WO2011078570A2 - Space-heating apparatus and space-heating method - Google Patents

Space-heating apparatus and space-heating method Download PDF

Info

Publication number
WO2011078570A2
WO2011078570A2 PCT/KR2010/009190 KR2010009190W WO2011078570A2 WO 2011078570 A2 WO2011078570 A2 WO 2011078570A2 KR 2010009190 W KR2010009190 W KR 2010009190W WO 2011078570 A2 WO2011078570 A2 WO 2011078570A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
space
heating device
heating
radiation
Prior art date
Application number
PCT/KR2010/009190
Other languages
French (fr)
Korean (ko)
Other versions
WO2011078570A3 (en
Inventor
이명신
Original Assignee
(주)디오스파마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102009059295A external-priority patent/DE102009059295B4/en
Application filed by (주)디오스파마 filed Critical (주)디오스파마
Publication of WO2011078570A2 publication Critical patent/WO2011078570A2/en
Publication of WO2011078570A3 publication Critical patent/WO2011078570A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/24Radiant bodies or panels for radiation heaters

Definitions

  • the present invention relates to heating a particular space, and relates to a space heating device comprising a heating device disposed in a restricted region of at least one of the specific spaces and a method for heating a specific space using the device.
  • a central heating system in which heating fluid is circulated through a heat transfer pipeline in a building using a central heating device such as a boiler operated by a burner.
  • a central heating device such as a boiler operated by a burner.
  • indoor heating a method for mainly raising indoor air only and a method for increasing the temperature of the floor of the room are classified.
  • the radiator is composed of a tube (tube) and fin (fin), heat transfer to the outside air (indoor air) by the temperature difference between the fluid circulating inside the radiator and the outside air (indoor air).
  • the fluid heated in the boiler circulates through the heat transfer pipes installed on the floor of the building to transfer heat to the building floor.
  • the fluid used in floor heating is water. It heats water with high specific heat and transfers heat. Water with high specific heat is difficult to warm, but conversely, heat can be stored for a long time.
  • Floor heating has some disadvantages.
  • a boiler for heating the water must be installed, and a heat transfer circulation loop must be installed inside the building.
  • oil-based boilers require a separate storage device, such as an oil tank, and gas-fired boilers require a wide variety of safety devices to prevent gas leakage.
  • heat transfer efficiency Through the heat transfer pipe, about 25-30% of the warmed fluid is lost before it reaches the heat transfer pipe installed in the building during the transfer to the required space.
  • the radiator is installed on the side wall of the space in the building, it is difficult to heat up to the floor of the building, which means that the heat transfer efficiency is reduced in the entire space.
  • heating systems such as so-called floor heating devices.
  • the system uses a resistance heating element, which uses a heating cable like an electric field plate, which can quickly raise the floor temperature.
  • resistive heating elements is difficult to heat up to the room air quickly.
  • Others, such as electric or electric blankets have a disadvantage that only a part is heated well when a part is pressed under pressure due to its weight.
  • the prior art includes devices such as mobile heaters that heat indoor air. They have high radiant heat, and heat transfer is quick in the vicinity.
  • electric stand-type heater consumes a lot of power, and in the case of a warm air heater, it reduces indoor oxygen.
  • the present invention is to increase the temperature of the indoor air as well as the temperature of the floor surface of the building can be easily, and to enable heating to the necessary portion, to maximize the thermal efficiency.
  • it has a simple structure to facilitate the construction.
  • the present invention is a space heating device (A) provided in the inner region of one specific space (S) separated from the outside, the space heating device (A) is a first radiation source 100 for emitting electromagnetic radiation 120 ); And a second radiation source 200 for absorbing or reflecting the electromagnetic radiation 120 emitted from the first radiation source 100. It includes.
  • the first radiation source 100 includes an emitter 110, which emitter 110 is any one of a gas laser, a dye laser, a solid state laser, a color center laser, a semiconductor laser, a laser diode and a free-electron laser. It is characterized by one.
  • the emission device 110 moves so that the irradiation point of the electromagnetic radiation 120 emitted from the emission device 110 and irradiated to the second radiation source 200 is relatively changeable with respect to the second radiation source 200.
  • the first radiation source 100 includes a reflector 130 so that the electromagnetic radiation 120 reflected from the second radiation source 200 can be reflected back to the second radiation source 200, the reflector 130 Is a parabolic mirror or a spherical mirror.
  • the lower portion of the second radiation source 200 further includes an insulation device 300 to prevent the heat energy accumulated in the second radiation source 200 to flow to the outside.
  • An auxiliary heating device 400 is provided between the second radiation source 200 and the insulation device 300, and the auxiliary heating device 400 is an electric heating device or a heating device such as a resistance heating device using a resistor 410. It is a wet heating device having a heating pipe through which the fluid flows.
  • An auxiliary heating device 400 is provided on an upper portion of the second radiation source 200, and a buffering device 500 is provided on an upper portion of the auxiliary heating device 400, and the auxiliary heating device 400 has a resistance 410.
  • Electric heating device such as a resistance heating device using a heating device) or a wet heating device having a heating pipe through which a heated fluid flows.
  • the present invention is a space heating device (A) provided in the inner region of one specific space (S) separated from the outside, the space heating device (A), the first radiation source for emitting electromagnetic radiation 120 100; And a second radiation source 200 for absorbing or reflecting the electromagnetic radiation 120 emitted from the first radiation source 100. It includes a heat insulating plate 310 for blocking the heat energy generated from the second radiation source 200 to flow to the outside.
  • the space heating device (A) of the present invention is a building laminated in the order of the heat insulation layer 300, the heat transfer layer 210 provided on the heat insulation layer 300 and the finishing layer 700 provided on the heat transfer layer 210 above. It is provided on one side of the heat transfer layer 210 of the bottom, the outer surface of the second radiation source 200 is coated with a heating material 420, one side of the heating material 420 is provided with a heating coil 430 It is characterized by.
  • the heat transfer layer 210 of the present invention is filled with water, the heat generating material 42 is characterized in that the Kantal (kanthal) of the electrical resistance heat generating material.
  • the present invention is a space heating method for heating the inner region of one specific space (S) separated from the outside, the emission step of emitting the electromagnetic radiation 120 by using at least one first radiation source 100 ; An absorption step of absorbing a part of the electromagnetic radiation 120 emitted in the first step to the second radiation source 200; A reabsorption step in which the remaining electromagnetic radiation 120 reflected in the absorption step is reflected by the first radiation source 100 and then reabsorbed by the second radiation source 200; It includes.
  • a preheating step of heating the second radiation source 200 using the auxiliary heating device 400 before the discharge step is performed.
  • the first radiation source 100 for irradiating the electromagnetic radiation 120 is characterized in that the movement.
  • the present invention provides a space heating apparatus that enables rapid space heating and is excellent in energy efficiency and easy to install in terms of structure and cost.
  • FIG. 1 is a conceptual diagram of a space heating apparatus according to the present invention
  • FIG. 2 is a conceptual diagram of a first embodiment of a space heating apparatus according to the present invention.
  • FIG 3 is another conceptual view of the first embodiment of the space heating apparatus according to the present invention.
  • FIG. 4 is a conceptual diagram of a second embodiment of the space heating apparatus according to the present invention.
  • FIG. 5 is a conceptual diagram of a third embodiment of the space heating apparatus according to the present invention.
  • FIG. 6 is a conceptual diagram of a fourth embodiment of the space heating apparatus according to the present invention.
  • FIG 7 is another conceptual view of the fourth embodiment of the space heating apparatus according to the present invention.
  • FIG. 8 is a conceptual diagram of a fifth embodiment of the space heating apparatus according to the present invention.
  • FIG. 9 is a circuit diagram of a sixth embodiment of the space heating apparatus according to the present invention.
  • FIG 10 is another circuit diagram of the sixth embodiment of the space heating apparatus according to the present invention.
  • FIG. 1 shows a first embodiment of a space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
  • the space heating apparatus (A) of the present invention sequentially up to the bottom of the air layer butt F in a specific space (S), the first radiation source 100, the second radiation source 200 and Insulation device 300 is included.
  • the second radiation source 200 is in the form of a copper plate
  • the insulation device 300 is in the form of an aluminum thin film.
  • the first radiation source 100 comprises an emitting device 110, by means of this diode laser electromagnetic radiation (laser light) 120 having a first wavelength of 638 nm, for example. ) Is released.
  • the emitting device 110 is in the form of a diode laser.
  • the electromagnetic radiation (laser rays, hereinafter referred to as 'electromagnetic radiation') 120 which will be described in detail later, is aimed at the second radiation source 200.
  • An advantage of using a copper plate as the second radiation source 200 is that the copper plate has a relatively high thermal conductivity and at the same time is cheaper than other thermal conductors.
  • the electromagnetic radiation 120 incident to the second radiation source 200 is partially absorbed by the second radiation source 200 and heats the second radiation source 200.
  • Thermal energy absorbed by the second radiation source 200 is distributed to the entire surface of the second radiation source 200 due to the thermal conductivity of the second radiation source 200.
  • the emission of the electromagnetic radiation 120 takes place in the near infrared region, in particular in the wavelength region of 750 to 1000 nm, thereby heating the specific space S.
  • the insulation device 300 may also be formed in the form of an aluminum plate.
  • the first radiation source 100 includes an emitting device 110 in the form of a diode laser, in which electromagnetic radiation 120 in the form of a ray is emitted by the diode laser 110.
  • the first radiation source 100 includes a reflecting device 130 in the form of a dome-shaped mirror. Most of the electromagnetic radiation 120 emitted by the emitting device 110, ie 70 to 80%, is absorbed by the second radiation source 200 in the form of a copper plate, but the remainder, ie approximately 20 to 30%. Is reflected by the second radiation source 200 in the form of a copper plate.
  • Electromagnetic reflected from the second radiation source 200 The radiation 120 is reflected back from the reflector 130 in the form of a dome-shaped mirror in order to increase the rate of incidence into the second radiation source 200 in the form of a copper plate and is reflected back to the surface of the second radiation source 200. Thereby, not only unwanted heating is prevented by the insulation device 13 at the bottom F of the specific space S, but also by reaching the second radiation source 200 by increasing the ratio of electromagnetic radiation 120 to the space heating device. The efficiency of (3) also increases.
  • the emitting device 110 is in particular relative to the second radiation source 200 in the form of a copper plate. It is supported to move along the reflecting device 130.
  • electromagnetic radiation 120 may be incident on the second radiation source 200 in the form of a copper plate at different angles, which are incident on different points on the second radiation source 200 in the form of a copper plate. Can be.
  • the laser radiation 120 is not concentrated at only one point of the second radiation source 200 in the form of a copper plate.
  • This type of concentration may cause overheating of the second radiation source 200 in the local region as described above, thereby preventing a situation in which thermal energy of the electromagnetic radiation 120 is further incident into the second radiation source 200. do.
  • the movement of the emitting device 110 causes the electromagnetic radiation 120 to enter the second radiation source 200 via the maximum possible number of various points, thereby uniformly heating or heating the second radiation source 200 in the form of a copper plate. Activation takes place.
  • FIG. 4 shows a second embodiment of the space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
  • FIG. 4 is an exploded view of a portion of the space heating device A and the second radiation source 200, the insulation device 300 and the auxiliary heating device 400.
  • a second radiation source 200 in the form of a copper plate is shown on the one hand and an insulation device 300 in the form of an aluminum plate 13 is shown on the other hand.
  • an auxiliary heating device 400 having a resistor 410 that is a heating element is disposed between the second radiation source 200 and the insulation device 300.
  • the resistor 410 may be a kanthal, which is an electric resistance heating material.
  • the second radiation source 200 in the form of a copper plate may not only be heated by the laser radiation 120 but also additionally by the auxiliary heating device 400.
  • activation energy for emitting infrared light from the second radiation source 200 in the form of a copper plate can be enabled on the one hand via the laser radiation 120 of the first radiation source 100, and on the other hand auxiliary heating. It may be further enabled by the device 400.
  • the advantage provided by the auxiliary heating device 400 is that a faster heating of the second radiation source 200 can be achieved and after reaching a predetermined temperature it emits infrared radiation from the second radiation source 200 into the space. Even if the space is not further heated, the temperature of the second radiation source 200 can be further raised or kept constant by the laser radiation 120.
  • FIG. 5 shows a third embodiment of the space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
  • a third embodiment of the space heating device A is shown. 5 shows an exploded view of a portion of the space heating device A and the second radiation source 200, the insulation device 300, the auxiliary heating device 400 and the buffering device 500.
  • the second radiation source 200 in the form of a copper plate is in direct contact with the insulation device 300
  • the auxiliary heating device 400 is disposed on the second radiation source 200 in the form of a copper plate. It is arranged.
  • the auxiliary heating device 400 is again covered by the buffering device 500.
  • the buffering device 500 has a high resistance storage material, for example, the buffering device 500 may have a cell filled with water.
  • heat energy emitted from the second radiation source 200 may be stored, and the heat energy may be emitted from the buffering device 500 into the specific space S.
  • the buffering device 500 may be heated by the laser radiation 120 emitted from the emitter 110 to the second radiation source 200 and by the auxiliary heating device 400.
  • the second radiation source 200 continuously arranged with the buffering device 500 and the auxiliary heating device 400 by the laser radiation 120 that can be transmitted to the auxiliary heating device 400 and the buffering device 500. By heating, not only the temperature of the second radiation source 200 but also the temperature of the buffering device 500 is maintained.
  • FIG. 6 shows a fourth embodiment of the space heating device A. As shown in FIG.
  • the space heating device A has a number of, in other words, four first radiation sources 100a, 100b, 100c, 100d.
  • the first radiation sources 100a, 100b, 100c, and 100d are symmetrically distributed over the circumference of the second radiation source 200.
  • heat may be uniformly distributed inside the second radiation source 200, and the first radiation sources 100a, 100b, 100c, 100d) can be activated uniformly.
  • this arrangement allows each of the first radiation sources 100a, 100b, 100c, 100d to have fewer individual abilities compared to the case of providing a small number of first radiation sources to supply such activation energy.
  • the same heating capacity of the space heating device A can be reached.
  • FIG. 7 shows a plan view looking at the space heating device A from the direction B in FIG. 6.
  • the thermal energy emitted from the second radiation source 200 is upward, that is, the specific space ( By being discharged to S), uniform heating of the specific space S is possible as a result.
  • FIG. 8 shows a fifth embodiment of the space heating device A. As shown in FIG.
  • the space heating apparatus A includes a first radiation source 100, a second radiation source 200, a heat insulation plate 310, a heating material 420, a heating coil 430, and the like. do.
  • the space heating apparatus A of the fifth embodiment includes a heat insulation layer 300, a heat transfer layer 210 provided on the heat insulation layer 300, and a finish layer provided on the heat transfer layer 210. 700 is provided on the heat transfer layer 210 of the floor of the building made of.
  • the first radiation source 100 for emitting electromagnetic radiation 120 is provided on one side of the heat transfer layer 210.
  • a second radiation source 200 that absorbs energy of the electromagnetic radiation 120 emitted from the first radiation source 100, in particular heat energy, is provided inside the heat transfer layer 210.
  • An insulation plate 310 is provided between the first radiation source 100 and the second radiation source 200 in order to prevent the energy emitted from the second radiation source 200 and reflected or emitted from flowing out.
  • the insulation plate 310 may serve as a passage for the electromagnetic radiation 120 emitted from the first radiation source 100 by drilling holes.
  • the insulating plate 310 may be formed as a semi-transmissive layer to absorb the electromagnetic radiation 120 emitted from the first radiation source 100 to the second radiation source 200, but may not be emitted.
  • the outside of the second radiation source 200 may be coated with a heating material 420 so that the heat energy absorbed by the second radiation source 200 may be transferred to the heat transfer layer 210.
  • the heating material 420 may be a kanthal which is an electrical resistance heating material.
  • the heating coil 430 is formed at one side of the heating material 420. The heat generated from the heating coil 430 is transferred to the heat transfer layer 210, and the heat of the heat transfer layer 210 may be transferred to a specific space (S).
  • FIG. 9 shows a heating circuit diagram as a sixth embodiment of the space heating apparatus A. As shown in FIG.
  • the circuit diagram includes a transformer 1000, a diode rectifying circuit 1100 for converting an alternating current (AC) voltage transformed by the transformer 1000 into a direct current (DC) voltage, and the diode. And a heat generating diode 1200 connected to the DC output voltage output by the rectifier circuit 1100.
  • the rectifier circuit 1100 may use a heat generating element having a heat generating performance, such as the heat generating diode 1200.
  • the transformer 1000 generally uses a commercial voltage of 220V, and is composed of a primary winding and a secondary winding, and functions to boost or reduce voltage.
  • the diode rectifier circuit 1100 converts an AC voltage into a DC voltage, which is usually configured in a bridged manner.
  • a DC voltage which is usually configured in a bridged manner.
  • four forward diodes D11, D12, D13, and D14 are arranged in a trapezoidal shape.
  • the circuit diagram includes a transformer 1000 and a plurality of diode rectifier circuits arranged in parallel to convert an alternating current (AC) voltage transformed by the transformer 1000 into a direct current (DC) voltage ( 1100 and 2100, and a heating diode 1200 and a heating wire 2000 connected to the DC output voltages output by the diode rectifying circuits 1100 and 2100.
  • AC alternating current
  • DC direct current
  • FIG. 10 uses two first diode rectifying circuits 1100 and a second diode rectifying circuit 2100 arranged in parallel, and a heating wire 2000 is further connected to an output end. Therefore, two DC output voltages may be generated by the first diode rectifying circuit 1100 and the second diode rectifying circuit 2100.
  • forward diodes D11, D12, D13, and D14 having a large operating capacitance in one diode rectifier circuit 1100.
  • the object necessary for heating the water is first heated through the heating wire 2000 using a switch (not shown). It is possible to heat through the heat generating diode 1200, it is possible to generate a DC voltage stably even if one of the failure.
  • the present invention is for heating a specific space
  • the space heating device comprises a first radiation source for emitting electromagnetic radiation; And a second radiation source for absorbing or reflecting electromagnetic radiation emitted from the first radiation source.
  • This invention enables heating of a particular space by means of a heating device arranged in at least one or more restricted areas of that space.

Abstract

The present invention relates to a space-heating apparatus and method for heating a specified space, wherein the space-heating apparatus includes a heating device disposed in at least one limited area in the specified space, and the method uses the apparatus to heat the specified space. The space-heating apparatus (A) of the present invention is provided in an inner area of a specified space (S) partitioned off from the outside, and comprises: a first radiating source (100) for irradiating electromagnetic radiation (120); and a second radiating source (200) for absorbing or reflecting the electromagnetic radiation (120) irradiated by the first radiating source (100).

Description

공간 가열 장치 및 공간 가열 방법Space heating device and space heating method
본 발명은 특정 공간을 가열하기 위한 것으로, 특정 공간 중 적어도 하나 이상의 제한된 영역 안에 배치된 가열 장치를 포함하는 공간 가열 장치 및 이 장치를 사용해서 특정 공간을 가열하기 위한 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to heating a particular space, and relates to a space heating device comprising a heating device disposed in a restricted region of at least one of the specific spaces and a method for heating a specific space using the device.
선행 기술에는 다양한 공간 가열 장치들이 공지되어 있다. Various spatial heating devices are known in the prior art.
첫째로, 버너에 의해 작동되는 보일러와 같은 중앙 가열 장치를 이용해 가열 유체가 건물 안에 있는 열 전달 파이프 라인을 통해 순환되는 중앙 가열 시스템이 있다. 실내 난방의 경우 실내 공기만을 주로 상승시키기 위한 방법과 실내의 바닥의 온도를 상승시키기 위한 방법 등으로 구분된다. First, there is a central heating system in which heating fluid is circulated through a heat transfer pipeline in a building using a central heating device such as a boiler operated by a burner. In the case of indoor heating, a method for mainly raising indoor air only and a method for increasing the temperature of the floor of the room are classified.
이 중 라디에이터 경우 튜브(tube)와 휜(fin) 등으로 이루어지며, 라디에이터의 내부를 순환하는 유체와 외부 공기(실내공기) 등의 온도차에 의해 외부 공기(실내공기)로 열전달이 이뤄진다. 바닥 난방의 경우 보일러에서 가열된 유체가 건물 바닥에 설치된 열 전달 파이프를 순환하면서 건물 바닥에 열 전달을 한다. 특히 바닥 난방에서 사용되는 유체는 물이다. 비열이 높은 물을 가열해, 열을 전달하는 것이다. 비열이 높은 물은 따뜻하게 하기가 어렵지만, 반대로 열을 장시간 보존할 수 있다.The radiator is composed of a tube (tube) and fin (fin), heat transfer to the outside air (indoor air) by the temperature difference between the fluid circulating inside the radiator and the outside air (indoor air). In the case of floor heating, the fluid heated in the boiler circulates through the heat transfer pipes installed on the floor of the building to transfer heat to the building floor. In particular, the fluid used in floor heating is water. It heats water with high specific heat and transfers heat. Water with high specific heat is difficult to warm, but conversely, heat can be stored for a long time.
바닥 난방의 경우 몇 가지 단점을 갖는다. 물을 가열하기 위한 보일러가 설치되어야만 하고, 열전달 순환 루프가 건물 안까지 연결되어 설치되어야 한다. 또 오일을 사용하는 보일러는 오일탱크와 같은 별도의 저장장치가 필요하며, 가스를 사용하는 보일러는 가스의 누출을 방지하기 위한 매우 다양한 안전 장치들이 필요하게 된다. 또한 열전달 효율에서도 몇 가지 단점을 갖는다. 열전달 파이프를 통해, 필요한 공간까지 전달되는 과정 중 따뜻해진 유체가 건물 내에 설치된 열전달 파이프까지 도달하기 전에 약 25 ~ 30%가 손실된다. 일반적으로 라디에이터 경우, 건물 내 공간의 측벽에 설치되어 있으므로 건물의 바닥까지 가열되는 것은 어려우며, 이는 전체 공간에서 열 전달 효율이 떨어짐을 의미한다.Floor heating has some disadvantages. A boiler for heating the water must be installed, and a heat transfer circulation loop must be installed inside the building. In addition, oil-based boilers require a separate storage device, such as an oil tank, and gas-fired boilers require a wide variety of safety devices to prevent gas leakage. There are also some disadvantages in heat transfer efficiency. Through the heat transfer pipe, about 25-30% of the warmed fluid is lost before it reaches the heat transfer pipe installed in the building during the transfer to the required space. In general, the radiator is installed on the side wall of the space in the building, it is difficult to heat up to the floor of the building, which means that the heat transfer efficiency is reduced in the entire space.
둘째로, 소위 마루 가열 장치와 같은 가열 시스템도 있다. 이 시스템은 저항 전열체를 사용함으로 전기장판과 같이 히팅 케이블을 사용하므로 바닥의 온도를 빨리 올릴 수 있다. 그러나 저항 전열체를 사용한 이 시스템은 실내 공기까지 신속하게 가열하기가 힘들다. 이 때문에 통상적으로 실내 공기까지 가열키 위해 마루 가열 장치와 라디에이터의 조합 형태가 사용되었지만 이와 같은 두 가열장치의 조합 사용은 비용적인 부담을 증가시킨다. 기타 전기요나 전기 장판 같은 것들은 무게로 인해 어느 한 부분이 눌러져 압력을 받게 되면 그 부분만 가열이 잘되는 단점이 있다.Secondly, there are also heating systems such as so-called floor heating devices. The system uses a resistance heating element, which uses a heating cable like an electric field plate, which can quickly raise the floor temperature. However, this system using resistive heating elements is difficult to heat up to the room air quickly. For this reason, a combination of floor heaters and radiators has been commonly used to heat up to indoor air, but the combination of these two heaters adds cost. Others, such as electric or electric blankets have a disadvantage that only a part is heated well when a part is pressed under pressure due to its weight.
마지막으로, 선행 기술에는 실내 공기를 가열시키는 이동 발열기 같은 장치들이 있다. 이들은 복사열이 높아, 가까운 곳에 열전달이 빠르다. 하지만 전기를 이용한 스탠드형 난방기는 전력 소모량이 심하고, 온풍난방기 경우 실내 산소를 저하 시킨다. Finally, the prior art includes devices such as mobile heaters that heat indoor air. They have high radiant heat, and heat transfer is quick in the vicinity. However, electric stand-type heater consumes a lot of power, and in the case of a warm air heater, it reduces indoor oxygen.
본 발명은 건물의 바닥면의 온도뿐만 아니라 실내 공기의 온도를 쉽게 상승시킬 수 있으며, 또 필요한 부분에 가열을 가능하게 하여, 열 효율을 최대화하기 위함이다. 또한 간단한 구조로 되어 있어 시공을 용이하게 하기 위함이다.The present invention is to increase the temperature of the indoor air as well as the temperature of the floor surface of the building can be easily, and to enable heating to the necessary portion, to maximize the thermal efficiency. In addition, it has a simple structure to facilitate the construction.
본 발명은 외부와 구분된 하나의 특정 공간(S)의 내측 영역에 구비되는 공간 가열 장치(A)에 있어서, 상기 공간 가열 장치(A)는 전자기 방사선(120)을 방출하는 제1방사선원(100); 및 상기 제1방사선원(100)에서 방출하는 전자기 방사선(120)을 흡수 또는 반사시키기 위한 제2방사선원(200); 을 포함한다.The present invention is a space heating device (A) provided in the inner region of one specific space (S) separated from the outside, the space heating device (A) is a first radiation source 100 for emitting electromagnetic radiation 120 ); And a second radiation source 200 for absorbing or reflecting the electromagnetic radiation 120 emitted from the first radiation source 100. It includes.
상기 제1방사선원(100)은 방출장치(110)를 포함하며, 상기 방출장치(110)는 가스 레이저, 염료 레이저, 고체 레이저, 컬러 센터 레이저, 반도체 레이저, 레이저 다이오드 및 자유-전자-레이저 중 어느 하나인 것을 특징으로 한다.The first radiation source 100 includes an emitter 110, which emitter 110 is any one of a gas laser, a dye laser, a solid state laser, a color center laser, a semiconductor laser, a laser diode and a free-electron laser. It is characterized by one.
상기 방출장치(110)는 상기 방출장치(110)에서 방출되어 제2방사선원(200)에 조사되는 전자기 방사선(120)의 조사점이 제2방사선원(200)에 대하여 상대적으로 위치 변경가능도록 이동한다.The emission device 110 moves so that the irradiation point of the electromagnetic radiation 120 emitted from the emission device 110 and irradiated to the second radiation source 200 is relatively changeable with respect to the second radiation source 200.
상기 제1방사선원(100)은 제2방사선원(200)에서 반사된 전자기 방사선(120)이 다시 제2방사선원(200)으로 반사될 수 있도록 반사장치(130)를 포함하며, 상기 반사장치(130)는 포물선 모양의 미러 또는 구 형상의 미러이다.The first radiation source 100 includes a reflector 130 so that the electromagnetic radiation 120 reflected from the second radiation source 200 can be reflected back to the second radiation source 200, the reflector 130 Is a parabolic mirror or a spherical mirror.
상기 제2방사선원(200)의 하부에는 상기 제2방사선원(200)에 축적된 열에너지가 외부로 유출되지 않도록 하기 위하여 절연장치(300)를 더 포함한다.The lower portion of the second radiation source 200 further includes an insulation device 300 to prevent the heat energy accumulated in the second radiation source 200 to flow to the outside.
상기 제2방사선원(200)과 상기 절연장치(300)사이에는 보조가열장치(400)가 구비되며, 상기 보조가열장치(400)는 저항(410)을 이용한 저항 가열 장치와 같은 전기식 가열장치 또는 가열된 유체가 유동하는 가열 파이프를 구비한 습식 가열장치이다.An auxiliary heating device 400 is provided between the second radiation source 200 and the insulation device 300, and the auxiliary heating device 400 is an electric heating device or a heating device such as a resistance heating device using a resistor 410. It is a wet heating device having a heating pipe through which the fluid flows.
상기 제2방사선원(200)의 상부에는 보조가열장치(400)가 구비되며, 상기 보조 가열 장치(400)의 상부에는 버퍼링 장치(500)가 구비되되, 상기 보조가열장치(400)는 저항(410)을 이용한 저항 가열 장치와 같은 전기식 가열장치 또는 가열된 유체가 유동하는 가열 파이프를 구비한 습식 가열장치이다.An auxiliary heating device 400 is provided on an upper portion of the second radiation source 200, and a buffering device 500 is provided on an upper portion of the auxiliary heating device 400, and the auxiliary heating device 400 has a resistance 410. Electric heating device such as a resistance heating device using a heating device) or a wet heating device having a heating pipe through which a heated fluid flows.
또한 본 발명은 외부와 구분된 하나의 특정 공간(S)의 내측 영역에 구비되는 공간 가열 장치(A)에 있어서, 상기 공간 가열 장치(A)는, 전자기 방사선(120)을 방출하는 제1방사선원(100); 및 상기 제1방사선원(100)에서 방출하는 전자기 방사선(120)을 흡수 또는 반사시키기 위한 제2방사선원(200); 상기 제2방사선원(200)에서 발생되는 열에너지가 외부로 유출되는 것을 차단하기 위한 단열판(310)을 포함한다.In addition, the present invention is a space heating device (A) provided in the inner region of one specific space (S) separated from the outside, the space heating device (A), the first radiation source for emitting electromagnetic radiation 120 100; And a second radiation source 200 for absorbing or reflecting the electromagnetic radiation 120 emitted from the first radiation source 100. It includes a heat insulating plate 310 for blocking the heat energy generated from the second radiation source 200 to flow to the outside.
본 발명의 상기 공간 가열 장치(A)는 단열층(300), 상기 단열층(300) 상부에 구비된 전열층(210) 및 상기 전열층(210 상부에 구비된 마감층(700) 순으로 적층된 건물 바닥 중 상기 전열층(210)의 일측에 구비되며, 상기 제2방사선원(200)의 외곽은 발열물질(420)로 도포되며, 상기 발열물질(420)의 일측에는 발열 코일(430)이 구비된 것을 특징으로 한다.The space heating device (A) of the present invention is a building laminated in the order of the heat insulation layer 300, the heat transfer layer 210 provided on the heat insulation layer 300 and the finishing layer 700 provided on the heat transfer layer 210 above. It is provided on one side of the heat transfer layer 210 of the bottom, the outer surface of the second radiation source 200 is coated with a heating material 420, one side of the heating material 420 is provided with a heating coil 430 It is characterized by.
본 발명의 상기 전열층(210)은 그 내부가 물로 채워져 있으며, 상기 발열물질(42)은 전기저항 발열물질인 칸탈(kanthal)인 것을 특징으로 한다.The heat transfer layer 210 of the present invention is filled with water, the heat generating material 42 is characterized in that the Kantal (kanthal) of the electrical resistance heat generating material.
또한 본 발명은 외부와 구분된 하나의 특정 공간(S)의 내측 영역을 가열하기 위한 공간 가열 방법에 있어서, 적어도 하나 이상의 제1방사선원(100)을 이용하여 전자기 방사선(120)을 방출하는 방출단계; 상기 제1단계에서 방출된 전자기 방사선(120) 중 일부를 제2방사선원(200)에 흡수하는 흡수단계; 상기 흡수단계에서 반사된 잔여 전자기 방사선(120)이 상기 제1방사선원(100)에서 반사된 후 상기 제2방사선원(200)에서 재흡수하는 재흡수단계; 를 포함한다.In addition, the present invention is a space heating method for heating the inner region of one specific space (S) separated from the outside, the emission step of emitting the electromagnetic radiation 120 by using at least one first radiation source 100 ; An absorption step of absorbing a part of the electromagnetic radiation 120 emitted in the first step to the second radiation source 200; A reabsorption step in which the remaining electromagnetic radiation 120 reflected in the absorption step is reflected by the first radiation source 100 and then reabsorbed by the second radiation source 200; It includes.
본 발명에 있어서 상기 방출단계 이전에 제2방사선원(200)을 보조가열장치(400)를 이용하여 가열하는 예비가열단계를 포함한다.In the present invention, a preheating step of heating the second radiation source 200 using the auxiliary heating device 400 before the discharge step.
상기 방출단계는, 상기 전자기 방사선(120)을 조사하는 제1방사선원(100)이 이동하는 것을 특징으로 한다.In the emitting step, the first radiation source 100 for irradiating the electromagnetic radiation 120 is characterized in that the movement.
본 발명은 신속한 공간 가열을 가능하게 하면서 동시에 에너지 효율에서도 우수하고, 구조적 및 비용적인 측면에서도 설치가 용이한 공간 가열 장치를 제공한다.The present invention provides a space heating apparatus that enables rapid space heating and is excellent in energy efficiency and easy to install in terms of structure and cost.
도 1은 본 발명에 따른 공간 가열 장치의 개념도1 is a conceptual diagram of a space heating apparatus according to the present invention
도 2는 본 발명에 따른 공간 가열 장치 중 제1실시예의 개념도2 is a conceptual diagram of a first embodiment of a space heating apparatus according to the present invention;
도 3은 본 발명에 따른 공간 가열 장치 중 제1실시예의 또 다른 개념도3 is another conceptual view of the first embodiment of the space heating apparatus according to the present invention;
도 4는 본 발명에 따른 공간 가열 장치 중 제2실시예의 개념도4 is a conceptual diagram of a second embodiment of the space heating apparatus according to the present invention;
도 5는 본 발명에 따른 공간 가열 장치 중 제3실시예의 개념도5 is a conceptual diagram of a third embodiment of the space heating apparatus according to the present invention;
도 6은 본 발명에 따른 공간 가열 장치 중 제4실시예의 개념도6 is a conceptual diagram of a fourth embodiment of the space heating apparatus according to the present invention;
도 7은 본 발명에 따른 공간 가열 장치 중 제4실시예의 또 다른 개념도7 is another conceptual view of the fourth embodiment of the space heating apparatus according to the present invention.
도 8은 본 발명에 따른 공간 가열 장치 중 제5실시예의 개념도8 is a conceptual diagram of a fifth embodiment of the space heating apparatus according to the present invention;
도 9는 본 발명에 따른 공간 가열 장치 중 제6실시예의 회로도9 is a circuit diagram of a sixth embodiment of the space heating apparatus according to the present invention.
도 10은 본 발명에 따른 공간 가열 장치 중 제6실시예의 또 다른 회로도10 is another circuit diagram of the sixth embodiment of the space heating apparatus according to the present invention.
제1실시예First embodiment
도 1에는 특정 공간(S), 예를 들면 건물의 방 또는 거실 등 난방이 필요한 공간에 배치된 본 발명에 따른 공간 가열 장치(A)의 제1실시예가 도시되어 있다. FIG. 1 shows a first embodiment of a space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
도 1 및 도 2를 참고하여, 본 발명의 공간 가열 장치(A)는 특정 공간(S)의 공기층부타 바닥(F)에 이르기까지 순차적으로 제1방사선원(100), 제2방사선원(200) 및 절연 장치(300)를 포함한다. 제2방사선원(200)은 구리 플레이트의 형태로 되어 있으며, 절연 장치(300)는 알루미늄 박막형태로 되어 있다.1 and 2, the space heating apparatus (A) of the present invention sequentially up to the bottom of the air layer butt F in a specific space (S), the first radiation source 100, the second radiation source 200 and Insulation device 300 is included. The second radiation source 200 is in the form of a copper plate, and the insulation device 300 is in the form of an aluminum thin film.
도 1 및 도 2를 참고하여, 제1방사선원(100)은 방출장치(110)를 포함하며, 이 다이오드 레이저에 의해서는 예를 들어 638 nm의 제1파장을 갖는 전자기 방사선(레이저 광선)(120)이 방출된다. 방출장치(110)는 다이오드 레이저의 형태로 되어 있다. 추후에 자세하게 설명될 전자기 방사선(레이저 광선, 이하 '전자기 방사선'으로 용어를 통일함)(120)은 제2방사선원(200)을 목표로 하고 있다. 구리 플레이트를 제2방사선원(200)으로 사용하는 경우의 장점은, 구리 플레이트가 비교적 높은 열 전도성을 갖는다는 것 그리고 그와 동시에 다른 열 전도체들에 비해 가격이 저렴하다는 것이다. 제2방사선원(200)로 입사되는 전자기 방사선(120)은 제2방사선원(200)에 부분적으로 흡수되어 제2방사선원(200)의 가열한다. 제2방사선원(200)에 흡수된 열 에너지는 제2방사선원(200)의 열 전도성으로 인해 제2방사선원(200)의 전체 표면에 분배된다. 제2방사선원(200)의 가열 또는 활성화에 의해서, 특히 750 내지 1000 nm의 파장 영역과 같은 가까운 적외선 영역에서 전자기 방사선(120)의 방출이 이루어짐으로써 특정 공간(S)의 가열이 실현된다. Referring to FIGS. 1 and 2, the first radiation source 100 comprises an emitting device 110, by means of this diode laser electromagnetic radiation (laser light) 120 having a first wavelength of 638 nm, for example. ) Is released. The emitting device 110 is in the form of a diode laser. The electromagnetic radiation (laser rays, hereinafter referred to as 'electromagnetic radiation') 120, which will be described in detail later, is aimed at the second radiation source 200. An advantage of using a copper plate as the second radiation source 200 is that the copper plate has a relatively high thermal conductivity and at the same time is cheaper than other thermal conductors. The electromagnetic radiation 120 incident to the second radiation source 200 is partially absorbed by the second radiation source 200 and heats the second radiation source 200. Thermal energy absorbed by the second radiation source 200 is distributed to the entire surface of the second radiation source 200 due to the thermal conductivity of the second radiation source 200. By heating or activating the second radiation source 200, the emission of the electromagnetic radiation 120 takes place in the near infrared region, in particular in the wavelength region of 750 to 1000 nm, thereby heating the specific space S.
도 1을 참고하여, 절연 장치(300)에 의해서 특정 공간(S)의 바닥(F)이 추가로 가열되는 상황이 피해진다. 전술한 바와 같이 절연 장치(300)는 알루미늄 플레이트의 형태로도 형성될 수 있다.Referring to FIG. 1, the situation in which the bottom F of the specific space S is further heated by the insulation device 300 is avoided. As described above, the insulation device 300 may also be formed in the form of an aluminum plate.
도 2에는 도 1의 공간 가열 장치(A)의 세부도가 도시되어 있다. 도 2로부터 알 수 있는 바와 같이, 제1방사선원(100)은 다이오드 레이저 형태의 방출 장치(110)를 포함하며, 다이오드 레이저(110)에 의해서 광선 형태의 전자기 방사선(120)이 방출된다. 제1방사선원(100)은 돔 모양 미러의 형태로 된 반사 장치(130)를 포함한다. 방출 장치(110)에 의해서 방출되는 전자기 방사선(120)의 대부분, 다시 말해 70 내지 80 %가 구리 플레이트 형태의 제2방사선원(200)에 의해 흡수되기는 하지만, 나머지 부분, 다시 말해 대략 20 내지 30 %는 구리 플레이트 형태의 제2방사선원(200)에 의해 반사된다. 제2방사선원(200)에서 반사되는 전자기 방사선(120)은 구리 플레이트 형태의 제2방사선원(200) 내부로 입사되는 비율을 높이기 위하여 돔 모양 미러 형태의 반사 장치(130)에서 다시 반사되어 제2방사선원(200)의 표면으로 역반사된다. 이로써, 특정 공간(S)의 바닥(F)에 원치 않는 가열이 절연 장치(13)에 의해 방지될 뿐만 아니라 제2방사선원(200)에 전자기 방사선(120) 입사 비율이 높아짐으로써 도달함으로써 공간 가열 장치(3)의 효율도 상승하게 된다.2 shows a detailed view of the spatial heating device A of FIG. 1. As can be seen from FIG. 2, the first radiation source 100 includes an emitting device 110 in the form of a diode laser, in which electromagnetic radiation 120 in the form of a ray is emitted by the diode laser 110. The first radiation source 100 includes a reflecting device 130 in the form of a dome-shaped mirror. Most of the electromagnetic radiation 120 emitted by the emitting device 110, ie 70 to 80%, is absorbed by the second radiation source 200 in the form of a copper plate, but the remainder, ie approximately 20 to 30%. Is reflected by the second radiation source 200 in the form of a copper plate. Electromagnetic reflected from the second radiation source 200 The radiation 120 is reflected back from the reflector 130 in the form of a dome-shaped mirror in order to increase the rate of incidence into the second radiation source 200 in the form of a copper plate and is reflected back to the surface of the second radiation source 200. Thereby, not only unwanted heating is prevented by the insulation device 13 at the bottom F of the specific space S, but also by reaching the second radiation source 200 by increasing the ratio of electromagnetic radiation 120 to the space heating device. The efficiency of (3) also increases.
또한, 도 1에 도시된 공간 가열 장치(A)의 상세도를 도시하고 있는 도 3으로부터 알 수 있는 바와 같이 방출 장치(110)는 구리 플레이트 형태의 제2 방사선원(200)에 대하여 상대적으로, 특히 반사 장치(130)를 따라 움직일 수 있도록 지지가 되어 있다. 이와 같은 지지 방식에 의해서는 전자기 방사선(120)이 상이한 각도로 구리 플레이트 형태의 제2 방사선원(200)에 입사될 수 있고, 이는 구리 플레이트 형태의 제2 방사선원(200) 상에 있는 상이한 점들에 입사될 수 있다. 그럼으로써, 레이저 방사선(120)이 단지 구리 플레이트 형태의 제2 방사선원(200)의 한 점에만 집중되지 않게 된다. 이와 같은 형태의 집중은 상기와 같은 국부적인 영역에서 제2 방사선원(200)의 과열을 야기할 수 있기 때문에 전자기 방사선(120)의 열 에너지가 제2 방사선원(200) 내부로 더 입사되는 상황이 방지된다. 방출 장치(110)의 이동에 의해서는 전자기 방사선(120)이 최대로 가능한 개수의 다양한 점들을 거쳐 제2방사선원(200)에 입사됨으로써, 구리 플레이트 형태의 제2 방사선원(200)에 균일한 가열 또는 활성화가 이루어진다.Furthermore, as can be seen from FIG. 3, which shows a detailed view of the spatial heating device A shown in FIG. 1, the emitting device 110 is in particular relative to the second radiation source 200 in the form of a copper plate. It is supported to move along the reflecting device 130. By this support method, electromagnetic radiation 120 may be incident on the second radiation source 200 in the form of a copper plate at different angles, which are incident on different points on the second radiation source 200 in the form of a copper plate. Can be. Thereby, the laser radiation 120 is not concentrated at only one point of the second radiation source 200 in the form of a copper plate. This type of concentration may cause overheating of the second radiation source 200 in the local region as described above, thereby preventing a situation in which thermal energy of the electromagnetic radiation 120 is further incident into the second radiation source 200. do. The movement of the emitting device 110 causes the electromagnetic radiation 120 to enter the second radiation source 200 via the maximum possible number of various points, thereby uniformly heating or heating the second radiation source 200 in the form of a copper plate. Activation takes place.
제2실시예Second embodiment
도 4에는 특정 공간(S), 예를 들면 건물의 방 또는 거실 등 난방이 필요한 공간에 배치된 본 발명에 따른 공간 가열 장치(A)의 제2실시예가 도시되어 있다. 4 shows a second embodiment of the space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
도 4에는 공간 가열 장치(A)의 일부분 및 제2방사선원(200), 절연장치(300) 및 보조가열장치(400)의 분해도가 도시되어 있다. 도면을 통해 알 수 있는 바와 같이, 한편으로는 구리 플레이트 형태의 제2 방사선원(200)이 도시되어 있고, 다른 한편으로는 알루미늄 플레이트(13)의 형태로 된 절연 장치(300)가 도시되어 있다. 또한, 제2 방사선원(200)과 절연 장치(300) 사이에는 발열체인 저항(410)이 구비된 보조가열장치(400)가 배치되어 있다. 여기서 저항(410)은 전기저항 발열물질인 칸탈(kanthal)일 수 있다. 구리 플레이트 형태의 제2방사선원(200)은 레이저 방사선(120)에 의해 가열될 뿐만 아니라 보조가열장치(400)에 의해서 추가로 가열될 수 있다. 4 is an exploded view of a portion of the space heating device A and the second radiation source 200, the insulation device 300 and the auxiliary heating device 400. As can be seen from the figure, a second radiation source 200 in the form of a copper plate is shown on the one hand and an insulation device 300 in the form of an aluminum plate 13 is shown on the other hand. In addition, an auxiliary heating device 400 having a resistor 410 that is a heating element is disposed between the second radiation source 200 and the insulation device 300. The resistor 410 may be a kanthal, which is an electric resistance heating material. The second radiation source 200 in the form of a copper plate may not only be heated by the laser radiation 120 but also additionally by the auxiliary heating device 400.
따라서 구리 플레이트의 형태로 된 제2방사선원(200)으로부터 적외선을 방출하기 위한 활성화 에너지가 한편으로는 제1방사선원(100)의 레이저 방사선(120)을 통해서 가능하게 할 수 있고, 다른 한편으로 보조 가열 장치(400)에 의해서 추가로 가능하게 할 수 있다. 보조 가열 장치(400)가 제공해주는 장점은, 제2방사선원(200)의 더 신속한 가열이 성취될 수 있다는 것 그리고 예정된 온도에 도달한 후에는 적외선을 제2방사선원(200)으로부터 공간 내부로 방출시켜 공간을 추가로 가열시키지 않더라도 제2방사선원(200)의 온도가 레이저 방사선(120)에 의해 더욱 상승할 수 있거나 또는 일정하게 유지될 수 있다는 것이다. Thus activation energy for emitting infrared light from the second radiation source 200 in the form of a copper plate can be enabled on the one hand via the laser radiation 120 of the first radiation source 100, and on the other hand auxiliary heating. It may be further enabled by the device 400. The advantage provided by the auxiliary heating device 400 is that a faster heating of the second radiation source 200 can be achieved and after reaching a predetermined temperature it emits infrared radiation from the second radiation source 200 into the space. Even if the space is not further heated, the temperature of the second radiation source 200 can be further raised or kept constant by the laser radiation 120.
기타 설명되지 않은 구성요소는 제1실시예에 설명된 것에 준한다.Other non-described components are the same as those described in the first embodiment.
제3실시예Third embodiment
도 5에는 특정 공간(S), 예를 들면 건물의 방 또는 거실 등 난방이 필요한 공간에 배치된 본 발명에 따른 공간 가열 장치(A)의 제3실시예가 도시되어 있다. FIG. 5 shows a third embodiment of the space heating apparatus A according to the present invention, which is arranged in a specific space S, for example, a space that requires heating, such as a building room or a living room.
도 5에는 공간 가열 장치(A)의 제3실시예가 도시되어 있다. 도 5에는 공간 가열 장치(A)의 일부분 및 제2방사선원(200), 절연장치(300), 보조가열장치(400) 및 버퍼링 장치(500)의 분해도가 도시되어 있다. 제2실시예와 달리 제3실시예에서는 구리 플레이트 형태의 제2방사선원(200)이 절연 장치(300)와 직접 접촉하고, 구리 플레이트 형태의 제2방사선원(200) 위에는 보조 가열 장치(400)가 배치되어 있다. 보조 가열 장치(400)는 재차 버퍼링 장치(500)에 의해서 커버링 되어 있다. 버퍼링 장치(500)는 저항 저장 능력이 높은 재료를 갖는데, 예를 들어 버퍼링 장치(500)는 물로 채워진 셀을 가질 수 있다. 이와 같은 구성에 의해서는 제2방사선원(200)으로부터 방출되는 열 에너지가 저장될 수 있고, 상기 열 에너지가 버퍼링 장치(500)로부터 특정 공간(S) 내부로 방출될 수 있다. 버퍼링 장치(500)는 방출장치(110)에서 제2방사선원(200)으로 방출되는 레이저 방사선(120)에 의해서 그리고 보조 가열 장치(400)에 의해서 가열이 이루어질 수 있다. 또한, 보조 가열 장치(400) 및 버퍼링 장치(500)로 투과될 수 있는 레이저 방사선(120)에 의해 버퍼링 장치(500) 및 보조 가열 장치(400)와 연속적으로 배열된 제2방사선원(200)의 가열에 의해서 제2방사선원(200)의 온도뿐만 아니라 버퍼링 장치(500)의 온도도 유지된다.In Fig. 5 a third embodiment of the space heating device A is shown. 5 shows an exploded view of a portion of the space heating device A and the second radiation source 200, the insulation device 300, the auxiliary heating device 400 and the buffering device 500. Unlike the second embodiment, in the third embodiment, the second radiation source 200 in the form of a copper plate is in direct contact with the insulation device 300, and the auxiliary heating device 400 is disposed on the second radiation source 200 in the form of a copper plate. It is arranged. The auxiliary heating device 400 is again covered by the buffering device 500. The buffering device 500 has a high resistance storage material, for example, the buffering device 500 may have a cell filled with water. By such a configuration, heat energy emitted from the second radiation source 200 may be stored, and the heat energy may be emitted from the buffering device 500 into the specific space S. The buffering device 500 may be heated by the laser radiation 120 emitted from the emitter 110 to the second radiation source 200 and by the auxiliary heating device 400. In addition, the second radiation source 200 continuously arranged with the buffering device 500 and the auxiliary heating device 400 by the laser radiation 120 that can be transmitted to the auxiliary heating device 400 and the buffering device 500. By heating, not only the temperature of the second radiation source 200 but also the temperature of the buffering device 500 is maintained.
기타 설명되지 않은 구성요소는 위 제1 내지 제2실시예에 준한다.Other non-described components are based on the first to second embodiments.
제4실시예Fourth embodiment
도 6에는 공간 가열 장치(A)의 제4실시예가 도시되어 있다. 6 shows a fourth embodiment of the space heating device A. As shown in FIG.
도 6으로부터 알 수 있는 바와 같이, 공간 가열 장치(A)는 다수의, 다시 말해 네 개의 제1방사선원(100a, 100b, 100c, 100d)을 가진다. 제1방사선원(100a, 100b, 100c, 100d)들은 제2방사선원(200)의 둘레에 걸쳐서 대칭으로 분포되어 있다. 제1방사선원(100a, 100b, 100c, 100d)들을 이와 같은 방식으로 배열하면, 제2방사선원(200) 내부에 열이 균일하게 분배될 수 있고, 적외선을 방출하기 위하여 제1방사선원(100a, 100b, 100c, 100d)이 균일하게 활성화될 수 있다. 또한, 이와 같은 배열 방식에 의해서 각각의 제1방사선원(100a, 100b, 100c, 100d)은 이와 같은 활성화 에너지를 공급하기 위해 소수의 제 1 방사선원을 제공하는 경우와 비교할 때 더 적은 개별 능력을 가지고도 공간 가열 장치(A)의 동일한 가열 능력에 도달할 수 있다.As can be seen from FIG. 6, the space heating device A has a number of, in other words, four first radiation sources 100a, 100b, 100c, 100d. The first radiation sources 100a, 100b, 100c, and 100d are symmetrically distributed over the circumference of the second radiation source 200. When the first radiation sources 100a, 100b, 100c, and 100d are arranged in this manner, heat may be uniformly distributed inside the second radiation source 200, and the first radiation sources 100a, 100b, 100c, 100d) can be activated uniformly. In addition, this arrangement allows each of the first radiation sources 100a, 100b, 100c, 100d to have fewer individual abilities compared to the case of providing a small number of first radiation sources to supply such activation energy. The same heating capacity of the space heating device A can be reached.
도 7에는 도 6에 있는 방향 B로부터 공간 가열 장치(A)를 바라보고 도시한 평면도가 도시되어 있다. 도 7로부터 알 수 있는 바와 같이, 제2방사선원(200)이 특정 공간(S)의 바닥 영역(F)에 배치된 상태에서는 제2방사선원(200)으로부터 방출되는 열 에너지가 위쪽, 즉 특정 공간(S) 내부로 방출됨으로써, 결과적으로 특정 공간(S)의 균일한 가열이 가능해진다. FIG. 7 shows a plan view looking at the space heating device A from the direction B in FIG. 6. As can be seen from FIG. 7, when the second radiation source 200 is disposed in the bottom region F of the specific space S, the thermal energy emitted from the second radiation source 200 is upward, that is, the specific space ( By being discharged to S), uniform heating of the specific space S is possible as a result.
기타 설명되지 않은 구성요소는 위 제1 내지 제3실시예에 준한다.Other non-described components are based on the first to third embodiments.
제5실시예Fifth Embodiment
도 8에는 공간 가열 장치(A)의 제5실시예가 도시되어 있다. 8 shows a fifth embodiment of the space heating device A. As shown in FIG.
도 8로부터 알 수 있는 바와 같이, 공간 가열 장치(A)는 제1방사선원(100), 제2방사선원(200), 단열판(310), 발열물질(420), 및 발열 코일(430) 등을 포함한다. As can be seen from FIG. 8, the space heating apparatus A includes a first radiation source 100, a second radiation source 200, a heat insulation plate 310, a heating material 420, a heating coil 430, and the like. do.
도 8을 참고하여, 제5실시예의 공간 가열 장치(A)는 단열층(300), 상기 단열층(300) 상부에 구비된 전열층(210) 및 상기 전열층(210) 상부에 구비된 마감층(700) 등으로 이루어진 건물의 바닥 중 전열층(210)에 구비된다. 보다 구체적으로 설명하면, 전열층(210)의 일측에 전자기 방사선(120)을 방출하는 제1방사선원(100)이 구비된다. 제1방사선원(100)에서 방출하는 전자기 방사선(120)의 에너지 특히, 열 에너지를 흡수하는 제2방사선원(200)이 전열층(210)의 내측에 구비된다. 제2방사선원(200)에서 흡수되지 못하고 반사 또는 방출되는 에너지를 외부로 유출되지 않도록 하기 위하여 제1방사선원(100)과 제2방사선원(200) 사이에는 단열판(310)이 구비된다. 단열판(310)은 홀이 천공되어 제1방사선원(100)에서 방출되는 전자기 방사선(120)의 통로 역할을 할 수 있다. 또는 단열판(310)이 반투과성막으로 형성되어 제1방사선원(100)에서 방출되는 전자기 방사선(120)을 제2방사선원(200)으로 흡수시키나, 방출되지 않도록 할 수 있다.Referring to FIG. 8, the space heating apparatus A of the fifth embodiment includes a heat insulation layer 300, a heat transfer layer 210 provided on the heat insulation layer 300, and a finish layer provided on the heat transfer layer 210. 700 is provided on the heat transfer layer 210 of the floor of the building made of. In more detail, the first radiation source 100 for emitting electromagnetic radiation 120 is provided on one side of the heat transfer layer 210. A second radiation source 200 that absorbs energy of the electromagnetic radiation 120 emitted from the first radiation source 100, in particular heat energy, is provided inside the heat transfer layer 210. An insulation plate 310 is provided between the first radiation source 100 and the second radiation source 200 in order to prevent the energy emitted from the second radiation source 200 and reflected or emitted from flowing out. The insulation plate 310 may serve as a passage for the electromagnetic radiation 120 emitted from the first radiation source 100 by drilling holes. Alternatively, the insulating plate 310 may be formed as a semi-transmissive layer to absorb the electromagnetic radiation 120 emitted from the first radiation source 100 to the second radiation source 200, but may not be emitted.
제2방사선원(200)에 흡수된 열 에너지가 전열층(210)으로 전달될 수 있도록 제2방사선원(200)의 외곽은 발열물질(420)로 도포될 수 있다. 발열물질(420)는 전기저항 발열물질인 칸탈(kanthal)일 수 있다. 이러한 발열물질(420)의 일측에 발열 코일(430)이 형성되어 있다. 이 발열 코일(430)에서 발생되는 열이 전열층(210)에 전달되며, 전열층(210)의 열이 특정 공간(S)에 전달될 수 있는 것이다.The outside of the second radiation source 200 may be coated with a heating material 420 so that the heat energy absorbed by the second radiation source 200 may be transferred to the heat transfer layer 210. The heating material 420 may be a kanthal which is an electrical resistance heating material. The heating coil 430 is formed at one side of the heating material 420. The heat generated from the heating coil 430 is transferred to the heat transfer layer 210, and the heat of the heat transfer layer 210 may be transferred to a specific space (S).
기타 설명되지 않은 구성요소는 전술한 제1 내지 제4실시예에 준한다.Other non-described components are based on the first to fourth embodiments described above.
제6실시예Sixth embodiment
도 9에는 공간 가열 장치(A)의 제6실시예인 가열 회로도가 도시되어 있다. 9 shows a heating circuit diagram as a sixth embodiment of the space heating apparatus A. As shown in FIG.
도 9를 참조하면, 이 회로도에는 변압기(1000)와, 이 변압기(1000)에 의해 변압된 AC(Alternating Current) 전압을 DC(Direct Current) 전압으로 변환하는 다이오드 정류 회로(1100)와, 이 다이오드 정류 회로(1100)에 의해 출력된 DC 출력 전압에 연결된 발열 다이오드(1200)로 구성된다. 여기서 정류 회로(1100)는 발열 다이오드(1200)와 같이 발열 성능을 갖는 발열 소자를 사용할 수 있다.Referring to FIG. 9, the circuit diagram includes a transformer 1000, a diode rectifying circuit 1100 for converting an alternating current (AC) voltage transformed by the transformer 1000 into a direct current (DC) voltage, and the diode. And a heat generating diode 1200 connected to the DC output voltage output by the rectifier circuit 1100. Here, the rectifier circuit 1100 may use a heat generating element having a heat generating performance, such as the heat generating diode 1200.
변압기(1000)는 보통 220V 상용 전압을 사용하며, 1차 권선과 2차 권선으로 구성되어, 전압을 승압 또는 감압하는 기능을 한다. The transformer 1000 generally uses a commercial voltage of 220V, and is composed of a primary winding and a secondary winding, and functions to boost or reduce voltage.
다이오드 정류 회로(1100)는 AC 전압을 DC 전압으로 변환하며, 이를 위해 보통 브릿지 방식으로 구성된다. 부연하면, 도 9에 도시된 바와 같이, 사다리꼴 형상으로 4개의 순방향 다이오드(D11,D12,D13,D14)가 배열된다. The diode rectifier circuit 1100 converts an AC voltage into a DC voltage, which is usually configured in a bridged manner. In other words, as shown in FIG. 9, four forward diodes D11, D12, D13, and D14 are arranged in a trapezoidal shape.
도 10은 다른 가열 회로도이다. 10 is another heating circuit diagram.
도 10을 참조하면, 이 회로도에는 변압기(1000)와, 이 변압기(1000)에 의해 변압된 AC(Alternating Current) 전압을 DC(Direct Current) 전압으로 변환하는 병렬로 배열된 복수의 다이오드 정류 회로(1100, 2100)와, 이 다이오드 정류 회로(1100, 2100)에 의해 출력된 DC 출력 전압에 연결된 발열 다이오드(1200) 및 열선(2000) 등으로 구성된다.Referring to FIG. 10, the circuit diagram includes a transformer 1000 and a plurality of diode rectifier circuits arranged in parallel to convert an alternating current (AC) voltage transformed by the transformer 1000 into a direct current (DC) voltage ( 1100 and 2100, and a heating diode 1200 and a heating wire 2000 connected to the DC output voltages output by the diode rectifying circuits 1100 and 2100.
도 10은 도 9와 달리, 병렬로 배열된 2개의 제 1 다이오드 정류 회로(1100) 및 제 2 다이오드 정류 회로(2100)를 사용하며, 출력단쪽에 열선(2000)이 추가적으로 연결된다. 따라서 제 1 다이오드 정류 회로(1100) 및 제 2 다이오드 정류 회로(2100)에 의해 2개의 DC 출력전압이 생성될 수 있다. 물론, 도 9에서 도시된 바와 같이, 하나의 다이오드 정류 회로(1100)에서 동작 용량이 큰 순방향 다이오드(D11,D12,D13,D14)를 사용하는 것도 가능하다. Unlike FIG. 9, FIG. 10 uses two first diode rectifying circuits 1100 and a second diode rectifying circuit 2100 arranged in parallel, and a heating wire 2000 is further connected to an output end. Therefore, two DC output voltages may be generated by the first diode rectifying circuit 1100 and the second diode rectifying circuit 2100. Of course, as illustrated in FIG. 9, it is also possible to use forward diodes D11, D12, D13, and D14 having a large operating capacitance in one diode rectifier circuit 1100.
또한, 도 10과 같이 복수의 다이오드 정류 회로(1100, 2100)를 사용함으로써, 스위치(미도시) 등을 이용하여 1차적으로 열선(2000)을 통하여 물 등 난방을 위하여 필요한 물체를 가열한 후 2차적으로 발열 다이오드(1200)를 통하여 가열할 수 있으며, 어느 한쪽이 고장나더라도 안정적으로 DC 전압을 생성하는 것이 가능하다. In addition, by using the plurality of diode rectifying circuits 1100 and 2100 as shown in FIG. 10, the object necessary for heating the water, such as water, is first heated through the heating wire 2000 using a switch (not shown). It is possible to heat through the heat generating diode 1200, it is possible to generate a DC voltage stably even if one of the failure.
전술된 상세한 설명, 청구범위 및 도면에 도시되어 있거나 또는 기재되어 있는 특징들은 단독으로뿐만 아니라 임의의 조합된 형태로도 본 발명 및 다양한 실시 예들의 주요 부분을 구성할 수 있다.The features shown or described in the foregoing description, claims, and drawings may constitute key parts of the present invention and various embodiments, alone or in any combination.
본 발명은 특정 공간을 가열하기 위한 것으로, 공간 가열 장치는 전자기 방사선을 방출하는 제1방사선원; 및 상기 제1방사선원에서 방출하는 전자기 방사선을 흡수 또는 반사시키기 위한 제2방사선원을 포함한다. 이러한 본발명은 특정 공간 중 적어도 하나 이상의 제한된 영역 안에 배치된 가열 장치에 의하여 특정 공간의 가열을 가능하게 한다.The present invention is for heating a specific space, the space heating device comprises a first radiation source for emitting electromagnetic radiation; And a second radiation source for absorbing or reflecting electromagnetic radiation emitted from the first radiation source. This invention enables heating of a particular space by means of a heating device arranged in at least one or more restricted areas of that space.

Claims (13)

  1. 외부와 구분된 하나의 특정 공간(S)의 내측 영역에 구비되는 공간 가열 장치(A)에 있어서,In the space heating apparatus (A) provided in the inner region of one specific space (S) separated from the outside,
    상기 공간 가열 장치(A)는,The space heating device (A),
    전자기 방사선(120)을 방출하는 제1방사선원(100); 및A first radiation source 100 emitting electromagnetic radiation 120; And
    상기 제1방사선원(100)에서 방출하는 전자기 방사선(120)을 흡수 또는 반사시키기 위한 제2방사선원(200); A second radiation source (200) for absorbing or reflecting electromagnetic radiation (120) emitted from the first radiation source (100);
    을 포함하는 것을 특징으로 하는 공간 가열 장치.Space heating apparatus comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1방사선원(100)은 방출장치(110)를 포함하며, 상기 방출장치(110)는 가스 레이저, 염료 레이저, 고체 레이저, 컬러 센터 레이저, 반도체 레이저, 레이저 다이오드 및 자유-전자-레이저 중 어느 하나인 것을 특징으로 하는 공간 가열 장치.The first radiation source 100 includes an emitter 110, which emitter 110 is any one of a gas laser, a dye laser, a solid state laser, a color center laser, a semiconductor laser, a laser diode and a free-electron laser. Space heating device, characterized in that one.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 방출장치(110)는 상기 방출장치(110)에서 방출되어 제2방사선원(200)에 조사되는 전자기 방사선(120)의 조사점이 제2방사선원(200)에 대하여 상대적으로 위치 변경가능도록 이동하는 것을 특징으로 하는 공간 가열 장치.The emitting device 110 is to move the irradiation point of the electromagnetic radiation 120 emitted from the emitting device 110 irradiated to the second radiation source 200 so that the position can be changed relative to the second radiation source 200. Space heating device characterized in that.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1방사선원(100)은 제2방사선원(200)에서 반사된 전자기 방사선(120)이 다시 제2방사선원(200)으로 반사될 수 있도록 반사장치(130)를 포함하며, 상기 반사장치(130)는 포물선 모양의 미러 또는 구 형상의 미러인 것을 특징으로 하는 공간 가열 장치.The first radiation source 100 includes a reflector 130 so that the electromagnetic radiation 120 reflected from the second radiation source 200 can be reflected back to the second radiation source 200, the reflector 130 Is a parabolic mirror or a spherical mirror.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제2방사선원(200)의 하부에는 상기 제2방사선원(200)에 축적된 열에너지가 외부로 유출되지 않도록 하기 위하여 절연장치(300)를 더 포함하는 것을 특징으로 하는 공간 가열 장치.The lower portion of the second radiation source (200), the space heating device further comprises an insulation device (300) so that the heat energy accumulated in the second radiation source (200) does not leak to the outside.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 제2방사선원(200)과 상기 절연장치(300)사이에는 보조가열장치(400)가 구비되며, An auxiliary heating device 400 is provided between the second radiation source 200 and the insulation device 300.
    상기 보조가열장치(400)는 저항(410)을 이용한 저항 가열 장치와 같은 전기식 가열장치 또는 가열된 유체가 유동하는 가열 파이프를 구비한 습식 가열장치인 것을 특징으로 하는 공간 가열 장치.The auxiliary heating device 400 is an electric heating device such as a resistance heating device using a resistor (410) or a space heating device, characterized in that the wet heating device having a heating pipe through which the heated fluid flows.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 제2방사선원(200)의 상부에는 보조가열장치(400)가 구비되며, An auxiliary heating device 400 is provided on an upper portion of the second radiation source 200,
    상기 보조 가열 장치(400)의 상부에는 버퍼링 장치(500)가 구비되되,A buffering device 500 is provided above the auxiliary heating device 400.
    상기 보조가열장치(400)는 저항(410)을 이용한 저항 가열 장치와 같은 전기식 가열장치 또는 가열된 유체가 유동하는 가열 파이프를 구비한 습식 가열장치인 것을 특징으로 하는 공간 가열 장치.The auxiliary heating device 400 is an electric heating device such as a resistance heating device using a resistor (410) or a space heating device, characterized in that the wet heating device having a heating pipe through which the heated fluid flows.
  8. 외부와 구분된 하나의 특정 공간(S)의 내측 영역에 구비되는 공간 가열 장치(A)에 있어서,In the space heating apparatus (A) provided in the inner region of one specific space (S) separated from the outside,
    상기 공간 가열 장치(A)는,The space heating device (A),
    전자기 방사선(120)을 방출하는 제1방사선원(100); A first radiation source 100 emitting electromagnetic radiation 120;
    상기 제1방사선원(100)에서 방출하는 전자기 방사선(120)을 흡수 또는 반사시키기 위한 제2방사선원(200); 및A second radiation source (200) for absorbing or reflecting electromagnetic radiation (120) emitted from the first radiation source (100); And
    상기 제2방사선원(200)에서 발생되는 열에너지가 외부로 유출되는 것을 차단하기 위한 단열판(310);An insulation plate 310 for blocking heat energy generated from the second radiation source 200 from leaking to the outside;
    을 포함하는 것을 특징으로 하는 공간 가열 장치.Space heating apparatus comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 공간 가열 장치(A)는 단열층(300), 상기 단열층(300) 상부에 구비된 전열층(210) 및 상기 전열층(210 상부에 구비된 마감층(700) 순으로 적층된 건물 바닥 중 상기 전열층(210)의 일측에 구비되며,The space heating device (A) is the heat insulating layer 300, the heat transfer layer 210 provided on the heat insulating layer 300 and the heat transfer layer 210 of the building layer stacked in the order of the finishing layer 700 provided on the upper It is provided on one side of the heat transfer layer 210,
    상기 제2방사선원(200)의 외곽은 발열물질(420)로 도포되며,The outside of the second radiation source 200 is coated with a heating material 420,
    상기 발열물질(420)의 일측에는 발열 코일(430)이 구비된 것을 특징으로 하는 공간 가열 장치Space heating device, characterized in that the heating coil 430 is provided on one side of the heating material 420
  10. 제 9 항에 있어서,The method of claim 9,
    상기 전열층(210)은 그 내부가 물로 채워져 있으며,The heat transfer layer 210 is filled inside with water,
    상기 발열물질(42)은 전기저항 발열물질인 칸탈(kanthal)인 것을 특징으로 하는 공간 가열 장치.The heating material (42) is a space heating device, characterized in that the Kantal (kanthal) that is an electrical resistance heating material.
  11. 외부와 구분된 하나의 특정 공간(S)의 내측 영역을 가열하기 위한 공간 가열 방법에 있어서,In the space heating method for heating the inner region of one specific space (S) separated from the outside,
    적어도 하나 이상의 제1방사선원(100)을 이용하여 전자기 방사선(120)을 방출하는 방출단계;An emission step of emitting electromagnetic radiation 120 using at least one first radiation source 100;
    상기 제1단계에서 방출된 전자기 방사선(120) 중 일부를 제2방사선원(200)에 흡수하는 흡수단계;An absorption step of absorbing a part of the electromagnetic radiation 120 emitted in the first step to the second radiation source 200;
    상기 흡수단계에서 반사된 잔여 전자기 방사선(120)이 상기 제1방사선원(100)에서 반사된 후 상기 제2방사선원(200)에서 재흡수하는 재흡수단계;A reabsorption step in which the remaining electromagnetic radiation 120 reflected in the absorption step is reflected by the first radiation source 100 and then reabsorbed by the second radiation source 200;
    를 포함하는 공간 가열 방법.Space heating method comprising a.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 방출단계 이전에 제2방사선원(200)을 보조가열장치(400)를 이용하여 가열하는 예비가열단계를 포함하는 공간 가열 방법.And a preheating step of heating the second radiation source (200) using the auxiliary heating device (400) before the discharge step.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 방출단계는,The release step,
    상기 전자기 방사선(120)을 조사하는 제1방사선원(100)이 이동하는 것을 특징으로 하는 공간 가열 방법.Space heating method characterized in that the first radiation source (100) for irradiating the electromagnetic radiation (120) is moved.
PCT/KR2010/009190 2009-12-23 2010-12-22 Space-heating apparatus and space-heating method WO2011078570A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009059295A DE102009059295B4 (en) 2009-12-23 2009-12-23 Space heater using a laser
DE102009059295.4 2009-12-23
KR10-2010-0132073 2010-12-22
KR1020100132073A KR20110073345A (en) 2009-12-23 2010-12-22 Device and method for heating space

Publications (2)

Publication Number Publication Date
WO2011078570A2 true WO2011078570A2 (en) 2011-06-30
WO2011078570A3 WO2011078570A3 (en) 2011-11-10

Family

ID=44196307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009190 WO2011078570A2 (en) 2009-12-23 2010-12-22 Space-heating apparatus and space-heating method

Country Status (1)

Country Link
WO (1) WO2011078570A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492363A (en) * 2011-06-29 2013-01-02 Robert Simpson Laser Kettle Liquid Heating Appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086348A (en) * 1998-05-27 1999-12-15 윤종용 microwave
KR200262447Y1 (en) * 2001-08-24 2002-03-18 심규상 The Device Of Concentrating Light And Heat Using The Source Of Sun Light
JP2002147762A (en) * 2000-11-14 2002-05-22 Fuji Photo Film Co Ltd Food cooking apparatus
KR20020091008A (en) * 2002-11-08 2002-12-05 박선규 a means of a right to the sunlight secure using sunshine condenser
KR100431279B1 (en) * 2001-08-29 2004-05-17 김흥식 Near Infra Red Ray Electric Heat And Making Method Thereof, Heating Apparatus Using The Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850812B2 (en) * 1995-12-07 1999-01-27 松下電器産業株式会社 Cooker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990086348A (en) * 1998-05-27 1999-12-15 윤종용 microwave
JP2002147762A (en) * 2000-11-14 2002-05-22 Fuji Photo Film Co Ltd Food cooking apparatus
KR200262447Y1 (en) * 2001-08-24 2002-03-18 심규상 The Device Of Concentrating Light And Heat Using The Source Of Sun Light
KR100431279B1 (en) * 2001-08-29 2004-05-17 김흥식 Near Infra Red Ray Electric Heat And Making Method Thereof, Heating Apparatus Using The Same
KR20020091008A (en) * 2002-11-08 2002-12-05 박선규 a means of a right to the sunlight secure using sunshine condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492363A (en) * 2011-06-29 2013-01-02 Robert Simpson Laser Kettle Liquid Heating Appliance

Also Published As

Publication number Publication date
WO2011078570A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US20150176858A1 (en) Heat tracing apparatus with heat-driven pumping system
WO2010133814A1 (en) Generating electrical power from heating system using thermoelectric generator
KR20100003501U (en) Electric radiator
JP3195908B2 (en) Heating method and device using electric hot water pipe
WO2011078570A2 (en) Space-heating apparatus and space-heating method
WO2013042812A1 (en) Integral apparatus for generating x-rays
JP4538981B2 (en) Thermolight generator
WO2016003088A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
KR20110073345A (en) Device and method for heating space
JP6043635B2 (en) Heat source machine
CN208044421U (en) A kind of automatically controlled hot bellows
WO2012070746A1 (en) Structure for cooling a combustion chamber using supplied air
WO2021194002A1 (en) Heating cable for heating and heat-transfer pipe for heating using same
CN106907758A (en) Collapsible heating installation is used in office
JPH0917231A (en) Lighting system with heat exchanging function
JPS6298127A (en) Heating apparatus
CN107449023B (en) Send out thermal module and its intelligent electricity floor heating
WO2017213410A1 (en) Composite heating device using heat storage sand
KR20060086727A (en) Coagulation preventing apparatus for winding coil of electric equipment using heat pipe
JP2009145035A (en) Instantaneous heating type floor heating device
CN110863626A (en) Wall heating plate
CN214745998U (en) Heating system with high-efficient heat transfer device of two heats source
CN211666127U (en) Wall heating plate
CN207555723U (en) Self-loopa Electrothermal Steam Heat
RU106478U1 (en) RADIATED HEAT GENERATOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839767

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A) - 09.10.2012

122 Ep: pct application non-entry in european phase

Ref document number: 10839767

Country of ref document: EP

Kind code of ref document: A2