WO2011079355A1 - Combustor de alta eficiência e processo de craqueamento catalítico fluidizado orientado para a produção de olefinas leves - Google Patents

Combustor de alta eficiência e processo de craqueamento catalítico fluidizado orientado para a produção de olefinas leves Download PDF

Info

Publication number
WO2011079355A1
WO2011079355A1 PCT/BR2010/000297 BR2010000297W WO2011079355A1 WO 2011079355 A1 WO2011079355 A1 WO 2011079355A1 BR 2010000297 W BR2010000297 W BR 2010000297W WO 2011079355 A1 WO2011079355 A1 WO 2011079355A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
combustor
high efficiency
combustion
oaq
Prior art date
Application number
PCT/BR2010/000297
Other languages
English (en)
French (fr)
Inventor
José MOZART FUSCO
Emmanuel Freire Sandes
Naiara Dos Santos Lages
Geovani Aliatti
José Geraldo Furtado Ramos
Ricardo Serfaty
Nelson Patricio Junior
Original Assignee
Petróleo Brasileiro S.A.- Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A.- Petrobras filed Critical Petróleo Brasileiro S.A.- Petrobras
Priority to JP2012545027A priority Critical patent/JP6147503B2/ja
Priority to CN201080053849.5A priority patent/CN102639936B/zh
Priority to EP10840231.4A priority patent/EP2520856B1/en
Priority to US13/511,316 priority patent/US9089839B2/en
Publication of WO2011079355A1 publication Critical patent/WO2011079355A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1863Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/708Coking aspect, coke content and composition of deposits
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention is in the field of processes for producing light olefins in fluidized bed catalytic cracking units and is applicable to processes in which the thermal energy produced during catalyst reactivation by coke combustion is insufficient to meet the energy demand of the coke. converter. More specifically, the present invention describes a high efficiency combustor capable of providing heat to the fluid catalytic cracking process for the production of light olefins.
  • Petrochemical FCC is a fluidized bed catalytic cracking process oriented to the production of light olefins (ethylene and propylene), which has as characteristics: the use of cargo comprising low boiling hydrocarbons (diesel range), catalyst inventory highly selective, with high proportion of Pentasil family zeolite mixed with type Y zeolite, elevated reaction temperature in a riser reactor; and a quenching section 1 ⁇ 4 above the reactor load feed section.
  • the coke burned in the regenerator to recover catalyst activity and generate process energy, only reaches between 5% and 20% of the total energy required, requiring continuous heat addition to the process to maintain the energy balance. of the converter.
  • the process for the supply of energy is via combustion of a oil in the fluidized catalyst bed of the combustor (regenerator).
  • the object of the present invention is a process in which catalyst regeneration is performed within a high efficiency combustor, the main energy source for the process, in order to avoid problems such as hot spots in the fluidized catalytic bed of the catalyst. combustion or afterburning in the diluted bed phase, which can cause irreversible catalyst deactivation and damage to internal combustion equipment.
  • the cargo comprises hydrocarbons in the diesel range, whether or not added with heavy hydrocarbon residues, in addition to the generation of products such as fuel gas, LPG, cracked naphtha, light and heavy oils, with the formation of a carbonaceous deposit or coke on the catalyst surface.
  • the reaction is conducted on a catalyst consisting mostly of type Y zeolite in a riser tubular reactor.
  • the catalyst When significant amounts of coke are deposited on the catalyst, the catalyst loses activity and selectivity, leading to a lower yield of desired products such as LPG and cracked naphtha. Thus, at the end of cracking reactions inside the riser, the catalyst has its catalytic surface blocked by coke deposition, requiring reactivation. On the other hand, the reaction section needs energy to vaporize the liquid charge and to supply the catalytic cracking endothermic reactions.
  • EP 1285042 teaches a method for introducing torch-oil and sufficient air for torch-oil combustion into an upstream transfer line, wherein the line diameter is increased to accommodate the feed rate increase. combustion air, trying to minimize the damaging results of the use of "torch-oil" directly in the regenerator.
  • US Patent 7,153,479 discloses a method for removing catalyst from the effluent stream of an FCC process for the production of light olefins. Catalyst removal is preferably by the addition and recirculation of fuel oil in a cooling tower, and the flushing of the catalyst fines from the effluent gases, contemplating the recovery of the catalyst in fuel oil through the formation of a sludge (" slurry oil ").
  • this slurry oil allows to supply the thermal balance of FCC units for the production of light olefins, where coke production is insufficient to maintain the thermal balance.
  • the present invention relates a process for performing the complete burning of oil within a fluidized bed, in order to maintain the spent catalyst regeneration conditions and to meet the thermal demand of the conversion section of an FCC aimed at the production of light olefins. in a riser with or without a quenching section, avoiding the problems of hot spots or hot spots in the bed and afterburning in the dilute phase of the combustor and the undesirable consequences thereof.
  • the present invention relates to a high efficiency combustor and a fluidized bed catalytic cracking process for the production of light olefins.
  • the thermal energy produced during catalyst regeneration by coke combustion is insufficient to meet the energy demand of the converter, with spent catalyst heating and regeneration being carried out within a high efficiency combustor. , in which oil combustion is the main source of energy for the process.
  • Figure 1 illustrates a process scheme for fluidized catalytic cracking or Petrochemical FCC for producing light olefins indicating the bottom and top that make up the high efficiency combustor that is part of said process.
  • Figure 2 illustrates a scheme of the high efficiency combustor that makes up the Petrochemical FCC.
  • Figure 3 illustrates a top view of a cross section of the lower section of the combustor containing length lances. different things.
  • Figure 4 illustrates a bottom plan view of the combustor comprising several lances placed on the radial bottom of the combustor at three different height levels of the high efficiency combustor bottom.
  • the present invention relates to a high efficiency combustor comprising a plurality of lances, into which a heating oil (OAQ) is injected, the combustion of which is capable of complementing the energy demand of an FCC unit.
  • OAQ heating oil
  • combustion of such oil is performed in such a way as to prevent the formation of hot spots concentrated within the fluidized bed of the combustor and in the afterburning phase, minimizing catalyst deactivation. and the risk of damage to internal combustion equipment.
  • Another aspect of the invention is a fluid catalytic cracking process directed towards the production of light olefins, or Petrochemical FCC, wherein the reactions proceed in a larger upstream Pentasil zeolite-containing catalyst containing riser or reactor. , in admixture with type Y zeolite, whether or not exchanged with rare earths, as solid particles.
  • a high efficiency combustor is employed for maintaining the thermal balance as well as promoting catalyst regeneration.
  • a catalyst consisting mostly of a Pentasil family zeolite in admixture with a smaller part of type Y zeolite, having low carbon or coke content from the combustor (1), and heated to a temperature above 700 ° C, feeds the bottom of the base of a riser or riser tubular reactor (2). Above this a water vapor stream (3) is introduced to promote turbulent fluidization and dragging of the A heated stream of light hydrocarbons in the diesel range or a heavier hydrocarbon charge (4) is fed through a radial atomizer assembly using water vapor as the atomizing fluid.
  • the finely dispersed filler (4) vaporizes upon contact with the catalyst initiating cracking reactions and product generation.
  • a quenching or quenching fluid (5) is fed to 1 ⁇ 4 of the riser (2) above the load injection point (4).
  • the product mixture and deactivated catalyst passes through a cyclone system (6) to separate the gaseous products (7) from the catalyst.
  • Effluent gaseous product (7) rich in light olefins, is fed to the product recovery section and the deactivated catalyst passes through a fluidized bed (8) within a rectifier (9) below a vessel. separator (10).
  • the deactivated catalyst is in countercurrent flow after water vapor injection (11) for the removal of adsorbed hydrocarbons.
  • the resulting catalyst containing a reduced coke deposit slightly larger than the catalyst fed to the riser base (2) is transferred in dense phase through a spent catalyst pipe or standpipe (12a) containing a sliding control valve. circulation (13a) for the combustor (1). As shown in Figure 1 the regenerated catalyst is transferred via a regenerated catalyst standpipe (12b). This standpipe is angled outside the combustion vessel (1), and contains a sliding control valve. circulation (13b).
  • the speed of the riser vapors (2) must be sufficient to ensure stable flow of the catalyst, being carried out below the load injection point (4).
  • An auxiliary steam injection called carrier steam, is used to suspend the catalyst to the load inlet nozzles (4).
  • carrier steam is used to suspend the catalyst to the load inlet nozzles (4).
  • a quenching or rapid cooling fluid (5) is injected at a ratio of 15% to 30% of the charge mass flow (4). ), in at least one point, to create a second reaction section, aiming to favor the production of light olefins by increasing catalyst circulation and at the same time by cooling, inhibiting undesirable reactions while contributing to the flow stability. of the catalyst.
  • the catalyst is reactivated by the combustion reaction of the coke with air within a turbulent flow fluidized catalytic bed (14), as shown in Figure 2.
  • the heat released only by burning the coke is insufficient to maintain the combustion and heating reactions of the catalyst and to meet the thermal need of the reaction, ie the sum of the energy of the processes comprised in the heating and vaporization of the charge, the heating of the products to the reaction temperature and the endothermic heat.
  • a heating oil (OAQ) is combusted within a combustor. (1).
  • the combustion of the heating oil is carried out smoothly and uniformly with high efficiency, avoiding hot spots inside the fluidized bed (14) and in the afterburning phase. by minimizing catalyst deactivation and the risk of damage to internal combustion equipment (1) such as cyclones (15) and internal ducts or dip-legs (16) as shown in Figure 2.
  • internal combustion equipment (1) such as cyclones (15) and internal ducts or dip-legs (16) as shown in Figure 2.
  • the combustor (1) comprises a vessel with two distinct sections, a lower section (17) and another upper section (18).
  • the lower section (17) comprises a turbulent fluidized catalytic bed (14), promoted by the passage of air and combustion products.
  • the air supply (19) performed in the lower section (17) of the fluidized catalytic bed (14) is provided by one or more pipe-grid air distributors (21). Before being fed to the pipe-grid distributors, the air is heated by passing through an oven (20).
  • the mode of operation of this bed (14) is that of turbulent fluidization regime, thus the design of the lower section (17) of the combustor (1) contemplates gas surface velocity in the range between 0.5 m / s and 1.50 m / s, preferably between 0.7 m / s and 1.30 m / s.
  • the lower section (17) of the fluidized bed (14) of the combustor (1) has catalyst inventory for maintaining the residence time of the combustion gases between 4 and 10 seconds and preferably between 5 and 8 seconds.
  • the upper section (18) above the fluidized bed (14) of the combustor (1) has a larger diameter (23) than that of the lower section (17), so as to reduce the solids load drawn into the cyclones (15), the upper section being designed to operate in a surface velocity range between 0,6 m / s and 1,10 m / s.
  • (1) passes through a heat exchanger (25) in order to reduce the viscosity to a range of 10 Cst to 15 Cst sufficiently to achieve efficient atomization of the atomizing nozzles.
  • the OAQ (24) after passing through the heat exchanger (25) is distributed through a plurality of lances (26), installed horizontally to from the periphery in the lower section (17) of the combustor vessel (1), as further illustrated in Figure 2.
  • booms (26) In order to prevent the occurrence of high temperature or hot spots, a feature of the booms (26) is that they have high efficiency dispersing nozzles that operate with low spray fluid consumption (27).
  • the (spray fluid) / (heating oil) ratio is calculated for a range of 15% to 30% by weight of OAQ (24).
  • the spray fluid 27 used is water vapor, however, it may be replaced by another fluid, for example compressed air, without prejudice to good spray.
  • the spent catalyst from the rectifier (9) is fed into the fluidized bed (14) of the combustor (1) through a catalyst distributor (28), positioned higher than the feeder booms (26). heating oil.
  • the catalyst distributor (28) is designed to provide rapid dispersion of the spent coldest catalyst in the hot bed, avoiding the formation of dense and cold regions within the fluidized bed (14) of the combustor.
  • Figure 3 and Figure 4 show, respectively, a section of the combustor and a plan view of the various combustor lances (26).
  • the OAQ (24) is fed through a plurality of spears (26), of short (29), medium (30) and large (31) lengths.
  • the process has an annular section purge fluid (32) formed between the boom (26) and a guide tube (33) (physical boom protection).
  • Figure 4 illustrates a three-dimensional half-section longitudinal view of the lower section of the fluidized bed of the combustor (1), comprising lances (26) of small (29), medium (30) and large (31) lengths placed at the bottom radial portion. of the combustor (1) at two different levels (34) of high height of the high efficiency combustor (1).
  • a series of cyclones (6) separates the catalyst from reaction products or gaseous products (7).
  • the catalyst While promoting cracking reactions throughout the reactor, the catalyst is being deactivated by the coke deposited on it as a byproduct of the reactions.
  • the deactivated catalyst is first rectified by steam injection separating volatile hydrocarbons - products that have been entrained by the catalyst.
  • the coke deposited on the catalyst surface is burned, and then the regenerated catalyst is obtained, which returns to an elevated temperature to the reactor base, initiating a new process reaction cycle by contact with a new load introduced into the reactor (2).
  • the present invention relates to a combustor capable of completely combustion of a heating oil within the turbulent fluidized bed (14) of a combustor (1) so as to minimize hot spot formation. -spots in (14) and afterburning reactions in the dilute phase of the upper section (18) of the combustor (1).
  • heating oil feed by means of lances located on the combustor (1) of the present invention has the advantage of high simplicity in that the operation of the gas system at the reactor outlet (1) is performed independently and the operation bottom of the separating vessel (10) or rectifier (9).
  • the Petrochemical FCC converter arrangement shown in Figure 1 is of the "side-by-side” type ie the separator vessel (10) with rectifier (9) and the combustor (1) are side-by-side. side by side at different elevations.
  • the spent catalyst (12a) and regenerated catalyst (12b) standpipes are inclined and external to the combustion vessel (1).
  • Circulation control valves which are of the slide type, or
  • Slide valves (13a and 13b) are also external to the combustor (1). This type of arrangement offers the advantage of eliminating various equipment inside the combustor (1) and interfering with oil and catalyst dispersion processes.
  • the flow pattern for the turbulent fluidized bed (14) in large vessels has the following characteristics: the bubble set generated by the pipegrid air distributor (21) rises at high speed. resulting in the dragging of the dense emulsion in its surroundings forming a more central region of the vessel of high ascension velocity and low density.
  • dispersibility is, the ability to spread the dispersed phase in unit area per unit time from an arbitrary point of the catalyst bed.
  • the dispersion is proportional to the degree of fluidization, that is, higher in regions with higher surface velocity of gases and conversely, lower in dense regions with low surface velocity.
  • the OAQ (24) to be burned inside the combustor (1) is fed through a plurality of lances (26) installed in horizontal position from the periphery of the vessel, located in the lower section (17) of the fluidized catalyst bed (14). More specifically, the lances (26) are installed at elevation above the equilibrium point between coalescence and bubble breaking in the fluidized bed (14), which in the case of industrial scale unit vessels occurs at an elevation greater than 0.50 m pipe grid (21), as shown in Figure 1 and Figure 4.
  • each boom (26) At the end of each boom (26) a high efficiency spray nozzle is installed and the booms (26) have different lengths to provide full distribution of the OAQ (24) sprayed along the cross section of the combustor (1) as illustrated. in Figure 3 and Figure 4.
  • the lances (26) are comprised of a set of at least two concentric tubes, the inner for OAQ segregated feed (24) and the outer for OAQ sprinkler fluid (27), which in turn feed distinct sections of the boom spray nozzle (26).
  • Table 1 presents an example of boom arrangements considering three different regions or distribution for a plurality of OAQ booms / nozzles (24) in a combustor (1).
  • the total boom / nozzle depends on the cross-sectional area of the combustor (1), the characteristics of the fed OAQ (24) and the type of oil sprayer.
  • the feed of OAQ (24) into the turbulent fluidized bed (14) occurs in the form of a small droplet haze at an elevation above the pipegrid air distributor (21), where The turbulent fluidization process is fully established.
  • the spray nozzle is capable of spraying the OAQ (24) into droplets 30 to 100 micrometres in size and the spray of spray fluid and droplets exiting the spray nozzle are in the range of 30 m / s to 60 m. / s considering the bubble cross section at the end of the nozzle in contact with the fluidized bed.
  • OAQ combustion (24) occurs in series reaction steps, where the first step is the fastest, and hydrocarbons are converted through a series of elemental oxidation reactions in water and carbon monoxide (CO) and thereafter, the reduction of the hydrocarbon concentration occurs at the slowest step comprising oxidation of CO to C0 2.
  • the combustor (1) operates in the temperature range 700 ° C to 750 ° C and has sufficient catalyst inventory to effect total oxidation of hydrocarbons and coke to water and C0 2 within the fluidized bed (14), ensuring that the residence time of the gases within the bed (14) is longer than 5 seconds.
  • the OAQ (24) to be burned in the combustor (1) is heated by passing through a heat exchanger (25) before being fed by a plurality of lances (26), maintaining the viscosity of the OAQ (24). within the spears between 5 and 30 Centistokes, preferably between 10 and 15 Centistokes, to ensure high spray efficiency.
  • the lances (26) are inserted into a physical protection guide tube (33) and fed with a purge fluid (32) or cleaning in the annular region formed between the outer boom body (26) and the guide tube ( 33).
  • the boom spray nozzle (26) can operate with various fluids such as water vapor or air.
  • the vapor / OAQ ratio is between 0.02 and 0.50 mass / mass and preferably between 0.05 and 0.30 mass / mass.
  • the combustion air of the OAQ (24) and the coke is heated by a direct combustion gas combustion furnace, which heats the air from the blower outlet temperature to between 400 ° C and 700 ° C and preferably between 550 ° C and 650 ° C before feeding the combustion air distributor (1).
  • the air fed to the combustion for the combustion reactions is higher than necessary to meet the total combustion stoichiometry, ie all hydrocarbon material fed to the combustor (coke and oil) is transformed into water and carbon dioxide. carbon within the fluidized bed.
  • One way of specifying the above-stoichiometric air supply for the combustion process is through the parameter "excess oxygen in the combustion gases".
  • the combustion gases (22) leaving the upper section (18) of the combustor (1) to the energy recovery system therefore have an excess oxygen content of between 1% to 5.0 mole% quantified on a dry basis.
  • means are provided for removing the booms while the unit is in operation, allowing replacement of the spray nozzle in the event of a failure or a drop in performance.
  • the OAQ (24) to be used in the combustor (1) has low contaminants such as nitrogen and sulfur (less than 10 ppm) as well as metals (sodium, nickel, vanadium, iron), less than 1 ppm, minimizing the emission. pollutant gases and the contamination of the catalyst inventory with metals leading to loss of activity and catalytic selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

É descrito um combustor para atender a demanda energética de processos para produção de olefinas leves (eteno e propeno) em unidades de craqueamento catalítico em leito fluidizado. Tal combustor é responsável pela queima de óleo de aquecimento e manutenção da queima do coque depositado sobre o catalisador visando o aquecimento do mesmo para atender a demanda energética da reação, sendo a combustão realizada de maneira suave e uniforme, evitando a formação de pontos de elevada temperatura no interior do leito catalítico (hot spots) e na fase diluída após a combustão (afterburning), o que acaba por minimizar a desativação do catalisador e o risco de danos aos equipamentos internos do combustor.

Description

COMBUSTOR DE ALTA EFICIÊNCIA E PROCESSO DE
CRAQUEAMENTO CATALÍTICO FLUIDIZADO ORIENTADO PARA A PRODUÇÃO DE OLEFINAS LEVES
CAMPO DE APLICAÇÃO
A presente invenção se insere no campo de processos para produção de olefinas leves em unidades de craqueamento catalítico em leito fluidizado, sendo aplicável a processos nos quais a energia térmica produzida durante a reativação do catalisador pela combustão de coque é insuficiente para atender à demanda energética do conversor. Mais especificamente, a presente invenção descreve um combustor de alta eficiência capaz de fornecer calor para o processo de craqueamento catalítico fluido destinado à produção de olefinas leves.
FUNDAMENTOS DA INVENÇÃO
O FCC petroquímico é um processo de craqueamento catalítico em leito fluidizado orientado para a produção de olefinas leves (eteno e propeno), que possui como características: o emprego de carga compreendendo hidrocarbonetos de baixo ponto de ebulição (faixa do diesel), inventário de catalisador altamente seletivo, com elevada proporção de zeólita da família do Pentasil em mistura com zeólita tipo Y, temperatura de reação elevada em um reator tipo "riser"; e uma seção de "quenching" ¼ acima da seção de alimentação de carga do reator.
Esta combinação de condições de processo resulta em elevada demanda de energia pela seção de reação e produção de uma parcela muito pequena de coque sobre o catalisador.
Como consequência, o coque queimado no regenerador, para recuperar a atividade do catalisador e gerar energia para o processo, alcança apenas entre 5% a 20% da energia total requerida, sendo necessária a adição contínua de calor ao processo para manter o balanço de energia do conversor.
O processo para o fornecimento de energia é via combustão de um óleo no leito catalítico fluidizado do combustor (regenerador).
Portanto, é objeto da presente invenção um processo em que a regeneração do catalisador é realizada no interior de um combustor de alta eficiência, principal fonte de energia para o processo, de modo a evitar problemas como a ocorrência de pontos quentes no leito catalítico fluidizado do combustor ou no pós-queima na fase diluída do leito, que podem causar desativação irreversível do catalisador e danos aos equipamentos internos do combustor.
TÉCNICAS CORRELACIONADAS
Em um processo de craqueamento catalítico em leito fluidizado
(FCC) convencional, a carga compreende hidrocarbonetos na faixa do gasóleo, adicionada ou não de resíduos pesados de hidrocarbonetos, além da geração de produtos como gás combustível, GLP, nafta craqueada, óleos leve e pesado, havendo a formação de um depósito carbonáceo ou coque sobre a superfície do catalisador. Em tais unidades de craqueamento, a reação é conduzida sobre um catalisador constituído em sua maior parte de zeólita tipo Y em um reator tubular tipo "riser".
Quando ocorre a deposição de quantidades significativas de coque sobre o catalisador, este perde atividade e seletividade, levando a um menor rendimento dos produtos desejados como o GLP e a nafta craqueada. Assim, ao final das reações de craqueamento, no interior do "riser", o catalisador tem sua superfície catalítica obstruída, pela deposição de coque, necessitando de reativação. Por outro lado, a seção de reação necessita de energia para a vaporização da carga líquida e para suprir as reações endotérmicas de craqueamento catalítico.
Para reativar o catalisador, com significativo depósito de coque (catalisador gasto), este é removido continuamente da seção de reação, escoando através de um leito retificador para remoção de hidrocarbonetos ad sorvi dos, através de injeção de vapor d'água, e deste para um regenerador, onde ocorre a reativação, propriamente dita, através da reação de combustão do coque com um gás contendo oxigénio no interior de um leito fluidizado. Tradicionalmente utiliza-se ar ou ar enriquecido com oxigénio para promover às reações de combustão do coque. Através deste procedimento, além de recuperar a atividade catalítica gera-se energia suficiente para promover a reativação do catalisador, além de suprir as perdas energéticas da regeneração (energia necessária ao aquecimento do ar e dos produtos de combustão), e paralelamente suprir a demanda energética da seção de reação.
Quando a demanda energética do "riser" e as perdas energéticas do regenerador são iguais à quantidade de calor liberado pela queima do coque, diz-se que a unidade está em equilíbrio de balanço térmico. Em casos de processamento de cargas com elevado teor de resíduo, a formação de depósito de coque é significativamente maior e, deste modo, o calor gerado pela combustão do mesmo é superior à demanda térmica total do conversor, sendo necessária a remoção do calor excedente do regenerador para restabelecimento do equilíbrio do balanço térmico, como por exemplo, através do emprego de trocadores de calor externamente ao regenerador para resfriar o catalisador.
Ainda no processo convencional, ou de cargas com elevado teor de resíduo, quando nas etapas transiente ou de curta duração como, por exemplo, durante os preparativos de partida da unidade, ou ainda em operação normal, em casos em que a geração de coque não é suficiente para atender à demanda térmica, pode se utilizar a injeção de "torch-oil", isto é, uma quantidade de óleo é alimentada para o interior do leito do regenerador, e pela sua queima produz energia para atender a demanda térmica do conversor. No entanto, a simples injeção de "torch-oil", no leito do regenerador, através de um bocal ou mesmo através de uma pluralidade de bocais, resulta em pontos locais com elevada temperatura, provocando desativação irreversível do catalisador e levando a problemas de tensão térmica nos internos do regenerador, podendo causar danos aos mesmos, ou combinação de ambos os efeitos.
A combustão contínua de óleo no interior de um leito catalítico fluidizado turbulento de FCC apresenta extrema complexidade técnica, constituindo um ponto crítico na realização deste processo, pois o não atendimento a critérios específicos de desempenho resulta em impactos negativos na confiabilidade operacional e na rentabilidade da unidade.
Atualmente, encontram-se descritos na literatura métodos alternativos para fornecer energia ao leito do regenerador de modo a restabelecer o balanço térmico em unidades de FCC.
A patente US 3,966,587 ensina a misturar intimamente óleo ao catalisador gasto em uma linha de transferência do retificador para o regenerador, escoando a mistura pelo efeito da gravidade. De acordo com este método, a combustão conjunta do óleo e depósitos de coque no catalisador evita o problema de formação de pontos quentes no leito do regenerador e as consequências daí advindas.
A patente EP 1285042 ensina um método para introduzir "torch-oil" e ar suficiente para a combustão do "torch-oil" em uma linha de transferência ascendente, em que o diâmetro da linha é aumentado para acomodar o aumento de velocidade provocado pela alimentação de ar de combustão, buscando minimizar os resultados danosos do emprego do "torch-oil" diretamente no regenerador.
Assim, as patentes US 3,966,587 e EP 1285042 ensinam como corrigir o desequilíbrio do balanço térmico em unidades convencionais de FCC, evitando as desvantagens do emprego direto de "torch-oil" no leito do regenerador. No entanto, tais documentos não apresentam uma solução para propiciar a distribuição da emulsão de catalisador gasto e óleo vaporizado ou adsorvido no catalisador, ao longo da seção transversal do regenerador, e dos produtos de combustão incompleta, de forma a propiciar um bom contato da emulsão e gases remanescentes com o oxigénio no leito favorecendo a queima completa do "torch oil" no interior do leito. Devido às restrições de velocidade e de temperatura local, estes métodos são aplicáveis apenas para condições de pequeno desequilíbrio térmico na unidade, isto é, para condições que necessitam de quantidade pequena ou moderada de "torch-oil".
A patente US 7,153,479 relata um método para remover catalisador da corrente de produtos efluentes de um processo de FCC para a produção de olefinas leves. A remoção do catalisador ocorre, preferencialmente, pela adição e recirculação de óleo combustível em uma torre de resfriamento, e com a lavagem dos finos de catalisador dos gases efluentes, contemplando a recuperação do catalisador em óleo combustível, através da formação de uma lama ("slurry-oil").
A formação desta lama ("slurry-oil") permite suprir o balanço térmico de unidades de FCC para a produção de olefinas leves, em que a produção de coque é insuficiente para manter o balanço térmico.
No entanto, o método ensinado na patente US 7,153,479 não propicia meios para realizar a combustão completa do "slurry oil" no leito de catalisador. Neste caso, há a saída de produtos de combustão incompleta do leito, assim como oxigénio não reagido, favorecendo, desta forma, a pós-queima (afterburning) na região de fase diluída, com significativo aumento da temperatura local, concorrendo para a desativação irreversível do catalisador elutriado, assim como, danos aos equipamentos internos do regenerador.
O processo de combustão contínua de óleo, no interior de um leito fluidizado turbulento de catalisador de FCC, constitui um grande desafio, pois apresenta extrema complexidade técnica para o atendimento de critérios específicos de desempenho, como por exemplo, a combustão completa do óleo no interior do leito fluidizado. Em caso de combustão incompleta no leito pós-combustão (afterburning), resulta em queima parcial dos hidrocarbonetos na fase diluída acima do leito, implicando em aumento significativo da temperatura local impondo severos danos aos equipamentos internos ou ciclones assim como desativação irreversível ao catalisador que, pelo fenómeno de elutriação, é arrastado do leito em grande quantidade.
Assim, a presente invenção relata um processo para realização da queima completa de óleo no interior de um leito fluidizado, visando manter as condições de regeneração do catalisador gasto e suprir a demanda térmica da seção de conversão de um FCC voltado para a produção de olefinas leves, em "riser" provido ou não de seção de "quenching", evitando os problemas de pontos quentes ou "hot spots" no leito e "afterburning" na fase diluída do combustor e as consequências indesejáveis daí advindas.
SUMÁRIO
De um modo amplo, a presente invenção trata de um combustor de alta eficiência e um processo de craqueamento catalítico em leito fluidizado destinado à produção de olefinas leves.
No processo de craqueamento catalítico objeto da presente invenção, a energia térmica produzida durante a regeneração do catalisador pela combustão do coque é insuficiente para atender a demanda energética do conversor, sendo o aquecimento e regeneração do catalisador gasto realizados no interior de um combustor de alta eficiência, no qual a combustão de óleo é a principal fonte de energia para o processo.
BREVE DESCRIÇÃO DOS DESENHOS
A Figura 1 ilustra um esquema do processo para craqueamento catalítico em leito fluidizado ou FCC Petroquímico para produção de olefinas leves indicando a parte inferior e a parte superior que compõem o combustor de alta eficiência que faz parte do dito processo.
A Figura 2 ilustra um esquema do combustor de alta eficiência que compõe o FCC Petroquímico.
A Figura 3 ilustra uma vista superior de um corte da seção transversal da seção inferior do combustor contendo lanças de comprimen- tos diferentes.
A Figura 4 ilustra uma vista em planta da seção inferior do combustor compreendendo diversas lanças colocadas na parte radial do fundo do combustor em três níveis diferentes de altura do fundo do combustor de alta eficiência.
DESCRIÇÃO DETALHADA
A presente invenção trata de um combustor de alta eficiência, compreendendo uma pluralidade de lanças, por onde é injetado um óleo de aquecimento (OAQ), cuja combustão é capaz de complementar a demanda energética de uma unidade de FCC.
A combustão de tal óleo é efetuada de modo a evitar a formação de pontos concentrados de elevada temperatura ("hot spots") no interior do leito fluidizado do combustor e na fase diluída após a combustão ("afterburning"), minimizando a desativação do catalisador e o risco de danos aos equipamentos internos do combustor.
Outro aspecto da invenção é um processo de craqueamento catalítico fluido voltado para a produção de olefinas leves, ou FCC Petroquímico, em que as reações se processam em um reator tubular de fluxo ascendente ou "riser" sobre catalisador contendo zeólita tipo Pentasil, em maior proporção, em mistura com zéolita tipo Y trocada ou não com terras raras, na forma de partículas sólidas. Em tal processo, um combustor de alta eficiência é empregado para manutenção do balanço térmico, além de promover a regeneração do catalisador.
Conforme ilustrado na Figura 1 , um catalisador constituído em sua maior parte por uma zeólita da família Pentasil em mistura com uma menor parte de zeólita tipo Y, apresentando baixo teor de composto de carbono ou coque proveniente do combustor (1), e aquecido em temperatura superior a 700°C, alimenta a parte inferior da base de um reator tubular de fluxo ascendente ou riser (2). Acima deste é introduzida uma corrente de vapor d'água (3) para promover a fluidização turbulenta e arraste do catalisador e na sequência é alimentada uma corrente aquecida de hidrocarbonetos leves na faixa do diesel ou de uma carga (4) de hidrocarbonetos mais pesada, através de um conjunto de atomizadores radiais que utiliza vapor d'água como fluido de atomização.
A carga (4) finamente dispersa vaporiza ao entrar em contato com o catalisador dando início às reações de craqueamento e a geração de produtos. Com o objetivo de aumentar a conversão e seletividade para olefinas leves, um fluido de resfriamento rápido ou quenching (5) é alimentado a ¼ do riser (2) acima do ponto de injeção da carga (4).
As reações de craqueamento continuam a ocorrer na seção superior da injeção do quenching (5) que opera em temperatura igual ou superior a 580°C.
A mistura de produtos e catalisador desativado passa através de um sistema de ciclones (6) para a separação dos produtos gasosos (7) do catalisador.
O produto gasoso (7) efluente, rico em olefinas leves, é alimentado para a seção de recuperação de produtos e o catalisador desativado passa através de um leito fluidizado (8) no interior de um retificador (9) que se encontra abaixo de um vaso separador (10).
O catalisador desativado se encontra em fluxo contracorrente após injeção de vapor d'água (11), para a remoção de hidrocarbonetos adsorvidos.
O catalisador resultante, contendo um depósito reduzido de coque, ligeiramente superior ao do catalisador alimentado na base do riser (2) é transferido em fase densa, através de uma tubulação ou "standpipe" de catalisador gasto (12a) contendo uma válvula corrediça de controle de circulação (13a) para o combustor (1). Conforme arranjo da Figura 1 o catalisador regenerado é transferido através de um "standpipe" de catalisador regenerado (12b). Este "standpipe" é inclinado e externo ao vaso do combustor (1 ), e contém uma válvula corrediça de controle de circulação (13b).
A velocidade dos vapores no riser (2) deve ser suficiente para garantir o escoamento estável do catalisador, sendo realizada abaixo do ponto de injeção de carga (4). Uma injeção de vapor auxiliar, denominado vapor de arraste é utilizada para suspender o catalisador até os bocais de entrada da carga (4). Assim, a carga (4) líquida injetada próximo da base do reator ou riser (2) é vaporizada e reage formando produtos, na sua maior parte vaporizados, que contribuem para o arraste das partículas de catalisador por todo o percurso no riser (2).
Na seção localizada entre ¼ e ¾ acima do ponto de introdução da carga (4) no riser (2), é injetado um fluido de resfriamento rápido ou quenching (5) na proporção entre 15% e 30% da vazão mássica da carga (4), em pelo menos um ponto, de modo a criar uma segunda seção de reação, visando favorecer a produção de olefinas leves pelo aumento da circulação de catalisador e ao mesmo tempo pelo resfriamento, inibir as reações indesejáveis e contribuindo simultaneamente para a estabilidade de escoamento do catalisador.
No combustor (1) é realizada a reativação do catalisador através da reação de combustão do coque com ar no interior de um leito catalítico fluidizado (14) de fluxo turbulento, conforme Figura 2. No entanto, o calor liberado apenas pela queima do coque é insuficiente para manutenção das reações de combustão e aquecimento do catalisador e para suprir a necessidade térmica da reação, isto é, o somatório da energia dos processos compreendidos pelo aquecimento e vaporização da carga, do aquecimento dos produtos até a temperatura de reação e do calor endotérmico de reação.
Para suprir energia para o catalisador, a manutenção da queima do coque ou reativação do catalisador e aquecimento do mesmo e para atender a demanda energética da reação de craqueamento, é realizada a combustão de um óleo de aquecimento (OAQ) no interior de um combustor (1).
A combustão do óleo de aquecimento é realizada de maneira suave e uniforme, com alta eficiência, evitando a existência de pontos com elevada temperatura ("hot spots") no interior do leito fluidizado (14) e na fase diluída após a combustão (afterburning), minimizando a desativação do catalisador e o risco de danos aos equipamentos internos do combustor (1 ), como ciclones (15) e dutos internos ou pernas dos ciclones (dip-legs) (16), conforme ilustrado na Figura 2.
Ainda segundo as ilustrações da Figura 2, o combustor (1 ) compreende um vaso com duas seções distintas, uma seção inferior (17) e outra seção superior (18).
A seção inferior (17) compreende um leito catalítico fluidizado (14) em regime turbulento, promovido pela passagem de ar e produtos de combustão.
A alimentação de ar (19) realizada na seção inferior (17) do leito catalítico fluidizado (14) é efetuada por um ou mais distribuidores de ar do tipo pipe-grid (21 ). Antes de ser alimentado aos distribuidores do tipo pipe- grid o ar é aquecido pela passagem por um forno (20). O modo de operação deste leito (14) é o de regime de fluidização turbulenta, assim, o projeto da seção inferior (17) do combustor (1 ) contempla velocidade superficial dos gases na faixa entre 0,5 m/s e 1 ,50 m/s e, preferencialmente entre 0,7 m/s e 1 ,30 m/s.
A seção inferior (17) do leito fluidizado (14) do combustor (1) possui inventário de catalisador para manutenção do tempo de residência dos gases em combustão entre 4 e 10 segundos e, preferencialmente entre 5 e 8 segundos.
Na seção superior do combustor (18) existe uma fase diluída onde a mistura de catalisador arrastado do leito fluidizado (14), pelo processo de elutriação, e o gás resultante do processo de combustão do óleo de aquecimento alimentam um sistema de ciclones (15) para a recuperação do catalisador e retorno do mesmo por dutos ou dip legs (16). Tais dutos conectam a porção inferior dos ciclones ao leito fluidizado (14), para o encaminhamento dos gases quentes ou gases de combustão (22) para um sistema de recuperação de energia.
A seção superior (18) acima do leito fluidizado (14) do combustor (1) tem diâmetro maior (23) do que o da seção inferior (17), de forma a reduzir a carga de sólidos arrastada para os ciclones (15), sendo a seção superior projetada para operar numa faixa de velocidade superficial entre 0,6 m/s e 1 ,10 m/s.
Para realizar a combustão do óleo de aquecimento no interior do leito catalítico fluidizado (14) com alta eficiência é necessário buscar a máxima cobertura da seção transversal do combustor (1 ).
A máxima cobertura é atingida com o maior número possível de pontos de alimentação, considerando a aspersão do óleo de aquecimento em uma neblina de gotas pequenas e com velocidade suficientemente elevada para propiciar uma razoável penetração do jato no interior do leito de partículas.
Esta condição é necessária para obter um eficiente contato entre a neblina de gotas de óleo de aquecimento e o catalisador aquecido em leito fluidizado turbulento e para promover à rápida vaporização das gotas e em sequência as reações de combustão do hidrocarboneto gasoso com o ar disperso em bolhas. Em função da característica turbulenta da fluidização, a energia liberada na combustão é rapidamente dissipada no interior do leito catalítico fluidizado (14).
O óleo de aquecimento (OAQ) (24), a ser queimado no combustor
(1), passa por um trocador de calor (25), com o objetivo de reduzir a viscosidade para uma faixa de 10 Cst a 15 Cst, suficientemente para obter atomização eficiente nos bicos atomizadores.
O OAQ (24) após passar pelo trocador de calor (25) é distribuído através de uma pluralidade de lanças (26), instaladas horizontalmente a partir da periferia na seção inferior (17) do vaso do combustor (1 ), como ainda ilustrado na Figura 2.
De forma a evitar a ocorrência de elevada temperatura ou pontos quentes, uma característica das lanças (26) é possuir bicos dispersores de alta eficiência que operam com um baixo consumo de fluido de aspersão (27).
A razão (fluido de aspersão) / (óleo de aquecimento) é calculada para uma faixa de 15% a 30% por peso do OAQ (24). O fluido de aspersão (27) utilizado é o vapor d'água, no entanto, pode ser substituído por outro fluido, por exemplo, ar comprimido, sem prejuízo de boa aspersão.
Ainda no presente método, o catalisador gasto proveniente do retificador (9) é alimentado no leito fluidizado (14) do combustor (1 ) através de um distribuidor de catalisador (28), posicionado em elevação superior ao das lanças (26) de alimentação do óleo de aquecimento. O distribuidor de catalisador (28) é projetado de forma a propiciar a rápida dispersão do catalisador gasto, que está mais frio, no leito quente, evitando a formação de regiões densas e frias no interior do leito fluidizado (14) do combustor
(D-
A Figura 3 e a Figura 4 apresentam, respectivamente, um corte do combustor e a vista em planta com as diversas lanças (26) do combustor.
Conforme ilustrado na vista superior, apresentada na Figura 3, o OAQ (24) é alimentado através de uma pluralidade de lanças (26), de comprimentos pequenos (29), médios (30) e grandes (31). O processo possui um fluido de purga (32) da seção anular formada entre a lança (26) e um tubo guia (33) (proteção física da lança).
A Figura 4 ilustra uma vista tridimensional de meia seção longitudinal da seção inferior do leito fluidizado do combustor (1), compreendendo lanças (26) de comprimentos pequenos (29), médios (30) e grandes (31 ) colocadas na parte radial do fundo do combustor (1 ) em dois níveis (34) diferentes de altura do fundo do combustor (1 ) de alta eficiência. No topo do riser (2), conforme Figura 1 , uma série de ciclones (6) separa o catalisador dos produtos de reação ou produtos gasosos (7). Para minimizar as perdas de catalisador para o vaso separador (10) neste processo, que resulta em elevada relação de sólidos particulados/gás no final do riser (2), assim como, para minimizar as reações secundárias de craqueamento pós-riser no interior do vaso separador (10), adota-se o sistema de ciclones conforme descrito nos pedidos de patente US 20090142241 A1 e EP 2065458 A1.
Ao mesmo tempo em que promove as reações de craqueamento ao longo do reator, o catalisador vai sendo desativando pelo coque sobre ele depositado como subproduto das reações.
Depois do reator, o catalisador desativado é primeiramente retificado pela injeção de vapor que separa os hidrocarbonetos voláteis - produtos que foram arrastados pelo catalisador.
A seguir, no combustor (1 ), o coque depositado na superfície do catalisador é queimado, sendo então obtido o catalisador regenerado, que retorna a uma temperatura elevada para a base do reator, iniciando um novo ciclo de reações do processo por contato com uma carga nova introduzida no reator (2).
A associação de condições deste processo resulta em elevada demanda de energia pela seção de reação e por outro lado, na produção de uma parcela muito pequena de coque sobre o catalisador. Como consequência, o coque queimado no combustor (1 ) para recuperar a atividade do catalisador, fornece apenas entre 5% a 20% do total de energia requerida pelo conversor, tornando-se assim necessário a adição contínua da energia para obter o equilíbrio do balanço térmico.
Assim, mais especificamente, a presente invenção trata de um combustor capaz de realizar a combustão completa de um óleo de aquecimento no interior do leito fluidizado turbulento (14) de um combustor (1 ), de forma a minimizar a formação de pontos quentes ou hot-spots no interior do leito (14) e as reações de pós-queima (afterburning) na fase diluída da seção superior (18) do combustor (1 ).
Inicialmente, devido ao emprego de sistemas de ciclones de elevada eficiência e desenvolvidos especialmente para elevada carga de particulados, na extremidade do riser, conforme descrito no pedido de patente PI 0704443-7, não existe a necessidade de recuperação dos finos de catalisador dos produtos gasosos (7) que alimentam uma seção de fracionamento e recuperação de produtos. Assim, a alimentação de óleo de aquecimento por meio de lanças localizadas no combustor (1) da presente invenção apresenta a vantagem de elevada simplicidade ao ser realizada de forma completamente independente a operação do sistema de gases na saída do reator (1 ) e a operação do fundo do vaso separador (10) ou retificador (9).
Por outro lado, o arranjo do conversor do FCC Petroquímico apresentado na Figura 1 , é do tipo "side-by-side" isto é, o vaso separador (10), com retificador (9), e o combustor (1) ficam lado a lado em elevações diferenciadas. Neste arranjo os "standpipes" de catalisador gasto (12a) e catalisador regenerado (12b) são inclinados e externos ao vaso do combustor (1).
As válvulas de controle de circulação, que são do tipo corrediça, ou
"slide valves" (13a e 13b), também são externas ao combustor (1). Este tipo de arranjo oferece a vantagem de eliminar diversos equipamentos do interior do combustor (1 ) e interferências nos processos de dispersão do óleo e do catalisador.
O padrão de escoamento para o leito fluidizado turbulento (14) em vasos de grandes dimensões, como no caso do FCC Petroquímico, apresenta as seguintes características: o conjunto de bolhas gerado pelo distribuidor de ar tipo "pipegrid" (21) ascende em alta velocidade resultando no arraste da emulsão densa em seu entorno formando uma região mais central do vaso ("core") de alta velocidade de ascensão e baixa densidade.
As bolhas se separam da emulsão no topo do leito (14) e a emulsão agora mais densa recircula do topo do leito (14) para a seção inferior (17), predominantemente através da região próxima à parede, criando uma região anular descendente ("annulus"), cujo retorno ocorre nas imediações do dispositivo de distribuição de gás ("pipegrid") (21) no fundo do leito. Este padrão de escoamento forma, portanto, duas regiões distintas no interior do leito fluidizado (14), uma fluidizada turbulenta ascendente ou "core" e uma região anular densa descendente ou "annulus". Estudos experimentais, e de simulação, constataram que o raio que delimita as regiões ascendentes do "core" e descendente no "annulus", têm em torno de 0,65 vezes o raio do vaso e aparentemente é independente do diâmetro do mesmo, para os maiores diâmetros estudados.
Outra característica importante do processo de fluidização é a capacidade de dispersão, isto é, a habilidade em espalhar a fase dispersa em unidade de área por unidade de tempo a partir de um ponto arbitrário do leito de catalisador.
A dispersão é proporcional ao grau de fluidização, isto é, maior em regiões com maior velocidade superficial dos gases e inversamente, menor em regiões densas com baixa velocidade superficial.
Estudos em leitos fluidizados de grandes dimensões, entre 6 m a 10 m, indicam que para a velocidade em torno de 1 ,0 m/s, a dispersão axial (em relação à linha de centro da coluna do leito) é cerca de 10 vezes superior à dispersão lateral ou radial. Assim uma mistura qualquer alimentada na elevação do distribuidor de ar ou "pipe grid" (21) é facilmente transportada na direção axial para o topo do leito (14) e mais lentamente na direção radial ao longo da seção transversal do vaso do combustor (1 ).
O OAQ (24) a ser queimado no interior do combustor (1 ) é alimentado através de uma pluralidade de lanças (26) instaladas em posição horizontal a partir da periferia do vaso, localizadas na seção inferior (17) do leito de catalisador fluidizado (14). Mais especificamente, as lanças (26) estão instaladas em elevação acima do ponto de equilíbrio entre a coalescência e quebra de bolhas no leito fluidizado (14), que no caso de vasos de unidades em escala industrial ocorre em elevação superior a 0,50 m do "pipe grid" (21), conforme Figura 1 e Figura 4.
Na extremidade de cada lança (26) está instalado um bico aspersor de alta eficiência e as lanças (26) possuem comprimentos diferenciados de forma a propiciar completa distribuição do OAQ (24) aspergido ao longo da seção transversal do combustor (1), conforme ilustrado na Figura 3 e Figura 4.
As lanças (26) são constituídas de um conjunto de pelo menos dois tubos concêntricos, o interno para a alimentação segregada do OAQ (24) e o externo para o fluido de aspersão (27) do OAQ (24), os quais por sua vez alimentam seções distintas do bico aspersor das lanças (26).
A Tabela 1 apresenta um exemplo de arranjos de lanças considerando três diferentes regiões ou distribuição para uma pluralidade de lanças/bicos distribuidores de OAQ (24) em um combustor (1 ).
O total de lanças/bicos de aspersão depende da área da seção transversal do combustor (1), das características do OAQ (24) alimentado e do tipo de aspersor de óleo.
TABELA 1
Raio de Área de Comprimento Nível Nível Cobertura Cobertura da lança inferior superior
m m2 m
2,0 12,2 4,0 6
3,5 27,5 2,5 24
5,4 51 ,9 0,6 30
Total de lanças no nível 30 30
Total de lanças 60 No exemplo da Tabela 1 foi considerado o emprego de um conjunto lança/bico para cada 1 ,88 m2 de seção transversal do combustor (1 ). Em razão do elevado número de lanças (26) foi adotada a distribuição em dois níveis com metade das lanças/bicos aspersores por nível. Dependendo das condições de processo este parâmetro pode variar entre uma lança/bico para cada 1 ,0 m2, no mínimo, até uma lança/bico para cada 5,0 m2 de seção transversal do combustor (1 ), no máximo.
Outra característica do presente método é que a alimentação do OAQ (24) para o interior do leito fluidizado turbulento (14) ocorre na forma de uma neblina de pequenas gotículas em uma elevação acima do distribuidor de ar tipo "pipegrid" (21 ), onde o processo de fluidização turbulenta está plenamente estabelecido. Mais especificamente o bico aspersor possui capacidade para aspergir o OAQ (24) em gotículas com tamanho entre 30 a 100 micrometros e o jato do fluido de aspersão e de gotículas que saem do bico aspersor estão com velocidade na faixa de 30 m/s a 60 m/s considerando a seção transversal da bolha na extremidade final do bico em contato com o leito fluidizado.
Reconhecidamente a vaporização rápida de líquidos em leito fluidizado é associada a gotas de pequeno tamanho, principalmente quando associado a velocidades de injeção do jato ou bolha na faixa de 30 m/s a 60 m/s. Nestas condições o processo de troca térmica é ampliado reduzindo o tempo necessário para a vaporização das gotas e do início das reações de combustão.
A combustão do OAQ (24) ocorre em etapas de reações em série, onde a primeira etapa é a mais rápida, e os hidrocarbonetos são convertidos através de uma série de reações elementares de oxidação em água e monóxido de carbono (CO) e posteriormente, com a redução da concentração de hidrocarbonetos, ocorre à etapa mais lenta que compreende a oxidação do CO para C02.
Para o presente método, o combustor (1 ) opera na faixa de tempera- tura entre 700°C a 750°C e possui inventário de catalisador suficiente para realizar a oxidação total dos hidrocarbonetos e do coque para água e C02 no interior do leito fluidizado (14), garantindo que o tempo de residência dos gases no interior do leito (14) seja superior a 5 segundos.
Em função das condições favoráveis da alimentação e distribuição do óleo ao longo da seção transversal do combustor; proporcionadas por uma fina neblina de gotículas em alta velocidade na região aerada do combustor (1 ) (core ascendente) associada à elevada turbulência do leito fluidizado, obtém-se uma elevada dispersão e troca térmica das gotas com o meio, favorecendo a rápida vaporização e queima rápida dos vapores de hidrocarbonetos do OAQ (24) ao contatar com as bolhas de ar ascendentes.
No presente método, o OAQ (24) a ser queimado no combustor (1 ) é aquecido ao passar por um trocador de calor (25) antes de ser alimentado por uma pluralidade de lanças (26), mantendo a viscosidade do OAQ (24) no interior das lanças entre 5 a 30 Centistokes, preferencialmente entre 10 a 15 Centistokes, de modo a garantir elevada eficiência de aspersão.
As lanças (26) são inseridas no interior de um tubo guia (33) de proteção física e com alimentação de um fluido de purga (32) ou limpeza na região anular formada entre o corpo externo da lança (26) e o tubo guia (33).
O bico aspersor das lanças (26) pode operar com diversos fluidos, tal como vapor d'água ou ar. Como exemplo, quando o fluido empregado é vapor d água, a proporção de vapor/OAQ está entre 0,02 e 0,50 massa/massa e, preferencialmente entre 0,05 e 0,30 massa/massa.
O ar para combustão do OAQ (24) e do coque é aquecido através de um forno de combustão direta com gás combustível, que aquece o ar da temperatura de saída do soprador para a temperatura entre 400°C e 700°C e, preferencialmente entre 550°C e 650°C, antes de alimentar o distribuidor de ar do combustor (1 ). Ainda, no presente processo o ar alimentado para o combustor para as reações de combustão é superior ao necessário para atender a estequiometria da combustão total, isto é, todo material de hidrocarboneto alimentado ao combustor (coque e óleo) são transformados em água e dióxido de carbono no interior do leito fluidizado. Uma forma de especificar a alimentação de ar acima da estequiométrica para o processo de combustão é através do parâmetro "excesso de oxigénio nos gases de combustão". Os gases de combustão (22) que saem da seção superior (18) do combustor (1 ) para o sistema de recuperação de energia, portanto, apresentam teor de excesso de oxigénio entre 1% a 5,0% molar quantificado em base seca.
No presente processo são previstos meios para remover as lanças com a unidade em operação, permitindo a substituição do bico aspersor na eventualidade de falha ou queda de "performance" do mesmo.
O OAQ (24) a ser utilizado no combustor (1 ) possui baixo teor de contaminantes como nitrogénio e enxofre (menor que 10 ppm) assim como de metais (sódio, níquel, vanádio, ferro), menor que 1 ppm, minimizando a emissão de gases poluentes e a contaminação do inventário de catalisador com metais que conduzem à perda de atividade e seletividade catalítica.
A forma e os meios de promoverem a alimentação do OAQ (24) no interior do leito fluidizado (14), junto às características do padrão de escoamento e de dispersão turbulenta do leito fluidizado de mistura; formam um conjunto de condições de processo que resultam na distribuição homogénea, por intermédio de lanças (26) de comprimentos variáveis adequadamente dispostas na seção transversal inferior do combustor, de uma neblina de pequenas gotas de óleo; propiciada por aspersores de elevada eficiência, com velocidade de jato suficientemente elevada para um eficiente contato entre as gotículas de óleo e o catalisador quente, possibilitando a vaporização rápida das gotas, e em consequência, rápido início das reações de combustão dos hidrocarbonetos em fase gasosa com o ar disperso em bolhas; em inventário de catalisador suficiente para garantir o atendimento das etapas das reações de oxidação, permitindo desta forma a completa combustão do OAQ (24) no interior do leito fluidizado (14), minimizando o risco de formação de pontos quentes e de pós-queima em fase diluída.

Claims

REIVINDICAÇÕES
1- COMBUSTOR DE ALTA EFICIÊNCIA, caracterizado por compreender um vaso com duas seções distintas, sendo uma seção inferior (17) e outra uma seção superior (18), onde a seção inferior (17) contém um leito de catalisador fluidizado turbulento (14) onde ocorre a combustão do óleo e do coque do catalisador gasto, com alimentação de ar de fluidização e queima (19) realizada na seção inferior (17) do leito fluidizado (14) através de um ou mais distribuidores tipo pipe-grid (21 ), com alimentação do óleo de aquecimento (OAQ) (24) realizada através de uma pluralidade de bicos aspersores instalados na extremidade das lanças (26) localizadas no interior da seção inferior (17) do leito fluidizado (14) acima dos distribuidores tipo pipe-grid (21), com a alimentação de catalisador gasto através de tubulação inclinada ou standpipe de catalisador gasto (12a), com a remoção do catalisador aquecido e regenerado do leito fluidizado (14) através de um standpipe de catalisador regenerado (12b) localizado na seção inferior (17) do leito fluidizado (13).
2- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por a seção inferior (17) do leito fluidizado (14) do combustor (1 ) ter diâmetro menor (23) do que o da seção superior (18), projetado para uma faixa de velocidade superficial, entre 0,5 m/s e 1 ,50 m/s e, preferencialmente entre 0,7 m/s e 1 ,30 m/s.
3- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por o OAQ (24) quente ser distribuído através de uma pluralidade de lanças (26) instaladas horizontalmente a partir da periferia na seção inferior (17) do vaso do combustor (1 ), na proporção mínima de uma lança/bico para cada 1 ,0 m2 até a proporção máxima de uma lança/bico para cada 5,0 m2 de seção transversal do vaso do combustor (1 ).
4- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por ser instalado um bico aspersor de alta eficiência na extremidade de cada lança (26) e as lanças (26) possuírem comprimentos diferenciados de forma a propiciar completa distribuição do OAQ (24) aspergido ao longo da seção transversal do combustor
(D-
COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por o combustor (1) compreender lanças (26) de comprimentos pequenos (29), médios (30) e grandes (31) colocadas na parte radial do fundo do combustor (1) em dois níveis (34) em diferentes elevações do fundo do combustor (1 ) de alta eficiência.
COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por as lanças (26) serem constituídas de um conjunto de pelo menos dois tubos concêntricos para a alimentação segregada do OAQ (24) e do fluido de aspersão (27) os quais por sua vez alimentam seções distintas do bico aspersor da lança (26).
COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por as lanças (26) serem inseridas no interior de uma um tubo guia (33) de proteção física e com alimentação de um fluido de purga (32) ou limpeza na região anular formada entre o corpo externo da lança (26) e o tubo guia (33).
COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por a seção inferior (17) do leito fluidizado (14) do combustor (1) possuir inventário de catalisador para manutenção do tempo de residência dos gases em combustão entre 4 e 10 segundos e, preferencialmente entre 5 e 8 segundos.
COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por realizar a combustão total de uma maior porção de carbono do OAQ (24) e do coque do catalisador gasto a dióxido de carbono no interior do leito fluidizado (14), na seção inferior (17) do combustor (1), a temperatura entre 700°C a 750°C. 10- COMBUSTOR DE ALTA EFICIÊNCIA, de acordò com a reivindicação 1 , caracterizado por os bicos aspersores das lanças (26) do combustor (1) empregarem um fluido de aspersão (27) em uma proporção na faixa de 15% a 30% por peso do OAQ (24).
11- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por os bicos aspersores das lanças (26) do combustor (1 ) produzirem um jato de fluido de aspersão com velocidade na faixa de 30 m/s a 60 m/s.
12- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por os bicos aspersores das lanças (26) do combustor
(1 ) empregarem vapor d'água como fluido de aspersão (27).
13- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 12, caracterizado por os bicos aspersores das lanças (26) do combustor (1 ) empregarem fluido de aspersão (27) do OAQ (24), em proporção vapor/OAQ, entre 0,02 e 0,50 massa/massa e, preferencialmente entre 0,05 e 0,30 massa/massa.
14- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por o OAQ (24) a ser utilizado no combustor (1) possuir teor nitrogénio e enxofre menor que 10 ppm e teor de metais (sódio, níquel, vanádio, ferro), menor que 1 ppm.
15- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por os bicos aspersores das lanças (26) do combustor (1) possuírem capacidade para aspergir OAQ (24) em gotículas com tamanho entre 30 a 100 micrômetros.
16- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por os gases de combustão (22) que saem da seção superior (18) do combustor (1 ) para o sistema de recuperação de energia apresentarem teor de excesso de oxigénio entre 1 % a 5,0% molar quantificado em base seca.
17- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por aquecer o ar (19), antes de alimentado ao distribuidor tipo pipe-grid (21 ) do combustor (1), através de um forno de ar (20) a temperatura entre 400°C e 700°C e, preferencialmente entre 550°C e 650°C.
18- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por, a seção superior (18) do combustor (1) compreender um sistema de ciclones (15) para a recuperação do catalisador e retorno do mesmo, ao leito fluidizado, (14) através de pernas dos ciclones ou dip legs (16) e dutos de saída para a transferência dos gases de combustão (22) para um sistema de recuperação de energia.
19- COMBUSTOR DE ALTA EFICIÊNCIA, de acordo com a reivindicação 1 , caracterizado por aquecer o OAQ (24) através de uma trocador de calor (25), antes de ser alimentado através da pluralidade de lanças (26), mantendo a viscosidade do óleo de aquecimento (24) no interior das lanças entre 5 a 30 Centistokes, preferencialmente entre 10 a 15 Centistokes.
20- PROCESSO DE CRAQUEAMENTO CATALÍTICO, caracterizado por o arranjo do conjunto total do processo desenvolvido ser do tipo "side- by-side", em que o vaso separador (10) acoplado com um retificador (9) abaixo, e o combustor (1) estarem lado a lado em elevações diferenciadas, e, neste arranjo, os standpipes de catalisador gasto (12a) e regenerado (12b) são inclinados e externos ao vaso do combustor (1 ).
21- PROCESSO DE CRAQUEAMENTO CATALÍTICO, de acordo com a reivindicação 20, caracterizado por em que a regeneração do catalisador é realizada no interior de um combustor (1) de alta eficiência.
22- PROCESSO DE CRAQUEAMENTO CATALÍTICO, de acordo com a reivindicação 20, caracterizado por o catalisador gasto proveniente do retificador (9) ser alimentado no leito catalítico fluidizado (14) do combustor (1 ) através de um distribuidor de catalisador (28), posicionado em uma elevação superior ao das lanças (26) de alimentação do óleo de aquecimento (OAQ) (24).
23- PROCESSO DE CRAQUEAMENTO CATALÍTICO, de acordo com a reivindicação 20, caracterizado por as reações ocorrerem sobre catalisador contendo zeólita tipo Pentasil, em maior proporção, em mistura com zéolita tipo Y trocada ou não com terras raras, na forma de partículas sólidas.
PCT/BR2010/000297 2009-12-28 2010-09-14 Combustor de alta eficiência e processo de craqueamento catalítico fluidizado orientado para a produção de olefinas leves WO2011079355A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012545027A JP6147503B2 (ja) 2009-12-28 2010-09-14 軽質オレフィンを製造する高性能燃焼装置及び流動接触分解方法
CN201080053849.5A CN102639936B (zh) 2009-12-28 2010-09-14 高性能燃烧设备和用于生产轻石蜡的流体催化裂化工艺
EP10840231.4A EP2520856B1 (en) 2009-12-28 2010-09-14 High-efficiency combustion device and fluidized catalytic cracking process for the production of light olefins
US13/511,316 US9089839B2 (en) 2009-12-28 2010-09-14 High-performance combustion device and fluid catalytic cracking process for the production of light olefins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0905256-9 2009-12-28
BRPI0905256 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011079355A1 true WO2011079355A1 (pt) 2011-07-07

Family

ID=44226062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000297 WO2011079355A1 (pt) 2009-12-28 2010-09-14 Combustor de alta eficiência e processo de craqueamento catalítico fluidizado orientado para a produção de olefinas leves

Country Status (5)

Country Link
US (1) US9089839B2 (pt)
EP (1) EP2520856B1 (pt)
JP (1) JP6147503B2 (pt)
CN (1) CN102639936B (pt)
WO (1) WO2011079355A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212974A (zh) * 2021-12-03 2023-06-06 中国石油化工股份有限公司 一种流化催化裂化再生器以及再生方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916851A (zh) 2013-07-11 2016-08-31 艾森生物科学公司 嘧啶衍生物作为激酶抑制剂
CN104832915B (zh) * 2015-01-30 2017-05-03 武汉凯迪工程技术研究总院有限公司 生物质循环流化床锅炉掺烧燃煤飞灰方法及其设备
US9889418B2 (en) 2015-09-29 2018-02-13 Dow Global Technologies Llc Fluidized fuel gas combustor system for a catalytic dehydrogenation process
CN108543501A (zh) * 2018-05-14 2018-09-18 中国石油大学(北京) 气固流化床反应装置
US11577237B2 (en) * 2019-12-13 2023-02-14 Uop Llc Process and apparatus for regenerating catalyst with supplemental fuel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966587A (en) 1974-12-23 1976-06-29 Texaco Inc. Method for controlling regenerator temperature in a fluidized cracking process
CA1042377A (en) * 1974-03-14 1978-11-14 Standard Oil Company Combusting flue gas in a cracking catalyst regeneration process
US4274942A (en) * 1979-04-04 1981-06-23 Engelhard Minerals & Chemicals Corporation Control of emissions in FCC regenerator flue gas
EP1285042A2 (en) 2000-04-04 2003-02-26 ExxonMobil Chemical Patents Inc. Method for maintaining heat balance in a fluidized bed catalytic cracking unit
US7153479B2 (en) 2002-10-10 2006-12-26 Kellogg Brown & Root Llc Catalyst regenerator with a centerwell
EP2065458A1 (en) 2007-11-30 2009-06-03 Petroleo Brasileiro S.A. - PETROBRAS System and process for the separation of suspensions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909392A (en) * 1972-06-12 1975-09-30 Standard Oil Co Fluid catalytic cracking process with substantially complete combustion of carbon monoxide during regeneration of catalyst
CA1093050A (en) * 1975-12-19 1981-01-06 Iacovos A. Vasalos Catalytic cracking with reduced emission of noxious gases
GB1591301A (en) * 1976-08-26 1981-06-17 British Petroleum Co Fluidised bed
US4291635A (en) * 1979-08-20 1981-09-29 The Quaker Oats Company Apparatus for feeding fluidized bed incinerator, and method of autogenic operation of same
US4422925A (en) * 1981-12-28 1983-12-27 Texaco Inc. Catalytic cracking
FR2624762B1 (fr) * 1987-12-21 1990-06-08 Total France Procede et dispositif de regeneration de catalyseur en lit fluidise
CN2458508Y (zh) * 2001-01-05 2001-11-07 中国石油天然气华东勘察设计研究院 再生器燃烧油喷嘴
US6579820B2 (en) * 2001-03-21 2003-06-17 The Boc Group, Inc. Reactor modifications for NOx reduction from a fluid catalytic cracking regeneration vessel
JP3950437B2 (ja) * 2003-07-08 2007-08-01 キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 重質油の流動接触分解法
TWI379711B (en) * 2004-11-05 2012-12-21 Grace W R & Co Catalyst for light olefins and lpg in fluidized catalytic cracking units
BRPI0803718A2 (pt) * 2008-08-29 2010-06-15 Petroleo Brasileiro Sa método para produção de olefinas leves em unidades de craqueamento catalìtico com deficiência energética
RU2529021C2 (ru) * 2009-03-31 2014-09-27 Чайна Петролеум & Кемикал Корпорейшн Способ регенерации катализатора
US8383052B2 (en) * 2010-04-16 2013-02-26 Kellogg Brown & Root Llc System for a heat balanced FCC forlight hydrocarbon feeds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1042377A (en) * 1974-03-14 1978-11-14 Standard Oil Company Combusting flue gas in a cracking catalyst regeneration process
US3966587A (en) 1974-12-23 1976-06-29 Texaco Inc. Method for controlling regenerator temperature in a fluidized cracking process
US4274942A (en) * 1979-04-04 1981-06-23 Engelhard Minerals & Chemicals Corporation Control of emissions in FCC regenerator flue gas
EP1285042A2 (en) 2000-04-04 2003-02-26 ExxonMobil Chemical Patents Inc. Method for maintaining heat balance in a fluidized bed catalytic cracking unit
US7153479B2 (en) 2002-10-10 2006-12-26 Kellogg Brown & Root Llc Catalyst regenerator with a centerwell
EP2065458A1 (en) 2007-11-30 2009-06-03 Petroleo Brasileiro S.A. - PETROBRAS System and process for the separation of suspensions
US20090142241A1 (en) 2007-11-30 2009-06-04 Petroleo Brasileiro S.A. Petrobras System and process for the separation of suspensions of spent catalysts and hydrocarbons formed in a fluid catalytic cracking unit with multiple ascending flow reaction tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212974A (zh) * 2021-12-03 2023-06-06 中国石油化工股份有限公司 一种流化催化裂化再生器以及再生方法

Also Published As

Publication number Publication date
JP2013515788A (ja) 2013-05-09
EP2520856A1 (en) 2012-11-07
US9089839B2 (en) 2015-07-28
EP2520856A4 (en) 2016-12-28
EP2520856B1 (en) 2019-11-06
JP6147503B2 (ja) 2017-06-14
US20120234727A1 (en) 2012-09-20
CN102639936A (zh) 2012-08-15
CN102639936B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
US4797262A (en) Downflow fluidized catalytic cracking system
US8173567B2 (en) Process for regenerating catalyst
WO2011079355A1 (pt) Combustor de alta eficiência e processo de craqueamento catalítico fluidizado orientado para a produção de olefinas leves
US7947230B2 (en) Apparatus for regenerating catalyst
JP6084271B2 (ja) 触媒を再生させる方法
RU2532547C1 (ru) Способ удаления воздуха из охладителя катализатора и устройство для его осуществления
WO2010074891A2 (en) Apparatus for regenerating catalyst
JP2024500074A (ja) 粒子状固体を再生するためのシステム及び方法
US8696995B2 (en) Cyclone Plenum Turbulator
US8609566B2 (en) Process for venting a catalyst cooler
US8936756B2 (en) Apparatus for venting a catalyst cooler
US8535610B2 (en) Apparatus for regenerating catalyst
US11009229B2 (en) Method for fluidizing spent catalyst
US11931728B2 (en) Process and apparatus for distributing fuel and air to a catalyst regenerator
US9587824B2 (en) Catalyst cooler for regenerated catalyst
US8815762B2 (en) Process for regenerating catalyst
BRPI1002899B1 (pt) Combustor de alta eficiência e processo de craqueamento catalítico fluido orientado para a produção de olefinas leves
US20230416172A1 (en) Apparatus and process for distributing quench fluid
WO2012044726A2 (en) Apparatus and process for regenerating catalyst

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053849.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010840231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13511316

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012545027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6556/CHENP/2012

Country of ref document: IN