする機器冷却用基油。
    In the base oil for apparatus cooling of any one of Claim 1- Claim 6,
    A base oil for equipment cooling having a thermal conductivity at 25 ° C of 0.142 W / (m · K) or more.
  8.  請求項1から請求項7までのいずれか1項に記載の機器冷却用基油において、
     25℃における体積抵抗率が1010Ω・cm以上である
     ことを特徴とする機器冷却用基油。
    In the base oil for apparatus cooling of any one of Claim 1- Claim 7,
    The volume resistivity at 25 ° C. is 10 10 Ω · cm or more.
  9.  請求項1から請求項8までのいずれか1項に記載の機器冷却用基油からなる
     ことを特徴とする機器冷却油。
    It consists of base oil for apparatus cooling of any one of Claim 1- Claim 8. The apparatus cooling oil characterized by the above-mentioned.
  10.  請求項9に記載の機器冷却油により冷却される
     ことを特徴とする機器。
    The apparatus is cooled by the apparatus cooling oil according to claim 9.
  11.  請求項10に記載の機器が電気自動車用またはハイブリッド車用である
     ことを特徴とする機器。
    The device according to claim 10 is for an electric vehicle or a hybrid vehicle.
  12.  請求項10または請求項11に記載の機器がモーター、バッテリー、インバーター、エンジンおよび電池の少なくともいずれかである
     ことを特徴とする機器。
    The device according to claim 10 or 11, wherein the device is at least one of a motor, a battery, an inverter, an engine, and a battery.
  13.  請求項9に記載の機器冷却油を用いる
     ことを特徴とする機器冷却方法。
    The equipment cooling oil according to claim 9 is used. The equipment cooling method characterized by things.
PCT/JP2010/071817 2009-12-28 2010-12-06 Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil WO2011080991A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10840849.3A EP2520637A4 (en) 2009-12-28 2010-12-06 Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
CN2010800604586A CN102695782A (en) 2009-12-28 2010-12-06 Base oil for cooling machine, machine cooling oil obtained by mixing the base oil, machine cooled by the cooling oil, and method for cooling machine using the cooling oil
US13/519,792 US20120283162A1 (en) 2009-12-28 2010-12-06 Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2009-297782 2009-12-28
JP2009-297781 2009-12-28
JP2009297782 2009-12-28
JP2009297781 2009-12-28
JP2010-001131 2010-01-06
JP2010001131 2010-01-06
JP2010002499 2010-01-08
JP2010003132 2010-01-08
JP2010-002499 2010-01-08
JP2010-003132 2010-02-10
JP2010149689 2010-06-30
JP2010-149689 2010-06-30
JP2010-180476 2010-08-11
JP2010180475A JP2012031359A (en) 2009-12-28 2010-08-11 Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2010-180474 2010-08-11
JP2010-180477 2010-08-11
JP2010180476A JP2011157541A (en) 2010-01-08 2010-08-11 Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2010180477A JP2011157542A (en) 2010-01-06 2010-08-11 Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2010180474A JP2011157540A (en) 2009-12-28 2010-08-11 Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2010-180475 2010-08-11

Publications (1)

Publication Number Publication Date
WO2011080991A1 true WO2011080991A1 (en) 2011-07-07

Family

ID=46860639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071817 WO2011080991A1 (en) 2009-12-28 2010-12-06 Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil

Country Status (4)

Country Link
EP (1) EP2520637A4 (en)
KR (1) KR20120112666A (en)
CN (1) CN102695782A (en)
WO (1) WO2011080991A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070785A (en) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 Coolant composition and cooling system
JP2021529238A (en) * 2018-07-02 2021-10-28 トタル マーケティング セルヴィス Composition for cooling and lubricating the propulsion system of electric vehicles or hybrid vehicles
CN113736552A (en) * 2021-09-22 2021-12-03 东莞市金龙珠宝首饰有限公司 Noble metal cooling liquid

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828078B (en) * 2015-11-24 2020-04-17 丰田自动车株式会社 Cooling device for vehicle
EP3315590A1 (en) 2016-10-27 2018-05-02 Total Marketing Services Use of hydrocarbon fluids in electric vehicles
FR3058156B1 (en) * 2016-10-27 2022-09-16 Total Marketing Services COMPOSITION FOR ELECTRIC VEHICLE
FR3072685B1 (en) 2017-10-20 2020-11-06 Total Marketing Services COMPOSITION FOR COOLING AND LUBRICATING A MOTORIZATION SYSTEM OF A VEHICLE
WO2020132078A1 (en) * 2018-12-20 2020-06-25 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions with increasing flash point
FR3093729A1 (en) * 2019-03-13 2020-09-18 Total Marketing Services Use of an ester in a cooling composition
US11085006B2 (en) * 2019-07-12 2021-08-10 Afton Chemical Corporation Lubricants for electric and hybrid vehicle applications
WO2021063759A1 (en) * 2019-09-30 2021-04-08 Basf Se Use of lubricants with carboxylic acid esters in electric vehicles
JPWO2022019333A1 (en) * 2020-07-22 2022-01-27
EP4321592A1 (en) 2022-08-08 2024-02-14 OQ Chemicals GmbH Efficient and environmentally friendly coolant for direct cooling of electric accumulators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259980A (en) * 1995-03-17 1996-10-08 Tonen Corp Lubricant composition
JP2002206094A (en) * 2000-11-08 2002-07-26 Idemitsu Kosan Co Ltd Lubricant composition, and bearing using the same
WO2002097017A1 (en) 2001-05-28 2002-12-05 Nissan Motor Co., Ltd. Transmission oil composition for automobile
JP2005344017A (en) * 2004-06-03 2005-12-15 Idemitsu Kosan Co Ltd Lubricant base oil and lubricant composition
JP2008280381A (en) * 2007-05-08 2008-11-20 Idemitsu Kosan Co Ltd Lubricant base oil for internal combustion engine and lubricating oil composition for internal combustion engine
JP2009161604A (en) 2007-12-28 2009-07-23 Nippon Oil Corp Automotive transmission oil composition
JP2009242547A (en) 2008-03-31 2009-10-22 Nippon Oil Corp Automotive transmission oil composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB786950A (en) * 1951-06-25 1957-11-27 Shell Res Ltd Improvements in and relating to lubricating compositions containing polyoxy alkyleneliquids
US4975621A (en) * 1989-06-26 1990-12-04 Union Carbide Corporation Coated article with improved thermal emissivity
DE3929069A1 (en) * 1989-09-01 1991-03-07 Henkel Kgaa NEW BASE OIL FOR THE LUBRICANT INDUSTRY
JP4028982B2 (en) * 2001-12-27 2008-01-09 新日鐵化学株式会社 Fluid bearing unit and lubricating oil composition for bearing
JP4520764B2 (en) * 2004-03-30 2010-08-11 新日本石油株式会社 Refrigerating machine oil composition for packaged air conditioners
JP4688446B2 (en) * 2004-07-30 2011-05-25 日本グリース株式会社 Lithium grease composition for encapsulating small motor bearings
JP5202830B2 (en) * 2006-09-13 2013-06-05 Jx日鉱日石エネルギー株式会社 Lubricating oil for fluid bearing, fluid bearing using the same, and lubrication method for fluid bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259980A (en) * 1995-03-17 1996-10-08 Tonen Corp Lubricant composition
JP2002206094A (en) * 2000-11-08 2002-07-26 Idemitsu Kosan Co Ltd Lubricant composition, and bearing using the same
WO2002097017A1 (en) 2001-05-28 2002-12-05 Nissan Motor Co., Ltd. Transmission oil composition for automobile
JP2005344017A (en) * 2004-06-03 2005-12-15 Idemitsu Kosan Co Ltd Lubricant base oil and lubricant composition
JP2008280381A (en) * 2007-05-08 2008-11-20 Idemitsu Kosan Co Ltd Lubricant base oil for internal combustion engine and lubricating oil composition for internal combustion engine
JP2009161604A (en) 2007-12-28 2009-07-23 Nippon Oil Corp Automotive transmission oil composition
JP2009242547A (en) 2008-03-31 2009-10-22 Nippon Oil Corp Automotive transmission oil composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520637A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529238A (en) * 2018-07-02 2021-10-28 トタル マーケティング セルヴィス Composition for cooling and lubricating the propulsion system of electric vehicles or hybrid vehicles
JP2021070785A (en) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 Coolant composition and cooling system
US11447678B2 (en) 2019-11-01 2022-09-20 Toyota Jidosha Kabushiki Kaisha Coolant composition and cooling system
JP7207264B2 (en) 2019-11-01 2023-01-18 トヨタ自動車株式会社 Coolant composition and cooling system
CN113736552A (en) * 2021-09-22 2021-12-03 东莞市金龙珠宝首饰有限公司 Noble metal cooling liquid

Also Published As

Publication number Publication date
CN102695782A (en) 2012-09-26
EP2520637A4 (en) 2013-10-30
KR20120112666A (en) 2012-10-11
EP2520637A1 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
WO2011080991A1 (en) Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
US20120283162A1 (en) Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
WO2011077839A1 (en) Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2012031359A (en) Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP4466850B2 (en) Bearing lubricant
JP5647389B2 (en) Transmission oil composition for automobiles
JP5827782B2 (en) Biodegradable lubricating oil composition
JP5819384B2 (en) Transmission oil composition for automobiles
JP5465921B2 (en) Biodegradable lubricating oil composition
EP3013925A1 (en) Lubricating compositions containing isoprene based components
KR20170002628A (en) Lubricating oils
WO2019155739A1 (en) Lubricating oil additive composition and lubricating oil composition
JP2011157540A (en) Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2011157542A (en) Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
JP2012017391A (en) Cooling oil and cooling method
JP5613395B2 (en) Electric motor oil composition
CA3030539C (en) Lubricant compositions comprising molybdenum compounds
CN111836876A (en) Lubricating oil composition, method for producing lubricating oil composition, and continuously variable transmission
JP2011157541A (en) Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil
US20230265353A1 (en) Lubricating oil composition
JP5695229B2 (en) Biodegradable lubricating oil composition
CN114174480B (en) Lubricating oil additive and lubricating oil composition containing same
JP7242635B2 (en) Lubricating base oil, lubricating oil composition containing the lubricating base oil, and continuously variable transmission using the lubricating oil composition
KR20230169990A (en) Base oil compositions, formulations and uses
JP2023044638A (en) lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6172/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010840849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019908

Country of ref document: KR

Kind code of ref document: A