WO2011079655A1 - 实现多点联合传输的方法、终端及系统 - Google Patents

实现多点联合传输的方法、终端及系统 Download PDF

Info

Publication number
WO2011079655A1
WO2011079655A1 PCT/CN2010/078713 CN2010078713W WO2011079655A1 WO 2011079655 A1 WO2011079655 A1 WO 2011079655A1 CN 2010078713 W CN2010078713 W CN 2010078713W WO 2011079655 A1 WO2011079655 A1 WO 2011079655A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cooperative
channel
cells
current serving
Prior art date
Application number
PCT/CN2010/078713
Other languages
English (en)
French (fr)
Inventor
孙国林
叶枫
高秀娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BRPI1014145A priority Critical patent/BRPI1014145A2/pt
Priority to EP10840444.3A priority patent/EP2437451B1/en
Publication of WO2011079655A1 publication Critical patent/WO2011079655A1/zh
Priority to US13/338,358 priority patent/US8599810B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, terminal and system for implementing multipoint joint transmission.
  • CoMP Coordinated Multi-point Process
  • signals transmitted by different base stations may have a certain phase difference when they arrive at the UE, and the UE can only maintain time-frequency synchronization with the current serving base station; it is difficult to synchronize with all cooperative base stations. Therefore, when the UE side combines the received signals, there is often phase noise.
  • the embodiments of the present invention provide a method, a terminal, and a system for implementing multi-point joint transmission, to solve the problem of phase noise in a signal received by a UE in a coordinated multi-point transmission scenario.
  • a method for implementing multipoint joint transmission comprising:
  • the other cooperative cell is a cell other than the current serving cell among all the cooperative cells; the channel cross-covariance matrix between the current serving cell and the other cooperative cell is the channel of the current serving cell and other cooperative cells.
  • the covariance between the coefficients is a cell other than the current serving cell among all the cooperative cells; the channel cross-covariance matrix between the current serving cell and the other cooperative cell is the channel of the current serving cell and other cooperative cells. The covariance between the coefficients.
  • a user terminal comprising:
  • phase calculation unit configured to obtain a phase difference between the other cooperative cell and the current serving cell by calculating a channel mutual variance matrix between the current serving cell and another cooperative cell;
  • a feedback unit configured to feed back the respectively corresponding phase differences to the base stations of the other cooperative cells to perform phase compensation
  • a receiving unit configured to receive a signal that is sent by a base station of the cooperative cell after phase compensation; wherein the other cooperative cell is a cell other than the current serving cell among all the cooperative cells; and the current serving cell is the same as the other cooperative cell
  • the inter-channel cross-covariance matrix is the covariance between the channel coefficients of the current serving cell and other cooperating cells.
  • a system for implementing multi-point joint transmission comprising a user terminal and at least two base stations, and the at least two base stations belong to at least two cooperative cells in a multi-point joint transmission mode;
  • the at least two base stations are configured to send a pilot signal to the outside;
  • the user terminal is configured to detect pilot signals respectively corresponding to the at least two base stations, and calculate a channel between a current serving cell in the coordinated multi-point transmission system and other cooperative cells in the at least two cooperative cells And obtaining a phase difference between the other cooperative cell and the current serving cell by using a cross-covariance matrix, and feeding the phase difference to the at least two base stations for phase compensation;
  • the at least two base stations are further configured to perform phase compensation on the signal according to the phase difference fed back by the user terminal, and send the phase compensated signal to the at least user terminal.
  • the method, the terminal and the system for implementing multi-point joint transmission provided by the embodiments of the present invention conveniently acquire other cooperative cells and the current serving cell by establishing a cross-covariance matrix between other cooperative cells and channel coefficients of the current serving cell.
  • the phase difference between the two, and the phase difference is fed back to the corresponding cell base station by means of limited feedback, so that the phase compensation of the signal is performed at the transmitting end, thereby effectively eliminating phase noise caused by the phase difference between the plurality of cooperative cells.
  • the effect on the transmission and reception synchronization improves the demodulation performance of the user terminal signal.
  • Embodiment 1 is a flowchart of a method provided in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a user terminal according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method provided in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram 1 of a user terminal according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram 2 of a user terminal according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a system provided in Embodiment 4 of the present invention. Detailed ways
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method for implementing multi-point joint transmission includes the following steps: 101. Obtain a phase difference between the other cooperative cell and a current serving cell by calculating a channel cross-covariance matrix between a current serving cell and another cooperative cell in the multi-point joint transmission system.
  • the other cooperative cell is a cell other than the current serving cell among all the cooperative cells in the multipoint joint transmission mode.
  • a phase reference cell is determined first.
  • the current serving cell in the multipoint joint transmission mode is used as the phase reference cell.
  • the cross-covariance matrix between different cooperative cells may be constructed by using a channel coefficient Hf between different cooperative cells and the current user terminal, and the other cooperative cell and the current serving cell are determined by the cross-covariance matrix. The phase difference between them.
  • PMI Preferred Matrix Index
  • the execution subject of each step may be a certain user terminal in the multipoint joint transmission system.
  • a user terminal for implementing multi-point joint transmission is further provided in this embodiment. As shown in FIG. 2, the method includes:
  • the phase calculation unit 21 is configured to obtain a phase difference between the other cooperative cell and the current serving cell by calculating a channel cross-covariance matrix between the current serving cell and the other cooperative cell in the multi-point joint transmission system;
  • the feedback unit 22 is configured to feed back the respectively corresponding phase differences to the base stations of the other cooperative cells for phase compensation;
  • a receiving unit 23 configured to receive a signal sent by a base station of all cooperative cells after phase compensation
  • the other cooperative cell is a cell other than the current serving cell among all the cooperative cells; the channel cross-covariance matrix between the current serving cell and the other cooperative cell is the channel of the current serving cell and other cooperative cells.
  • the covariance between the coefficients is a cell other than the current serving cell among all the cooperative cells; the channel cross-covariance matrix between the current serving cell and the other cooperative cell is the channel of the current serving cell and other cooperative cells. The covariance between the coefficients.
  • the method for implementing multi-point joint transmission and the user terminal provided by the embodiment of the present invention conveniently acquire the cross-covariance matrix between the other cooperative cells and the channel coefficients of the current serving cell, so as to conveniently obtain the other cooperative cells and the current serving cell.
  • the effect of the transmission and reception synchronization improves the demodulation performance of the user terminal signal.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the antenna configuration of each cell is 4 rounds and 2 rounds, and the UE initiates a CoMP joint transmission mode by using multi-cell wireless scenario analysis; wherein, the original signal sent by the cell to the UE side is st, and the same cell
  • the time domain of the channel coefficients between the UEs is represented as /?), and its corresponding frequency domain is represented as H(); where h(t) or H(f) can be obtained by channel estimation.
  • the method for implementing multi-point joint transmission specifically includes the following steps: 301.
  • a plurality of cooperative cells participating in CoMP joint transmission periodically send pilot signals outward.
  • the UE After detecting and receiving the pilot signals sent by the multiple cooperative cells, the UE obtains a channel coefficient (/) between the UE and the multiple cooperative cells by using channel estimation.
  • the channel cross-covariance matrix between the current serving cell and the certain cooperative cell is:
  • cross-covariance matrix can be continuously updated by means of moving average:
  • N d is the window size of the time-division fast Fourier transform of the UE;
  • the fixed weighting value; k represents the k-time, weighted average of the sum of R XY (K) at time k and the current N d channel cross-covariance matrix, which can be obtained (k + l)
  • the UE feeds back the corresponding phase differences to the base stations of the other cooperative cells to perform phase compensation.
  • Each cooperative cell performs phase compensation according to the phase difference information received by the cooperative cells, and then all the cooperative cells send signals to the same UE in a coordinated manner.
  • the UE After receiving the signals sent by the multiple cooperative cells, the UE selects one of the cells as a reference cell, and uses the kth path of the reference cell to reach the UE as a reference path, and the time relative to the current serving cell. The delay is used as the reference delay, and the delay of the multiple paths of the other cooperative cells reaching the UE relative to the reference delay (ie, relative to the current serving cell) is calculated.
  • a weighting value of the signal that is transmitted by the UE at the UE end may be calculated by using Equation 3:
  • T CP 0 T CP +T U ⁇ T (5)
  • is the width of an OFDM (Orthogonal Frequency Division Multiplexing) symbol, which does not include a Cyclic Preamble (CP); and T CP is the length of the cyclic prefix CP.
  • the weight weight calculated according to the delay difference corresponding to each cooperative cell is the other received in the window of the FFT (Fast Fourier Transform) calculation when the UE is divided into sets.
  • the effective proportion of the path (including all cooperative cell signals).
  • the case (1) indicates that the path arrives at the UE before the reference path, the immediate delay is less than 0, and the difference exceeds one OFDM symbol width; the case (2) indicates that the path arrives at the UE before the reference path.
  • case (3) indicates that the path lags behind the reference path to the UE, and the immediate delay is greater than 0, but the difference does not exceed the CP length; case (4) indicates that the path lags behind the reference path. UE, and the difference exceeds the CP length, but less than the entire symbol width (including CP); Case (5) indicates that the path falls behind the reference path to the UE, and the delay difference exceeds the entire symbol width (including CP).
  • the multi-path signal received by the UE is subjected to diversity combining and the energy is
  • N is the number of cooperative cells, and the number of multipaths for each cell signal arriving at the UE (assuming that each multipath signal arrives at the same multipath number of the UE), ⁇ modifier, / is the time when the cell/path arrives at the UE The delay is the time-domain impulse response of the cell to the UE channel.
  • the signal combining energy can be maximized, and the reference cell corresponding to the maximum delay difference is used as the first cell, and the time starting point after the signal of the first cell is removed from the CP is The starting point of the FFT window.
  • the received signals are combined by using an FFT algorithm.
  • the frequency domain channel coefficient of the nth cell transmitter to the UE end can be expressed as:
  • the frequency domain channel coefficients of the first cell and the second cell to the current UE are: - k __ 0 l 2 K k - 0 2, ..K
  • the time difference (first path time difference) of the cell signal arriving at the UE is defined as Z1, and the frequency domain channel coefficient H between the second cell and the UE when performing signal combining; (A) can be equivalent to:
  • H 2 (f k ) FFT(h 2 (t-Ar 21 ))
  • Equation 10 the time starting point after the signal of the first cell determined in step 308 is taken as the window starting point of the FFT, and ⁇ ⁇ is the time of the mth cooperative cell relative to the first 'h area
  • the delay that is, the delay of the mth cooperative cell with respect to the phase reference cell.
  • the combined signal is calculated based on the calculated combined channel coefficients H).
  • the signal power of the signal sent by the cooperative cell may be calculated by calculating a channel covariance matrix of a cooperative cell; specifically,
  • the channel covariance matrix corresponding to the cooperative cell is: R ' 13 R '
  • the above-mentioned covariance matrix can be continuously updated by means of moving average:
  • Nd is the window size of the time-division fast Fourier transform of the UE; it is the set weight value.
  • the method for implementing multi-point joint transmission feeds back the phase difference between the signals of the respective cooperative cells with respect to the current serving cell to the corresponding cell base station by means of limited feedback, so as to perform phase of the signal at the transmitting end.
  • the phase noise caused by the phase difference affects the transmission and reception synchronization, and improves the demodulation performance of the user terminal signal;
  • this embodiment also provides a method for obtaining different by using a channel covariance/cross-covariance matrix.
  • the method of signal strength, phase difference and other parameters of the cooperative cell simplifies the recognition and measurement methods of the existing signal parameters.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a user terminal for implementing multipoint joint transmission.
  • the user terminal provided in this embodiment includes:
  • the phase calculating unit 41 is configured to obtain a phase difference between the other cooperative cell and the current serving cell by calculating a channel cross-covariance matrix between the current serving cell and the other cooperative cell in the multi-point joint transmission system;
  • the other cooperative cell is a cell other than the current serving cell among all the cooperative cells;
  • the feedback unit 42 is configured to feed back the respectively corresponding phase differences to the base stations of the other cooperative cells to perform phase compensation;
  • the receiving unit 45 is configured to receive a signal sent by the base station of all the cooperative cells after performing phase compensation.
  • the channel cross-covariance matrix R xy (/) is the covariance between the current serving cell and the channel coefficients of the other cooperative cells, that is,
  • ⁇ ⁇ (/) is the channel coefficient of the current serving cell; (/: ⁇ is the transposition of ⁇ ⁇ (/); Hy(/) is the channel coefficient of a certain cell in the other cooperative cell.
  • the phase calculation unit 41 further includes:
  • the amplitude calculation module 412 is configured to calculate the argument angle of each element on the main diagonal in the /), and the obtained argument value is the signal transmitted by the plurality of antennas of the certain cooperative cell relative to the The phase difference of the current serving cell.
  • the user terminal provided in this embodiment further includes:
  • the power calculation unit 43 is configured to calculate, by using a channel covariance matrix, a power of a signal transmitted by a plurality of antennas of each cooperative cell;
  • the channel covariance matrix R xx (/) is the covariance of the channel coefficients of a certain cell in the cooperative cell, that is,
  • (/) is the channel coefficient of a cooperative cell
  • the power calculation unit 43 includes:
  • the modulus calculation module 432 is configured to calculate a modulus value of each element on the main diagonal line in R xx (/), and the obtained modulus value is the power of the signal transmitted by the multiple antennas of the certain cooperation cell. .
  • the user terminal provided in this embodiment may further include: an updating unit 44, configured to pass the formula
  • the updating unit 44 further includes:
  • the first update module is configured to modify the channel cross-covariance matrix calculated by the cross-covariance calculation module 411, where R (k+1) in the above formula 13 is R xy ;
  • the second update module is configured to modify the channel covariance matrix calculated by the covariance calculation module 431.
  • R (k+1) in the above formula 13 is R xx .
  • the user terminal provided in this embodiment further includes the following structure to complete the process of combining the signals sent by the multiple cooperative cells; specifically, the user terminal further includes:
  • a determining unit 51 configured to determine a window starting point of the fast Fourier transform according to the combined energy maximization principle
  • the merging unit 52 is configured to combine the received phase compensated signals by using a fast Fourier transform algorithm.
  • the determining unit 51 includes:
  • a delay calculation module 511 configured to use the multiple cooperative cells as a reference cell in sequence, and calculate a time delay of the reference cell relative to the current serving cell as a reference delay, and calculate other cooperative cells relative to the reference cell. Delay difference
  • the weight calculation module 512 is configured to calculate a weighting value of the signal transmitted by each of the cooperative cells when combining according to a delay difference of each of the cooperative cells with respect to the reference cell;
  • a determining module 513 configured to calculate, according to the weighting value corresponding to each of the cooperative cells, a reference energy value that is received by the received signal, obtain a reference energy value corresponding to each of the multiple reference cells, and determine the multiple
  • the reference cell corresponding to the maximum value of the reference energy values is the first cell, and the time starting point after the signal of the first cell is removed from the cyclic prefix is the window starting point of the fast Fourier transform.
  • the merging unit 52 includes:
  • the coefficient calculation module 521 is configured to complete the calculation of the formula 10 by using a fast Fourier transform algorithm to obtain the channel coefficients of the received phase compensated signals; wherein, M is the number of cooperative cells, and ⁇ is a delay of the mth cooperative cell relative to the first cell;
  • the merging module 522 is configured to calculate the combined signal according to the combined channel coefficients.
  • the user terminal for implementing multi-point joint transmission feds back the phase difference between the signals of the respective cooperative cells with respect to the current serving cell to the corresponding cell base station by means of limited feedback, so as to perform signal at the transmitting end.
  • the phase noise caused by the phase difference between the cells has an effect on the transmission and reception synchronization, and the demodulation performance of the user terminal signal is improved.
  • the user terminal provided in this embodiment can also obtain different parameters through the channel covariance/cross-covariance matrix.
  • the signal strength, phase difference and other parameters of the cooperative cell simplify the recognition and measurement process of the existing signal parameters.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment of the present invention further provides a system for implementing multi-point joint transmission.
  • the user terminal 61 includes at least two base stations 62, and the at least two base stations 62 belong to a multi-point joint transmission mode.
  • the at least two base stations 62 are configured to send pilot signals outward;
  • the user terminal 61 is configured to detect pilot signals corresponding to the at least two base stations 62, and calculate between the current serving cell in the coordinated multi-point transmission system and other cooperative cells in the at least two cooperative cells. Channel cross-covariance matrix to obtain the other cooperative cells and current services a phase difference between the cells, and feeding back the phase difference to the at least two base stations 62 for phase compensation;
  • the at least two base stations 62 are further configured to phase compensate the signal according to the phase difference fed back by the user terminal, and send the phase compensated signal to the at least user terminal.
  • the user terminal 61 is further configured to determine a window start point of the fast Fourier transform according to the principle of combining energy maximization, and combine the received phase compensated signals by using a fast Fourier transform algorithm.
  • the system for implementing multi-point joint transmission provided by the embodiment of the present invention conveniently obtains the phase difference between other cooperative cells and the current serving cell by establishing a cross-covariance matrix between other cooperative cells and channel coefficients of the current serving cell. And feeding back the phase difference to the corresponding cell base station by means of limited feedback, so as to perform phase compensation of the signal at the transmitting end, thereby effectively eliminating the phase noise caused by the phase difference between the multiple cooperative cells, and transmitting and receiving synchronization.
  • the effect is improved, and the demodulation performance of the signal of the user terminal is improved;
  • the window starting point of the fast Fourier transform is determined according to the criterion of the energy maximization of the signal received by the user terminal, and the received signals are combined by using the fast Fourier transform algorithm, so that the combined energy is achieved not only The maximum, at the same time, shortens the processing time of signal combination and improves the operation efficiency.
  • the method, terminal and system for implementing multi-point joint transmission provided in the embodiments of the present invention can be applied Network MIMO (Multi-Input Multi-Output), Wireless Ad Hoc Network, Wireless Sensor Network, or Wireless Mesh Network in Wimax ( Worldwide Interoperability for Microwave Access) System Cooperative communication, etc., can of course be applied to fields such as wireless ranging and radar interference source positioning.
  • Network MIMO Multi-Input Multi-Output
  • Wireless Ad Hoc Network Wireless Sensor Network
  • Wimax Worldwide Interoperability for Microwave Access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

实现多点联合传输的方法、 终端及系统 技术领域
本发明涉及无线通信技术, 尤其涉及一种实现多点联合传输的方法、终端 及系统。
背景技术
为了提高小区边缘的用户终端(User Equipment, UE )接收信号的信干噪 比 ( Signal to Interfere and Noise Ratio , SINR ),在 LTE-A ( Long Term Evolution -Advanced, 长期演进-增强) 系统中引入了多点联合传输 ( Coordinated Multi-point Process , CoMP ), 即多个基站同时为一个 UE提供合作传输服务, 从而形成了一种分布式多天线的架构, 可以大大提高小区边缘用户的频谱效 率。
不过, 与单小区传输相比, 下行多点联合传输存在以下问题:
在多点联合传输场景下, 不同基站发送的信号在到达 UE时会存在一定的 相位差, 而 UE—般只能与当前的服务基站保持时频同步; 由于难以同所有的 合作基站均保持同步, 因此 UE端在对接收到的信号进行合并时, 其中往往会 存在相位噪声。
发明内容
本发明的实施例提供一种实现多点联合传输的方法、终端及系统, 以解决 多点联合传输场景下的 UE端接收到的信号中存在相位噪声的问题。
本发明的实施例采用如下技术方案:
一种实现多点联合传输的方法, 包括:
通过计算当前服务小区同其它合作小区之间的信道互协方差矩阵来获得 所述其它合作小区与当前服务小区之间的相位差;
向所述其它合作小区的基站反馈其分别对应的相位差, 以进行相位补偿; 接收合作小区的基站在进行相位补偿后发送的信号;
其中,所述其它合作小区为所有合作小区中除当前服务小区以外的其它小 区;所述当前服务小区同其它合作小区之间的信道互协方差矩阵为所述当前服 务小区同其它合作小区的信道系数之间的协方差。
一种用户终端, 包括:
相位计算单元,用于通过计算当前服务小区同其它合作小区之间的信道互 协方差矩阵来获得所述其它合作小区与当前服务小区之间的相位差;
反馈单元, 用于向所述其它合作小区的基站反馈其分别对应的相位差, 以 进行相位补偿;
接收单元, 用于接收合作小区的基站在进行相位补偿后发送的信号; 其中,所述其它合作小区为所有合作小区中除当前服务小区以外的其它小 区;所述当前服务小区同其它合作小区之间的信道互协方差矩阵为所述当前服 务小区同其它合作小区的信道系数之间的协方差。
一种实现多点联合传输的系统, 包括用户终端及至少两个基站, 且所述至 少两个基站分属于多点联合传输模式下的至少两个合作小区; 其中,
所述至少两个基站, 用于向外发送导频信号;
所述用户终端, 用于检测所述至少两个基站分别对应的导频信号, 并通过 计算多点联合传输系统中的当前服务小区同所述至少两个合作小区中其它合 作小区之间的信道互协方差矩阵来获得所述其它合作小区同当前服务小区之 间的相位差, 并将所述相位差反馈给所述至少两个基站, 以进行相位补偿; 所述至少两个基站,还用于根据所述用户终端反馈的相位差对信号进行相 位补偿, 并将相位补偿后的信号发送给所述至少用户终端。
本发明实施例提供的实现多点联合传输的方法、终端及系统,通过建立其 它合作小区同当前服务小区的信道系数之间的互协方差矩阵,方便地获取到其 它合作小区同当前服务小区之间的相位差,并通过有限反馈的方式将所述相位 差反馈给相应的小区基站, 以便在发射端进行信号的相位补偿,从而有效地消 除多个合作小区之间的相位差造成的相位噪声对收发同步的影响,提高了用户 终端信号的解调性能。 附图说明
图 1为本发明实施例一中提供的方法的流程图;
图 2为本发明实施例一中提供的用户终端的结构示意图;
图 3为本发明实施例二中提供的方法的流程图;
图 4为本发明实施例三中提供的用户终端的结构示意图一;
图 5为本发明实施例三中提供的用户终端的结构示意图二;
图 6为本发明实施例四中提供的系统的结构示意图。 具体实施方式
下面结合附图对本发明实施例提供的实现多点联合传输的方法、终端及系 统进行详细描述。
实施例一:
如图 1所示, 本实施例提供的实现多点联合传输的方法, 包括以下步骤: 101、 通过计算多点联合传输系统中的当前服务小区同其它合作小区之间 的信道互协方差矩阵来获得所述其它合作小区与当前服务小区之间的相位差。
其中,所述其它合作小区为多点联合传输模式下所有合作小区中除当前服 务小区以外的其它小区。 一般情况下, 在终端向发送端反馈相位差时, 都会先 确定一个相位参考小区; 在本实施例中, 以多点联合传输模式下的当前服务小 区作为相位参考小区。
在这里, 可以通过不同合作小区与当前用户终端之间的信道系数 H f、 来构建不同合作小区之间的互协方差矩阵,并通过该互协方差矩阵确定所述其 它合作小区同当前服务小区之间的相位差。
102、 向所述其它合作小区的基站反馈其分别对应的相位差, 以进行相位 补偿。
当然, 也可以是向所述其它合作小区的基站反馈器分别对应的 PMI ( Preferred Matrix Index,优选矩阵索引); 由于 PMI是相位差量化后对应码本 中码子的编号, 因此只要有了 PMI, 也就得到了该 PMI对应的相位差。
103、 接收所有合作小区的基站在进行相位补偿后发送的信号。
上述方法描述中,各步骤的执行主体可以是多点联合传输系统中的某一用 户终端。
为了更好地实现上述方法,本实施例中还提供了一种用于实现多点联合传 输的用户终端, 如图 2所示, 包括:
相位计算单元 21, 用于通过计算多点联合传输系统中的当前服务小区同 其它合作小区之间的信道互协方差矩阵来获得所述其它合作小区与当前服务 小区之间的相位差; 反馈单元 22, 用于向所述其它合作小区的基站反馈其分别对应的相位差 以进行相位补偿;
接收单元 23, 用于接收所有合作小区的基站在进行相位补偿后发送的信 号;
其中,所述其它合作小区为所有合作小区中除当前服务小区以外的其它小 区;所述当前服务小区同其它合作小区之间的信道互协方差矩阵为所述当前服 务小区同其它合作小区的信道系数之间的协方差。
本发明实施例提供的实现多点联合传输的方法及用户终端,通过建立其它 合作小区同当前服务小区的信道系数之间的互协方差矩阵,方便地获取到其它 合作小区同当前服务小区之间的相位差,并通过有限反馈的方式将所述相位差 反馈给相应的小区基站, 以便在发射端进行信号的相位补偿,从而有效地消除 多个合作小区之间的相位差造成的相位噪声对收发同步的影响,提高了用户终 端信号的解调性能。
实施例二:
下面将以一具体实施例对本发明实施例中提供的实现多点联合传输的方 法进行详细 述。
首先, 设定如下场景: 每个小区的天线配置均为 4发 2收, UE通过多小 区无线场景分析启动 CoMP联合传输模式; 其中, 小区向 UE侧发送的原始信 号为 s t、, 而小区同 UE之间的信道系数的时域表示为/? ), 其对应的频域 表示为 H ( ); 这里的 h ( t ) 或者 H (f)可以通过信道估计来获得。
如图 3所示, 本实施例中提供的实现多点联合传输的方法, 具体包括以下 步骤: 301、 参与 CoMP联合传输的多个合作小区周期性地向外发送导频信号。
302、 UE在检测并接收到所述多个合作小区发送的导频信号后,通过信道 估计获取 UE与所述多个合作小区之间的信道系数 (/)。
303、 通过信道互协方差矩阵计算其它合作小区与当前服务小区之间的信 号相位差;这里的其它合作小区指的是 CoMP传输模式下所有合作小区中除当 前服务小区之外的其它合作小区。 具体地,
如果当前服务小区的信道系数为 所述其它合作小区中某一合作小 区的信道系数为 Hy (/), 则当前服务小区同所述某一合作小区之间的信道互协 方差矩阵为:
Figure imgf000008_0001
-公式 1 其中, ¾ (/) 11是 ¾ (/) 的转置; 计算得到的矩阵 Rxy ( ) 的主对角线上的 元素 Ru、 R22、 R33和 R44的辐角, 即为所述某一合作小区的 4根天线发射出的 信号相对于所述当前服务小区的相位差。
为了保持相对稳定的预测和反馈,可以采用滑动平均的方式对上述互协方 差矩阵进行不断的更新:
^^ — p H H n 一公式 2 即, 根据第 k时刻的信道互协方差矩阵 Rx k) 和 k时刻的信道系数 k)来计算 并将计算结果作为第 k+l时刻的信道互协方差矩阵
Figure imgf000008_0002
R -k+l); 其中, Nd为 UE进行分集合并时快速傅里叶变换的窗口大小; 为设 定的加权值; k表示 k时刻, 对 k时刻的 RXY (K)与当前 Nd个信道互协方差矩阵 的和进行加权平均, 可以得到 (k+l)
k+1时刻的 R. xy
304、 UE向所述其它合作小区的基站反馈其分别对应的相位差, 以进行相 位补偿。
305、 各个合作小区根据其分别接收到的相位差信息进行相位补偿, 之后 所有的合作小区以协作的方式向同一个 UE发送信号。
306、 UE在收到所述多个合作小区发送的信号后,依次选取其中一个小区 作为参考小区, 以所述参考小区到达 UE的第 k条径作为参考径, 其相对于当 前服务小区的时延作为基准时延,并计算出其它合作小区的多条径到达 UE的 时延相对于所述基准时延(即相对于当前服务小区) 的时延差 。
307、根据每个合作小区对应的时延差 τ,计算其发射的信号在 UE端进行 分集合并时的加权值; 具体地, 所述加权值可以通过如下公式 3来计算得到:
0 τ<-Τι (1)
Τ, +τ
- . <r<0 (2)
TU
1 0<T< CP (3) —公式 3 τ-Τ, CP
TCP <T<TCP+TU (4)
TU
0 TCP +TU <T (5) 其中, ?^是一个 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频 分复用 )符号的宽度, 其中不包含循环前缀(Cyclic Preamble, CP); 而 TCP 是循环前缀 CP的长度。 实际上, 上述根据各个合作小区对应的时延差计算出 的力口权值, 就是在 UE端分集合并时进行 FFT ( Fast Fourier Transform, 快速傅 里叶变换)计算的窗口中接收到的其它多径(包括所有合作小区信号)的有效 比例。 在上述公式 3中, 情况( 1 )表示该径先于参考径到达 UE, 即时延差小于 0, 且差值超过了一个 OFDM符号宽度; 情况(2 )表示该径先于参考径到达 UE, 但差值不超过一个 OFDM符号宽度; 情况(3 )表示该径落后于参考径 到达 UE, 即时延差大于 0, 但差值不超过 CP长度; 情况(4 )表示该径落后 于参考径到达 UE, 且差值超过了 CP长度, 但小于整个符号宽度(包括 CP ); 情况(5 )表示该径落后于参考径到达 UE, 且时延差超过了整个符号宽度(包 括 CP )。
308、 结合所述每个合作小区对应的加权值, 计算接收到的信号合并后的 参考能量值, 并确定所述参考能量值中的最大值所对应的参考小区为第一小 区, 该第一小区的信号去 CP之后的时间起点即为 FFT的窗口起始点。
具体地, UE接收到的多径信号进行分集合并后的能量为
P = Σ Σ C2
Figure imgf000010_0001
I ——公式 4 n=l 1=1
其中, N为合作小区个数, 为每个小区信号到达 UE的多径数(假设每个小 区信号到达 UE的多径数相同), τ„,/为小区《的第 /径到达 UE的时延, 为 小区 的第 径到 UE信道时域沖激响应。
那么,能够使分集合并后的能量最大的参考小区相对于当前服务小区的时 延应该为 0, k) 一公式 5
Figure imgf000010_0002
在本实施例中, 还可以对上述公式 5 进行简化; H没任意两个小区到达 UE的信号之间存在固定的时延差, 而忽略同一小区的不同多径之间存在的时 延差, 则上述公式 5中的 ¾满足 τ„,尸 τ„,2=...=τ„,/, 则公式 5可以简化为 τ: (0 = arg —公式 6
Figure imgf000011_0001
即只使用每个合作小区到达 UE的多径信号中的第 1径用做最佳窗口选择的参 考, 减少搜索时间。
根据公式 6即可获取到, 可使信号合并能量达到最大的时延差, 将该最大 时延差所对应的参考小区作为第一小区, 而第一小区的信号去 CP之后的时间 起点即为 FFT的窗口起始点。
309、根据确定好的 FFT窗口起始点, 利用 FFT算法对接收到的信号进行 合并。
具体地, 在子载波 k上, 第 n个小区发射机到 UE端的频域信道系数可以 表达为:
Hn ( fk) = FFT(hn (t)) = hn l - e jl4k^1 w = l,2 ..N, k = Q,\,2,〜K
1=1
——公式 7 其中, 为多径子信道个数, 为信道时域沖激响应, 为第 /条子径的时 域沖激响应, τ„,为第 /条子径相对于第一径的时延。 例如, 第 1个小区和第 2 个小区到当前 UE的频域信道系数为: —— k__0 l 2 K k - 0 2,..K
由于第 1个小区和第 2个小区与 UE之间的距离不同, 因此信号到达 UE 的时间也不同, 存在一定的相对延时。 如果以第 1 个小区到达 UE的信号去 CP之后的时间起点作为接收机 FFT窗口起点, 并将第 2个小区信号与第 1个 小区信号到达 UE的时间差(第 1径时间差)定义为 Zl , 则在进行信号合并 时, 第 2个小区与 UE之间的频域信道系数 H;(A)可以等效为:
H2(fk) = FFT(h2(t-Ar21))
L ι=ι 2,1 ——公式 8
Figure imgf000012_0001
则最终等效的合并信道系数为:
H{fk)
Figure imgf000012_0002
—公式 9 如果将合作小区的数量扩展为 M个, 仍然以第 1个合作小区的 FFT窗口 为合并后的 FFT窗口, 则合并的信道系数可以表达为:
M
H(fk) =∑Hm(fk)-e-j2^
公式 10 在公式 10中, 以步骤 308中确定的第一小区的信号去 CP之后的时间起点作 为 FFT的窗口起始点, 而 Δτ, 为第 m个合作小区相对于第一' h区的时延, 也 就是第 m个合作小区相对于所述相位参考小区的时延。
之后, 根据计算得到的合并后的信道系数 H )计算出合并后的信号。 此外,在本实施例中,还可以通过计算某一合作小区自身的信道协方差矩 阵来计算该合作小区所发送的信号的信号功率; 具体地,
如果所述合作小区的信道系数为 则该合作小区所对应的信道协方 差矩阵为: R '13 R '
R、23 R '
R '33 R、
Figure imgf000013_0001
R '43 R
-公式 11 其中, 矩阵主对角线上的元素 R'u、 R'22、 R'33和 R'44的模值, 即为所述合作小 区的 4才艮天线发射出的 CSI-RS ( Channel State Info-Reference Signal,信道状态 信号 -参考信号) 的功率, 对应着所述 4个 CSI-RS信号的信号强度(Received Signal Strength Indicator, RSSI )。
同样, 为了保持相对稳定的预测和反馈, 可以采用滑动平均的方式对上述 协方差矩阵进行不断的更新:
R ^^ Ρ^ ^ - Ρ)∑Η^ΗΗ^ ——公式 12 即, 根据第 k时刻的信道协方差矩阵 Rxx (k) 和 k时刻的信道系数 k)来计算 P k + ^-P)∑Hx (kn HHikn, 并将计算结果作为第 k+1 时刻的信道协方差矩 n=\
阵 R«(k+1); 其中, Nd为 UE进行分集合并时快速傅里叶变换的窗口大小; 为 设定的加权值。
本发明实施例提供的实现多点联合传输的方法,通过有限反馈的方式将各 个合作小区相对于当前服务小区的信号之间的相位差反馈给相应的小区基站, 以便在发射端进行信号的相位补偿,并依据用户终端接收到的信号合并后能量 最大化的准则确定分集合并时 FFT的窗口起始点, 进而利用 FFT算法对多个 合作小区发送的信号进行合并,从而有效地消除多个合作小区之间的相位差造 成的相位噪声对收发同步的影响, 提高了用户终端信号的解调性能;
此外, 本实施例还提供了一种通过信道协方差 /互协方差矩阵来获取不同 合作小区的信号强度、相位差等参数的方法, 简化了现有的信号参数的认知和 测量方法。
实施例三:
针对实施例二中提供的方法,本实施例提供了一种实现多点联合传输的用 户终端。
如图 4所示, 本实施例中提供的用户终端, 包括:
相位计算单元 41, 用于通过计算多点联合传输系统中的当前服务小区同 其它合作小区之间的信道互协方差矩阵来获得所述其它合作小区与当前服务 小区之间的相位差; 在这里, 所述其它合作小区为所有合作小区中除当前服务 小区以外的其它小区;
反馈单元 42, 用于向所述其它合作小区的基站反馈其分别对应的相位差, 以进行相位补偿;
接收单元 45, 用于接收所有合作小区的基站在进行相位补偿后发送的信 号。
在本实施例中,所述信道互协方差矩阵 Rxy(/)为当前服务小区同所述其它 合作小区的信道系数之间的协方差, 即
Figure imgf000014_0001
其中, Ηχ(/)为当前服务小区的信道系数; (/:^为 Ηχ(/)的转置; Hy(/)为所 述其它合作小区中的某一小区的信道系数。 贝 'j,
所述相位计算单元 41, 进一步包括:
互协方差计算模块 411, 用于根据公式^(/) = (/ ^(/)计算出当前服 务小区同所述其它合作小区之间的信道互协方差矩阵; 幅值计算模块 412, 用于计算 /)中主对角线上各元素的辐角, 则所得 到的辐角值即为所述某一合作小区的多根天线发射出的信号相对于所述当前 服务小区的相位差。
进一步地, 本实施例中所提供的用户终端还包括:
功率计算单元 43, 用于通过信道协方差矩阵计算每个合作小区的多个天 线所发射的信号的功率;
而且,所述信道协方差矩阵 Rxx(/)为合作小区中某一小区的信道系数自身 的协方差, 即
Af) = Hx{f)HHx{f)
其中, (/)为某一合作小区的信道系数; 贝 'J,
所述功率计算单元 43, 包括:
协方差计算模块 431, 用于依次根据公式 (/) = (/ 计算出某一 合作小区的信道互协方差矩阵;
模值计算模块 432, 用于计算 Rxx(/)中主对角线上各元素的模值, 则所得 到的模值即为所述某一合作小区的多根天线发射出的信号的功率。
此外, 本实施例中提供的用户终端, 还可以包括: 更新单元 44, 用于通 过公式
R(k+l) pRik) + (l - p)∑ H^HH^ 一公式 13 来修改所述信道协方差矩阵或者信道互协方差矩阵; 即,根据第 k时刻的信道 协方差矩阵或者信道互协方差矩阵 R(k) 和 k 时刻的信道系数 k)来计算 pR^ + il - p^H^H^, 从而得到 k+1 时刻的信道协方差矩阵或者信道互 n=l 协方差矩阵 R(k+1) ; 其中, Nd为快速傅里叶变换的窗口大小。 具体地, 更新单 元 44又进一步包括:
第一更新模块,用于对互协方差计算模块 411计算得到的信道互协方差矩 阵进行修改, 此时上述公式 13中的 R(k+1)即为 Rxy;
第二更新模块,用于对协方差计算模块 431计算得到的信道协方差矩阵进 行修改, 此时上述公式 13中的 R(k+1)即为 Rxx
进一步地,本实施例中提供的用户终端还包括以下结构以完成对多个合作 小区发送的信号进行合并的过程; 具体地, 所述用户终端还包括:
确定单元 51, 用于依照合并能量最大化原则, 确定快速傅里叶变换的窗 口起始点;
合并单元 52, 用于利用快速傅里叶变换算法对接收到的相位补偿后的信 号进行合并。
其中, 所述确定单元 51包括:
时延计算模块 511, 用于以所述多个合作小区依次作为参考小区, 并以所 述参考小区相对于当前服务小区的时延为基准时延,计算其它合作小区相对于 所述参考小区的时延差;
权值计算模块 512, 用于根据每个合作小区相对于所述参考小区的时延 差, 计算所述每个合作小区所发射的信号在进行合并时的加权值;
确定模块 513, 用于根据所述每个合作小区对应的加权值, 计算接收到的 信号合并后的参考能量值, 获得所述多个参考小区分别对应的参考能量值, 并 确定所述多个参考能量值中的最大值所对应的参考小区为第一小区,该第一小 区的信号去掉循环前缀之后的时间起点即为快速傅里叶变换的窗口起始点。 在本实施例中, 所述合并单元 52包括:
系数计算模块 521, 用于利用快速傅里叶变换算法来完成公式 10的计算, 获得所述接收到的相位补偿后的信号合并后的信道系数; 其中, M 为合作小 区的数量, Δτ^为第 m个合作小区相对于第一小区的时延;
合并模块 522, 用于根据所述合并后的信道系数计算合并后的信号。
本发明实施例提供的实现多点联合传输的用户终端,通过有限反馈的方式 将各个合作小区相对于当前服务小区的信号之间的相位差反馈给相应的小区 基站, 以便在发射端进行信号的相位补偿, 并依据用户终端接收到的信号合并 后能量最大化的准则确定分集合并时 FFT的窗口起始点, 进而利用 FFT算法 对多个合作小区发送的信号进行合并,从而有效地消除多个合作小区之间的相 位差造成的相位噪声对收发同步的影响, 提高了用户终端信号的解调性能; 此外, 本实施例还提供的用户终端还可以通过信道协方差 /互协方差矩阵 来获取不同合作小区的信号强度、相位差等参数,从而简化了现有的信号参数 的认知和测量过程。
实施例四:
本发明实施例还提供了一种实现多点联合传输的系统,如图 6所示, 包括 上述用户终端 61及至少两个基站 62, 且所述至少两个基站 62分属于多点联 合传输模式下的至少两个合作小区; 具体地,
所述至少两个基站 62, 用于向外发送导频信号;
所述用户终端 61, 用于检测所述至少两个基站 62分别对应的导频信号, 并通过计算多点联合传输系统中的当前服务小区同所述至少两个合作小区中 其它合作小区之间的信道互协方差矩阵来获得所述其它合作小区同当前服务 小区之间的相位差, 并将所述相位差反馈给所述至少两个基站 62, 以进行相 位补偿;
所述至少两个基站 62, 还用于根据所述用户终端反馈的相位差对信号进 行相位补偿, 并将相位补偿后的信号发送给所述至少用户终端。
进一步地, 为了顺利完成对多个合作小区发送的信号进行合并的过程, 在 本实施例提供的实现多点联合传输的系统中,
所述用户终端 61, 还用于依照合并能量最大化原则, 确定快速傅里叶变 换的窗口起始点,并利用快速傅里叶变换算法对接收到的相位补偿后的信号进 行合并。
本实施例中提供的实现多点联合传输的系统,其具体工作原理可参考实施 例二中方法的描述, 此处不再赘述。
本发明实施例提供的实现多点联合传输的系统,通过建立其它合作小区同 当前服务小区的信道系数之间的互协方差矩阵,方便地获取到其它合作小区同 当前服务小区之间的相位差,并通过有限反馈的方式将所述相位差反馈给相应 的小区基站, 以便在发射端进行信号的相位补偿,从而有效地消除多个合作小 区之间的相位差造成的相位噪声对收发同步的影响,提高了用户终端信号的解 调性能;
而且,依据用户终端接收到的信号合并后能量最大化的准则确定快速傅里 叶变换的窗口起始点, 并利用快速傅里叶变换算法对接收到的信号进行合并, 这样不仅使合并能量达到了最大, 同时也缩短了信号合并的处理时间,提高了 运算效率。
本发明实施例中提供的实现多点联合传输的方法、终端及系统, 可以应用 于 Wimax ( Worldwide Interoperability for Microwave Access, 全球微波互联接 入 ) 系统中的网络 MIMO ( Multi-Input Multi-Output, 多入多出)、 无线自组织 网络、 无线传感器网络或者无线 Mesh (网格) 网络中的合作通信等, 当然也 可以应用于无线测距、 雷达干扰源定位等领域。
通过以上实施方式的描述,本领域的技术人员可以清楚地了解到本发明可 借助软件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施。 基于这样的理解,本发明的技术方案对背景技术做出贡献的全部或者部分可以 以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM, 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是 个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例或者实施例的 某些部分所述的方法。

Claims

权 利 要 求
1、 一种实现多点联合传输的方法, 其特征在于, 包括:
通过计算当前服务小区同其它合作小区之间的信道互协方差矩阵获得所 述其它合作小区与当前服务小区之间的相位差;
向所述其它合作小区的基站反馈其分别对应的相位差, 以进行相位补偿; 接收合作小区的基站在进行相位补偿后发送的信号;
其中,所述其它合作小区为所有合作小区中除当前服务小区以外的其它小 区;所述当前服务小区同其它合作小区之间的信道互协方差矩阵为所述当前服 务小区同其它合作小区的信道系数之间的协方差。
2、 根据权利要求 1所述的实现多点联合传输的方法, 其特征在于, 所述 当前服务小区同其它合作小区的信道系数之间的协方差, 为:
Figure imgf000020_0001
其中, (/)为当前服务小区的信道系数; (/ 为 (/)的转置; Hy(/) 为所述其它合作小区中的某一小区的信道系数。
3、 根据权利要求 2所述的实现多点联合传输的方法, 其特征在于, 所述 通过计算当前服务小区同其它合作小区之间的信道互协方差矩阵获得所述其 它合作小区与当前服务小区之间的相位差, 包括:
根据公式 = 计算出当前服务小区同所述其它合作小区之 间的信道互协方差矩阵;
计算 RXJ(/)中主对角线上各元素的辐角,则所得到的辐角值即为所述某一 合作小区的多根天线发射出的信号相对于所述当前服务小区的相位差。
4、 根据权利要求 1所述的实现多点联合传输的方法, 其特征在于, 还包 括:
通过计算所述每个合作小区的信道协方差矩阵获得每个合作小区的多个 天线所发射的信号的功率;
其中,所述每个合作小区的信道协方差矩阵为所述合作小区中每个小区的 信道系数自身的协方差。
5、 根据权利要求 4所述的实现多点联合传输的方法, 其特征在于, 所述 合作小区中某一小区的信道系数自身的协方差为: RJJl = Hx(ffHx(f 其 中, (/)为所述某一合作小区的信道系数; 贝 'J,
所述通过计算所述每个合作小区的信道协方差矩阵获得每个合作小区的 多个天线所发射的信号的功率, 包括:
依次根据公式 R J = Hx(ffHx(f)计算出所述每个合作小区的信道协方差 矩阵;
计算每个 Rxx(/)中主对角线上各元素的模值,则所得到的模值即为所述合 作小区的多根天线发射出的信号的功率。
6、 根据权利要求 3或 5所述的实现多点联合传输的方法, 其特征在于, 还包括:
才艮据第 k时刻的信道协方差矩阵或者信道互协方差矩阵 R(k) 和 k时刻的信 道系数 k)来计算 + ζ^Σ ^^ ,并将其作为 k+1时刻的信道协方 n=l
差矩阵或者信道互协方差矩阵 R(k+1)
其中, Nd为快速傅里叶变换的窗口大小。
7、 根据权利要求 1所述的实现多点联合传输的方法, 其特征在于, 还包 括: 依照合并能量最大化原则, 确定快速傅里叶变换的窗口起始点; 利用快速傅里叶变换算法对所接收到的相位补偿后的信号进行合并。
8、 根据权利要求 7所述的实现多点联合传输的方法, 其特征在于, 所述 依照合并能量最大化原则, 确定快速傅里叶变换的窗口起始点, 包括:
以所述多个合作小区依次作为参考小区,并以所述参考小区相对于当前服 务小区的时延为基准时延, 计算其它合作小区相对于所述参考小区的时延差; 根据每个合作小区相对于所述参考小区的时延差,计算所述每个合作小区 所发射的信号在进行合并时的加权值;
根据每个合作小区对应的加权值, 计算接收到的信号合并后的参考能量 值, 获得所述多个参考小区分别对应的参考能量值, 并确定所述多个参考能量 值中的最大值所对应的参考小区为第一小区,该第一小区的信号去掉循环前缀 之后的时间起点为快速傅里叶变换的窗口起始点。
9、 根据权利要求 8所述的实现多点联合传输的方法, 其特征在于, 如果 某一合作小区相对于所述参考小区的时延差为 τ, 则该合作小区所发射的信号 在进行合并时的加权值为
0 T < -TU
Τ + τ
Τ < τ < 0
Τ
Figure imgf000022_0001
0 TCP + TU < τ 其中, rM为一个正交频分复用符号的宽度, rCP为循环前缀的长度。
10、 根据权利要求 7所述的实现多点联合传输的方法, 其特征在于, 所述 利用快速傅里叶变换算法对所接收到的相位补偿后的信号进行合并, 具体为: M
利用快速傅里叶变换算法来完成公式 (/ ) =∑ (/ ) · ilnf Δ 的计 m—l
算, 获得所述接收到的相位补偿后的信号合并后的信道系数;
根据所述合并后的信道系数计算合并后的信号;
其中, M为合作小区的数量, Δτ^为第 m个合作小区相对于第一小区的 时延。
11、 一种用户终端, 其特征在于, 包括:
相位计算单元,用于通过计算当前服务小区同其它合作小区之间的信道互 协方差矩阵获得所述其它合作小区与当前服务小区之间的相位差;
反馈单元, 用于向所述其它合作小区的基站反馈其分别对应的相位差, 以 进行相位补偿;
接收单元, 用于接收合作小区的基站在进行相位补偿后发送的信号; 其中,所述其它合作小区为所有合作小区中除当前服务小区以外的其它小 区;所述当前服务小区同其它合作小区之间的信道互协方差矩阵为所述当前服 务小区同其它合作小区的信道系数之间的协方差。
12、 根据权利要求 11所述的用户终端, 其特征在于, 所述当前服务小区 同其它合作小区的信道系数之间的协方差, 为: R^f^ HAffHyijy, 其中,
Ηχ(/)为当前服务小区的信道系数; (/:^为 Ηχ(/)的转置; Hy(/)为所述其它 合作小区中的某一小区的信道系数; 贝 'J,
所述相位计算单元, 包括:
互协方差计算模块, 用于根据公式^(/) = (/ ^(/)计算出当前服务小 区同所述其它合作小区之间的信道互协方差矩阵;
幅值计算模块, 用于计算 /)中主对角线上各元素的辐角, 则所得到的 辐角值即为所述某一合作小区的多根天线发射出的信号相对于所述当前服务 小区的相位差。
13、 根据权利要求 11所述的用户终端, 其特征在于, 还包括:
功率计算单元,用于通过计算所述每个合作小区的信道协方差矩阵获得每 个合作小区的多个天线所发射的信号的功率;
其中,所述每个合作小区的信道协方差矩阵为所述合作小区中每个小区的 信道系数自身的协方差。
14、 根据权利要求 13所述的用户终端, 其特征在于, 所述合作小区中某 一小区的信道系数自身的协方差为: R f H ffH f) 其中, (/)为某一 合作小区的信道系数; 贝 'J,
所述功率计算单元, 包括:
协方差计算模块, 用于依次根据公式 Rx人 f、 = Hx(f)HHx(f)计算出所述每个 合作小区的信道互协方差矩阵;
模值计算模块, 用于计算每个 Rxx(/)中主对角线上各元素的模值, 则所得 到的模值即为所述合作小区的多根天线发射出的信号的功率。
15、 根据权利要求 12或 14所述的用户终端, 其特征在于, 还包括: 更新单元, 用于通过第 k 时刻的信道协方差矩阵或者信道互协方差矩阵
R(k) 和 k 并将其作为
Figure imgf000024_0001
k+1时刻的信道协方差矩阵或者信道互协方差矩阵 R(k+1) ; 其中, Nd为快速傅 里叶变换的窗口大小。
16、 根据权利要求 11所述的用户终端, 其特征在于, 还包括:
确定单元, 用于依照合并能量最大化原则,确定快速傅里叶变换的窗口起 始点;
合并单元,用于利用快速傅里叶变换算法对接收到的相位补偿后的信号进 行合并。
17、 根据权利要求 16所述的用户终端, 其特征在于, 所述确定单元包括: 时延计算模块, 用于以所述多个合作小区依次作为参考小区, 并以所述参 考小区相对于当前服务小区的时延为基准时延,计算其它合作小区相对于所述 参考小区的时延差;
权值计算模块, 用于根据每个合作小区相对于所述参考小区的时延差, 计 算所述每个合作小区所发射的信号在进行合并时的加权值;
确定模块, 用于根据所述每个合作小区对应的加权值,计算接收到的信号 合并后的参考能量值, 获得所述多个参考小区分别对应的参考能量值, 并确定 所述多个参考能量值中的最大值所对应的参考小区为第一小区,该第一小区的 信号去掉循环前缀之后的时间起点为快速傅里叶变换的窗口起始点。
18、 根据权利要求 16所述的用户终端, 其特征在于, 所述合并单元包括: 系数计算模块, 用 于利用快速傅里叶变换算法来完成公式
M
H(f ) -∑Hm(f ) . e-J^f A^的计算, 获得所述接收到的相位补偿后的信号合并 m—l 后的信道系数; 其中, M为合作小区的数量, Δτ^为第 m个合作小区相对于 第一小区的时延;
合并模块, 用于根据所述合并后的信道系数计算合并后的信号。
19、 一种实现多点联合传输的系统, 包括用户终端及至少两个基站, 且所 述至少两个基站分属于多点联合传输模式下的至少两个合作小区; 其特征在 于, 所述至少两个基站, 用于向外发送导频信号;
所述用户终端, 用于检测所述至少两个基站分别对应的导频信号, 并通过 计算当前服务小区同所述至少两个合作小区中其它合作小区之间的信道互协 方差矩阵获得所述其它合作小区同当前服务小区之间的相位差,并将所述相位 差反馈给所述至少两个基站, 以进行相位补偿;
所述至少两个基站,还用于根据所述用户终端反馈的相位差对信号进行相 位补偿, 并将相位补偿后的信号发送给所述至少用户终端。
20、 根据权利要求 19所述的实现多点联合传输的系统, 其特征在于, 所述用户终端,还用于依照合并能量最大化原则, 确定快速傅里叶变换的 窗口起始点,并利用快速傅里叶变换算法对接收到的相位补偿后的信号进行合 并。
PCT/CN2010/078713 2009-12-31 2010-11-15 实现多点联合传输的方法、终端及系统 WO2011079655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI1014145A BRPI1014145A2 (pt) 2009-12-31 2010-11-15 método, equipamento e sistema para implementação de transmissão multipontos coordenada.
EP10840444.3A EP2437451B1 (en) 2009-12-31 2010-11-15 Method, user equipment and system for implementing coordinated multi-point transmission
US13/338,358 US8599810B2 (en) 2009-12-31 2011-12-28 Method, equipment and system for implementing coordinated multi-point transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102607588A CN102118825B (zh) 2009-12-31 2009-12-31 实现多点联合传输的方法、终端及系统
CN200910260758.8 2009-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/338,358 Continuation US8599810B2 (en) 2009-12-31 2011-12-28 Method, equipment and system for implementing coordinated multi-point transmission

Publications (1)

Publication Number Publication Date
WO2011079655A1 true WO2011079655A1 (zh) 2011-07-07

Family

ID=44217375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078713 WO2011079655A1 (zh) 2009-12-31 2010-11-15 实现多点联合传输的方法、终端及系统

Country Status (5)

Country Link
US (1) US8599810B2 (zh)
EP (1) EP2437451B1 (zh)
CN (1) CN102118825B (zh)
BR (1) BRPI1014145A2 (zh)
WO (1) WO2011079655A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613456A3 (en) * 2012-01-05 2013-08-21 Industrial Technology Research Institute Method and communication device for handling time offsets between communication device and transmission points
US8599810B2 (en) 2009-12-31 2013-12-03 Huawei Technologies Co., Ltd. Method, equipment and system for implementing coordinated multi-point transmission
WO2016112709A1 (zh) * 2015-01-15 2016-07-21 中兴通讯股份有限公司 相干联合传输jt的实现方法和装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803735B2 (en) * 2010-11-19 2014-08-12 Agjunction Llc Portable base station network for local differential GNSS corrections
US8638867B2 (en) 2011-04-27 2014-01-28 Broadcom Corporation Methods and apparatus for compensating for propagation delays in coordinated multi-point transmission
WO2012152993A1 (en) * 2011-05-10 2012-11-15 Nokia Corporation Delay feedback for coordinated multi-point transmission
US8731001B2 (en) 2011-05-31 2014-05-20 Broadcom Corporation Methods and apparatus for determining participants in coordinated multi-point transmission
US9226247B2 (en) * 2011-08-19 2015-12-29 Lg Electronics Inc. Method for terminal deciding uplink transmission power in macro cell environment comprising remote radio head (RRH), and terminal apparatus for same
JP5911265B2 (ja) * 2011-11-07 2016-04-27 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
CN103249080B (zh) * 2012-02-03 2016-03-30 中国移动通信集团公司 一种确定基站的天线校准系数的方法、系统以及装置
CN103580782B (zh) * 2012-07-24 2017-10-17 华为技术有限公司 无线通信系统的基带处理装置和无线通信系统
US9276729B2 (en) * 2012-12-07 2016-03-01 Intel Deutschland Gmbh Determination of a noise and interference covariance measure
CN104113367B (zh) * 2013-04-19 2018-03-13 上海交通大学 混合协作多点传输系统中的反馈方法及相关的用户设备
CN105471790B (zh) 2014-08-04 2020-05-15 北京三星通信技术研究有限公司 适用于分布式天线系统的协作传输方法、基站及终端
CN105847197B (zh) * 2015-01-16 2020-03-17 中兴通讯股份有限公司 一种获取发送信号的方法和装置
US10470242B2 (en) * 2016-11-18 2019-11-05 Qualcomm Incorporated Phase compensation reference signal in NR-SS CoMP
CN108365997B (zh) * 2017-01-26 2021-12-14 华为技术有限公司 一种信息传输方法和装置
US10616839B2 (en) * 2017-04-27 2020-04-07 Qualcomm Incorporated Over-the-air phase synchronizatin for reciprocity-based comp joint transmission
CN111698005B (zh) * 2019-03-15 2022-07-29 华为技术有限公司 用于获取波束权值的方法和装置
CN112218379B (zh) * 2019-07-12 2022-03-22 中国科学院信息工程研究所 一种基于联合发送的移动通信动态干扰协调方法和系统
CN112448783B (zh) * 2019-08-30 2022-09-02 华为技术有限公司 一种数据传输的时延补偿方法、终端设备以及trp
CN115348610B (zh) * 2022-10-18 2023-03-24 成都市以太节点科技有限公司 一种毫米波多链路自适应通信方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026400A1 (en) * 2007-08-20 2009-02-26 Onlive, Inc. System and method for distributed input distributed output wireless communications
CN101483873A (zh) * 2008-12-26 2009-07-15 西安电子科技大学 一种结合小区间干扰协调的上行多点协作实现方法
CN101494491A (zh) * 2009-03-04 2009-07-29 北京邮电大学 一种多天线系统中的接收信号处理方法和装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223564A1 (de) 2002-05-27 2003-12-11 Siemens Ag Verfahren zur Übertragung von Informationen in einem Funkkommunikationssystem mit Sendestation und Empfangsstationen mit jeweils einer Antenne mit mehreren Antennenelementen und Funkkommunikationssystem
US7366089B2 (en) * 2003-10-08 2008-04-29 Atheros Communications, Inc. Apparatus and method of multiple antenna receiver combining of high data rate wideband packetized wireless communication signals
DE602004028790D1 (de) * 2003-11-11 2010-10-07 Ntt Docomo Inc Signalempfangsgerät und Empfangszeiterkennungsverfahren
US20080130674A1 (en) * 2004-04-09 2008-06-05 Messaoud Ahmed-Ouameur Method and System For Multi-User Channel Estimation in Ds-Cdma Systems
EP2017973A1 (en) 2007-07-20 2009-01-21 Lucent Technologies Inc. Method and apparatuses for selecting a subchannels subset in wireless communications network using relays
US20090122853A1 (en) * 2007-11-12 2009-05-14 Acorn Technologies, Inc. Channel tracking methods for subspace equalizers
US8050369B2 (en) * 2008-04-14 2011-11-01 Telefonaktiebolaget Lm Ericsson (Publ) System and method of receiving and processing multicommunication signals
US8520537B2 (en) * 2008-08-08 2013-08-27 Futurewei Technologies, Inc. System and method for synchronized and coordinated beam switching and scheduling in a wireless communications system
US8380240B2 (en) * 2008-11-03 2013-02-19 Texas Instruments Incorporated Enabling coordinated multi-point reception
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
CN101453438B (zh) 2008-12-11 2011-05-25 上海无线通信研究中心 提高多点协作传输效率的方法
EP2200245B1 (en) * 2008-12-19 2012-08-15 Telefonaktiebolaget L M Ericsson (publ) A receiver and a method for mobile communications
EP2211512B1 (en) * 2009-01-23 2017-12-27 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement of delay spread compensation
US8095077B2 (en) * 2009-02-05 2012-01-10 Cambridge Silicon Radio Limited Signal power estimation
US8107983B2 (en) * 2009-03-16 2012-01-31 Telefonaktiebolaget L M Ericsson Systems and method for coordinated multipoint downlink transmissions
US20100238984A1 (en) * 2009-03-19 2010-09-23 Motorola, Inc. Spatial Information Feedback in Wireless Communication Systems
US8923110B2 (en) * 2009-04-24 2014-12-30 Telefonaktiebolaget L M Ericsson (Publ) Channel state information reconstruction from sparse data
US8744014B2 (en) * 2009-04-24 2014-06-03 Mediatek Inc. Method and apparatus for coordinated MIMO signal transmission among multiple cells in wireless OFDM systems
US8830920B2 (en) * 2009-06-17 2014-09-09 Qualcomm Incorporated Resource block reuse for coordinated multi-point transmission
US8873650B2 (en) * 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
US9432164B2 (en) * 2009-10-15 2016-08-30 Qualcomm Incorporated Method and apparatus for reference signal sequence mapping in wireless communication
US8509705B2 (en) * 2009-11-02 2013-08-13 Motorola Mobility Llc Differential closed-loop transmission feedback in wireless communication systems
CN102118825B (zh) 2009-12-31 2013-12-04 华为技术有限公司 实现多点联合传输的方法、终端及系统
US20110164691A1 (en) * 2010-01-06 2011-07-07 Motorola, Inc. Closed-loop transmission feedback in wireless communication systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026400A1 (en) * 2007-08-20 2009-02-26 Onlive, Inc. System and method for distributed input distributed output wireless communications
CN101483873A (zh) * 2008-12-26 2009-07-15 西安电子科技大学 一种结合小区间干扰协调的上行多点协作实现方法
CN101494491A (zh) * 2009-03-04 2009-07-29 北京邮电大学 一种多天线系统中的接收信号处理方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599810B2 (en) 2009-12-31 2013-12-03 Huawei Technologies Co., Ltd. Method, equipment and system for implementing coordinated multi-point transmission
EP2613456A3 (en) * 2012-01-05 2013-08-21 Industrial Technology Research Institute Method and communication device for handling time offsets between communication device and transmission points
US9008712B2 (en) 2012-01-05 2015-04-14 Industrial Technology Research Institute Method and communication device for handling time offsets between communication device and transmission points
WO2016112709A1 (zh) * 2015-01-15 2016-07-21 中兴通讯股份有限公司 相干联合传输jt的实现方法和装置

Also Published As

Publication number Publication date
CN102118825A (zh) 2011-07-06
BRPI1014145A2 (pt) 2016-04-26
EP2437451A4 (en) 2012-04-04
EP2437451B1 (en) 2020-03-04
US20120093143A1 (en) 2012-04-19
US8599810B2 (en) 2013-12-03
CN102118825B (zh) 2013-12-04
EP2437451A1 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2011079655A1 (zh) 实现多点联合传输的方法、终端及系统
JP6042393B2 (ja) フレキシブルsdmaおよび干渉抑制
JP4832087B2 (ja) 無線基地局装置及び端末装置
JP5661120B2 (ja) 無線ネットワークにおけるダウンリンク・マルチユーザーmimo送信のための方法および装置
US8238496B1 (en) Multiuser multiple-input multiple-output (MU-MIMO) channel estimation for multicarrier communications
WO2013159517A1 (zh) 一种实现用户调度的用户配对方法、装置和系统
WO2009030102A1 (fr) Procédé de codage à l&#39;avance et de planification pour utilisateurs multiples et station de base pour mettre en œuvre le procédé
WO2011131117A1 (zh) 天线校准信息的上报、天线校准因子的确定方法及设备
WO2013120429A1 (zh) 一种进行天线校准的方法、系统和设备
CN111512571B (zh) 用于mimo通信系统中的信号检测的方法和装置
WO2015000306A1 (zh) 信道估计处理方法、装置和通信设备
WO2007036139A1 (fr) Pluralite de procedes de multiplexage de canaux d’antennes
US20170104611A1 (en) Channel estimation method and apparatus for use in wireless communication system
US8718167B2 (en) Method for channel estimation and feedback in wireless communication system
WO2010130101A1 (zh) 信道预编码方法、装置及系统
CN102870347B (zh) 用于mlse接收器的信道质量估计
JP5753520B2 (ja) 無線通信システム、および無線通信方法
WO2012106963A1 (zh) 干扰和噪声消除方法及装置
CN104639271B (zh) 一种下行sinr估算方法和基站
WO2012159266A1 (zh) 自适应多流波束赋形方法和基站
Bejarano et al. Scaling multi-user MIMO WLANs: The case for concurrent uplink control messages
WO2012171390A1 (zh) 一种信道信息获取和反馈方法、系统及装置
Han et al. Downlink channel estimation in FDD cell-free massive MIMO
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
Jayaram et al. Pilot Compression Analysis for Feedback Based Channel Estimation Model in FDD Massive MIMO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9912/CHENP/2011

Country of ref document: IN

Ref document number: 2010840444

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014145

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111228