JP5698453B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP5698453B2
JP5698453B2 JP2009256810A JP2009256810A JP5698453B2 JP 5698453 B2 JP5698453 B2 JP 5698453B2 JP 2009256810 A JP2009256810 A JP 2009256810A JP 2009256810 A JP2009256810 A JP 2009256810A JP 5698453 B2 JP5698453 B2 JP 5698453B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
acid
alkoxysilane
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009256810A
Other languages
Japanese (ja)
Other versions
JP2011102337A (en
Inventor
政隆 中西
政隆 中西
義浩 川田
義浩 川田
直房 宮川
直房 宮川
智江 佐々木
智江 佐々木
静 青木
静 青木
窪木 健一
健一 窪木
瑞観 鈴木
瑞観 鈴木
正人 鎗田
正人 鎗田
小柳 敬夫
敬夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2009256810A priority Critical patent/JP5698453B2/en
Priority to KR1020127011971A priority patent/KR20120115221A/en
Priority to CN201080050932.7A priority patent/CN102686633B/en
Priority to PCT/JP2010/069906 priority patent/WO2011058962A1/en
Priority to TW103142340A priority patent/TW201509979A/en
Priority to TW099138601A priority patent/TWI564318B/en
Publication of JP2011102337A publication Critical patent/JP2011102337A/en
Application granted granted Critical
Publication of JP5698453B2 publication Critical patent/JP5698453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は電気電子材料用途、特に光半導体用途に好適なエポキシ樹脂組成物、および硬化物に関する。   The present invention relates to an epoxy resin composition suitable for use in electrical and electronic materials, particularly for use in optical semiconductors, and a cured product.

従来からLED製品などの光半導体素子の封止材料として、エポキシ樹脂組成物が性能と経済性のバランスの点で採用されてきた。特に耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
ところが、LED製品の発光波長の短波長化(主に青色発光をするLED製品で480nm以下の場合を示す)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
そこで、3,4−エポキシシクロヘキシルメチル−3’,4’エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較し透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた。(特許文献1、2)
Conventionally, an epoxy resin composition has been employed as a sealing material for optical semiconductor elements such as LED products in terms of a balance between performance and economy. In particular, glycidyl ether type epoxy resin compositions typified by bisphenol A type epoxy resins having excellent balance of heat resistance, transparency and mechanical properties have been widely used.
However, as a result of the shortening of the emission wavelength of LED products (mainly the case of LED products emitting blue light of 480 nm or less), the sealing material is colored on the LED chip due to the influence of light of short wavelengths. However, it has been pointed out that the illuminance will eventually decrease as an LED product.
Therefore, alicyclic epoxy resins represented by 3,4-epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexyl carboxylate are more transparent than glycidyl ether type epoxy resin compositions having an aromatic ring. Since it is excellent, it has been actively studied as an LED sealing material. (Patent Documents 1 and 2)

また、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきたため、該脂環式エポキシ樹脂を使用した樹脂組成物でもLEDチップ上で着色を起こし、最終的にLED製品として照度が低下してしまい、耐久性の面でも課題を残している。(特許文献3)   In recent years, LED products have become increasingly brighter for lighting, TV backlights, and the like, and when LEDs are turned on, they generate a lot of heat. Therefore, a resin composition using the alicyclic epoxy resin is used. Even an object causes coloring on the LED chip, and as a result, the illuminance is lowered as an LED product, leaving a problem in terms of durability. (Patent Document 3)

特開平9−213997号JP-A-9-213997 特許3618238号Japanese Patent No. 3618238 特再2005−100445号Tokushu 2005-100445

前記エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi−O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている。(特許文献3)
一般に該シロキサン骨格を導入した樹脂はエポキシ樹脂よりも熱と光に対して安定であることが知られている。そのため、LED製品の封止材に適用した場合、LEDチップ上の着色という観点では、エポキシ樹脂よりも耐久性に優れると言われていた。しかし、該シロキサン骨格を導入した樹脂類はエポキシ樹脂に比べ、耐ガス透過性に劣る。そのため、LED封止材としてシリコーン樹脂やシリコーン変性エポキシ樹脂を使用した場合には、LEDチップ上での着色は問題にならないものの、内部の構成部材の劣化、着色が起るという問題が生じている。特に生活環境の中で使用する場合、様々な化合物が浮遊していおり、このような化合物が内部へ浸透することで不具合を生じさせるきっかけとなる。例えば照明用途に用いられた場合、環境中のガス等がLEDの封止材を透過することで、LEDパッケージ内の構成部材である金属リードフレーム上にメッキされた銀成分(反射率を高めるために銀メッキが施されている)を変色または黒化させてしまい、最終的にLED製品としての性能を低下させるという課題を抱えている。
市場では、前記耐ガス透過性で問題のないシロキサン構造含有エポキシ樹脂組成物が望まれている。
Because of the problem of durability of the epoxy resin, a resin having a siloxane skeleton (specifically, a skeleton having a Si—O bond) introduced as a silicone resin or a silicone-modified epoxy resin is used as a sealing material. Considerations are being made. (Patent Document 3)
In general, it is known that a resin having a siloxane skeleton introduced therein is more stable to heat and light than an epoxy resin. Therefore, when applied to the sealing material of LED products, it was said that it was superior to epoxy resin in terms of coloring on the LED chip. However, resins incorporating the siloxane skeleton are inferior in gas permeability resistance compared to epoxy resins. Therefore, when a silicone resin or a silicone-modified epoxy resin is used as the LED sealing material, coloring on the LED chip is not a problem, but there is a problem that internal components are deteriorated and coloring occurs. . In particular, when used in a living environment, various compounds are floating, and the penetration of such compounds into the interior triggers problems. For example, when used in lighting applications, gas in the environment or the like permeates the LED sealing material, so that the silver component plated on the metal lead frame, which is a component in the LED package (to increase reflectivity) Is subjected to discoloration or blackening, and ultimately the performance as an LED product is lowered.
In the market, a siloxane structure-containing epoxy resin composition having no problem in gas permeability resistance is desired.

本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、
(1)
オルガノポリシロキサン(A)と多価カルボン酸(B)を必須成分とするエポキシ樹脂組成物、
ただし、オルガノポリシロキサン(A)と多価カルボン酸(B)は以下の条件を満たす。
オルガノポリシロキサン(A):
少なくとも、その分子中にグルシジル基および/またはエポキシシクロヘキシル基を有するエポキシ樹脂。
多価カルボン酸(B):
2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とする多価カルボン酸。
(2)
酸無水物(C)を含有することを特徴とする前項(1)に記載のエポキシ樹脂組成物、
(3)
多価カルボン酸が炭素数5以上の2〜6官能の多価アルコールと飽和脂肪族環状酸無水物との反応により得られた化合物であることを特徴とする前項(1)、(2)いずれか一項に記載のエポキシ樹脂組成物、
(4)
前項(3)に記載のエポキシ樹脂組成物を硬化してなる硬化物、
に関する。
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention
(1)
An epoxy resin composition comprising an organopolysiloxane (A) and a polyvalent carboxylic acid (B) as essential components;
However, organopolysiloxane (A) and polyvalent carboxylic acid (B) satisfy the following conditions.
Organopolysiloxane (A):
An epoxy resin having at least a glycidyl group and / or an epoxycyclohexyl group in the molecule.
Polyvalent carboxylic acid (B):
A polyvalent carboxylic acid having two or more carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton.
(2)
The epoxy resin composition according to item (1), which contains an acid anhydride (C),
(3)
Any of the preceding items (1) and (2), wherein the polyvalent carboxylic acid is a compound obtained by reacting a bifunctional or bifunctional polyhydric alcohol having 5 or more carbon atoms with a saturated aliphatic cyclic acid anhydride The epoxy resin composition according to claim 1,
(4)
Hardened | cured material formed by hardening | curing the epoxy resin composition of previous clause (3),
About.

本発明のエポキシ樹脂組成物は耐腐食ガス性に優れることから、光学材料のなかでも特に照明等の生活環境の中で使用する光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。   Since the epoxy resin composition of the present invention is excellent in corrosion gas resistance, it is extremely useful as an adhesive or sealing material for optical semiconductors (LED products, etc.) used in living environments such as lighting, among optical materials. Useful.

以下、本発明のエポキシ樹脂組成物について記載する。
本発明のエポキシ樹脂組成物はオルガノポリシロキサン(A)と多価カルボン酸(B)を必須成分とする。
オルガノポリシロキサン(A)は少なくとも、その分子中にグルシジル基および/またはエポキシシクロヘキシル基を有するエポキシ樹脂であることを特徴とし、一般にグリシジル基あるいはエポキシシクロヘキシル基を有するトリアルコキシシランを原料に用いるゾル−ゲル反応により得られる。
具体的には特開2004−256609号公報、特開2004−346144号公報、WO2004/072150号公報、特開2006−8747号公報、WO2006/003990号公報、特開2006−104248号公報、WO2007/135909号公報、特開2004−10849号公報、特開2004−359933号公報、WO2005/100445号公報、特開2008−174640号公報などに記載の三次元に広がる網の目状の構造を有したシルセスキオキサンタイプのオルガノポリシロキサンが挙げられる。
オルガノポリシロキサンの構造については特に限定されないが、単純な三次元網目構造のシロキサン化合物では硬すぎるため、硬さを緩和する構造が望まれる。本発明においては特にシリコーンセグメントとゾル−ゲル反応により得られる前述のシルセスキオキサン構造とを1分子中に有するブロック構造体が好ましい(以下、ブロック型シロキサン化合物(D)と称す)。
Hereinafter, the epoxy resin composition of the present invention will be described.
The epoxy resin composition of the present invention contains organopolysiloxane (A) and polyvalent carboxylic acid (B) as essential components.
Organopolysiloxane (A) is an epoxy resin having at least a glycidyl group and / or an epoxycyclohexyl group in the molecule, and is generally a sol--using a trialkoxysilane having a glycidyl group or an epoxycyclohexyl group as a raw material. Obtained by gel reaction.
Specifically, JP 2004-256609 A, JP 2004-346144 A, WO 2004/072150, JP 2006-8747, WO 2006/003990, JP 2006-104248, WO 2007 /. 135909, JP2004-10849, JP2004-359933, WO2005 / 100445, JP2008-174640, and the like have a three-dimensional network structure. Examples include silsesquioxane type organopolysiloxane.
The structure of the organopolysiloxane is not particularly limited. However, since a siloxane compound having a simple three-dimensional network structure is too hard, a structure that relaxes the hardness is desired. In the present invention, a block structure having the above-mentioned silsesquioxane structure obtained by a sol-gel reaction and a silicone segment in one molecule is particularly preferred (hereinafter referred to as block type siloxane compound (D)).

ブロック型シロキサン化合物(D)は通常のブロック共重合体のような直鎖に繰り返し単位を有する化合物ではなく、三次元に広がる網の目状の構造を有し、シルセスキオキサン構造をコアとし、鎖状のシリコーンセグメントが伸び、次のシルセスキオキサン構造に結合するといった構造となる。本構造が、本発明の硬化性組成物の硬化物に硬さと柔軟性のバランスを与える意味合いで有効である。   The block type siloxane compound (D) is not a compound having a repeating unit in a straight chain as in a normal block copolymer, but has a network structure extending in three dimensions, with a silsesquioxane structure as a core. The chain-like silicone segment extends and becomes a structure in which it is bonded to the next silsesquioxane structure. This structure is effective in the sense of giving a balance between hardness and flexibility to the cured product of the curable composition of the present invention.

ブロック型シロキサン化合物(D)は、例えば、下記するように一般式(1)で表されるアルコキシシラン化合物(a)と一般式(2)で表されるシリコーンオイル(b)を原料として製造することができ、必要に応じて一般式(3)で表されるアルコキシシラン化合物(c)を原料として用いることもできる。ブロック型シロキサン化合物(A)の鎖状シリコーンセグメントはシリコーンオイル(b)から形成され、三次元の網の目状シルセスキオキサンセグメントはアルコキシシラン(a)(必要に応じてアルコキシシラン(c))から形成される。以下、各原料について詳細に説明する。   The block type siloxane compound (D) is produced using, for example, an alkoxysilane compound (a) represented by the general formula (1) and a silicone oil (b) represented by the general formula (2) as raw materials as described below. If necessary, the alkoxysilane compound (c) represented by the general formula (3) can be used as a raw material. The chain-type silicone segment of the block-type siloxane compound (A) is formed from the silicone oil (b), and the three-dimensional networked silsesquioxane segment is an alkoxysilane (a) (optionally alkoxysilane (c) ). Hereinafter, each raw material will be described in detail.

アルコキシシラン化合物(a)は下記式(1)で表される。
XSi(OR23 (1)
一般式(1)中のXとしては、エポキシ基を有する有機基であれば特に制限はない。例えば、β−グリシドキシエチル、γ−グリシドキシプロピル、γ−グリシドキシブチル等のグリシドキシ炭素数1〜4アルキル基、グリシジル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−(3,4−エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘプチル)エチル基、β−(3,4エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘキシル)ブチル基、β−(3,4−エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5〜8のシクロアルキル基で置換された炭素数1〜5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1〜3のアルキル基、エポキシ基を有する炭素数5〜8のシクロアルキル基で置換された炭素数1〜3のアルキル基、例えば、β−グリシドキシエチル基、γ−グリシドキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基が好ましく、特にβ−(3,4−エポキシシクロヘキシル)エチル基が好ましい。
The alkoxysilane compound (a) is represented by the following formula (1).
XSi (OR 2 ) 3 (1)
X in the general formula (1) is not particularly limited as long as it is an organic group having an epoxy group. For example, β-glycidoxyethyl, γ-glycidoxypropyl, γ-glycidoxybutyl and other glycidoxy having 1 to 4 carbon atoms, glycidyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ -(3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, β- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycyclohexyl) butyl group And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as β- (3,4-epoxycyclohexyl) pentyl group. Among these, an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group, an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group, for example, β- A glycidoxyethyl group, a γ-glycidoxypropyl group, and a β- (3,4-epoxycyclohexyl) ethyl group are preferable, and a β- (3,4-epoxycyclohexyl) ethyl group is particularly preferable.

一般式(1)中のR2としては、炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらR2は、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。 R 2 in the general formula (1) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, etc. Can be mentioned. R 2 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.

アルコキシシラン(a)として好ましい具体例としては、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられ、特にβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらアルコキシシラン化合物(a)は、単独で用いてもよく、2種以上を用いてもよく、後述するアルコキシシラン(c)と併用することもできる。   Specific preferred examples of the alkoxysilane (a) include β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxypropyltriethoxy. Silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like, particularly β- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane is preferred. These alkoxysilane compounds (a) may be used independently, may use 2 or more types, and can also be used together with the alkoxysilane (c) mentioned later.

シリコーンオイル(b)は下記式(2) Silicone oil (b) has the following formula (2)

Figure 0005698453
(式中mは繰り返し数を表す。)
Figure 0005698453
(In the formula, m represents the number of repetitions.)

で表される構造を有する末端がシラノール基を有する鎖状シリコーンオイルである。
一般式(2)の式中、複数存在するR3は互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、炭素数6〜14のアリール基、炭素数2〜10のアルケニル基を示す。
炭素数1〜10のアルキル基としては、炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基が挙げられ、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、i−ペンチル基、アミル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基等を挙げることができる。これらの中で、耐光性を考慮すると、メチル基、エチル基、シクロヘキシル基が好ましい。
炭素数6〜14のアリール基としては、例えば、フェニル基、o−トリル基、m−トリル基、p−トリル基、キシリル基等を挙げることができる。
炭素数2〜10のアルケニル基としては、ビニル基、1−メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基等を挙げることができる。
3は耐光性、耐熱性の観点から、メチル基、フェニル基、シクロヘキシル基、n−プロピル基が好ましく、特にメチル基、フェニル基が好ましい。
Is a chain silicone oil having a silanol group at the end having a structure represented by:
In the formula of the general formula (2), a plurality of R 3 may be the same or different from each other, and may be an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 2 to 10 carbon atoms. An alkenyl group of
Examples of the alkyl group having 1 to 10 carbon atoms include linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group, amyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, octyl group, 2-ethylhexyl Group, nonyl group, decyl group and the like. Among these, considering light resistance, a methyl group, an ethyl group, and a cyclohexyl group are preferable.
Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, and a xylyl group.
Examples of the alkenyl group having 2 to 10 carbon atoms include alkenyl groups such as vinyl group, 1-methylvinyl group, allyl group, propenyl group, butenyl group, pentenyl group, and hexenyl group.
R 3 is preferably a methyl group, a phenyl group, a cyclohexyl group or an n-propyl group from the viewpoints of light resistance and heat resistance, and particularly preferably a methyl group or a phenyl group.

一般式(2)の化合物のmは平均値で3〜200を示し、好ましくは3〜100、より好ましくは3〜50である。mが3を下回ると硬化物が硬くなりすぎ、低弾性率特性が低下する。mが200を上回ると硬化物の機械特性が悪化する傾向にあり好ましくない。   M of the compound of General formula (2) shows 3-200 by an average value, Preferably it is 3-100, More preferably, it is 3-50. When m is less than 3, the cured product becomes too hard and the low elastic modulus characteristics are deteriorated. If m exceeds 200, the mechanical properties of the cured product tend to deteriorate, which is not preferable.

シリコーンオイル(b)の重量平均分子量(Mw)は300〜18,000(ゲルパーミエーションクロマトグラフィー(GPC)測定値)の範囲のものが好ましい。これらの中で、低温での弾性率を考慮すると分子量が300〜10,000のものが好ましく、さらに組成物化時の相溶性を考慮すると300〜5,000のものがより好ましく、特に500〜3,000のものが好ましい。重量平均分子量が300を下回る場合、特性セグメントの鎖状シリコーン部分の特性が出にくく、ブロック型としての特性が損なわれる恐れがあり、18,000を超えると激しい層分離構造を持つ事となり、光学材料に使用するには透過性が悪くなり、使用することが困難となる。本発明においてシリコーンオイル(b)の分子量としては、GPCを用いて、下記条件下測定されたポリスチレン換算、重量平均分子量(Mw)を算出できる。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
The weight average molecular weight (Mw) of the silicone oil (b) is preferably in the range of 300 to 18,000 (measured value by gel permeation chromatography (GPC)). Among these, those having a molecular weight of 300 to 10,000 are preferable in consideration of the elastic modulus at low temperature, and those having a molecular weight of 300 to 5,000 are more preferable in consideration of compatibility at the time of forming the composition. 1,000 is preferred. If the weight average molecular weight is less than 300, the properties of the chain silicone portion of the characteristic segment are difficult to be obtained, and the properties as a block type may be impaired. If it exceeds 18,000, a severe layer separation structure will be formed. When used as a material, the permeability becomes poor, making it difficult to use. In the present invention, the molecular weight of the silicone oil (b) can be calculated by polystyrene conversion and weight average molecular weight (Mw) measured under the following conditions using GPC.
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)

シリコーンオイル(b)の動粘度は10〜200cStの範囲のものが好ましく、より好ましくは30〜90cStのものである。10cStを下回る場合にはブロック型シロキサン化合物(D)の粘度が低くなりすぎて、光半導体封止剤としては適さない場合があり、また200cStを上回る場合にはブロック型シロキサン化合物(D)の粘度が上昇し、作業性に弊害が生じる傾向にあり好ましくない。   The kinematic viscosity of the silicone oil (b) is preferably in the range of 10 to 200 cSt, more preferably 30 to 90 cSt. If it is less than 10 cSt, the viscosity of the block type siloxane compound (D) may be too low to be suitable as an optical semiconductor sealing agent. If it exceeds 200 cSt, the viscosity of the block type siloxane compound (D) may be Is unfavorable because it tends to cause an adverse effect on workability.

シリコーンオイル(b)として好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニングシリコーン社製としては、PRX413、BY16−873、信越化学工業社製としては、X−21−5841、KF−9701、モメンティブ社製としては、XC96−723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897,YF3804、XF3905、Gelest社製としては、DMS−S12、DMS−S14、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S42、DMS−S45、DMS−S51、PDS−0332、PDS−1615、PDS−9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16−873、X−21−5841、KF−9701、XC96−723,YF3800、YF3804、DMS−S12、DMS−S14、DMS−S15、DMS−S21、PDS−1615が好ましい。これらの中でもシリコーンセグメントの柔軟性の特徴を持たせるため、分子量の観点から、X−21−5841,XC96−723,YF3800,YF3804、DMS−S14、PDS−1615が特に好ましい。これらシリコーンオイル(b)は、単独で用いてもよく、2種以上を併用して用いてもよい。   Specific examples of preferable silicone oil (b) include the following product names. For example, as manufactured by Toray Dow Corning Silicone, PRX413, BY16-873, as manufactured by Shin-Etsu Chemical Co., Ltd., X-21-5841, KF-9701, as manufactured by Momentive, XC96-723, TSR160, YR3370, YF3800 , XF3905, YF3057, YF3807, YF3802, YF3897, YF3804, XF3905, manufactured by Gelest, DMS-S12, DMS-S14, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS -S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-0332, PDS-1615, PDS-9931 and the like. Among these, PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, YF3804, DMS-S12, DMS-S14, DMS-S15, DMS-S21 from the viewpoint of molecular weight and kinematic viscosity PDS-1615 is preferred. Among these, X-21-5841, XC96-723, YF3800, YF3804, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of molecular weight in order to give the silicone segment flexibility characteristics. These silicone oils (b) may be used alone or in combination of two or more.

次に必要により使用するアルコキシシラン(c)ついて詳細に述べる。アルコキシシラン(c)は下記式(3)の構造を有する。
4(OR5)3 (3)
(式中R4は、メチル基又はフェニル基を示す。)
Next, the alkoxysilane (c) used if necessary will be described in detail. The alkoxysilane (c) has a structure of the following formula (3).
R 4 (OR 5 ) 3 (3)
(In the formula, R 4 represents a methyl group or a phenyl group.)

一般式(3)中のR5としては、炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらR5は、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基であることが好ましい。 R 5 in the general formula (3) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, etc. Can be mentioned. R 5 is preferably a methyl group or an ethyl group from the viewpoint of reaction conditions such as compatibility and reactivity.

アルコキシシラン(c)として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシランが好ましい。   Specific examples of preferred alkoxysilane (c) include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane. Of these, methyltrimethoxysilane and phenyltrimethoxysilane are preferred.

本発明において、アルコキシシラン(c)はブロック型シロキサン化合物(D)の分子量、組成物とした際の相溶性や硬化物の耐熱性、耐光性、低透湿性、低ガス透過性等を調節するために、アルコキシシラン(a)と併用して用いることができる。   In the present invention, the alkoxysilane (c) adjusts the molecular weight of the block-type siloxane compound (D), the compatibility with the composition, the heat resistance of the cured product, light resistance, low moisture permeability, low gas permeability, and the like. Therefore, it can be used in combination with alkoxysilane (a).

アルコキシシラン(c)を使用する場合、アルコキシシラン(a)と(c)の合計モルのうちアルコキシシラン(c)が5〜70モル%の範囲で用いることが好ましく、5〜50モル%が更に好ましく、10〜40モル%が特に好ましい。70モル%より多いと、硬化物の架橋密度が下がり機械強度が低下するため、好ましくない。   When using alkoxysilane (c), it is preferable to use alkoxysilane (c) in the range of 5-70 mol% among the total mol of alkoxysilane (a) and (c), and 5-50 mol% is further. Preferably, 10 to 40 mol% is particularly preferable. If it is more than 70 mol%, the crosslink density of the cured product is lowered and the mechanical strength is lowered, which is not preferable.

アルコキシシラン(a)、シリコーンオイル(b)、アルコキシシラン(c)の反応比率としては、シリコーンオイル(b)のシラノール基1当量に対して、アルコキシシラン(a)(および必要に応じて使用するアルコキシシラン(c))中のアルコキシ基を当量値として1.5〜200、好ましくは2〜200、特に好ましくは2〜100の間で反応を行うことが好ましい。
当量値が200を超えるとブロック型シロキサン化合物(D)を用いた硬化物が硬くなりすぎて目的の低弾性率特性が低下する。
As a reaction ratio of alkoxysilane (a), silicone oil (b), and alkoxysilane (c), alkoxysilane (a) (and used as necessary) with respect to 1 equivalent of silanol group of silicone oil (b). It is preferable to carry out the reaction between 1.5 and 200, preferably 2 to 200, particularly preferably 2 to 100, with the alkoxy group in alkoxysilane (c)) as an equivalent value.
When the equivalent value exceeds 200, the cured product using the block-type siloxane compound (D) becomes too hard and the desired low elastic modulus characteristic is lowered.

以下、ブロック型シロキサン化合物(D)の好ましい製造方法について具体的に言及する。
ブロック型シロキサン化合物(D)の製造方法としては以下の(i)、(ii)で示される製造工程を経ることが好ましい。
製造工程(i):シラノール末端シリコーンオイル(b)とアルコキシ基を有するアルコシキシラン(a)(およびアルコキシラン(c))の脱アルコール縮合を行なう工程
製造工程(ii):水を添加しアルコキシシラン(a)(およびアルコキシシラン(c))のアルコキシ基同士の加水分解縮合を行なう工程
製造工程(i)、(ii)は各工程を経由すれば、どのような順に反応を行ってもかまわない。
Hereinafter, a preferred method for producing the block type siloxane compound (D) will be specifically described.
As a manufacturing method of block type siloxane compound (D), it is preferable to pass through the manufacturing process shown by the following (i) and (ii).
Production step (i): Step of dealcoholization condensation of silanol-terminated silicone oil (b) and alkoxysilane-containing alkoxysilane (a) (and alkoxylane (c)) Production step (ii): Alcohol added with water Step of performing hydrolytic condensation between alkoxy groups of silane (a) (and alkoxysilane (c)) The production steps (i) and (ii) may be carried out in any order as long as they pass through the respective steps. Absent.

好ましい製造方法として、具体的には、以下の三種類の製造方法が挙げられる。
<製造方法(イ)>
まず、製造工程(i)としてシリコーンオイル(b)とアルコキシシラン(a)(およびアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することにより、アルコキシシラン変性体(d)を得る工程を行う。
次いで製造工程(ii)としてアルコキシシラン(a)(およびアルコキシシラン(c))、および製造工程(i)で得られたシリコーンオイルのアルコキシシラン変性体(d)に水を添加してアルコキシ基同士の加水分解縮合反応を行う工程を経ることによりブロック型シロキサン化合物(D)を製造する方法。
<製造方法(ロ)>
まず、製造工程(ii)としてアルコキシシラン(a)(およびアルコキシシラン(c))の水の添加によるアルコキシ基同士の加水分解縮合反応を行うことで分子内にアルコキシ基を有するシルセスキオキサン(e)を得る工程を行う。
次いで製造工程(i)としてシリコーンオイル(b)とシルセスキオキサン(e)との反応により、シルセスキオキサン構造に残存するアルコキシ基とシラノール基の脱アルコール縮合反応させる工程を経ることにより、ブロック型シロキサン化合物(D)を製造する方法
<製造方法(ハ)>
まず、製造工程(i)としてシリコーンオイル(b)とアルコキシシラン(a)(およびアルコキシシラン(c))との脱アルコール縮合反応により、シリコーンオイル末端をアルコキシシラン変性することによりアルコキシシラン変性体(d)とした後、系内に水を添加し、ワンポットで製造工程(ii)として残存するアルコキシシラン(a)(およびアルコシキシラン(c))、およびアルコキシシラン変性体(d)のアルコキシ基同士の加水分解縮合反応を行うことによりブロック型シロキサン化合物(D)を製造する方法
Specific examples of preferred production methods include the following three production methods.
<Manufacturing method (I)>
First, as a production step (i), the alkoxysilane modified product is obtained by modifying the terminal of the silicone oil with an alkoxysilane by a dealcoholization condensation reaction between the silicone oil (b) and the alkoxysilane (a) (and the alkoxysilane (c)). The step of obtaining (d) is performed.
Next, water is added to the alkoxysilane modified body (d) of the alkoxysilane (a) (and alkoxysilane (c)) and the silicone oil obtained in the manufacturing process (i) as the manufacturing process (ii), and the alkoxy groups are bonded together. A method for producing a block-type siloxane compound (D) by undergoing a step of performing a hydrolytic condensation reaction.
<Manufacturing method (b)>
First, as a production step (ii), a silsesquioxane having an alkoxy group in the molecule (by carrying out a hydrolysis-condensation reaction between alkoxy groups by adding water of alkoxysilane (a) (and alkoxysilane (c)) ( Step e) is obtained.
Next, through a step of dealcoholization condensation reaction between the alkoxy group and the silanol group remaining in the silsesquioxane structure by the reaction of the silicone oil (b) and the silsesquioxane (e) as the production step (i), Method for producing block-type siloxane compound (D) <Production method (c)>
First, as a production process (i), the alkoxysilane-modified product (i) is obtained by modifying the silicone oil terminal with alkoxysilane by a dealcoholization condensation reaction between silicone oil (b) and alkoxysilane (a) (and alkoxysilane (c)). After d), water is added to the system, and the alkoxysilane (a) (and alkoxysilane (c)) remaining as the production step (ii) in one pot, and the alkoxy group of the alkoxysilane-modified product (d) Method for producing block-type siloxane compound (D) by carrying out hydrolysis-condensation reaction between each other

本発明においては製造工程の短縮の観点から逐次的にワンポットで反応させる前述の製造方法(ハ)を用いることが好ましい。
以下、さらに具体的に製造方法(ハ)について述べる。
ワンポットで反応させる場合、前述の製造方法(ハ)と逆の順番、すなわち、製造工程(ii)の後に製造工程(i)を行なうと、製造工程(ii)で形成されたアルコキシ基を有するシルセスキオキサンオリゴマーとシリコーンオイル(b)とが、相溶せず、後の製造工程(i)において脱アルコール縮合重合が進行せず、シリコーンオイルが取り残されてしまう可能性が高い。一方で、製造方法(ハ)のように製造工程(i)の後にワンポットで製造工程(ii)を行なう方法を用いれば、シリコーンオイル(b)とアルコキシシラン(a)や(c)との相溶性比較的高いため、前述のように相溶せずに反応が進行しない、という問題は回避できる。さらにはシラノール基に対して未反応の低分子アルコキシシランが多量に存在することになるため、反応性の観点からも好ましい。ワンポットで反応を行なう場合、まず製造工程(i)において、シリコーンオイル(b)とアルコキシシラン(a)(およびアルコキシシラン(c))の脱アルコール縮合を行ない、シリコーンオイルの末端をアルコキシシリル変性させ、アルコキシシラン変性体(d)を得る。製造工程(i)においては水を添加していないので、アルコキシ基同士の加水分解縮合は起こらず、シラノール基1当量に対して、アルコキシ基を3当量以上用いて反応させた場合、アルコキシシラン変性体(d)は下記式(4)で示されるような構造で存在していると考えられる。
In the present invention, from the viewpoint of shortening the production process, it is preferable to use the above production method (c) in which the reaction is sequentially carried out in one pot.
Hereinafter, the production method (c) will be described more specifically.
When the reaction is carried out in one pot, the silanol having an alkoxy group formed in the production step (ii) is performed in the reverse order of the production method (c) described above, that is, when the production step (ii) is performed after the production step (ii). There is a high possibility that the sesquioxane oligomer and the silicone oil (b) are not compatible with each other, the dealcoholization condensation polymerization does not proceed in the subsequent production step (i), and the silicone oil is left behind. On the other hand, if a method in which the production step (ii) is performed in one pot after the production step (i) as in the production method (c) is used, the phase between the silicone oil (b) and the alkoxysilane (a) or (c) Since the solubility is relatively high, the problem that the reaction does not proceed without compatibility as described above can be avoided. Furthermore, since a large amount of unreacted low-molecular alkoxysilane is present with respect to the silanol group, it is preferable from the viewpoint of reactivity. When the reaction is carried out in one pot, first, in the production step (i), the silicone oil (b) and the alkoxysilane (a) (and the alkoxysilane (c)) are subjected to dealcohol condensation, and the terminal of the silicone oil is modified with alkoxysilyl. A modified alkoxysilane (d) is obtained. Since water is not added in the production step (i), hydrolysis condensation between alkoxy groups does not occur, and when the reaction is performed using 3 equivalents or more of alkoxy groups per 1 equivalent of silanol groups, the alkoxysilane modification The body (d) is considered to exist in a structure represented by the following formula (4).

Figure 0005698453
Figure 0005698453

(式(4)中、R2、R3、mは前記と同じ意味を示し、R6は前記X又はR4を示す。) (In the formula (4), R 2 , R 3 and m have the same meaning as described above, and R 6 represents X or R 4. )

製造工程(i)において、シラノール基1当量に対して、アルコキシ基を1.0当量より少ない量で反応させると、製造工程(i)終了時にアルコキシ基が存在しないため、製造工程(ii)へ進めず、またアルコキシ基を1.0〜1.5当量の間で反応させるとアルコキシシラン(a)(およびアルコキシシラン(c))中の2つ以上のアルコキシ基がシリコーンオイル(b)のシラノール基と反応することになり、製造工程(i)終了時に高分子になりすぎてゲル化がおきてしまう。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させる必要がある。反応制御の観点からは2.0当量以上が好ましい。   In the production process (i), when an alkoxy group is reacted in an amount less than 1.0 equivalent with respect to 1 equivalent of a silanol group, since no alkoxy group exists at the end of the production process (i), the process proceeds to the production process (ii). When the alkoxy group is not reacted and the alkoxy group is reacted between 1.0 and 1.5 equivalents, two or more alkoxy groups in the alkoxysilane (a) (and the alkoxysilane (c)) are converted into silanol of the silicone oil (b). It will react with the group, and at the end of the production step (i), it becomes a polymer and gelation occurs. For this reason, it is necessary to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more are preferable.

製造工程(i)終了後、そのまま水を添加しアルコキシ基同士の加水分解縮合を行なう(製造工程(ii))。さらに製造工程(ii)では、下記に示す(I)〜(III)の反応が起きている。
(I)系中に残存しているアルコキシシラン(a)(およびアルコキシシラン(c))のアルコキシ基同士の縮合反応。
(II)製造工程(i)で得られたアルコキシシラン変性体(d)とアルコキシシラン(a)(およびアルコキシシラン(c))のアルコキシ基同士の縮合反応。
(III)製造工程(i)で得られたアルコキシシラン変性体(d)と(I)で生成したアルコキシシラン(a)(およびアルコキシシラン(c))の部分縮合物のアルコキシ基同士の縮合反応。
製造工程(ii)においては上記反応が複合して起こり、シルセスキオキサンセグメントの形成と、さらにシリコーンオイル由来の鎖状シリコーンセグメントとの縮合が同時に行なわれる。
After completion of the production step (i), water is added as it is to carry out hydrolysis condensation between alkoxy groups (production step (ii)). Further, in the production step (ii), the following reactions (I) to (III) occur.
(I) Condensation reaction between alkoxy groups of alkoxysilane (a) (and alkoxysilane (c)) remaining in the system.
(II) A condensation reaction between alkoxy groups of the alkoxysilane-modified product (d) obtained in the production step (i) and the alkoxysilane (a) (and the alkoxysilane (c)).
(III) Condensation reaction between alkoxy groups of the partial condensate of alkoxysilane modified (d) obtained in production step (i) and alkoxysilane (a) (and alkoxysilane (c)) produced in (I) .
In the production step (ii), the above reaction occurs in combination, and the formation of the silsesquioxane segment and the condensation with the silicone oil-derived chain silicone segment are simultaneously performed.

ブロック型シロキサン化合物(D)の製造は無触媒でも行なえるが、無触媒だと反応進行が遅く、反応時間短縮の観点から触媒存在下で行なうことが好ましい。用い得る触媒としては、酸性または塩基性を示す化合物であれば使用する事ができる。酸性触媒の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n−ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの触媒除去が容易である点で無機塩基が好ましく、特に水酸化ナトリウム、水酸化カリウムが好ましい。触媒の添加量は、反応系中のアルコキシシラン(a)(およびアルコキシシラン(c))の合計重量に対し、通常0.001〜7.5重量%、好ましくは0.01〜5重量%である。
触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、前記したように、アルコキシシラン(a)(およびアルコキシシラン(c))の縮合を一方的に進行させ、それにより生成したシルセスキオキサンオリゴマーと、シリコーンオイル(b)とが相溶せず白濁する可能性がある。
Although the production of the block type siloxane compound (D) can be carried out without a catalyst, the reaction progresses slowly with no catalyst, and it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time. As the catalyst that can be used, any compound that exhibits acidity or basicity can be used. Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc. Inorganic bases such as alkali metal carbonates, and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used. Among these, an inorganic base is particularly preferable in terms of easy catalyst removal from the product, and sodium hydroxide and potassium hydroxide are particularly preferable. The amount of the catalyst added is usually 0.001 to 7.5% by weight, preferably 0.01 to 5% by weight, based on the total weight of alkoxysilane (a) (and alkoxysilane (c)) in the reaction system. is there.
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol. At this time, the addition as an aqueous solution using water or the like, as described above, causes the condensation of alkoxysilane (a) (and alkoxysilane (c)) to proceed unilaterally, and the silsesquioxy produced thereby. The sun oligomer and the silicone oil (b) may not be compatible with each other and may become cloudy.

ブロック型シロキサン化合物(D)の製造は、無溶剤または溶剤中で行うことができる。また、製造工程の途中で溶剤を追加することもできる。使用する場合の溶剤としては、アルコキシシラン(a)、アルコキシシラン(c)、シリコーンオイル(b)、アルコキシシラン変性体(d)を溶解する溶剤であれば特に制限はない。このような溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフランのような非プロトン性極性溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、メタノール、エタノール、プロパノール、ブタノールのようなアルコール類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。本発明においては反応制御の観点からアルコール類中での反応が好ましく、メタノール、エタノールがより好ましい。溶剤の使用量は、反応が円滑に進行する範囲であれば特に制限はないが、アルコキシシラン(a)(およびアルコキシシラン(c))、シリコーンオイル(b)、の化合物の合計重量100部に対して、通常0〜900重量部程度使用する。反応温度は、触媒量にもよるが、通常20〜160℃、好ましくは40〜140℃、特に好ましくは50〜150℃である。又、反応時間は各製造工程においてそれぞれ通常1〜40時間、好ましくは5〜30時間である。   The production of the block type siloxane compound (D) can be carried out without a solvent or in a solvent. Moreover, a solvent can also be added in the middle of a manufacturing process. The solvent for use is not particularly limited as long as it is a solvent that dissolves alkoxysilane (a), alkoxysilane (c), silicone oil (b), and alkoxysilane-modified product (d). Examples of such solvents include aprotic polar solvents such as dimethylformamide, dimethylacetamide, and tetrahydrofuran, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, and butanoic acid. Examples thereof include esters such as isopropyl, alcohols such as methanol, ethanol, propanol and butanol, hydrocarbons such as hexane, cyclohexane, toluene and xylene. In the present invention, reaction in alcohols is preferable from the viewpoint of reaction control, and methanol and ethanol are more preferable. The amount of the solvent used is not particularly limited as long as the reaction proceeds smoothly, but the total weight of the alkoxysilane (a) (and alkoxysilane (c)) and silicone oil (b) compounds is 100 parts. On the other hand, usually about 0 to 900 parts by weight are used. The reaction temperature is usually 20 to 160 ° C, preferably 40 to 140 ° C, particularly preferably 50 to 150 ° C, although it depends on the amount of catalyst. Moreover, reaction time is 1 to 40 hours normally in each manufacturing process, Preferably it is 5 to 30 hours.

反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去する。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。   After completion of the reaction, the catalyst is removed by quenching and / or washing with water as necessary. When washing with water, depending on the type of solvent used, it is preferable to add a solvent that can be separated from water. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.

本反応は水洗のみで触媒の除去を行っても構わないが、酸性、塩基性条件、いずれかの条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行なうか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n−ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
In this reaction, the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using
Any compound that is acidic or basic can be used for the neutralization reaction. Examples of the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate. Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, polyphosphates, phosphates such as sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used. Among these, in particular, inorganic bases or inorganic acids are preferable because they can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.

吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R−15、E、ニッカナイトG−36、G−153、G−168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL−H、Y−10S、Y−10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JClや、ダウ・ケミカル社製、ダウエックス66、HCR−S、HCR−W2、MAC−3などが挙げられる。
吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
Examples of the adsorbent include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
As the activated clay, for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168, manufactured by Mizusawa Chemical Industry, Galeon Earth, Mizuka Ace, etc. are listed. As the activated carbon, for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine-Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR are manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like. Examples of zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa. As a synthetic adsorbent, for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, Dow Chemical Co., Dowex 66, HCR-S, HCR-W2, MAC-3 and the like can be mentioned.
The adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.

反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。   After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than washing with water and filtration. Examples of the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.

反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。   When the reaction is performed using a solvent mixed with water as a reaction solvent, the reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.

水洗後は減圧濃縮等により溶剤を除去することで、ブロック型シロキサン化合物(D)を得ることができる。   After washing with water, the block siloxane compound (D) can be obtained by removing the solvent by vacuum concentration or the like.

このようにして得られるブロック型シロキサン化合物(D)の外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800〜20,000のものが好ましく、1,000〜10,000のものがより好ましく、特に1,500〜6,000のものが好ましい。重量平均分子量が800より下回る場合は耐熱性が低下する恐れがあり、20,000を上回る場合は粘度が上昇し作業性に弊害が生じる。なお分子量はアルコキシシラン(a)(およびアルコシキシラン(c))とシリコーンオイル(b)の当量比、シリコーンオイル(b)の分子量、反応時の水の添加量、反応時間、反応温度によって調整可能である。

重量平均分子量はGPCを用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
The appearance of the block-type siloxane compound (D) thus obtained is usually colorless and transparent and is a liquid having fluidity at 25 ° C. The molecular weight is preferably 800 to 20,000, more preferably 1,000 to 10,000, and particularly preferably 1,500 to 6,000 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 20,000, the viscosity is increased and the workability is adversely affected. The molecular weight is adjusted by the equivalent ratio of alkoxysilane (a) (and alkoxysilane (c)) and silicone oil (b), the molecular weight of silicone oil (b), the amount of water added during the reaction, the reaction time, and the reaction temperature. Is possible.

The weight average molecular weight is a polystyrene-reduced weight average molecular weight (Mw) measured using GPC under the following conditions.
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)

また該ブロック型シロキサン化合物(D)のエポキシ当量(JIS K−7236に記載の方法で測定)は300〜1,600g/eqのものが好ましく、400〜1,000g/eqのものがより好ましく、特に450〜900g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬く、弾性率が高くなりすぎる傾向があり、1,600g/eqを上回る場合は硬化物の機械特性が悪化する傾向にあり好ましくない。   The epoxy equivalent of the block type siloxane compound (D) (measured by the method described in JIS K-7236) is preferably 300 to 1,600 g / eq, more preferably 400 to 1,000 g / eq, The thing of 450-900 g / eq is especially preferable. When the epoxy equivalent is less than 300 g / eq, the cured product is hard and the elastic modulus tends to be too high, and when it exceeds 1,600 g / eq, the mechanical properties of the cured product tend to deteriorate.

ブロック型シロキサン化合物(D)の粘度(E型粘度計、25℃で測定)は50〜20,000mPa・sのものが好ましく、500〜10,000mPa・sのものがより好ましく、特に800〜5,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さない恐れがあり、20,000mPa・sを上回る場合は、粘度が高すぎて作業性に劣る場合がある。   The viscosity of the block-type siloxane compound (D) (E-type viscometer, measured at 25 ° C.) is preferably 50 to 20,000 mPa · s, more preferably 500 to 10,000 mPa · s, particularly 800 to 5 1,000 mPa · s is preferred. If the viscosity is less than 50 mPa · s, the viscosity may be too low to be suitable for use as an optical semiconductor encapsulant, and if it exceeds 20,000 mPa · s, the viscosity may be too high and workability may be poor. is there.

ブロック型シロキサン化合物(D)中のシルセスキオキサン由来の、3つの酸素に結合しているケイ素原子の全ケイ素原子に対する割合は5〜50モル%が好ましく、8〜30モル%がより好ましく、特に10〜20モル%が好ましい。シルセスキオキサン由来の、3つの酸素に結合しているケイ素原子の全ケイ素原子に対する割合が5モル%を下回ると、鎖状シリコーンセグメントの特徴として硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきの懸念がある。また50モル%を上回るとシルセスキオキサンセグメントの特徴として硬化物が硬くなりすぎてしまうため、好ましくない。なお、この割合はアルコキシシラン(a)(およびアルコキシシラン(c))とシリコーンオイル(b)の当量比で決めることができる。
存在するケイ素原子の割合は、ブロック型シロキサン化合物(D)の1H NMR、29Si NMR、元素分析等によって求めることができる。
The proportion of silicon atoms bonded to three oxygens derived from silsesquioxane in the block-type siloxane compound (D) is preferably from 5 to 50 mol%, more preferably from 8 to 30 mol%, 10-20 mol% is especially preferable. When the ratio of silicon atoms bonded to three oxygens derived from silsesquioxane to all silicon atoms is less than 5 mol%, the cured product tends to be too soft as a characteristic of the chain silicone segment, and surface tack There are concerns about injury. On the other hand, if it exceeds 50 mol%, the cured product becomes too hard as a feature of the silsesquioxane segment, which is not preferable. This ratio can be determined by the equivalent ratio of alkoxysilane (a) (and alkoxysilane (c)) and silicone oil (b).
The proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the block siloxane compound (D).

多価カルボン酸(B)は少なくとも2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とすることを特徴とする化合物である。
多価カルボン酸(B)としては、2〜6官能のカルボン酸が好ましく、炭素数5以上の2〜6官能の多価アルコールと酸無水物との反応により得られた化合物がより好ましい。さらには上記酸無水物が飽和脂肪族環状酸無水物であるポリカルボン酸が好ましい。
2〜6官能の多価アルコールとしてはアルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
The polyvalent carboxylic acid (B) is a compound having at least two or more carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton.
As the polyvalent carboxylic acid (B), a bifunctional to hexafunctional carboxylic acid is preferable, and a compound obtained by a reaction of a C6-C6 bifunctional polyhydric alcohol and an acid anhydride is more preferable. Furthermore, the polycarboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable.
As the 2- to 6-functional polyhydric alcohol, the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1.3-propanediol, neopentyl glycol, Diols such as tricyclodecane dimethanol and norbornenediol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, ditrimethylo Tetraols such as propane, and the like hexaol such as dipentaerythritol.

特に好ましいアルコール類としては炭素数が5以上のアルコールであり、特に1,6-ヘキサンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、2,4−ジエチルペンタンジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類がより好ましい。   Particularly preferred alcohols are alcohols having 5 or more carbon atoms, particularly 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2, Compounds such as 4-diethylpentanediol, 2-ethyl-2-butyl-1.3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol are preferred, and 2-ethyl-2-butyl-1. Alcohols having a branched chain structure or a cyclic structure such as 3-propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol are more preferable.

酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物が好ましい。
付加反応の条件としては特に指定はないが、具体的な反応条件の1つとしては酸無水物、多価アルコールを無触媒、無溶剤の条件下、40〜150℃で反応させ加熱し、反応終了後、そのまま取り出す。という手法である。ただし、本反応条件に限定されない。
Examples of acid anhydrides include methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane- 2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and the like are preferable, Of these, methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are preferable.
Although there is no particular designation as a condition for the addition reaction, one specific reaction condition is that the acid anhydride and polyhydric alcohol are reacted in a non-catalytic and solvent-free condition at 40 to 150 ° C. and heated to react. After completion, take it out as it is. It is a technique. However, it is not limited to this reaction condition.

多価カルボン酸(B)としては、特に下記式(5)   As the polyvalent carboxylic acid (B), in particular, the following formula (5)

Figure 0005698453
(式中、複数存在するQは、水素原子、メチル基、カルボキシル基の1種以上を表す。Pは前述の多価アルコール由来の炭素数2〜20の鎖状、環状の脂肪族基である。nは多価アルコールの価数を表す。)
で表される化合物が好ましい。
Figure 0005698453
(In the formula, multiple Qs represent one or more of a hydrogen atom, a methyl group, and a carboxyl group. P is a chain-like, cyclic aliphatic group having 2 to 20 carbon atoms derived from the aforementioned polyhydric alcohol. N represents the valence of the polyhydric alcohol.)
The compound represented by these is preferable.

本発明のエポキシ樹脂組成物は酸無水物(C)を含有することが好ましい。酸無水物としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、などの酸無水物が挙げられる。
特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物などが好ましい。
特に好ましくは下記式(6)
The epoxy resin composition of the present invention preferably contains an acid anhydride (C). Specific examples of acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride Acid, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3- And acid anhydrides such as dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride.
In particular, methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid An acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and the like are preferable.
Particularly preferably, the following formula (6)

Figure 0005698453
(式中、Rは、水素原子、メチル基、カルボキシル基の1種以上を表す。)
で表されるヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物が好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物が好ましい。
Figure 0005698453
(In the formula, R 3 represents one or more of a hydrogen atom, a methyl group, and a carboxyl group.)
And preferably hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride represented by the formula: methylhexahydrophthalic anhydride, cyclohexane-1,3, 4-Tricarboxylic acid-3,4-anhydride is preferred.

酸無水物(C)を使用する場合、多価カルボン酸(B)との使用比率が下記範囲であることが好ましい。

W1/(W1+W2)=0.05〜0.70

ただし、W1は多価カルボン酸(B)の配合重量部、W2は酸無水物(C)の配合重量部を示す。W1/(W1+W2)の範囲として、より好ましくは、0.05〜0.60、さらに好ましくは0.10〜0.55、特に好ましくは0.15〜0.4である。0.05を下回ると、硬化時に酸無水物の揮発が多くなる傾向がつよく、好ましくない。0.70を越えると高い粘度となり、取り扱いが難しくなる。
When using an acid anhydride (C), it is preferable that the use ratio with polyvalent carboxylic acid (B) is the following range.

W1 / (W1 + W2) = 0.05-0.70

However, W1 shows the mixing | blending weight part of polyhydric carboxylic acid (B), W2 shows the mixing | blending weight part of an acid anhydride (C). The range of W1 / (W1 + W2) is more preferably 0.05 to 0.60, still more preferably 0.10 to 0.55, and particularly preferably 0.15 to 0.4. If it is less than 0.05, the volatilization of the acid anhydride tends to increase during curing, which is not preferable. If it exceeds 0.70, the viscosity becomes high and handling becomes difficult.

本発明のエポキシ樹脂組成物はエポキシ樹脂としてオルガノポリシロキサン(A)、硬化剤として多価カルボン酸(B)を必須成分とし、酸無水物(C)を任意成分として含有するが、更に他のエポキシ樹脂や他の硬化剤を含有させることもできる。   The epoxy resin composition of the present invention contains an organopolysiloxane (A) as an epoxy resin, a polycarboxylic acid (B) as an essential component as a curing agent, and an acid anhydride (C) as an optional component. Epoxy resins and other curing agents can also be included.

他のエポキシ樹脂を併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は60重量%以上が好ましく、特に70重量%以上が好ましい。   When other epoxy resins are used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 60% by weight or more, particularly preferably 70% by weight or more.

使用できる他のエポキシ樹脂のとしては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。   Examples of other epoxy resins that can be used include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetaldehyde Non, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols Solid or liquid epoxy resins such as chemical compounds, alicyclic epoxy resins, glycidyl amine epoxy resins, glycidyl ester epoxy resins and the like are not limited thereto. These may be used alone or in combination of two or more.

特に本発明のエポキシ樹脂組成物は光学用途に用いることを主たる目的とする。光学用途に用いる場合、脂環式エポキシ樹脂の併用は好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(特開2003−170059号公報、特開2004−262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(特開2006−052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1.3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
In particular, the epoxy resin composition of the present invention is mainly used for optical applications. When used for optical applications, the combined use of alicyclic epoxy resins is preferred. In the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
These epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in JP-A-2003-170059, JP-A-2004-262871, etc.), and further transesterification of cyclohexene carboxylic acid ester (JP-A-2006-052187). And the like, which are obtained by oxidizing a compound that can be produced by the method described in Japanese Patent Publication No.
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1.3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc. Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol, ditrimethylolpropane, etc. And the like. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.

さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
これらエポキシ樹脂の具体例としては、ERL−4221、UVR−6105、ERL−4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76−85)。
これらは単独で用いてもよく、2種以上併用してもよい。
Furthermore, the acetal compound by the acetal reaction of a cyclohexene aldehyde derivative and an alcohol form is mentioned.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Eporide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel). (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to these (Reference: Review Epoxy Resin Basic Edition I p76-85).
These may be used alone or in combination of two or more.

硬化剤として、他の硬化剤を併用する場合、多価カルボン酸(B)と酸無水物(C)の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
併用できる硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。使用できる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、酸無水物とシリコーン系のアルコール類との反応物(無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、などの酸無水物とカルビノール変性シリコーンなどのシリコーン系アルコール類との反応物など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物)、その他(イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
When other curing agents are used in combination as the curing agent, the proportion of the total amount of the polyvalent carboxylic acid (B) and the acid anhydride (C) in the total curing agent is preferably 30% by weight or more, particularly 40% by weight. The above is preferable.
Examples of the curing agent that can be used in combination include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.) , Reaction product of acid anhydride and silicone alcohol (phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, anhydrous Nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] Hep Reaction products of acid anhydrides such as cyclohexane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and silicone alcohols such as carbinol-modified silicone ), Polyhydric phenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, Phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydride Xylbenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl)- 1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4′-bis (chloromethyl) benzene, 1,4′-bis (methoxymethyl) benzene and the like Polycondensates and modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols), and others (imidazole, trifluoroborane-amine complexes, guanidine derivatives, etc.) But, It is not limited to these. These may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物においてエポキシ樹脂と硬化剤の配合比率は、全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量の硬化剤を使用することが好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。   In the epoxy resin composition of the present invention, the blending ratio of the epoxy resin and the curing agent is preferably 0.7 to 1.2 equivalents of the curing agent with respect to 1 equivalent of the epoxy groups of all epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.

本発明のエポキシ樹脂組成物においては、硬化剤とともに硬化触媒を使用することができる。使用できる硬化促進剤の具体例としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−ウンデシルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−エチル,4−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾールの各種イミダゾール類、および、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8−ジアザ−ビシクロ(5.4.0)ウンデセン−7等のジアザ化合物およびそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6−トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、およびこれら硬化触媒をマイクロカプセルにしたマイクロカプセル型硬化触媒等が挙げられる。これら硬化触媒のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化触媒は、エポキシ樹脂100重量部に対し通常0.001〜15重量部の範囲で使用される。   In the epoxy resin composition of the present invention, a curing catalyst can be used together with the curing agent. Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole. 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methyl Imidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2 ′ -Methylimidazole (1 ')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxy Various imidazoles of methylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and imidazoles and phthalic acid, isophthalic acid, Salts with polyvalent carboxylic acids such as terephthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid and succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as -7 and their teto Salts such as phenyl borate and phenol novolak, salts with the above polycarboxylic acids or phosphinic acids, ammonium salts such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, triphenylphosphine, tri (toluyl) Phosphines such as phosphine, tetraphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts and tin octylate, and the like Examples thereof include a microcapsule-type curing catalyst in which a curing catalyst is used as a microcapsule. Which of these curing catalysts is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. A curing catalyst is normally used in 0.001-15 weight part with respect to 100 weight part of epoxy resins.

本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。   The epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes A phosphorus-containing product obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned, and phosphoric esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / total epoxy resin = 0.1 to 0.6 (weight ratio). If it is 0.1 or less, the flame retardancy is insufficient, and if it is 0.6 or more, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.

さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、エポキシ樹脂と硬化剤の合計100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。   Furthermore, a binder resin can also be mix | blended with the epoxy resin composition of this invention as needed. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably in a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 100 parts by weight in total of the epoxy resin and the curing agent, 0.05 to 20 parts by weight is used as necessary.

本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において0〜95重量%を占める量が用いられる。更に本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。   If necessary, an inorganic filler can be added to the epoxy resin composition of the present invention. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is 0 to 95% by weight in the epoxy resin composition of the present invention. Furthermore, a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the epoxy resin composition of the present invention. be able to.

本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。   When the epoxy resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, as the particle size of the inorganic filler used, the transparency can be improved by using a nano-order level filler. It is possible to supplement mechanical strength without hindering. As a standard for the nano-order level, it is preferable from the viewpoint of transparency to use a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.

本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1〜250μm、特に2〜50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1〜80重量部、好ましくは、5〜60重量部が好ましい。 When the epoxy resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, a phosphor can be added as necessary. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When using these fluorescent substance, the addition amount is 1-80 weight part with respect to 100 weight part with respect to the resin component, Preferably, 5-60 weight part is preferable.

本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。   When the epoxy resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, thixo including silica fine powder (also called Aerosil or Aerosol) is used for the purpose of preventing sedimentation of various phosphors upon curing. A tropicity-imparting agent can be added. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.

本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、テトラキス(2,2,6,6−トトラメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールおよび3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1−ウンデカンオキシ−2,2,6,6−テトラメチルピペリジン−4−イル)カーボネート、2,2,6,6,−テトラメチル−4−ピペリジルメタクリレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチル−4−ピペリジニル−メタアクリレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル,1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル〕〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物、2,2,4,4−テトラメチル−20−(β−ラウリルオキシカルボニル)エチル−7−オキサ−3,20−ジアザジスピロ〔5・1・11・2〕ヘネイコサン−21−オン、β−アラニン,N,−(2,2,6,6−テトラメチル−4−ピペリジニル)−ドデシルエステル/テトラデシルエステル、N−アセチル−3−ドデシル−1−(2,2,6,6−テトラメチル−4−ピペリジニル)ピロリジン−2,5−ジオン、2,2,4,4−テトラメチル−7−オキサ−3,20−ジアザジスピロ〔5,1,11,2〕ヘネイコサン−21−オン、2,2,4,4−テトラメチル−21−オキサ−3,20−ジアザジシクロ−〔5,1,11,2〕−ヘネイコサン−20−プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4−メトキシフェニル)−メチレン〕−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)エステル、2,2,6,6−テトラメチル−4−ピペリジノールの高級脂肪酸エステル、1,3−ベンゼンジカルボキシアミド,N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−〔2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミド−メチル)−5−メチルフェニル〕ベンゾトリアゾール、2−(3−tert−ブチル−2−ヒドロキシ−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)ベンゾトリアゾール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−ドデシル−4−メチルフェノール等のベンゾトリアゾール系化合物、2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート等のベンゾエート系、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
The epoxy resin composition of the present invention contains an optical material, particularly an optical semiconductor encapsulant, which contains an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant for the purpose of preventing coloring. Can do.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6-6- Totramethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetrame Ru-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] bu Lumalonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ", N"'-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-Triazine- , 4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate And 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa- 3,20-diazadispiro [5 · 1 · 11 · 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7-oxa 3,20-diazadispiro [5,1,11,2] heneicosane-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11,2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester, 2,2,6,6-tetramethyl-4-piperidinol higher fatty acid ester, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) Hindered amines such as octabenzone, benzophenone compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1,3, -Tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimido-methyl) -5-methylphenyl Benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, Reaction product of methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazol-2-yl)- Benzotriazole compounds such as 6-dodecyl-4-methylphenol, 2,4 Benzoate series such as di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5 Examples include triazine compounds such as [(hexyl) oxy] phenol, and hindered amine compounds are particularly preferable.

前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、THINUVIN765、THINUVIN770DF、THINUVIN144、THINUVIN123、THINUVIN622LD、THINUVIN152、CHIMASSORB944、アデカ製として、LA−52、LA−57、LA−62、LA−63P、LA−77Y、LA−81、LA−82、LA−87などが挙げられる。
The following commercially available products can be used as the amine compound that is the light stabilizer.
The commercially available amine compound is not particularly limited. 62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.

前記リン系化合物としては特に限定されず、例えば、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−tert−ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−イソプロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、2,2'−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2'−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2'−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4'−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3'−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3'−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)−4,4'−ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。   The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hosuf Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4 ′ -Biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenyl Range phosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3'-biphenylene diphospho Knight, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis ( 2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butyl) Enyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl -Phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl Examples include phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate and the like.

上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデアスタブPEP−4C、アデアスタブPEP−8、アデアスタブPEP−24G、アデアスタブPEP−36、アデアスタブHP−10、アデアスタブ2112、アデアスタブ260、アデアスタブ522A、アデアスタブ1178、アデアスタブ1500、アデアスタブC、アデアスタブ135A、アデアスタブ3010、アデアスタブTPP等が挙げられる。   A commercial item can also be used for the said phosphorus compound. It does not specifically limit as a phosphorus compound marketed, For example, as a product made from ADEKA, Adeastab PEP-4C, Adeastab PEP-8, Adeastab PEP-24G, Adeastab PEP-36, Adeastab HP-10, Adeastab 2112, Adeastab 260 Adasterast 522A, Adasterab 1178, Adasterab 1500, Adasterab C, Adasterab 135A, Adasterab 3010, Adasterab TPP, and the like.

フェノール化合物としては特に限定はされず、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、n−オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,4−ジ−tert−ブチル−6−メチルフェノール、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス−〔2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ]−1,1−ジメチルエチル〕−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、2,2'−ブチリデンビス(4,6−ジ−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2'−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノールアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2−tert−ブチル−4−メチルフェノール、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、ビス−[3,3−ビス−(4'−ヒドロキシ−3'−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、ビス−[3,3−ビス−(4'−ヒドロキシ−3'−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル等が挙げられる。   The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentaerythrine Lithyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl-5 -Methyl-4-hydroxyphenyl) propionate], 2,2'-butylidenebis (4,6-di-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 2,2 '-Methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) 2), 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di-) tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6) -Tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4'-thiobis (3-methyl-6) -Tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), bis- [3 3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 2 -[1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4'-hydroxy- 3'-tert-butylphenyl) -butanoic acid] -glycol ester and the like.

上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO−20、アデカスタブAO−30、アデカスタブAO−40、アデカスタブAO−50、アデカスタブAO−60、アデカスタブAO−70、アデカスタブAO−80、アデカスタブAO−90、アデカスタブAO−330、住友化学工業製として、SumilizerGA−80、Sumilizer MDP−S、Sumilizer BBM−S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GPなどが挙げられる。   A commercial item can also be used for the said phenolic compound. There are no particular limitations on the commercially available phenolic compounds. For example, IRGANOX 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, IRGANOX 295, IRGANOX 3114 IRGANOX 1098, Adekas 1520L AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL CO., LTD., Sumilizer GA-80, Sumizer MDP-S, Sumili er BBM-S, Sumilizer GM, Sumilizer GS (F), and the like Sumilizer GP.

このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。   In addition, commercially available additives can be used as an anti-coloring agent for the resin. For example, THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be cited as those manufactured by Ciba Specialty Chemicals.

上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、該本発明のエポキシ樹脂組成物に対して、0.005〜5.0重量%の範囲である。   It is preferable to contain at least one of the phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but is 0.005 with respect to the epoxy resin composition of the present invention. The range is ˜5.0% by weight.

本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂成分と硬化剤成分並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材および配合剤等とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、得られたエポキシ樹脂組成物が液状である場合はポッティングやキャスティングにより、該組成物を基材に含浸したり、金型に流し込み注型したりして、加熱により硬化させる。また得られたエポキシ樹脂組成物が固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化させる。硬化温度、時間としては80〜200℃で2〜10時間である。硬化方法としては高温で一気に硬化させることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80〜150℃の間で初期硬化を行い、100℃〜200℃の間で後硬化を行う。硬化の段階としては2〜8段階に分けて昇温するのが好ましく、より好ましくは2〜4段階である。   The epoxy resin composition of this invention is obtained by mixing each component uniformly. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, an epoxy resin component, a curing agent component, and a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, a compounding agent, and the like, if necessary, uniformly using an extruder, kneader, roll, planetary mixer, etc. Mix thoroughly until the epoxy resin composition is obtained. If the resulting epoxy resin composition is liquid, the substrate is impregnated with a potting or casting, or poured into a mold and cast. Or cured by heating. When the obtained epoxy resin composition is solid, it is molded using a cast after casting or a transfer molding machine, and further cured by heating. The curing temperature and time are 80 to 200 ° C. and 2 to 10 hours. As a curing method, curing can be performed at a high temperature at a stretch, but it is preferable to increase the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed between 80 and 150 ° C., and post-curing is performed between 100 and 200 ° C. As the curing stage, the temperature is preferably divided into 2 to 8 stages, more preferably 2 to 4 stages.

また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。   Further, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, which contains glass fiber, -Making the cured product of the epoxy resin composition of the present invention by hot press molding a prepreg obtained by impregnating a base material such as bon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating. Can do. The solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent. Moreover, the epoxy resin hardened | cured material which contains a carbon fiber by a RTM system with a liquid composition can also be obtained.

また本発明のエポキシ樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
次に本発明のエポキシ樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
Moreover, the epoxy resin composition of this invention can also be used as a film type sealing composition. When obtaining such a film-type resin composition, the curable resin composition of the present invention is coated on the release film with the varnish, the solvent is removed under heating, and a B-stage adhesive is formed. Get. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
Next, the case where the epoxy resin composition of the present invention is used as an optical semiconductor sealing material or die bonding material will be described in detail.

本発明のエポキシ樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、エポキシ樹脂、硬化剤、カップルリング剤、酸化防止剤、光安定剤等の添加物を充分に混合することによりエポキシ樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。   When the epoxy resin composition of the present invention is used as a sealing material or die bond material for an optical semiconductor such as a high-intensity white LED, an addition of an epoxy resin, a curing agent, a coupling agent, an antioxidant, a light stabilizer, etc. An epoxy resin composition is prepared by thoroughly mixing the materials, and is used as a sealing material or as both a die bond material and a sealing material. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.

高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明のエポキシ樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明のエポキシ樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。   Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens. The epoxy resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the epoxy resin composition of the present invention for both the die bond material and the sealing material.

半導体チップを、本発明のエポキシ樹脂組成物を用いて、基板に接着する方法としては、本発明のエポキシ樹脂組成物をディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。   As a method of adhering a semiconductor chip to a substrate using the epoxy resin composition of the present invention, the epoxy resin composition of the present invention is applied by a dispenser, potting, or screen printing, and then the semiconductor chip is placed and heat-cured. Yes, the semiconductor chip can be bonded. For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.

加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。   The heating condition is preferably about 80 to 230 ° C. and about 1 minute to 24 hours, for example. For the purpose of reducing internal stress generated during heat curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.

封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。 加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
As a molding method of the sealing material, as described above, an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and molded, and the sealing material is formed on the mold. A compression molding method or the like in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from a mold is used.
Examples of the injection method include dispenser, transfer molding, injection molding and the like.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used. For example, the heating condition is preferably 80 to 230 ° C. and about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.

更に、エポキシ樹脂等の硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。   Furthermore, general applications in which a curable resin such as an epoxy resin is used include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards, electric wires). In addition to the encapsulating material, the encapsulating material, a cyanate resin composition for the substrate, an acrylic ester resin as a curing agent for the resist, an additive to other resins, and the like.

接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。   Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).

封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。   As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for QFP, BGA, CSP, etc., and sealing (including reinforcing underfill) can be used.

本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。   The cured product obtained in the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate Front glass protective films, front glass substitute material, an adhesive. In the optical recording field, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate material for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.

光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。   In the optical equipment field, they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor sections. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. As the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wireness, fuel hoses, automobile lamps, glass replacements. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wireness, and corrosion-resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. Next-generation optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.

封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。   As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for sealing, and sealing (reinforcing underfill) when mounting IC packages such as BGA and CSP.

光学用材料の他の用途としては、エポキシ樹脂組成物が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。   Other uses of optical materials include general uses in which epoxy resin compositions are used. For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials In addition to the sealant (including printed circuit boards and wire coatings), additives to other resins and the like can be mentioned. Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).

以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、実施例中の各物性値は以下の方法で測定した。
(1)分子量:GPC法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF−G LF−804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
(2)エポキシ当量:JIS K−7236に記載の方法で測定。
(3)粘度:東機産業株式会社製E型粘度計(TV−20)を用いて25℃で測定。
Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples. The present invention is not limited to these synthesis examples and examples. In addition, each physical property value in an Example was measured with the following method.
(1) Molecular weight: Polystyrene conversion and weight average molecular weight measured under the following conditions were calculated by the GPC method.
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
(2) Epoxy equivalent: measured by the method described in JIS K-7236.
(3) Viscosity: Measured at 25 ° C. using an E-type viscometer (TV-20) manufactured by Toki Sangyo Co., Ltd.

合成例1
製造工程(i)として、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン106部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル234部(シラノール当量850、GPCを用いて測定した重量平均分子量の1/2として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液18部を反応容器に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。
製造工程(ii)として、メタノールを305部追加後、50%蒸留水メタノール溶液86.4部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)380部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより反応性官能基を有するオルガノポリシロキサン化合物(A−1)300部を得た。得られた化合物のエポキシ当量は729g/eq、重量平均分子量は2200、外観は無色透明であった。
Synthesis example 1
As production step (i), 106 parts of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 234 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured GPC value) (silanol equivalent 850, using GPC) 18 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into the reaction vessel, the bath temperature was set to 75 ° C., and the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 8 hours.
As a manufacturing process (ii), after adding 305 parts of methanol, 86.4 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. 380 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. Subsequently, 300 parts of organopolysiloxane compounds (A-1) which have a reactive functional group were obtained by removing a solvent at 100 degreeC under pressure reduction of an organic phase. The epoxy equivalent of the obtained compound was 729 g / eq, the weight average molecular weight was 2200, and the appearance was colorless and transparent.

合成例2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール20部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH 以下、酸無水物(C−1)と称す)100部を加え、40℃で3時間反応後70℃で、1時間加熱撹拌を行うことによりGPCによりトリシクロデカンジメタノールの消失(1面積%以下)を確認した。)多価カルボン酸(B−1)と酸無水物(C−1) を含有する硬化剤組成物(H−1)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−1;下記式(7))を55面積%、メチルヘキサヒドロフタル酸無水物が45面積%であった。また、官能基当量は201g/eq.であった。
Synthesis example 2
A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen while 20 parts of tricyclodecane dimethanol, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH or less, acid anhydride) 100 parts of product (referred to as product (C-1)) was added, reacted at 40 ° C. for 3 hours and then heated and stirred at 70 ° C. for 1 hour to confirm the disappearance of tricyclodecane dimethanol (1 area% or less) by GPC did. ) 120 parts of a curing agent composition (H-1) containing a polycarboxylic acid (B-1) and an acid anhydride (C-1) were obtained. The resulting colorless liquid resin had a GPC purity of 55 area% for polycarboxylic acid (B-1; the following formula (7)) and 45 area% for methylhexahydrophthalic anhydride. The functional group equivalent was 201 g / eq. Met.

Figure 0005698453
Figure 0005698453

合成例3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール15部、酸無水物(C−1)70部、シクロヘキサン−1,2,4−トリカルボン酸-1,2-無水物(三菱ガス化学製 H−TMAn 以下、酸無水物(C−2)と称す)15部を加え、40℃で3時間反応後70℃で、1時間加熱撹拌を行うことにより(GPCによりトリシクロデカンジメタノールの消失(1面積%以下)を確認した。)、多価カルボン酸(B−2)と酸無水物(C−2)を含有する硬化剤組成物(H−2)が100部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−2;下記式(8))を37面積%、酸無水物(C−2)が11面積%、酸無水物(C−1)が52面積%であった。また、官能基当量は171g/eq.であった。
Synthesis example 3
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen, while 15 parts of tricyclodecane dimethanol, 70 parts of acid anhydride (C-1), cyclohexane-1,2,4-tricarboxylic acid- Add 15 parts of 1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical Co., Ltd., hereinafter referred to as acid anhydride (C-2)), react at 40 ° C. for 3 hours, and then heat and stir at 70 ° C. for 1 hour. (Disappearance of tricyclodecane dimethanol (1 area% or less) was confirmed by GPC.), A curing agent composition containing a polycarboxylic acid (B-2) and an acid anhydride (C-2) (H -2) was obtained 100 parts. The obtained colorless liquid resin has a GPC purity of 37% by area of polycarboxylic acid (B-2; the following formula (8)), 11% of acid anhydride (C-2), and acid anhydride. (C-1) was 52 area%. The functional group equivalent was 171 g / eq. Met.

Figure 0005698453
Figure 0005698453

合成例4
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら1,4−シクロヘキサンジメタノール20部、メチルヘキサヒドロフタル酸無水物とヘキサヒドロ無水フタル酸無水物(新日本理化(株)製、リカシッドMH−700 以下、酸無水物C−3と称す)100部を加え、40℃で、3時間反応後70℃で1時間加熱撹拌を行うことにより(GPCにより1,4−シクロヘキサンジメタノールの消失(1面積%以下)を確認した。)、多価カルボン酸(B−3)と酸無水物(C−3)を含有する硬化剤組成物(H−3)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−3;下記式(9))を57面積%、酸無水物(C−3)が43面積%であった。また、官能基当量は200g/eq.であった。
Synthesis example 4
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen while 20 parts of 1,4-cyclohexanedimethanol, methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika Co., Ltd.) ), Ricacid MH-700 (hereinafter referred to as “anhydride C-3”) 100 parts was added, reacted at 40 ° C. for 3 hours, and then heated and stirred at 70 ° C. for 1 hour (1,4-cyclohexane by GPC). Disappearance of dimethanol (1 area% or less) was confirmed.), 120 parts of a curing agent composition (H-3) containing polycarboxylic acid (B-3) and acid anhydride (C-3) was obtained. It was. The obtained colorless liquid resin had a GPC purity of 57 area% for the polycarboxylic acid (B-3; the following formula (9)) and 43 area% for the acid anhydride (C-3). The functional group equivalent was 200 g / eq. Met.

Figure 0005698453
Figure 0005698453

合成例5
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら1,6−ヘキサンジオール20部、酸無水物(C−3)100部を加え、40℃で3時間反応後70℃で、1時間加熱撹拌を行うことにより(GPCにより1,6−ヘキサンジオールの消失(1面積%以下)を確認した。)、多価カルボン酸(B−4)と酸無水物(C−3)を含有する硬化剤組成物(H−4)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−4;下記式(11))を65面積%、酸無水物(C−3)が35面積%であった。また、官能基当量は200g/eq.であった。
Synthesis example 5
To a flask equipped with a stirrer, a reflux condenser and a stirrer, 20 parts of 1,6-hexanediol and 100 parts of acid anhydride (C-3) were added while purging with nitrogen. By heating and stirring at 1 ° C. for 1 hour (disappearance of 1,6-hexanediol (1 area% or less) was confirmed by GPC), polyvalent carboxylic acid (B-4) and acid anhydride (C— 120 parts of curing agent composition (H-4) containing 3) was obtained. It was the obtained colorless liquid resin, and the purity by GPC was 65 area% for polycarboxylic acid (B-4; the following formula (11)) and 35 area% for acid anhydride (C-3). The functional group equivalent was 200 g / eq. Met.

Figure 0005698453
Figure 0005698453

合成例6
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら2,4−ジエチルペンタンジオール20部、酸無水物(C−3)100部を加え、40℃で3時間反応後70℃で、1時間加熱撹拌を行うことにより(GPCにより2,4−ジエチルペンタンジオールの消失(1面積%以下)を確認した。)、多価カルボン酸(B−5)と酸無水物(C−3)を含有する硬化剤組成物(H−5)が120部得られた。得られた無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−5;下記式(12))を50面積%、酸無水物(C−3)が50面積%であった。また、官能基当量は201g/eq.であった。
Synthesis Example 6
To a flask equipped with a stirrer, reflux condenser, and stirrer, 20 parts of 2,4-diethylpentanediol and 100 parts of acid anhydride (C-3) were added while purging with nitrogen, and reacted at 40 ° C. for 3 hours. By heating and stirring at 70 ° C. for 1 hour (disappearance of 2,4-diethylpentanediol (1 area% or less) was confirmed by GPC), polycarboxylic acid (B-5) and acid anhydride ( 120 parts of a curing agent composition (H-5) containing C-3) was obtained. It was the obtained colorless liquid resin, and the purity by GPC was 50 area% for polyvalent carboxylic acid (B-5; the following formula (12)) and 50 area% for acid anhydride (C-3). The functional group equivalent was 201 g / eq. Met.

Figure 0005698453
Figure 0005698453

実施例1、2、3、4、5、比較例1
エポキシ樹脂として合成例1で得られたオルガノポリシロキサン化合物(A−1)、実施例用硬化剤として、合成例2、3、4、5、6で得られた硬化剤組成物(H−1)、(H−2)、(H−3)、(H−4)(H−5)、比較例用硬化剤として、酸無水物(C−3)を用い、硬化促進剤として硬化促進剤(日本化学工業製 ヒシコーリンPX4MP 以下、触媒I−1と称す。)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用のエポキシ樹脂組成物を得た。
Examples 1, 2, 3, 4, 5, Comparative Example 1
The organopolysiloxane compound (A-1) obtained in Synthesis Example 1 as an epoxy resin, and the curing agent composition (H-1) obtained in Synthesis Examples 2, 3, 4, 5, and 6 as curing agents for Examples. ), (H-2), (H-3), (H-4) (H-5), a curing accelerator for a comparative example, an acid anhydride (C-3) is used, and a curing accelerator is used as a curing accelerator. (Nippon Kagaku Kogyo Hishicolin PX4MP, hereinafter referred to as catalyst I-1) was used and blended at the blending ratio (parts by weight) shown in Table 1 below, defoamed for 20 minutes, and the present invention or comparative epoxy A resin composition was obtained.

(腐食ガス透過性試験)
得られた硬化性樹脂組成物を用い、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。結果については、表1に示した。
(Corrosion gas permeability test)
Using the obtained curable resin composition, filling into a syringe and using a precision discharge device, an outer diameter 5 mm square surface-mount LED package (with an inner diameter of 4.4 mm and an outer wall height of 1) on which a chip having a central emission wave of 465 nm is mounted. .25 mm). The cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours, and an LED package was prepared. The LED package was left in a corrosive gas under the following conditions, and the color change of the silver-plated lead frame part inside the seal was observed. The results are shown in Table 1.

測定条件
腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食ガス性にすぐれていると判断した。
観察は10分後、30分後、1時間後、2時間後で取り出して確認をし、評価は変色無しの物を○、茶色〜褐色の物を×、完全に黒化した物を××と記した。
Measurement conditions Corrosion gas: 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
Contact method: A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
Judgment of corrosion: The time when the lead frame inside the LED package was discolored black (referred to as blackening) was observed, and it was determined that the longer the discoloration time, the better the corrosion gas resistance.
Observation was taken out after 10 minutes, 30 minutes, 1 hour, 2 hours and confirmed. Evaluation was ○ for undiscolored products, × for brown-brown materials, and XX for completely blackened materials. It was written.

Figure 0005698453
Figure 0005698453

上記結果より、本発明のエポキシ樹脂組成物(オルガノポリシロキサン化合物と多価カルボン酸を含有する組成物)は、比較例のエポキシ樹脂組成物(シロキサン化合物と酸無水物を含有する)にくらべ、リードフレームの銀メッキが変色しないことが明らかになり、耐腐食ガス性に優れている。   From the above results, the epoxy resin composition of the present invention (a composition containing an organopolysiloxane compound and a polyvalent carboxylic acid) is compared to the epoxy resin composition of a comparative example (containing a siloxane compound and an acid anhydride), It becomes clear that the silver plating of the lead frame is not discolored, and has excellent corrosion gas resistance.

Claims (4)

オルガノポリシロキサン(A)と多価カルボン酸(B)を必須成分とするエポキシ樹脂組成物
ただし、
オルガノポリシロキサン(A):
少なくとも、その分子中にグシジル基および/またはエポキシシクロヘキシル基を有するエポキシ樹脂であって、下記一般式(1)で表されるアルコキシシラン化合物(a)と下記一般式(2)で表されるシリコーンオイル(b)を反応させた後にアルコキシ基同士の加水分解縮合を行うことにより製造したブロック型シロキサン化合物、または、下記一般式(1)で表されるアルコキシシラン化合物(a)と下記一般式(2)で表されるシリコーンオイル(b)と下記一般式(3)で表されるアルコキシシラン化合物(c)とを反応させた後にアルコキシ基同士の加水分解縮合を行うことにより製造したブロック型シロキサン化合物。

Figure 0005698453

(一般式(1)中、Xはグシジル基および/またはエポキシシクロヘキシル基を有する有機基を示す。複数存在するRは炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基を示し、互いに同一であっても異なっていてもよい。)
Figure 0005698453
(一般式(2)中、複数存在するRは炭素数1〜10のアルキル基、炭素数6〜14のアリール基、炭素数2〜10のアルケニル基を示し、互いに同一であっても異なっていてもよい。mは繰り返し単位数を表す。)
Figure 0005698453
(一般式(3)中のR4は、メチル基又はフェニル基を示す。複数存在するRは炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基を示し、互いに同一であっても異なっていてもよい。)
多価カルボン酸(B):
少なくとも2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とする多価カルボン酸。
An epoxy resin composition comprising organopolysiloxane (A) and polyvalent carboxylic acid (B) as essential components,
Organopolysiloxane (A):
At least, an epoxy resin having a grayed glycidyl group and / or an epoxycyclohexyl group in the molecule, represented by an alkoxysilane compound represented by the following general formula (1) (a) and the following general formula (2) Block type siloxane compound produced by hydrolyzing and condensing alkoxy groups after reacting silicone oil (b), or an alkoxysilane compound (a) represented by the following general formula (1) and the following general formula A block produced by reacting a silicone oil (b) represented by the formula (2) with an alkoxysilane compound (c) represented by the following general formula (3) and then hydrolyzing and condensing the alkoxy groups. Type siloxane compound.

Figure 0005698453

(In the general formula (1), X is R 2 that. Plurality of an organic group having a grayed glycidyl group and / or an epoxycyclohexyl group is a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms And may be the same as or different from each other.)
Figure 0005698453
(In the general formula (2), a plurality of R 3 s represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms. M represents the number of repeating units.)
Figure 0005698453
(R 4 in the general formula (3) represents a methyl group or a phenyl group. A plurality of R 5 s represent a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms and are identical to each other. Or different.)
Polyvalent carboxylic acid (B):
A polyvalent carboxylic acid having at least two or more carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton.
酸無水物(C)を含有することを特徴とする請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, comprising an acid anhydride (C). 多価カルボン酸が炭素数5以上の2〜6官能の多価アルコールと飽和脂肪族環状酸無水物との反応により得られた化合物であることを特徴とする請求項1、2いずれか一項に記載のエポキシ樹脂組成物。 The polyhydric carboxylic acid is a compound obtained by a reaction of a C6-C6 di- or polyfunctional polyhydric alcohol and a saturated aliphatic cyclic acid anhydride. The epoxy resin composition described in 1. 請求項3に記載のエポキシ脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the epoxy fat composition of Claim 3.
JP2009256810A 2009-11-10 2009-11-10 Epoxy resin composition Expired - Fee Related JP5698453B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009256810A JP5698453B2 (en) 2009-11-10 2009-11-10 Epoxy resin composition
KR1020127011971A KR20120115221A (en) 2009-11-10 2010-11-09 Epoxy resin composition
CN201080050932.7A CN102686633B (en) 2009-11-10 2010-11-09 Composition epoxy resin
PCT/JP2010/069906 WO2011058962A1 (en) 2009-11-10 2010-11-09 Epoxy resin composition
TW103142340A TW201509979A (en) 2009-11-10 2010-11-10 Epoxy resin composition
TW099138601A TWI564318B (en) 2009-11-10 2010-11-10 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256810A JP5698453B2 (en) 2009-11-10 2009-11-10 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2011102337A JP2011102337A (en) 2011-05-26
JP5698453B2 true JP5698453B2 (en) 2015-04-08

Family

ID=43991621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256810A Expired - Fee Related JP5698453B2 (en) 2009-11-10 2009-11-10 Epoxy resin composition

Country Status (5)

Country Link
JP (1) JP5698453B2 (en)
KR (1) KR20120115221A (en)
CN (1) CN102686633B (en)
TW (2) TWI564318B (en)
WO (1) WO2011058962A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472924B2 (en) * 2010-10-21 2014-04-16 日本化薬株式会社 Curable resin composition and cured product thereof
TWI609917B (en) * 2011-05-31 2018-01-01 Ajinomoto Co., Inc. Resin composition
JP6162557B2 (en) * 2012-09-21 2017-07-12 日本化薬株式会社 Transparent adhesive material
CN103342878B (en) * 2013-06-21 2015-12-09 华东理工大学 Based on molecular composite material and the preparation method of polybenzoxazole and thermosetting resin
KR102188989B1 (en) * 2013-10-16 2020-12-09 닛뽄 가야쿠 가부시키가이샤 Curable resin composition and cured product thereof
JP6143359B2 (en) * 2013-11-19 2017-06-07 日本化薬株式会社 Silicone-modified epoxy resin and composition thereof
JP6404110B2 (en) * 2014-12-18 2018-10-10 信越化学工業株式会社 Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound and cured product thereof
JP6952773B2 (en) * 2017-06-23 2021-10-20 三井化学株式会社 Image display device encapsulant and image display device encapsulation sheet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203923A (en) * 2002-12-24 2004-07-22 Nof Corp Silicone resin composition and application
JP2004292706A (en) * 2003-03-27 2004-10-21 Nof Corp Optical semiconductor sealing epoxy resin composition, and optical semiconductor device
JP4831992B2 (en) * 2005-04-08 2011-12-07 ヘンケルエイブルスティックジャパン株式会社 Translucent resin composition
JP4641869B2 (en) * 2005-06-02 2011-03-02 日本化薬株式会社 Epoxy resin liquid composition for optical semiconductors
JP2007106798A (en) * 2005-10-11 2007-04-26 Jsr Corp Composition for optical semiconductor encapsulation, optical semiconductor encapsulating agent and manufacturing process of composition for optical semiconductor encapsulation
JP4935972B2 (en) * 2005-12-21 2012-05-23 Jsr株式会社 Composition for optical semiconductor encapsulation, method for producing the same, and optical semiconductor encapsulant
JP5524480B2 (en) * 2006-05-18 2014-06-18 日本化薬株式会社 Thermosetting resin composition and cured product thereof
JP5344789B2 (en) * 2006-12-28 2013-11-20 新日鉄住金化学株式会社 Novel epoxy resin, epoxy resin composition containing the epoxy resin as an essential component, and cured product containing the epoxy resin as an essential component
JP2009114372A (en) * 2007-11-08 2009-05-28 Nippon Steel Chem Co Ltd Polyfunctional epoxy silicone resin, manufacturing method thereof, and resin composition
JP5179839B2 (en) * 2007-11-08 2013-04-10 株式会社ダイセル Epoxy resin composition and cured product thereof
JP5246749B2 (en) * 2008-03-04 2013-07-24 日本化薬株式会社 Thermosetting resin composition and cured product thereof
TWI491590B (en) * 2009-06-22 2015-07-11 Nippon Kayaku Kk Multivalent carboxylic acid composition, curable resin composition, cured article and method for producing multivalent carboxylic acid composition
TWI488890B (en) * 2009-10-06 2015-06-21 Nippon Kayaku Kk A polycarboxylic acid composition and a method for producing the same, and a hardening resin composition comprising the polycarboxylic acid composition

Also Published As

Publication number Publication date
JP2011102337A (en) 2011-05-26
CN102686633A (en) 2012-09-19
CN102686633B (en) 2015-10-07
TW201509979A (en) 2015-03-16
KR20120115221A (en) 2012-10-17
TWI564318B (en) 2017-01-01
WO2011058962A1 (en) 2011-05-19
TW201134846A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP5878862B2 (en) Curable resin composition and cured product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
JP5348764B2 (en) Curable resin composition for optical semiconductor encapsulation, and cured product thereof
JP5626856B2 (en) Curable resin composition and cured product thereof
JP5433705B2 (en) Curable resin composition and cured product thereof
JP5768047B2 (en) Curable resin composition and cured product thereof
JP5698453B2 (en) Epoxy resin composition
JP6143359B2 (en) Silicone-modified epoxy resin and composition thereof
JP5561778B2 (en) Curable resin composition and cured product thereof
JP5472924B2 (en) Curable resin composition and cured product thereof
JP5300148B2 (en) Epoxy resin composition, curable resin composition
JP5700618B2 (en) Epoxy resin composition, curable resin composition
JP2014237861A (en) Epoxy resin composition and curable resin composition
JP5995238B2 (en) Epoxy resin and epoxy resin composition
JP5832601B2 (en) Curable resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5698453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees