JP5559207B2 - Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device - Google Patents

Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device Download PDF

Info

Publication number
JP5559207B2
JP5559207B2 JP2011547586A JP2011547586A JP5559207B2 JP 5559207 B2 JP5559207 B2 JP 5559207B2 JP 2011547586 A JP2011547586 A JP 2011547586A JP 2011547586 A JP2011547586 A JP 2011547586A JP 5559207 B2 JP5559207 B2 JP 5559207B2
Authority
JP
Japan
Prior art keywords
acid
resin composition
reaction
epoxy resin
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011547586A
Other languages
Japanese (ja)
Other versions
JPWO2011078205A1 (en
Inventor
健一 窪木
政隆 中西
智江 佐々木
正人 鎗田
義浩 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2011547586A priority Critical patent/JP5559207B2/en
Publication of JPWO2011078205A1 publication Critical patent/JPWO2011078205A1/en
Application granted granted Critical
Publication of JP5559207B2 publication Critical patent/JP5559207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Description

本発明は電気電子材料用途に好適な、新規なジオレフィン化合物並びにそれを酸化してなるエポキシ樹脂に関する。また、本発明は前記エポキシ樹脂を含んでなる硬化性樹脂組成物とその硬化物に関する。さらに、本発明は前記硬化性樹脂組成物で硬化・封止することで得られる光半導体装置に関する。   The present invention relates to a novel diolefin compound suitable for use in electrical and electronic materials and an epoxy resin obtained by oxidizing the compound. The present invention also relates to a curable resin composition comprising the epoxy resin and a cured product thereof. Furthermore, this invention relates to the optical semiconductor device obtained by hardening and sealing with the said curable resin composition.

エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては封止が困難な物が増加している。例えばEnhancedBGAのようなキャビティーダウンタイプの構造になっているものは部分封止を行う必要があり、トランスファー成型では対応できない。このようなことから高機能な液状エポキシ樹脂の開発が求められている。
またコンポジット材、車の車体や船舶の構造材として、近年、その製造法の簡便さからRTM(Resin Transfer Molding)が使用されている。このような組成物においてはカーボンファイバー等への含浸のされやすさから低粘度のエポキシ樹脂が望まれている。
Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials, casting materials and resists. In recent years, especially in the field of semiconductor-related materials, electronic devices such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become key to light, thin, short, and small. Very high characteristics have been demanded for packaging materials represented by resins. In particular, the structure of the tip package is complicated, and there are an increasing number of things that are difficult to seal without liquid sealing. For example, a cavity down type structure such as Enhanced BGA needs to be partially sealed and cannot be handled by transfer molding. For these reasons, the development of highly functional liquid epoxy resins has been demanded.
In recent years, RTM (Resin Transfer Molding) has been used as a composite material, a car body, and a structural material for a ship because of its simplicity of manufacturing method. In such a composition, a low-viscosity epoxy resin is desired because it is easily impregnated into carbon fiber or the like.

また、オプトエレクトロニクス関連分野では、特に近年の高度情報化に伴い、膨大な情報を円滑に伝送および処理するために、従来の電気配線による信号伝送に代わり、光信号を生かした技術が開発されている。中でも、光導波路、青色LEDおよび光半導体等の光学部品の分野においては、透明性に優れた樹脂の開発が望まれている。これらの要求に対し、脂環式のエポキシ樹脂が注目されている。   Also, in the field of optoelectronics, especially with the recent advancement of advanced information technology, in order to smoothly transmit and process a huge amount of information, a technology utilizing optical signals has been developed in place of conventional signal transmission using electrical wiring. Yes. In particular, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of resins having excellent transparency is desired. In response to these requirements, alicyclic epoxy resins have attracted attention.

脂環式エポキ樹脂はグリシジルエーテルタイプのエポキシ樹脂と比較し、電気絶縁性や透明性といった面で優れており、透明封止材料等に種々使用されている。しかしながら、特にLED用部材として用いるには、より高度な耐熱・耐光特性が求められている(特許文献1、2、3、4)。   An alicyclic epoxy resin is superior in terms of electrical insulation and transparency as compared with a glycidyl ether type epoxy resin, and is used in various ways as a transparent sealing material. However, more advanced heat resistance and light resistance characteristics are demanded particularly for use as a member for LED (Patent Documents 1, 2, 3, and 4).

日本国特開2006−52187号公報Japanese Unexamined Patent Publication No. 2006-52187 日本国特表2007−510772号公報Japan Special Table 2007-510772 日本国特開2007−16073号公報Japanese Unexamined Patent Publication No. 2007-16073 欧州特許出願公開第0051311号明細書European Patent Application No. 0051311

本発明は、耐熱性、光学特性(特に、透明性や耐光特性)、強靭性に優れる硬化物を与える新規な脂環エポキシ樹脂を提供することを目的とする。   An object of this invention is to provide the novel alicyclic epoxy resin which gives the hardened | cured material which is excellent in heat resistance, an optical characteristic (especially transparency and light resistance), and toughness.

本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、
(1)下記式(1)
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention
(1) The following formula (1)

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(トランス体)と下記(2) (Wherein a plurality of R's each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) and the following (2)

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(シス体)とからなり、その存在割合がトランス体:シス体=100:0〜25:75であるジオレフィン化合物、
(2)エステル交換反応によって得られる前項(1)記載のジオレフィン化合物、
(3)トランス体とシス体の比率が100:0〜30:70である前項(1)または(2)記載のジオレフィン化合物、
(4)前項(1)〜(3)のいずれか一項に記載のジオレフィン化合物を酸化することにより得られるエポキシ樹脂、
(5)過酸化水素および過酸のいずれかを用いてエポキシ化された前項(4)記載のエポキシ樹脂、
(6)前項(4)または(5)記載のエポキシ樹脂と硬化剤および/または硬化促進剤とを含有する硬化性樹脂組成物、
(7)前項(6)記載の硬化性樹脂組成物を硬化してなる硬化物、
(8)前項(6)記載の硬化性樹脂組成物を硬化・封止して得られる光半導体装置、
に関する。
(Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and the abundance ratio thereof is trans. Body: cis body = 100: 0 to 25:75 diolefin compound,
(2) The diolefin compound according to the above item (1) obtained by transesterification,
(3) The diolefin compound according to (1) or (2) above, wherein the ratio of the trans isomer to the cis isomer is 100: 0 to 30:70,
(4) An epoxy resin obtained by oxidizing the diolefin compound according to any one of (1) to (3) above,
(5) The epoxy resin according to the above item (4), which is epoxidized using any one of hydrogen peroxide and peracid,
(6) A curable resin composition containing the epoxy resin according to the above item (4) or (5) and a curing agent and / or a curing accelerator,
(7) Hardened | cured material formed by hardening | curing curable resin composition of preceding clause (6),
(8) An optical semiconductor device obtained by curing and sealing the curable resin composition described in (6) above,
About.

本発明のジオレフィン化合物を酸化して得られるエポキシ樹脂を含む硬化性樹脂組成物によれば、耐熱性、光学特性(特に、透明性や耐光特性)、強靭性に優れると共に低吸湿性にも優れた硬化物が得られる。
また、本発明のエポキシ樹脂を含む硬化性脂組成物は、電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジストなどの広範囲の用途に有用である。特に、本発明のエポキシ樹脂は芳香環を有さない脂環構造であるため、それを含む硬化性樹脂組成物は、光学材料、中でも光半導体装置の封止材料やボンディング材料として極めて有用である。
According to the curable resin composition containing an epoxy resin obtained by oxidizing the diolefin compound of the present invention, it has excellent heat resistance, optical characteristics (particularly transparency and light resistance characteristics), toughness and low moisture absorption. An excellent cured product can be obtained.
Moreover, the curable fat composition containing the epoxy resin of the present invention is useful for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, and resists. In particular, since the epoxy resin of the present invention has an alicyclic structure having no aromatic ring, the curable resin composition containing the epoxy resin is extremely useful as an optical material, particularly as a sealing material or bonding material for an optical semiconductor device. .

本発明のジオレフィン化合物は、下記式(1)   The diolefin compound of the present invention has the following formula (1):

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(トランス体)と下記式(2) (Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) and a diolefin compound (trans form) represented by the following formula (2):

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(シス体)とからなり、その存在割合がトランス体:シス体=100:0〜25:75であることを特徴とする。
かかる構成により、本発明のジオレフィン化合物を酸化して得られるエポキシ樹脂を含む硬化性樹脂組成物は、耐熱・耐光特性に優れるとともに低吸湿性の硬化物を形成することが可能となる。ジオレフィン化合物のトランス体:シス体の比率は、好ましくは100:0〜30:70、より好ましくは100:0〜40:60、特に好ましくは100:0〜45:55である。また、本発明のジオレフィン化合物を酸化して得られるエポキシ樹脂は脂環構造であるので光学特性が良い。また、一般的に市販されている脂環構造のエポキシ樹脂よりもエポキシ当量が大きいため、硬化物の架橋点間分子量が大きくなり、強靭性も併せ持つ。
(Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and the abundance ratio thereof is trans. Body: cis body = 100: 0 to 25:75.
With such a configuration, the curable resin composition containing an epoxy resin obtained by oxidizing the diolefin compound of the present invention is excellent in heat resistance and light resistance and can form a cured product with low hygroscopicity. The ratio of the trans isomer: cis isomer of the diolefin compound is preferably 100: 0 to 30:70, more preferably 100: 0 to 40:60, and particularly preferably 100: 0 to 45:55. Moreover, since the epoxy resin obtained by oxidizing the diolefin compound of the present invention has an alicyclic structure, it has good optical characteristics. Moreover, since an epoxy equivalent is larger than the epoxy resin of the alicyclic structure generally marketed, the molecular weight between the crosslinking points of hardened | cured material becomes large, and also has toughness.

前記式(1)、(2)で表されるジオレフィン化合物は通常シクロヘキサンジカルボン酸誘導体とシクロヘキセンメタノール誘導体との反応により得られるが、一般的に流通しているシクロヘキセンカルボン酸誘導体はシス体とトランス体の混合物で、その割合はおおよそトランス体:シス体=2:8という構成比である。したがって、このままエステル化反応を行うと、式(1)のトランス体:式(2)のシス体=2:8の混合物ができることになる。そこで本発明のトランス体:シス体=100:0〜25:75の比率のジオレフィン化合物またはエポキシ樹脂を得るためには以下の二つの方法がある。ひとつは日本国特開2008−63311号公報や日本国特開2003−128620号公報記載の方法により得られたトランス体が25%以上のシクロヘキサンジカルボン酸誘導体を使用してシクロヘキセンメタノール誘導体と脱水エステル化反応させる方法がある。この反応の場合は反応条件によってはトランス体がシス体に異性化してしまう可能性がある。もうひとつは脱水エステル化したあとにトランス体に異性化させる方法がある。   The diolefin compounds represented by the above formulas (1) and (2) are usually obtained by the reaction of a cyclohexanedicarboxylic acid derivative and a cyclohexenemethanol derivative, but generally used cyclohexenecarboxylic acid derivatives are cis and trans It is a mixture of the body, and the ratio is approximately a composition ratio of trans isomer: cis isomer = 2: 8. Therefore, when the esterification reaction is carried out as it is, a mixture of trans isomer of formula (1): cis cis isomer of formula (2) = 2: 8 can be formed. Therefore, in order to obtain a diolefin compound or an epoxy resin in a ratio of trans isomer: cis isomer = 100: 0 to 25:75 of the present invention, there are the following two methods. One is dehydration esterification with a cyclohexene methanol derivative using a cyclohexanedicarboxylic acid derivative having 25% or more of the trans isomer obtained by the method described in Japanese Patent Application Laid-Open No. 2008-63311 or Japanese Patent Application Laid-Open No. 2003-128620. There is a method of reacting. In this reaction, the trans isomer may be isomerized to the cis isomer depending on the reaction conditions. The other is a method of isomerizing to the trans isomer after dehydrating esterification.

脱水エステル化以外には、アルキルエステル化シクロヘキサンジカルボン酸誘導体とシクロヘキセンメタノール誘導体とでエステル交換反応を行う方法がある。エステル交換法においても本発明のトランス体:シス体構成比にするためには二通り考えられる。ひとつは日本国特開2009−126854号公報記載の方法により得られたトランス体25%以上のシクロヘキサンジカルボン酸誘導体ジアルキルエステルを使用する方法で、この場合反応中に異性化反応が進むことはほとんどない。もうひとつはトランス体比率の25%未満のアルキルエステル化シクロヘキサンジカルボン酸誘導体とシクロヘキサンメタノール誘導体を反応させた後に異性化してトランス体を25%以上にする方法がある。   In addition to dehydration esterification, there is a method of performing an ester exchange reaction between an alkylesterified cyclohexanedicarboxylic acid derivative and a cyclohexenemethanol derivative. In the transesterification method, there are two possible ways to achieve the trans isomer: cis isomer composition ratio of the present invention. One is a method using a cyclohexanedicarboxylic acid derivative dialkyl ester having a trans isomer of 25% or more obtained by the method described in Japanese Patent Application Laid-Open No. 2009-126854. In this case, the isomerization reaction hardly proceeds during the reaction. . The other is a method of reacting an alkyl esterified cyclohexanedicarboxylic acid derivative having a trans isomer ratio of less than 25% with a cyclohexanemethanol derivative and then isomerizing to make the trans isomer 25% or more.

以上の各方法において、エステル化後に異性化する方法は高温での反応が必要であり、オレフィンが重合等の副反応を起こす可能性があるため適当な方法ではない。好ましくはトランス体を25%以上含有するシクロヘキサンジカルボン酸誘導体またはそのアルキルエステル体とシクロヘキセンメタノール誘導体との反応による方法であるが、酸触媒を使う脱水エステル化の場合トランス体が多くても徐々に異性化してシス体が増加していくため、ほとんど異性化の起こらないエステル交換反応が最も好ましい。   In each of the above methods, the method of isomerization after esterification is not an appropriate method because a reaction at a high temperature is required and an olefin may cause a side reaction such as polymerization. The method is preferably a reaction of a cyclohexanedicarboxylic acid derivative containing 25% or more of a trans isomer or an alkyl ester thereof and a cyclohexenemethanol derivative. Since the cis isomer increases as a result, transesterification with little isomerization is most preferable.

脱水エステル化反応はシクロヘキサンジカルボン酸誘導体とシクロヘキセンメタノール誘導体を通常トルエン、キシレン、シクロヘキサンなどの非水溶性の溶剤に溶解または分散させ、酸触媒の存在下で共沸脱水で水を系外に排出しながら反応を行う。基本的に反応は還流条件下において行うが、より低温のほうが異性化や着色が少ないため、系内を減圧条件にして還流温度を下げて反応を行うほうが好ましい。
脱水エステル化反応で使用する触媒としては、酸触媒であれば良く、例えば塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p−トルエンスルホン酸、メタンスルホン酸、タングステン酸、リンタングステン酸等があげられるがこれらは単独でも二種以上併用しても良い。その使用量は、シクロヘキサンジカルボン酸誘導体とシクロヘキセンメタノール誘導体の合計量100重量部に対して、通常0.05〜5重量部、好ましくは0.1〜3重量部、より好ましくは0.3〜2重量部の範囲である。
シクロヘキセンメタノール誘導体はシクロヘキサンジカルボン酸誘導体のカルボニル基1当量に対して通常1〜10倍モル、好ましくは1〜6倍モルの範囲である。理論量である1倍モルでも反応は十分完結するが、着色が強くなるため光学用途に使用するには不向きである。一方、過剰にシクロヘキセンメタノール誘導体を用いれば着色は少なくなるが、反応終了後に未反応のシクロヘキセンメタノール誘導体を回収する必要がある。
In the dehydration esterification reaction, cyclohexanedicarboxylic acid derivatives and cyclohexenemethanol derivatives are usually dissolved or dispersed in non-water-soluble solvents such as toluene, xylene and cyclohexane, and water is discharged out of the system by azeotropic dehydration in the presence of an acid catalyst. While doing the reaction. The reaction is basically carried out under reflux conditions. However, since isomerization and coloration are less at lower temperatures, it is preferable to carry out the reaction by reducing the reflux temperature under reduced pressure in the system.
The catalyst used in the dehydration esterification reaction may be any acid catalyst such as hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, tungstic acid. Phosphotungstic acid, etc., but these may be used alone or in combination of two or more. The amount used is usually 0.05 to 5 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts per 100 parts by weight of the total amount of cyclohexanedicarboxylic acid derivative and cyclohexenemethanol derivative. The range is parts by weight.
A cyclohexene methanol derivative is 1-10 times mole normally with respect to 1 equivalent of carbonyl groups of a cyclohexane dicarboxylic acid derivative, Preferably it is the range of 1-6 times mole. Although the reaction is sufficiently completed even with a theoretical amount of 1 mol, it is unsuitable for use in optical applications because of strong coloring. On the other hand, if the cyclohexene methanol derivative is used in excess, the coloration is reduced, but it is necessary to recover the unreacted cyclohexene methanol derivative after the completion of the reaction.

エステル交換反応は、アルキルエステル化シクロヘキサンジカルボン酸誘導体のエステル基1当量に対してシクロヘキセンメタノール誘導体を通常1〜10倍モル、好ましくは1〜6倍モル、より好ましくは1〜4倍モル仕込み、触媒をエステル基1当量に対して通常1〜1000mg、好ましくは1〜500mg、より好ましくは10〜300mg仕込んで、通常100〜200℃、好ましくは120〜190℃、より好ましくは130〜180℃で反応させる。反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては2〜50時間、好ましくは4〜40時間、さらに好ましくは6〜30時間である。この際、副生成物であるアルコールは系外に随時排出させる。また、系内を減圧にしてアルコールを除去しやすくして反応を促進することも可能である。
エステル交換反応に用いられる触媒としては例えば、塩化第一スズ、オクタン酸第一スズ、ジブチルスズラウレート、ジブチルスズオキサイド、ジオクチルスズオキサイドなどのスズ系化合物、テトラブトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネートなどのチタン系化合物、水酸化ナトリウム、水酸化カリウム、重炭酸ナトリウム、重炭酸カリウム、水酸化カルシウム、水酸化リチウムなどのアルカリ金属、アルカリ土類金属化合物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムターシャルブトキシドなどのアルカリ金属アルコキシド、などが挙げられるがこれらに限定されることはなく2種以上を併用しても良い。
In the transesterification reaction, the cyclohexenemethanol derivative is usually charged in an amount of 1 to 10 times mol, preferably 1 to 6 times mol, more preferably 1 to 4 times mol based on 1 equivalent of the ester group of the alkylesterified cyclohexanedicarboxylic acid derivative, catalyst. Is usually 1 to 1000 mg, preferably 1 to 500 mg, more preferably 10 to 300 mg, and usually 100 to 200 ° C., preferably 120 to 190 ° C., more preferably 130 to 180 ° C. Let Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a large amount of energy. A preferable range is 2 to 50 hours, preferably 4 to 40 hours, and more preferably 6 to 30 hours. At this time, alcohol as a by-product is discharged from the system as needed. It is also possible to accelerate the reaction by reducing the pressure in the system to facilitate removal of alcohol.
Examples of the catalyst used in the transesterification reaction include tin compounds such as stannous chloride, stannous octoate, dibutyltin laurate, dibutyltin oxide, and dioctyltin oxide, tetrabutoxy titanate, tetraethoxy titanate, and tetrapropoxy titanate. Titanium compounds, sodium hydroxide, potassium hydroxide, sodium bicarbonate, potassium bicarbonate, calcium hydroxide, lithium hydroxide and other alkali metals, alkaline earth metal compounds, sodium methoxide, sodium ethoxide, potassium tertiary Examples include alkali metal alkoxides such as butoxide, but are not limited thereto, and two or more kinds may be used in combination.

脱水エステル化及びエステル交換反応のいずれにおいても、反応終了後、必要によりトルエン、キシレン、シクロヘキサン、メチルイソブチルケトン等の溶剤を加え、アルカリ水溶液で数回洗浄することで触媒の除去とある程度の脱色が行える。その後、廃水が中性になるまで水洗を繰り返し、最終的に加熱減圧下において溶剤および必要により過剰のシクロヘキセンメタノール誘導体を留去することで本発明のジオレフィン化合物を得ることができる。また、日本国特開平2003−488966号公報記載のように、反応終了後にシリカゲルあるいは活性白土などの固体吸着剤を添加して触媒の除去をおこなうこともできる。   In both dehydration esterification and transesterification reactions, after completion of the reaction, if necessary, a solvent such as toluene, xylene, cyclohexane, methyl isobutyl ketone is added and washed several times with an alkaline aqueous solution to remove the catalyst and to some extent decolorize. Yes. Thereafter, washing with water is repeated until the wastewater becomes neutral, and finally the diolefin compound of the present invention can be obtained by distilling off the solvent and, if necessary, excess cyclohexenemethanol derivative under heating and reduced pressure. Further, as described in JP-A-2003-488966, the catalyst can be removed by adding a solid adsorbent such as silica gel or activated clay after completion of the reaction.

本発明で使用されるシクロヘキサンジカルボン酸誘導体は、1,4−シクロヘキサンジカルボン酸もしくはこのアルキル置換体であり、トランス体:シス体の比率が100:0〜25:75の範囲のものである。
使用できるシクロヘキセンメタノール誘導体としては、3−シクロヘキセン−1−メタノール、3−メチル−3−シクロヘキセン−1−メタノール、4−メチル−3−シクロヘキセン−1−メタノール、2−メチル−3−シクロヘキセン−1−メタノール、5−メチル−3−シクロヘキセン−1−メタノール、6−メチル−3−シクロヘキセン−1−メタノール、2,5−ジメチル−3−シクロヘキセン−1−メタノール、2−エチル−3−シクロヘキセン−1−メタノール、5−エチル−3−シクロヘキセン−1−メタノール、2−プロピル−3−シクロヘキセン−1−メタノール、2−ブチル−3−シクロヘキセン−1−メタノール、2−ペンチル−3−シクロヘキセン−1−メタノール、2−ヘキシル−3−シクロヘキセン−1−メタノール、2−シクロヘキシル−3−シクロヘキセン−1−メタノール、5−プロピル−3−シクロヘキセン−1−メタノール、5−ブチル−3−シクロヘキセン−1−メタノール、5−シクロヘキシル−3−シクロヘキセンメタノールなどが挙げられるがこれらに限定されることはなく、単独でも2種以上を混合使用しても良い。
The cyclohexanedicarboxylic acid derivative used in the present invention is 1,4-cyclohexanedicarboxylic acid or an alkyl-substituted product thereof, and has a trans isomer: cis isomer ratio in the range of 100: 0 to 25:75.
Examples of cyclohexene methanol derivatives that can be used include 3-cyclohexene-1-methanol, 3-methyl-3-cyclohexene-1-methanol, 4-methyl-3-cyclohexene-1-methanol, and 2-methyl-3-cyclohexene-1- Methanol, 5-methyl-3-cyclohexene-1-methanol, 6-methyl-3-cyclohexene-1-methanol, 2,5-dimethyl-3-cyclohexene-1-methanol, 2-ethyl-3-cyclohexene-1- Methanol, 5-ethyl-3-cyclohexene-1-methanol, 2-propyl-3-cyclohexene-1-methanol, 2-butyl-3-cyclohexene-1-methanol, 2-pentyl-3-cyclohexene-1-methanol, 2-hexyl-3-cyclohexene-1-meta , 2-cyclohexyl-3-cyclohexene-1-methanol, 5-propyl-3-cyclohexene-1-methanol, 5-butyl-3-cyclohexene-1-methanol, 5-cyclohexyl-3-cyclohexenemethanol, etc. However, it is not limited to these, and may be used alone or in combination of two or more.

本発明のジオレフィン化合物は、上述したエポキシ樹脂原料の他に、熱硬化性ポリエステル架橋材などに使用することができる。   The diolefin compound of the present invention can be used as a thermosetting polyester cross-linking material in addition to the above-described epoxy resin raw material.

以下、本発明のエポキシ樹脂について説明する。
本発明のエポキシ樹脂は、本発明のジオレフィン化合物を酸化することで得られる。酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
過酸によるエポキシ化の手法としては具体的には日本国特開2006−52187号公報に記載の手法などが挙げられる。使用できる過酸としては、例えばギ酸、酢酸、プロピオン酸、マレイン酸、安息香酸、m−クロロ安息香酸、フタル酸などの有機酸およびそれらの酸無水物が挙げられる。これらの中でも、過酸化水素と反応して有機過酸を生成する効率、反応温度、操作の簡便性、経済性などの観点からは、ギ酸、酢酸、無水フタル酸を使用するのが好ましく、特に反応操作の簡便性の観点から、ギ酸または酢酸を使用するのがより好ましい。
過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、日本国特開昭59−108793号公報、日本国特開昭62−234550号公報、日本国特開平5−213919号公報、日本国特開平11−349579号公報、特公平1―33471号公報、日本国特開2001−17864号公報、日本国特公平3−57102号公報等に挙げられるような手法が適応できる。
Hereinafter, the epoxy resin of the present invention will be described.
The epoxy resin of the present invention can be obtained by oxidizing the diolefin compound of the present invention. Examples of the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
Specific examples of the epoxidation method using peracid include the method described in Japanese Patent Application Laid-Open No. 2006-52187. Examples of peracids that can be used include formic acid, acetic acid, propionic acid, maleic acid, benzoic acid, m-chlorobenzoic acid, organic acids such as phthalic acid, and acid anhydrides thereof. Among these, it is preferable to use formic acid, acetic acid, and phthalic anhydride from the viewpoint of the efficiency of reacting with hydrogen peroxide to produce an organic peracid, the reaction temperature, the ease of operation, and the economy. Formic acid or acetic acid is more preferably used from the viewpoint of simplicity of reaction operation.
Various methods can be applied to the method of epoxidation with hydrogen peroxide solution. Specifically, Japanese Patent Application Laid-Open No. 59-108793, Japanese Patent Application Laid-Open No. 62-234550, Japanese Patent Application Laid-Open No. No. 5-291919, Japanese Patent Laid-Open No. 11-349579, Japanese Patent Publication No. 1-33341, Japanese Patent Publication No. 2001-17864, Japanese Patent Publication No. 3-57102, etc. Can be adapted.

以下、本発明のエポキシ樹脂を得るのに特に好ましい方法を例示する。
まず、本発明のジオレフィン化合物、ポリ酸類及び4級アンモニウム塩を有機溶剤、緩衝液及び過酸化水素水のエマルジョン状態で反応を行う。
Hereinafter, a particularly preferable method for obtaining the epoxy resin of the present invention will be exemplified.
First, the diolefin compound, polyacids and quaternary ammonium salt of the present invention are reacted in an emulsion state of an organic solvent, a buffer solution and a hydrogen peroxide solution.

本発明で使用するポリ酸類は、ポリ酸構造を有する化合物であれば特に制限はないが、タングステンまたはモリブデンを含むポリ酸類が好ましく、タングステンを含むポリ酸類が更に好ましく、タングステン酸塩類が特に好ましい。
具体的なポリ酸類としては、タングステン酸、12−タングスト燐酸、12−タングストホウ酸、18−タングスト燐酸および12−タングストケイ酸などから選ばれるタングステン系の酸やそれらの塩、モリブデン酸あるいはリンモリブデン酸等から選ばれるモリブデン系の酸やそれらの塩等が挙げられる。
これらの塩のカウンターカチオンとしては、4級アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
The polyacid used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but polyacids containing tungsten or molybdenum are preferred, polyacids containing tungsten are more preferred, and tungstates are particularly preferred.
Specific polyacids include tungsten acids selected from tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid and 12-tungstosilicic acid, their salts, molybdic acid or phosphomolybdic acid, etc. And molybdenum-based acids selected from the above and their salts.
Examples of the counter cation of these salts include quaternary ammonium ions, alkaline earth metal ions, and alkali metal ions.

具体的にはテトラメチルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、トリデカニルメチルアンモニウムイオン、ジラウリルジメチルアンモニウムイオン、トリオクチルメチルアンモニウムイオン、トリアルキルメチル(オクチル基とデカニル基の混合タイプ)アンモニウムイオン、トリヘキサデシルメチルアンモニウムイオン、トリメチルステアリルアンモニウムイオン、テトラペンチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ベンジルトリブチルアンモニウムイオン、トリカプリルメチルアンモニウムイオン、ジセチルジメチルアンモニウムイオンなどの4級アンモニウムイオン、カルシウムイオンマグネシウムイオン等のアルカリ土類金属イオン、ナトリウム、カリウム、セシウム等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。   Specifically, tetramethylammonium ion, benzyltriethylammonium ion, tridecanylmethylammonium ion, dilauryldimethylammonium ion, trioctylmethylammonium ion, trialkylmethyl (mixed type of octyl group and decanyl group) ammonium ion, Quaternary ammonium ions such as hexadecylmethylammonium ion, trimethylstearylammonium ion, tetrapentylammonium ion, cetyltrimethylammonium ion, benzyltributylammonium ion, tricaprylmethylammonium ion, dicetyldimethylammonium ion, calcium ion magnesium ion, etc. Alkaline earth metal ions, sodium, potassium, cesium and other alkalis Although such genera ions include, but are not limited to.

ポリ酸の使用量は本発明のジオレフィン化合物1モルに対し、金属元素換算(タングステン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で1.0〜20ミリモル、好ましくは2.0〜20ミリモル、さらに好ましくは2.5〜10ミリモルである。   The amount of the polyacid used is 1.0 to 20 mmol, preferably 2.0 to 1.0 mol in terms of metal element (moles of tungsten atoms for tungstic acid and molybdenum atoms for molybdic acid) with respect to 1 mol of the diolefin compound of the present invention. 20 mmol, more preferably 2.5 to 10 mmol.

4級アンモニウム塩としては、総炭素数が10以上、好ましくは25〜100の4級アンモニウム塩が好ましく使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
具体的にはトリデカニルメチルアンモニウム塩、ジラウリルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、トリアルキルメチル(アルキル基がオクチル基である化合物とデカニル基である化合物の混合タイプ)アンモニウム塩、トリヘキサデシルメチルアンモニウム塩、トリメチルステアリルアンモニウム塩、テトラペンチルアンモニウム塩、セチルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、ジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。特に炭素数が25〜100の物が好ましい。
またこれら塩のアニオン種に特に限定はなく、具体的にはハロゲン化物イオン、硝酸イオン、硫酸イオン、硫酸水素イオン、アセテートイオン、炭酸イオン、等が挙げられるが、これらに限定されない。
炭素数が100を上回ると疎水性が強くなりすぎて、4級アンモニウム塩の有機層への溶解性が悪くなる場合がある。炭素数が10未満であると親水性が強くなり、同様に4級アンモニウム塩の有機層への相溶性が悪くなり、好ましくない。
As the quaternary ammonium salt, a quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain.
Specifically, tridecanylmethylammonium salt, dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt, trihexa Examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt. It is not limited to. Particularly preferred are those having 25 to 100 carbon atoms.
There are no particular limitations on the anionic species of these salts, and specific examples include halide ions, nitrate ions, sulfate ions, hydrogen sulfate ions, acetate ions, carbonate ions, and the like, but are not limited thereto.
When the number of carbon atoms exceeds 100, the hydrophobicity becomes too strong, and the solubility of the quaternary ammonium salt in the organic layer may deteriorate. When the number of carbon atoms is less than 10, the hydrophilicity is increased, and the compatibility of the quaternary ammonium salt with the organic layer is similarly deteriorated.

緩衝液としてはいずれも用いることができるが、本反応においては燐酸塩水溶液を用いるのが好ましい。そのpHとしてはpH2〜6の間に調整されたものが好ましく、より好ましくはpH3〜5である。pH2未満の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH6を超える場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
緩衝液の使用方法は、例えば好ましい緩衝液である燐酸−燐酸塩水溶液の場合は過酸化水素に対し、0.1〜10モル当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、リン酸二水素ナトリウム、リン酸水素二ナトリウムなどを用いて調整することも可能である。好ましい燐酸塩の濃度は0.1〜60重量%、好ましくは5〜45重量%である。
Any buffer can be used, but it is preferable to use an aqueous phosphate solution in this reaction. The pH is preferably adjusted between pH 2 and 6, more preferably pH 3-5. When the pH is less than 2, the epoxy group hydrolysis reaction and polymerization reaction easily proceed. On the other hand, when the pH exceeds 6, the reaction becomes extremely slow and the reaction time is too long.
For example, in the case of a phosphoric acid-phosphate aqueous solution which is a preferable buffer, 0.1 to 10 molar equivalent of phosphoric acid (or a phosphate such as sodium dihydrogen phosphate) is used with respect to hydrogen peroxide. And a method of adjusting pH with a basic compound (for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.). Here, it is preferable that the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added. It is also possible to adjust using sodium dihydrogen phosphate, disodium hydrogen phosphate, or the like. The preferred phosphate concentration is 0.1 to 60% by weight, preferably 5 to 45% by weight.

本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10〜40重量%である水溶液が好ましい。濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ樹脂の分解反応も進行しやすくなることから好ましくない。
酸化反応におけるポリ酸の使用量は、通常ジオレフィン化合物1モルに対し、金属原子が0.1〜2.0モル%、好ましくは、0.1〜1.5モル%、さらに好ましくは0.1〜1.0モル%である。
また、緩衝液の使用量は、原料のジオレフィン化合物100重量部に対し、通常0.5〜150重量部、好ましくは0.5〜100重量部であるが、緩衝液の使用量によって反応は大幅には変化はしない。
This reaction is epoxidized using hydrogen peroxide. As the hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
The amount of polyacid used in the oxidation reaction is usually from 0.1 to 2.0 mol%, preferably from 0.1 to 1.5 mol%, more preferably from 0.1 to 2.0 mol%, based on 1 mol of the diolefin compound. 1 to 1.0 mol%.
The amount of buffer used is usually 0.5 to 150 parts by weight, preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the starting diolefin compound, but the reaction depends on the amount of buffer used. There is no significant change.

本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質であるジオレフィン化合物1に対し、重量比で0.3〜10であり、好ましくは0.3〜5、より好ましくは0.5〜2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が挙げられる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等のニトリル化合物なども使用可能である。   This reaction uses an organic solvent. The amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the diolefin compound 1 as the reaction substrate. is there. When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol. It is done. In some cases, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, ethers such as diethyl ether, tetrahydrofuran and dioxane, ester compounds such as ethyl acetate, butyl acetate and methyl formate, and nitriles such as acetonitrile Compounds and the like can also be used.

具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、ジオレフィン化合物、過酸化水素(水溶液)、ポリ酸類(触媒)、緩衝液、4級アンモニウム塩及び有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸化水素を徐々に添加する方法でも構わない。   As a specific reaction operation method, for example, when the reaction is performed in a batch-type reaction kettle, a diolefin compound, hydrogen peroxide (aqueous solution), polyacids (catalyst), a buffer solution, a quaternary ammonium salt, and an organic solvent are added. In addition, stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.

反応温度は特に限定されないが0〜90℃が好ましく、さらに好ましくは0〜75℃、特に15℃〜60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。   Although reaction temperature is not specifically limited, 0-90 degreeC is preferable, More preferably, it is 0-75 degreeC, Especially 15 to 60 degreeC is preferable. When the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.

また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1〜48時間、好ましくは3〜36時間、さらに好ましくは4〜24時間である。   Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long-time reaction is not preferable because it consumes a large amount of energy. A preferable range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.

反応終了後、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。また、還元剤と塩基性化合物を併用することも好ましい。好ましい処理方法としては塩基性化合物でpH6〜8に中和調整後、還元剤を用い、残存する過酸化水素をクエンチする方法が挙げられる。pHが6未満の場合、過剰の過酸化水素を還元する際の発熱が大きく、分解物を生じる可能性がある。   After completion of the reaction, quenching of excess hydrogen peroxide is performed. The quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination. As a preferred treatment method, there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6-8 with a basic compound. If the pH is less than 6, the heat generated during the reduction of excess hydrogen peroxide is large, which may cause decomposition products.

還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸、ビタミンCなどが挙げられる。還元剤の使用量としては過剰分の過酸化水素もモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。   Examples of the reducing agent include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like. As the amount of the reducing agent used, excess hydrogen peroxide is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, still more preferably 0.05 to 3 times mol, based on the number of moles. is there.

塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1〜1000倍の量を使用することが好ましい。より好ましくは10〜500倍、さらに好ましくは10〜300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
The amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc. The amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mol, more preferably 0.05 to 3 times mol. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
When a solid base that does not dissolve in water or an organic solvent is used, it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10-500 times, More preferably, it is 10-300 times. In the case of using a solid base that does not dissolve in water or an organic solvent, the treatment may be carried out after separation of an aqueous layer and an organic layer described later.

過酸化水素のクエンチ後(もしくはクエンチを行う前に)、この際、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は原料ジオレフィン化合物に対し、重量比で0.5〜10倍、好ましくは0.5〜5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
得られた有機層は必要に応じてイオン交換樹脂や金属酸化物、活性炭、複合金属塩、粘土鉱物等により、不純物を除去し、さらに水洗、ろ過等を行った後、溶剤を留去することで、目的とするエポキシ樹脂を得ることができる。場合によってはさらに蒸留により精製しても構わない。蒸留方法としては薄膜、回転式分子蒸留等の手法により蒸留することができる。
After the hydrogen peroxide quench (or before quenching), if the organic layer and the aqueous layer are not separated, or if no organic solvent is used, the above-mentioned organic solvent is added and the operation is performed. The reaction product is extracted from the layer. The organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times in weight ratio to the raw material diolefin compound. This operation is repeated several times as necessary, and the separated organic layer is purified by washing with water as necessary.
The obtained organic layer is subjected to ion exchange resin, metal oxide, activated carbon, composite metal salt, clay mineral, etc., if necessary, to remove impurities, further washed with water, filtered, etc., and then the solvent is distilled off. Thus, the desired epoxy resin can be obtained. In some cases, it may be further purified by distillation. As a distillation method, it can be distilled by a technique such as a thin film or rotary molecular distillation.

このようにして得られるエポキシ樹脂は式(3)   The epoxy resin thus obtained has the formula (3)

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるエポキシ樹脂と下記(4) (Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) and the following (4):

Figure 0005559207
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるエポキシ樹脂とからなり、その存在割合がトランス体:シス体=100:0〜25:75、好ましくは100:0〜30:70、より好ましくは100:0〜40:60、特に好ましくは100:0〜45:55である。 (Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and the abundance ratio thereof is trans isomer: cis isomer = 100: 0 to 25:75, preferably 100: 0 to 30:70, more preferably 100: 0 to 40:60, and particularly preferably 100: 0 to 45:55.

得られたエポキシ樹脂は、例えばエポキシアクリレートおよびその誘導体、オキサゾリドン系化合物、環状カーボネート化合物等の各種樹脂原料として使用できる。   The obtained epoxy resin can be used as various resin raw materials such as epoxy acrylate and derivatives thereof, oxazolidone compounds, and cyclic carbonate compounds.

以下、本発明のエポキシ樹脂を含む本発明の硬化性樹脂組成物について記載する。
本発明の硬化性樹脂組成物は本発明のエポキシ樹脂を必須成分として含有する。本発明の硬化性樹脂組成物においては、硬化剤および/または硬化促進剤による熱硬化(硬化性樹脂組成物A)と酸を硬化触媒とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。
Hereinafter, it describes about the curable resin composition of this invention containing the epoxy resin of this invention.
The curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component. In the curable resin composition of the present invention, two types of heat curing (curable resin composition A) using a curing agent and / or a curing accelerator and cationic curing (curable resin composition B) using an acid as a curing catalyst are used. This method can be applied.

硬化性樹脂組成物Aと硬化性組樹脂成物Bにおいて本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1〜30重量%の割合で添加する。   In the curable resin composition A and the curable resin composition B, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more. However, when using the epoxy resin of this invention as a modifier of a curable resin composition, it adds in the ratio of 1 to 30 weight%.

本発明のエポキシ樹脂と併用できる他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。   Other epoxy resins that can be used in combination with the epoxy resin of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetaldehyde Non, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of these) An ester having a glycidyl group and / or an epoxycyclohexane structure Carboxymethyl resins) include solid or liquid epoxy resins such as, but not limited thereto.

特に本発明の硬化性樹脂組成物を光学用途に用いる場合、脂環式エポキシ樹脂やシルセスキオキサン構造のエポキシ樹脂との併用が好ましい。特に脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003−170059号公報、日本国特開2004−262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006−052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2−ヒドロキシメチル−1,4−ブタンジオールなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
When using especially the curable resin composition of this invention for an optical use, combined use with an alicyclic epoxy resin or an epoxy resin of a silsesquioxane structure is preferable. Particularly in the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
These epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and further transesterification reaction of cyclohexene carboxylic acid ester (Japan) And a compound obtained by oxidizing a compound that can be produced by a method described in Japanese Patent Laid-Open No. 2006-052187 or the like.
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diols, diols such as 1,6-hexanediol and cyclohexanedimethanol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, etc. And tetraols. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.

さらに、骨格にエポキシシクロヘキサン構造を有する化合物の他の例としてシクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号公報)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48−96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号公報)、反応媒体に有機溶媒を用いる方法(日本国特開平7−215979号公報)、固体酸触媒を用いる方法(日本国特開2007−230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。
これらエポキシ樹脂の具体例としては、ERL−4221、UVR−6105、ERL−4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76−85)。
これらは単独で用いてもよく、2種以上併用してもよい。
Furthermore, as another example of a compound having an epoxycyclohexane structure in the skeleton, an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol form can be given. As a reaction method, it can be produced by applying a general acetalization reaction. For example, a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium (US Pat. No. 2,945,008), concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the reaction mixture and the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No. 48-96590), a method using water as a reaction medium (US Pat. No. 3,092,640), reaction A method using an organic solvent as a medium (Japanese Patent Laid-Open No. 7-215979), a method using a solid acid catalyst (Japanese Patent Laid-Open No. 2007-230992), and the like are disclosed. A cyclic acetal structure is preferable from the viewpoint of structural stability.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Eporide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel). Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to these (Reference: Review Epoxy Resin Basic Edition I p76-85).
These may be used alone or in combination of two or more.

以下それぞれの硬化性樹脂組成物について言及する。
硬化剤および/または硬化促進剤による熱硬化(硬化性樹脂組成物A)
本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、水素化無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルシクロヘキセンジカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、水素化無水ピロメリット酸、ダイマー酸(オレイン酸二量体、リノレン酸二量体など)、多価カルボン酸(フタル酸、トリメリット酸、ピロメリット酸、マレイン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルナジック酸、ナジック酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、ブタンテトラカルボン酸、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸、シクロヘキサン−1,3,4−トリカルボン酸、上記酸無水物と多価アルコールとの反応物(酸無水物として好ましくはメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物、多価アルコールとして好ましくは2〜4官能の多価アルコールであり、例えばシクロヘキサンジメタノール、2,4−ジエチルペンタンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオール、ジシクロペンタジエンジメタノールなどの分岐鎖状や環状の脂肪族アルコール類)など、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
Hereinafter, each curable resin composition will be referred to.
Thermal curing with a curing agent and / or a curing accelerator (curable resin composition A)
Examples of the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, Butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylcyclohexene dicarboxylic anhydride, ethylene glycol bistrimellitate, glycerol Listrimellitate, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, dodecenyl succinic anhydride, polyadipic acid Anhydride, polyazeline acid anhydride, polysebacic acid anhydride, hydrogenated pyromellitic anhydride, dimer acid (oleic acid dimer, linolenic acid dimer, etc.), polycarboxylic acid (phthalic acid, trimellitic acid, Pyromellitic acid, maleic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, methylnadic acid, nadic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, butanetetracarboxylic acid, bicyclo [2,2,1] heptane-2 , 3-dicarboxylic acid, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid, cyclohexane Sun-1,3,4-tricarboxylic acid, a reaction product of the above acid anhydride and a polyhydric alcohol (preferably methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, Methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid Preferred examples of the anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and polyhydric alcohol include 2- to 4-functional polyhydric alcohols such as cyclohexanedimethanol and 2,4-diethylpentanediol. 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecanedi Branched chain and cyclic aliphatic alcohols such as methanol, norbornenediol, dicyclopentadiene dimethanol), bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2, 2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benza Dehydr, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4 ′ Polycondensates with bis (methoxymethyl) -1,1′-biphenyl, 1,4′-bis (chloromethyl) benzene, 1,4′-bis (methoxymethyl) benzene, etc., and modified products thereof, tetra Examples thereof include, but are not limited to, halogenated bisphenols such as bromobisphenol A, imidazole, trifluoroborane-amine complexes, guanidine derivatives, and condensates of terpenes and phenols. These may be used alone or in combination of two or more.

本発明の硬化性樹脂組成物Aにおいて硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。   In the curable resin composition A of the present invention, the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.

本発明の硬化性樹脂組成物Aにおいては、硬化促進剤を使用してもよい。用い得る硬化促進剤の具体例としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−ウンデシルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−エチル,4−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8−ジアザ−ビシクロ(5.4.0)ウンデセン−7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6−トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001〜15重量部の範囲で使用される。
本発明においては、硬化剤単独あるいは硬化剤と硬化促進剤との併用が望ましい。
In the curable resin composition A of the present invention, a curing accelerator may be used. Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole. 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methyl Imidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino-6 (2'- Methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethyl Various imidazoles such as imidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and imidazoles and phthalic acid, isophthalic acid, terephthalic acid Acids, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid, salts with polyvalent carboxylic acids such as succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as 7 and their tetrafes Salts such as ruborate and phenol novolac, salts with the above polycarboxylic acids, or phosphinic acids, ammonium salts such as tetrabutyl ammonium bromide, cetyltrimethyl ammonium bromide, trioctylmethyl ammonium bromide, triphenylphosphine, tri (tolyl) phosphine Phosphines and phosphonium compounds such as tetraphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts and tin octylate, and curing thereof Examples thereof include a microcapsule-type curing accelerator having a microcapsule as an accelerator. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. A hardening accelerator is normally used in 0.001-15 weight part with respect to 100 weight part of epoxy resins.
In the present invention, it is desirable to use a curing agent alone or a combination of a curing agent and a curing accelerator.

本発明の硬化性樹脂組成物Aには、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。   The curable resin composition A of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes A phosphorus-containing product obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned, and phosphoric esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / total epoxy resin = 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardancy is insufficient, and if it exceeds 0.6, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.

さらに本発明の硬化性樹脂組成物Aには、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。   Furthermore, binder resin can also be mix | blended with the curable resin composition A of this invention as needed. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably in a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.

本発明の硬化性樹脂組成物Aには、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物A中において0〜95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物Aには、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。   An inorganic filler can be added to the curable resin composition A of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. The content of these inorganic fillers is 0 to 95% by weight in the curable resin composition A of the present invention. Furthermore, the curable resin composition A of the present invention includes a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins. Can be added.

本発明の硬化性樹脂組成物Aを光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度等を補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。   When the curable resin composition A of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, the particle size of the inorganic filler used is transparent by using a nano-order level filler. It is possible to supplement the mechanical strength without impairing the properties. As a standard for the nano-order level, it is preferable from the viewpoint of transparency to use a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.

本発明の硬化性樹脂組成物Aを光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Al等が例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1〜250μm、特に2〜50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1〜80重量部、好ましくは、5〜60重量部が好ましい。When using the curable resin composition A of this invention for an optical material, especially an optical semiconductor sealing agent, a fluorescent substance can be added as needed. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When using these fluorescent substance, the addition amount is 1-80 weight part with respect to 100 weight part with respect to the resin component, Preferably, 5-60 weight part is preferable.

本発明の硬化性樹脂組成物Aを光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。   When the curable resin composition A of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, for the purpose of preventing sedimentation during curing of various phosphors, silica fine powder (also called Aerosil or Aerosol) is used. An agent for imparting thixotropic properties can be added. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil R202, Aerosil Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.

本発明の硬化性樹脂組成物Aを光学材料、特に光半導体封止剤は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物やフェノール系化合物を含有することができる。
前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、テトラキス(2,2,6,6−トトラメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1−ウンデカンオキシ−2,2,6,6−テトラメチルピペリジン−4−イル)カーボネート、2,2,6,6,−テトラメチル−4−ピペリジルメタクリレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチル−4−ピペリジニル−メタアクリレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル,1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル〕〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物、2,2,4,4−テトラメチル−20−(β−ラウリルオキシカルボニル)エチル−7−オキサ−3,20−ジアザジスピロ〔5・1・11・2〕ヘネイコサン−21−オン、β−アラニン,N,−(2,2,6,6−テトラメチル−4−ピペリジニル)−ドデシルエステル/テトラデシルエステル、N−アセチル−3−ドデシル−1−(2,2,6,6−テトラメチル−4−ピペリジニル)ピロリジン−2,5−ジオン、2,2,4,4−テトラメチル−7−オキサ−3,20−ジアザジスピロ〔5,1,11,2〕ヘネイコサン−21−オン、2,2,4,4−テトラメチル−21−オキサ−3,20−ジアザジシクロ−〔5,1,11,2〕−ヘネイコサン−20−プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4−メトキシフェニル)−メチレン〕−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)エステル、2,2,6,6−テトラメチル−4−ピペリジノールの高級脂肪酸エステル、1,3−ベンゼンジカルボキシアミド,N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−〔2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミド−メチル)−5−メチルフェニル〕ベンゾトリアゾール、2−(3−tert−ブチル−2−ヒドロキシ−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)ベンゾトリアゾール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−ドデシル−4−メチルフェノール等のベンゾトリアゾール系化合物、2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート等のベンゾエート系、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
The curable resin composition A of the present invention is an optical material, in particular, an optical semiconductor encapsulant contains an amine compound as a light stabilizer or a phosphorus compound or phenol compound as an antioxidant for the purpose of preventing coloring. can do.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6-6- Totramethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetramethyl -4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy- 2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis ( 1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] buty Malonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ", N"'-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-triazine-2, 4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate and Polymer of 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa-3 , 20-diazadispiro [5 · 1 · 11 · 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester, N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7-oxa-3 , 20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11,2]- Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester, 2 , 2,6,6-tetramethyl-4-piperidinol higher fatty acid ester, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl), etc. Hindered amine series, benzophenone series compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3- Tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimido-methyl) -5-methylphenyl] Benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, methyl Reaction product of 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazol-2-yl) -6 -Benzotriazole compounds such as dodecyl-4-methylphenol, 2,4-di benzoate series such as tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[( Hexyl) oxy] triazine compounds such as phenol and the like can be mentioned, and hindered amine compounds are particularly preferable.

前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA−52、LA−57、LA−62、LA−63P、LA−77Y、LA−81、LA−82、LA−87等が挙げられる。
The following commercially available products can be used as the amine compound that is the light stabilizer.
The commercially available amine compound is not particularly limited, and for example, TINUVIN 765, TINUVIN 770DF, TINUVIN 144, TINUVIN 123, TINUVIN 622LD, TINUVIN 152, CHIMASSORB 944, and ADEKA, LA-52, LA-57, LA-, manufactured by Ciba Specialty Chemicals. 62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.

前記リン系化合物としては特に限定されず、例えば、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−tert−ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−イソプロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)−4,4’−ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート等が挙げられる。   The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hosuf Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl)- , 4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3 '-Biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3'- Biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite Bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di -N-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl Examples include phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc. It is.

上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデカスタブPEP−4C、アデカスタブPEP−8、アデカスタブPEP−24G、アデカスタブPEP−36、アデカスタブHP−10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPPが挙げられる。   A commercial item can also be used for the said phosphorus compound. It does not specifically limit as a phosphorus compound marketed, For example, as an Adeka product, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, and Adekas tab TPP.

フェノール化合物としては特に限定はされず、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、n−オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,4−ジ−tert−ブチル−6−メチルフェノール、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス−〔2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ]−1,1−ジメチルエチル〕−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、2,2’−ブチリデンビス(4,6−ジ−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノールアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2−tert−ブチル−4−メチルフェノール、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、ビス−[3,3−ビス−(4’−ヒドロキシ−3’−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、ビス−[3,3−ビス−(4’−ヒドロキシ−3’−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル等が挙げられる。   The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentaerythrine Lithyl-tetrakis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5] -Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl- 5-methyl-4-hydroxyphenyl) propionate], 2,2′-butylidenebis (4,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 2, 2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butyl) Phenol), 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di-) tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6) -Tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4'-thiobis (3-methyl-6) -Tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) Bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di- tert-pentylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester and the like.

上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO−20、アデカスタブAO−30、アデカスタブAO−40、アデカスタブAO−50、アデカスタブAO−60、アデカスタブAO−70、アデカスタブAO−80、アデカスタブAO−90、アデカスタブAO−330、住友化学工業製として、SumilizerGA−80、Sumilizer MDP−S、Sumilizer BBM−S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GP等が挙げられる。   A commercial item can also be used for the said phenolic compound. There are no particular limitations on the commercially available phenolic compounds. For example, IRGANOX 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, IRGANOX 295, IRGANOX 3114 IRGANOX 1098, Adekas 1520L AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, SUMITOMO CHEMICAL INDUSTRIES, SUMITIZER GA-80, SUMILIZER MDP-S, Sumili er BBM-S, Sumilizer GM, Sumilizer GS (F), Sumilizer GP, and the like.

このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、TINUVIN328、TINUVIN234、TINUVIN326、TINUVIN120、TINUVIN477、TINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FL等が挙げられる。   In addition, commercially available additives can be used as an anti-coloring agent for the resin. For example, TINUVIN 328, TINUVIN 234, TINUVIN 326, TINUVIN 120, TINUVIN 477, TINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like are manufactured by Ciba Specialty Chemicals.

上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、該硬化性樹脂組成物に対して、0.005〜5.0重量%の範囲である。   It is preferable to contain at least one of the above phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but is 0.005 to 5 with respect to the curable resin composition. The range is 0.0% by weight.

本発明の硬化性樹脂組成物Aを光学材料、特に光半導体封止剤に使用する場合、安定性向上の目的で亜鉛塩(亜鉛錯体)を必要により添加しても良い。特にシルセスキオキサン構造のエポキシ樹脂を併用している場合、腐食性ガスの浸透防止に非常に効果的である。亜鉛塩としては、亜鉛イオンを中心元素とした塩および/または錯体であって、好ましくは、カウンターイオンおよび/または配位子として燐酸エステル、燐酸を有する構造である。
特に、燐酸、炭素数1〜30の燐酸エステル(モノエステル体、ジエステル体、トリエステル体、もしくはそれらの混合物)の亜鉛塩(亜鉛錯体)が好ましい。炭素数1〜30の燐酸エステルの具体的なアルキルの事例としては、メチル、イソプロピル、ブチル、2−エチルヘキシル、オクチル、イソデシル、イソステアリル、デカニル、セチルなどが挙げられる。
本発明においては特に炭素数3〜15の燐酸エステルが好ましく、そのエステル体は混合でも単品でも構わないが、その主たる成分が燐酸モノエステル体であることが好ましい。特に含有される燐酸エステル中、モノエステル体、ジエステル体、トリエステル体のモル比(ガスクロマトグラフィーの純度で代替。ただし、トリメチルシリル化を行う必要があるため、感度に差が出てしまう。)において、トリメチル化処理をした段階で、モノエステル体の存在量が50面積%以上であることが好ましい。
このような燐酸エステル化合物はアルコールにリン酸化剤として五酸化リン、オキシ塩化リン、三塩化リンなどを用いてエステル化することで得ることができる。また、これらリン酸は例えば炭酸亜鉛、水酸化亜鉛などと反応させることで得られる(欧州特許出願公開第699708号明細書)。
このような燐酸エステルの亜鉛塩(亜鉛錯体)の詳細としては燐原子と亜鉛原子の比率(P/Zn)が1.2〜2.3が好ましく、1.3〜2.0がより好ましい。特に好ましくは1.4〜1.9である。すなわち、特に好ましい形態では、亜鉛イオン1モルに対し、燐酸エステル(もしくは燐酸)が1.9モル以下となり、単純なイオン構造ではなく、いくつかの分子がイオン結合(あるいは配位結合)により関わった構造を有しているものが好ましい。
When using the curable resin composition A of this invention for an optical material, especially an optical semiconductor sealing agent, you may add a zinc salt (zinc complex) as needed for the purpose of a stability improvement. In particular, when an epoxy resin having a silsesquioxane structure is used in combination, it is very effective in preventing penetration of corrosive gas. The zinc salt is a salt and / or complex having zinc ion as a central element, and preferably has a structure having a phosphate ester or phosphoric acid as a counter ion and / or a ligand.
In particular, zinc salts (zinc complexes) of phosphoric acid and phosphoric acid esters having 1 to 30 carbon atoms (monoester, diester, triester, or mixtures thereof) are preferred. Specific examples of alkyl of the phosphate ester having 1 to 30 carbon atoms include methyl, isopropyl, butyl, 2-ethylhexyl, octyl, isodecyl, isostearyl, decanyl, cetyl and the like.
In the present invention, a phosphoric ester having 3 to 15 carbon atoms is particularly preferred, and the ester may be mixed or single, but the main component is preferably a phosphoric monoester. In particular, the molar ratio of monoester, diester and triester in the phosphoric acid ester contained (substitute with the purity of gas chromatography. However, since it is necessary to carry out trimethylsilylation, there is a difference in sensitivity.) In the above, it is preferable that the amount of the monoester is 50 area% or more at the stage of trimethylation treatment.
Such a phosphoric ester compound can be obtained by esterifying alcohol with phosphorus pentoxide, phosphorus oxychloride, phosphorus trichloride, or the like as a phosphorylating agent. These phosphoric acids can be obtained, for example, by reacting with zinc carbonate, zinc hydroxide, etc. (European Patent Application Publication No. 699708).
As the details of the zinc salt (zinc complex) of such a phosphate ester, the ratio of phosphorus atom to zinc atom (P / Zn) is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. Especially preferably, it is 1.4-1.9. That is, in a particularly preferred form, phosphate ester (or phosphoric acid) is 1.9 mol or less per 1 mol of zinc ions, and not a simple ionic structure, but some molecules are involved by ionic bonds (or coordinate bonds). Those having a different structure are preferred.

ここで、エポキシ樹脂成分と亜鉛塩(亜鉛錯体)の比率は、エポキシ樹脂成分に対し亜鉛塩(亜鉛錯体)は重量比で0.01〜8重量%、より好ましくは0.05〜5重量%、0.1〜4重量%である。
8重量%を超える場合、硬化性樹脂組成物とした際のポットライフが問題となり、0.01重量%を下回る場合、効果が顕著ではない。
Here, the ratio of the epoxy resin component to the zinc salt (zinc complex) is 0.01 to 8% by weight, more preferably 0.05 to 5% by weight of the zinc salt (zinc complex) by weight with respect to the epoxy resin component. 0.1 to 4% by weight.
When the amount exceeds 8% by weight, the pot life of the curable resin composition becomes a problem. When the amount is less than 0.01% by weight, the effect is not remarkable.

本発明の硬化性樹脂組成物Aは、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物Aは従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と、硬化剤と、必要に応じて添加される硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを押出機、ニーダあるいはロール等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を溶融後注型あるいはトランスファー成型機などを用いて成型し、さらに80〜200℃で2〜10時間加熱することにより本発明の硬化物を得ることができる。   The curable resin composition A of the present invention is obtained by uniformly mixing each component. The curable resin composition A of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin of the present invention, a curing agent, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent that are added as necessary are uniformly used using an extruder, a kneader, or a roll. Mix thoroughly until it is obtained to obtain a curable resin composition, melt the curable resin composition after molding using a casting or transfer molding machine, and further heat at 80 to 200 ° C. for 2 to 10 hours. Thus, the cured product of the present invention can be obtained.

また本発明の硬化性樹脂組成物Aをトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物Aと該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物のままRTM(Resin Transfer Molding)方式でカーボン繊維を含有する樹脂硬化物を得ることもできる。   Further, the curable resin composition A of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain a curable resin composition varnish, and glass fiber. The cured product of the present invention can be obtained by hot press-molding a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper and drying by heating. The solvent used in this case is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition A of the present invention and the solvent. Moreover, the resin cured material containing carbon fiber can also be obtained with the RTM (Resin Transfer Molding) system with a liquid composition.

また本発明の硬化性樹脂組成物Aをフィルム型組成物の改質剤としても使用できる。具体的にはB−ステージにおけるフレキシビリティ特性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物Aを前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。   Moreover, the curable resin composition A of this invention can be used also as a modifier of a film type composition. Specifically, it can be used to improve the flexibility characteristics in the B-stage. In such a film-type resin composition, the curable resin composition A of the present invention is applied onto a release film as the curable resin composition varnish, the solvent is removed under heating, and then B-stage is performed. Thus, it is obtained as a sheet-like adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.

硬化性樹脂組成物B(酸性の硬化触媒によるカチオン硬化)
本発明の硬化性樹脂組成物Bは、酸性の硬化触媒として光重合開始剤あるいは熱重合開始剤を含有する。さらに、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤等の各種公知の化合物、材料等を含有していてもよい。また、所望に応じて無機充填材、着色顔料、紫外線吸収剤、酸化防止剤、安定剤等、各種公知の添加剤を含有してもよい。
Curable resin composition B (cationic curing with acidic curing catalyst)
The curable resin composition B of the present invention contains a photopolymerization initiator or a thermal polymerization initiator as an acidic curing catalyst. Furthermore, you may contain various well-known compounds, materials, such as a diluent, a polymerizable monomer, a polymerizable oligomer, a polymerization start adjuvant, a photosensitizer. Moreover, you may contain various well-known additives, such as an inorganic filler, a color pigment, a ultraviolet absorber, antioxidant, a stabilizer, as needed.

酸性硬化触媒としてはカチオン重合開始剤が好ましく、光カチオン重合開始剤が特に好ましい。カチオン重合開始剤としてはヨードニウム塩、スルホニウム塩、ジアゾニウム塩等のオニウム塩を有するものが挙げられ、これらは単独または2種以上で使用することができる。
活性エネルギー線カチオン重合開始剤の例は、金属フルオロホウ素錯塩および三フッ化ホウ素錯化合物(米国特許第3379653号)、ビス(ペルフルアルキルスルホニル)メタン金属塩(米国特許第3586616号)、アリールジアゾニウム化合物(米国特許第3708296号)、VIa族元素の芳香族オニウム塩(米国特許第4058400号)、Va族元素の芳香族オニウム塩(米国特許第4069055号)、IIIa〜Va族元素のジカルボニルキレート(米国特許第4068091号)、チオピリリウム塩(米国特許第4139655号)、MF 陰イオンの形のVIb族元素(米国特許第4161478号;Mはリン、アンチモンおよび砒素から選択される。)、アリールスルホニウム錯塩(米国特許第4231951号)、芳香族ヨードニウム錯塩および芳香族スルホニウム錯塩(米国特許第4256828号)、およびビス[4−(ジフェニルスルホニオ)フェニル]スルフィド−ビス−ヘキサフルオロ金属塩(Journal of Polymer Science, Polymer Chemistry、第2巻、1789項(1984年))である。その他、鉄化合物の混合配位子金属塩およびシラノール−アルミニウム錯体も使用することが可能である。
また、具体例としては、「アデカオプトマーSP150」、「アデカオプトマーSP170」(いずれも旭電化工業社製)、「UVE−1014」(ゼネラルエレクトロニクス社製)、「CD−1012」(サートマー社製)、「RP−2074」(ローディア社製)等が挙げられる。
該カチオン重合開始剤の使用量は、エポキシ樹脂成分100質量部に対して、好ましくは、0.01〜50質量部であり、より好ましくは、0.1〜10質量部である。
As the acidic curing catalyst, a cationic polymerization initiator is preferable, and a photocationic polymerization initiator is particularly preferable. Examples of the cationic polymerization initiator include those having an onium salt such as an iodonium salt, a sulfonium salt, and a diazonium salt, and these can be used alone or in combination of two or more.
Examples of active energy ray cationic polymerization initiators include metal fluoroboron complex salts and boron trifluoride complex compounds (US Pat. No. 3,379,653), bis (perfluoroalkylsulfonyl) methane metal salts (US Pat. No. 3,586,616), aryldiazonium Compounds (US Pat. No. 3,708,296), aromatic onium salts of group VIa elements (US Pat. No. 4,058,400), aromatic onium salts of group Va elements (US Pat. No. 4069055), dicarbonyl chelates of group IIIa to Va elements (U.S. Pat. No. 4,068,091), thiopyrylium salts (U.S. Pat. No. 4,139,655), MF 6 - VIb group element in the form of anions,, (U.S. Pat. No. 4,161,478 M is selected from phosphorus, antimony and arsenic.) Arylsulfonium complex salts (US Pat. No. 42319) 1), aromatic iodonium complex salts and aromatic sulfonium complex salts (US Pat. No. 4,256,828), and bis [4- (diphenylsulfonio) phenyl] sulfide-bis-hexafluorometal salts (Journal of Polymer Science, Polymer Chemistry, Volume 2, Section 1789 (1984)). In addition, mixed ligand metal salts of iron compounds and silanol-aluminum complexes can also be used.
As specific examples, “Adekaoptomer SP150”, “Adekaoptomer SP170” (all manufactured by Asahi Denka Kogyo Co., Ltd.), “UVE-1014” (manufactured by General Electronics Co., Ltd.), “CD-1012” (Sartomer Company) Product), “RP-2074” (manufactured by Rhodia), and the like.
The amount of the cationic polymerization initiator used is preferably 0.01 to 50 parts by mass and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin component.

更に、これらの光カチオン重合開始剤と公知の重合開始補助剤および光増感剤の1種または2種以上を同時に使用することが可能である。重合開始補助剤の例としては、例えば、ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノールプロパン−1−オン、N,N−ジメチルアミノアセトフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、1−クロロアントラキノン、2−アミルアントラキノン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アセトフェノンジメチルケタール、ベンゾフェノン、4−メチルベンゾフェノン、4,4’−ジクロロベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、ミヒラーズケトン等の光ラジカル重合開始剤が挙げられる。光ラジカル重合開始剤等の重合開始補助剤の使用量は、光ラジカル可能な成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。   Furthermore, it is possible to simultaneously use one or two or more of these photocationic polymerization initiators, known polymerization initiation assistants and photosensitizers. Examples of polymerization initiators include, for example, benzoin, benzyl, benzoin methyl ether, benzoin isopropyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinolpropan-1-one, N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1- Chloroanthraquinone, 2-amylanthraquinone, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acetophenone di Chiruketaru, benzophenone, 4-methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis-diethylamino benzophenone, and a photo-radical polymerization initiator such as Michler's ketone. The usage-amount of polymerization initiation adjuvants, such as photoradical polymerization initiator, is 0.01-30 weight part with respect to 100 weight part of components which can carry out photoradical, Preferably it is 0.1-10 weight part.

光増感剤の具体例としては、アントラセン、2−イソプロピルチオキサトン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、アクリジン オレンジ、アクリジン イエロー、ホスフィンR、ベンゾフラビン、セトフラビンT、ペリレン、N,N−ジメチルアミノ安息香酸エチルエステル、N,N−ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、全エポキシ樹脂成分100重量部に対して、0.01〜30重量部であり、好ましくは0.1〜10重量部である。   Specific examples of the photosensitizer include anthracene, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acridine orange, acridine yellow, phosphine R, benzo Examples include flavin, cetoflavin T, perylene, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, triethylamine and the like. The usage-amount of a photosensitizer is 0.01-30 weight part with respect to 100 weight part of all the epoxy resin components, Preferably it is 0.1-10 weight part.

更に、本発明の硬化性樹脂組成物Bには、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。具体的な例としては前述の通りである。   Furthermore, various compounding agents such as inorganic fillers, silane coupling materials, mold release agents, pigments, and various thermosetting resins can be added to the curable resin composition B of the present invention as necessary. . Specific examples are as described above.

本発明の硬化性樹脂組成物Bは、各成分を均一に混合することにより得られる。またポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させ、均一とした後、乾燥により溶剤を除去して使用することも可能である。この際の溶剤は、本発明の硬化性樹脂組成物Bと該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。
本発明の硬化性樹脂組成物Bは紫外線照射することにより硬化できるが、その紫外線照射量は、硬化性樹脂組成物に依存して異なるため、それぞれの組成に合わせて硬化条件が決定される。基本的には、硬化物が使用目的において必要とされる強度を発現できる硬化条件であれば良い。通常、これらエポキシ樹脂系組成物は光照射のみで完全に硬化させることが難しいため、耐熱性が求められる用途においては光照射後に加熱により完全に反応を終了させる必要がある。また、光硬化の際の照射光を細部まで透過させることが必要なため、本発明のエポキシ樹脂および硬化性樹脂組成物Bにおいては透明性の高い化合物および組成物が望まれる。
The curable resin composition B of the present invention can be obtained by uniformly mixing each component. It is also possible to dissolve in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or γ-butyrolactone and make it uniform, and then use it after removing the solvent by drying. The solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition B of the present invention and the solvent.
Although the curable resin composition B of the present invention can be cured by irradiating with ultraviolet rays, the ultraviolet irradiation amount varies depending on the curable resin composition, and therefore the curing conditions are determined according to each composition. Basically, it is sufficient that the cured product has curing conditions that can express the strength required for the purpose of use. Usually, these epoxy resin-based compositions are difficult to be completely cured only by light irradiation. Therefore, in applications requiring heat resistance, it is necessary to complete the reaction by heating after light irradiation. Moreover, since it is necessary to permeate | transmit the irradiation light in the case of photocuring to detail, the highly transparent compound and composition are desired in the epoxy resin and curable resin composition B of this invention.

光照射後に加熱を行なう場合は、通常の硬化性樹脂組成物Bの硬化温度域で行なうことができる。例えば常温〜150℃で30分〜7日間の範囲が好適である。硬化性樹脂組成物Bの配合により変化するが、特に高い温度域であればあるほど光照射後の硬化促進に効果があり、短時間の熱処理で効果がある。また、低温であればあるほど長時間の熱処理を要する。このような熱アフターキュアすることで、エージング処理になるという効果も出る。   When heating is performed after light irradiation, the heating can be performed in a normal curing temperature range of the curable resin composition B. For example, the range of 30 minutes to 7 days at room temperature to 150 ° C. is suitable. Although it changes depending on the blending of the curable resin composition B, the higher the temperature range, the more effective the curing is after light irradiation, and the short heat treatment is effective. Further, the lower the temperature, the longer the heat treatment. By performing such heat after-curing, an effect of aging treatment is obtained.

また、これら硬化性樹脂組成物Bを硬化させて得られる硬化物の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、バルク状などの形状とすることもできる。成形する方法は適応する部位、部材によって異なるが、例えば、キャスト法、注型法、スクリーン印刷法、スピンコート法、スプレー法、転写法、ディスペンサー方式などが挙げられるが、これらに限定されず所望の形状を得るために適当な方法を採用すればよい。成形型は研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を適用することができる。また、成形型との離型性を向上させるためポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を適用することができる。   Moreover, since the shape of the cured product obtained by curing these curable resin compositions B can be variously selected depending on the application, it is not particularly limited. For example, it may be a film shape, a sheet shape, a bulk shape, or the like. . Although the molding method varies depending on the applicable part and member, for example, a casting method, a casting method, a screen printing method, a spin coating method, a spray method, a transfer method, a dispenser method, and the like can be mentioned. An appropriate method may be employed to obtain the shape. As the mold, polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate, or the like can be applied. In addition, a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like can be applied in order to improve releasability from the mold.

例えばカチオン硬化性のレジストに使用する際においては、まず、ポリエチレングリコールモノエチルエーテルやシクロヘキサノンあるいはγブチロラクトン等の有機溶剤に溶解させた本発明の光カチオン硬化性樹脂組成物Bを銅張積層板やセラミック基板またはガラス基板等の基板上に、スクリーン印刷、スピンコート法などの手法によって、5〜160μmの膜厚で本発明の組成物を塗布し、塗膜を形成する。そして、該塗膜を60〜110℃で予備乾燥させた後、所望のパターンの描かれたネガフィルムを通して紫外線(例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、レーザー光等)を照射し、ついで、70〜120℃で露光後ベーク処理を行う。その後ポリエチレングリコールモノエチルエーテル等の溶剤で未露光部分を溶解除去(現像)した後、さらに必要があれば紫外線の照射及び/または加熱(例えば100〜200℃で0.5〜3時間)によって十分な硬化を行い、硬化物を得る。このようにしてプリント配線板を得ることも可能である。   For example, when used for a cation curable resist, first, the photo cation curable resin composition B of the present invention dissolved in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or γ-butyrolactone is used as a copper-clad laminate, The composition of the present invention is applied to a film thickness of 5 to 160 μm on a substrate such as a ceramic substrate or a glass substrate by a method such as screen printing or spin coating to form a coating film. The coating film is preliminarily dried at 60 to 110 ° C., and then irradiated with ultraviolet rays (for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a laser beam, etc.) through a negative film having a desired pattern. Then, post-exposure baking is performed at 70 to 120 ° C. Thereafter, the unexposed part is dissolved and removed (developed) with a solvent such as polyethylene glycol monoethyl ether, and if necessary, sufficient by irradiation with ultraviolet rays and / or heating (for example, at 100 to 200 ° C. for 0.5 to 3 hours). Curing is performed to obtain a cured product. In this way, it is also possible to obtain a printed wiring board.

本発明の硬化性樹脂組成物Aおよび硬化性樹脂組成物Bを硬化してなる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、砲弾型、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、LED反射板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。   The cured product obtained by curing the curable resin composition A and the curable resin composition B of the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to the LED sealing material such as a shell type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a polarizing plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, LED reflectors, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prisms Sheets, deflectors, retardation plates, viewing angle correction films, adhesives, polarizer protective films, front glass protective films for organic EL (electroluminescence) displays, front glass substitute materials, adhesives, and field emission displays ( FED) Film substrate, front glass protective films, a front glass substitute material, adhesives. In the optical recording field, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate material for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.

光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。   In the optical equipment field, they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor sections. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. As the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. Next-generation optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.

更に、本発明の硬化性樹脂組成物A及び硬化性樹脂組成物Bの用途は上記に限定されることはなく、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途に適用可能である。具体的には、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。   Furthermore, the uses of the curable resin composition A and the curable resin composition B of the present invention are not limited to the above, and can be applied to general uses in which thermosetting resins such as epoxy resins are used. . Specifically, in addition to adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealing materials, cyanate resins for substrates Examples of the composition and resist curing agent include additives to other resins such as an acrylic ester resin.

接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。   Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).

封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどに用いられるポッティング、ディッピング及びトランスファーモールド封止、ICやLSI類のCOB、COF、TABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、QFP、BGA及びCSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。   As sealing agents, potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, sealing (reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.

次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において各物性値等は以下のようにして測定した。
1)エポキシ当量:JIS K−7236に準じて測定。
2)粘度:25℃においてE型粘度計を使用して測定。
3)ガスクロマトグラフィー(以下、「GC」という):
分析条件
分離カラム;HP5−MS(0.25mm I.D.× 15m, 膜厚0.25μm)
カラムオーブン温度;初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で60分間保持した。
キャリアーガス:ヘリウム
4)ゲルパーミエーションクロマトグラフィー(以下、「GPC」という):
カラム;Shodex SYSTEM−21カラム(KF−803L、KF−802.5(×2本)、KF−802)
連結溶離液;テトラヒドロフラン、流速は1ml/min.
カラム温度;40℃
検出;RI
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. In the examples, each physical property value was measured as follows.
1) Epoxy equivalent: Measured according to JIS K-7236.
2) Viscosity: Measured using an E-type viscometer at 25 ° C.
3) Gas chromatography (hereinafter referred to as “GC”):
Analysis conditions Separation column: HP5-MS (0.25 mm ID × 15 m, film thickness 0.25 μm)
Column oven temperature: set to an initial temperature of 100 ° C., heated at a rate of 15 ° C. per minute, and held at 300 ° C. for 60 minutes.
Carrier gas: helium 4) Gel permeation chromatography (hereinafter referred to as “GPC”):
Column; Shodex SYSTEM-21 column (KF-803L, KF-802.5 (x2), KF-802)
Linked eluent: tetrahydrofuran, flow rate 1 ml / min.
Column temperature: 40 ° C
Detection; RI

実施例1
撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、日本国特開2009−126854号公報の記載に準じて合成したトランス体:シス体=98:2である1,4−シクロヘキサンジカルボン酸ジメチル200部、3−シクロヘキセン−1−メタノール336部、オルトチタン酸テトラブチル0.1部を加え、140℃で1時間、150℃で1時間、160℃で1時間、170℃で10時間、生成するメタノールを除きながら反応を行った。反応終了後、トルエン580部を加え、10重量%水酸化ナトリウム水溶液120部で3回水洗、さらに得られた有機層を水70部/回で水層が中性になるまで水洗した後、ロータリーエバポレーターで有機溶剤を濃縮することで本発明のジオレフィン化合物(D−1)が345部得られた。形状は、濃縮直後は液状であるが、室温で徐々に結晶化して白色結晶となった。GCによる異性体比はトランス体:シス体=98:2、GPCによる分析の結果、95%の純度である事を確認した。
Example 1
Trans isomer: cis isomer = 98: 2 synthesized according to the description of Japanese Patent Application Laid-Open No. 2009-126854, while purging a flask equipped with a stirrer, reflux condenser, stirrer, and Dean-Stark tube with nitrogen purge 200 parts of dimethyl 1,4-cyclohexanedicarboxylate, 336 parts of 3-cyclohexene-1-methanol, and 0.1 part of tetrabutyl orthotitanate were added, 1 hour at 140 ° C., 1 hour at 150 ° C., 1 at 160 ° C. The reaction was carried out for 10 hours at 170 ° C. while removing the produced methanol. After completion of the reaction, 580 parts of toluene was added and washed with 120 parts of a 10% by weight aqueous sodium hydroxide solution three times. Further, the obtained organic layer was washed with 70 parts of water / times until the aqueous layer became neutral, and then rotary. 345 parts of diolefin compounds (D-1) of the present invention were obtained by concentrating an organic solvent with an evaporator. The shape was liquid immediately after concentration, but gradually crystallized at room temperature into white crystals. The isomer ratio by GC was trans isomer: cis isomer = 98: 2, and as a result of analysis by GPC, it was confirmed that the purity was 95%.

実施例2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12−タングストリン酸0.95部、燐酸水素2ナトリウム0.78部、ジ硬化牛脂アルキルジメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50%ヘキサン溶液、アカード2HTアセテート)を加え、タングステン酸系触媒を生成させた後、トルエン180部、実施例1で得られたジオレフィン化合物(D−1)を118部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を加え、そのまま50℃で13時間攪拌した。GCにて反応の進行を確認したところ、原料ピークは消失していた。
ついで1%水酸化ナトリウム水溶液で中和した後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここにシリカゲル(ワコーゲル C−300)10部、活性炭(NORIT製 CAP SUPER)20部、ベントナイト(ホージュン製 ベンゲルSH)20部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、有機溶剤を留去することで本発明のエポキシ樹脂(E−1)122部を得た。形状は濃縮直後は液状であるが、室温で徐々に結晶化して白色結晶となった。
また、その融点は57℃であり、エポキシ当量は206g/eq.であった。GCによる異性体比はトランス体:シス体=98:2、GPCによる分析の結果、95%の純度である事を確認した。
Example 2
A flask equipped with a stirrer, reflux condenser, and stirrer is purged with nitrogen, 15 parts of water, 0.95 parts of 12-tungstophosphoric acid, 0.78 parts of disodium hydrogen phosphate, di-cured tallow alkyldimethylammonium acetate After adding 2.7 parts (50% hexane solution made by Lion Akzo, Acquard 2HT acetate) to produce a tungstic acid catalyst, 180 parts of toluene and the diolefin compound (D-1) obtained in Example 1 were added. 118 parts were added, and the mixture was further stirred to obtain an emulsion liquid. The solution was heated to 50 ° C., and 70 parts of 35% by weight hydrogen peroxide was added with vigorous stirring, and the mixture was stirred at 50 ° C. for 13 hours. When the progress of the reaction was confirmed by GC, the raw material peak disappeared.
Then, after neutralizing with a 1% aqueous sodium hydroxide solution, 25 parts of a 20% by weight aqueous sodium thiosulfate solution was added, stirred for 30 minutes, and allowed to stand. The organic layer separated into two layers was taken out, 10 parts of silica gel (Wakogel C-300), 20 parts of activated carbon (CAP SUPER made by NORIT) and 20 parts of bentonite (Bengel SH made by Hojun) were added and stirred at room temperature for 1 hour. And filtered. The obtained filtrate was washed three times with 100 parts of water, and 122 parts of the epoxy resin (E-1) of the present invention was obtained by distilling off the organic solvent from the obtained organic layer. The shape was liquid immediately after concentration, but gradually crystallized at room temperature into white crystals.
The melting point is 57 ° C., and the epoxy equivalent is 206 g / eq. Met. The isomer ratio by GC was trans isomer: cis isomer = 98: 2, and as a result of analysis by GPC, it was confirmed that the purity was 95%.

実施例3
撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、トランス体:シス体=98:2である1,4−シクロヘキサンジカルボン酸172部、3−シクロヘキセン-1-メタノール224部、トルエン600部、p-トルエンスルホン酸4部を加え、還流温度で生成する水を除きながら6時間反応を行った。反応終了後、10重量%水酸化ナトリウム水溶液120部で3回水洗、さらに得られた有機層を水70部/回で水層が中性になるまで水洗した後、ロータリーエバポレーターで有機溶剤を濃縮することで本発明のジオレフィン化合物(D−2)が343部得られた。形状は液状であった。GCによる異性体比はトランス体:シス体=50:50、GPCによる分析の結果、93%の純度である事を確認した。
Example 3
A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, and 172 parts of 1,4-cyclohexanedicarboxylic acid having a trans isomer: cis isomer = 98: 2 and 3-cyclohexene- 224 parts of 1-methanol, 600 parts of toluene and 4 parts of p-toluenesulfonic acid were added, and the reaction was carried out for 6 hours while removing water produced at the reflux temperature. After completion of the reaction, it was washed with 120 parts of a 10% by weight aqueous sodium hydroxide solution three times. Further, the obtained organic layer was washed with 70 parts / time of water until the aqueous layer became neutral, and then the organic solvent was concentrated with a rotary evaporator. As a result, 343 parts of the diolefin compound (D-2) of the present invention was obtained. The shape was liquid. The isomer ratio determined by GC was trans isomer: cis isomer = 50: 50, and analysis by GPC confirmed that the purity was 93%.

実施例4
実施例2においてジオレフィン化合物D−1をD−2に変えた以外は同様の操作を行ったところ、本発明のエポキシ樹脂(E−2)を120部得た。形状は濃縮直後は液状であるが、室温で数日後に結晶化して白色結晶となった。
また、エポキシ当量は209g/eq.であった。GCによる異性体比はトランス体:シス体=50:50、GPCによる分析の結果、92%の純度である事を確認した。
Example 4
When the same operation was performed except having changed the diolefin compound D-1 into D-2 in Example 2, 120 parts of epoxy resins (E-2) of this invention were obtained. The shape was liquid immediately after concentration, but crystallized after a few days at room temperature to form white crystals.
The epoxy equivalent was 209 g / eq. Met. The isomer ratio by GC was trans isomer: cis isomer = 50: 50, and as a result of analysis by GPC, it was confirmed that the purity was 92%.

実施例5
トランス体:シス体=80:20のもの173部とトランス体:シス体=98:2のもの27部、3−シクロヘキセン−1−メタノール450部、オルトチタン酸テトラブチル0.1部を加え、140℃で1時間、150℃で1時間、160℃で1時間、170℃で10時間、生成するメタノールを除きながら反応を行った。反応終了後、シリカゲル(富士シリシア化学製 PSQ−60B)1部を加え、そのままロータリーエバポレーターで過剰の3−シクロヘキセン−1−メタノールを留去し、ろ過によりシリカゲルを除去したところジオレフィン化合物(D−3)を340部得た。得られた化合物の形状は液状であった。GCによる異性体比はトランス:シス=30:70、GPCによる分析の結果、97%の純度である事を確認した。
Example 5
173 parts of trans isomer: cis isomer = 80: 20 and 27 parts of trans isomer: cis isomer = 98: 2, 450 parts of 3-cyclohexene-1-methanol, 0.1 part of tetrabutyl orthotitanate were added, and 140 The reaction was carried out at 1 ° C. for 1 hour, 150 ° C. for 1 hour, 160 ° C. for 1 hour and 170 ° C. for 10 hours while removing the produced methanol. After completion of the reaction, 1 part of silica gel (PSQ-60B manufactured by Fuji Silysia Chemical Co., Ltd.) was added. Excess 3-cyclohexene-1-methanol was distilled off with a rotary evaporator, and the silica gel was removed by filtration. As a result, a diolefin compound (D- 340 parts of 3) were obtained. The shape of the obtained compound was liquid. The isomer ratio by GC was trans: cis = 30: 70, and analysis by GPC confirmed that the purity was 97%.

実施例6
実施例2においてジオレフィン化合物(D−1)を(D−3)に変えた以外は同様の操作を行ったところ、エポキシ樹脂(E−3)を123部得た。形状は液状となった。
また、エポキシ当量は203g/eq.であった。GCによる異性体比はトランス:シス=30:70、GPCによる分析の結果、94%の純度である事を確認した。
Example 6
When the same operation was performed except having changed the diolefin compound (D-1) into (D-3) in Example 2, 123 parts of epoxy resins (E-3) were obtained. The shape became liquid.
The epoxy equivalent was 203 g / eq. Met. The isomer ratio by GC was trans: cis = 30: 70, and analysis by GPC confirmed that the purity was 94%.

比較例1
実施例1においてトランス体:シス体=98:2である1,4-シクロヘキサンジカルボン酸ジメチルをトランス体:シス体=17:83のもの(岩谷瓦斯株式会社製)に変え、170℃での反応を24時間に変えた以外は同様の操作を行いジオレフィン化合物(CD−1)を340部得た。得られた化合物の形状は液状であった。GCによる異性体比はトランス体:シス体=19:81、GPCによる分析の結果、96%の純度である事を確認した。
Comparative Example 1
In Example 1, dimethyl 1,4-cyclohexanedicarboxylate having trans isomer: cis isomer = 98: 2 was changed to trans isomer: cis isomer = 17: 83 (manufactured by Iwatani Gas Co., Ltd.), and reaction at 170 ° C. Was changed to 24 hours to obtain 340 parts of a diolefin compound (CD-1). The shape of the obtained compound was liquid. The isomer ratio by GC was trans isomer: cis isomer = 19: 81, and as a result of analysis by GPC, it was confirmed that the purity was 96%.

比較例2
実施例2においてジオレフィン化合物(D−1)を(CD−1)に変えた以外は同様の操作を行い、エポキシ樹脂(CE−1)を120部得た。形状は液状となった。
また、エポキシ当量は216g/eq.であった。GCによる異性体比はトランス体:シス体=21:79、GPCによる分析の結果、91%の純度である事を確認した。
Comparative Example 2
The same operation was performed except that the diolefin compound (D-1) was changed to (CD-1) in Example 2, and 120 parts of an epoxy resin (CE-1) was obtained. The shape became liquid.
The epoxy equivalent was 216 g / eq. Met. The isomer ratio by GC was trans isomer: cis isomer = 21: 79, and as a result of analysis by GPC, it was confirmed that the purity was 91%.

合成例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール20部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH 以下、酸無水物(H−1))100部を加え、40℃で3時間反応後、70℃で1時間加熱撹拌を行うことで(GPCによりトリシクロデカンジメタノールの消失(1面積%以下)を確認した。)多価カルボン酸(B−1)と酸無水物(H−1)を含有する硬化剤組成物(T−1)が120部得られた。得られた硬化剤組成物は無色の液状樹脂であり、GPCによる純度は多価カルボン酸(B−1;下記式(5))を55面積%、メチルヘキサヒドロフタル酸無水物が45面積%であった。また、官能基当量は201g/eq.であった。
式(5)
Synthesis example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen, 20 parts of tricyclodecane dimethanol, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH or less, acid anhydride 100 parts of product (H-1) was added, reacted at 40 ° C. for 3 hours, and then heated and stirred at 70 ° C. for 1 hour (disappearance of tricyclodecane dimethanol (1 area% or less) was confirmed by GPC). .) 120 parts of a curing agent composition (T-1) containing a polyvalent carboxylic acid (B-1) and an acid anhydride (H-1) were obtained. The obtained curing agent composition is a colorless liquid resin, and the purity by GPC is 55 area% for polyvalent carboxylic acid (B-1; the following formula (5)) and 45 area% for methylhexahydrophthalic anhydride. Met. The functional group equivalent was 201 g / eq. Met.
Formula (5)

Figure 0005559207
Figure 0005559207

実施例7,8,9、比較例3、4
エポキシ樹脂として実施例2、4、6、比較例2で得られたエポキシ樹脂(E-1)、(E-2)、(E-3)、(CE-1)及び3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレート(ダウ・ケミカル製 UVR−6105 以下エポキシ樹脂(E−4))、硬化剤として、合成例1で得られた硬化剤組成物(T−1)、前記酸無水物(H−1)及びシクロヘキサン−1,2,4−トリカルボン酸-1,2−無水物(三菱ガス化学製 H−TMAn 以下、酸無水物(H−2))、硬化促進剤として4級ホスホニウム塩(日本化学工業製 ヒシコーリンPX4MP 以下、触媒(I−1))を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
Examples 7, 8, 9 and Comparative Examples 3, 4
Epoxy resins (E-1), (E-2), (E-3), (CE-1) and 3,4-epoxycyclohexyl obtained in Examples 2, 4, 6 and Comparative Example 2 as epoxy resins Methyl-3,4-epoxycyclohexylcarboxylate (manufactured by Dow Chemical, UVR-6105 or less epoxy resin (E-4)), as a curing agent, the curing agent composition (T-1) obtained in Synthesis Example 1, Acid anhydride (H-1) and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical Co., Ltd., acid anhydride (H-2)), as a curing accelerator Using a quaternary phosphonium salt (manufactured by Nippon Kagaku Kogyo Co., Ltd., Hishicolin PX4MP, hereinafter referred to as catalyst (I-1)), blended at a blending ratio (part by weight) shown in Table 1 below, defoamed for 20 minutes, and the present invention or comparison A curable resin composition was obtained.

得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LEDに注型した。その後、120℃・1時間+150度・3時間の条件で硬化させることで、試験用LEDを得た。
測定項目としては、200時間点灯前後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。
点灯詳細条件
発光波長:465nm
駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
駆動環境:温度85℃、相対湿度85%
The obtained curable resin composition was vacuum degassed for 20 minutes, filled into a syringe, and cast into a surface-mounted LED equipped with a light-emitting element having an emission wavelength of 465 nm using a precision discharge device. Then, LED for a test was obtained by making it harden | cure on the conditions of 120 degreeC * 1 hour +150 degree | times * 3 hours.
As a measurement item, the illuminance before and after lighting for 200 hours was measured using an integrating sphere, and the illuminance retention rate of the test LED was calculated.
Detailed lighting conditions Light emission wavelength: 465nm
Drive system: constant current system, 60 mA (light emitting element regulation current is 30 mA)
Driving environment: temperature 85 ° C, relative humidity 85%

Figure 0005559207
Figure 0005559207

実施例10、比較例5
エポキシ樹脂として実施例6で得られたエポキシ樹脂(E-3)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレート(ダウ・ケミカル製 UVR−6105 エポキシ樹脂(E−4))、硬化剤として前記酸無水物(H−1)、硬化促進剤として2-エチル-4-メチルイミダゾール(以下、触媒(I-2))を使用し、下記表2に示す配合比(重量部)で配合し、金型に注型後120℃・2時間+150℃・6時間の条件で硬化させて直径5cm×厚さ4mmの円盤の試験片を作製した。この試験片の吸湿率(重量増加率)を測定した。
吸湿率は下記の2種の条件で測定した。
(1)温度85℃、相対湿度85%の環境下で24時間放置
(2)温度121℃、相対湿度100%の環境下で24時間放置
Example 10 and Comparative Example 5
Epoxy resin (E-3) obtained in Example 6 as an epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate (UVR-6105 epoxy resin (E-4) manufactured by Dow Chemical) , Using the acid anhydride (H-1) as a curing agent and 2-ethyl-4-methylimidazole (hereinafter referred to as catalyst (I-2)) as a curing accelerator, and the blending ratio (parts by weight) shown in Table 2 below ) And cast into a mold and cured under the conditions of 120 ° C. · 2 hours + 150 ° C. · 6 hours to prepare a disk specimen having a diameter of 5 cm × thickness of 4 mm. The moisture absorption rate (weight increase rate) of this test piece was measured.
The moisture absorption rate was measured under the following two conditions.
(1) Leave for 24 hours in an environment of 85 ° C and 85% relative humidity (2) Leave for 24 hours in an environment of 121 ° C and 100% relative humidity

Figure 0005559207
Figure 0005559207

以上の結果より、シス体・トランス体比を調整したジオレフィンから得られた本発明のエポキシ樹脂を含む硬化性樹脂組成物は、耐熱・耐光特性に優れた硬化物を与えることが明らかである。また、流通している他のエポキシ樹脂と比較して、本発明のエポキシ樹脂を含む硬化性樹脂組成物は吸湿特性に優れた硬化物を与えることがわかる。   From the above results, it is clear that the curable resin composition containing the epoxy resin of the present invention obtained from the diolefin having the adjusted cis / trans ratio gives a cured product having excellent heat resistance and light resistance. . Moreover, it turns out that the curable resin composition containing the epoxy resin of this invention gives the hardened | cured material excellent in the moisture absorption characteristic compared with the other epoxy resin currently distribute | circulated.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2009年12月24日付で出願された日本特許出願(特願2009−293478)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japanese patent application (Japanese Patent Application No. 2009-293478) for which it applied on December 24, 2009, The whole is used by reference. Also, all references cited herein are incorporated as a whole.

Claims (7)

下記式(1)
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(トランス体)と下記式(2)
Figure 0005559207

(式中、複数存在するRはそれぞれ独立して、水素原子、もしくは炭素数1〜6のアルキル基を表す。)で表されるジオレフィン化合物(シス体)とからなり、その存在割合がトランス体:シス体=98:2〜25:75であるジオレフィン化合物を酸化することにより得られるエポキシ樹脂と、硬化剤とを含有する熱硬化性樹脂組成物。
Following formula (1)
Figure 0005559207

(Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) and a diolefin compound (trans form) represented by the following formula (2):
Figure 0005559207

(Wherein a plurality of R's independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and the abundance ratio thereof is trans. Body: cis body = 98: 2 to 25:75 A thermosetting resin composition containing an epoxy resin obtained by oxidizing a diolefin compound and a curing agent.
前記ジオレフィン化合物がエステル交換反応によって得られるものである請求項1記載の熱硬化性樹脂組成物 The diolefin compound according to claim 1 thermosetting resin composition according is obtained by transesterification. 前記ジオレフィン化合物がトランス体とシス体の比率が98:2〜30:70である請求項1または2記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the diolefin compound has a ratio of trans form to cis form of 98: 2 to 30:70 . 前記エポキシ樹脂が過酸化水素および過酸のいずれかを用いてエポキシ化されたものである請求項1〜3のいずれか一項に記載の熱硬化性樹脂組成物 The thermosetting resin composition according to any one of claims 1 to 3, wherein the epoxy resin is epoxidized using either hydrogen peroxide or peracid. さらに硬化促進剤を含有する請求項1〜4のいずれか一項に記載の熱硬化性樹脂組成物 Furthermore, the thermosetting resin composition as described in any one of Claims 1-4 containing a hardening accelerator . 請求項1〜5のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the thermosetting resin composition as described in any one of Claims 1-5 . 請求項1〜5のいずれか一項に記載の硬化性樹脂組成物を硬化・封止して得られる光半導体装置。
Curing and sealed with the optical semiconductor device obtained a thermosetting resin composition according to any one of claims 1 to 5.
JP2011547586A 2009-12-24 2010-12-22 Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device Active JP5559207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547586A JP5559207B2 (en) 2009-12-24 2010-12-22 Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009293478 2009-12-24
JP2009293478 2009-12-24
PCT/JP2010/073089 WO2011078205A1 (en) 2009-12-24 2010-12-22 Diolefin compound, epoxy resin, curable resin composition, cured product thereof, and optical semiconductor device
JP2011547586A JP5559207B2 (en) 2009-12-24 2010-12-22 Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2011078205A1 JPWO2011078205A1 (en) 2013-05-09
JP5559207B2 true JP5559207B2 (en) 2014-07-23

Family

ID=44195732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011547586A Active JP5559207B2 (en) 2009-12-24 2010-12-22 Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device

Country Status (3)

Country Link
JP (1) JP5559207B2 (en)
TW (1) TWI471347B (en)
WO (1) WO2011078205A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190022488A (en) * 2016-06-24 2019-03-06 도레이 카부시키가이샤 Two-component epoxy resin composition and fiber reinforced composite material for fiber reinforced composite material
CN115667351A (en) * 2020-05-21 2023-01-31 株式会社大赛璐 Curable epoxy composition for rotating electrical machine
CN113372534A (en) * 2021-05-28 2021-09-10 南通东泰电工器材有限公司 Low-molecular-weight epoxy resin with single molecular weight and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948922A (en) * 1997-02-20 1999-09-07 Cornell Research Foundation, Inc. Compounds with substituted cyclic hydrocarbon moieties linked by secondary or tertiary oxycarbonyl containing moiety providing reworkable cured thermosets
JP2006142756A (en) * 2004-11-24 2006-06-08 Canon Inc Inkjet recording head and its manufacturing method
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2010095521A (en) * 2008-09-17 2010-04-30 Nippon Kayaku Co Ltd Method for producing epoxy compound, epoxy compound, and hardening resin composition and its hardened product
JPWO2010150524A1 (en) * 2009-06-22 2012-12-06 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for producing polyvalent carboxylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948922A (en) * 1997-02-20 1999-09-07 Cornell Research Foundation, Inc. Compounds with substituted cyclic hydrocarbon moieties linked by secondary or tertiary oxycarbonyl containing moiety providing reworkable cured thermosets
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2006142756A (en) * 2004-11-24 2006-06-08 Canon Inc Inkjet recording head and its manufacturing method
JP2010095521A (en) * 2008-09-17 2010-04-30 Nippon Kayaku Co Ltd Method for producing epoxy compound, epoxy compound, and hardening resin composition and its hardened product
JPWO2010150524A1 (en) * 2009-06-22 2012-12-06 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for producing polyvalent carboxylic acid

Also Published As

Publication number Publication date
WO2011078205A1 (en) 2011-06-30
TWI471347B (en) 2015-02-01
TW201132666A (en) 2011-10-01
JPWO2011078205A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5517237B2 (en) Method for producing epoxy compound, epoxy compound, curable resin composition and cured product thereof
JP5348764B2 (en) Curable resin composition for optical semiconductor encapsulation, and cured product thereof
JP5700759B2 (en) Curable resin composition and cured product thereof
JP5404514B2 (en) Epoxy resin production method, epoxy resin, and curable resin composition
JP5469078B2 (en) Diolefin compound, epoxy resin, curable resin composition, and cured product
JP5430337B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP5492081B2 (en) Diolefin compound, epoxy resin and composition
JP5615847B2 (en) Epoxy resin composition, curable resin composition, and cured product thereof
JP5559207B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof, and optical semiconductor device
JP5780627B2 (en) Method for producing epoxy compound
JP5519685B2 (en) Curable resin composition and cured product thereof
JP5367065B2 (en) Olefin compound, epoxy resin, curable resin composition and cured product thereof, LED device
JP5505960B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
WO2014112539A1 (en) Epoxy resin, epoxy resin composition and cured material
JP5878865B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP2011225654A (en) Diolefin resin, epoxy resin, and composition for the same
JP5683650B2 (en) Epoxy resin production method, epoxy resin, and curable resin composition
JP5796916B2 (en) Production method of epoxy resin
JP5660778B2 (en) Diolefin compound, epoxy compound, and composition
JP5196663B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5559207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250