WO2011078532A2 - High-carbon martensitic stainless steel and a production method therefor - Google Patents

High-carbon martensitic stainless steel and a production method therefor Download PDF

Info

Publication number
WO2011078532A2
WO2011078532A2 PCT/KR2010/009108 KR2010009108W WO2011078532A2 WO 2011078532 A2 WO2011078532 A2 WO 2011078532A2 KR 2010009108 W KR2010009108 W KR 2010009108W WO 2011078532 A2 WO2011078532 A2 WO 2011078532A2
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
annealing
strip
hot
martensitic stainless
Prior art date
Application number
PCT/KR2010/009108
Other languages
French (fr)
Korean (ko)
Other versions
WO2011078532A3 (en
Inventor
채동철
서보성
안승배
정성인
이재화
조규진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to DE112010004925T priority Critical patent/DE112010004925T5/en
Priority to JP2012545847A priority patent/JP5770743B2/en
Priority to CN201080058577.8A priority patent/CN102665964B/en
Priority to US13/517,278 priority patent/US20120321501A1/en
Publication of WO2011078532A2 publication Critical patent/WO2011078532A2/en
Publication of WO2011078532A3 publication Critical patent/WO2011078532A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0697Accessories therefor for casting in a protected atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Definitions

  • the present invention is a high-carbon martensitic stainless steel and a method for manufacturing the same, and more specifically, a high-carbon martensitic stainless steel containing 0.4 to 0.83 ⁇ 4 carbon, 11-16% creme by using a strip casting process
  • the present invention relates to a high carbon martensitic stainless steel produced by reducing the size of the primary carbide and a method for producing the same.
  • high carbon martensitic steels containing more than 0.40% of carbon by weight 3 ⁇ 4> are used for razor blades and knives because of their excellent corrosion resistance, hardness and wear resistance.
  • the razor blade comes into contact with moisture during the shaving process.
  • Such razor blades are also stored in a humid atmosphere and therefore require corrosion resistance. As such, this environment is too harsh for high carbon steels to be used, so martensitic stainless steels containing about 13% chromium are usually used.
  • a razor blade manufactured using such martensitic stainless steel has a martensite, which is a base fabric, containing at least about 12% by weight of the resulting martensite. It acts to suppress the corrosion of the matrix.
  • shaving is a process of cutting a beard by closely attaching a blade to a material, and above all, high hardness is required to cut a high strength beard.
  • the high hardness level required by the razor blade is achieved by the martensite matrix of the steel. Martensitic tissue is a very hard microstructure that is produced by the rapid cooling of silver austenite. The higher the carbon content of the solid solution on the hot austenite phase, the higher the carbon employed in the martensite and the higher the hardness of the martensite. Therefore, in order to manufacture a steel having a high hardness, as much carbon as possible should be added to the steel.
  • 420 series martensitic stainless steels are mainly used as a material for surface blades which satisfy the above requirements in terms of corrosion resistance and hardness. These steels contain 0.45-0.7 ° C by weight, carbon, up to 1% manganese, up to 1% silicon, and 12 to 13 ⁇ 4 chromium, among which the component systems are based on about 0.65% and about 13% crevices. Usually used a lot.
  • the blade thickness is generally 0.2 mm or less. Therefore, very thin high carbon martensitic stainless steel having a thickness of 0.2 mm or less is used as an initial material for producing a razor blade.
  • This initial material has a microstructure composed of ferrite matrix and fine chromium carbide evenly distributed. At this time, the distribution of fine chromium carbide enables rapid re-use of carbon into the hot austenite phase in the subsequent hardening process, so that the martensite transformed by cooling has sufficient hardness to be used as a razor blade. It is a major factor.
  • the size of the cadmium carbides of the initial material can be defined as the number of cadmium carbides per unit area, and when observed at a high magnification of 10,000 times, more than 50 chromium carbides having a size of 0.1 or more should be present in an area of 100 2 .
  • the initial material is slit to the appropriate width, coiled and then subjected to several subsequent steps to produce a razor blade. Subsequent processes include a hardening process that heats and maintains a high temperature austenite zone and then cools it to give high hardness, a sharpening process of the razor blade, and a coating process to impart wear resistance and lubricity. And welding for mounting the blade to the razor.
  • the initial material of the thin material (0.2 mm or less in thickness) used to manufacture the razor blade should be free of coarse clump carbide in the microstructure, for the following reasons.
  • coarse inclusions also cause edge dropout.
  • the maximum size of chromium carbide allowed in terms of edge drop is 10.
  • Coarse crumble carbides which are present in the initial material and have a size of more than 10 / trough, which act as a major cause of edge dropout, are coarse primary carbides produced during casting. This coarse primary carbide is distinguished from the fine chromium carbide that occurs during hot work or heat treatment of alloys. do. Coarse primary carbides are produced by segregation that occurs between dendrite arms during the uneven process of high carbon martensitic stainless steels. Since segregation of carbon and creme is a natural phenomenon occurring at uncoiling, primary carbide formation cannot be avoided, but its size should be minimized during uncoiling to prevent edge dropout.
  • This edge drop problem is not only a razor blade, but also an important quality factor that determines the quality of the blade tip in general ceramic applications.
  • Japanese Patent No. 61034161 proposes an alloy component system having a carbon content of 0.40 to 0.55% in order to minimize edge dropout by primary carbide.
  • the ingot casting method generally used in the manufacture of razor blade steel has a disadvantage in that the primary carbide is coarse because segregation is severely generated. Because of these drawbacks, in order to re-primary the primary carbides or to make them smaller, hot processing such as additional heat treatment and forging in the ingot is essential.
  • the present invention has been devised in accordance with the above-mentioned requirements, and utilizes a new strip casting method for the purpose of replacing the existing ingot casting method which is mainly used for manufacturing high carbon martensitic steel.
  • the present invention aims to provide a method for economically manufacturing high carbon-containing martensitic stainless steel while significantly suppressing coarse primary carbides, which are the major drawbacks of conventional ingot casting methods.
  • the present invention provides a pair of edge dams and upper edges of the molten steel pool installed to form a molten steel pool on both sides thereof.
  • a molten stainless steel containing, by weight, C: 0.40 to 0.80V Cr: 11-16% by weight from a tundish through a nozzle is used.
  • annealing batch annealing
  • high carbon martensitic stainless steel to produce a hot-rolled annealing plate.
  • the annealing is preferably performed in the range of 1 to 3 times.
  • the hot-annealed annealing strip subjected to the annealing in the present invention may be subjected to a pickling treatment after shot blasting.
  • the depth of the decarburized layer in the hot-burning annealing strip before the pickling treatment may be 20 1 or less directly below the surface scale.
  • the hot-rolled annealing strip may be subjected to subsequent cold rolling, and in this case, it is preferable that the one-time rolling reduction ratio is at most 70%.
  • the cold rolled strip may be subjected to annealing up to five times under reducing gas atmosphere.
  • the cold rolled strip may be subjected to cold combustion annealing at a temperature of 650 ⁇ 800 ° C.
  • the strip casting apparatus including a, by weight%, C: 0.40 ⁇ 0.80%, Cr: ll ⁇ 16% by supplying the molten stainless steel from the tundish through the nozzle through the nozzle to cast a stainless steel sheet, Heat-burning the cast stainless steel sheet at a reduction ratio of 5 to 40% using an inline roller after the main structure.
  • the Dunstrip can be prepared to provide a high carbon martensitic stainless steel in which the primary carbide is less than or equal to ⁇ in the hot-combusted strips microstructure.
  • the present invention is characterized by applying a strip casting method for manufacturing a hot rolled coil directly from molten steel manufactured by a steelmaking process.
  • Strip casting can dramatically reduce the size of primary carbides formed in uneven tissues, making them very useful for producing high-quality razor blades.
  • the manufacturing process of the hot rolled coil is simple compared to the existing ingot casting method, and thus the manufacturing cost is very low.
  • FIG. 1 shows a schematic diagram of a typical stripcasting process.
  • FIG. 2 is a tissue photograph showing that primary carbides coarse at grain boundaries are formed as a cross-sectional microstructure of an ingot cast by an ingot casting method.
  • FIG. 3 is a texture photograph showing that primary carbides that existed at grain boundaries of the ingots as the microstructures of the ingots cast by the ingot casting method after hot rolling are subjected to water cooling.
  • FIG. 4 is a low magnification cross-sectional microstructure of a hot rolled sheet material which is cast by strip casting and continuously inline rolled at a high temperature after a main structure, with equiaxed crystals formed at the center of thickness and columnar crystals formed at the surface layer.
  • Organizational photograph showing the organization.
  • FIG. 5 is an organization photograph showing an enlarged columnar region of FIG. 4;
  • FIG. 6 is an enlarged tissue photograph of an isometric region of FIG. 4.
  • FIG. 7 is a tissue photograph showing a low magnification cross-sectional microfabrication of a cold rolled material of a thin film prepared to a thickness of 0.075 mm 3.
  • FIG. 8 is a tissue photograph showing a high magnification cross-sectional microfabrication of a cold rolled material of a thin film prepared to a thickness of 0.075 mm 3.
  • FIG. 1 is a schematic diagram of a conventionally known stripcasting installation.
  • This strip casting process produces hot-rolled annealing strips of molten steel directly from molten steel, eliminating the hot rolling process, and is a new steel processing process that can drastically reduce manufacturing costs, equipment investment costs, energy consumption, and pollution gas emissions.
  • a twin roll sheet caster used in a general strip casting process receives molten steel in a ladle 1, enters a tundish 2 along a nozzle, and enters a tundish 2. Molten steel is fed through the molten steel injection nozzle 3 between the casting (6) and the edge dam (5) provided at both ends, that is, casting (6), and the unevenness is started.
  • the thin plate 8 is manufactured and drawn as it exits the nip 7 where both rolls meet, is rolled through the rolling mill 9, and is then wound up in the winding facility 10 through a cooling process.
  • an important technique in the pair-type sheet casting process for directly manufacturing a thin plate having a thickness of 10 or less from molten steel is supplying molten steel through an injection nozzle between an inner water-cooled pair rotating in opposite directions at a high speed to obtain a thin plate having a desired thickness. It is manufactured so that there is no crack and the error rate is improved.
  • the present invention relates to a method for manufacturing high carbon martensitic stainless steel using a strip casting process, in particular, high carbon martensitic stainless steel containing 0.40 to 0.80% carbon by weight and 11 to 16% creme as the main component. It is manufactured by using the strip casting method, by reducing the size of the primary carbide formed in the cast structure to ⁇ ⁇ or less, characterized in that for producing a high-carbon martensitic stainless steel for razor blade having excellent blade quality. .
  • Strip casting process which is a feature of the present invention, casts liquid steel directly into a sheet having a thickness of 1 to 5 mm, while applying a very high cooling rate to the cast plate, and segregation generated during casting This is a recipe to minimize.
  • a hot rolled coil was manufactured using a paired strip caster.
  • the twin-strip caster is characterized by feeding molten steel between twin-drum rolls and side dams rotating in opposite directions, and casting the cooled water while releasing a large amount of heat through the surface. At this time.
  • a thin hot rolled sheet of l ⁇ 5mni is produced by in-line ring to be carried out continuously after casting.
  • the base material used in the present invention is a high-carbon martensitic stainless steel using a range of C: 0.4 to 0.8% and Cr: ll to 16%.
  • C 0.4 to 0.8%
  • Cr ll to 16%.
  • the present invention proposes C: 0.4 ⁇ 0.8V Cr: ll ⁇ 16% as the optimum range.
  • the martensitic stainless steel according to the embodiment of the present invention is Si: 0.1-1.0, Mn: 0.1-1.0, Ni: more than 1.0 or less, N: more than 0.1 or less, and S: more than 0.04 by weight.
  • P greater than 0.05 and the remainder are the alloys related to the component system composed of Fe and other unavoidable impurities.
  • Table 1 shows the components of the steel produced by the ingot casting method and the strip casting method.
  • a conventional razor blade steel was manufactured as an ingot, and the components thereof are shown as (1) as Comparative Examples of Table 1.
  • Ingots were prepared with a weight of 50 kg by vacuum induction melting. The ingots were reheated at a temperature of 1200 ° C, hot rolled into 3.5D1D1 thick plates, and water cooled immediately after hot rolling.
  • FIG. 3 shows the microstructure obtained after hot rolling of the component steel according to Comparative Example (# 1).
  • coarse primary carbides are irregularly formed between the grains. Since these coarse primary carbides are not completely reclaimed into the matrix even during reheating at 120 CTC, they remain in the microstructure after hot rolling and are arranged in the rolling direction. This can be confirmed in FIG. 3.
  • FIG. 4 is a low magnification cross-sectional structure of a 2.1 mm thick hot rolled coil (Tables 2, # 6) having a component similar to that of the inventive component steels (Tables 1, # 1) cast by the ingot and cast ingots.
  • 5 and 6 show columnar crystal microstructures developed at the surface layer and equiaxed crystal microstructures developed at the center of the thickness of the coil manufactured by strip casting. From the ingot tissues shown in FIGS. 2 and 3 and the stripcasting tissues shown in FIGS. 5 and 6, primary carbide size comparisons are possible. That is, when manufactured by the existing ingot casting method, it can be clearly observed that coarse primary carbide was formed at 1000 times magnification. However, in the hot rolled coil manufactured by applying the strip casting method shown in FIGS.
  • Another advantage of using the strip casting method in casting high carbon martensitic stainless steels is that the manufacturing cost is reduced due to the reduced process compared to the existing ingot casting method.
  • subsequent hot working processes such as ingot and hot rolling are indispensable. This additional process is a major factor in increasing the manufacturing cost of ingot casting.
  • the heat treatment process including the incidence of the material and the elevated temperature, which are essential for the subsequent hot working process such as segregation and hot rolling should be performed very slowly due to the fear of cracking caused by thermal shock.
  • the transfer operation must also be done carefully at high temperatures, which is very disadvantageous in terms of productivity.
  • the strip casting method has a great advantage of being able to manufacture high carbon martensitic stainless steel at low cost since the hot rolled coil is directly manufactured without undergoing a separate hot working process including the above-mentioned coalescence.
  • Inventive steel 6 (# 6) shown in Table 2 as a 2.1 mm thick hot rolled coil manufactured by a strip casting process was subjected to batch annealing for a long time in a batch heat treatment furnace.
  • the hot rolled coil was slowly heated to an annealing temperature of 700 ⁇ 950 ° C in a reducing atmosphere, and maintained at that temperature for a long time, and then slowly cooled in the furnace again.
  • This annealing heat treatment can be performed from as little as one to as many as three times.
  • the greater the number of annealing treatments the more homogeneous the material can be, but this can lead to additional manufacturing costs.
  • the heat treatment of this process converts martensite and residual austenite, which constitute the microstructure of the hot rolled coil, into ferrite and cadmium carbide.
  • the hardness of the hot-annealed tissue after this process was about 220 Hv.
  • the annealed hot rolled coil was subjected to shot blasting, and the surface scale and the decarburized layer were removed with a pickling solution composed of sulfuric acid and common acid of sulfuric acid / nitric acid at a temperature of about 70 ° C. At this time, the depth of the decarburized layer was formed about 20 or less directly below the surface layer scale, and was easily removed by pickling.
  • ingots manufactured by ingot casting are inevitable to heat-treat the ingots at a high temperature in order to alleviate segregation of alloy elements generated during casting. Since the coal is severely generated, additional work is required to remove the decarburized layer after the hot rolled coil is manufactured.
  • the decarburized layer is present in the coils produced by strip casting, the decarburized layer is slightly generated because the exposure time to the high temperature above loocrc is short within 5 minutes before cooling after casting. Therefore, since the hot rolled coil manufactured by the strip casting process can be easily removed from the decarburized layer by pickling, additional coil grinding can be omitted to remove the decarburized layer.
  • cold rolling was performed about the invention steel (# 6) of Table 2 as a hot-rolled coil after pickling.
  • the initial material for producing the blade has a thickness of 0.2 kPa or less, considerable intermetallic pressure reduction is required to reduce the thickness of the initial material to the target thickness from the 2.1 mm thick hot-annealed coil.
  • the razor blade steel is hardened during cold rolling due to the fine carbide present in the microstructure and has a large decrease in ductility.
  • up to 70% of cold rolling was performed during one cold rolling in order to cold roll to the target thickness while preventing sheet breakage due to edgetack generation. Thereafter, edge trimming and intermediate annealing were performed.
  • the intermediate annealing was carried out for a time within 5 minutes at a temperature of about 750 ° C.
  • Cold rolling and annealing were repeated several times to roll to the final target thickness.
  • a 0.075 kPa thick rolled thin coil was manufactured.
  • the cold rolled strip may be subjected to cold annealing at a temperature of 650 ⁇ 800 ° C.
  • FIG. 7 and 8 show the microstructure of the coil cold rolled to a thickness of 0.075 ⁇ .
  • carbides having a size of 10 or more did not exist, and most carbides were uniformly distributed in the size of 0.1 to 1.5. That is, it can be seen from FIG. 8 that an advantageous microstructure is formed to prevent edge detachment.
  • the number of carbides having a size of 0.1 or more observed in FIG. 8 is about 120 ⁇ / 100 / ⁇ 2 , and it can be seen that the microstructures are suitable for producing blades.
  • the present invention by using the strip casting method, compared to the razor blade steel produced by the ingot casting method, by innovatively suppressing the formation of coarse primary carbide, it is possible to economically manufacture high quality razor blades It is done.
  • the present invention has been described in terms of specific embodiments of shaving blade applications, the scope of the invention is not limited to razor blade applications but includes the scope of the claims.
  • the technical spirit of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation.
  • those skilled in the art will understand that various modifications are possible within the scope of the technical idea of the present invention.
  • the scope of the above-described invention is defined in the following claims, which are not bound by the description in the text of the specification and all modifications and changes belonging to the equivalent scope of the claims will belong to the scope of the present invention.

Abstract

The present invention relates to a production method for high-carbon martensitic stainless steel as used in razor blades, knives and the like, which contains from 0.40 to 0.80 wt.% of carbon and from 11 to 16 wt.% of chromium as the main components. Provided is a production method for high-carbon martensitic stainless steel in a strip-casting device, wherein steel for stainless steel containing, as percentages by weight, from 0.40 to 0.80% of carbon and from 11 to 16% of chromium is supplied from a tundish, via a nozzle to a molten steel pool in such a way that a stainless-steel thin sheet is cast, and the cast stainless-steel thin sheet is made into hot-rolled annealed strips using in-line rollers to a rolling reduction of from 5 to 40% immediately after casting such that the primary carbides within the hot-rolled annealed strip microstructure are no more than 10 μm, and also provided is martensitic stainless steel produced by means of the production method. By reducing the size of the primary carbides formed in the cast structure and the hot-rolled sheet to no more than 10 μm, the present invention produces high-carbon martensitic stainless steel having outstanding blade-end quality for use in cutting implements.

Description

【명세서】  【Specification】
【발명의 명 칭】  [Name of invention]
고탄소 마르텐사이트계 스테 인리스강 및 그 제조방법  High carbon martensitic stainless steel and its manufacturing method
【기술분야】 Technical Field
본 발명은 고탄소 마르텐사이트계 스테인리스강 및 그 제조방법에 판한 것 으로 더욱 상세하게는 0.4~0.8¾ 탄소 , 11-16% 크름을 함유한 고탄소 마르텐사이트 계 스테인리스강을 스트립 캐스팅 공정을 이용하여 제조하여 프라이머리 카바이드 의 크기를 줄인 고탄소 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것이 다 .  The present invention is a high-carbon martensitic stainless steel and a method for manufacturing the same, and more specifically, a high-carbon martensitic stainless steel containing 0.4 to 0.8¾ carbon, 11-16% creme by using a strip casting process The present invention relates to a high carbon martensitic stainless steel produced by reducing the size of the primary carbide and a method for producing the same.
【배경기술】  Background Art
일반적으로 중량 ¾>로 탄소를 0.40% 이상 함유하고 있는 고탄소 마르텐사이트 계 강은 내식성 , 경도 그리고 내마모성 이 우수하여 면도날 , 칼 등에 사용되고 있 다. 이와 같이 면도날 등에 사용되는 고탄소 마르텐사이트계 스테인리스강을 이용 하여 제조된 면도날을 사용하는 경우 , 면도 과정에서 면도날이 수분과 접촉하게 된 다 .  In general, high carbon martensitic steels containing more than 0.40% of carbon by weight ¾> are used for razor blades and knives because of their excellent corrosion resistance, hardness and wear resistance. When using a razor blade made of high carbon martensitic stainless steel used for razor blades or the like, the razor blade comes into contact with moisture during the shaving process.
또한 이와 같은 면도날은 또한 습한 분위기에서 보관하게 되므로 부식저항 성이 필요하다 . 이처럼 , 이와 같은 환경은 고탄소강이 사용되 기에 너무 가혹한 것 이므로 보통은 약 13%의 크롬을 함유한 마르텐사이트계 스테인리스강이 주로 사용 된다 . 이러한 마르텐사이트계 스테인리스강을 사용하여 제조된 면도날은 그 기지조 직 인 마르텐사이트가 중량 백분율로 약 12% 이상의 크름을 함유하며 그 결과로 면 도날 표면에 얇은 크롬산화물이 치밀하게 생성되어 수분으로부터 면도날 기지조직 의 부식을 억제하는 역할을 수행한다.  In addition, such razor blades are also stored in a humid atmosphere and therefore require corrosion resistance. As such, this environment is too harsh for high carbon steels to be used, so martensitic stainless steels containing about 13% chromium are usually used. A razor blade manufactured using such martensitic stainless steel has a martensite, which is a base fabric, containing at least about 12% by weight of the resulting martensite. It acts to suppress the corrosion of the matrix.
한편 면도는 면도날을 소재에 밀착시켜 수염을 자르는 과정으로 고강도의 수염을 자르기 위해서 무엇보다도 또한 높은 경도가 요구된다. 면도날이 요구하는 높은 경도 수준은 강의 마르텐사이트 기지조직에 의하여 구현된다. 마르텐사이트 조직은 고은의 오스테나이트를 빠르게 냉각시킬 때 생성되는 매우 경한 미세조직이 다. 고온의 오스테나이트상에 고용된 탄소의 함량이 높을수록 , 마르텐사이트에 고 용된 탄소가 많아 마르텐사이트의 경도는 높아진다. 따라서, 높은 경도를 갖는 면 도날용 강을 제조하기 위해서는 가급적 많은 탄소를 강에 첨가시킬 수 있어야 한 다.  On the other hand, shaving is a process of cutting a beard by closely attaching a blade to a material, and above all, high hardness is required to cut a high strength beard. The high hardness level required by the razor blade is achieved by the martensite matrix of the steel. Martensitic tissue is a very hard microstructure that is produced by the rapid cooling of silver austenite. The higher the carbon content of the solid solution on the hot austenite phase, the higher the carbon employed in the martensite and the higher the hardness of the martensite. Therefore, in order to manufacture a steel having a high hardness, as much carbon as possible should be added to the steel.
대 체 용지 (규칙 제 26조) 보통 내식성과 경도 관점에서 상기한 바와 같은 요구조건을 층족시키는 면 도날용 소재로 420계열의 마르텐사이트계 스테인리스강들이 주로 사용되고 있다. 이 강들은 중량 백분율로 0.45-0.7 。탄소, 최대 1%망간, 최대 1% 실리콘, 그리고 12~1¾의 크롬을 함유한 강으로, 그 중에서도 약 0.65%와 약 13% 크름을 기반으로 한 성분계가 통상적으로 많이 사용되고 있다. Replacement Paper (Rule Article 26) In general, 420 series martensitic stainless steels are mainly used as a material for surface blades which satisfy the above requirements in terms of corrosion resistance and hardness. These steels contain 0.45-0.7 ° C by weight, carbon, up to 1% manganese, up to 1% silicon, and 12 to 1¾ chromium, among which the component systems are based on about 0.65% and about 13% crevices. Usually used a lot.
한편 면도날의 두께는 일반적으로 0.2誦 이하이다. 따라서, 면도날을 제조 하기 위해서 0.2画 이하의 두께를 갖는 매우 얇은 고탄소 마르텐사이트계 스테인리 스 강을 초기소재로 사용한다. 이 초기소재는 페라이트 기지조직과 균일하게 분포 된 미세한 크롬탄화물로 구성된 미세조직을 갖는다. 이때 미세한 크롬탄화물의 분 포는 후속 강화열처리 (hardening) 공정에서 고온의 오스테나이트 상으로 탄소의 빠 른 재고용을 가능케 하여, 냉각에 의하여 변태된 마르텐사이트가 면도날로 사용되 기에 충분한 경도를 갖도록 조절하는 주요한 인자이다.  On the other hand, the blade thickness is generally 0.2 mm or less. Therefore, very thin high carbon martensitic stainless steel having a thickness of 0.2 mm or less is used as an initial material for producing a razor blade. This initial material has a microstructure composed of ferrite matrix and fine chromium carbide evenly distributed. At this time, the distribution of fine chromium carbide enables rapid re-use of carbon into the hot austenite phase in the subsequent hardening process, so that the martensite transformed by cooling has sufficient hardness to be used as a razor blade. It is a major factor.
그리고 초기소재의 크름탄화물 크기는 단위면적당 크름탄화물의 개수로 정 의할 수 있으며, 1만 배의 고배율에서 관찰할 때 0.1 이상의 크기를 갖는 크롬 탄화물이 100 2의 면적당 50개 이상 존재하여야 한다. 이 초기소재를 적당한 폭으 로 슬리팅하고, 코일링 한 후 여러 단계의 후속 공정을 거쳐 면도날을 제조한다. 그 후속공정은 높은 경도를 부여하기 위하여 고온의 오스테나이트 영역으로 가열 및 유지한 후 냉각하는 강화열처리 (hardening) 공정, 면도날을 날카롭게 만드는 (sharpening) 공정, 내마모성 및 윤활성 부여를 위한 코팅 (coating) 공정 그리고 면도기에 면도날 장착을 위한 용접 (welding) 등의 공정을 포함한다. In addition, the size of the cadmium carbides of the initial material can be defined as the number of cadmium carbides per unit area, and when observed at a high magnification of 10,000 times, more than 50 chromium carbides having a size of 0.1 or more should be present in an area of 100 2 . The initial material is slit to the appropriate width, coiled and then subjected to several subsequent steps to produce a razor blade. Subsequent processes include a hardening process that heats and maintains a high temperature austenite zone and then cools it to give high hardness, a sharpening process of the razor blade, and a coating process to impart wear resistance and lubricity. And welding for mounting the blade to the razor.
또한, 면도날을 제조하기 위해서 사용되는 박물 (두께 0.2隱 이하)의 초기소 재는 미세조직 내에 조대한 크름탄화물이 부재하여야 하는데, 그 이유는 다음과 같 다. 조대한 크름탄화물이 존재할 경우에 후속 공정인 면도날을 날카롭게 만드는 (sharpening) 공정 중에 면도날 에지 (edge) 부분에서 조대한 크롬탄화물의 탈락이 발생하여. 면도날 에지의 날카로움이 무디게 되는 현상이 발생한다. 이러한 현상을 에지탈락 (edge tear-out) 이라고 하며, 에지탈락은 면도 증에 피부에 상처를 일으 키는 주 인자이다. 조대한 크롬탄화물 이외에 조대한 개재물도 에지탈락을 일으키 는 요인으로 작용한다. 에지탈락 관점에서 허용되는 크롬탄화물의 최대크기는 10 이다. 초기소재에 존재하여 에지탈락 발생의 주원인으로 작용하는 10/通 이상의 크 기를 갖는 조대한 크름탄화물은 합금주조 (casting)시에 생성되는 조대한 프라이머 리 카바이드 (primary carbide)이다. 이 조대한 프라이머리 카바이드는 합금의 열간 가공이나 열처리과정 중에 발생하는 미세한 크롬탄화물 (secondary carbide)과 구분 된다. 조대한 프라이머리 카바이드는 고탄소 마르텐사이트계 스테인리스강의 웅고 과정 도중에 수지상정 (dendrite arm) 사이에 발생하는 편석에 의하여 생성된다. 탄 소와 크름의 편석은 웅고 시에 발생하는 자연현상이므로 프라이머리 카바이드의 형 성을 회피할 수 없으나, 에지탈락을 방지하기 위하여 그 크기는 웅고과정 중에 최 소화 되어야 한다. In addition, the initial material of the thin material (0.2 mm or less in thickness) used to manufacture the razor blade should be free of coarse clump carbide in the microstructure, for the following reasons. Coarse chromium carbides in the presence of coarse chromium carbides, resulting in coarse chromium carbides falling off the edges of the blades during the sharpening process. The sharpness of the blade edge is blunted. This phenomenon is called edge tear-out, which is the main cause of skin damage in shaving. In addition to coarse chromium carbide, coarse inclusions also cause edge dropout. The maximum size of chromium carbide allowed in terms of edge drop is 10. Coarse crumble carbides, which are present in the initial material and have a size of more than 10 / trough, which act as a major cause of edge dropout, are coarse primary carbides produced during casting. This coarse primary carbide is distinguished from the fine chromium carbide that occurs during hot work or heat treatment of alloys. do. Coarse primary carbides are produced by segregation that occurs between dendrite arms during the uneven process of high carbon martensitic stainless steels. Since segregation of carbon and creme is a natural phenomenon occurring at uncoiling, primary carbide formation cannot be avoided, but its size should be minimized during uncoiling to prevent edge dropout.
이와 같은 에지탈락 문제는 면도날 뿐만 아니라, 일반적인 도물용도에서 날 끝의 품질을 결정하는 중요한 품질인자이다. 전술한 바와 같이, 높은 경도를 갖는 면도날을 제조하기 위해서는 가급적 많은 탄소를 강에 첨가시킬 수 있어야 하지만, 탄소함유량이 높을수록, 웅고 시 프라이머리 카바이드가 조대하게 형성되므로 고품 질의 면도날 제조를 어렵게 한다.  This edge drop problem is not only a razor blade, but also an important quality factor that determines the quality of the blade tip in general ceramic applications. As described above, in order to manufacture a razor blade having a high hardness, as much carbon as possible can be added to the steel, but the higher the carbon content, the coarse primary carbide is formed coarse, making it difficult to manufacture a high quality razor blade.
이러한 이유로, 종래 알려진 일본 특허번호 61034161에서는 프라이머리 카 바이드에 의한 에지탈락을 최소화 하기 위하여 탄소의 함량을 0.40~0.55%로 낮춘 합금 성분계를 제시하고 있다. 특히, 면도날 강 소재 제조에 일반적으로 사용되는 잉곳 주조법은 편석이 심하게 발생하므로 프라이머리 탄화물이 조대하게 형성된다 는 단점이 있다. 이와 같은 단점 때문에 프라이머리 카바이드를 재고용 시키거나 그 크기를 작게 만들어 주기 위하여, 잉곳에 부가적인 가열열처리와 단조와 같은 열간가공이 필수적으로 적용된다.  For this reason, conventionally known Japanese Patent No. 61034161 proposes an alloy component system having a carbon content of 0.40 to 0.55% in order to minimize edge dropout by primary carbide. In particular, the ingot casting method generally used in the manufacture of razor blade steel has a disadvantage in that the primary carbide is coarse because segregation is severely generated. Because of these drawbacks, in order to re-primary the primary carbides or to make them smaller, hot processing such as additional heat treatment and forging in the ingot is essential.
따라서, 고품질의 면도날을 제조하기 위해서, 주조시 조대한 프라이머리 카 바이드의 형성을 억제시키는 방법이 요구된다. 특히, 통상의 면도날 강 대비 탄소 함량을 낮추지 않으면서도 프라이머리 카바이드의 크기를 미세조직 내에서 효과적 으로 줄일 수 있는 경제적인 주조법의 개발이 필요하다.  Thus, in order to produce high quality razor blades, a method of suppressing the formation of coarse primary carbides during casting is required. In particular, it is necessary to develop an economical casting method that can effectively reduce the size of the primary carbide in the microstructure without lowering the carbon content compared to conventional razor blade steel.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】 ' [SUMMARY] "
본 발명은 상기의 요망에 따라 안출된 것으로서 기존의 고탄소 마르텐사이 트계강 제조에 주로 사용되는 잉곳주조법을 대체할 목적으로 스트립캐스팅법을 새 롭게 활용한 것이다. 본 발명에 의하면 기존의 잉곳주조법의 가장 큰 단점이었던 웅고 시 생성되는 조대한 프라이머리 카바이드를 획기적으로 억제시키면서 경제적 으로 고탄소함유 마르텐사이트계 스테인리스강을 제조할 수 있는 방법을 제시하고 자 하는 목적을 갖는다.  The present invention has been devised in accordance with the above-mentioned requirements, and utilizes a new strip casting method for the purpose of replacing the existing ingot casting method which is mainly used for manufacturing high carbon martensitic steel. The present invention aims to provide a method for economically manufacturing high carbon-containing martensitic stainless steel while significantly suppressing coarse primary carbides, which are the major drawbacks of conventional ingot casting methods. Have
【기술적 해결방법】  Technical Solution
본 발명은 상기 목적을 달성하기 위하여, 서로 반대방향으로 회전하는 한쌍 의 를과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면 으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립캐스팅 장치 에서, 중량 %로, C:0.40~0.80V Cr: 11-16%를 함유하는 스테인리스 용강을 턴디쉬로 부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주 조된 스테인리스 박판을 주조직후 인라인를러를 이용하여 5~40%의 압하율로 열연소 둔스트립을 제조하여 열연소둔스트립 미세조직 내에 프라이머리 카바이드 (primary carbide)가 10/ηι 이하가 되도록 하는 고탄소 마르텐사이트계 스테인리스강의 제조 방법을 제공한다. In order to achieve the above object, the present invention provides a pair of edge dams and upper edges of the molten steel pool installed to form a molten steel pool on both sides thereof. In a strip casting apparatus comprising a meniscus shield for supplying an inert nitrogen gas to the furnace, a molten stainless steel containing, by weight, C: 0.40 to 0.80V Cr: 11-16% by weight from a tundish through a nozzle is used. It is supplied to the steel pool to cast a stainless steel sheet, and after the main stainless steel sheet is manufactured by using an inline lorler to prepare a hot-burned dung strip with a reduction ratio of 5 to 40%, and the primary carbide (primary carbide) in the hot-rolled annealing strip microstructure Provided is a method for producing a high carbon martensitic stainless steel such that)) is 10 / ηι or less.
또한, 본 발명에서 상기 마르텐사이트계 스테인리스강은 중량 %로 Si: 0.1-1.0, Mn:0.1~l.으 Ni:0초과 1.0이하, N:0초과 0.1이하, S: 0초과 0.04이하, P:0초과 0.05이하 및 잔부는 Fe 및 기타 불가피한 불순물로 이루어지는 고탄소 마 르텐사이트계 스테인리스강의 제조방법을 제공한다.  In addition, in the present invention, the martensitic stainless steel has a weight% of Si: 0.1-1.0, Mn: 0.1 to l., Ni: more than 1.0 and less, N: more than 0.1 and less, and S: more than 0 and less than 0.04, P Provides a method for producing high carbon martensitic stainless steels, consisting of Fe and other undesired impurities, exceeding 0 and below 0.05.
또한, 본 발명에서 상기 열연소둔스트립을 환원성 가스분위기하에서 700~950°C의 온도범위에서 상소둔 (batch annealing)을 실시하여 열연소둔판을 제조 하는 고탄소 마르텐사이트계 스테인리스강을 제조할 수 있다. In addition, in the present invention, by performing annealing (batch annealing) of the hot-rolled annealing strip at a temperature range of 700 ~ 950 ° C under a reducing gas atmosphere can be produced high carbon martensitic stainless steel to produce a hot-rolled annealing plate. .
또한, 본 발명에서 상기 상소둔은 1~3회의 범위에서 실시하는 것이 바람직 하다.  In addition, in the present invention, the annealing is preferably performed in the range of 1 to 3 times.
또한, 본 발명에서 상기 상소둔 처리된 열연소둔스트립은 숏블라스팅 이후 산세처리를 실시할 수 있다.  In addition, the hot-annealed annealing strip subjected to the annealing in the present invention may be subjected to a pickling treatment after shot blasting.
또한, 본 발명에서 상기 산세처리 이전의 열연소둔스트립에서 탈탄층의 깊 이가 표층스케일 직하 20 1 이하로 나타날 수 있다.  In addition, in the present invention, the depth of the decarburized layer in the hot-burning annealing strip before the pickling treatment may be 20 1 or less directly below the surface scale.
또한, 본 발명에서 상기 열연소둔스트립은 후속의 냉간압연을 실시할 수 있 으며 , 이때 1회 넁간압하율이 최대 70%로 하는 것이 바람직하다.  In addition, in the present invention, the hot-rolled annealing strip may be subjected to subsequent cold rolling, and in this case, it is preferable that the one-time rolling reduction ratio is at most 70%.
또한, 본 발명에서 상기 냉간압연된 스트립은 환원성 가스분위기하에서 소 둔이 총 5회 이하로 실시될 수 있다.  In addition, in the present invention, the cold rolled strip may be subjected to annealing up to five times under reducing gas atmosphere.
또한, 본 발명에서 상기 냉간압연된 스트립은 650~800°C의 온도에서 냉연소 둔을 실시할 수 있다. In addition, in the present invention, the cold rolled strip may be subjected to cold combustion annealing at a temperature of 650 ~ 800 ° C.
또한, 본 발명의 또 다른 측면에 의하면, 서로 반대방향으로 회전하는 한쌍 의 를과 그 양측면에 용강풀을 형성하도록 설치되는 에지템과 상기 용강풀 상부면 으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립캐스팅 장치 에서, 중량 %로, C:0.40~0.80%, Cr:ll~16%를 함유하는 스테인리스 용강을 턴디쉬로 부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주 조된 스테인리스 박판을 주조직후 인라인롤러를 이용하여 5~40%의 압하율로 열연소 둔스트립을 제조하여 열연소둔스트립 미세조직 내에 프라이머리 카바이드 (primary carbide)가 ΙΟ ι이하가 되도록 하는 고탄소 마르텐사이트계 스테인리스강을 제공할 수 있다. Further, according to another aspect of the present invention, a pair of edges rotated in opposite directions to each other and an edge system installed to form a molten steel pool on both sides and a meniscus shield for supplying inert nitrogen gas to the molten steel upper surface In the strip casting apparatus including a, by weight%, C: 0.40 ~ 0.80%, Cr: ll ~ 16% by supplying the molten stainless steel from the tundish through the nozzle through the nozzle to cast a stainless steel sheet, Heat-burning the cast stainless steel sheet at a reduction ratio of 5 to 40% using an inline roller after the main structure. The Dunstrip can be prepared to provide a high carbon martensitic stainless steel in which the primary carbide is less than or equal to ΙΟΟι in the hot-combusted strips microstructure.
【유리한 효과】  Advantageous Effects
상술한 바와 같이 본 발명은 제강공정으로 제조된 용강으로부터 직접 열연 코일을 제조하는 스트립캐스팅 (strip casting)방법을 적용하는 것을 특징으로 한 다. 스트립캐스팅은 웅고조직에서 형성되는 프라이머리 카바이드의 크기를 혁신적 으로 줄일 수 있어, 고품질의 면도날 제조에 매우 유용하게 적용될 수 있다. 특히, 면도날의 품질 뿐만 아니라, 용강으로부터 직접 열연코일을 제조하므로, 기존 잉곳 주조법 대비 열연코일의 제조공정이 단순하여 제조비용이 매우 저렴한 장점이 있 다.  As described above, the present invention is characterized by applying a strip casting method for manufacturing a hot rolled coil directly from molten steel manufactured by a steelmaking process. Strip casting can dramatically reduce the size of primary carbides formed in uneven tissues, making them very useful for producing high-quality razor blades. In particular, since the hot rolled coil is manufactured directly from molten steel as well as the quality of the razor blade, the manufacturing process of the hot rolled coil is simple compared to the existing ingot casting method, and thus the manufacturing cost is very low.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 일반적인 스트립캐스팅 공정의 개략도를 도시한 도면.  1 shows a schematic diagram of a typical stripcasting process.
도 2는 잉곳주조법으로 주조된 잉곳의 단면 미세조직으로 결정입계에 조대 한 프라이머리 카바이드가 생성되어 있음을 도시하는 조직사진도.  FIG. 2 is a tissue photograph showing that primary carbides coarse at grain boundaries are formed as a cross-sectional microstructure of an ingot cast by an ingot casting method. FIG.
도 3은 잉곳주조법으로 주조된 잉곳을 열간압연 후 수냉처리한 미세조직으 로 잉곳의 결정립계에 존재하였던 프라이머리 카바이드가 열연판 미세조직에도 잔 존하는 것을 도시하는 조직사진도.  FIG. 3 is a texture photograph showing that primary carbides that existed at grain boundaries of the ingots as the microstructures of the ingots cast by the ingot casting method after hot rolling are subjected to water cooling.
도 4는 스트립캐스팅법으로 주조되고, 주조직후 고온에서 연속적으로 인라 인롤링된 열연판재의 저배율 단면 미세조직으로, 두께 중심부에 형성된 등축정 (equiaxed crystals) 조직과 표층부에 형성된 주상정 (columnar crystals) 조직을 도시하는 조직사진도.  4 is a low magnification cross-sectional microstructure of a hot rolled sheet material which is cast by strip casting and continuously inline rolled at a high temperature after a main structure, with equiaxed crystals formed at the center of thickness and columnar crystals formed at the surface layer. Organizational photograph showing the organization.
도 5는 도 4의 주상정 영역을 확대한 조직사진도.  5 is an organization photograph showing an enlarged columnar region of FIG. 4;
도 6은 도 4의 등축정 영역을 확대한 조직사진도.  6 is an enlarged tissue photograph of an isometric region of FIG. 4.
도 7은 0.075誦 두께로 제조된 박물의 냉간압연 소재의 저배율 단면 미세조 직을 도시하는 조직사진도.  7 is a tissue photograph showing a low magnification cross-sectional microfabrication of a cold rolled material of a thin film prepared to a thickness of 0.075 mm 3.
도 8은 0.075誦 두께로 제조된 박물의 냉간압연 소재의 고배율 단면 미세조 직을 도시하는 조직사진도.  8 is a tissue photograph showing a high magnification cross-sectional microfabrication of a cold rolled material of a thin film prepared to a thickness of 0.075 mm 3.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하 첨부한 도면을 참고 하여 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 기재한다. 다 만,'본 발명은 청구범위에 기재된 범위 안에서 여러 가지 상이한 형태로 구현될 수 있으므로 하기에 설명하는 실시예는 표현 여부에 불구하고 예시적인 것에 불과하 다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention and other matters required by those skilled in the art will be described in detail with reference to the accompanying drawings. But, for 'the present invention may be embodied in many different forms within the scope described in the claims Therefore, the embodiments described below are merely exemplary, regardless of expression.
본 실시예를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적 인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 그리고 도면에서 동일한 구성요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 동일한 참조번호 및 부호로 나타내고 있음에 유의해야 한다. 아울러, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장될 수 있으며 실제의 층 두께나 크기와 다를 수 있다.  In describing the present embodiment, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Note that the same components in the drawings are represented by the same reference numerals and symbols as much as possible even though they are shown in different drawings. In addition, the thickness or size of each layer in the drawings may be exaggerated for convenience and clarity of description and may be different from the actual layer thickness or size.
도 1은 종래 알려진 스트립캐스팅 설비의 개략도이다. 이 스트립캐스팅 공 정은 용강으로부터 직접 박물의 열연소둔스트립을 생산하는 공정으로서 열간 압연 공정을 생략하여 제조원가, 설비투자비용, 에너지 사용량, 공해가스 배출량 등을 획기적으로 저감할 수 있는 새로운 철강공정 프로세스이다. 일반적인 스트립 캐스 팅 공정에 사용되는 쌍롤형 박판주조기는 도 1에 도시된 바와 같이 용강을 래들 (1) 에 수용시키고, 노즐을 따라 턴디쉬 (2)로 유입되며 , 턴디쉬 (2)로 유입된 용강은 주 조를 (6) 양 끝단부에 설치된 에지댐 (5)의 사이, 즉, 주조를 (6)의 사이로 용강 주입 노즐 (3)올 통해 공급되어 웅고가 개시된다. 이때 롤 사이의 용탕부에는 산화를 방 지하기 위해 메니스커스 쉴드 (4)로 용탕면을 보호하고 적절한 가스를 주입하여 분 위기를 적절히 조절하게 된다. 양 롤이 만나는 를 닙 (7)을 빠져나오면서 박판 (8)이 제조되어 인발되면서 압연기 (9)를 거쳐 압연이 된 후 냉각공정을 거쳐 권취 설비 (10)에서 권취된다.  1 is a schematic diagram of a conventionally known stripcasting installation. This strip casting process produces hot-rolled annealing strips of molten steel directly from molten steel, eliminating the hot rolling process, and is a new steel processing process that can drastically reduce manufacturing costs, equipment investment costs, energy consumption, and pollution gas emissions. As shown in FIG. 1, a twin roll sheet caster used in a general strip casting process receives molten steel in a ladle 1, enters a tundish 2 along a nozzle, and enters a tundish 2. Molten steel is fed through the molten steel injection nozzle 3 between the casting (6) and the edge dam (5) provided at both ends, that is, casting (6), and the unevenness is started. At this time, the molten metal between the rolls is protected by the meniscus shield (4) to prevent oxidation and the appropriate gas is injected to properly control the dust. The thin plate 8 is manufactured and drawn as it exits the nip 7 where both rolls meet, is rolled through the rolling mill 9, and is then wound up in the winding facility 10 through a cooling process.
이때, 용강으로부터 두께 10 이하의 박판을 직접 제조하는 쌍를식 박판주 조공정에 있어서 중요한 기술은, 빠른 속도로 반대방향으로 회전하는 내부 수냉식 쌍를 사이에 주입 노즐을 통해 용강을 공급하여 원하는 두께의 박판을 균열이 없고 실수율이 향상되도톡 제조하는 것이다.  In this case, an important technique in the pair-type sheet casting process for directly manufacturing a thin plate having a thickness of 10 or less from molten steel is supplying molten steel through an injection nozzle between an inner water-cooled pair rotating in opposite directions at a high speed to obtain a thin plate having a desired thickness. It is manufactured so that there is no crack and the error rate is improved.
본 발명은 스트립캐스팅 공정을 이용한 고탄소 마르텐사이트계 스테인리스 강 제조방법에 관한 것으로, 특히 중량 %로 0.40~0.80% 탄소, 11~16%크름을 주 성 분으로 함유한 고탄소 마르텐사이트계 스테인리스강을 스트립캐스팅법을 활용하여 제조하므로, 주조조직 내에 형성되는 프라이머리 카바이드의 크기를 ΙΟ ηι 이하로 저감시킴으로써, 날끝의 품질이 우수한 면도날용 고탄소 마르텐사이트계 스테인리 스강을 제조하는 것을 특징으로 한다.  The present invention relates to a method for manufacturing high carbon martensitic stainless steel using a strip casting process, in particular, high carbon martensitic stainless steel containing 0.40 to 0.80% carbon by weight and 11 to 16% creme as the main component. It is manufactured by using the strip casting method, by reducing the size of the primary carbide formed in the cast structure to ΙΟ ηι or less, characterized in that for producing a high-carbon martensitic stainless steel for razor blade having excellent blade quality. .
본 발명의 특징인 스트립캐스팅 공정은 액상의 강을 1~5隱 두께의 판재로 직접 주조하면서, 주조판에 매우 빠른 냉각속도를 인가하여, 주조시 발생하는 편석 을 최소화하는 제조법이다. 본 발명에서는 쌍를형 스트립캐스터를 이용하여 열연코 일을 제조하였다. 쌍를형 스트립캐스터는 서로 반대방향으로 회전하는 양롤 (twin- drum rolls)과 측면 댐 (side dams)사이로 용강을 공급하고, 수냉되는 를 표면을 통 해 많은 열량을 방출시키면서 주조하는 것을 특징으로 한다. 이 때. 를 표면에서 빠른 냉각속도로 웅고셀을 형성되며, 주조 후 연속적으로 행하여지는 인라인를링에 의하여 l~5mni의 얇은 열연 박판이 제조된다. Strip casting process, which is a feature of the present invention, casts liquid steel directly into a sheet having a thickness of 1 to 5 mm, while applying a very high cooling rate to the cast plate, and segregation generated during casting This is a recipe to minimize. In the present invention, a hot rolled coil was manufactured using a paired strip caster. The twin-strip caster is characterized by feeding molten steel between twin-drum rolls and side dams rotating in opposite directions, and casting the cooled water while releasing a large amount of heat through the surface. At this time. To form a uno cell at a high cooling rate on the surface, a thin hot rolled sheet of l ~ 5mni is produced by in-line ring to be carried out continuously after casting.
(실시예)  (Example)
이하에서 실시예로 본 발명을 설명한다.  Hereinafter, the present invention will be described by way of examples.
본 발명에서 사용되는 모재는 고탄소 마르텐사이트계 스테인리스강으로서 C:0.4~0.8%, Cr:ll~16%의 범위를 사용한다. 본 발명에서 C의 범위를 0.4%이하로 할 경우 스트립이나 잉곳에서 프라이머리 카바이드가 많이 생기지는 않으나 그 경도에 있어서 바람직하지 않다. 또한, 0.8%이상일 경우 스트립캐스팅으로 제조하더라도 조대한 프라이머리 카바이드의 생성을 억제하기가 어려울 수 있다. 따라서 본 발명 에서는 최적의 범위로서 C:0.4~0.8V Cr:ll~16%를 제안한다.  The base material used in the present invention is a high-carbon martensitic stainless steel using a range of C: 0.4 to 0.8% and Cr: ll to 16%. In the present invention, when the range of C is 0.4% or less, a lot of primary carbides are not generated in the strip or ingot, but the hardness is not preferable. In addition, it may be difficult to suppress the production of coarse primary carbide, even if produced by strip casting at 0.8% or more. Therefore, the present invention proposes C: 0.4 ~ 0.8V Cr: ll ~ 16% as the optimum range.
또한ᅵ 본 발명의 실시예에 의한 상기 마르텐사이트계 스테인리스강은 중량 % 로 Si: 0.1-1.0, Mn:0.1-1.0, Ni:0초과 1.0이하, N:0초과 0.1이하, S: 0초과 0.04 이하, P:0초과 0.05이하 및 잔부는 Fe 및 기타 불가피한 불순물로 이루어지는 성분 계에 관한 합금을 대상으로 하고 있다.  In addition, the martensitic stainless steel according to the embodiment of the present invention is Si: 0.1-1.0, Mn: 0.1-1.0, Ni: more than 1.0 or less, N: more than 0.1 or less, and S: more than 0.04 by weight. Hereinafter, P: greater than 0.05 and the remainder are the alloys related to the component system composed of Fe and other unavoidable impurities.
실시예에서는 기존의 잉곳주조법을 경유하여 제조된 열연소둔스트립과 스트 립캐스팅법을 적용하여 제조된 강의 미세조직학적 특성을 비교하였다. 표 1은 잉곳 주조법과 스트립캐스팅법으로 제조된 강의 성분을 도시한 것이다. 먼저 스트립캐스 팅법으로 주조된 소재의 미세조직을 잉곳주조법으로 제조된 소재와 비교하기 위하 여 통상의 면도날강을 잉곳으로 제조하였으며 , 그 성분을 표 1의 비교예로서 (#1) 나타내었다. 잉곳은 진공유도용해법으로 50kg의 중량으로 제조되었다. 잉곳은 1200 °C의 온도에서 재가열 후, 3.5D1D1 두께의 판으로 열간압연되었으며, 열간압연 직후 수냉되었다. 그리고 쌍롤형 스트립 캐스터를 활용하여 다양한 성분의 강을 열연판 으로 제조하였다. 각각 100톤씩 주조하였으며, 그 성분을 표 2에 나타내었다. 스트 립캐스팅법을 활용하여, 수냉되는 를 사이에서 주조된 100톤의 소재는 주조 직후, 고온의 상태에서 인라인롤러 (in-line roller)에서 열간압연되어 1~5圆 두께의 열간 압연 코일로 연속으로 제조되었다. In the examples, the microhistological characteristics of the steel produced by applying the hot-rolled annealing strip and the strip casting method, which were manufactured by the conventional ingot casting method, were compared. Table 1 shows the components of the steel produced by the ingot casting method and the strip casting method. First, in order to compare the microstructure of the material cast by the strip casting method with the material produced by the ingot casting method, a conventional razor blade steel was manufactured as an ingot, and the components thereof are shown as (1) as Comparative Examples of Table 1. Ingots were prepared with a weight of 50 kg by vacuum induction melting. The ingots were reheated at a temperature of 1200 ° C, hot rolled into 3.5D1D1 thick plates, and water cooled immediately after hot rolling. And the steel of various components was manufactured by hot rolled sheet using the twin roll type caster. Each 100 ton was cast, the components are shown in Table 2. Using the strip casting method, 100 tons of material that is cooled between the water-cooled furnaces is hot-rolled on an in-line roller at high temperature immediately after casting, and continuously rolled into hot rolled coils of 1 ~ 5 ~ thickness. Was prepared.
【표 1】 곳 주조법으로 제조된 강의 성분 Table 1 Steel components manufactured by the casting method
【표 2】 Table 2
스트립 strip
Figure imgf000010_0001
Figure imgf000010_0001
【발명의 실시를 위한 형태】  [Form for implementation of invention]
도 2에 진공유도용해로 주조한 통상의 성분강인 표 1의 비교예 (#1)의 잉곳 의 단면조직을 나타내고 있다. 그리고 도 3은 상기 비교예 (#1)에 관한 성분강의 열 간압연후 수넁된 미세조직을 나타내었다. 도 2의 잉곳의 미세조직에서 분명하게 관 찰되는 바와 같이, 결정립 사이에 조대한 프라이머리 카바이드 (primary carbide)가 불규칙하게 생성되어 있음을 보여주고 있다. 이러한 조대한 프라이머리 카바이드 (primary carbide)는 120CTC의 은도에서 수행되는 재가열 동안에도 기지조직으로 완전히 재고용되지 않기 때문에, 열간압연 후의 미세조직 내에 잔존하여 압연방향 으로 배열된 상태로 관찰된다. 이를 도 3에서 확인할 수 있다.  The cross-sectional structure of the ingot of the comparative example (# 1) of Table 1 which is the conventional component steel cast by vacuum induction melting | dissolution is shown in FIG. 3 shows the microstructure obtained after hot rolling of the component steel according to Comparative Example (# 1). As clearly observed in the microstructure of the ingot of FIG. 2, it shows that coarse primary carbides are irregularly formed between the grains. Since these coarse primary carbides are not completely reclaimed into the matrix even during reheating at 120 CTC, they remain in the microstructure after hot rolling and are arranged in the rolling direction. This can be confirmed in FIG. 3.
도 4는 스트립캐스팅법으로 제조되었으며, 잉곳으로 주조된 본 발명의 성분 강 (표 1, #1)과 유사한 성분을 갖는 2.1關 두께의 열연코일 (표 2, #6)의 저배율 단면 조직이다. 스트립캐스팅으로 제조된 코일에서 표층부에 전개된 주상정 (columnar crystal) 미세조직과 두께 중앙부에 전개된 등축정 (equiaxed crystal) 미세조직을 각각 도 5와 6에 나타내었다. 도 2와 도 3에 나타난 잉곳조직과 도 5와 도 6에 나 타난 스트립캐스팅 조직으로부터, 프라이머리 카바이드의 크기 비교가 가능하다. 즉 기존 잉곳주조법으로 제조한 경우에는 1000배 배율에서 조대한 프라이머리 카바 이드가 형성된 것을 명확히 관찰할 수 있다. 그러나, 도 5와 6에 도시된 스트립캐 스팅법을 적용하여 제조된 열연코일에서는 잉곳주조법으로 제조된 도 2의 응고조직 및 도 3의 열연판에서 관찰가능한 조대한 프라이머리 카바이드가 1000배의 배율의 미세조직에서 관찰되지 않음을 나타내고 있다. 이는 고탄소 함유 마르텐사이트계 스테인리스강을 제조함에 있어서 스트립캐스팅법을 이용하여 주조 시, 조대한 프라 이머리 카바이드의 형성을 혁신적으로 억제시킬 수 있다는 본 발명의 기술적 효과 를 극명하게 보여주는 결과이다. 한편 열간압연판에서 1000배 배율의 광학현미경으 로 관찰가능한 프라이머리 카바이드의 크기를 조사하였으며, 이러한 결과를 정리하 여 , 표 1과 표 2에 나타내었다. FIG. 4 is a low magnification cross-sectional structure of a 2.1 mm thick hot rolled coil (Tables 2, # 6) having a component similar to that of the inventive component steels (Tables 1, # 1) cast by the ingot and cast ingots. 5 and 6 show columnar crystal microstructures developed at the surface layer and equiaxed crystal microstructures developed at the center of the thickness of the coil manufactured by strip casting. From the ingot tissues shown in FIGS. 2 and 3 and the stripcasting tissues shown in FIGS. 5 and 6, primary carbide size comparisons are possible. That is, when manufactured by the existing ingot casting method, it can be clearly observed that coarse primary carbide was formed at 1000 times magnification. However, in the hot rolled coil manufactured by applying the strip casting method shown in FIGS. 5 and 6, the coarse primary carbide observed in the solidified structure of FIG. 2 and the hot rolled plate of FIG. of It is not observed in the microstructure. This is a result showing clearly the technical effect of the present invention that in the production of high carbon-containing martensitic stainless steel can be innovatively suppressed the formation of coarse primary carbide during casting by using the strip casting method. On the other hand, the size of the primary carbide observed with a 1000 times magnification optical microscope in a hot rolled plate was investigated. These results are summarized in Table 1 and Table 2.
고탄소 마르텐사이트계 스테인리스강을 주조함에 있어서 스트립캐스팅법을 적용할 경우의 또 다른 장점은 기존의 잉곳주조법 대비, 공정이 축소되어 제조비용 이 저렴하다는 것이다. 잉곳주조법으로 고탄소 마르텐사이트계 열연코일을 제조하 기 위해서 조괴 후, 분괴 및 열간압연과 같은 후속 열간가공 과정이 필수적으로 요 구되는데, 이 부가적인 공정은 잉곳주조법의 제조단가를 높이는 주요한 요인이다. 또한, 분괴 및 열간압연과 같은 후속 열간가공 공정에서 필수적으로 요구되는 소재 의 넁각과 승온을 포함한 열처리 공정은 열층격 (thermal shock)에 의한 크랙발생에 대한 우려로 매우 천천히 수행되어야 하고, 공정간의 소재이송을 위한 작업 역시 고온에서 조심스럽게 이루어져야 하므로 생산성 측면에서도 매우 불리하다. 스트립 캐스팅 방법은 상기한 분괴를 포함한 별도의 열간가공공정을 거치지 않고, 직접 열 연코일을 제조하므로, 고탄소 마르텐사이트계 스테인리스강을 저렴하게 제조할 수 있다는 큰 장점을 가진다.  Another advantage of using the strip casting method in casting high carbon martensitic stainless steels is that the manufacturing cost is reduced due to the reduced process compared to the existing ingot casting method. In order to manufacture high carbon martensitic hot rolled coils by ingot casting, subsequent hot working processes such as ingot and hot rolling are indispensable. This additional process is a major factor in increasing the manufacturing cost of ingot casting. . In addition, the heat treatment process including the incidence of the material and the elevated temperature, which are essential for the subsequent hot working process such as segregation and hot rolling, should be performed very slowly due to the fear of cracking caused by thermal shock. The transfer operation must also be done carefully at high temperatures, which is very disadvantageous in terms of productivity. The strip casting method has a great advantage of being able to manufacture high carbon martensitic stainless steel at low cost since the hot rolled coil is directly manufactured without undergoing a separate hot working process including the above-mentioned coalescence.
스트립캐스팅 공정으로 제조된 2.1mm 두께의 열연 코일로서 표 2의 발명강 6(#6)을 배치 (batch)형태의 열처리로에서 장시간 상소둔 (batch annealing)하였다. 이때 열연코일은 환원성 분위기에서 700~950°C의 소둔온도로 천천히 가열되었으며, 그 온도에서 장시간 유지시킨 후 다시 천천히 로내에서 냉각되었다. 이 소둔열처리 는 적게는 1회에서 많게는 3회까지 실시가 가능하다. 물론 상소둔 처리횟수가 많을 수록 재질은 더욱 균질해질 수 있으나 이는 추가의 제조비용상승을 가져올 수 있 다. 그리고 이 과정의 열처리는 열연코일의 미세조직을 구성하는 마르텐사이트와 잔류오스테나이트를 페라이트와 크름탄화물로 바꾸는 역할을 한다. 이 과정을 마친 열연소둔 조직의 경도는 약 220Hv를 나타내었다. 소둔된 열연코일은 숏블라스팅 (shot blasting)을 실시하고, 약 70°C의 온도에서 황산과 황산 /질산의 흔산으로 구 성된 산세액으로 표면의 스케일과 탈탄층을 제거하였다. 이때 탈탄층의 깊이는 표 층스케일 직하 20 이하 정도로 형성되어 있어, 산세에 의하여 쉽게 제거가 가능 하였다. 일반적으로, 잉곳주조법으로 제조된 잉곳은 주조 시 발생한 합금원소의 편석을 완화시킬 목적으로 고온에서 잉곳의 열처리가 불가피한데, 이 공정에서 탈 탄이 심하게 발생하므로, 열연코일 제조 후에 탈탄층을 제거하기 위한 부가적인 작 업이 요구되기도 한다. 스트립캐스팅으로 제조된 코일에도 탈탄층이 존재하기는 하 나, 주조 후 냉각되기까지 loocrc이상의 고온에 노출되는 시간이 불과 5분 이내로 짧아, 탈탄층이 경미하게 발생한다. 따라서, 스트립캐스팅 공정으로 제조된 열연 코일은 산세에 의하여 쉽게 탈탄층 제거가 가능하므로, 탈탄층 제거를 위하여 부가 적인 코일 그라인딩을 생략할 수 있어 경제적이다. Inventive steel 6 (# 6) shown in Table 2 as a 2.1 mm thick hot rolled coil manufactured by a strip casting process was subjected to batch annealing for a long time in a batch heat treatment furnace. At this time, the hot rolled coil was slowly heated to an annealing temperature of 700 ~ 950 ° C in a reducing atmosphere, and maintained at that temperature for a long time, and then slowly cooled in the furnace again. This annealing heat treatment can be performed from as little as one to as many as three times. Of course, the greater the number of annealing treatments, the more homogeneous the material can be, but this can lead to additional manufacturing costs. The heat treatment of this process converts martensite and residual austenite, which constitute the microstructure of the hot rolled coil, into ferrite and cadmium carbide. The hardness of the hot-annealed tissue after this process was about 220 Hv. The annealed hot rolled coil was subjected to shot blasting, and the surface scale and the decarburized layer were removed with a pickling solution composed of sulfuric acid and common acid of sulfuric acid / nitric acid at a temperature of about 70 ° C. At this time, the depth of the decarburized layer was formed about 20 or less directly below the surface layer scale, and was easily removed by pickling. In general, ingots manufactured by ingot casting are inevitable to heat-treat the ingots at a high temperature in order to alleviate segregation of alloy elements generated during casting. Since the coal is severely generated, additional work is required to remove the decarburized layer after the hot rolled coil is manufactured. Although the decarburized layer is present in the coils produced by strip casting, the decarburized layer is slightly generated because the exposure time to the high temperature above loocrc is short within 5 minutes before cooling after casting. Therefore, since the hot rolled coil manufactured by the strip casting process can be easily removed from the decarburized layer by pickling, additional coil grinding can be omitted to remove the decarburized layer.
한편 산세를 마친 열연 코일로서 표 2의 발명강 (#6)에 대하여 냉간압연을 실시하였다. 전술한 바와 같이, 면도날 제작을 위한 초기소재는 0.2誦이하의 두께 를 갖기 때문에, 2.1隨두께의 열연소둔 코일로부터 초기소재의 두께를 목표두께까 지 낮추기 위하여 상당한 넁간압하가 요구된다. 특히 면도날 강 소재는 미세조직 내에 존재하는 미세한 탄화물에 기인하여 냉간압연 시 가공경화가 빠르고 연성의 저하가 크다. 냉간압연 동안에 에지크택 발생에 의한 판파단을 방지하면서 목표두 께로 냉간압연하기 위해서, 1회의 냉간압연 동안에 최대 70% 이하의 냉간압연을 실 시하였다. 그 후 에지 트리밍 (edge trimming)과 중간소둔 ( intermediate annealing) 을 실시하였다. 이때, 중간소둔은 약 750°C의 온도에서 5분 이내의 시간 동안 실시 되었다. 최종 목표두께로 압연하기 위하여 냉간압연과 중간소둔을 수차례 반복 실 시하였다. 이와 같은 방법으로 0.075誦 두께의 넁간 압연된 얇은 코일을 제조하였 다. 이때 상기 넁연판을 얻기 위한 총 소둔의 횟수는 열연소둔스트립에서 실시한 소둔횟수를 포함하여 5회 이내로 제한하는 것이 경제적이다. 본 발명에서는 이와 같이 5회 이내의 소둔횟수를 사용하여 동등품질에서 경제성을 더욱 높일 수 있었 다. 또한, 냉간압연된 스트립은 650~800°C의 온도에서 냉연소둔을 실시할 수 있다. 도 7과 도 8은 0.075腿 두께로 냉간 압연된 코일의 미세조직을 나타내었다. 제조된 코일에서 10 이상의 크기를 가진 탄화물은 존재하지 않았으며, 대부분의 탄화물은 0.1~1.5 의 크기로 균일하게 분포되어 있다. 즉, 도 8을 통하여, 에지탈 락을 방지하는데 유리한 미세조직이 형성되어 있음을 알 수 있다. 또한 도 8에서 관찰되는 0.1 이상의 크기를 갖는 탄화물의 개수는 약 120 ΕΑ/100/ΛΠ2로, 면도날 제작에 적합한 미세조직으로 제조되었음을 알 수 있다. On the other hand, cold rolling was performed about the invention steel (# 6) of Table 2 as a hot-rolled coil after pickling. As described above, since the initial material for producing the blade has a thickness of 0.2 kPa or less, considerable intermetallic pressure reduction is required to reduce the thickness of the initial material to the target thickness from the 2.1 mm thick hot-annealed coil. In particular, the razor blade steel is hardened during cold rolling due to the fine carbide present in the microstructure and has a large decrease in ductility. During cold rolling, up to 70% of cold rolling was performed during one cold rolling in order to cold roll to the target thickness while preventing sheet breakage due to edgetack generation. Thereafter, edge trimming and intermediate annealing were performed. At this time, the intermediate annealing was carried out for a time within 5 minutes at a temperature of about 750 ° C. Cold rolling and annealing were repeated several times to roll to the final target thickness. In this manner, a 0.075 kPa thick rolled thin coil was manufactured. In this case, it is economical to limit the total number of annealing to obtain the annealed sheet within five times including the number of annealing performed by the hot-rolled annealing strip. In the present invention, by using the annealing number within five times in this way it was possible to further increase the economics in the equivalent quality. In addition, the cold rolled strip may be subjected to cold annealing at a temperature of 650 ~ 800 ° C. 7 and 8 show the microstructure of the coil cold rolled to a thickness of 0.075 腿. In the manufactured coil, carbides having a size of 10 or more did not exist, and most carbides were uniformly distributed in the size of 0.1 to 1.5. That is, it can be seen from FIG. 8 that an advantageous microstructure is formed to prevent edge detachment. In addition, the number of carbides having a size of 0.1 or more observed in FIG. 8 is about 120 ΕΑ / 100 / ΛΠ 2 , and it can be seen that the microstructures are suitable for producing blades.
상기한 바와 같이, 본 발명은 스트립캐스팅법을 활용하여, 잉곳주조법으로 제조된 면도날 강 대비, 조대한 프라이머리 카바이드의 형성을 혁신적으로 억제하 여, 고품질의 면도날을 경제적으로 제조할 수 있음을 특징으로 한다. 본 발명은 면 도날 용도의 특정한 실시예 관점에서 기술되었으나, 본 발명의 범위는 면도날용도 에 한정되지 않고 청구항으로 기술된 범위를 포함한다. 본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었 으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하 여야 한다. 또한, 본 발명의 기술 분야의 통상의 지식을 가진 자라면 본 발명의 기 술 사상의 범위 내에서 다양한 변형예가 가능함을 이해할 수 있을 것이다. 전술한 발명에 대한 권리범위는 이하의 특허청구범위에서 정해지는 것으로써, 명세서 본문 의 기재에 구속되지 않으며 청구범위의 균등 범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다. As described above, the present invention, by using the strip casting method, compared to the razor blade steel produced by the ingot casting method, by innovatively suppressing the formation of coarse primary carbide, it is possible to economically manufacture high quality razor blades It is done. Although the present invention has been described in terms of specific embodiments of shaving blade applications, the scope of the invention is not limited to razor blade applications but includes the scope of the claims. Although the technical spirit of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various modifications are possible within the scope of the technical idea of the present invention. The scope of the above-described invention is defined in the following claims, which are not bound by the description in the text of the specification and all modifications and changes belonging to the equivalent scope of the claims will belong to the scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커 스 쉴드를 포함하는 스트립캐스팅 장치에서,  In a strip casting device comprising a pair of rolls that rotate in opposite directions, an edge dam installed to form a molten steel pool on both sides thereof, and a meniscus shield for supplying inert nitrogen gas to the upper surface of the molten steel pool.
중량 %로, C:0.40~0.80%, Cr:ll~16%를 함유하는 스테인리스 용강을 턴디쉬로 부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주 조된 스테인리스 박판올 주조직후 인라인를러를 이용하여 5~40%의 압하율로 열연소 둔스트립을 제조하여 열연소둔스트립 미세조직 내에 프라이머리 카바이드 (primary carbide)가 10/im 이하가 되도특 하는 고탄소 마르텐사이트계 스테인리스강의 제조 방법.  After supplying the molten stainless steel containing C: 0.40 to 0.80% and Cr: ll to 16% by weight from the tundish to the molten steel pool through the nozzle, casting the stainless steel sheet, and after the cast stainless steel sheet Manufacture of high-carbon martensitic stainless steel with a primary carbide of 10 / im or less in the hot-combustion strip microstructure by producing a hot-combustion-dull strip with a reduction ratio of 5 to 40% using an in-line lor. Way.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 마르텐사이트계 스테인리스강은 중량 %로 Si: 0.1-1.0, Mn:0.1-1.0, Ni:0초과 1.0이하, N:0초과 0.1이하, S: 0초과 0.04이하, P:0초과 0.05이하 및 잔 부는 Fe 및 기타 블가피한 불순물로 이루어지는 고탄소 마르텐사이트계 스테인리스 강의 제조방법.  The martensitic stainless steel has a weight% of Si: 0.1-1.0, Mn: 0.1-1.0, Ni: more than 0 and less than 1.0, N: more than 0.1 and less, S: more than 0 and less than 0.04, P: more than 0.05 and less The remainder is a method for producing high carbon martensitic stainless steel consisting of Fe and other unavoidable impurities.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 열연소둔스트립을 환원성 가스분위기하에서 700~950t:의 온도범위에서 상소둔 (batch annealing)을 실시하여 열연소둔판을 제조하는 고탄소 르텐사이트 계 스테인리스강의 제조방법 .  Process for producing a high carbon stainless steel stainless steel to produce a hot-rolled annealing by performing annealing (batch annealing) the hot-combustion strip in the temperature range of 700 ~ 950t: under a reducing gas atmosphere.
【청구항 4】  [Claim 4]
제 3항에 있어서,  The method of claim 3, wherein
상기 상소둔은 1~3회의 범위에서 실시하는 고탄소 마르텐사이트계 스테인리 스강의 제조방법 .  The ordinary annealing is a method for producing a high carbon martensitic stainless steel that is carried out in a range of 1 to 3 times.
【청구항 5]  [Claim 5]
저 13항에 있어서,  According to claim 13,
상기 열연소둔스트립의 단면 미세조직에서, 0.1 이상의 크기를 갖는 크롬 탄화물이 100 2의 면적당 50개 이상이 되도록 상소둔을 실시하는 고탄소 마르텐사 이트계 스테인리스강의 제조방법. In the cross-sectional microstructure of the hot-rolled annealing strip, a method of producing high-carbon martensite stainless steel is subjected to annealing so that the chromium carbide having a size of 0.1 or more is 50 or more per 100 2 area.
【청구항 6】 제 3항에 있어서, [Claim 6] The method of claim 3,
상기 상소둔 처리된 열연소둔스트립은 숏블라스팅 이후 산세처리를 실시하 는 고탄소 마르텐사이트계 스테인리스강의 제조방법.  The hot annealing strip subjected to the annealing treatment is a method of manufacturing high carbon martensitic stainless steel subjected to pickling treatment after shot blasting.
【청구항 7】  [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 산세처리 이전의 열연소둔스트립에서 탈탄층의 깊이가 표층스케일 직 하 20 이하인 고탄소 마르텐사이트계 스테인리스강의 제조방법.  A method of manufacturing high carbon martensitic stainless steel having a depth of decarburized layer of 20 or less directly below the surface scale in the hot-burning annealing strip before the pickling treatment.
【청구항 8】  [Claim 8]
제 1항 내지 제 7항 중 어느 한 항에 있어서,  The method according to any one of claims 1 to 7,
상기 열연소둔스트립을 냉간압연을 실시하되, 1회 넁간압하율이 최대 70%인 고탄소 마르텐사이트계 스테인리스강의 제조방법.  Cold rolling of the hot-rolled annealing strip, the method of producing a high carbon martensitic stainless steel having a one-time cold rolling reduction of up to 70%.
【청구항 9]  [Claim 9]
제 8항에 있어서,  The method of claim 8,
상기 냉간압연된 스트립은 환원성 가스분위기하에서 소둔이 총 5회 이하로 실시되는 고탄소 마르텐사이트계 스테인리스강의 제조방법.  The cold rolled strip is a method of manufacturing a high carbon martensitic stainless steel in which the annealing is performed a total of five times or less in a reducing gas atmosphere.
【청구항 10]  [Claim 10]
저 18항에 있어서,  The method of claim 18,
상기 냉간압연된 스트립은 650~8(XrC의 온도에서 냉연소둔을 실시하는 고탄 소 마르텐사이트계 스테인리스강의 제조방법. The cold rolled strip is a method of manufacturing high carbon martensitic stainless steel that is subjected to cold annealing at a temperature of 650-8 ( XrC).
【청구항 111  [Claim 111]
서로 반대방향으로 회전하는 한 쌍의 를과 그 양측면에 용강풀을 형성하도 록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스 커스 쉴드를 포함하는 스트립캐스팅 장치에서,  In a strip casting device comprising a pair of edges rotating in opposite directions and an edge dam installed to form molten steel on both sides thereof and a meniscus shield for supplying inert nitrogen gas to the molten steel upper surface.
중량 %로, C:0.40~0.80%, Cr:ll~16%를 함유하는 스테인리스 용강을 턴디쉬로 부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주 조된 스테인리스 박판을 주조직후 인라인를러를 이용하여 5~40%의 압하율로 열연소 둔스트립을 제조하여 열연소둔스트립 미세조직 내에 프라이머리 카바이드 (primary carbide)가 10 이하가 되도록 하는 고탄소 마르텐사이트계 스테인리스강.  By supplying the molten stainless steel containing the weight%, C: 0.40 ~ 0.80%, Cr: ll-16% from the tundish to the molten steel pool through a nozzle to cast a stainless steel sheet, after the cast stainless steel sheet A high-carbon martensitic stainless steel having a primary carbide of 10 or less in the hot-combustion strip microstructure by producing a hot-combustion-dull strip at a reduction ratio of 5 to 40% using an in-line lor.
【청구항 12]  [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 마르텐사이트계 스테인리스강은 중량 %로 Si: 0.1-1.0, Mn:0.1-1.0, Ni:0초과 1.0이하, N:0초과 0.1이하 S: 0초과 0.04이하, P:0초과 0.05이하 및 잔 부는 Fe 및 기타 불가피한 불순물로 이투어지는 고탄소 마르텐사이트계 스테인리스 강. The martensitic stainless steel has a weight% of Si: 0.1-1.0, Mn: 0.1-1.0, Ni: more than 0 and less than 1.0, N: more than 0.1 and less, S: more than 0 and less than 0.04, P: more than 0 and less than 0.05, and High-carbon martensitic stainless steels, poured with Fe and other unavoidable impurities.
【청구항 13】  [Claim 13]
제 11항에 있어서,  The method of claim 11,
상기 열연소둔스트립은 환원성 가스분위기 하에서 700~950°C의 온도범위에 서 상소둔 (batch annealing)을 실시하여 제조된 열연소둔판인 고탄소 마르텐사이트 계 스테인리스강. The hot-combustion annealing strip is a high-carbon martensitic stainless steel produced by performing annealing (batch annealing) in a temperature range of 700 ~ 950 ° C under a reducing gas atmosphere.
【청구항 14]  [Claim 14]
제 13항에 있어서,  The method of claim 13,
상기 상소둔은 1~3회의 범위에서 실시하는 고탄소 마르텐사이트계 스테인리 스강.  The above-mentioned annealing is a high carbon martensitic stainless steel performed in the range of 1-3 times.
【청구항 15]  [Claim 15]
제 13항에 있어서,  The method of claim 13,
상기 열연소둔스트립의 단면 미세조직에서, Ο.ΐ ΐι 이상의 크기를 갖는 크롬 탄화물이 100//ηι2의 면적당 50개 이상이 되도록 상소둔을 실시하는 고탄소 마르텐사 이트계 스테인리스강. In the cross-sectional microstructure of the hot-combustion annealing strip, high-carbon martensite stainless steels are subjected to ordinary annealing so that chromium carbide having a size of not less than or equal to O. ΐι is 50 or more per 100 // ηι 2 area.
【청구항 16]  [Claim 16]
제 13항에 있어서,  The method of claim 13,
상기 상소둔 처리된 열연소둔스트립은 숏블라스팅 이후 산세처리를 실시하 는 고탄소 마르텐사이트계 스테인리스강.  The hot-annealed hot-rolled annealing strip is a high carbon martensitic stainless steel subjected to pickling after shot blasting.
【청구항 17】  [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 산세처리 이전의 열연소둔스트립에서 탈탄층의 깊이가 표층스케일 직 하 20卿 이하인 고탄소 마르텐사이트계 스테인리스강.  A high carbon martensitic stainless steel having a depth of decarburized layer of 20 m or less directly below the surface scale in the hot-burning annealing strip before the pickling treatment.
【청구항 18]  [Claim 18]
제 11항 내지 제 17항 중 어느 한 항에 있어서,  The method according to any one of claims 11 to 17,
상기 열연소둔스트립을 냉간압연을 실시하되, 1회 넁간압하율이 최대 인 고탄소 마르텐사이트계 스테인리스강.  Cold-rolled hot-rolled annealing strip, the high carbon martensitic stainless steel having a maximum one time rolling rate.
【청구항 19】  [Claim 19]
제 18항에 있어서,  The method of claim 18,
상기 냉간압연된 스트립은 환원성 가스분위기 하에서 소둔이 총 5회 이하로 실시되는 고탄소 마르텐사이트계 스테인리스강. 【청구항 20】 The cold rolled strip is a high-carbon martensitic stainless steel is subjected to annealing up to five times in a reducing gas atmosphere. [Claim 20]
제 18항에 있어서,  The method of claim 18,
상기 냉간압연된 스트립은 650~800°C의 온도에서 냉연소둔을 실시하는 고탄 소 마르텐사이트계 스테인리스강. The cold rolled strip is a high carbon martensitic stainless steel subjected to cold annealing at a temperature of 650 ~ 800 ° C.
PCT/KR2010/009108 2009-12-21 2010-12-20 High-carbon martensitic stainless steel and a production method therefor WO2011078532A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010004925T DE112010004925T5 (en) 2009-12-21 2010-12-20 Carbon-rich, martensitic stainless steel and its production process
JP2012545847A JP5770743B2 (en) 2009-12-21 2010-12-20 High carbon martensitic stainless steel and method for producing the same
CN201080058577.8A CN102665964B (en) 2009-12-21 2010-12-20 High-carbon martensitic stainless steel and manufacture method thereof
US13/517,278 US20120321501A1 (en) 2009-12-21 2010-12-20 High-Carbon Martensitic Stainless Steel and Production Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090128110A KR101268800B1 (en) 2009-12-21 2009-12-21 Martensitic stainless steels containing high carbon content and method of manufacturing the same
KR10-2009-0128110 2009-12-21

Publications (2)

Publication Number Publication Date
WO2011078532A2 true WO2011078532A2 (en) 2011-06-30
WO2011078532A3 WO2011078532A3 (en) 2011-11-03

Family

ID=44196276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009108 WO2011078532A2 (en) 2009-12-21 2010-12-20 High-carbon martensitic stainless steel and a production method therefor

Country Status (6)

Country Link
US (1) US20120321501A1 (en)
JP (1) JP5770743B2 (en)
KR (1) KR101268800B1 (en)
CN (1) CN102665964B (en)
DE (1) DE112010004925T5 (en)
WO (1) WO2011078532A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312776B1 (en) * 2009-12-21 2013-09-27 주식회사 포스코 Martensitic stainless steel and method of the manufacture the same containing 0.1~0.5% carbon
KR101239589B1 (en) 2010-12-27 2013-03-05 주식회사 포스코 High corrosion resistance martensite stainless steel and method of manufacturing the same
KR101246335B1 (en) * 2011-06-21 2013-03-21 포항공과대학교 산학협력단 Steel sheet manufactured by decaburizing a solid pig iron and method for manufacturing the same
KR101322972B1 (en) * 2011-08-17 2013-11-04 주식회사 포스코 Martensitic stainless steel and method for manufacturing the same
CN102965580B (en) * 2012-11-27 2016-01-20 黄山市新光不锈钢材料制品有限公司 A kind of high carbon martensite stainless steel
CN102943211B (en) * 2012-11-27 2015-12-23 黄山市新光不锈钢材料制品有限公司 A kind of manufacture method of high carbon martensite Stainless Steel Band
KR101463310B1 (en) * 2012-12-20 2014-11-19 주식회사 포스코 Martensitic stainless steel and method of the manufacture the same containing 0.4~0.5% carbon
JP5598786B1 (en) * 2013-04-01 2014-10-01 日立金属株式会社 Method for producing martensitic stainless steel for blades
US10174394B2 (en) 2013-04-01 2019-01-08 Hitachi Metals, Ltd. Steel for blades and method for producing the same
WO2014162997A1 (en) 2013-04-01 2014-10-09 日立金属株式会社 Method for producing steel for blades
US11148309B2 (en) * 2013-06-05 2021-10-19 The Gillette Company Llc Razor components with novel coating
DE102013013407B4 (en) 2013-08-07 2015-05-28 Salzgitter Flachstahl Gmbh Method for producing steel cutting and cutting tools with improved tool life
KR20150055788A (en) 2013-11-14 2015-05-22 주식회사 포스코 Twin roll casting roll of strip casting and method for manufacturing thereof
KR101543867B1 (en) * 2013-11-14 2015-08-11 주식회사 포스코 Method for manufacturing martensitic stainless steel sheet using twin roll casting roll
KR101647209B1 (en) * 2013-12-24 2016-08-10 주식회사 포스코 Method for manufacturing thin martensitic stainless steel sheet using strip caster with twin roll and thin martensitic stainless steel sheet produced uising the same
US20150174648A1 (en) * 2013-12-24 2015-06-25 Posco Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same
US9499889B2 (en) 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
KR101648271B1 (en) * 2014-11-26 2016-08-12 주식회사 포스코 High-hardness martensitic stainless steel with excellent antibiosis and manufacturing the same
CN105568169A (en) * 2016-01-19 2016-05-11 溧阳市金昆锻压有限公司 Martensitic stainless steel circular mould
JP6635890B2 (en) * 2016-07-15 2020-01-29 日鉄ステンレス株式会社 Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
KR101834996B1 (en) * 2016-10-19 2018-03-06 주식회사 포스코 High hardness martensitic stainless steel with excellent hardenability and method of manufacturing the same
CN107186184A (en) * 2017-04-27 2017-09-22 酒泉钢铁(集团)有限责任公司 A kind of martensitic stain less steel double roll strip casting rolling production process
EP3626842B1 (en) * 2017-05-18 2022-03-16 Hitachi Metals, Ltd. Method for manufacturing steel strip for blade, and steel strip for blade
CN107699815B (en) * 2017-11-27 2019-08-30 上海大学 High hardness high toughness cutlery stainless steel and preparation method thereof
CN108300945A (en) * 2018-04-30 2018-07-20 江苏延汉材料科技有限公司 A kind of martensitic stain less steel and its manufacturing method of manufacture scalpel blade
JP2020045511A (en) * 2018-09-17 2020-03-26 愛知製鋼株式会社 Martensitic stainless steel for cutting tool
PL3931362T3 (en) * 2019-02-28 2023-04-17 Edgewell Personal Care Brands, Llc Razor blade and composition for a razor blade
US11492690B2 (en) 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
CN113523573B (en) * 2021-06-21 2023-05-09 甘肃酒钢集团宏兴钢铁股份有限公司 Welding method for high-carbon martensitic stainless steel hot-rolled coil
CN115852231B (en) * 2023-01-30 2023-05-09 北京科技大学 Method for refining carbide precipitation of high-carbon chromium martensitic stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134161A (en) * 1984-07-25 1986-02-18 Kawasaki Steel Corp Stainless steel for cutlery
KR20030052367A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for Manufacturing Patterned Austenite Stainless Steel Strip
JP2003313612A (en) * 2002-04-23 2003-11-06 Matsushita Electric Works Ltd Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel
KR20040020467A (en) * 2002-08-30 2004-03-09 주식회사 포스코 Method for Manufacturing 304 Stainless Steel Strip with Twin Roll Strip Casting Apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117252A (en) * 1984-11-13 1986-06-04 Kawasaki Steel Corp Stainless steel for edge tool
JPS61189845A (en) * 1985-02-18 1986-08-23 Nippon Kokan Kk <Nkk> Manufacture of sheet-shaped slab
JPS63206431A (en) * 1987-02-23 1988-08-25 Kobe Steel Ltd Production of thin stainless steel strip for cutlery
JPH05140639A (en) * 1991-11-21 1993-06-08 Kawasaki Steel Corp Method for butch-annealing stainless steel strip
JPH07195103A (en) * 1994-01-07 1995-08-01 Nippon Steel Corp Manufacture of steel sheet from thin cast billet
JP3320547B2 (en) * 1994-02-21 2002-09-03 日新製鋼株式会社 Manufacturing method of high carbon content stainless steel sheet
JPH07251244A (en) * 1994-03-16 1995-10-03 Nippon Steel Corp Method for preventing porosity of cast slab in twin roll type continuous casting method
JP2000219919A (en) * 1999-01-28 2000-08-08 Taiheiyo Kinzoku Kk Production of austenitic stainless thin sheet
DE10215597A1 (en) * 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Method for producing a high carbon martensitic steel strip and use of such a steel strip
SE526805C8 (en) * 2004-03-26 2006-09-12 Sandvik Intellectual Property steel Alloy
EP1739199B1 (en) * 2005-06-30 2009-06-24 OUTOKUMPU, Oyj Martensitic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134161A (en) * 1984-07-25 1986-02-18 Kawasaki Steel Corp Stainless steel for cutlery
KR20030052367A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for Manufacturing Patterned Austenite Stainless Steel Strip
JP2003313612A (en) * 2002-04-23 2003-11-06 Matsushita Electric Works Ltd Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel
KR20040020467A (en) * 2002-08-30 2004-03-09 주식회사 포스코 Method for Manufacturing 304 Stainless Steel Strip with Twin Roll Strip Casting Apparatus

Also Published As

Publication number Publication date
KR101268800B1 (en) 2013-05-28
CN102665964A (en) 2012-09-12
US20120321501A1 (en) 2012-12-20
WO2011078532A3 (en) 2011-11-03
JP2013514891A (en) 2013-05-02
DE112010004925T5 (en) 2012-11-08
KR20110071516A (en) 2011-06-29
CN102665964B (en) 2016-04-20
JP5770743B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5770743B2 (en) High carbon martensitic stainless steel and method for producing the same
JP5531109B2 (en) Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same
JP5775879B2 (en) Martensitic stainless steel and method for producing the same
KR101423826B1 (en) Martensitic stainless steel and the method of manufacturing the same
JP6778943B2 (en) Hot-rolled lightweight martensite steel sheet and its manufacturing method
KR101543867B1 (en) Method for manufacturing martensitic stainless steel sheet using twin roll casting roll
US20150174648A1 (en) Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
KR101286205B1 (en) Twin roll strip caster for casting martensitic stainless steel strip and method for casitng martensitic stainless steel strip by twin roll strip caster
KR101362388B1 (en) Method for producing a cold-rolled strip with a ferritic structure
KR930011743B1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
Pan et al. Thin strip casting of high speed steels
JP2013252558A (en) Method of manufacturing martensitic stainless steel thin sheet with suppressed generation of coarse carbide
JP2005082838A (en) Method for manufacturing high-carbon hot-rolled stainless steel plate
KR101243259B1 (en) Martensitic stainless hot rolled steel strip and manufacturing method thereof
KR101360536B1 (en) Method for manufacturing martensitic stainless steel sheet
JPH0826405B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0796685B2 (en) Method for producing Cr-Ni series stainless steel thin plate with excellent surface quality and material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058577.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012545847

Country of ref document: JP

Ref document number: 1120100049254

Country of ref document: DE

Ref document number: 112010004925

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 6291/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13517278

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10839729

Country of ref document: EP

Kind code of ref document: A2