WO2011078322A1 - Epoxy resin composition, curable resin composition, and cured object obtained therefrom - Google Patents

Epoxy resin composition, curable resin composition, and cured object obtained therefrom Download PDF

Info

Publication number
WO2011078322A1
WO2011078322A1 PCT/JP2010/073338 JP2010073338W WO2011078322A1 WO 2011078322 A1 WO2011078322 A1 WO 2011078322A1 JP 2010073338 W JP2010073338 W JP 2010073338W WO 2011078322 A1 WO2011078322 A1 WO 2011078322A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
acid
formula
compound
Prior art date
Application number
PCT/JP2010/073338
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
智江 佐々木
健一 窪木
瑞観 鈴木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2011547646A priority Critical patent/JP5615847B2/en
Publication of WO2011078322A1 publication Critical patent/WO2011078322A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof

Definitions

  • the present invention relates to an epoxy resin composition suitable for electrical and electronic material applications, particularly for optical semiconductor applications.
  • the present invention also relates to a curable resin composition containing the epoxy resin composition and a cured product thereof. Furthermore, this invention relates to the optical semiconductor device obtained by hardening and sealing with the said curable resin composition.
  • Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials, casting materials and resists. Among them, in the field of optoelectronics, especially with the recent advancement of information technology, technology that utilizes optical signals that can smoothly transmit and process huge amounts of information has been developed in place of conventional signal transmission using electrical wiring. Yes. Accordingly, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of resins having excellent transparency is desired.
  • a cured product obtained by curing an epoxy resin with a curing agent such as an acid anhydride is often used.
  • an epoxy resin used as a sealing material for an optical semiconductor element such as an LED product a glycidyl ether type typified by a bisphenol A type epoxy resin excellent in balance of heat resistance, transparency and mechanical properties.
  • the epoxy resin composition has been widely used.
  • the sealing material is colored on the LED chip due to the influence of short wavelength light. Problems have been pointed out.
  • a resin having a siloxane skeleton (specifically, a skeleton having a Si—O bond) introduced as a silicone resin or silicone-modified epoxy resin is used as a sealing material.
  • Patent Document 3 a resin having a siloxane skeleton introduced therein is more stable to heat and light than an epoxy resin. Therefore, when applied to the sealing material of LED products, it was said that it was superior to epoxy resin in terms of coloring on the LED chip.
  • resins incorporating the siloxane skeleton are inferior in gas permeability resistance compared to epoxy resins.
  • an object of the present invention is to provide an epoxy resin composition that provides a cured product having excellent durability against light and heat.
  • the present invention (1) An epoxy resin derived from a compound of formula (1) and a formula (2) obtained by oxidizing a mixture of a diolefin compound represented by the following formula (1) and a diolefin compound represented by the following formula (2) An epoxy resin composition characterized in that the ratio of the epoxy resin derived from the compound is 10/90 to 90/10 in weight ratio,
  • R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.
  • R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.
  • the curable resin composition of the present invention is also excellent in resistance to coloring against light and heat, it is extremely useful as an adhesive or sealing material for optical materials, particularly optical semiconductors (LED products, etc.).
  • the epoxy resin composition of the present invention contains, as an essential component, an epoxy resin formed by oxidizing at least two diolefin compounds of the following formulas (1) and (2).
  • R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.
  • P means a structure obtained by removing two hydrogen atoms from cyclohexane or norbornane (usually a residue obtained by removing one hydrogen atom from different carbon atoms), and these residues are methyl groups. You may have as a substituent.
  • the diolefin compound of the formula (1) can be produced by a known method, and can be obtained, for example, by reacting a dicarboxylic acid form (or a derivative thereof) with a cyclohexene methanol derivative.
  • Cyclohexene methanol derivatives are not particularly limited, but 3-cyclohexene methanol, 2-methyl-3-cyclohexene-1-methanol, 3-methyl-3-cyclohexene-1-methanol, 3-ethyl- Examples include 3-cyclohexene-1-methanol, 3-methyl-3-cyclohexene-1-methanol, 3-cyclohexyl-3-cyclohexene-1-methanol, and 3-cyclohexenemethanol is preferred. These may be used alone or in combination of two or more.
  • Dicarboxylic acid compounds include cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic anhydride, cyclohexane-1,2-dicarboxylic acid dimethyl ester, and cyclohexane-1,2-dicarboxylic acid diethyl.
  • a general esterification method can be applied as a reaction of cyclohexene methanol derivative and dicarboxylic acid form (or derivative thereof).
  • general esterification reactions can be applied, such as Fischer esterification using acid catalysts, acid halides under basic conditions, alcohol reactions, condensation reactions using various condensing agents (ADVANCED ORGANIC CHEMISTRY) PartB: Reaction and Synthesis p135, 145-147, 151 etc.).
  • a compound in which R is either a hydrogen atom or a methyl group in the formula (1) is preferable from the viewpoint of availability.
  • Compounds that are atoms are preferred.
  • P is preferably at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring and a norbornane ring, more preferably free of substituents from the viewpoint of availability, and particularly a cyclohexane ring. preferable.
  • the diolefin compound of the formula (2) can be produced by a known method, for example, dimerization of a cyclohexene aldehyde derivative (Tishenko reaction, patent documents: Japanese Patent Application Publication No. 2003-170059, Japanese Patent Application Publication No. 2004-262871). Obtained by reacting a cyclohexene carboxylic acid derivative with a cyclohexene methanol derivative (reference documents: Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980)) (Methods described in Japanese Unexamined Patent Publication No. 2006-052187) and the like.
  • cyclohexene aldehyde derivative examples include, but are not limited to, 3-cyclohexene carbaldehyde, 2-methyl-3-cyclohexene carbaldehyde, 4-methyl-3-cyclohexene carbaldehyde and the like. These may be used alone or in combination of two or more.
  • cyclohexenecarboxylic acid derivative examples include cyclohexenecarboxylic acid, methyl cyclohexenecarboxylate, ethyl cyclohexenecarboxylate, propylcyclohexenecarboxylate, butylcyclohexenecarboxylate, hexylcyclohexenecarboxylate, (cyclohexenylmethyl) cyclohexenecarboxylate, and cyclohexenecarboxylate.
  • the epoxy resin composition of the present invention is obtained by oxidizing the mixture of the compounds of the formulas (1) and (2) to epoxidize or separately oxidizing the compounds of the formulas (1) and (2). It can be obtained by mixing the epoxy resin.
  • the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
  • Specific examples of the epoxidation method with peracid include the methods described in Japanese Patent Publication No. 2007-510772 and Japanese Patent Application Laid-Open No. 2006-52187.
  • Various methods can be applied to the epoxidation method using hydrogen peroxide solution.
  • Various methods can be applied.
  • An example of the epoxidation method using hydrogen peroxide is described below.
  • the diolefin compound of the formula (1) and the diolefin compound of the formula (2) are used alone or as a mixture (hereinafter collectively referred to simply as a diolefin compound), polyacids and quaternary ammonium salts are mixed with an organic solvent,
  • the reaction is carried out in an emulsion state of hydrogen oxide water.
  • a buffer solution can also be used for the reaction.
  • the polyacid used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but polyacids containing tungsten or molybdenum are preferable, polyacids containing tungsten are more preferable, and tungstate is particularly preferable.
  • Specific polyacids include tungsten acids selected from tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid and 12-tungstosilicic acid, their salts, molybdic acid or phosphomolybdic acid, etc. And molybdenum-based acids selected from the above and their salts. Examples of the counter cation of these salts include ammonium ions, alkaline earth metal ions, and alkali metal ions.
  • alkaline earth metal ions such as calcium ions and magnesium ions
  • alkali metal ions such as sodium ions, potassium ions and cesium ions.
  • Particularly preferred counter cations are sodium ion, potassium ion, calcium ion and ammonium ion.
  • the amount of polyacid used is 0.5 to 20 mmol, preferably 1.0 to 20 mmol, in terms of metal element (moles of tungsten atoms for tungstic acid and molybdenum atoms for molybdic acid) per mol of diolefin compound. More preferably 2.5 to 15 mmol.
  • quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, more preferably 25 to 55 can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain. .
  • tridecanylmethylammonium salt dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt
  • trihexa examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt. It is not limited to.
  • anion species of these salts there are no particular limitations on the anion species of these salts, and specific examples include halide ions, nitrate ions, sulfate ions, hydrogen sulfate ions, acetate ions, carbonate ions, etc., but acetate ions are particularly preferred.
  • acetate ions are particularly preferred.
  • the amount of the quaternary ammonium salt used is 0.01 to 10 times equivalent, more preferably 0.05 to 6.0 times equivalent, more preferably 0.05 to 4.5 times the valence of the polyacids used. It is a double equivalent.
  • tungstic acid is divalent with H 2 WO 4
  • the quaternary ammonium carboxylate is 0.02 to 1.6 mol, or 2.2 to 20 mol per mol of tungstic acid. A range is preferred.
  • tungstophosphoric acid is trivalent, it is similarly 0.03 to 2.4 mol, or 3.3 to 30 mol, and in the case of silicotungstic acid, it is tetravalent, so 0.04 to 3.2. Mole or 4.4 to 40 mol is preferred.
  • the amount of the quaternary ammonium carboxylate is lower than 0.01 times the valence of the polyacids, the epoxidation reaction is difficult to proceed (in some cases, the reaction proceeds faster), and a by-product is produced.
  • the problem is that things are easy to make.
  • the amount is more than 10 times equivalent, not only is the post-treatment difficult, but there is a function of suppressing the reaction, which is not preferable.
  • any known buffer solution can be used as the buffer solution, but an aqueous phosphate solution is preferably used in this reaction.
  • the pH is preferably adjusted between pH 4 and 10, more preferably pH 5-9. When the pH is less than 4, the hydrolysis reaction and polymerization reaction of the epoxy group easily proceed. Moreover, when pH10 is exceeded, reaction will become extremely slow and the problem that reaction time is too long will arise. In particular, in the present invention, it is preferable to adjust the pH to be between 5 and 9 when the polyacids which are catalysts are dissolved.
  • a phosphoric acid-phosphate aqueous solution which is a preferable buffer
  • 0.1 to 10 mol% equivalent of phosphoric acid or a phosphate such as sodium dihydrogen phosphate
  • a method of adjusting the pH with a basic compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.
  • a basic compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.
  • the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added.
  • the preferred phosphate concentration is 0.1 to 60% by weight, preferably 1 to 45% by weight.
  • the amount of phosphate used in this case is usually 0.1 to 5 mol% equivalent, preferably 0.2 to 4 mol% equivalent, more preferably 0.3 to 3 mol% equivalent to hydrogen peroxide. is there. In this case, if the amount exceeds 5 mol% equivalent to hydrogen peroxide, pH adjustment is required. If the amount is less than 0.1 mol% equivalent, the resulting hydrolyzate of the epoxy compound tends to proceed or the reaction is slow. The harmful effect of becoming.
  • This reaction is epoxidized using hydrogen peroxide.
  • hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
  • This reaction uses an organic solvent.
  • the amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the diolefin compound 1 as a reaction substrate. is there. When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane, and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, and cyclohexanol. It is done.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • ester compounds such as ethyl acetate, butyl acetate and methyl formate
  • nitriles such as acetonitrile Compounds and the like
  • Particularly preferred solvents are alkanes such as hexane, cyclohexane and heptane, and aromatic hydrocarbon compounds such as toluene and xylene.
  • reaction operation method for example, when the reaction is performed in a batch-type reaction kettle, a diolefin compound, hydrogen peroxide (aqueous solution), polyacids (catalyst), a buffer solution, a quaternary ammonium salt, and an organic solvent are used. In addition, stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.
  • a buffer solution or water and phosphate
  • polyacids a quaternary ammonium salt, an organic solvent, and a diolefin compound were added, and the mixture was stirred in two layers.
  • a technique of dropping hydrogen is used.
  • stirring water, an organic solvent, and a diolefin compound, polyacids and phosphoric acid (or phosphate) are added, pH is adjusted, quaternary ammonium salt is added, and the mixture is stirred in two layers.
  • a method of dropping hydrogen peroxide may be used.
  • the reaction temperature is not particularly limited, but is preferably 0 to 90 ° C, more preferably 0 to 75 ° C, particularly preferably 15 ° C to 60 ° C.
  • the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • a preferred range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.
  • the quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination.
  • a preferred treatment method there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6 to 10 with a basic compound.
  • the reducing agent examples include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like.
  • the reducing agent is used usually in an amount of 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, and still more preferably 0.05 to 3 times mol with respect to the number of moles of excess hydrogen peroxide. is there. These are preferably added as an aqueous solution, and the concentration thereof is 0.5 to 30% by weight.
  • Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
  • the amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc.
  • the amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mole, more preferably 0.05 to 3 times mole. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
  • a solid base that does not dissolve in water or an organic solvent it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10 to 500 times, and further preferably 10 to 300 times.
  • the treatment may be carried out after separation of an aqueous layer and an organic layer described later.
  • the organic layer and the aqueous layer do not separate, or if the organic solvent is not used, perform the operation by adding the above-mentioned organic solvent and react from the aqueous layer. Extract the product.
  • the organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times in weight ratio to the raw material diolefin compound. This operation is repeated several times as necessary, and the separated organic layer is purified by washing with water as necessary.
  • the obtained organic layer may be an ion exchange resin, a metal oxide (especially, silica gel, alumina, etc. are preferred), activated carbon (especially, preferably a chemical activated carbon), a composite metal salt (especially a basic composite metal salt).
  • viscosity minerals especially, lamellar clay minerals such as montmorillonite are preferred
  • impurities are removed, water washing, filtration and the like are performed, and then the solvent is distilled off to obtain the desired epoxy resin composition.
  • the epoxy resin composition of the present invention thus obtained has the following formula (3)
  • R represents the same meaning as in formula (2).
  • impurities such as an unreacted product, a partially epoxidized product, a hydrolyzate, and a decomposition product of the compound represented by formula (1) or (2) are 15% by weight. % Or less may be present.
  • the ratio of the compound of formula (3) (and the impurity derived from the compound of formula (1)) to the compound of formula (4) (and the impurity derived from the compound of formula (2)) is 10 / 90-90 / 10. More preferably, it is 25/75 to 80/20, particularly preferably 25/75 to 60/40, and most preferably 25/75 to 50/50.
  • the epoxy resin composition of the present invention may be constituted by mixing and epoxidizing the compound of the formula (1) and the compound of the formula (2), or the formula (3) obtained by epoxidizing the formula (1). ) And a compound of formula (4) obtained by epoxidizing formula (2) may be mixed.
  • the compound of the formula (1) and the compound of the formula (2) are usually 10/90 to 90/10, preferably 25/75 to 80/20, particularly preferably 25 / 75 to 60/40, most preferably mixed in the range of 25/75 to 50/50 and oxidized.
  • the epoxy compound contained in the epoxy resin composition within the above range, the obtained cured product exhibits an excellent effect in durability against light and heat.
  • the compound of the formula (3) and the compound of the formula (4) in the range of 25/75 to 50/50 it is possible to remarkably suppress a decrease in transmittance due to coloring, and an optical semiconductor sealing agent When it is used for the above, a high illuminance retention rate can be achieved.
  • the substituent R is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom, in both the compound of the formula (3) and the compound of (4).
  • P is preferably at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring and a norbornane ring, and more preferably has no substituent from the viewpoint of availability.
  • a ring is particularly preferred.
  • the curable resin composition of the present invention contains the epoxy resin composition of the present invention, a curing agent and / or a curing accelerator.
  • the epoxy resin composition of the present invention can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin composition in all the epoxy resin components is preferably 70% by weight or more, particularly preferably 80% by weight or more.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • an alicyclic epoxy resin or an epoxy resin of a silsesquioxane structure is preferable.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) And a compound obtained by oxidizing a compound that can be produced by a transesterification reaction of a cyclohexene carboxylic acid ester (a method described in Japanese Patent Application Laid-Open No. 2006-052187).
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Diols Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol, ditrimethylolpropane, etc.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • the compound having an epoxycyclohexane structure in the skeleton is an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol.
  • a reaction method it can be produced by applying a general acetalization reaction.
  • a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium US Pat. No. 2,945,008
  • concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the mixture and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No.
  • epoxy resins include ERL-4299 (all trade names, all manufactured by Dow Chemical), Eporide GT401, EHPE3150, EHPE3150CE (all trade names, all manufactured by Daicel Chemical Industries), and dicyclopentadiene diepoxide.
  • ERL-4299 all trade names, all manufactured by Dow Chemical
  • Eporide GT401 Eporide GT401
  • EHPE3150 Eporide GT401
  • EHPE3150CE all trade names, all manufactured by Daicel Chemical Industries
  • dicyclopentadiene diepoxide dicyclopentadiene diepoxide.
  • the present invention is not limited to these (reference document: review epoxy resin basic edition I p76-85). These may be used alone or in combination of two or more.
  • silsesquioxane-based epoxy resins chain, cyclic, ladder, or a mixture of at least two types of siloxane structures having a glycidyl group and / or an epoxycyclohexane structure
  • the liquid epoxy resin is preferably used as long as it does not affect the corrosion gas resistance.
  • the curable resin composition of the present invention contains a curing agent having reactivity with the epoxy resin component.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from ethylenediamine and amine compounds (amines, Amide compound); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride,
  • polyphenols such as halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols; imidazoles, trifluoroborane-amine complexes, guanidine derivative compounds, etc. Also limited to Not. These may be used alone or in combination of two or more.
  • compounds having an acid anhydride structure and / or compounds having a carboxylic acid structure represented by the above-mentioned acid anhydrides and carboxylic acid resins are particularly preferable.
  • An acid anhydride can form a cured product having a high hardness, and a compound having a carboxylic acid structure is preferable because it has low volatility.
  • a compound having an acid anhydride structure and / or a compound having at least one divalent or higher carboxylic acid structure is more preferable, and a mixture of both is particularly preferable.
  • Examples of the compound having an acid anhydride structure include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] Heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride And particularly preferred are methylhexahydrophthalic anhydride and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride.
  • the compound having a carboxylic acid structure (hereinafter referred to as polycarboxylic acid) is particularly preferably a bi- to tetra-functional polycarboxylic acid, and more preferably an addition reaction of a bi- to tetra-functional polyhydric alcohol with an acid anhydride.
  • the polycarboxylic acid obtained by this is preferable.
  • the bi- to tetrafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Particularly preferred alcohols include cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, dicyclopentanediene dimethanol, Branched and cyclic alcohols such as norbornenediol.
  • Examples of acid anhydrides for producing polycarboxylic acids include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [ 2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1, 2-Anhydrides are preferred.
  • the conditions for the addition reaction are not particularly specified.
  • the acid anhydride and polycarboxylic acid can be used alone or in combination.
  • the weight ratio of the acid anhydride to the polycarboxylic acid is 90/10 to 20/80, particularly preferably 80/20 to 30/70. By setting it as the above range, both heat resistance and workability can be balanced. If the amount of acid anhydride exceeds 90% by weight, volatility increases, which is not preferable.
  • the amount of the curing agent used is preferably 0.5 to 1.5 equivalents in terms of functional group equivalent to 1 equivalent of epoxy group of the epoxy resin component.
  • it is 0.7 to 1.1 equivalent, particularly preferably 0.8 to 1.0 equivalent.
  • the amount is preferably 1.0 equivalent or less, particularly preferably 0.7 to 0.95 equivalent, more preferably 0.7 to 0.85 equivalent.
  • curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator can be used in combination with a curing agent, or a curing accelerator can be used alone without using a curing agent.
  • Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids or phosphinic acids, tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide and other ammonium salts, triphenylphosphine, tri ( Toluyl) Phosphines such as phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts, tin octylate, etc.
  • Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids or phosphinic acids, tetra
  • microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions.
  • the curing accelerator is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin component.
  • the curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-pho
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • a binder resin can be blended with the curable resin composition of the present invention as required.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 100 parts by weight in total of the epoxy resin component and the curing agent. Is used in an amount of 0.05 to 20 parts by weight as required.
  • An inorganic filler can be added to the curable resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
  • the particle size of the inorganic filler used is transparent by using a nano-order level filler. It is possible to supplement the mechanical strength and the like without hindering.
  • a fluorescent substance can be added as needed.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • silica fine powder also called Aerosil or Aerosol
  • a thixotropic agent can be added.
  • silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
  • the curable resin composition of the present invention is an optical material, particularly an optical semiconductor encapsulant, containing an amine compound as a light stabilizer or a phosphorus compound or a phenol compound as an antioxidant for the purpose of preventing coloring. be able to.
  • the following commercially available products can be used as the amine compound that is the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited. For example, as Adeka, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, and Adekas tab TPP.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • phenolic compound Commercially available products can also be used as the phenolic compound.
  • the commercially available phenolic compounds are not particularly limited. AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL CO., LTD. MDP-S, Sumili zer BBM-S, Sumilizer GM, Sumilizer GS (F), Sumilizer GP, and the like.
  • TINUVIN 328, TINUVIN 234, TINUVIN 326, TINUVIN 120, TINUVIN 477, TINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL, and the like are manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but is 0.005 to 5 with respect to the curable resin composition.
  • the range is 0.0% by weight.
  • the zinc salt is a salt and / or complex having zinc ion as a central element, and preferably has a structure having a phosphate ester or phosphoric acid as a counter ion and / or a ligand.
  • zinc salts and / or zinc complexes of phosphoric acid and phosphoric acid esters having 1 to 30 carbon atoms are preferred.
  • alkyl of the phosphate ester having 1 to 30 carbon atoms include methyl, isopropyl, butyl, 2-ethylhexyl, octyl, isodecyl, isostearyl, decanyl, cetyl and the like.
  • a phosphoric acid ester having 3 to 15 carbon atoms is particularly preferred, and the ester may be a mixture or a single product, but the main component is preferably a phosphoric acid monoester.
  • the molar ratio of monoester, diester and triester in the phosphoric acid ester contained (substitute with the purity of gas chromatography.
  • the abundance of the monoester is 50 area% or more at the stage of trimethylation treatment.
  • a phosphoric ester compound can be obtained by esterifying alcohol with phosphorus pentoxide, phosphorus oxychloride, phosphorus trichloride, or the like as a phosphorylating agent.
  • These phosphoric acids can be obtained, for example, by reacting with zinc carbonate, zinc hydroxide, etc. (European Patent Application Publication No. 699708).
  • the ratio of phosphorus atom to zinc atom is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. Particularly preferred is 1.4 to 1.9. That is, in a particularly preferable form, phosphoric acid ester (or phosphoric acid) is 1.9 mol or less with respect to 1 mol of zinc ion, and not a simple ionic structure but a structure in which several molecules are involved by ionic bonds or coordinate bonds. The thing which has is preferable.
  • Examples of the phosphate ester and / or zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
  • the ratio of the epoxy resin component to the zinc salt and / or zinc complex is 0.01 to 8% by weight, more preferably 0.05 to 5% by weight of the zinc salt and / or zinc complex with respect to the epoxy resin component. % By weight, 0.1-4% by weight. When the amount exceeds 8% by weight, the pot life of the curable resin composition becomes a problem. When the amount is less than 0.01% by weight, the effect is not remarkable.
  • the curable resin composition of the present invention can be obtained by uniformly mixing each component.
  • the curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • the curable resin composition of the present invention includes an epoxy resin component, a curing agent and / or a curing accelerator, and a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent that are added as necessary. It can be obtained by mixing well using a kneader, roll or planetary mixer until uniform.
  • a curing means when the curable resin composition is in a liquid state, potting or casting, impregnating the base material, pouring the curable resin composition into a mold, casting, and curing by heating, or solid
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • a curing method it can be hardened at a high temperature at a stretch, but it is preferable to raise the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber,
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do.
  • the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent.
  • cured material containing a carbon fiber can also be obtained with a RTM (Resin * Transfer * Molding) system with a liquid composition.
  • the curable resin composition of the present invention can be used as a film-type sealing composition.
  • a film-type resin composition first, the curable resin composition of the present invention as a curable resin composition varnish as described above, applied to a release film, after removing the solvent under heating, The method of performing B-stage is mentioned, By this, a film type resin composition is obtained as a sheet-like adhesive agent.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
  • the epoxy resin composition of the present invention can also be suitably used as an optical semiconductor sealing material or die bond material.
  • the epoxy resin composition of the present invention is used as a sealing material for an optical semiconductor such as a high-intensity white LED, or a die bond material
  • the epoxy resin composition of the present invention is used as a curing agent (curing agent composition).
  • a curable resin composition is prepared by thoroughly mixing additives such as an acid anhydride and / or polycarboxylic acid, a curing accelerator, a coupling material, an antioxidant, and a light stabilizer.
  • a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like may be used at room temperature or with heating.
  • the obtained curable resin composition can be used for a sealing material, or both a die-bonding material and a sealing material.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the periphery of such a semiconductor chip is sealed with a sealing material such as an epoxy resin.
  • the sealing material is used to protect the semiconductor chip from heat and moisture and to play a role of a lens function.
  • the curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
  • the curable resin composition of the present invention is applied on the substrate by dispenser, potting or screen printing, and then the curable resin is used.
  • a semiconductor chip is placed on the composition and heat-cured. By this method, the semiconductor chip can be bonded to the substrate.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating condition is preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and then molded, and the sealing material on the mold A compression molding method is used in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from the mold.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • the application of the curable resin composition of the present invention is not limited to the above, and can be applied to general applications in which a curable resin such as an epoxy resin is used.
  • a curable resin such as an epoxy resin
  • resin compositions and resist curing agents include additives to other resins such as acrylic ester resins.
  • adhesives examples include civil engineering, architectural, automotive, general office and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • sealing agents As sealing agents, potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • the cured product obtained in the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment field they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras.
  • optical components they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems.
  • optical passive components and optical circuit components there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute.
  • it is a multilayer glass for railway vehicles.
  • they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • Carrier gas; helium gel permeation chromatography (hereinafter GPC): Column: Shodex SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802) Linked eluent: tetrahydrofuran, flow rate 1 ml / min. Column temperature: 40 ° C Detection; UV (254 nm) Calibration curve: Standard polystyrene from Shodex
  • Synthesis example 1 A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, and 140 parts of dimethyl 1,4-cyclohexanedicarboxylate (DMCD-pt manufactured by Iwatani Gas Co., Ltd.), 3-cyclohexene-1- 314 parts of methanol and 0.07 part of tetrabutoxytitanium were added, and the reaction was carried out while removing methanol produced by the reaction at 120 ° C. for 1 hour, 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 190 ° C. for 12 hours. After reacting with GC, it was cooled to 50 ° C.
  • DMCD-pt dimethyl 1,4-cyclohexanedicarboxylate
  • Synthesis example 2 A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 15 parts of water, 0.95 parts of 12-tungstophosphoric acid, 0.78 parts of disodium hydrogen phosphate, di-cured tallow alkyldimethylammonium acetate 2.7 parts (manufactured by Lion Akzo, 50 wt% hexane solution, Acard 2HT acetate), 180 parts of toluene, 118 parts of the diolefin compound obtained in Synthesis Example 1 were added, and the mixture was stirred again to obtain a liquid in an emulsion state. .
  • the organic layer separated into two layers was taken out, 20 parts of activated carbon (CP1 manufactured by Ajinomoto Fine Techno) and 20 parts of bentonite (Bengel SH manufactured by Hojun) were added thereto, and the mixture was stirred for 1 hour at room temperature and then filtered.
  • the obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 119 parts of a liquid epoxy resin (EP-1) at room temperature.
  • the epoxy equivalent of the obtained epoxy resin was 217 g / eq. Met.
  • Synthesis example 3 A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 15 parts of water, 1.9 parts of 12-tungstophosphoric acid, 1.6 parts of disodium hydrogen phosphate, di-cured tallow alkyldimethylammonium acetate Add 5.4 parts (50% by weight lion solution manufactured by Lion Akzo, Acquard 2HT acetate), 160 parts of toluene, 110 parts of 3-cyclohexene carboxylic acid 3-cyclohexene methyl ester, did.
  • the temperature of the solution was raised to 50 ° C., and 70 parts of 35 wt% hydrogen peroxide water was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 20 hours.
  • the progress of the reaction was confirmed by gas chromatography, the raw material peak disappeared.
  • 25 parts of a 20% by weight aqueous sodium thiosulfate solution was added, stirred for 30 minutes, and allowed to stand.
  • the organic layer separated into two layers was taken out, and 40 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 40 parts of bentonite (Bengel SH manufactured by Hojun) were added thereto, stirred at room temperature for 1 hour, and then filtered.
  • the obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 110 parts of a liquid epoxy resin (EP-2) at room temperature.
  • the epoxy equivalent of the obtained epoxy resin is 130 g / eq. Met.
  • Synthesis example 4 A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 10 parts of dicyclopentadiene dimethanol, a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (Shin Nippon Rika ( 50 parts of Licacid MH-700 (hereinafter referred to as “anhydride H-1”) was added, and the mixture was stirred at 40 ° C. for 1 hour and 60 ° C. for 1 hour (disappearance of dicyclopentadienedimethanol by GPC) 60 parts of a curing agent composition, which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
  • silic acid and acid anhydride a mixture of polycarboxylic acid and acid anhydride
  • the obtained colorless liquid resin had a GPC purity of 51 area% for the structure of polycarboxylic acid and a total amount of methyl hexahydrophthalic anhydride and hexahydrophthalic anhydride of 49 area%.
  • the functional group equivalent was 201 g / eq. Met.
  • 12 parts of 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride (H-TMAn, hereinafter referred to as H-2, manufactured by Mitsubishi Gas Chemical) was added to the obtained curing agent composition, A uniform curing agent composition (B-1) was obtained.
  • the weight ratio (theoretical value) of the obtained curing agent composition (B-1) was 40.3% for polycarboxylic acid, 48.9% for acid anhydride H-1, and 10 for acid anhydride H-2. 0.7%.
  • Synthesis example 5 A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 10 parts of dicyclopentadiene dimethanol, a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (Shin Nippon Rika ( 50 parts of Licacid MH-700 (hereinafter referred to as “anhydride H-1”) was added, and the mixture was stirred at 40 ° C. for 1 hour and 60 ° C. for 1 hour (disappearance of dicyclopentadienedimethanol by GPC) 60 parts of a curing agent composition, which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
  • silic acid and acid anhydride a mixture of polycarboxylic acid and acid anhydride
  • the obtained colorless liquid resin had a GPC purity of 51 area% for the structure of polycarboxylic acid and a total amount of methyl hexahydrophthalic anhydride and hexahydrophthalic anhydride of 49 area%.
  • the functional group equivalent was 201 g / eq. Met.
  • 6 parts of acid anhydride (H-2) was added to the obtained curing agent composition to obtain a uniform curing agent composition (B-2).
  • the weight ratio (theoretical value) of the obtained curing agent composition (B-2) was 42.6% for polycarboxylic acid, 51.7% for acid anhydride H-1, and 5 for acid anhydride H-2. It was 6%.
  • Example 1 16 parts of the epoxy resin (EP-1) obtained in Synthesis Example 2 and 24 parts of (EP-2) obtained in Synthesis Example 3 were mixed uniformly to obtain the epoxy resin composition (F-1) of the present invention. Obtained.
  • the obtained curable resin composition was vacuum-defoamed for 20 minutes, and then gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 1 mm.
  • the cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm.
  • About the obtained test piece it heat-processed at 150 degreeC for 96 hours, and evaluated the degree of coloring by the heat history (The transmittance
  • the curable resin composition using the epoxy resin composition (F-1) of the present invention was mixed with the epoxy resins (EP-1) and (EP-2).
  • the transmittance retention of the level equivalent to or higher than (EP-2) is shown.
  • Example 4 and Comparative Examples 5 and 6 Obtained in Synthesis Example 4 for the epoxy resin composition (F-1), the epoxy resin (EP-2), and a commercially available alicyclic epoxy resin (Celoxide 2021P, hereinafter referred to as EP-3 manufactured by Daicel Chemical Industries).
  • the curable resin composition using the epoxy resin composition (F-1) of the present invention can provide a cured product excellent as an LED compared to the epoxy resins (EP-2) and (EP-3). You can see that you can.
  • Synthesis example 7 A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 15 parts of water, 0.95 part of 12-tungstophosphoric acid, 0.78 part of disodium hydrogen phosphate, and trioctylmethylammonium acetate with nitrogen purging. 7 parts (50% by weight xylene solution manufactured by Lion Akzo, TOMAC-50), 170 parts of toluene, 118 parts of the diolefin compound obtained in Synthesis Example 6 were added, and the mixture was stirred again to obtain a liquid in an emulsion state.
  • This solution was raised to 50 ° C., and 70 parts of 35 wt% hydrogen peroxide water was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 14 hours. Then, the pH was adjusted to 10 with a 30 wt% aqueous sodium hydroxide solution, 25 parts of a 20 wt% aqueous sodium thiosulfate solution was added, and the mixture was stirred for 30 minutes and allowed to stand.
  • the organic layer separated into two layers was taken out, 8 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 10 parts of montmorillonite (Kunimine Industries Kunipia F) were added thereto, and the mixture was stirred at room temperature for 3 hours and filtered.
  • the wet cake was washed with 50 parts of toluene and mixed with the previous filtrate.
  • Toluene was distilled off from the obtained filtrate to obtain 120 parts of an epoxy resin (EP-4) that was liquid at room temperature.
  • the epoxy equivalent of the obtained epoxy resin is 212 g / eq. Met.
  • Synthesis example 8 A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 15 parts of water, 0.9 parts of 12-tungstophosphoric acid, 1.5 parts of sodium phosphotungstate, 1.6 parts of disodium hydrogen phosphate while purging with nitrogen. Parts, 2.7 parts of trioctylmethylammonium acetate (50% by weight xylene solution from Lion Akzo, TOMAC-50), 160 parts of toluene, 110 parts of 3-cyclohexene methyl ester of 3-cyclohexenecarboxylic acid, and stirring again Thus, a liquid in an emulsion state was obtained.
  • the organic layer separated into two layers was taken out, and 5 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 10 parts of montmorillonite (Kunimine Industries Kunipia F) were added thereto, followed by stirring at room temperature for 1 hour and filtration.
  • the obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 109 parts of a liquid epoxy resin (EP-5) at room temperature.
  • the epoxy equivalent of the obtained epoxy resin is 129 g / eq. Met.
  • Synthesis Example 9 A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen, and 24 parts of dicyclopentadiene dimethanol, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH acid anhydride H) -4 parts) and acid anhydride (H-2) 30 parts, and the mixture is heated and stirred at 40 ° C. for 1 hour and 70 ° C. for 1 hour to obtain a mixture of polycarboxylic acid and acid anhydride. 100 parts of a curing agent composition (B-3) was obtained.
  • the obtained colorless liquid resin had a GPC purity of 55% area for the structure of polycarboxylic acid, 35 area% for acid anhydride (H-3), and 10 area% for acid anhydride (H-2). It was.
  • the functional group equivalent was 178 g / eq. Met.
  • Synthesis Example 10 A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen while 24 parts of 2,4-diethylpentanediol (Kyowa Hakko Chemical Kyowadiol PD-9), methylhexahydrophthalic anhydride is added. 146 parts (made by Shin Nippon Rika Co., Ltd., called Jamaicacid MH Acid Anhydride H-3) and 30 parts of acid anhydride (H-2) were added, and the mixture was heated and stirred at 40 ° C. for 1 hour and 70 ° C. for 1 hour.
  • a curing agent composition (B-4) which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
  • the obtained colorless liquid resin had a GPC purity of 50% area for the structure of polycarboxylic acid, 40 area% for acid anhydride (H-3), and 10 area% for acid anhydride (H-2). It was.
  • the functional group equivalent was 178 g / eq. Met.
  • Curing was performed for 1 hour to obtain a test piece for transmittance of 1 mm thickness, and the transmittance of each cured product at 400 nm was compared. Arrival by history And evaluate the degree of (and the retention of transmittance was measured compared in 400 nm).
  • the epoxy resin composition of the present invention is excellent in optical properties (illuminance retention) and can provide a cured product useful as an LED.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)

Abstract

Disclosed is an epoxy resin composition comprising an epoxy resin obtained by oxidizing an olefin compound represented by formula (1) and an epoxy resin obtained by oxidizing an olefin compound represented by formula (2), wherein the ratio of the epoxy resin derived from the compound of formula (1) to the epoxy resin derived from the compound of formula (2) is 10/90 to 90/10 by weight.

Description

エポキシ樹脂組成物、硬化性樹脂組成物、およびその硬化物Epoxy resin composition, curable resin composition, and cured product thereof
 本発明は、電気電子材料用途、特に光半導体用途に好適なエポキシ樹脂組成物に関する。また、本発明は、該エポキシ樹脂組成物を含有する硬化性樹脂組成物およびその硬化物に関する。さらに、本発明は、前記硬化性樹脂組成物で硬化・封止することで得られる光半導体装置に関する。 The present invention relates to an epoxy resin composition suitable for electrical and electronic material applications, particularly for optical semiconductor applications. The present invention also relates to a curable resin composition containing the epoxy resin composition and a cured product thereof. Furthermore, this invention relates to the optical semiconductor device obtained by hardening and sealing with the said curable resin composition.
 エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。
 その中で、オプトエレクトロニクス関連分野では、特に近年の高度情報化に伴い、従来の電気配線による信号伝送に代わって、膨大な情報を円滑に伝送且つ処理できる光信号を生かした技術が開発されている。これに伴い、光導波路、青色LED、および光半導体等の光学部品の分野においては、透明性に優れた樹脂の開発が望まれている。
Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials, casting materials and resists.
Among them, in the field of optoelectronics, especially with the recent advancement of information technology, technology that utilizes optical signals that can smoothly transmit and process huge amounts of information has been developed in place of conventional signal transmission using electrical wiring. Yes. Accordingly, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of resins having excellent transparency is desired.
 特に、例えばLED製品等の光学部品分野においては、エポキシ樹脂を酸無水物等の硬化剤で硬化させた硬化物が多々用いられている。
 従来からこのようなLED製品などの光半導体素子の封止材料に使用されるエポキシ樹脂としては、耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
 ところが、LED製品に用いられる発光素子の発光波長の短波長化(主に480nm以下の青色発光)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色してしまう問題が指摘されている。前記封止材料が着色すると、最終的にはLED製品の照度低下を引き起こす。
 そこで、3,4-エポキシシクロヘキシルメチル-3',4'エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較して透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた(特許文献1、2)。
In particular, in the field of optical components such as LED products, a cured product obtained by curing an epoxy resin with a curing agent such as an acid anhydride is often used.
Conventionally, as an epoxy resin used as a sealing material for an optical semiconductor element such as an LED product, a glycidyl ether type typified by a bisphenol A type epoxy resin excellent in balance of heat resistance, transparency and mechanical properties. The epoxy resin composition has been widely used.
However, as a result of the shortening of the emission wavelength of light emitting elements used in LED products (mainly blue emission of 480 nm or less), the sealing material is colored on the LED chip due to the influence of short wavelength light. Problems have been pointed out. When the sealing material is colored, it eventually causes a decrease in illuminance of the LED product.
Therefore, alicyclic epoxy resins represented by 3,4-epoxycyclohexylmethyl-3 ′, 4′epoxycyclohexylcarboxylate are more transparent than glycidyl ether type epoxy resin compositions having an aromatic ring. Therefore, it has been actively studied as an LED sealing material (Patent Documents 1 and 2).
 一方で、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきた。このため、該脂環式エポキシ樹脂を使用した樹脂組成物であってもLEDチップ上で着色を起こし、これに起因して最終的にLED製品の照度低下が生じることが報告されている。
 したがって、脂環式エポキシ樹脂は光や熱に対する耐久性の面で改善が求められている(特許文献3)。
On the other hand, LED products in recent years have been further increased in luminance for lighting, TV backlights, and the like, and have come to generate a lot of heat when the LEDs are turned on. For this reason, even if it is a resin composition which uses this alicyclic epoxy resin, it raise | generates coloring on a LED chip, and it is reported that the illumination intensity fall of an LED product finally arises from this.
Therefore, the alicyclic epoxy resin is required to be improved in terms of durability against light and heat (Patent Document 3).
日本国特開平9-213997号公報Japanese Unexamined Patent Publication No. 9-213997 日本国特許第3618238号公報Japanese Patent No. 3618238 国際公開第2005/100445International Publication No. 2005/100445
 前記エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi-O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている(特許文献3)。
 一般に該シロキサン骨格を導入した樹脂はエポキシ樹脂よりも熱と光に対して安定であることが知られている。そのため、LED製品の封止材に適用した場合、LEDチップ上の着色という観点では、エポキシ樹脂よりも耐久性に優れると言われていた。しかし、該シロキサン骨格を導入した樹脂類はエポキシ樹脂に比べ、耐ガス透過性に劣る。そのため、LED封止材としてシリコーン樹脂やシリコーン変性エポキシ樹脂を使用した場合には、LEDチップ上での着色は問題にならないものの、LEDパッケージ内の構成部材である金属リードフレーム上にメッキされた銀成分(反射率を高めるために銀メッキが施されている)を変色または黒化させてしまい、最終的にLED製品としての性能を低下させるという課題を抱えている。
 このように市場では、前記耐ガス透過性で問題のない構造を有するエポキシ樹脂組成物であって、且つ、従来の脂環式エポキシ樹脂を含有するエポキシ樹脂組成物よりも、さらに光と熱に対する耐久性が高いLED製品を与え得るエポキシ樹脂組成物が求められている。
Due to the durability problem of the epoxy resin, a resin having a siloxane skeleton (specifically, a skeleton having a Si—O bond) introduced as a silicone resin or silicone-modified epoxy resin is used as a sealing material. (Patent Document 3).
In general, it is known that a resin having a siloxane skeleton introduced therein is more stable to heat and light than an epoxy resin. Therefore, when applied to the sealing material of LED products, it was said that it was superior to epoxy resin in terms of coloring on the LED chip. However, resins incorporating the siloxane skeleton are inferior in gas permeability resistance compared to epoxy resins. Therefore, when a silicone resin or a silicone-modified epoxy resin is used as the LED sealing material, the color on the LED chip does not matter, but the silver plated on the metal lead frame, which is a component in the LED package. There is a problem that the component (which is silver-plated to increase the reflectance) is discolored or blackened, and ultimately the performance as an LED product is lowered.
Thus, in the market, it is an epoxy resin composition having a structure with no problem in gas permeation resistance, and is more resistant to light and heat than an epoxy resin composition containing a conventional alicyclic epoxy resin. There is a need for epoxy resin compositions that can provide LED products with high durability.
 そこで、本発明は上記従来技術の問題点に鑑み、光や熱に対する耐久性に優れた硬化物を与えるエポキシ樹脂組成物を提供することを目的とする。 Therefore, in view of the above-mentioned problems of the prior art, an object of the present invention is to provide an epoxy resin composition that provides a cured product having excellent durability against light and heat.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
 すなわち本発明は、
(1)
下記式(1)で表されるジオレフィン化合物と下記式(2)で表されるジオレフィン化合物からなる混合物を酸化して得られ、式(1)の化合物由来のエポキシ樹脂と式(2)の化合物由来のエポキシ樹脂の比率が重量比で10/90~90/10であることを特徴とするエポキシ樹脂組成物、
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention
(1)
An epoxy resin derived from a compound of formula (1) and a formula (2) obtained by oxidizing a mixture of a diolefin compound represented by the following formula (1) and a diolefin compound represented by the following formula (2) An epoxy resin composition characterized in that the ratio of the epoxy resin derived from the compound is 10/90 to 90/10 in weight ratio,
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。Pは、置換基としてメチル基を有していても良い、シクロヘキサン環あるいはノルボルナン環を示す。) (In the formula, a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
(2)
下記式(1)で表されるジオレフィン化合物を酸化して得られるエポキシ樹脂と
(In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
(2)
An epoxy resin obtained by oxidizing a diolefin compound represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。Pは、置換基としてメチル基を有していても良い、シクロヘキサン環あるいはノルボルナン環を示す。)
下記式(2)に記載のジオレフィン化合物を酸化して得られるエポキシ樹脂
(In the formula, a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.)
Epoxy resin obtained by oxidizing the diolefin compound described in the following formula (2)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
との混合物であって、式(1)化合物由来のエポキシ樹脂と式(2)の化合物由来のエポキシ樹脂の比率が重量比で10/90~90/10であることを特徴とするエポキシ樹脂組成物、
(3)
式(1)の置換基Rおよび式(2)の置換基Rが水素原子であり、かつ、結合基Pがメチルシクロヘキサン環、シクロヘキサン環、メチルノルボルナン環およびノルボルナン環から選ばれる一種以上であることを特徴とする前項(1)または(2)に記載のエポキシ樹脂組成物、
(4)
過酸化水素で酸化したことを特徴とする前項(1)~(3)いずれか一項に記載のエポキシ樹脂組成物、
(5)
前項(1)~(4)のいずれか一項に記載のエポキシ樹脂組成物と、硬化剤および/又は硬化促進剤とを含有することを特徴とする硬化性樹脂組成物、
(6)
硬化剤が酸無水物および/またはポリカルボン酸であることを特徴とする前項(5)に記載の硬化性樹脂組成物、
(In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
An epoxy resin composition characterized in that the ratio of the epoxy resin derived from the compound of formula (1) and the epoxy resin derived from the compound of formula (2) is 10/90 to 90/10 in weight ratio object,
(3)
The substituent R in the formula (1) and the substituent R in the formula (2) are hydrogen atoms, and the bonding group P is at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring, and a norbornane ring. The epoxy resin composition as described in (1) or (2) above,
(4)
The epoxy resin composition according to any one of (1) to (3) above, which is oxidized with hydrogen peroxide,
(5)
A curable resin composition comprising the epoxy resin composition according to any one of (1) to (4) above, a curing agent and / or a curing accelerator,
(6)
The curable resin composition as described in (5) above, wherein the curing agent is an acid anhydride and / or a polycarboxylic acid,
(7)
前項(5)または(6)に記載の硬化性樹脂組成物を硬化して得られる硬化物、
(8)
前項(5)または(6)に記載の硬化性樹脂組成物により封止して得られる光半導体装置、
に関する。
(7)
A cured product obtained by curing the curable resin composition according to (5) or (6),
(8)
An optical semiconductor device obtained by sealing with the curable resin composition according to the above item (5) or (6),
About.
 本発明の硬化性樹脂組成物は光および熱に対する耐着色性にも優れることから、光学材料、特に光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。 Since the curable resin composition of the present invention is also excellent in resistance to coloring against light and heat, it is extremely useful as an adhesive or sealing material for optical materials, particularly optical semiconductors (LED products, etc.).
 以下、本発明のエポキシ樹脂組成物について記載する。
 本発明のエポキシ樹脂組成物は少なくとも以下の下記式(1)および(2)の2種のジオレフィン化合物を酸化してなるエポキシ樹脂を必須成分とする。
Hereinafter, the epoxy resin composition of the present invention will be described.
The epoxy resin composition of the present invention contains, as an essential component, an epoxy resin formed by oxidizing at least two diolefin compounds of the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。Pは、置換基としてメチル基を有していても良い、シクロヘキサン環あるいはノルボルナン環を示す。)
 なお、式(1)におけるPはシクロヘキサンまたはノルボルナンから水素原子を2個除いた構造(通常、異なる炭素原子から1個ずつ水素原子を除いた残基)を意味し、これら残基はメチル基を置換基として有していてもよい。
下記式(2)
(In the formula, a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.)
In the formula (1), P means a structure obtained by removing two hydrogen atoms from cyclohexane or norbornane (usually a residue obtained by removing one hydrogen atom from different carbon atoms), and these residues are methyl groups. You may have as a substituent.
Following formula (2)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。) (In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
 前記式(1)のジオレフィン化合物は、公知の方法で製造でき、たとえばシクロへキセンメタノール誘導体に、ジカルボン酸体(もしくはその誘導体)を反応させることにより得られる。
 シクロヘキセンメタノール誘導体としては、特に限定されるものではないが、3-シクロヘキセンメタノール、2-メチル-3-シクロヘキセン-1-メタノール、3-メチル-3-シクロへキセン-1-メタノール、3-エチル-3-シクロへキセン-1-メタノール、3-メチル-3-シクロへキセン-1-メタノール、3-シクロヘキシル-3-シクロへキセン-1-メタノール等が挙げられ、3-シクロヘキセンメタノールが好ましい。これらは単独で用いてもよく、2種以上併用してもよい。
The diolefin compound of the formula (1) can be produced by a known method, and can be obtained, for example, by reacting a dicarboxylic acid form (or a derivative thereof) with a cyclohexene methanol derivative.
Cyclohexene methanol derivatives are not particularly limited, but 3-cyclohexene methanol, 2-methyl-3-cyclohexene-1-methanol, 3-methyl-3-cyclohexene-1-methanol, 3-ethyl- Examples include 3-cyclohexene-1-methanol, 3-methyl-3-cyclohexene-1-methanol, 3-cyclohexyl-3-cyclohexene-1-methanol, and 3-cyclohexenemethanol is preferred. These may be used alone or in combination of two or more.
 ジカルボン酸体(もしくはその誘導体)としてはシクロヘキサン-1,2-ジカルボン酸、シクロヘキサン-1,2-ジカルボン酸無水物、シクロヘキサン-1,2-ジカルボン酸ジメチルエステル、シクロヘキサン-1,2-ジカルボン酸ジエチルエステル、シクロヘキサン-1,2-ジカルボン酸ジプロピルエステル、シクロヘキサン-1,2-ジカルボン酸ジシクロヘキシルエステル、シクロヘキサン-1,2-ジカルボン酸ジクロライド、シクロヘキサン-1,2-ジカルボン酸ジブロマイド、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,3-ジカルボン酸ジメチルエステル、シクロヘキサン-1,3-ジカルボン酸ジエチルエステル、シクロヘキサン-1,3-ジカルボン酸ジプロピルエステル、シクロヘキサン-1,3-ジカルボン酸ジシクロヘキシルエステル、シクロヘキサン-1,3-ジカルボン酸ジクロライド、シクロヘキサン-1,3-ジカルボン酸ジブロマイド、シクロヘキサン-1,4-ジカルボン酸、シクロヘキサン-1,2-ジカルボン酸ジメチルエステル、シクロヘキサン-1,4-ジカルボン酸ジエチルエステル、シクロヘキサン-1,4-ジカルボン酸ジメチルエステル、シクロヘキサン-1,4-ジカルボン酸ジプロピルエステル、シクロヘキサン-1,4-ジカルボン酸ジシクロヘキシルエステル、シクロヘキサン-1,4-ジカルボン酸ジクロライド、シクロヘキサン-1,4-ジカルボン酸ジブロマイド、水添ナジック酸、水添ナジック酸無水物、水添ナジック酸ジメチルエステル、水添ナジック酸ジエチルエステル、水添ナジック酸ジプロピルエステル、水添ナジック酸ジシクロヘキシルエステル、水添ナジック酸ジクロライド、水添ナジック酸ジブロマイド、水添メチルナジック酸、水添メチルナジック酸無水物、水添メチルナジック酸ジメチルエステル、水添メチルナジック酸ジエチルエステル、水添メチルナジック酸ジプロピルエステル、水添メチルナジック酸ジシクロヘキシルエステル、水添メチルナジック酸ジクロライド、水添メチルナジック酸ジブロマイド、ノルボルナンジカルボン酸、ノルボルナン-2,5-ジカルボン酸、ノルボルナン-2,5-ジカルボン酸ジメチルエステル、ノルボルナン-2,5-ジカルボン酸ジエチルエステル、ノルボルナン-2,5-ジカルボン酸ジプロピルエステル、ノルボルナン-2,5-ジカルボン酸ジシクロヘキシルエステル、ノルボルナン-2,5-ジカルボン酸ジクロライド、ノルボルナン-2,5-ジカルボン酸ジブロマイド、ノルボルナン-2,6-ジカルボン酸、ノルボルナン-2,6-ジカルボン酸ジメチルエステル、ノルボルナン-2,6-ジカルボン酸ジエチルエステル、ノルボルナン-2,6-ジカルボン酸ジプロピルエステル、ノルボルナン-2,6-ジカルボン酸ジシクロヘキシルエステル、ノルボルナン-2,6-ジカルボン酸ジクロライド、ノルボルナン-2,6-ジカルボン酸ジブロマイドなどが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。 Dicarboxylic acid compounds (or their derivatives) include cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic anhydride, cyclohexane-1,2-dicarboxylic acid dimethyl ester, and cyclohexane-1,2-dicarboxylic acid diethyl. Ester, cyclohexane-1,2-dicarboxylic acid dipropyl ester, cyclohexane-1,2-dicarboxylic acid dicyclohexyl ester, cyclohexane-1,2-dicarboxylic acid dichloride, cyclohexane-1,2-dicarboxylic acid dibromide, cyclohexane-1, 3-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid dimethyl ester, cyclohexane-1,3-dicarboxylic acid diethyl ester, cyclohexane-1,3-dicarboxylic acid dipropyl ester, cyclohexane 1,3-dicarboxylic acid dicyclohexyl ester, cyclohexane-1,3-dicarboxylic acid dichloride, cyclohexane-1,3-dicarboxylic acid dibromide, cyclohexane-1,4-dicarboxylic acid, dimethyl cyclohexane-1,2-dicarboxylate Ester, cyclohexane-1,4-dicarboxylic acid diethyl ester, cyclohexane-1,4-dicarboxylic acid dimethyl ester, cyclohexane-1,4-dicarboxylic acid dipropyl ester, cyclohexane-1,4-dicarboxylic acid dicyclohexyl ester, cyclohexane-1 , 4-dicarboxylic acid dichloride, cyclohexane-1,4-dicarboxylic acid dibromide, hydrogenated nadic acid, hydrogenated nadic acid anhydride, hydrogenated nadic acid dimethyl ester, hydrogenated nadic acid diethyl ester Hydrogenated nadic acid dipropyl ester, hydrogenated nadic acid dicyclohexyl ester, hydrogenated nadic acid dichloride, hydrogenated nadic acid dibromide, hydrogenated methyl nadic acid, hydrogenated methyl nadic acid anhydride, hydrogenated methyl nadic acid dimethyl Ester, Hydrogenated methyl nadic acid diethyl ester, Hydrogenated methyl nadic acid dipropyl ester, Hydrogenated methyl nadic acid dicyclohexyl ester, Hydrogenated methyl nadic acid dichloride, Hydrogenated methyl nadic acid dibromide, Norbornane dicarboxylic acid, Norbornane-2, 5-dicarboxylic acid, norbornane-2,5-dicarboxylic acid dimethyl ester, norbornane-2,5-dicarboxylic acid diethyl ester, norbornane-2,5-dicarboxylic acid dipropyl ester, norbornane-2,5-dicarboxylic acid Acid dicyclohexyl ester, norbornane-2,5-dicarboxylic acid dichloride, norbornane-2,5-dicarboxylic acid dibromide, norbornane-2,6-dicarboxylic acid, norbornane-2,6-dicarboxylic acid dimethyl ester, norbornane-2,6 -Dicarboxylic acid diethyl ester, norbornane-2,6-dicarboxylic acid dipropyl ester, norbornane-2,6-dicarboxylic acid dicyclohexyl ester, norbornane-2,6-dicarboxylic acid dichloride, norbornane-2,6-dicarboxylic acid dibromide, etc. However, it is not limited to these. These may be used alone or in combination of two or more.
 シクロへキセンメタノール誘導体とジカルボン酸体(もしくはその誘導体)の反応としては一般のエステル化方法が適応できる。具体的には一般のエステル化反応が適応でき、酸触媒を使用したFischer esterification、塩基性条件下での酸ハライド、アルコールの反応、各種縮合剤を利用した縮合反応などが挙げられる(ADVANCED ORGANIC CHEMISTRY PartB:Reaction and Synthesis  p135、145-147、151など)。また、具体的な事例としては、アルコールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980))、さらにはカルボン酸エステルのエステル交換反応(日本国特開2006-052187)を利用することによっても製造できる。 A general esterification method can be applied as a reaction of cyclohexene methanol derivative and dicarboxylic acid form (or derivative thereof). Specifically, general esterification reactions can be applied, such as Fischer esterification using acid catalysts, acid halides under basic conditions, alcohol reactions, condensation reactions using various condensing agents (ADVANCED ORGANIC CHEMISTRY) PartB: Reaction and Synthesis p135, 145-147, 151 etc.). Specific examples include esterification reactions between alcohols and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980)), and further ester exchange reactions of carboxylic acid esters ( It can also be produced by using Japanese Unexamined Patent Publication No. 2006-052187).
 このようにして合成される前記式(1)のジオレフィン化合物としては、入手のし易さから、前記式(1)においてRが水素原子、メチル基のいずれかである化合物が好ましく、特に水素原子である化合物が好ましい。また、Pはメチルシクロヘキサン環、シクロヘキサン環、メチルノルボルナン環およびノルボルナン環から選ばれる一種以上であることが好ましく、入手のし易さから置換基を有していないことがより好ましく、シクロヘキサン環が特に好ましい。 As the diolefin compound of the formula (1) synthesized in this manner, a compound in which R is either a hydrogen atom or a methyl group in the formula (1) is preferable from the viewpoint of availability. Compounds that are atoms are preferred. Further, P is preferably at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring and a norbornane ring, more preferably free of substituents from the viewpoint of availability, and particularly a cyclohexane ring. preferable.
 前記式(2)のジオレフィン化合物は、公知の方法で製造でき、たとえばシクロヘキセンアルデヒド誘導体の二量化(ティシェンコ反応、特許文献:日本国特開2003-170059号公報、日本国特開2004-262871号公報等)や、シクロへキセンメタノール誘導体に、シクロヘキセンカルボン酸誘導体を反応させることにより得られる(参考文献:Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)、日本国特開2006-052187号公報等に記載の手法)化合物などが挙げられる。 The diolefin compound of the formula (2) can be produced by a known method, for example, dimerization of a cyclohexene aldehyde derivative (Tishenko reaction, patent documents: Japanese Patent Application Publication No. 2003-170059, Japanese Patent Application Publication No. 2004-262871). Obtained by reacting a cyclohexene carboxylic acid derivative with a cyclohexene methanol derivative (reference documents: Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980)) (Methods described in Japanese Unexamined Patent Publication No. 2006-052187) and the like.
 シクロヘキセンアルデヒド誘導体としては3-シクロヘキセンカルバルデヒド、2-メチル-3-シクロヘキセンカルバルデヒド、4-メチル-3-シクロヘキセンカルバルデヒド等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 シクロヘキセンカルボン酸誘導体としては具体的にはシクロヘキセンカルボン酸、シクロヘキセンカルボン酸メチル、シクロヘキセンカルボン酸エチル、シクロヘキセンカルボン酸プロピル、シクロヘキセンカルボン酸ブチル、シクロヘキセンカルボン酸ヘキシル、(シクロヘキセニルメチル)シクロヘキセンカルボキシレート、シクロヘキセンカルボン酸オクチル、シクロヘキセンカルボン酸クロライド、シクロヘキセンカルボン酸ブロマイド、メチルシクロヘキセンカルボン酸、メチルシクロヘキセンカルボン酸メチル、メチルシクロヘキセンカルボン酸エチル、メチルシクロヘキセンカルボン酸プロピル、(メチルシクロヘキセニルメチル)メチルシクロヘキセンカルボキシレート、メチルシクロヘキセンカルボン酸クロライド、などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 また、シクロへキセンメタノール誘導体としては前記化合物等が挙げられる。
Examples of the cyclohexene aldehyde derivative include, but are not limited to, 3-cyclohexene carbaldehyde, 2-methyl-3-cyclohexene carbaldehyde, 4-methyl-3-cyclohexene carbaldehyde and the like. These may be used alone or in combination of two or more.
Specific examples of the cyclohexenecarboxylic acid derivative include cyclohexenecarboxylic acid, methyl cyclohexenecarboxylate, ethyl cyclohexenecarboxylate, propylcyclohexenecarboxylate, butylcyclohexenecarboxylate, hexylcyclohexenecarboxylate, (cyclohexenylmethyl) cyclohexenecarboxylate, and cyclohexenecarboxylate. Octyl acid, cyclohexene carboxylic acid chloride, cyclohexene carboxylic acid bromide, methyl cyclohexene carboxylic acid, methyl methyl cyclohexene carboxylate, ethyl methyl cyclohexene carboxylate, propyl methyl cyclohexene carboxylate, (methyl cyclohexenyl methyl) methyl cyclohexene carboxylate, methyl cyclohexene carboxyl Acid chloride, etc. Including but not limited to. These may be used alone or in combination of two or more.
Moreover, the said compound etc. are mentioned as a cyclohexene methanol derivative.
 本発明のエポキシ樹脂組成物は、前記式(1)、(2)の化合物の混合物を酸化してエポキシ化するか、式(1)および式(2)の化合物を別個に酸化し、得られたエポキシ樹脂を混合することで得られる。酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
 過酸によるエポキシ化の手法としては具体的には日本国特表2007-510772号公報、日本国特開2006-52187号公報に記載の手法などが挙げられる。
 過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、日本国特開昭59-108793号公報、日本国特開昭62-234550号公報、日本国特開平5-213919号公報、日本国特開平11-349579号公報、日本国特公平1―33471号公報、日本国特開2001-17864号公報、日本国特公平3-57102号公報等に挙げられるような手法が適応できる。
 本発明においてはその生成物の低粘度性から過酸化水素の使用がより好ましい。
 以下に過酸化水素を用いるエポキシ化の手法の一例を記載する。
The epoxy resin composition of the present invention is obtained by oxidizing the mixture of the compounds of the formulas (1) and (2) to epoxidize or separately oxidizing the compounds of the formulas (1) and (2). It can be obtained by mixing the epoxy resin. Examples of the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
Specific examples of the epoxidation method with peracid include the methods described in Japanese Patent Publication No. 2007-510772 and Japanese Patent Application Laid-Open No. 2006-52187.
Various methods can be applied to the epoxidation method using hydrogen peroxide solution. Specifically, Japanese Patent Application Laid-Open No. 59-108793, Japanese Patent Application Laid-Open No. 62-234550, Japanese Patent Application Laid-Open No. No. 5-291919, Japanese Patent Application Laid-Open No. 11-349579, Japanese Patent Publication No. 1-33341, Japanese Patent Publication No. 2001-17864, Japanese Patent Publication No. 3-57102, etc. Various methods can be applied.
In the present invention, it is more preferable to use hydrogen peroxide because of the low viscosity of the product.
An example of the epoxidation method using hydrogen peroxide is described below.
 まず、前記式(1)のジオレフィン化合物と式(2)のジオレフィン化合物の単独または混合物(以下、これらをあわせて単にジオレフィン化合物という)、ポリ酸類および4級アンモニウム塩を有機溶剤、過酸化水素水のエマルジョン状態で反応を行う。なお、反応に際して緩衝液を使用することもできる。
 本発明で使用するポリ酸類は、ポリ酸構造を有する化合物であれば特に制限はないが、タングステンまたはモリブデンを含むポリ酸類が好ましく、タングステンを含むポリ酸類が更に好ましく、タングステン酸塩が特に好ましい。
First, the diolefin compound of the formula (1) and the diolefin compound of the formula (2) are used alone or as a mixture (hereinafter collectively referred to simply as a diolefin compound), polyacids and quaternary ammonium salts are mixed with an organic solvent, The reaction is carried out in an emulsion state of hydrogen oxide water. A buffer solution can also be used for the reaction.
The polyacid used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but polyacids containing tungsten or molybdenum are preferable, polyacids containing tungsten are more preferable, and tungstate is particularly preferable.
 具体的なポリ酸類としては、タングステン酸、12-タングスト燐酸、12-タングストホウ酸、18-タングスト燐酸および12-タングストケイ酸などから選ばれるタングステン系の酸やそれらの塩、モリブデン酸あるいはリンモリブデン酸等から選ばれるモリブデン系の酸やそれらの塩等が挙げられる。
 これらの塩のカウンターカチオンとしては、アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
Specific polyacids include tungsten acids selected from tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid and 12-tungstosilicic acid, their salts, molybdic acid or phosphomolybdic acid, etc. And molybdenum-based acids selected from the above and their salts.
Examples of the counter cation of these salts include ammonium ions, alkaline earth metal ions, and alkali metal ions.
 具体的にはカルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン、ナトリウムイオン、カリウムイオン、セシウムイオン等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。特に好ましいカウンターカチオンとしてはナトリウムイオン、カリウムイオン、カルシウムイオン、アンモニウムイオンである。 Specific examples include, but are not limited to, alkaline earth metal ions such as calcium ions and magnesium ions, and alkali metal ions such as sodium ions, potassium ions and cesium ions. Particularly preferred counter cations are sodium ion, potassium ion, calcium ion and ammonium ion.
 ポリ酸類の使用量としてはジオレフィン化合物1モルに対し、金属元素換算(タングステン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で0.5~20ミリモル、好ましくは1.0~20ミリモル、さらに好ましくは2.5~15ミリモルである The amount of polyacid used is 0.5 to 20 mmol, preferably 1.0 to 20 mmol, in terms of metal element (moles of tungsten atoms for tungstic acid and molybdenum atoms for molybdic acid) per mol of diolefin compound. More preferably 2.5 to 15 mmol.
 4級アンモニウム塩としては、総炭素数が10以上、好ましくは25~100、より好ましくは25~55の4級アンモニウム塩が好ましく使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
 具体的にはトリデカニルメチルアンモニウム塩、ジラウリルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、トリアルキルメチル(アルキル基がオクチル基である化合物とデカニル基である化合物の混合タイプ)アンモニウム塩、トリヘキサデシルメチルアンモニウム塩、トリメチルステアリルアンモニウム塩、テトラペンチルアンモニウム塩、セチルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、ジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。
As the quaternary ammonium salt, a quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, more preferably 25 to 55 can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain. .
Specifically, tridecanylmethylammonium salt, dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt, trihexa Examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt. It is not limited to.
 またこれら塩のアニオン種に特に限定はなく、具体的にはハロゲン化物イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン等が挙げられこれらに限定されないが、特にアセテートイオンが好ましい。
 炭素数が100を上回ると疎水性が強くなりすぎて、4級アンモニウム塩の有機層への溶解性が悪くなる場合がある。炭素数が10未満であると親水性が強くなり、同様に4級アンモニウム塩の有機層への相溶性が悪くなり、好ましくない。
 4級アンモニウム塩の使用量は使用するポリ酸類の価数倍の0.01~10倍当量、より好ましくは0.05~6.0倍当量であり、さらに好ましくは0.05~4.5倍当量である。
There are no particular limitations on the anion species of these salts, and specific examples include halide ions, nitrate ions, sulfate ions, hydrogen sulfate ions, acetate ions, carbonate ions, etc., but acetate ions are particularly preferred. .
When the number of carbon atoms exceeds 100, the hydrophobicity becomes too strong, and the solubility of the quaternary ammonium salt in the organic layer may deteriorate. When the number of carbon atoms is less than 10, the hydrophilicity is increased, and the compatibility of the quaternary ammonium salt with the organic layer is similarly deteriorated.
The amount of the quaternary ammonium salt used is 0.01 to 10 times equivalent, more preferably 0.05 to 6.0 times equivalent, more preferably 0.05 to 4.5 times the valence of the polyacids used. It is a double equivalent.
 例えば、タングステン酸であればHWOで2価であるので、タングステン酸1モルに対し、4級アンモニウムのカルボン酸塩は0.02~1.6モル、もしくは2.2~20モルの範囲が好ましい。またタングストリン酸であれば3価であるので、同様に0.03~2.4モル、もしくは3.3~30モル、ケイタングステン酸であれば4価であるので0.04~3.2モル、もしくは4.4~40モルが好ましい。
 4級アンモニウムのカルボン酸塩の量が、ポリ酸類の価数倍の0.01倍当量よりも低い場合、エポキシ化反応が進行しづらい(場合によっては反応の進行が早くなる)、また副生成物ができやすいという問題が生じる。10倍当量よりも多い場合、後処理が大変であるばかりか、反応を抑制する働きがあり、好ましくない。
For example, since tungstic acid is divalent with H 2 WO 4 , the quaternary ammonium carboxylate is 0.02 to 1.6 mol, or 2.2 to 20 mol per mol of tungstic acid. A range is preferred. In addition, since tungstophosphoric acid is trivalent, it is similarly 0.03 to 2.4 mol, or 3.3 to 30 mol, and in the case of silicotungstic acid, it is tetravalent, so 0.04 to 3.2. Mole or 4.4 to 40 mol is preferred.
When the amount of the quaternary ammonium carboxylate is lower than 0.01 times the valence of the polyacids, the epoxidation reaction is difficult to proceed (in some cases, the reaction proceeds faster), and a by-product is produced. The problem is that things are easy to make. When the amount is more than 10 times equivalent, not only is the post-treatment difficult, but there is a function of suppressing the reaction, which is not preferable.
 緩衝液としては公知の緩衝液のいずれも用いることができるが、本反応においては燐酸塩水溶液を用いるのが好ましい。そのpHとしてはpH4~10の間に調整されたものが好ましく、より好ましくはpH5~9である。pH4未満の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH10を超える場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
 特に本発明においては触媒であるポリ酸類を溶解した際に、pH5~9の間になるように調整されることが好ましい。
 緩衝液の使用方法は、例えば好ましい緩衝液である燐酸-燐酸塩水溶液の場合は、過酸化水素に対し、0.1~10モル%当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。
 ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、リン酸二水素ナトリウム、リン酸水素二ナトリウムなどを用いて調整することも可能である。好ましい燐酸塩の濃度は0.1~60重量%、好ましくは1~45重量%である。
Any known buffer solution can be used as the buffer solution, but an aqueous phosphate solution is preferably used in this reaction. The pH is preferably adjusted between pH 4 and 10, more preferably pH 5-9. When the pH is less than 4, the hydrolysis reaction and polymerization reaction of the epoxy group easily proceed. Moreover, when pH10 is exceeded, reaction will become extremely slow and the problem that reaction time is too long will arise.
In particular, in the present invention, it is preferable to adjust the pH to be between 5 and 9 when the polyacids which are catalysts are dissolved.
For example, in the case of a phosphoric acid-phosphate aqueous solution which is a preferable buffer, 0.1 to 10 mol% equivalent of phosphoric acid (or a phosphate such as sodium dihydrogen phosphate) is used with respect to hydrogen peroxide. And a method of adjusting the pH with a basic compound (for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.).
Here, it is preferable that the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added. It is also possible to adjust using sodium dihydrogen phosphate, disodium hydrogen phosphate, or the like. The preferred phosphate concentration is 0.1 to 60% by weight, preferably 1 to 45% by weight.
 また、本反応においては緩衝液を使用せず、燐酸水素2ナトリウム、燐酸2水素ナトリウム、燐酸ナトリウム、トリポリ燐酸ナトリウム、など(またはその水和物)を、pH調整無しに燐酸塩を直接添加しても構わない。直接の添加により工程が簡略化されるため、好ましい。この場合の燐酸塩の使用量は、過酸化水素に対し、通常0.1~5モル%当量、好ましくは0.2~4モル%当量、より好ましくは、0.3~3モル%当量である。この際、過酸化水素に対し、5モル%当量を超えるとpH調整が必要となり、0.1モル%当量未満の場合、できたエポキシ化合物の加水分解物が進行しやすくなる、あるいは反応が遅くなるなどの弊害が生じる。 In this reaction, no buffer solution is used, and disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate, sodium tripolyphosphate, etc. (or hydrates thereof) are directly added without adjusting pH. It doesn't matter. Since the process is simplified by direct addition, it is preferable. The amount of phosphate used in this case is usually 0.1 to 5 mol% equivalent, preferably 0.2 to 4 mol% equivalent, more preferably 0.3 to 3 mol% equivalent to hydrogen peroxide. is there. In this case, if the amount exceeds 5 mol% equivalent to hydrogen peroxide, pH adjustment is required. If the amount is less than 0.1 mol% equivalent, the resulting hydrolyzate of the epoxy compound tends to proceed or the reaction is slow. The harmful effect of becoming.
 本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10~40重量%である水溶液が好ましい。濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ樹脂の分解反応も進行しやすくなることから好ましくない。 This reaction is epoxidized using hydrogen peroxide. As the hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
 本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質であるジオレフィン化合物1に対し、重量比で0.3~10であり、好ましくは0.3~5、より好ましくは0.5~2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が挙げられる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等のニトリル化合物なども使用可能である。特に好ましい溶剤としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物である。 This reaction uses an organic solvent. The amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the diolefin compound 1 as a reaction substrate. is there. When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane, and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, and cyclohexanol. It is done. In some cases, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, ethers such as diethyl ether, tetrahydrofuran and dioxane, ester compounds such as ethyl acetate, butyl acetate and methyl formate, and nitriles such as acetonitrile Compounds and the like can also be used. Particularly preferred solvents are alkanes such as hexane, cyclohexane and heptane, and aromatic hydrocarbon compounds such as toluene and xylene.
 具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、ジオレフィン化合物、過酸化水素(水溶液)、ポリ酸類(触媒)、緩衝液、4級アンモニウム塩および有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸化水素を徐々に添加する方法でも構わない。 As a specific reaction operation method, for example, when the reaction is performed in a batch-type reaction kettle, a diolefin compound, hydrogen peroxide (aqueous solution), polyacids (catalyst), a buffer solution, a quaternary ammonium salt, and an organic solvent are used. In addition, stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.
 この際、緩衝液(もしくは水とリン酸塩)、ポリ酸類を加えpH調整を行った後、4級アンモニウム塩、および有機溶剤、ジオレフィン化合物を加え、二層で撹拌したところに、過酸化水素を滴下するという手法を用いる。
 あるいは水、有機溶剤、ジオレフィン化合物を撹拌している中に、ポリ酸類、燐酸(あるいはリン酸塩)を加え、pH調整を行った後、4級アンモニウム塩を添加し、二層で撹拌したところに、過酸化水素を滴下するという手法を用いるという方法でも構わない。
At this time, after adjusting the pH by adding a buffer solution (or water and phosphate) and polyacids, a quaternary ammonium salt, an organic solvent, and a diolefin compound were added, and the mixture was stirred in two layers. A technique of dropping hydrogen is used.
Alternatively, while stirring water, an organic solvent, and a diolefin compound, polyacids and phosphoric acid (or phosphate) are added, pH is adjusted, quaternary ammonium salt is added, and the mixture is stirred in two layers. However, a method of dropping hydrogen peroxide may be used.
 反応温度は特に限定されないが0~90℃が好ましく、さらに好ましくは0~75℃、特に15℃~60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。 The reaction temperature is not particularly limited, but is preferably 0 to 90 ° C, more preferably 0 to 75 ° C, particularly preferably 15 ° C to 60 ° C. When the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.
 また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1~48時間、好ましくは3~36時間、さらに好ましくは4~24時間である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. A preferred range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.
 反応終了後、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。また、還元剤と塩基性化合物を併用することも好ましい。好ましい処理方法としては塩基性化合物でpH6~10に中和調整後、還元剤を用い、残存する過酸化水素をクエンチする方法が挙げられる。pHが6未満の場合、過剰の過酸化水素を還元する際の発熱が大きく、分解物を生じる可能性がある。 After the reaction is complete, quench the excess hydrogen peroxide. The quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination. As a preferred treatment method, there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6 to 10 with a basic compound. When the pH is less than 6, the heat generated when reducing excess hydrogen peroxide is large, which may cause decomposition products.
 還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸、ビタミンCなどが挙げられる。還元剤の使用量としては過剰分の過酸化水素のモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。
 これらは水溶液として加えることが好ましく、その濃度は0.5~30重量%である。
Examples of the reducing agent include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like. The reducing agent is used usually in an amount of 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, and still more preferably 0.05 to 3 times mol with respect to the number of moles of excess hydrogen peroxide. is there.
These are preferably added as an aqueous solution, and the concentration thereof is 0.5 to 30% by weight.
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
 その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
 水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1~1000倍の量を使用することが好ましい。より好ましくは10~500倍、さらに好ましくは10~300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
The amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc. The amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mole, more preferably 0.05 to 3 times mole. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
When a solid base that does not dissolve in water or an organic solvent is used, it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10 to 500 times, and further preferably 10 to 300 times. In the case of using a solid base that does not dissolve in water or an organic solvent, the treatment may be carried out after separation of an aqueous layer and an organic layer described later.
 過酸化水素のクエンチ後(もしくはクエンチを行う前に)、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は原料ジオレフィン化合物に対し、重量比で0.5~10倍、好ましくは0.5~5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
 得られた有機層は必要に応じてイオン交換樹脂や金属酸化物(特に、シリカゲル、アルミナなどが好ましい)、活性炭(中でも特に薬品賦活活性炭が好ましい)、複合金属塩(中でも特に塩基性複合金属塩が好ましい)、粘度鉱物(中でも特にモンモリロナイトなど層状粘土鉱物が好ましい)等により、不純物を除去し、さらに水洗、ろ過等を行った後、溶剤を留去し、目的とするエポキシ樹脂組成物を得る。
After the hydrogen peroxide quench (or before quenching), the organic layer and the aqueous layer do not separate, or if the organic solvent is not used, perform the operation by adding the above-mentioned organic solvent and react from the aqueous layer. Extract the product. The organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times in weight ratio to the raw material diolefin compound. This operation is repeated several times as necessary, and the separated organic layer is purified by washing with water as necessary.
The obtained organic layer may be an ion exchange resin, a metal oxide (especially, silica gel, alumina, etc. are preferred), activated carbon (especially, preferably a chemical activated carbon), a composite metal salt (especially a basic composite metal salt). Are preferably removed), viscosity minerals (especially, lamellar clay minerals such as montmorillonite are preferred), impurities are removed, water washing, filtration and the like are performed, and then the solvent is distilled off to obtain the desired epoxy resin composition. .
 このようにして得られる本発明のエポキシ樹脂組成物は下記式(3) The epoxy resin composition of the present invention thus obtained has the following formula (3)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、RおよびPは式(1)と同じ意味を表す。)
と下記式(4)
(In the formula, R and P represent the same meaning as in formula (1).)
And the following formula (4)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Rは式(2)と同じ意味を表す。)
で表される分子を主成分とするが、式(1)または式(2)の化合物の未反応物、部分エポキシ化物、加水分解物、およびこれらの分解物などの不純物が総重量中15重量%以下の割合で存在しても構わない。
(In the formula, R represents the same meaning as in formula (2).)
In the total weight, impurities such as an unreacted product, a partially epoxidized product, a hydrolyzate, and a decomposition product of the compound represented by formula (1) or (2) are 15% by weight. % Or less may be present.
 これら混合物は均一にした際に液状になる場合が多い。また前記式(3)の化合物(および式(1)の化合物由来の前記不純物)と前記式(4)の化合物(および式(2)の化合物由来の前記不純物)の比率は重量比で10/90~90/10である。さらに好ましくは25/75~80/20、特に好ましくは25/75~60/40であり、最も好ましくは25/75~50/50である。本発明のエポキシ樹脂組成物は、式(1)の化合物と式(2)の化合物を混合してエポキシ化して構成してもよいし、あるいは式(1)をエポキシ化して得られる式(3)の化合物と式(2)をエポキシ化して得られる式(4)の化合物とを混合して構成してもよい。前者の場合、このような重量比とするには式(1)の化合物と式(2)の化合物を通常10/90~90/10、好ましくは25/75~80/20、特に好ましくは25/75~60/40、最も好ましくは25/75~50/50の範囲で混合し、酸化すればよい。
 エポキシ樹脂組成物中に含まれるエポキシ化合物を上記範囲で混合することで、得られる硬化物は光・熱に対する耐久性において優れた効果を発揮する。特に、式(3)の化合物と式(4)の化合物を25/75~50/50の範囲で混合することで、着色による透過率低下を著しく抑制することができるとともに、光半導体封止剤に使用する場合には高い照度保持率を達成することが可能となる。
 また本発明においては、入手のし易さから、特に、式(3)の化合物、(4)の化合物共に置換基Rが水素原子もしくはメチル基であることが好ましく、特に好ましくは水素原子である。また、Pはメチルシクロヘキサン環、シクロヘキサン環、メチルノルボルナン環およびノルボルナン環から選ばれる一種以上であることが好ましく、入手のし易さから置換基を有していないものであることがより好ましく、シクロヘキサン環が特に好ましい。
These mixtures often become liquid when homogenized. The ratio of the compound of formula (3) (and the impurity derived from the compound of formula (1)) to the compound of formula (4) (and the impurity derived from the compound of formula (2)) is 10 / 90-90 / 10. More preferably, it is 25/75 to 80/20, particularly preferably 25/75 to 60/40, and most preferably 25/75 to 50/50. The epoxy resin composition of the present invention may be constituted by mixing and epoxidizing the compound of the formula (1) and the compound of the formula (2), or the formula (3) obtained by epoxidizing the formula (1). ) And a compound of formula (4) obtained by epoxidizing formula (2) may be mixed. In the former case, in order to obtain such a weight ratio, the compound of the formula (1) and the compound of the formula (2) are usually 10/90 to 90/10, preferably 25/75 to 80/20, particularly preferably 25 / 75 to 60/40, most preferably mixed in the range of 25/75 to 50/50 and oxidized.
By mixing the epoxy compound contained in the epoxy resin composition within the above range, the obtained cured product exhibits an excellent effect in durability against light and heat. In particular, by mixing the compound of the formula (3) and the compound of the formula (4) in the range of 25/75 to 50/50, it is possible to remarkably suppress a decrease in transmittance due to coloring, and an optical semiconductor sealing agent When it is used for the above, a high illuminance retention rate can be achieved.
In the present invention, in view of easy availability, the substituent R is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom, in both the compound of the formula (3) and the compound of (4). . Further, P is preferably at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring and a norbornane ring, and more preferably has no substituent from the viewpoint of availability. A ring is particularly preferred.
 本発明の硬化性樹脂組成物は、本発明のエポキシ樹脂組成物、硬化剤および/又は硬化促進剤を含有する。本発明の硬化性樹脂組成物において、本発明のエポキシ樹脂組成物は、単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、前記エポキシ樹脂組成物の全エポキシ樹脂成分中に占める割合は70重量%以上が好ましく、特に80重量%以上が好ましい。 The curable resin composition of the present invention contains the epoxy resin composition of the present invention, a curing agent and / or a curing accelerator. In the curable resin composition of the present invention, the epoxy resin composition of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin composition in all the epoxy resin components is preferably 70% by weight or more, particularly preferably 80% by weight or more.
 本発明の硬化性樹脂組成物において使用できる他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。 Other epoxy resins that can be used in the curable resin composition of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. . Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of these) Has a glycidyl group and / or an epoxycyclohexane structure Solid or liquid epoxy resin having an epoxy resin) and the like although not limited thereto.
 特に本発明の硬化性樹脂組成物を光学用途に用いる場合、脂環式エポキシ樹脂やシルセスキオキサン構造のエポキシ樹脂との併用が好ましい。特に脂環式エポキシ樹脂の場合、エポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1.3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
When using especially the curable resin composition of this invention for an optical use, combined use with an alicyclic epoxy resin or an epoxy resin of a silsesquioxane structure is preferable. Particularly in the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
These epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) And a compound obtained by oxidizing a compound that can be produced by a transesterification reaction of a cyclohexene carboxylic acid ester (a method described in Japanese Patent Application Laid-Open No. 2006-052187).
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1.3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc. Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol, ditrimethylolpropane, etc. And the like. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらに、骨格にエポキシシクロヘキサン構造を有する化合物の他の例として、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号公報)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48-96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号公報)、反応媒体に有機溶媒を用いる方法(日本国特開平7-215979号公報)、固体酸触媒を用いる方法(日本国特開2007-230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。 Furthermore, another example of the compound having an epoxycyclohexane structure in the skeleton is an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol. As a reaction method, it can be produced by applying a general acetalization reaction. For example, a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium (US Pat. No. 2,945,008), concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the mixture and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No. 48-96590), a method using water as a reaction medium (US Pat. No. 3,092,640), reaction A method using an organic solvent as a medium (Japanese Patent Laid-open No. 7-215979), a method using a solid acid catalyst (Japanese Patent Laid-Open No. 2007-230992), and the like are disclosed. A cyclic acetal structure is preferable from the viewpoint of structural stability.
 これらエポキシ樹脂の具体例としては、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよい。
Specific examples of these epoxy resins include ERL-4299 (all trade names, all manufactured by Dow Chemical), Eporide GT401, EHPE3150, EHPE3150CE (all trade names, all manufactured by Daicel Chemical Industries), and dicyclopentadiene diepoxide. However, the present invention is not limited to these (reference document: review epoxy resin basic edition I p76-85).
These may be used alone or in combination of two or more.
 また、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂は、耐腐食ガス性に影響を与えない範囲で使用するのが好ましい。 Also, silsesquioxane-based epoxy resins (chain, cyclic, ladder, or a mixture of at least two types of siloxane structures having a glycidyl group and / or an epoxycyclohexane structure) such as solid or The liquid epoxy resin is preferably used as long as it does not affect the corrosion gas resistance.
 本発明の硬化性樹脂組成物は、前記エポキシ樹脂成分と反応性を有する硬化剤を含有する。
 該硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物(アミン、アミド化合物);無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明においては、特に前述の酸無水物、カルボン酸樹脂に代表される、酸無水物構造を有する化合物および/またはカルボン酸構造を有する化合物が好ましい。酸無水物は高硬度の硬化物を形成することができ、カルボン酸構造を有する化合物は低揮発性であるため好ましい。中でも酸無水物構造を有する化合物および/または少なくとも1種の2価以上のカルボン酸構造を有する化合物がより好ましく、両者の混合物が特に好ましい。
The curable resin composition of the present invention contains a curing agent having reactivity with the epoxy resin component.
Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from ethylenediamine and amine compounds (amines, Amide compound); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, Cyclohe Acid anhydrides such as sun-1,2,4-tricarboxylic acid-1,2-anhydride, etc .; carboxylic acid resins obtained by addition reaction of various alcohols, carbinol-modified silicones and the aforementioned acid anhydrides; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol) , Naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphth ) And formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1 Polycondensation with '-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloromethyl) benzene, 1,4'-bis (methoxymethyl) benzene, etc. And their modified products, polyphenols such as halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols; imidazoles, trifluoroborane-amine complexes, guanidine derivative compounds, etc. Also limited to Not. These may be used alone or in combination of two or more.
In the present invention, compounds having an acid anhydride structure and / or compounds having a carboxylic acid structure represented by the above-mentioned acid anhydrides and carboxylic acid resins are particularly preferable. An acid anhydride can form a cured product having a high hardness, and a compound having a carboxylic acid structure is preferable because it has low volatility. Among them, a compound having an acid anhydride structure and / or a compound having at least one divalent or higher carboxylic acid structure is more preferable, and a mixture of both is particularly preferable.
 酸無水物構造を有する化合物としては、特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましく、特にメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が特に好ましい。 Examples of the compound having an acid anhydride structure include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] Heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride And particularly preferred are methylhexahydrophthalic anhydride and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride.
 カルボン酸構造を有する化合物(以下、ポリカルボン酸と称す)としては、特に2~4官能のポリカルボン酸が好ましく、さらに好ましくは2~4官能の多価アルコールと、酸無水物を付加反応させることで得られるポリカルボン酸が好ましい。
 2~4官能の多価アルコールとしては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ジシクロペンタンジエンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。
 特に好ましいアルコール類としてはシクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ジシクロペンタンジエンジメタノール、ノルボルネンジオールなどの分岐鎖状や環状のアルコール類である。
The compound having a carboxylic acid structure (hereinafter referred to as polycarboxylic acid) is particularly preferably a bi- to tetra-functional polycarboxylic acid, and more preferably an addition reaction of a bi- to tetra-functional polyhydric alcohol with an acid anhydride. The polycarboxylic acid obtained by this is preferable.
The bi- to tetrafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecanedi Diols such as methanol, dicyclopentanediene dimethanol, norbornenediol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol Such as tetraols such as ditrimethylolpropane and the like.
Particularly preferred alcohols include cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, dicyclopentanediene dimethanol, Branched and cyclic alcohols such as norbornenediol.
 ポリカルボン酸を製造する際の酸無水物としては、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが好ましい。 Examples of acid anhydrides for producing polycarboxylic acids include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [ 2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1, 2-Anhydrides are preferred.
 付加反応の条件としては特に指定はないが、例えば酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃に加熱し反応させ、反応終了後、そのまま取り出す手法が挙げられる。 The conditions for the addition reaction are not particularly specified. For example, there can be mentioned a method in which an acid anhydride and a polyhydric alcohol are heated and reacted at 40 to 150 ° C. in the absence of a catalyst and in a solvent, and the reaction is taken out after completion of the reaction. .
 酸無水物、ポリカルボン酸は、それぞれ単独でまたは併用して使用することもできる。併用する場合、酸無水物とポリカルボン酸の比率はその重量比で90/10~20/80であり特に好ましくは80/20~30/70である。上記範囲とすることで耐熱性と作業性をバランスよく両立することができる。酸無水物量が90重量%を超えると揮発性が大きくなり、好ましくない。 The acid anhydride and polycarboxylic acid can be used alone or in combination. When used in combination, the weight ratio of the acid anhydride to the polycarboxylic acid is 90/10 to 20/80, particularly preferably 80/20 to 30/70. By setting it as the above range, both heat resistance and workability can be balanced. If the amount of acid anhydride exceeds 90% by weight, volatility increases, which is not preferable.
 本発明の硬化性樹脂組成物において硬化剤の使用量は、エポキシ樹脂成分のエポキシ基1当量に対して官能基当量で0.5~1.5当量が好ましい。好ましくは、0.7~1.1当量、特に好ましくは0.8~1.0当量である。なお光学用途で使用する場合は1.0当量以下である事が好ましく、特に好ましくは0.7~0.95当量、さらに好ましくは0.7~0.85当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。 In the curable resin composition of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 equivalents in terms of functional group equivalent to 1 equivalent of epoxy group of the epoxy resin component. Preferably, it is 0.7 to 1.1 equivalent, particularly preferably 0.8 to 1.0 equivalent. When used in optical applications, the amount is preferably 1.0 equivalent or less, particularly preferably 0.7 to 0.95 equivalent, more preferably 0.7 to 0.85 equivalent. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
 本発明の硬化性樹脂組成物においては、硬化剤とともに硬化促進剤を併用、又は硬化剤を使用せず硬化促進剤を単独で使用することができる。使用できる硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、および、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等のポリカルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物およびそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記ポリカルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、およびこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂成分100重量部に対し通常0.001~15重量部の範囲で使用される。 In the curable resin composition of the present invention, a curing accelerator can be used in combination with a curing agent, or a curing accelerator can be used alone without using a curing agent. Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole. 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methyl Imidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino 6 (2′-methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3 , 5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole imidazoles, and imidazoles and phthalic acid , Salts with polycarboxylic acids such as isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, maleic acid and succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4. 0) Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids or phosphinic acids, tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide and other ammonium salts, triphenylphosphine, tri ( Toluyl) Phosphines such as phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts, tin octylate, etc. And a microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. The curing accelerator is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin component.
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/エポキシ樹脂成分=0.1~0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超える場合は硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。 The curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes Contains phosphorus obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The content of the phosphorus-containing compound is preferably phosphorus-containing compound / epoxy resin component = 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardancy is insufficient, and if it exceeds 0.6, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、エポキシ樹脂成分と硬化剤の合計100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。 Furthermore, a binder resin can be blended with the curable resin composition of the present invention as required. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 100 parts by weight in total of the epoxy resin component and the curing agent. Is used in an amount of 0.05 to 20 parts by weight as required.
 本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。 An inorganic filler can be added to the curable resin composition of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention. Furthermore, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。 When the curable resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, the particle size of the inorganic filler used is transparent by using a nano-order level filler. It is possible to supplement the mechanical strength and the like without hindering. As a standard for the nano-order level, it is preferable from the viewpoint of transparency to use a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。 When using the curable resin composition of this invention for an optical material, especially optical semiconductor sealing agent, a fluorescent substance can be added as needed. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。 When the curable resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, for the purpose of preventing sedimentation of various phosphors upon curing, silica fine powder (also called Aerosil or Aerosol) is used. A thixotropic agent can be added. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物やフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
The curable resin composition of the present invention is an optical material, particularly an optical semiconductor encapsulant, containing an amine compound as a light stabilizer or a phosphorus compound or a phenol compound as an antioxidant for the purpose of preventing coloring. be able to.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetrame Ru-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] bu Lumalonate, bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester decanedioate, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-Triazine-2 , 4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate And 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa- 3,20-Diazadispiro [5 ・ 1 ・ 11 ・ 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7-oxa- 3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11,2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester, 2,2,6,6-Tetramethyl-4-piperidinol higher fatty acid ester, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) Hindered amine compounds such as benzophenone compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3) -Tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimide-methyl) -5-methylphenyl Benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, Reaction product of methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazol-2-yl)- Benzotriazole compounds such as 6-dodecyl-4-methylphenol, 2,4- Benzoate series such as tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [ (Hexyl) oxy] triazine compounds such as phenol and the like can be mentioned, and hindered amine compounds are particularly preferable.
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
The following commercially available products can be used as the amine compound that is the light stabilizer.
The commercially available amine compound is not particularly limited. For example, TINUVIN765, TINUVIN770DF, TINUVIN144, TINUVIN123, TINUVIN622LD, TINUVIN152, CHIMASSORB944, and ADEKA manufactured by Ciba Specialty Chemicals, LA-52, LA-57, LA- 62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。 The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hos Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3, 3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3 ′ -Biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphospho Knight, bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6- Di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) ) -3-phenyl-phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, tri Phenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc. And the like.
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPPが挙げられる。 Commercially available products can also be used as the phosphorus compound. The commercially available phosphorus compounds are not particularly limited. For example, as Adeka, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, and Adekas tab TPP.
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。 The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentae Srityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl-5 -Methyl-4-hydroxyphenyl) propionate], 2,2′-butylidenebis (4,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 2,2 '-Methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butyl) Phenol), 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di-) tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6) -Tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4'-thiobis (3-methyl-6) -Tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) Bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di- tert-pentylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester and the like.
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer  MDP-S、Sumilizer  BBM-S、Sumilizer  GM、Sumilizer  GS(F)、Sumilizer  GPなどが挙げられる。 Commercially available products can also be used as the phenolic compound. The commercially available phenolic compounds are not particularly limited. AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL CO., LTD. MDP-S, Sumili zer BBM-S, Sumilizer GM, Sumilizer GS (F), Sumilizer GP, and the like.
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、TINUVIN328、TINUVIN234、TINUVIN326、TINUVIN120、TINUVIN477、TINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。 In addition, commercially available additives can be used as resin coloring inhibitors. For example, TINUVIN 328, TINUVIN 234, TINUVIN 326, TINUVIN 120, TINUVIN 477, TINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL, and the like are manufactured by Ciba Specialty Chemicals.
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、該硬化性樹脂組成物に対して、0.005~5.0重量%の範囲である。 It is preferable to contain at least one of the phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but is 0.005 to 5 with respect to the curable resin composition. The range is 0.0% by weight.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、安定性向上の目的で亜鉛塩および/または亜鉛錯体を添加することが好ましい。亜鉛塩としては、亜鉛イオンを中心元素とした塩および/または錯体であって、好ましくは、カウンターイオンおよび/または配位子として燐酸エステル、燐酸を有する構造である。
 特に、燐酸、炭素数1~30の燐酸エステル(モノエステル体、ジエステル体、トリエステル体、もしくはそれらの混合物)の亜鉛塩および/または亜鉛錯体が好ましい。炭素数1~30の燐酸エステルの具体的なアルキルの事例としては、メチル、イソプロピル、ブチル、2-エチルヘキシル、オクチル、イソデシル、イソステアリル、デカニル、セチルなどが挙げられる。
 本発明においては特に炭素数3~15の燐酸エステルが好ましく、そのエステル体は混合でも単品でも構わないが、その主たる成分が燐酸モノエステル体であることが好ましい。特に含有される燐酸エステル中、モノエステル体、ジエステル体、トリエステル体のモル比(ガスクロマトグラフィーの純度で代替。ただし、トリメチルシリル化を行う必要があるため、感度に差が出てしまう。)において、トリメチル化処理をした段階で、モノエステル体の存在量が50面積%以上であることが好ましい。
 このような燐酸エステル化合物はアルコールにリン酸化剤として五酸化リン、オキシ塩化リン、三塩化リンなどを用いてエステル化することで得ることができる。また、これらリン酸は例えば炭酸亜鉛、水酸化亜鉛などと反応させることで得られる(欧州特許出願公開第699708号明細書)。
 このような燐酸エステルの亜鉛塩あるいは亜鉛錯体の詳細としては燐原子と亜鉛原子の比率(P/Zn)が1.2~2.3が好ましく、1.3~2.0がより好ましい。特に好ましくは1.4~1.9である。すなわち、特に好ましい形態では、亜鉛イオン1モルに対し、燐酸エステル(もしくは燐酸)が1.9モル以下となり、単純なイオン構造ではなく、いくつかの分子がイオン結合あるいは配位結合により関わった構造を有しているものが好ましい。
When using the curable resin composition of this invention for an optical material, especially an optical semiconductor sealing agent, it is preferable to add a zinc salt and / or a zinc complex for the purpose of stability improvement. The zinc salt is a salt and / or complex having zinc ion as a central element, and preferably has a structure having a phosphate ester or phosphoric acid as a counter ion and / or a ligand.
In particular, zinc salts and / or zinc complexes of phosphoric acid and phosphoric acid esters having 1 to 30 carbon atoms (monoester, diester, triester, or mixtures thereof) are preferred. Specific examples of alkyl of the phosphate ester having 1 to 30 carbon atoms include methyl, isopropyl, butyl, 2-ethylhexyl, octyl, isodecyl, isostearyl, decanyl, cetyl and the like.
In the present invention, a phosphoric acid ester having 3 to 15 carbon atoms is particularly preferred, and the ester may be a mixture or a single product, but the main component is preferably a phosphoric acid monoester. In particular, the molar ratio of monoester, diester and triester in the phosphoric acid ester contained (substitute with the purity of gas chromatography. However, since it is necessary to carry out trimethylsilylation, there is a difference in sensitivity.) In the above, it is preferable that the abundance of the monoester is 50 area% or more at the stage of trimethylation treatment.
Such a phosphoric ester compound can be obtained by esterifying alcohol with phosphorus pentoxide, phosphorus oxychloride, phosphorus trichloride, or the like as a phosphorylating agent. These phosphoric acids can be obtained, for example, by reacting with zinc carbonate, zinc hydroxide, etc. (European Patent Application Publication No. 699708).
As the details of the zinc salt or zinc complex of such a phosphoric ester, the ratio of phosphorus atom to zinc atom (P / Zn) is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. Particularly preferred is 1.4 to 1.9. That is, in a particularly preferable form, phosphoric acid ester (or phosphoric acid) is 1.9 mol or less with respect to 1 mol of zinc ion, and not a simple ionic structure but a structure in which several molecules are involved by ionic bonds or coordinate bonds. The thing which has is preferable.
 このような化合物として、市販品としてはカルボン酸亜鉛として、Zn-St、Zn-St 602、Zn-St NZ、ZS-3、ZS-6、ZS-8、ZS-8、ZS-7、ZS-10、ZS-5、ZS-14、ZS-16(日東化成工業製)、XK-614(キングインダストリー製)、18%オクトープZn、12%オクトープZn、8%オクトープZn(ホープ製薬製)、燐酸エステルおよび/またはリン酸亜鉛として、LBT-2000B(SC有機化学製)、XC-9206(キングインダストリー製)が挙げられる。 As such compounds, commercially available products such as zinc carboxylate are Zn-St, Zn-St 602, Zn-St NZ, ZS-3, ZS-6, ZS-8, ZS-8, ZS-7, ZS. -10, ZS-5, ZS-14, ZS-16 (manufactured by Nitto Kasei Kogyo), XK-614 (manufactured by King Industry), 18% octope Zn, 12% octope Zn, 8% octope Zn (manufactured by Hope Pharmaceutical) Examples of the phosphate ester and / or zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
 ここで、エポキシ樹脂成分と亜鉛塩および/または亜鉛錯体の比率は、エポキシ樹脂成分に対し亜鉛塩および/または亜鉛錯体は重量比で0.01~8重量%、より好ましくは0.05~5重量%、0.1~4重量%である。8重量%を超える場合、硬化性樹脂組成物とした際のポットライフが問題となり、0.01重量%を下回る場合、効果が顕著ではない。 Here, the ratio of the epoxy resin component to the zinc salt and / or zinc complex is 0.01 to 8% by weight, more preferably 0.05 to 5% by weight of the zinc salt and / or zinc complex with respect to the epoxy resin component. % By weight, 0.1-4% by weight. When the amount exceeds 8% by weight, the pot life of the curable resin composition becomes a problem. When the amount is less than 0.01% by weight, the effect is not remarkable.
 本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、本発明の硬化性樹脂組成物は、エポキシ樹脂成分と硬化剤および/又は硬化促進剤と、必要に応じて添加されるリン含有化合物、バインダー樹脂、無機充填材および配合剤とを押出機、ニーダー、ロールあるいはプラネタリーミキサー等を用いて均一になるまで充分に混合して得られる。また、硬化手段としては、その硬化性樹脂組成物を液状である場合はポッティングやキャスティング、基材に含浸、金型に硬化性樹脂組成物を流し込み注型し、加熱により硬化、また固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。 The curable resin composition of the present invention can be obtained by uniformly mixing each component. The curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the curable resin composition of the present invention includes an epoxy resin component, a curing agent and / or a curing accelerator, and a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent that are added as necessary. It can be obtained by mixing well using a kneader, roll or planetary mixer until uniform. Moreover, as a curing means, when the curable resin composition is in a liquid state, potting or casting, impregnating the base material, pouring the curable resin composition into a mold, casting, and curing by heating, or solid In addition, there is a technique in which the material is molded by using a casting after melting or a transfer molding machine and further cured by heating. The curing temperature and time are 80 to 200 ° C. and 2 to 10 hours. As a curing method, it can be hardened at a high temperature at a stretch, but it is preferable to raise the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C. As the curing stage, the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
 また本発明の硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM(Resin Transfer Molding)方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。 In addition, the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber, A prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do. In this case, the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. Moreover, the epoxy resin hardened | cured material containing a carbon fiber can also be obtained with a RTM (Resin * Transfer * Molding) system with a liquid composition.
 また本発明の硬化性樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物は、まず本発明の硬化性樹脂組成物を前記のような硬化性樹脂組成物ワニスとし、これを剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行う方法が挙げられ、これによりフィルム型樹脂組成物をシート状の接着剤として得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。 Also, the curable resin composition of the present invention can be used as a film-type sealing composition. Such a film-type resin composition, first, the curable resin composition of the present invention as a curable resin composition varnish as described above, applied to a release film, after removing the solvent under heating, The method of performing B-stage is mentioned, By this, a film type resin composition is obtained as a sheet-like adhesive agent. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
 本発明のエポキシ樹脂組成物は、光半導体の封止材又はダイボンド材としても好適に用いることができる。
 本発明の硬化性樹脂組成物を、高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、本発明のエポキシ樹脂組成物、硬化剤(硬化剤組成物)としての酸無水物および/またはポリカルボン酸、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製する。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合すればよい。得られる硬化性樹脂組成物は、封止材、またはダイボンド材と封止材の両方に使用することができる。
The epoxy resin composition of the present invention can also be suitably used as an optical semiconductor sealing material or die bond material.
When the curable resin composition of the present invention is used as a sealing material for an optical semiconductor such as a high-intensity white LED, or a die bond material, the epoxy resin composition of the present invention is used as a curing agent (curing agent composition). A curable resin composition is prepared by thoroughly mixing additives such as an acid anhydride and / or polycarboxylic acid, a curing accelerator, a coupling material, an antioxidant, and a light stabilizer. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like may be used at room temperature or with heating. The obtained curable resin composition can be used for a sealing material, or both a die-bonding material and a sealing material.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。かかる半導体チップは、その周囲をエポキシ樹脂等の封止材で封止されている。封止材は半導体チップを熱や湿気から守り、かつレンズ機能の役割を果たすために用いられるものである。本発明の硬化性樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明の硬化性樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The periphery of such a semiconductor chip is sealed with a sealing material such as an epoxy resin. The sealing material is used to protect the semiconductor chip from heat and moisture and to play a role of a lens function. The curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
 本発明の硬化性樹脂組成物を用いて、半導体チップを基板に接着する方法としては、本発明の硬化性樹脂組成物をディスペンサー、ポッティングあるいはスクリーン印刷により基板上に塗布した後、前記硬化性樹脂組成物上に半導体チップをのせて加熱硬化を行う方法が挙げられる。かかる方法により、半導体チップを基板に接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。 As a method for adhering a semiconductor chip to a substrate using the curable resin composition of the present invention, the curable resin composition of the present invention is applied on the substrate by dispenser, potting or screen printing, and then the curable resin is used. There is a method in which a semiconductor chip is placed on the composition and heat-cured. By this method, the semiconductor chip can be bonded to the substrate. For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。 The heating condition is preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 封止材の成形方式としては、上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。 
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
As a molding method of the sealing material, as described above, an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and then molded, and the sealing material on the mold A compression molding method is used in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from the mold.
Examples of the injection method include dispenser, transfer molding, injection molding and the like.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 更に、本発明の硬化性樹脂組成物の用途は上記に限定されることはなく、エポキシ樹脂等の硬化性樹脂が使用される一般の用途に適用可能である。バ具体的には、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。 Furthermore, the application of the curable resin composition of the present invention is not limited to the above, and can be applied to general applications in which a curable resin such as an epoxy resin is used. Specifically, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealing materials, and cyanates for substrates Examples of resin compositions and resist curing agents include additives to other resins such as acrylic ester resins.
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。 Examples of adhesives include civil engineering, architectural, automotive, general office and medical adhesives, as well as electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどに用いられるポッティング、ディッピングおよびトランスファーモールド封止、ICやLSI類のCOB、COF、TABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、QFP、BGAおよびCSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。 As sealing agents, potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
 本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。 The cured product obtained in the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate Front glass protective films, front glass substitute material, an adhesive. In the field of optical recording, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate materials for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。 In the optical equipment field, they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber material, ferrule, sealing material, adhesive, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. As the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. The next generation of optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
 次に本発明を実施例により更に具体的に説明するが、以下において「部」は特に断わりのない限り「重量部」である。尚、本発明はこれら実施例に限定されるものではない。また実施例において物性値は下記の方法により測定した。
・エポキシ当量:JIS K-7236に準じて測定
・粘度:25℃においてE型粘度計を使用して測定
・ガスクロマトグラフィー(以下、GC):
  分析条件
   分離カラム;HP5-MS(0.25mm I.D.×15m、膜厚0.25μm)
   カラムオーブン温度;初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で25分間保持した。
   キャリヤーガス;ヘリウム
・ゲルパーミエーションクロマトグラフィー(以下、GPC):
   カラム;Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)
   連結溶離液;テトラヒドロフラン、流速は1ml/min.
   カラム温度;40℃
   検出;UV(254nm)
   検量線;Shodex製標準ポリスチレン
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, “parts” is “parts by weight” unless otherwise specified. The present invention is not limited to these examples. In the examples, physical property values were measured by the following methods.
Epoxy equivalent: Measured according to JIS K-7236 Viscosity: Measured using an E-type viscometer at 25 ° C. Gas chromatography (hereinafter GC):
Analysis conditions Separation column: HP5-MS (0.25 mm ID × 15 m, film thickness 0.25 μm)
Column oven temperature: set to an initial temperature of 100 ° C., heated at a rate of 15 ° C. per minute and held at 300 ° C. for 25 minutes.
Carrier gas; helium gel permeation chromatography (hereinafter GPC):
Column: Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802)
Linked eluent: tetrahydrofuran, flow rate 1 ml / min.
Column temperature: 40 ° C
Detection; UV (254 nm)
Calibration curve: Standard polystyrene from Shodex
合成例1
 撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、1,4-シクロヘキサンジカルボン酸ジメチル(岩谷瓦斯製 DMCD-pt)140部、3-シクロヘキセン-1-メタノール314部、テトラブトキシチタン0.07部を加え、120℃で1時間、150℃1時間、170℃で1時間、190℃で12時間、反応により生成するメタノールを抜きながら反応を行った。GCで反応した後、50℃まで冷却した。
 冷却終了後、347部のトルエンを加え均一にした後、反応溶液を10重量%水酸化ナトリウム水溶液80部で3回洗浄し、さらに水100部/回で廃水が中性になるまで水洗を繰り返し、ロータリーエバポレータで加熱減圧下、トルエンと未反応の3-シクロヘキセン-1-メタノールを留去することにより下記式(5)で表される常温で液状のジオレフィン化合物が240部得られた。
式(5)
Synthesis example 1
A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, and 140 parts of dimethyl 1,4-cyclohexanedicarboxylate (DMCD-pt manufactured by Iwatani Gas Co., Ltd.), 3-cyclohexene-1- 314 parts of methanol and 0.07 part of tetrabutoxytitanium were added, and the reaction was carried out while removing methanol produced by the reaction at 120 ° C. for 1 hour, 150 ° C. for 1 hour, 170 ° C. for 1 hour, and 190 ° C. for 12 hours. After reacting with GC, it was cooled to 50 ° C.
After cooling, 347 parts of toluene was added and homogenized, and then the reaction solution was washed 3 times with 80 parts of a 10 wt% aqueous sodium hydroxide solution, and further washed with water until the wastewater became neutral at 100 parts / time of water. Then, 240 parts of liquid diolefin compound represented by the following formula (5) was obtained by distilling off toluene and unreacted 3-cyclohexene-1-methanol under reduced pressure by heating with a rotary evaporator.
Formula (5)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
合成例2
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12-タングストリン酸0.95部、燐酸水素2ナトリウム0.78部、ジ硬化牛脂アルキルジメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50重量%ヘキサン溶液、アカード2HTアセテート)、トルエン180部、合成例1で得られたジオレフィン化合物を118部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を1時間で加え、そのまま50℃で13時間攪拌した。ガスクロマトグラフィーにて反応の進行を確認したところ、原料ピークは消失していた。
 ついで1重量%水酸化ナトリウム水溶液で中和した後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここに活性炭(味の素ファインテクノ製 CP1)20部、ベントナイト(ホージュン製 ベンゲルSH)20部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、トルエンを留去することで、常温で液状のエポキシ樹脂(EP-1)119部を得た。得られたエポキシ樹脂のエポキシ当量は217g/eq.であった。
Synthesis example 2
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 15 parts of water, 0.95 parts of 12-tungstophosphoric acid, 0.78 parts of disodium hydrogen phosphate, di-cured tallow alkyldimethylammonium acetate 2.7 parts (manufactured by Lion Akzo, 50 wt% hexane solution, Acard 2HT acetate), 180 parts of toluene, 118 parts of the diolefin compound obtained in Synthesis Example 1 were added, and the mixture was stirred again to obtain a liquid in an emulsion state. . The temperature of this solution was raised to 50 ° C., and 70 parts of 35 wt% hydrogen peroxide water was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 13 hours. When the progress of the reaction was confirmed by gas chromatography, the raw material peak disappeared.
Next, after neutralizing with a 1% by weight aqueous sodium hydroxide solution, 25 parts of a 20% by weight aqueous sodium thiosulfate solution was added, stirred for 30 minutes, and allowed to stand. The organic layer separated into two layers was taken out, 20 parts of activated carbon (CP1 manufactured by Ajinomoto Fine Techno) and 20 parts of bentonite (Bengel SH manufactured by Hojun) were added thereto, and the mixture was stirred for 1 hour at room temperature and then filtered. The obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 119 parts of a liquid epoxy resin (EP-1) at room temperature. The epoxy equivalent of the obtained epoxy resin was 217 g / eq. Met.
合成例3
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12-タングストリン酸1.9部、燐酸水素2ナトリウム1.6部、ジ硬化牛脂アルキルジメチルアンモニウムアセテート5.4部(ライオンアクゾ製 50重量%ヘキサン溶液、アカード2HTアセテート)、トルエン160部、3-シクロヘキセンカルボン酸の3-シクロヘキセンメチルエステルを110部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を1時間で加え、そのまま50℃で20時間攪拌した。ガスクロマトグラフィーにて反応の進行を確認したところ、原料ピークは消失していた。
 ついで1重量%水酸化ナトリウム水溶液で中和した後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここに活性炭(味の素ファインテクノ製 CP1)40部、ベントナイト(ホージュン製 ベンゲルSH)40部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、トルエンを留去することで、常温で液状のエポキシ樹脂(EP-2)110部を得た。得られたエポキシ樹脂のエポキシ当量は130g/eq.であった。
Synthesis example 3
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 15 parts of water, 1.9 parts of 12-tungstophosphoric acid, 1.6 parts of disodium hydrogen phosphate, di-cured tallow alkyldimethylammonium acetate Add 5.4 parts (50% by weight lion solution manufactured by Lion Akzo, Acquard 2HT acetate), 160 parts of toluene, 110 parts of 3-cyclohexene carboxylic acid 3-cyclohexene methyl ester, did. The temperature of the solution was raised to 50 ° C., and 70 parts of 35 wt% hydrogen peroxide water was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 20 hours. When the progress of the reaction was confirmed by gas chromatography, the raw material peak disappeared.
Next, after neutralizing with a 1% by weight aqueous sodium hydroxide solution, 25 parts of a 20% by weight aqueous sodium thiosulfate solution was added, stirred for 30 minutes, and allowed to stand. The organic layer separated into two layers was taken out, and 40 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 40 parts of bentonite (Bengel SH manufactured by Hojun) were added thereto, stirred at room temperature for 1 hour, and then filtered. The obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 110 parts of a liquid epoxy resin (EP-2) at room temperature. The epoxy equivalent of the obtained epoxy resin is 130 g / eq. Met.
合成例4
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらジシクロペンタジエンジメタノール10部、ヘキサヒドロフタル酸無水物とメチルヘキサヒドロフタル酸無水物との混合物(新日本理化(株)製、リカシッドMH-700 以下、酸無水物H-1と称す)50部を加え、40℃で1時間60℃で1時間加熱撹拌を行うことで(GPCによりジシクロペンタジエンジメタノールの消失を確認した。)、ポリカルボン酸と酸無水物との混合物である硬化剤組成物が60部得られた。
 得られた無色の液状樹脂であり、GPCによる純度はポリカルボン酸の構造を51面積%、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の総量が49面積%であった。また、官能基当量は201g/eq.であった。
 さらに、得られた硬化剤組成物に対し、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物(三菱瓦斯化学製 H-TMAn 以下 H-2と称す。)を12部添加し、均一な硬化剤組成物(B-1)とした。得られた硬化剤組成物(B-1)の重量比(理論値)は、ポリカルボン酸が40.3%、酸無水物H-1が48.9%、酸無水物H-2が10.7%であった。
Synthesis example 4
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 10 parts of dicyclopentadiene dimethanol, a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (Shin Nippon Rika ( 50 parts of Licacid MH-700 (hereinafter referred to as “anhydride H-1”) was added, and the mixture was stirred at 40 ° C. for 1 hour and 60 ° C. for 1 hour (disappearance of dicyclopentadienedimethanol by GPC) 60 parts of a curing agent composition, which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
The obtained colorless liquid resin had a GPC purity of 51 area% for the structure of polycarboxylic acid and a total amount of methyl hexahydrophthalic anhydride and hexahydrophthalic anhydride of 49 area%. The functional group equivalent was 201 g / eq. Met.
Further, 12 parts of 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride (H-TMAn, hereinafter referred to as H-2, manufactured by Mitsubishi Gas Chemical) was added to the obtained curing agent composition, A uniform curing agent composition (B-1) was obtained. The weight ratio (theoretical value) of the obtained curing agent composition (B-1) was 40.3% for polycarboxylic acid, 48.9% for acid anhydride H-1, and 10 for acid anhydride H-2. 0.7%.
合成例5
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらジシクロペンタジエンジメタノール10部、ヘキサヒドロフタル酸無水物とメチルヘキサヒドロフタル酸無水物との混合物(新日本理化(株)製、リカシッドMH-700 以下、酸無水物H-1と称す)50部を加え、40℃で1時間60℃で1時間加熱撹拌を行うことで(GPCによりジシクロペンタジエンジメタノールの消失を確認した。)、ポリカルボン酸と酸無水物との混合物である硬化剤組成物が60部得られた。
 得られた無色の液状樹脂であり、GPCによる純度はポリカルボン酸の構造を51面積%、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の総量が49面積%であった。また、官能基当量は201g/eq.であった。
 さらに、得られた硬化剤組成物に対し、酸無水物(H-2)を6部添加し、均一な硬化剤組成物(B-2)とした。得られた硬化剤組成物(B-2)の重量比(理論値)は、ポリカルボン酸が42.6%、酸無水物H-1が51.7%、酸無水物H-2が5.6%であった。
Synthesis example 5
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 10 parts of dicyclopentadiene dimethanol, a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (Shin Nippon Rika ( 50 parts of Licacid MH-700 (hereinafter referred to as “anhydride H-1”) was added, and the mixture was stirred at 40 ° C. for 1 hour and 60 ° C. for 1 hour (disappearance of dicyclopentadienedimethanol by GPC) 60 parts of a curing agent composition, which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
The obtained colorless liquid resin had a GPC purity of 51 area% for the structure of polycarboxylic acid and a total amount of methyl hexahydrophthalic anhydride and hexahydrophthalic anhydride of 49 area%. The functional group equivalent was 201 g / eq. Met.
Furthermore, 6 parts of acid anhydride (H-2) was added to the obtained curing agent composition to obtain a uniform curing agent composition (B-2). The weight ratio (theoretical value) of the obtained curing agent composition (B-2) was 42.6% for polycarboxylic acid, 51.7% for acid anhydride H-1, and 5 for acid anhydride H-2. It was 6%.
実施例1
 合成例2で得られたエポキシ樹脂(EP-1)16部、合成例3で得られた(EP-2)24部を均一に混合し、本発明のエポキシ樹脂組成物(F-1)を得た。
Example 1
16 parts of the epoxy resin (EP-1) obtained in Synthesis Example 2 and 24 parts of (EP-2) obtained in Synthesis Example 3 were mixed uniformly to obtain the epoxy resin composition (F-1) of the present invention. Obtained.
実施例2、3、比較例1~4
 得られたエポキシ樹脂組成物(F-1)、および、エポキシ樹脂(EP-1)、(EP-2)に対し、合成例4で得られた硬化剤組成物(B-1)、硬化促進剤として4級ホスホニウム塩(日本化学工業製 ヒシコーリンPX4MP 以下、触媒C-1と称す。)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行なった。得られた硬化性樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、厚さ1mmの透過率用試験片を得た。得られた試験片につき、150℃で96時間熱処理し、熱履歴により着色の度合いを評価した(400nmにおける透過率の保持率を測定し比較した)。
Examples 2 and 3 and Comparative Examples 1 to 4
With respect to the obtained epoxy resin composition (F-1) and the epoxy resins (EP-1) and (EP-2), the curing agent composition (B-1) obtained in Synthesis Example 4 and curing acceleration A quaternary phosphonium salt (Hishicolin PX4MP manufactured by Nippon Kagaku Kogyo Co., Ltd., hereinafter referred to as catalyst C-1) was used as an agent, and blended at a blending ratio (parts by weight) shown in Table 1 below, followed by defoaming for 20 minutes. The obtained curable resin composition was vacuum-defoamed for 20 minutes, and then gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm × 20 mm × height 1 mm. The cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm. About the obtained test piece, it heat-processed at 150 degreeC for 96 hours, and evaluated the degree of coloring by the heat history (The transmittance | permeability retention rate in 400 nm was measured and compared).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 前記結果より、本発明のエポキシ樹脂組成物(F-1)を使用した硬化性樹脂組成物はエポキシ樹脂(EP-1)、(EP-2)を混合しているにも関わらず、エポキシ樹脂(EP-2)と同等あるいはそれ以上のレベルの透過率の保持率を示す。 From the above results, the curable resin composition using the epoxy resin composition (F-1) of the present invention was mixed with the epoxy resins (EP-1) and (EP-2). The transmittance retention of the level equivalent to or higher than (EP-2) is shown.
実施例4、比較例5、6
 エポキシ樹脂組成物(F-1)、および、エポキシ樹脂(EP-2)、市販の脂環式エポキシ樹脂(ダイセル化学工業製 セロキサイド2021P 以下EP-3と称す)に対し、合成例4で得られた硬化剤組成物(B-1)、硬化触媒として4級ホスホニウム塩(C-1)を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行なった(表2に組成を記載)。これらをシリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。LEDを実装後、下記条件でLEDを点灯させて照度を測定し、結果については、表2に示した。
 点灯詳細条件
  発光波長:465nm
  駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
  駆動環境:85℃、85%RH
  駆動時間:200時間
 評価  :200時間点灯後の照度保持率
Example 4 and Comparative Examples 5 and 6
Obtained in Synthesis Example 4 for the epoxy resin composition (F-1), the epoxy resin (EP-2), and a commercially available alicyclic epoxy resin (Celoxide 2021P, hereinafter referred to as EP-3 manufactured by Daicel Chemical Industries). The curing agent composition (B-1), a quaternary phosphonium salt (C-1) as a curing catalyst, blended at a blending ratio (parts by weight) shown in Table 2 below, and defoamed for 20 minutes ( Table 2 describes the composition). These were filled into a syringe and cast into a 5 mm outer diameter surface mount LED package (inner diameter 4.4 mm, outer wall height 1.25 mm) mounted with a chip having a central emission wave of 465 nm using a precision discharge device. The cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours, and an LED package was prepared. After mounting the LED, the LED was turned on under the following conditions to measure the illuminance, and the results are shown in Table 2.
Detailed lighting conditions Light emission wavelength: 465nm
Drive system: constant current system, 60 mA (light emitting element regulation current is 30 mA)
Driving environment: 85 ° C, 85% RH
Driving time: 200 hours Evaluation: Illuminance retention after lighting for 200 hours
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 前記結果より、本発明のエポキシ樹脂組成物(F-1)を使用した硬化性樹脂組成物はエポキシ樹脂(EP-2)、(EP-3)に比べてLEDとして優れた硬化物を得ることができる、ということがわかる。 From the above results, the curable resin composition using the epoxy resin composition (F-1) of the present invention can provide a cured product excellent as an LED compared to the epoxy resins (EP-2) and (EP-3). You can see that you can.
合成例6
 撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、1,4-シクロヘキサンジカルボン酸ジメチル(岩谷瓦斯製 DMCD-pt)140部、3-シクロヘキセン-1-メタノール314部、テトラブトキシチタン0.07部を加え、120℃で1時間、150℃で1時間、170℃で20時間、反応により生成するメタノールを抜きながら反応を行った。GCで反応した後、50℃まで冷却した。
 冷却終了後、347部のトルエンを加え均一にした後、反応溶液を10重量%水酸化ナトリウム水溶液80部で3回洗浄し、さらに水100部/回で廃水が中性になるまで水洗を繰り返した後、薬品賦活活性炭(味の素ファインテクノ製 ZN1)5gを添加し、室温で1時間撹拌後、ろ過により活性炭を除去した。得られたろ液をロータリーエバポレータで加熱減圧下、トルエンと未反応の3-シクロヘキセン-1-メタノールを留去することにより前記式(5)で表されるジオレフィン化合物が235部得られた。
Synthesis Example 6
A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, and 140 parts of dimethyl 1,4-cyclohexanedicarboxylate (DMCD-pt manufactured by Iwatani Gas Co., Ltd.), 3-cyclohexene-1- 314 parts of methanol and 0.07 part of tetrabutoxytitanium were added, and the reaction was carried out while removing methanol produced by the reaction at 120 ° C. for 1 hour, 150 ° C. for 1 hour and 170 ° C. for 20 hours. After reacting with GC, it was cooled to 50 ° C.
After cooling, 347 parts of toluene was added and homogenized, and then the reaction solution was washed 3 times with 80 parts of a 10 wt% aqueous sodium hydroxide solution, and further washed with water until the wastewater became neutral at 100 parts / time of water. After that, 5 g of chemical activated carbon (Ajinomoto Fine-Techno ZN1) was added, stirred at room temperature for 1 hour, and then the activated carbon was removed by filtration. The obtained filtrate was heated with a rotary evaporator under reduced pressure, and toluene and unreacted 3-cyclohexene-1-methanol were distilled off to obtain 235 parts of a diolefin compound represented by the above formula (5).
合成例7
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12-タングストリン酸0.95部、燐酸水素2ナトリウム0.78部、トリオクチルメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50重量%キシレン溶液、TOMAC-50)、トルエン170部、合成例6で得られたジオレフィン化合物を118部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を1時間で加え、そのまま50℃で14時間攪拌した。
 ついで30重量%水酸化ナトリウム水溶液でpH10にした後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここに活性炭(味の素ファインテクノ製 CP1)8部、モンモリロナイト(クニミネ工業製 クニピアF)10部を加え、室温で3時間攪拌後、ろ過した。またウエットケーキはトルエン50部で洗いこみ、先のろ液と混合した。得られたろ液より、トルエンを留去することで、常温で液状のエポキシ樹脂(EP-4)120部を得た。得られたエポキシ樹脂のエポキシ当量は212g/eq.であった。
Synthesis example 7
A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 15 parts of water, 0.95 part of 12-tungstophosphoric acid, 0.78 part of disodium hydrogen phosphate, and trioctylmethylammonium acetate with nitrogen purging. 7 parts (50% by weight xylene solution manufactured by Lion Akzo, TOMAC-50), 170 parts of toluene, 118 parts of the diolefin compound obtained in Synthesis Example 6 were added, and the mixture was stirred again to obtain a liquid in an emulsion state. The temperature of this solution was raised to 50 ° C., and 70 parts of 35 wt% hydrogen peroxide water was added over 1 hour while stirring vigorously, and the mixture was stirred at 50 ° C. for 14 hours.
Then, the pH was adjusted to 10 with a 30 wt% aqueous sodium hydroxide solution, 25 parts of a 20 wt% aqueous sodium thiosulfate solution was added, and the mixture was stirred for 30 minutes and allowed to stand. The organic layer separated into two layers was taken out, 8 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 10 parts of montmorillonite (Kunimine Industries Kunipia F) were added thereto, and the mixture was stirred at room temperature for 3 hours and filtered. The wet cake was washed with 50 parts of toluene and mixed with the previous filtrate. Toluene was distilled off from the obtained filtrate to obtain 120 parts of an epoxy resin (EP-4) that was liquid at room temperature. The epoxy equivalent of the obtained epoxy resin is 212 g / eq. Met.
合成例8
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12-タングストリン酸0.9部、リンタングステン酸ナトリウム1.5部、燐酸水素2ナトリウム1.6部、トリオクチルメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50重量%キシレン溶液、TOMAC-50)、トルエン160部、3-シクロヘキセンカルボン酸の3-シクロヘキセンメチルエステルを110部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を46℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を30分で加え、そのまま46℃で16時間攪拌した。ガスクロマトグラフィーにて反応の進行を確認したところ、原料ピークは消失していた。
 ついで30重量%水酸化ナトリウム水溶液でpH10にした後、10重量%チオ硫酸ナトリウム水溶液50部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここに活性炭(味の素ファインテクノ製 CP1)5部、モンモリロナイト(クニミネ工業製 クニピアF)10部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、トルエンを留去することで、常温で液状のエポキシ樹脂(EP-5)109部を得た。得られたエポキシ樹脂のエポキシ当量は129g/eq.であった。
Synthesis example 8
A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 15 parts of water, 0.9 parts of 12-tungstophosphoric acid, 1.5 parts of sodium phosphotungstate, 1.6 parts of disodium hydrogen phosphate while purging with nitrogen. Parts, 2.7 parts of trioctylmethylammonium acetate (50% by weight xylene solution from Lion Akzo, TOMAC-50), 160 parts of toluene, 110 parts of 3-cyclohexene methyl ester of 3-cyclohexenecarboxylic acid, and stirring again Thus, a liquid in an emulsion state was obtained. The temperature of this solution was raised to 46 ° C., and 70 parts of 35 wt% aqueous hydrogen peroxide was added over 30 minutes while stirring vigorously, and the mixture was stirred at 46 ° C. for 16 hours. When the progress of the reaction was confirmed by gas chromatography, the raw material peak disappeared.
Subsequently, the pH was adjusted to 10 with a 30 wt% aqueous sodium hydroxide solution, 50 parts of a 10 wt% aqueous sodium thiosulfate solution was added, and the mixture was stirred for 30 minutes and allowed to stand. The organic layer separated into two layers was taken out, and 5 parts of activated carbon (CP1 manufactured by Ajinomoto Fine-Techno) and 10 parts of montmorillonite (Kunimine Industries Kunipia F) were added thereto, followed by stirring at room temperature for 1 hour and filtration. The obtained filtrate was washed with 100 parts of water three times, and toluene was distilled off from the obtained organic layer to obtain 109 parts of a liquid epoxy resin (EP-5) at room temperature. The epoxy equivalent of the obtained epoxy resin is 129 g / eq. Met.
合成例9
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらジシクロペンタジエンジメタノール24部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH酸無水物H-3と称す)146部、酸無水物(H-2)30部を加え、40℃で1時間、70℃で1時間加熱撹拌を行うことでポリカルボン酸と酸無水物との混合物である硬化剤組成物(B-3)が100部得られた。
 得られた無色の液状樹脂であり、GPCによる純度はポリカルボン酸の構造を面積55%、酸無水物(H-3)35面積%、酸無水物(H-2)10面積%、であった。また、官能基当量は178g/eq.であった。
Synthesis Example 9
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen, and 24 parts of dicyclopentadiene dimethanol, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH acid anhydride H) -4 parts) and acid anhydride (H-2) 30 parts, and the mixture is heated and stirred at 40 ° C. for 1 hour and 70 ° C. for 1 hour to obtain a mixture of polycarboxylic acid and acid anhydride. 100 parts of a curing agent composition (B-3) was obtained.
The obtained colorless liquid resin had a GPC purity of 55% area for the structure of polycarboxylic acid, 35 area% for acid anhydride (H-3), and 10 area% for acid anhydride (H-2). It was. The functional group equivalent was 178 g / eq. Met.
合成例10
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら2,4-ジエチルペンタンジオール(協和発酵ケミカル製 キョオウワジオール PD-9)24部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH酸無水物H-3と称す)146部、酸無水物(H-2)30部を加え、40℃で1時間、70℃で1時間加熱撹拌を行うことでポリカルボン酸と酸無水物との混合物である硬化剤組成物(B-4)が200部得られた。
 得られた無色の液状樹脂であり、GPCによる純度はポリカルボン酸の構造を面積50%、酸無水物(H-3)40面積%、酸無水物(H-2)10面積%、であった。また、官能基当量は178g/eq.であった。
Synthesis Example 10
A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen while 24 parts of 2,4-diethylpentanediol (Kyowa Hakko Chemical Kyowadiol PD-9), methylhexahydrophthalic anhydride is added. 146 parts (made by Shin Nippon Rika Co., Ltd., called Ricacid MH Acid Anhydride H-3) and 30 parts of acid anhydride (H-2) were added, and the mixture was heated and stirred at 40 ° C. for 1 hour and 70 ° C. for 1 hour. As a result, 200 parts of a curing agent composition (B-4), which was a mixture of polycarboxylic acid and acid anhydride, was obtained.
The obtained colorless liquid resin had a GPC purity of 50% area for the structure of polycarboxylic acid, 40 area% for acid anhydride (H-3), and 10 area% for acid anhydride (H-2). It was. The functional group equivalent was 178 g / eq. Met.
実施例5~8、比較例7
 合成例7で得られたエポキシ樹脂(EP-4)、合成例8で得られた(EP-5)を以下の配合比でそれぞれ均一に混合し、本発明のエポキシ樹脂組成物(F-2)~(F-5)を得た。これら得られたエポキシ樹脂組成物に対し、合成例9で得られた硬化剤組成物(B-3)0.8モル当量、硬化触媒としてアルキル燐酸エステル亜鉛触媒(キングインダストリー製 XC-9206(以下C-2と称す)対樹脂2000ppmを使用し、下記表3に示す配合比(重量部)で配合し、20分間脱泡を行なった。得られた硬化性樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、厚さ1mmの透過率用試験片を得た。400nmにおけるそれぞれの硬化物の透過率を比較した。また、得られた試験片につき、150℃で96時間熱処理し、熱履歴により着色の度合いを評価した(400nmにおける透過率の保持率を測定し比較した)。
Examples 5 to 8 and Comparative Example 7
The epoxy resin (EP-4) obtained in Synthesis Example 7 and (EP-5) obtained in Synthesis Example 8 were uniformly mixed at the following blending ratios, respectively, to obtain the epoxy resin composition (F-2) of the present invention. ) To (F-5) were obtained. 0.8 mole equivalent of the curing agent composition (B-3) obtained in Synthesis Example 9 with respect to the obtained epoxy resin composition, and an alkyl phosphate zinc catalyst as a curing catalyst (XC-9206 manufactured by King Industry (hereinafter referred to as XC-9206) C-2) using 2000 ppm of resin and blended at a blending ratio (parts by weight) shown in Table 3 below, and defoamed for 20 minutes.The obtained curable resin composition was subjected to vacuum defoaming for 20 minutes. After the implementation, the mold was gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm × 20 mm × 1 mm in height. Curing was performed for 1 hour to obtain a test piece for transmittance of 1 mm thickness, and the transmittance of each cured product at 400 nm was compared. Arrival by history And evaluate the degree of (and the retention of transmittance was measured compared in 400 nm).
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
実施例9~15
 合成例7で得られたエポキシ樹脂(EP-4)、合成例8で得られた(EP-5)を以下の配合比でそれぞれ均一に混合し、本発明のエポキシ樹脂組成物(F-6)~(F-8)を得た。これら得られたエポキシ樹脂組成物に対し、合成例9、10で得られた硬化剤組成物(B-3)(B-4)硬化触媒として4級ホスホニウム塩(C-1)、アルキル燐酸エステル亜鉛(C-2)、オクチル燐酸エステル(ホープ製薬 オクトープZn、以下C-3と称す)、添加剤としてリン化合物(三光株式会社 HCA 以下、C-4と称す)、リン化合物(アデカ製 アデカ260、以下、C-5と称す)、ヒンダートアミン(アデカ性 LA-62 以下、C-6と称す)を使用し、下記表4に示す配合比(重量部)で配合し、20分間脱泡を行なった(表4に組成を記載)。これらをシリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、110℃で2時間さらに150℃で3時間の硬化処理をしてLEDパッケージを作成した。LEDを実装後、下記条件でLEDを点灯させて照度を測定し、結果については、表4に示した。
 点灯詳細条件
  発光波長:465nm
  駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
  駆動環境:85℃、85%RH
  駆動時間:400時間
 評価  :200時間、400時間点灯後の照度保持率
Examples 9-15
The epoxy resin (EP-4) obtained in Synthesis Example 7 and (EP-5) obtained in Synthesis Example 8 were uniformly mixed at the following blending ratios, respectively, to obtain the epoxy resin composition (F-6) of the present invention. ) To (F-8) were obtained. For these epoxy resin compositions obtained, the curing agent compositions (B-3) and (B-4) obtained in Synthesis Examples 9 and 10 were used as curing catalysts for quaternary phosphonium salts (C-1) and alkyl phosphate esters. Zinc (C-2), octyl phosphate ester (Hope Pharmaceutical Octopus Zn, hereinafter referred to as C-3), phosphorus compound (Sanko Co., Ltd., HCA, hereinafter referred to as C-4) as an additive, phosphorus compound (ADEKA 260 manufactured by ADEKA) , Hereinafter referred to as C-5), hindered amine (Adeka LA-62, hereinafter referred to as C-6), blended at the blending ratio (parts by weight) shown in Table 4 below, and defoamed for 20 minutes (The composition is described in Table 4). These were filled into a syringe and cast into a 5 mm outer diameter surface mount LED package (inner diameter 4.4 mm, outer wall height 1.25 mm) mounted with a chip having a central emission wave of 465 nm using a precision discharge device. The cast product was put into a heating furnace and cured at 110 ° C. for 2 hours and further at 150 ° C. for 3 hours to prepare an LED package. After mounting the LED, the LED was turned on under the following conditions to measure the illuminance. The results are shown in Table 4.
Detailed lighting conditions Light emission wavelength: 465nm
Drive system: constant current system, 60 mA (light emitting element regulation current is 30 mA)
Driving environment: 85 ° C, 85% RH
Driving time: 400 hours Evaluation: Illuminance retention after lighting for 200 hours and 400 hours
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 以上の結果より、本発明のエポキシ樹脂組成物は光学特性(照度保持率)にも優れ、LEDとして有用な硬化物を得ることができる、ということがわかる。 From the above results, it can be seen that the epoxy resin composition of the present invention is excellent in optical properties (illuminance retention) and can provide a cured product useful as an LED.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2009年12月24日付で出願された日本特許出願(特願2009-293479)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2009-293479) filed on December 24, 2009, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (8)

  1.  下記式(1)で表されるジオレフィン化合物と下記式(2)で表されるジオレフィン化合物からなる混合物を酸化して得られ、式(1)の化合物由来のエポキシ樹脂と式(2)の化合物由来のエポキシ樹脂の比率が重量比で10/90~90/10であることを特徴とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。Pは、置換基としてメチル基を有していても良い、シクロヘキサン環あるいはノルボルナン環を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
    An epoxy resin derived from a compound of formula (1) and a formula (2) obtained by oxidizing a mixture of a diolefin compound represented by the following formula (1) and a diolefin compound represented by the following formula (2) An epoxy resin composition characterized in that the ratio of the epoxy resin derived from the compound is 10/90 to 90/10 by weight.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
  2.  下記式(1)で表されるジオレフィン化合物を酸化して得られるエポキシ樹脂と
    Figure JPOXMLDOC01-appb-C000003
    (式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。Pは、置換基としてメチル基を有していても良い、シクロヘキサン環あるいはノルボルナン環を示す。)
    下記式(2)に記載のジオレフィン化合物を酸化して得られるエポキシ樹脂
    Figure JPOXMLDOC01-appb-C000004
    (式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1~6のアルキル基を表す。)
    との混合物であって、式(1)化合物由来のエポキシ樹脂と式(2)の化合物由来のエポキシ樹脂の比率が重量比で10/90~90/10であることを特徴とするエポキシ樹脂組成物。
    An epoxy resin obtained by oxidizing a diolefin compound represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P represents a cyclohexane ring or a norbornane ring which may have a methyl group as a substituent. Is shown.)
    Epoxy resin obtained by oxidizing the diolefin compound described in the following formula (2)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, plural Rs each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
    An epoxy resin composition characterized in that the ratio of the epoxy resin derived from the compound of formula (1) and the epoxy resin derived from the compound of formula (2) is 10/90 to 90/10 in weight ratio object.
  3.  式(1)の置換基Rおよび式(2)の置換基Rが水素原子であり、かつ、結合基Pがメチルシクロヘキサン環、シクロヘキサン環、メチルノルボルナン環およびノルボルナン環から選ばれる一種以上であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。 The substituent R in the formula (1) and the substituent R in the formula (2) are hydrogen atoms, and the bonding group P is at least one selected from a methylcyclohexane ring, a cyclohexane ring, a methylnorbornane ring, and a norbornane ring. The epoxy resin composition according to claim 1 or 2.
  4.  過酸化水素で酸化したことを特徴とする請求項1~3のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, which is oxidized with hydrogen peroxide.
  5.  請求項1~4のいずれか一項に記載のエポキシ樹脂組成物と、硬化剤および/又は硬化促進剤とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the epoxy resin composition according to any one of claims 1 to 4 and a curing agent and / or a curing accelerator.
  6.  硬化剤が酸無水物および/またはポリカルボン酸であることを特徴とする請求項5に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, wherein the curing agent is an acid anhydride and / or a polycarboxylic acid.
  7.  請求項5または6に記載のいずれか1項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 5 and 6.
  8.  請求項5または6に記載の硬化性樹脂組成物により封止して得られる光半導体装置。 An optical semiconductor device obtained by sealing with the curable resin composition according to claim 5.
PCT/JP2010/073338 2009-12-24 2010-12-24 Epoxy resin composition, curable resin composition, and cured object obtained therefrom WO2011078322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547646A JP5615847B2 (en) 2009-12-24 2010-12-24 Epoxy resin composition, curable resin composition, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-293479 2009-12-24
JP2009293479 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078322A1 true WO2011078322A1 (en) 2011-06-30

Family

ID=44195847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073338 WO2011078322A1 (en) 2009-12-24 2010-12-24 Epoxy resin composition, curable resin composition, and cured object obtained therefrom

Country Status (3)

Country Link
JP (1) JP5615847B2 (en)
TW (1) TWI472548B (en)
WO (1) WO2011078322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028804A (en) * 2022-06-16 2022-09-09 深圳市恒纬祥科技有限公司 Alicyclic epoxy resin for semiconductor pouring sealant and synthetic method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832226B (en) * 2015-12-04 2019-06-14 广东生益科技股份有限公司 A kind of halogen-free epoxy resin composition and prepreg, laminate and printed circuit board containing it
US11320570B2 (en) * 2020-04-08 2022-05-03 Delta Electronics, Inc. Wavelength converting device
CN113201117B (en) * 2021-04-29 2023-02-07 中国科学院宁波材料技术与工程研究所 Ester exchange type dynamic transfer autocatalysis thermosetting resin and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948922A (en) * 1997-02-20 1999-09-07 Cornell Research Foundation, Inc. Compounds with substituted cyclic hydrocarbon moieties linked by secondary or tertiary oxycarbonyl containing moiety providing reworkable cured thermosets
JP2006142756A (en) * 2004-11-24 2006-06-08 Canon Inc Inkjet recording head and its manufacturing method
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2010095521A (en) * 2008-09-17 2010-04-30 Nippon Kayaku Co Ltd Method for producing epoxy compound, epoxy compound, and hardening resin composition and its hardened product
WO2010150524A1 (en) * 2009-06-22 2010-12-29 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for manufacturing a polyvalent carboxylic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981951B2 (en) * 2006-06-23 2011-07-19 Dow Global Technologies Llc Process for producing epoxides from olefinic compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948922A (en) * 1997-02-20 1999-09-07 Cornell Research Foundation, Inc. Compounds with substituted cyclic hydrocarbon moieties linked by secondary or tertiary oxycarbonyl containing moiety providing reworkable cured thermosets
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2006142756A (en) * 2004-11-24 2006-06-08 Canon Inc Inkjet recording head and its manufacturing method
JP2010095521A (en) * 2008-09-17 2010-04-30 Nippon Kayaku Co Ltd Method for producing epoxy compound, epoxy compound, and hardening resin composition and its hardened product
WO2010150524A1 (en) * 2009-06-22 2010-12-29 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for manufacturing a polyvalent carboxylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028804A (en) * 2022-06-16 2022-09-09 深圳市恒纬祥科技有限公司 Alicyclic epoxy resin for semiconductor pouring sealant and synthetic method thereof

Also Published As

Publication number Publication date
JPWO2011078322A1 (en) 2013-05-09
TWI472548B (en) 2015-02-11
JP5615847B2 (en) 2014-10-29
TW201130877A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5348764B2 (en) Curable resin composition for optical semiconductor encapsulation, and cured product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
JP5433705B2 (en) Curable resin composition and cured product thereof
WO2011108588A1 (en) Curable resin composition and cured article thereof
JP5626856B2 (en) Curable resin composition and cured product thereof
JP5700759B2 (en) Curable resin composition and cured product thereof
JP5404514B2 (en) Epoxy resin production method, epoxy resin, and curable resin composition
JP5698453B2 (en) Epoxy resin composition
JP5615847B2 (en) Epoxy resin composition, curable resin composition, and cured product thereof
JP5492081B2 (en) Diolefin compound, epoxy resin and composition
JP5995238B2 (en) Epoxy resin and epoxy resin composition
JP5519685B2 (en) Curable resin composition and cured product thereof
JP5559207B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device
JP5832601B2 (en) Curable resin composition and cured product thereof
JP5683650B2 (en) Epoxy resin production method, epoxy resin, and curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547646

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839552

Country of ref document: EP

Kind code of ref document: A1