WO2011079428A1 - 一种减少上行系统干扰误差的装置和方法 - Google Patents

一种减少上行系统干扰误差的装置和方法 Download PDF

Info

Publication number
WO2011079428A1
WO2011079428A1 PCT/CN2009/076138 CN2009076138W WO2011079428A1 WO 2011079428 A1 WO2011079428 A1 WO 2011079428A1 CN 2009076138 W CN2009076138 W CN 2009076138W WO 2011079428 A1 WO2011079428 A1 WO 2011079428A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
test
uplink
fitting
value
Prior art date
Application number
PCT/CN2009/076138
Other languages
English (en)
French (fr)
Inventor
尹武
Original Assignee
中兴通讯股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份公司 filed Critical 中兴通讯股份公司
Priority to PCT/CN2009/076138 priority Critical patent/WO2011079428A1/zh
Publication of WO2011079428A1 publication Critical patent/WO2011079428A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end

Definitions

  • the present invention relates to the field of mobile broadband wireless access systems, and more particularly to an apparatus and method for reducing uplink system error.
  • third-generation / fourth-generation wireless mobile communication system (3 rd, 4 th generation, 3G / 4G) as Wimax (Worldwide interoperability microwave access, full seek ⁇ ! 3 ⁇ 4 wave interoperable system) and LTE (long term evolution , Long-term evolution plan, etc. have achieved rapid development.
  • Wimax Worldwide interoperability microwave access, full seek ⁇ ! 3 ⁇ 4 wave interoperable system
  • LTE long term evolution , Long-term evolution plan, etc.
  • MIMO multiple input multiple output
  • OFDM orthogonal frequency division multiplex
  • 3G/4G communication system The performance of 3G/4G communication system is greatly deteriorated due to interference and large environmental changes, such as neighboring cell and local cell base station interference, time and frequency synchronization deviation, and terminal moving speed is large, causing Doppler frequency offset. (Doppler frequency shift ) is large, phase drift and other factors.
  • Doppler frequency shift is large, phase drift and other factors.
  • the antenna amplification unit in the base station RF receiving system may cause additional errors in the test parameters, and test and system performance of the wireless channel. It has a big impact, so it needs to be solved.
  • AIC uplink interference cancellation
  • the technical problem to be solved by the present invention is to provide a method and apparatus for reducing uplink system interference errors to reduce system performance degradation caused by external interference and system drift in the base station uplink system.
  • the present invention provides a method for reducing uplink system interference error, including: acquiring uplink data of a wireless communication system;
  • the uplink data is processed using a Grubbs criterion or a Wright criterion, and the test bad value data is extracted;
  • the fitting is performed using the up data of the culled test bad value data to obtain fitting data, and the fitting data is used to replace the test bad value data.
  • the foregoing method may further have the following feature: the uplink data refers to data of all or part of time slots except the ranging access time slot in the uplink frame; and the uplink data is performed by using a Grubbs criterion or a Wright criterion.
  • the processing includes: forming, by using a pilot of the same position of the plurality of blocks of the one or more time slots in the uplink data, a set of test data, and processing the test data.
  • using the Grubbs criterion to extract the test bad value data includes: Performing the following steps at least once:
  • Calculating the residual error and standard deviation of the test data Calculating the residual error and standard deviation of the test data; calculating the ratio of the residual error to the standard deviation, and finding the critical value in the confidence probability table according to the confidence probability and the number of test data, if the ratio of the residual error to the standard deviation is greater than the threshold, then The test data is to test the bad value data, and the test bad value data is extracted to obtain new test data.
  • the above method may also have the following features.
  • the square root operation value is obtained by calculating the Taylor series.
  • the above method may also have the following features: using the Wright criterion to extract test bad value data includes:
  • test data Calculating a mean value of the test data, determining whether the absolute value of the difference between the test data and the mean value is greater than 3 times a confidence probability, and if so, the test data is a test bad value data, and the test bad value data is extracted New test data.
  • the above method may further have the following features, the method further comprising: replacing one of one time slot or one time slot of the test bad value data with the used fitting data by using a Malikov criterion or The test data of the pilot subcarriers in the plurality of orthogonal frequency division multiplexing symbols are processed to determine whether there is a systematic error, and if so, the test data is calibrated and compensated.
  • the foregoing method may further have the following feature: the segmentation curve fitting method is used to fit the uplink data, and when the system is initialized or the mobile terminal accesses, the segmentation curve is calculated according to the information obtained by the uplink frame. Combine the data, and save the calculated curve fitting data. In the subsequent test, after the test bad value data is extracted, the saved curve fitting data is searched, and the corresponding curve fitting data is used to replace the test bad value data. .
  • the invention also provides an apparatus for reducing uplink system interference error, comprising:
  • a data acquisition module configured to acquire uplink data of the wireless communication system
  • a data culling module which uses the Grubbs criterion or the Wright criterion to process the uplink data, and rejects the test bad value data;
  • the fitting module performs fitting using the uplink data of the culled test bad value data to obtain fitting data, and replaces the test bad value data with the fitting data.
  • the data acquiring module is configured to acquire data of all or part of time slots except the ranging access time slot in the uplink frame, and one or more of the uplink data A pilot of the same position of a plurality of blocks of a time slot constitutes a set of test data;
  • the data culling module is configured to process the test data.
  • the data culling module is configured to calculate residual error and standard deviation of the test data; calculate a ratio of the residual error to the standard deviation, and find a confidence probability table according to the confidence probability and the number of test data Threshold, if residual error and standard deviation If the ratio is greater than the threshold, the test data is the test bad value data, and the test bad value data is extracted to obtain new test data.
  • the above apparatus may further have the following feature, the data culling module is configured to obtain a square root operation value by calculating a Taylor series when calculating a standard deviation.
  • the data culling module is configured to calculate an average value of the test data, and determine whether the absolute value of the difference between the test data and the average value is greater than 3 times a confidence probability, if , the test data is the test bad value data, and the test bad value data is extracted to obtain new test data.
  • the above device may further have the following features, the device further comprising a system error compensation module, wherein:
  • the system error compensation module configured to replace one or more orthogonal frequency division multiplexing in one time slot or one time slot of the test bad value data by using the used fitting data by using a Malikov criterion
  • the test data of the pilot subcarriers within the symbol are processed to determine if there is a systematic error, and if so, the test data is calibrated and compensated.
  • the fitting module is configured to fit the uplink data by using a piecewise curve fitting method, and obtain the uplink frame according to an uplink frame when the system is initialized or the mobile terminal accesses
  • the information is used to calculate the fitting data of the segmentation curve, and the calculated curve fitting data is saved.
  • the saved curve fitting data is searched, and the corresponding curve is fitted. The data replaces the test bad value data.
  • the test data can be inspected, judged and determined under a limited number of tests and reasonable algorithm complexity, and the erroneous data caused by interference and the like can be accurately and efficiently found, and the curve fitting is used.
  • Such methods replace the wrong data, which increases the suppression of system interference and improves the reliability of channel, frequency offset measurement and frequency offset compensation, and finally improves the performance of 4G system.
  • Figure 1 is a diagram of a base station uplink processing system
  • FIG. 1 Schematic diagram of the Grubbs confidence table
  • Figure 4 uplink all time slot test data
  • Figure 5 shows the first Grubbs parameter based on the test data
  • Figure 6 shows the second Grubbs parameter based on the test data
  • Figure 7 is a schematic diagram showing the comparison of the three-fitting curve data of the present invention and the original test test.
  • anti-interference technology such as data error processing has been widely used in aerospace and medical fields to solve periodic or progressive problems, but currently it is not widely used in wireless mobile communication systems.
  • the main reason is the previous data.
  • the processing power of the processing chip cannot meet the processing requirements of a huge amount of communication data.
  • the correct processing of data plays a key role in the communication system. Therefore, with the huge leap in the processing power of digital signal processing, intelligent test technology is used to identify erroneous data and to eliminate and use the method of correcting compensation data. An efficient way to eliminate interference and improve test accuracy and system performance.
  • the Wright criterion (3 CT, 3 sigma) and Grubbs (Grubbs) are two commonly used mathematical statistics methods for data discrimination.
  • the former is mainly used to test the identification of erroneous data in a large data environment, and then It is mainly used for a small number of measurements to identify erroneous data.
  • the Wright criterion and the Grubbs criterion can be combined with the 4G communication technology.
  • the Wright criterion and the Grubbs standard are widely used for test error data processing of measurement systems such as instrumentation.
  • the processing power of DSP chips has leapfrogged in recent years. And it becomes possible.
  • the invention calculates, selects and determines the interfered data by using the Grubbs and Wright criteria, and uses the interpolation method of the curve fitting to replace the erroneous data, thereby improving the estimation of the system and the compensation of the frequency offset. Accuracy, which in turn improves the performance of 4G systems. In addition, systematic errors due to drift of the system phase are handled and resolved by the Malikov law.
  • the method for reducing uplink system interference error provided by the present invention is as follows, including:
  • Step 101 Obtain data of multiple time slots in an antenna of an uplink channel.
  • Step 102 processing the data by using Grubbs and/or Wright criteria, and extracting the number of bad values tested According to (or abnormal data, error data); for the bad data of the test, the fitting method is used to obtain the fitting data, and the fitting data is used instead of the test bad value data;
  • the fitting can be performed using a three-stage curve fitting method.
  • Step 103 The test data obtained in step 102 is processed by using the Malikov criterion to determine whether there is a systematic error, and if so, the test data is calibrated and compensated.
  • test data of the pilot subcarriers in one or more orthogonal frequency division multiplexing symbols in one slot or one slot of the test bad data has been used instead of using the fitting data.
  • the Likov guidelines are processed.
  • the uplink communication MIMO system base station receiving end has m receiving antennas, which are responsible for transmitting information fed back by the independent receiving terminal, such as uplink through fast feedback (FFB)
  • the pilot data service or the sounding detection information are y(l), y(2), and y(m), respectively.
  • the total received information for the uplink channel estimation can be expressed as Where m is the number of receiving uplink antennas.
  • FIG. 1 after the uplink data received by the base station passes through a radio remote unit (RRU), fast Fourier transform (FFT) and cyclic prefix (CP) processing are performed, and then The upstream channel receives the error data processing of the data, discriminates the error test data and performs related error data correction and compensation.
  • the flow of the error data processing module can be seen in Figure 2.
  • the test data is processed through Figure 2, and then transmitted to the upstream channel estimation unit for estimation of the wireless transmission channel, frequency offset estimation and frequency offset compensation, and subsequent data extraction and level.
  • the convolutional decoding, etc., such as the Turbo decoder finally performs the calculation of the uplink error rate, and reports the downlink information transmission to the MAC layer of the base station according to the settlement result.
  • Wimax Wimax
  • each uplink subframe includes 5 to 7 transmission slots (slots), for a total of 15 or 21 OFDM symbols. Since the time slots have the same structure, the traditional test method is to use All three OFDM symbols in one uplink time slot of each receiving antenna perform channel state information (CSI) channel estimation.
  • CSI channel state information
  • the invention uses all 4 to 6 uplink time slots except for one uplink time slot occupied by Ranging in each uplink frame for channel estimation, and uses calculation and judgment to extract due to interference and the like. Error data to improve the accuracy of channel estimation.
  • each OFDM symbol of each antenna includes 6 tile structures, and each tile unit includes 4 portions using an artial usage subchannel (PUSC) OFDM pilot subcarrier for The CSI estimate, wherein the pilot subcarrier position in each tile can be divided into two parts according to time, and each part includes 2 subcarriers. Therefore, the following number of pilots in an uplink OFDM symbol is used for channel estimation:
  • PUSC artial usage subchannel
  • the uplink channel detection is performed by using a sequence autocorrelation detector with two pilot subcarriers of the same frequency in an upstream tile (conjugate multiplication, linear interpolation), and then estimating the channel by difference.
  • the frequency deviation of the characteristic and the channel characteristic are reported to the base station for frequency offset compensation using the detected frequency offset.
  • Grubbs and Wright's Law is a scheme that uses finite subtests to efficiently process error and erroneous data.
  • the core of the algorithm is the Bayesian theorem of the original mathematical statistics of the one-time test. (Bayesian) and Least Mean Square efficiently find out the bad value data that clearly deviates from the measured population.
  • Figure 2 shows a block diagram of the Grubbs algorithm, which first uses a set of test data (or test samples) consisting of pilots at the same position of each tile of one or more time slots of the communication uplink system. ⁇ y(i) ⁇ , then sort the size of the test data in ascending order (or not), and calculate the mathematical expectation of the test data (Expectation, also called mean), variance, standard deviation And the residual error and the like reflect the degree of deviation of the test data. According to the confidence level, a certain confidence probability is set and the confidence interval is obtained under this probability and the critical value ⁇ ( ⁇ , i ) in the Grubbs table or the standard deviation in the Light's law is checked.
  • the 3 ⁇ ( ⁇ ) method is used for calculation and judgment, and the test bad value data that does not conform to the normal distribution is calculated and the data is eliminated until the recursively rejects all the test bad value data. Specifically: calculating the residual error and standard deviation of the test data; The ratio of the residual error to the standard deviation is used to find the critical value in the confidence probability table according to the confidence probability and the number of test data. If the ratio of the residual error to the standard deviation is greater than the critical value, the test data is the test bad value data, and the value is removed.
  • the test bad value data gets new test data to perform the above operation one or more times.
  • the number of test data of each group is not limited in the present invention, and may be composed of data of the same position of a plurality of or all tiles in one slot, or may be data of the same position of multiple or all tiles in a plurality of slots.
  • Figure 3 shows the Grubbs confidence probability and confidence interval table, where i and ⁇ represent the number of test data and the probability of false data confidence, respectively.
  • ⁇ ( ⁇ , i ) is the Grubbs threshold.
  • the sample standard deviation S of the test data can be expressed as a standard deviation expression by Bessel: Where ⁇ is the number of tests of the test sample, that is, the number of test data. When the number of tests ⁇ is greater than 20, the test data tends to be normally distributed.
  • the average value of the test sample can be expressed as:
  • the anomaly data ⁇ ( ⁇ , a ) formula can be expressed as the ratio of the residual error to the standard deviation s:
  • the specific method of determining using the Wright criterion is: calculating a mean value of the test data, determining whether the absolute value of the difference between the test data and the mean value is greater than 3 times a confidence probability, and if so, the test data is a test bad value data , extract the test bad value data to get new test data.
  • Figure 4 is a schematic diagram showing the amplitude values of all time slot test data of the uplink frame received signal of the base station. For the sake of simplicity, only the test data of all the time slots is displayed. The figure includes setting the uplink-downlink symbol ratio to 31:15, so the uplink includes 5 time slots, removing the first time slot for the access function of the ranging terminal, and 120 of the remaining 4 time slots (12 symbols). The data is used for the detection of channel information.
  • Figure 5 is the parameter ratio curve of all the data and standard deviation obtained by calculating the residual error by equations (1) to (6), that is, the first Grubbs parameter. According to the Grubbs threshold of Fig. 3, it can be judged that since the parameter of the 41st data is 3.45, it is considered that the abnormal data is extracted. As the actual environment will contain more and stronger interference, the actual data will be significantly increased.
  • Fig. 6 is a calculation of the progressive residual error and the standard deviation after the abnormal data is extracted on the basis of Fig. 5, and the second Grubbs parameter is obtained. On the basis of this, repeat the above steps to determine the abnormal value.
  • the abnormal value is removed before the second data detection, the average data tends to be normal, and the ratio of the test data to the residual error satisfies the Grubbs parameter. Therefore, in order to ensure high-speed real-time performance of the communication system when the interference is not very serious, it is recommended to perform only the first erroneous data judgment and data culling. Of course, it is also possible to perform multiple erroneous data judgments and data culling according to system requirements until the system requirements are met.
  • t tends to zero, it indicates that there is no systematic error caused by phase drift; otherwise, it needs to perform corresponding data compensation and calibration, and report it to the radio base station system, specifically to the MAC layer of the base station, which is performed by the MAC scheduling command radio unit. Detection and phase calibration, and can compensate the system phase drift by feeding back the processing result to the baseband part of the base station in the form of phase weight feedback.
  • Fig. 7 is a schematic diagram showing the comparison of the cubic fitting curve data and the original test data of the present invention. It can be seen that under a reasonable algorithm complexity, after the test error data is discriminated, the three fitting curve data obtained by the initialization can be used for correction or substitution. In order to obtain a higher curve fitting effect, it is necessary to increase the number of iteration calculations to obtain the coefficients of the accurate cubic fitting curve.
  • Curve fitting is one of the algorithms of interpolation. Using some known data to obtain methods that are difficult to calculate or more complex data, it can be divided into piecewise straight line fitting and piecewise curve fitting. In order to ensure the accuracy of the test, the present invention uses a formula for the piecewise curve fitting, and its expression is: Considering system accuracy, real-time and computational complexity, the number of stages i is usually less than or equal to 3. In order to ensure the real-time performance of the communication system, when the system is initialized or the mobile terminal accesses, the fitting data of the segmentation curve is calculated according to the information obtained by the uplink frame, and the calculated curve fitting data is saved, for example, stored in In a memory area.
  • the 6 OFDM subcarriers of each tile in the above row frame can be obtained from the curve according to the calculation.
  • the square root value can be obtained by calculating the Taylor-level value. For example, the following Taylor series expansion method (accuracy is 10e-4) can be used. Calculate the square root in the DSP fixed-point chip:
  • the above communication frame is calculated by using m test data (OFDM subcarriers), and the remaining error parameter s in the above formula is calculated as:
  • M-1 addition, m subtraction, m+2 multiplication, where 1 pre-requisite requires 3 additions and 2 subtractions, and all multiplications and additions of equation (10) can be used in the general-purpose TI (Texas Instruments) DSP.
  • Parallel processing which can be achieved by a number of arithmetic instructions. Since the DSP chip is extremely efficient in a large number of operations in multiplication and addition, the Grubbs and Wright rules can be used for data processing in a real-time high-speed communication environment.
  • the traditional average-to-peak amplitude ratio method is used to judge the effective signal of the terminal uplink feedback, such as the sounding detection signal (when different maximum cyclic shifts are used).
  • the effective signal of the terminal uplink feedback such as the sounding detection signal (when different maximum cyclic shifts are used).
  • SINR signal-to-noise ratio
  • the error detection rate and the miss detection rate of the uplink data service data signals received by the base station or transmitted by the terminal are significantly improved. According to the simulation data up to 10%, this will make the system not work properly, and the Grubbs and Wright rules combined with the traditional detection algorithm is a better choice.
  • the Grubbs algorithm is more accurate, but the error will increase when there is more measurement data, which may be in the wireless communication system with large information processing. It can cause large delays and can be used in fixed access or low speed environments.
  • the Wright rule performs a large amount of data at a time in the entire upstream frame, with a slightly lower error accuracy but is suitable for high-speed environments. Therefore, the algorithm can be selected according to specific application conditions.
  • the invention also provides an apparatus for reducing uplink system interference error, comprising:
  • a data acquisition module configured to acquire uplink data of the wireless communication system
  • a data culling module which uses the Grubbs criterion or the Wright criterion to process the uplink data, and rejects the test bad value data;
  • the fitting module performs fitting using the uplink data of the culled test bad value data to obtain fitting data, and replaces the test bad value data with the fitting data.
  • the data acquiring module is configured to acquire data of all or part of time slots except the ranging access time slot in the uplink frame, and use the same location of multiple blocks of one or more time slots in the uplink data.
  • the pilots constitute a set of test data
  • the data culling module is configured to process the test data.
  • the data culling module is configured to calculate residual error and standard deviation of the test data; Calculating the ratio of the residual error to the standard deviation, and finding the critical value in the confidence probability table according to the confidence probability and the number of test data. If the ratio of the residual error to the standard deviation is greater than the critical value, the test data is the test bad value data, The test bad value data is obtained to obtain new test data; wherein, when calculating the standard deviation, the square root operation value is obtained by calculating the Taylor series.
  • the data culling module is configured to calculate a mean value of the test data, determine whether the absolute value of the difference between the test data and the mean value is greater than 3 times a confidence probability, and if yes, the test data is a test bad value Data, remove the test bad value data to get new test data.
  • the apparatus also includes a system error compensation module for replacing one or more orthogonal frequencies in the one time slot or one time slot of the test bad value data with the used fitting data using a Malikov criterion
  • the test data of the pilot subcarriers in the sub-multiplexed symbols are processed to determine whether there is a systematic error, and if so, the test data is calibrated and compensated.
  • the fitting data of the segmentation curve is calculated according to the information obtained by the uplink frame, and the calculated curve fitting data is saved, and in the subsequent test, after the test bad value data is removed, the search is saved.
  • the Grubbs/Wright criterion is used for the estimation data processing, and the complexity and the number of algorithms with lower complexity can be limited.
  • the test data can reduce the test bad value caused by interference and the like, thereby improving the accuracy of the channel estimation and the accuracy of the frequency offset compensation, and finally improving the performance of the communication system.

Abstract

本发明提供了一种减少上行系统干扰误差的方法,包括:获取无线通信系统上行数据;使用格拉布斯准则或莱特准则对所述上行数据进行处理,剔出测试坏值数据;使用剔出测试坏值数据的上行数据进行拟合,得到拟合数据,使用拟合数据替代所述测试坏值数据。本发明还提供了一种减少上行系统干扰误差的装置。本发明可以减少误差数据,提高系统性能。

Description

一种减少上行系统干扰误差的装置和方法
技术领域
本发明涉及移动宽带无线接入系统领域, 尤其涉及一种减少上行系统干 4尤误差的装置和方法。
背景技术
近年来, 第三代 /第四代无线移动通信系统(3rd, 4th generation, 3G/4G ) 如 Wimax( Worldwide interoperability microwave access,全 ί求! ¾波互操作系统 ) 和 LTE ( long term evolution, 长期演进计划)等获得了飞速的发展。 多天线 ( multiple input multiple output, MIMO )和正交频分复用 ( orthogonal frequency division multiplex, OFDM )技术的应用成为了无线通信系统发展的里程碑, 并使无线系统性能得到了巨大的提高。
3G/4G通信系统性能在受到干扰和环境变化较大等情况时有很大的恶 化, 如邻近小区和本小区基站干扰, 时间和频率同步偏差, 终端移动速度较 大造成多普勒频率偏移(Doppler frequency shift )较大, 相位漂移等因素。 上 行基站通信系统中以上这些问题造成上行通道接收的数据出现许多异常, 并 对通道的估测产生极大的影响, 最终导致性能的急剧恶化。
此外, 由于基站射频接收系统中尤其是 MIMO系统中, 各天线放大单元 由于内部电缆, 射频耦合器件, PCB印刷版等相位漂移, 也会引起测试参数 的附加误差, 对无线通道的测试和系统性能有较大的影响, 因此需要对此问 题进行解决。
因此接收系统中数据准确性将极为重要, 其中一种高效的方法是釆用上 行干扰消除抑制 ( adaptive interference cancellation, AIC )来减少各种干扰, 即利用基站上行通信的多个时隙内的数据业务进行数据的计算补偿和校正外 界的干扰和系统相位漂移等引起的干扰和误差。
由于干扰和系统漂移等因素的存在, 使得接收和测试的数据中存在一些 周期性或累进性误差。 在 3G/4G的上行接收系统中, 由于考虑到延时和大量 数据处理能力, 接收到的数据没有经过处理而直接用于通道的估测等。 这些 数据可能因为各种干扰和设备本身的原因而造成如测试的数据具有较大的粗 大误差, 随机误差和系统误差等, 从而严重影响了系统的测试精度和性能。 现有的无线通信系统中对此并无相应的处理方法。
发明内容
本发明所要解决的技术问题是提供一种减少上行系统干扰误差的方法和 装置, 来减小基站上行系统由于外界干扰和系统漂移引起的系统性能恶化。 为了解决上述问题, 本发明提供了一种减少上行系统干扰误差的方法, 包括: 获取无线通信系统上行数据;
使用格拉布斯准则或莱特准则对所述上行数据进行处理, 剔出测试坏值 数据;
使用剔出测试坏值数据的上行数据进行拟合, 得到拟合数据, 使用拟合 数据替代所述测试坏值数据。
进一步地, 上述方法还可具有以下特点, 所述上行数据是指上行帧中除 测距接入时隙外全部或部分时隙的数据; 使用格拉布斯准则或莱特准则对所 述上行数据进行处理包括: 将所述上行数据中一个或多个时隙多个块的相同 位置的导频构成一组测试数据, 对所述测试数据进行处理。
进一步地, 上述方法还可具有以下特点, 使用格拉布斯准则剔出测试坏 值数据包括: 执行下述步骤至少一次:
计算测试数据剩余误差和标准偏差; 计算剩余误差与标准偏差之比, 根 据置信概率和测试数据个数查找置信概率表中的临界值, 如果剩余误差与标 准偏差之比大于该临界值, 则该测试数据为测试坏值数据, 剔出该测试坏值 数据得到新的测试数据。
进一步地, 上述方法还可具有以下特点, 计算标准偏差时, 通过计算泰 勒级数得到开方运算值。 进一步地, 上述方法还可具有以下特点, 使用莱特准则剔出测试坏值数 据包括:
执行下述步骤至少一次:
计算测试数据的均值, 判断所述测试数据与所述均值的差值的绝对值是 否大于 3倍的置信概率, 如果是, 则该测试数据为测试坏值数据, 剔出该测 试坏值数据得到新的测试数据。
进一步地, 上述方法还可具有以下特点, 所述方法还包括: 使用马利科 夫准则对所述已使用拟合数据替代所述测试坏值数据的一个时隙或一个时隙 中的一个或多个正交频分复用符号内的导频子载波的测试数据进行处理, 判 断是否存在系统误差, 如果存在, 对所述测试数据进行校准和补偿。
进一步地, 上述方法还可具有以下特点, 釆用分段曲线拟合方法对所述 上行数据进行拟合, 在系统初始化或移动终端接入时, 根据上行帧获得的信 息计算分段曲线的拟合数据, 并保存计算出的曲线拟合数据, 在后续测试中, 剔出测试坏值数据后, 查找保存的所述曲线拟合数据, 使用相应的曲线拟合 数据替代所述测试坏值数据。
本发明还提供一种减少上行系统干扰误差的装置, 包括:
数据获取模块, 用于获取无线通信系统上行数据;
数据剔除模块,使用格拉布斯准则或莱特准则对所述上行数据进行处理, 剔出测试坏值数据;
拟合模块,使用剔出测试坏值数据的上行数据进行拟合, 得到拟合数据, 使用拟合数据替代所述测试坏值数据。
进一步地, 上述装置还可具有以下特点, 所述数据获取模块, 用于获取 上行帧中除测距接入时隙外全部或部分时隙的数据, 并将所述上行数据中一 个或多个时隙多个块的相同位置的导频构成一组测试数据;
所述数据剔除模块, 用于对所述测试数据进行处理。
进一步地, 上述装置还可具有以下特点, 所述数据剔除模块, 用于计算 测试数据剩余误差和标准偏差; 计算剩余误差与标准偏差之比, 根据置信概 率和测试数据个数查找置信概率表中的临界值, 如果剩余误差与标准偏差之 比大于该临界值, 则该测试数据为测试坏值数据, 剔出该测试坏值数据得到 新的测试数据。
进一步地, 上述装置还可具有以下特点, 所述数据剔除模块, 用于在计 算标准偏差时, 通过计算泰勒级数得到开方运算值。
进一步地, 上述装置还可具有以下特点, 所述数据剔除模块, 用于计算 测试数据的均值, 判断所述测试数据与所述均值的差值的绝对值是否大于 3 倍的置信概率, 如果是, 则该测试数据为测试坏值数据, 剔出该测试坏值数 据得到新的测试数据。
进一步地, 上述装置还可具有以下特点, 所述装置还包括系统误差补偿 模块, 其中:
所述系统误差补偿模块, 用于使用马利科夫准则对所述已使用拟合数据 替代所述测试坏值数据的一个时隙或一个时隙中的一个或多个正交频分复用 符号内的导频子载波的测试数据进行处理, 判断是否存在系统误差, 如果存 在, 对所述测试数据进行校准和补偿。
进一步地, 上述装置还可具有以下特点, 所述拟合模块, 用于釆用分段 曲线拟合方法对所述上行数据进行拟合, 在系统初始化或移动终端接入时, 根据上行帧获得的信息计算分段曲线的拟合数据, 并保存计算出的曲线拟合 数据, 在后续测试中, 剔出测试坏值数据后, 查找保存的所述曲线拟合数据, 使用相应的曲线拟合数据替代所述测试坏值数据。
釆用本发明所述方法和装置, 可以在有限次的测试下和合理的算法复杂 度来检验、 判断和决策测试数据, 准确高效地发现由干扰等引起的错误数据, 并釆用曲线拟合等方法替代错误的数据, 从而增加了对系统干扰的抑制和提 高了通道、 频偏测量及频偏补偿的可靠性, 最终提高了 4G系统的性能。 附图概述
图 1基站上行处理系统图;
图 2错误数据判断处理图;
图 3格拉布斯置信度表示意图; 图 4上行全部时隙测试数据;
图 5根据测试数据得出的第一次格拉布斯参数;
图 6根据测试数据得出的第二次格拉布斯参数;
图 7是本发明三次拟合曲线数据和原始测试测试比较示意图。
本发明的较佳实施方式
目前数据误差处理检测 ( gross error processing )等抗干扰技术已广泛应 用在航空航天及医药等领域来解决周期性或累进性问题, 但目前在无线移动 通信系统中应用不多, 主要原因是以前数据处理芯片的处理能力无法满足通 信巨大的数据量的处理要求。 数据的处理正确与否对通信系统起到了关键作 用, 因此随着数字信号处理( digital signal processing )处理能力的巨大飞跃, 利用智能测试技术甄别错误数据并予以剔出和釆用修正补偿数据方法成为一 种消除干扰提高测试精度和系统性能的高效途径。
莱特准则 ( 3 CT , 3 sigma )和格拉布斯准则 ( Grubbs )是两种常用的用于 进行数据甄别的数理统计方法, 前者主要用于测试数据量较大的环境下错误 数据的甄别, 而后者主要用于少量次测量来甄别错误数据。 根据通信系统不 同应用环境的特点, 可将莱特准则和格拉布斯准则与 4G通信技术相结合。 莱特准则和格拉布斯准则广泛用于仪器仪表等测量系统的测试误差数据处 理,但由于无线通信系统的复杂性,实时性及数据处理能力,直到近年来 DSP 芯片处理能力获得了飞跃性的发展而变得可能。
本发明通过釆用格拉布斯和莱特准则来计算、 选择和确定受干扰数据并 予以剔出, 并釆用曲线拟合的插值方法进行错误数据的替代, 提高系统的估 测和频偏补偿的准确性, 进而提高 4G 系统的性能。 此外, 还通过马利科夫 法则处理和解决由于系统相位等漂移引起的系统误差。
本发明提供的减少上行系统干扰误差的方法如下, 包括:
步骤 101 , 获取上行通道的天线中的多个时隙的数据;
步骤 102, 利用格拉布斯和 /或莱特准则处理所述数据, 剔出测试坏值数 据(或称异常数据、 误差数据) ; 对于剔出的测试坏值数据, 釆用拟合方法 得到拟合数据, 使用拟合数据替代测试坏值数据;
其中, 可使用三级曲线拟合方法进行拟合。
步骤 103 , 釆用马利科夫准则对步骤 102 中得到的测试数据进行处理, 判断是否存在系统误差, 如果存在, 则对所述测试数据进行校准和补偿。
具体的, 对所述已使用拟合数据替代所述测试坏值数据的一个时隙或一 个时隙中的一个或多个正交频分复用符号内的导频子载波的测试数据使用马 利科夫准则进行处理。
图 1为基站( Base station, BS )上行处理模块图, 上行通信 MIMO系统 基站接收端设有 m个接收天线, 负责独立接收终端反馈的发送信息, 如通过 快速反馈通道( fast feedback, FFB )上行导频数据业务或 sounding检测信息, 分别为 y(l),y(2),和 y(m)。 则用于上行通道估测的总的接收信息可以表示为
Figure imgf000007_0001
其中 m为接收上行天线数目。
在图 1中,基站接收到的上行数据通过射频单元( radio remote unit, RRU ) 后,进行快速傅里叶变换 ( Fast Fourier Transfer, FFT )和祛除循环前缀 ( cyclic prefix, CP )处理, 再进行上行通道接收数据的错误数据处理, 甄别出错误测 试数据和进行相关的错误数据校正和补偿。 误差数据处理模块的流程可见图 2, 通过图 2处理完测试数据, 再传送给上行通道估测单元进行无线传输通道 的估测, 频偏的估测和频偏补偿以及随后的数据抽取和级联卷积译码等, 如 Turbo decoder译码器, 最后进行上行误码率的计算, 根据结算结果上报给基 站的 MAC层来进行下行信息传送的控制。
下面以 Wimax为例进行说明。
在 Wimax上行通信系统中 ,每个上行子帧包括 5到 7个发送时隙( slot ) , 总计 15或 21个 OFDM符号。 由于各时隙结构相同, 传统的测试方法是釆用 每个接收天线中一个上行时隙中全部三个 OFDM符号进行无线传输信道信息 ( channel status information, CSI )通道估测。 本发明釆用每个上行帧中除 Ranging (测距) 占用的一个上行时隙外其余全部 4到 6个上行时隙用于通道 估测 , 并通过计算和判断来剔出由于干扰等引起的误差数据来提高通道估测 的准确性。
在 Wimax系统中,每个天线的每个 OFDM符号包括 6个 tile (块 )结构 , 而每个 tile单元包括 4个部分使用子信道调制方式 ( artial usage subchannel, PUSC ) OFDM导频子载波用于 CSI估测, 其中每个 tile中导频子载波位置按 时间可分为前后两部分, 每部分包括 2个子载波。 因此一个上行 OFDM符号 中有以下的导频数目用于通道估测:
4导频 /tile*6tile/符号 =24导频子载波
在 Wimax系统中, 上行通道检测是通过在一个上行 tile下同频的两导频 子载波釆用序列自相关检测器进行相关 (共轭相乘, 线性插值) , 然后通过 差分来估测出通道特性的频率偏离差异及通道特性, 并上报给基站利用检测 出的频偏进行频偏补偿。
格拉布斯法则 (Grubbs )和莱特法则是一种利用有限次测试来高效处理 误差和错误数据的方案, 其核心是融合数学期望和迭代估算一次性交验的原 通过数理统计的贝叶斯定理(Bayesian )和最小二乘法( Least Mean Square ) 高效的找出明显偏离测定群体中的坏值数据。
图 2展示了格拉布斯算法的框图, 即首先利用通信上行系统一个或多个 时隙每个 tile 的相同位置的导频构成的一组测试数据 (或称为测试样本) {y(i)}, 再将该组测试数据的大小按升序进行排序(也可不进行排序) , 并计 算该组测试数据数学期望(Expectation, 也可称为均值), 方差(variance ) , 标准偏差( standard deviation )和剩余误差等反映测试数据偏离程度, 根据置 信度, 即设置一定置信概率并在此概率下得到置信区间及检查出格拉布斯表 中的临界值 Ν ( σ , i )或莱特法则中标准方差的 3 σ ( χ )方法来进行计算和 判断, 计算出不符合正态分布的测试坏值数据并将该数据剔除, 直到递推将 所有测试坏值数据剔除。 具体为: 计算测试数据剩余误差和标准偏差; 计算 剩余误差与标准偏差之比, 根据置信概率和测试数据个数查找置信概率表中 的临界值, 如果剩余误差与标准差之比大于该临界值, 则该测试数据为测试 坏值数据, 剔出该测试坏值数据得到新的测试数据执行上述操作一次或多多 次。每组测试数据的个数本发明不作限定, 可以为一个时隙内多个或全部 tile 的相同位置的数据构成, 也可以为多个时隙内多个或全部 tile 的相同位置的 数据构成。
图 3为格拉布斯置信概率和置信区间表, i和 σ分别表示测试数据的次数 及错误数据置信概率。 Ν ( σ , i )为格拉布斯临界值。 考虑到通信系统的实 时性, 准确性和复杂性, 这里置信概率设置为 p = 99%, 则
σ = \ - Ρ ( 2 ) 根据贝叶斯参数估计算法, 获得置信概率公式和数据最优值, 其表达式 为:
Figure imgf000009_0001
y[i] - y[2] 其中 i为检测的数据个数。
测试数据的样本标准偏差 S可以通过贝塞尔计算标准偏差表达式表示为:
Figure imgf000009_0002
其中 η为测试样本的测试次数, 即测试数据的个数, 当测试次数 η大于 20, 测试数据更趋于正态分布。
测试样本平均值 可表示为:
Figure imgf000009_0003
异常数据 Ν ( σ , a )公式可表示为剩余误差与标准偏差 s之比:
Figure imgf000009_0004
S 根据公式(6 ) , 如果测试的数据 {y(m)}大于格拉布斯置信度中的置信概 率(fiducial Probability )和置信区间中的临界值 N ( σ , a ) , 则认为该数据 受到干扰影响引起的误差较大, 将不符合正态分布的错误数据予以剔出。 对 于剔出的错误数据, 可以釆用曲线拟合(curve fitting ) 的方法进行误差数据 的计算和替代。 对应大量测试数据时则根据莱特准则的判断标准的公式表示为:
Figure imgf000010_0001
使用莱特准则判断的具体方法为: 计算测试数据的均值, 判断所述测试 数据与所述均值的差值的绝对值是否大于 3倍的置信概率, 如果是, 则该测 试数据为测试坏值数据, 剔出该测试坏值数据得到新的测试数据。
图 4为基站上行帧接收信号的全部时隙测试数据幅度值示意图, 为简便 起见只显示了所有时隙内部分的测试数据。 该图包括设置为上下行符号比为 31 : 15 ,故上行包括 5个时隙,去除第一个时隙用于 ranging终端的接入功能, 其余 4个时隙 ( 12个符号 ) 的 120个数据用于通道信息的检测。
图 5为通过公式(1 )到 (6 )计算剩余误差得到的全部数据与标准偏差 的参数比值曲线, 即第一次格拉布斯参数。 根据图 3的格拉布斯临界值可以 判断由于第 41个数据的参数为 3.45 , 因此被认为异常数据予以剔出。 由于实 际环境中将包含更多和更强的干扰, 因而实际剔出数据将明显增多。
图 6为在图 5基础上剔出异常数据后进行的递进剩余误差和标准偏差的 计算, 得到第二次格拉布斯参数。 在此基础上重复以上步骤判断异常值。 根 据图 6可见, 由于第二次数据检测前剔出异常值, 因而平均数据更趋于正常, 测试数据与剩余误差比值满足格拉布斯参数。 因此, 通常在干扰不十分严重 时, 为保证通信系统的高速实时性, 建议只进行初次的错误数据判断及数据 剔出。 当然, 也可以根据系统需要, 进行多次错误数据判断及数据剔出直到 满足系统要求。
此外, 还可以根据马利科夫(malikov ) 准则来判断是否有因为基站射频 系统的相位漂移等因素引起的误差。 其处理过程如下, 当测试数据完成按升 序排列和进行数学期望后, 将测试数据分为前后两部分, 并按以下公式进行 是否含有因系统漂移因素如相位等引起的误差判断:
Figure imgf000011_0001
如果 t趋于零则表明无相位漂移等引起的系统误差; 反之则需要进行相 应的数据补偿和校准, 并上报给无线基站系统, 具体是上报给基站的 MAC 层, 由 MAC调度指令射频单元进行检测和相位校准, 并可以通过将处理结 果以相位权值反馈的方式反馈到基站基带部分进行系统相位漂移的补偿。
图 7为本发明三次拟合曲线数据和原始测试数据比较示意图, 可见在一 定合理的算法复杂度下, 当甄别出测试误差数据后, 可以用初始化得到的三 次拟合曲线数据进行校正或替代。 为获得较高曲线拟合效果, 需要增加迭代 计算次数来获得准确的三次拟合曲线的系数。
曲线拟合是插值的其中一种算法, 利用已知的若干数据得出不易计算或 较为复杂数据的方法, 可以分为分段直线拟合和分段曲线拟合。 为保证测试 精确度, 本发明釆用分段曲线拟合的公式, 其表达式为:
Figure imgf000011_0002
考虑到系统精度, 实时性和运算复杂度, 通常级数 i取值小于等于 3。 为保证通信系统的实时性, 在系统初始化或移动终端进行接入时, 根据 上行帧获得的信息来计算分段曲线的拟合数据, 并将计算出的曲线拟合数据 进行保存, 比如存放在某内存区内。 如上行帧中每一个 tile的 6个 OFDM子 载波根据计算可以获得曲线。 当系统釆用格拉布斯或莱特法则甄别出错误数 据后, 可以通过查找保存的曲线拟合数据, 使用相应的曲线拟合数据来替换 和校正错误的测试数据。
如图 7 所示, 我们根据以上说明釆用级数为 3的曲线拟合方法, 首先根 据基站的导频子载波的测试数据计算出曲线拟合中的 3 个系数 "1, "2, "3 , "4 , 再根据实际测试导频子载波的数目, 分别计算出一一对应真实测试导频子载 波的曲线拟合数据, 并存放在不同的存储单元中。 当釆用格拉布斯或莱特准 则检测出坏值测试数据后, 根据坏值测试数据的位置找出相应的曲线拟合数 据进行替代。
利用 DSP芯片来计算复杂度分析如下:
由于 DSP芯片主要支持定点运算, 且在公式 (4)中需要进行开方运算, 可 以通过计算泰勒级数值得到开方运算值, 例如可以利用以下泰勒级数展开方 式(精度为 10e-4)来在 DSP定点芯片中计算开方:
1 1*3 3 * 1*3*5 . 1*3*5*7 1*3*5*7*9
, = 1 h
ll + x 2 2*4 2*4*6 2*4*6*8 2*4*6*8*11 QQ^ 公式( 10 )所需要的运算量为 24次乘法 +3次加法 +2次减法。
对于整个格拉布斯算法的计算量评估如下:
如上行通信帧釆用 m个测试数据 ( OFDM子载波 )计算, 则上述公式中 剩余误差参数 s计算量为:
m-1加法, m次减法, m+2次乘法, 其中 1次开方需要 3次加法和 2次 减法, 公式(10)全部乘法和加法运算可以在通用的 TI (得克萨斯仪器) 的 DSP中并行处理, 通过若干运算指令(cycle) 即可以实现该功能。 由于 DSP 芯片在乘法和加法中的大量运算具有极大的效率, 因此釆用格拉布斯和莱特 法则可运用在实时高速通信环境中的数据处理。
在 Wimax或 LTE等系统中, 釆用传统的均峰比 ( average to peak ) 幅度 比值的方法对终端上行反馈的有效信号, 如 sounding检测信号 (不同最大循 环移位时)进行数据判断时, 随着信噪比 (signal interference and noise ratio, SINR)的降低和干扰的增强,基站接收到的或终端发送的上行数据业务数据信 号的错检测率及漏检测率明显提高。 根据仿真数据最高可达 10%, 这将使得 系统无法正常工作, 而釆用格拉布斯及莱特法则结合传统检测算法则是一个 较好的选择。 本发明所使用的测试环境设置参数见表 1。 表 1 仿真参数设置
Figure imgf000012_0001
带宽 5MHz
FFT 大小 512子载波 调制模式 PUSC
使用部分子信道
上行子信道数目 35
上行 Burst符号范围 3个付
上行时隙数目 105
BS接收天线数目 4
MS发送天线数目 1
无线通道 ITU Ped B
通过对比莱特法则和格拉布斯法则在 Wimax/LTE上行通信帧中的应用 发现, 格拉布斯算法比较精确, 但测量数据较多时误差会增大, 这样在大信 息量处理的无线通信系统中可能会造成较大的延时, 可用于固定接入或低速 环境中。 莱特法则在整个上行帧中一次进行数据量较多的运算, 误差精度略 低但可适用于高速环境。 因此可根据具体应用条件进行算法的选择。
本发明还提供一种减少上行系统干扰误差的装置, 包括:
数据获取模块, 用于获取无线通信系统上行数据;
数据剔除模块,使用格拉布斯准则或莱特准则对所述上行数据进行处理, 剔出测试坏值数据;
拟合模块,使用剔出测试坏值数据的上行数据进行拟合, 得到拟合数据, 使用拟合数据替代所述测试坏值数据。
进一步地, 所述数据获取模块, 用于获取上行帧中除测距接入时隙外全 部或部分时隙的数据, 并将所述上行数据中一个或多个时隙多个块的相同位 置的导频构成一组测试数据;
所述数据剔除模块, 用于对所述测试数据进行处理。
进一步地, 所述数据剔除模块, 用于计算测试数据剩余误差和标准偏差; 计算剩余误差与标准偏差之比, 根据置信概率和测试数据个数查找置信概率 表中的临界值, 如果剩余误差与标准偏差之比大于该临界值, 则该测试数据 为测试坏值数据, 剔出该测试坏值数据得到新的测试数据; 其中, 在计算标 准偏差时, 通过计算泰勒级数得到开方运算值。
或者, 所述数据剔除模块, 用于计算测试数据的均值, 判断所述测试数 据与所述均值的差值的绝对值是否大于 3倍的置信概率, 如果是, 则该测试 数据为测试坏值数据, 剔出该测试坏值数据得到新的测试数据。
所述装置还包括系统误差补偿模块, 用于使用马利科夫准则对所述已使 用拟合数据替代所述测试坏值数据的一个时隙或一个时隙中的一个或多个正 交频分复用符号内的导频子载波的测试数据进行处理, 判断是否存在系统误 差, 如果存在, 对所述测试数据进行校准和补偿。 在系统初始化或移动终端接入时, 根据上行帧获得的信息计算分段曲线的拟 合数据, 并保存计算出的曲线拟合数据, 在后续测试中, 剔出测试坏值数据 后, 查找保存的所述曲线拟合数据, 使用相应的曲线拟合数据替代所述测试 坏值数据。
上为本发明的较佳实施例。 当然, 本发明还可有其它多种实施例, 在不 背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本发明 作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明所附 的权利要求的保护范围。
工业实用性
在本发明中在 3G/4G等无线移动通信系统如 Wimax, LTE和 HSDPA等 系统中釆用格拉布斯 /莱特准则进行估测数据的处理, 可以通过复杂度较低的 算法复杂度和数目有限的测试数据达到减小因干扰等原因引起的测试坏值, 从而提高通道估测的精确度及频偏补偿的精度, 最终提高通信系统的性能。

Claims

权 利 要 求 书
1、 一种减少上行系统干扰误差的方法, 其中, 包括:
获取无线通信系统上行数据;
使用格拉布斯准则或莱特准则对所述上行数据进行处理, 剔出测试坏值 数据;
使用剔出测试坏值数据的上行数据进行拟合, 得到拟合数据, 使用拟合 数据替代所述测试坏值数据。
2、 如权利要求 1所述的方法,其中, 所述上行数据是指上行帧中除测 距接入时隙外全部或部分时隙的数据; 使用格拉布斯准则或莱特准则对所述 上行数据进行处理包括: 将所述上行数据中一个或多个时隙多个块的相同位 置的导频构成一组测试数据, 对所述测试数据进行处理。
3、 如权利要求 2所述的方法,其中,使用格拉布斯准则剔出测试坏值 数据包括: 执行下述步骤至少一次:
计算测试数据剩余误差和标准偏差; 计算剩余误差与标准偏差之比, 根 据置信概率和测试数据个数查找置信概率表中的临界值, 如果剩余误差与标 准偏差之比大于该临界值, 则该测试数据为测试坏值数据, 剔出该测试坏值 数据得到新的测试数据。
4、 如权利要求 3所述的方法, 其中, 计算标准偏差时, 通过计算泰勒 级数得到开方运算值。
5、 如权利要求 2所述的方法,其中,使用莱特准则剔出测试坏值数据 包括:
执行下述步骤至少一次:
计算测试数据的均值, 判断所述测试数据与所述均值的差值的绝对值是 否大于 3倍的置信概率, 如果是, 则该测试数据为测试坏值数据, 剔出该测 试坏值数据得到新的测试数据。
6、 如权利要求 2所述的方法, 其中, 所述方法还包括: 使用马利科夫 准则对所述已使用拟合数据替代所述测试坏值数据的一个时隙或一个时隙中 的一个或多个正交频分复用符号内的导频子载波的测试数据进行处理, 判断 是否存在系统误差, 如果存在, 对所述测试数据进行校准和补偿。
7、 如权利要求 1所述的方法,其中,釆用分段曲线拟合方法对所述上 行数据进行拟合, 在系统初始化或移动终端接入时, 根据上行帧获得的信息 计算分段曲线的拟合数据, 并保存计算出的曲线拟合数据, 在后续测试中, 剔出测试坏值数据后, 查找保存的所述曲线拟合数据, 使用相应的曲线拟合 数据替代所述测试坏值数据。
8、 一种减少上行系统干扰误差的装置, 其中, 包括:
数据获取模块, 用于获取无线通信系统上行数据;
数据剔除模块,使用格拉布斯准则或莱特准则对所述上行数据进行处理, 剔出测试坏值数据;
拟合模块,使用剔出测试坏值数据的上行数据进行拟合, 得到拟合数据, 使用拟合数据替代所述测试坏值数据。
9、 如权利要求 8所述的装置, 其中,
所述数据获取模块, 用于获取上行帧中除测距接入时隙外全部或部分时 隙的数据, 并将所述上行数据中一个或多个时隙多个块的相同位置的导频构 成一组测试数据;
所述数据剔除模块, 用于对所述测试数据进行处理。
10、 如权利要求 9所述的装置, 其中,
所述数据剔除模块, 用于计算测试数据剩余误差和标准偏差; 计算剩余 误差与标准偏差之比, 根据置信概率和测试数据个数查找置信概率表中的临 界值, 如果剩余误差与标准偏差之比大于该临界值, 则该测试数据为测试坏 值数据, 剔出该测试坏值数据得到新的测试数据。
11、 如权利要求 10所述的装置, 其中, 所述数据剔除模块, 用于在计 算标准偏差时, 通过计算泰勒级数得到开方运算值。
12、 如权利要求 9所述的装置, 其中,
所述数据剔除模块, 用于计算测试数据的均值, 判断所述测试数据与所 述均值的差值的绝对值是否大于 3倍的置信概率, 如果是, 则该测试数据为 测试坏值数据, 剔出该测试坏值数据得到新的测试数据。
13、 如权利要求 9所述的装置,其中, 所述装置还包括系统误差补偿模 块, 其中:
所述系统误差补偿模块, 用于使用马利科夫准则对所述已使用拟合数据 替代所述测试坏值数据的一个时隙或一个时隙中的一个或多个正交频分复用 符号内的导频子载波的测试数据进行处理, 判断是否存在系统误差, 如果存 在, 对所述测试数据进行校准和补偿。
14、 如权利要求 8所述的装置, 其中, 所述拟合模块, 用于釆用分段曲 线拟合方法对所述上行数据进行拟合, 在系统初始化或移动终端接入时, 根 据上行帧获得的信息计算分段曲线的拟合数据, 并保存计算出的曲线拟合数 据, 在后续测试中, 剔出测试坏值数据后, 查找保存的所述曲线拟合数据, 使用相应的曲线拟合数据替代所述测试坏值数据。
PCT/CN2009/076138 2009-12-28 2009-12-28 一种减少上行系统干扰误差的装置和方法 WO2011079428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/076138 WO2011079428A1 (zh) 2009-12-28 2009-12-28 一种减少上行系统干扰误差的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/076138 WO2011079428A1 (zh) 2009-12-28 2009-12-28 一种减少上行系统干扰误差的装置和方法

Publications (1)

Publication Number Publication Date
WO2011079428A1 true WO2011079428A1 (zh) 2011-07-07

Family

ID=44226108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076138 WO2011079428A1 (zh) 2009-12-28 2009-12-28 一种减少上行系统干扰误差的装置和方法

Country Status (1)

Country Link
WO (1) WO2011079428A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933388A (zh) * 2016-04-11 2016-09-07 贵州大学 一种用于植物生长监测的wsn数据分层融合方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
CN101286756A (zh) * 2008-05-29 2008-10-15 上海交通大学 空分多址系统基于最优量化误差码本的方法及装置
CN101480001A (zh) * 2006-06-29 2009-07-08 高通股份有限公司 管理空分组用于无线数据分组分发期间的分组替代

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
CN101480001A (zh) * 2006-06-29 2009-07-08 高通股份有限公司 管理空分组用于无线数据分组分发期间的分组替代
CN101286756A (zh) * 2008-05-29 2008-10-15 上海交通大学 空分多址系统基于最优量化误差码本的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933388A (zh) * 2016-04-11 2016-09-07 贵州大学 一种用于植物生长监测的wsn数据分层融合方法

Similar Documents

Publication Publication Date Title
US11695672B2 (en) Communication system determining time of arrival using matching pursuit
US8290002B2 (en) Coarse timing synchronization acquisition method in a mobile communication system
CN103701478B (zh) 干扰消除装置和接收机
CN110191071B (zh) 一种窄带物联网系统中基于信道估计的测量方法及装置
CN101155157B (zh) 基于变换域的信道估计结果处理方法与装置和接收机
CN102196486B (zh) 正交频分复用系统参考信号接收功率测量方法和装置
US20070036064A1 (en) Apparatus and method for estimating CINR in an OFDM communication system
TW201338471A (zh) 具有時域通道估計之正交分頻多工接收器
CN110149656B (zh) 无线信号覆盖测试方法及装置
CN107171988B (zh) 可见光通信中基于压缩感知的omp稀疏信道估计方法
CN101997807B (zh) 一种信道估计方法及装置
CN109639614B (zh) 针对NB_IoT广播信道进行矢量幅度误差测量的系统及方法
TWI381662B (zh) 行動台以及用以執行掃瞄程序之裝置及方法
TW201445940A (zh) 正交分頻多工系統內之非線性時域通道估記
CN109391418B (zh) 信息传输方法、装置、相关设备及计算机可读存储介质
CN103873416B (zh) 一种evm相位估计与补偿方法
CN104244341A (zh) 用于联合小区测量和系统信息识别的方法
CN112887249B (zh) 一种用于WiFi业务的相位跟踪方法和系统
CN113037590B (zh) 一种用于通信系统中的时延估计方法和装置
CN108989259B (zh) 无线综测仪窄带物理上行共享信道的时偏估计方法及系统
WO2011079428A1 (zh) 一种减少上行系统干扰误差的装置和方法
CN101621493A (zh) Ofdm的频率偏移估计的判决方法
TWI666947B (zh) 多用戶隨機存取訊號之分析方法
CN1866800A (zh) 对发射机的指标进行测试的方法和测试模型
KR101570040B1 (ko) 단일 반송파 주파수 분할 다중 접속 시스템을 위한 수신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852713

Country of ref document: EP

Kind code of ref document: A1