WO2011078025A1 - Light-assisted magnetic head - Google Patents

Light-assisted magnetic head Download PDF

Info

Publication number
WO2011078025A1
WO2011078025A1 PCT/JP2010/072533 JP2010072533W WO2011078025A1 WO 2011078025 A1 WO2011078025 A1 WO 2011078025A1 JP 2010072533 W JP2010072533 W JP 2010072533W WO 2011078025 A1 WO2011078025 A1 WO 2011078025A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic head
assisted magnetic
optically assisted
light source
slider
Prior art date
Application number
PCT/JP2010/072533
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 田中
俊之 小嶋
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011078025A1 publication Critical patent/WO2011078025A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to an optically assisted magnetic head suitable for use in a thermally assisted magnetic recording system.
  • the recording is performed by locally heating during recording to cause magnetic softening and recording in a state where the coercive force is small, and thereafter, heating is stopped and natural cooling is performed to guarantee the stability of the recorded magnetic bit. Recording methods have been proposed. This recording method is called a heat-assisted magnetic recording method.
  • the heat-assisted magnetic recording method it is desirable to instantaneously heat the recording medium. Further, the heating mechanism and the recording medium rotating at high speed are not allowed to come into contact with each other. For this reason, heating is generally performed by irradiating a recording medium with a minute spot of laser light. Therefore, this method using light for heating is called an optically assisted magnetic recording method.
  • the required spot diameter is about 20 nm.
  • the light cannot be condensed to that extent.
  • an optical head using near-field light (sometimes referred to as near-field light) generated from an optical aperture having a size equal to or smaller than the incident light wavelength is used (see Patent Document 1).
  • This optical head includes a light source unit and a slider that receives light from the light source unit to generate near-field light and heats a disk area smaller than the diffraction limit of the light.
  • near-field light is generated by a near-field light generator provided on the slider, a disk area smaller than the diffraction limit of light is heated, and only the heated disk area is magnetically recorded. It has become so.
  • Patent Document 2 discloses an optically assisted magnetic head in which a semiconductor laser as a light source is disposed on a side surface of a slider.
  • the light emitted from the semiconductor laser toward the recording medium irradiates a light absorbing film having a minute opening formed on the recording medium facing surface of the head portion to generate near-field light, The recording medium is heated by the near-field light.
  • the shape of the opening is devised to improve the generation efficiency of near-field light, and the light output of the semiconductor laser is reduced, thereby generating heat during light emission of the semiconductor laser. This reduces thermal damage and deterioration of a device including a magnetic element disposed close to the semiconductor laser.
  • the optically assisted magnetic head of Patent Document 1 since the light source unit is attached to the surface of the slider opposite to the recording medium, the overall height of the optically assisted magnetic head is increased, and the recording apparatus in which the recording media are stacked is large. For example, there is a problem that it becomes difficult to mount on a notebook type PC or the like having no space in the thickness direction. Further, although the optically assisted magnetic head of Patent Document 1 has a minute structure, since the light source unit is individually joined to the slider, there is a problem that it takes time to assemble.
  • the present invention has been made in view of such problems of the prior art, and is an optically assisted magnetic head that is compact, has an extremely small influence of light source heat generation on the magnetic recording / reproducing unit, and can ensure ease of assembly.
  • the purpose is to provide.
  • the optically assisted magnetic head comprises: A slider that includes an optical waveguide and floats and moves relative to the recording medium according to the rotation of the disk-shaped recording medium; A light source attached to a side surface of the slider; An optical element having a deflecting surface for deflecting a light beam from the light source toward an optical waveguide provided in the slider; The light beam emitted from the light source is incident on the optical waveguide via the deflection surface of the optical element, and is emitted from the emission end of the optical waveguide facing the recording medium toward the recording medium. To do.
  • the overall height of the optically assisted magnetic head can be lowered and mounted on a notebook PC or the like having no space in the thickness direction. It is suitable as an optically assisted magnetic head used in a recording apparatus.
  • the “side surface” means a surface extending in a direction intersecting with a surface facing the recording medium among the surfaces of the slider.
  • the surfaces are 32w, 32x, 32y, and 32z.
  • a more preferable side surface is an end surface that extends in a direction intersecting with a direction in which the suspension arm that holds the slider extends among the above-mentioned side surfaces.
  • the surfaces are 32w and 32y.
  • the light source can be attached to a long member of the slider, which will be described later, at the time of manufacturing the slider, so that the manufacturability of the optically assisted magnetic head, which is a minute component, can be improved.
  • the light source is emitted from the light source in a direction having a component opposite to the incident direction of the light beam incident on the recording medium.
  • the “direction having a component opposite to the incident direction of the light beam” refers to a direction that is parallel to or intersects the direction opposite to the incident direction of the light beam at an angle of less than 90 degrees.
  • the crossing direction is 45 degrees or less. More preferably, the crossing direction is 15 degrees or less.
  • the optically assisted magnetic head according to a third aspect is characterized in that, in the invention according to the first or second aspect, the optical element has a condensing means on at least one surface. Thereby, the light beam emitted from the light source can be efficiently coupled to the optical waveguide.
  • the optically assisted magnetic head according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the optical element has a diffraction grating formed on at least one surface.
  • the light beam emitted from the light source can be efficiently coupled to the optical waveguide by the light collecting action and wavelength compensation function of the diffraction grating.
  • the optically assisted magnetic head according to claim 5 is characterized in that, in the invention according to claim 4, the pitch of the diffraction grating is narrowed from the center toward the periphery. Even when it has a straight groove shape and is formed on a flat surface, the light collecting function can be exhibited.
  • the deflecting surface on which the diffraction grating is provided has a cylindrical shape and the groove of the diffraction grating extends so as to be orthogonal to the axis of the cylindrical shape, the reflected light beam is condensed at one point (for example, the end of the optical waveguide). You can also.
  • the optically assisted magnetic head is characterized in that, in the invention according to the fourth aspect, the pitches of the diffraction gratings are equal, so that the light guide when the wavelength of the incident light beam fluctuates is used. It has a function (wavelength compensation function) for correcting a decrease in the coupling efficiency to the waveguide.
  • the wavelength fluctuation of the emitted light beam may occur due to the mode hop phenomenon, etc., but even if such wavelength fluctuation occurs, the decrease in coupling efficiency is corrected using the diffraction function of the diffraction grating. can do.
  • a light-assisted magnetic head is the optically assisted magnetic head according to any one of the first to sixth aspects, wherein the light beam emitted from the light source is reflected twice by the optical element and then reflected on the optical waveguide. Since it is incident, even when the incident end of the optical waveguide is oriented in the same direction as the exit of the light source, it can be incident perpendicularly to the optical waveguide. Furthermore, the light source and the optical waveguide can be arranged apart from each other by the distance between the first reflection surface and the second reflection surface, and the influence of heat generation of the light source on the magnetic recording / reproducing unit can be extremely reduced.
  • An optically assisted magnetic head is the optical head according to any one of the first to seventh aspects, wherein the slider has a magnetic head portion adjacent to the optical waveguide, and the light source passes through a heat insulating layer. Since it is attached to the magnetic head part, it is possible to suppress the heat generated from the light source from being transmitted to the magnetic head part, and to prevent thermal damage and deterioration of the magnetic head part.
  • optically assisted magnetic head according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, the optical element is made of plastic. If the material is plastic, it can be accurately formed by injection molding or nanoprinting.
  • optically assisted magnetic head according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 8, the optical element is made of glass. If the material is glass, it is possible to obtain characteristics excellent in environmental resistance as compared with the case of plastic.
  • An optically assisted magnetic head is characterized in that, in the invention according to any one of the first to eighth aspects, the optical element is a hybrid of glass and plastic. This allows you to take advantage of both materials.
  • the optically assisted magnetic head according to a twelfth aspect is the optical head according to any one of the first to eleventh aspects, wherein a member including a plurality of the sliders and a member including a plurality of the optical elements are joined and then divided. Thus, the slider and the optical element are integrally formed. Since the member including the plurality of sliders and the member including the plurality of optical elements are joined and then divided, the slider and the optical elements are integrally formed. The ease of assembly of the magnetic head can be improved.
  • a light-assisted magnetic head is the optical head according to any one of the first to eleventh aspects, comprising a plurality of members including the light source, a plurality of members including the slider, and a plurality of the optical elements. Since the slider, the optical element, and the light source are integrally formed by dividing after joining to the member, the ease of assembling the optically assisted magnetic head is further improved. Can do.
  • an optically assisted magnetic head that is compact, has a very small influence of heat generation of the light source on the magnetic recording / reproducing unit, and can ensure ease of assembly.
  • FIG. 1 is a perspective view showing a schematic configuration of an optically assisted magnetic recording apparatus.
  • 1 is an exploded perspective view of an optically assisted magnetic head and a head support according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing a view of the optically assisted magnetic head 3 of FIG. 2 cut along a plane including a line III-III and viewed in the arrow direction. It is a perspective view of rod-shaped member IM2. It is a figure for demonstrating the process of forming elongate member IM1. It is a figure for demonstrating the process of forming elongate member IM1. It is a figure for demonstrating the process of joining and dividing long member IM1, IM2.
  • FIG. 6 is a diagram for explaining another process of forming the optically assisted magnetic head 3. It is the perspective view and sectional drawing of 3 A of optically assisted magnetic heads concerning a modification. It is a perspective view of the optically assisted magnetic head 3B concerning a modification. It is a perspective view of 3 C of optically assisted magnetic heads concerning a modification. It is the perspective view and sectional drawing of optically assisted magnetic head 3D concerning a modification. It is sectional drawing of the optically assisted magnetic head 3E concerning a modification. It is sectional drawing of the optically assisted magnetic head 3F concerning a modification. It is sectional drawing of the optically assisted magnetic head 3G concerning a modification. It is sectional drawing of the optically assisted magnetic head 3H concerning a modification. It is sectional drawing of the optically assisted magnetic head 3I concerning a modification.
  • FIG. 1 shows a schematic configuration of an optically assisted magnetic recording device (for example, a hard disk device) equipped with an optically assisted magnetic recording head.
  • the optically assisted magnetic recording apparatus 1 includes a plurality of recording disks (magnetic recording media) 2, a head support 4, a tracking actuator 6, an optically assisted magnetic head 3, and a drive device (not shown).
  • the head support portion 4 is provided to be rotatable in the direction of arrow A (tracking direction) with the support shaft 5 as a fulcrum.
  • the tracking actuator 6 is attached to the head support portion 4.
  • the optically assisted magnetic head 3 is attached to the tip of the head support 4.
  • a drive device (not shown) rotates the disk 2 in the direction of arrow B.
  • the optically assisted magnetic recording apparatus 1 is configured such that the optically assisted magnetic head 3 can move relative to the upper surface (or lower surface) of the disk 2 while floating.
  • FIG. 2 shows an exploded perspective view of the optically assisted magnetic head 3 and the head support 4.
  • FIG. 3 shows a view of the optically assisted magnetic head 3 of FIG. 2 cut along a plane including the line III-III and viewed in the direction of the arrow.
  • the optically assisted magnetic head 3 is an optical head that uses light for information recording on the disk 2, and includes an optical element 31, a slider 32, and a light source 33.
  • the head support portion 4 includes a suspension arm 41 having one end attached to the support shaft 5 and a flexure (plate spring) 44. The suspension arm 41 and the flexure 44 are fixed by welding or the like.
  • a rectangular opening 42 is formed at the tip of the suspension arm 41.
  • a pivot (protruding portion) 43 that protrudes toward the inside of the opening 42 is provided on one side of the opening 42.
  • a rectangular opening 45 is formed at the tip of the flexure 44.
  • a tongue piece 46 having a flat surface protrudes from one side of the opening 45 so as to protrude into the inside.
  • a light source 33 which is a semiconductor laser, is fixed to the front side surface 32 y (end surface) of the slider 32 of the optically assisted magnetic head 3, and the optical element 31 is bonded so as to straddle the slider 32 and the upper surface of the light source 33.
  • the “upper surface” refers to the surface of the slider 32 opposite to the surface facing the disk 2.
  • the lower surface of the tongue piece portion 46 of the flexure 44 is bonded to the upper surface of the slider 32, and the optically assisted magnetic head 3 is fixed to the tip of the suspension arm 41. Not limited to.
  • the optical element 31 is made of a transparent material such as plastic or glass. As will be described later, the optical element 31 is manufactured by injection molding, imprinting, glass molding, or the like.
  • the resin for injection molding include polycarbonate (for example, AD5503, Teijin Chemicals Limited) and ZEONEX 480R (Nippon Zeon Corporation), which are thermoplastic resins.
  • the resin for imprint manufacturing include PAK-02 (Toyo Gosei Co., Ltd.), which is a photocurable resin.
  • the optical element 31 has an overall prism shape, and includes a planar lower surface 31a, a first reflecting surface 31b, and a spherical or aspherical condensing reflecting surface (deflecting surface) formed on the first reflecting surface 31b. ) 31d and a planar second reflecting surface (deflection surface) 31c.
  • a reflective film M is formed on the surfaces of the first reflective surface 31b, the condensing reflective surface 31d, and the second reflective surface 31c.
  • the condensing reflection surface 31d constitutes a condensing means.
  • the reflective film M may be omitted.
  • the light source 33 is disposed so that the emission port 33a of the active layer 33b from which the laser beam is emitted faces upward in FIG. 3 and faces the lower surface 31a of the optical element 31.
  • the wavelength of light emitted from the light source 33 ranges from visible light to near-infrared wavelengths (the wavelength band is about 0.6 ⁇ m to 2 ⁇ m, and specific wavelengths include 650 nm, 830 nm, 1310 nm, 1550 nm, and the like. Are preferred).
  • the surface of the slider 32 facing the disk 2 (the lower surface in FIG. 3) is an air bearing surface (ABS: Air Bearing Surface) for improving the floating characteristics, and a groove for capturing the floating air (see FIG. 6B).
  • the slider 32 has an optical waveguide 32a having a rectangular cross-section penetrating vertically, facing the lower surface 31a of the optical element, and a magnetic recording portion in the vicinity of the optical waveguide 32a.
  • a magnetic head part 32b comprising a magnetic reproducing part is provided, and a near-field generating part 34 is formed at the end of the optical waveguide 32a, with respect to the near-field generating part and the magnetic head part 32b comprising a metal thin film.
  • a heat insulating layer 32c made of alumina or the like is formed between the magnetic head portion 32b and the light source 33.
  • the distance between the light source 33 and the optical waveguide 32a is widened, and the light source 33 is provided between the light source 33 and the magnetic head portion 32b. It is possible to provide a heat insulating layer 32c having a sufficient thickness to block the heat generated by the light source 33.
  • the heat insulating layer 32c is laminated with a non-heat insulating member May be.
  • the flying of the slider 32 needs to be stabilized in the state of being close to the disk 2, and it is necessary to appropriately apply a pressure for suppressing the flying force to the slider 32.
  • the head support 4 fixed on the slider 32 has a function of appropriately applying a force for suppressing the flying force of the slider 32 in addition to the function of tracking the optically assisted magnetic head 3.
  • the slider 32 moves relative to the disk 2 which is a magnetic recording medium while flying, but there is a possibility of contact with the disk 2 if there is dust or a defect on the medium.
  • a hard material having high friction resistance as the material of the slider 32.
  • a ceramic material containing Al 2 O 3 , AlTiC, zirconia, TiN, or the like may be used.
  • a surface treatment may be performed on the surface of the slider 32 on the disk 2 side in order to increase the friction resistance.
  • a DLC Diamond Like Carbon
  • the operation of the optically assisted magnetic head 3 having the above configuration will be described with reference to FIG.
  • the divergent light emitted from the light source 33 in the direction opposite to the direction of incidence on the disk 2 is incident on the lower surface 31a of the optical element 31 as indicated by the dotted line and is reflected by the light when reflected by the light collecting / reflecting surface 31d.
  • the light is converted into convergent light by the optical power of the surface 31d, further reflected by the second reflecting surface 31c, then emitted from the lower surface 31a, and condensed at the entrance of the optical waveguide 32a of the slider 32.
  • the near-field generating unit 34 When the condensed light is guided through the optical waveguide 32 a of the slider 32 toward the disk 2 and irradiates the near-field generating unit 34 (plasmon probe) provided on the bottom surface of the slider 32, the near-field generating unit 34.
  • the near-field light generated by the light propagates toward the disk 2.
  • the optical axis of the light beam incident on the optical waveguide 32a is preferably perpendicular to the incident end face of the optical waveguide 32a from the viewpoint of optical coupling efficiency.
  • the magnetic head part 32b When the area where the coercive force is reduced reaches the magnetic head part 32b, information is recorded in the area where the coercive force is reduced by a magnetic field generated by a coil (not shown) installed in the magnetic head part 32b. When a region having a reduced coercive force passes through the magnetic head portion 32b, the region is naturally cooled, and the magnetization of the recorded magnetic bit is stably retained.
  • the magnetic head unit 32b can reproduce information by detecting the recorded magnetization direction.
  • a rod-like member IM2 as shown in FIG. 4 is molded with a mold by glass or plastic or a hybrid structure of glass and plastic.
  • the rod-shaped member IM2 has a shape such that the optical elements 31 are arranged in series.
  • a generally elongated substantially triangular columnar rod-like member IM2 has a first surface IM2a, a second surface IM2b, and a third surface IM2c.
  • a condensing / reflecting surface IM2d having a spherical or aspherical shape is simultaneously transferred and molded by a mold.
  • convex alignment marks IM2e are simultaneously transferred and molded on both ends of the rod-like member IM2.
  • the alignment mark IM2e is not limited to a round cylindrical hole, and may be a cross shape ( ⁇ ), a cross shape (+), or the like, may not be a convex shape, may be a concave shape, and may be other than the opposite ends of the rod-like member IM2. You may install in the place.
  • the total length of the rod-shaped member IM2 is L
  • the width of the slider is w
  • the mechanical pencil core has a length of 60 mm and can be suppressed to about 3, so that it can be prevented from being accidentally broken during handling.
  • a reflective film is formed on the first surface IM2a, the third surface IM2c, and the condensing reflection surface IM2d, and an antireflection film is formed on the second surface IM2b by vapor deposition or the like.
  • FIG. 5 shows a part of the manufacturing process of the slider 32.
  • a disk-shaped substrate W19 material: AlTiC or the like
  • a magnetic head portion 32b including an optical waveguide 32a portion, a magnetic recording portion, and a magnetic reproducing portion in a semiconductor process including a photolithography process, and further heat insulation.
  • the layer 32c, electrodes, and the like are stacked to form a stacked portion W40.
  • the step of forming the wafer W composed of the substrate W19 and the stacked portion W40 is completed.
  • the wafer W is cut into a rectangular plate shape by a processing method such as dicing or milling at a position indicated by a dotted line in FIG.
  • the long member IM1 shown in FIG. 6A is obtained.
  • the long member IM1 has six optical waveguides 32a arranged at equal intervals at a distance w (see FIG. 6C).
  • a pentagonal shallow groove 32d is formed by machining on the front side surface (becomes the ABS of the slider).
  • the optical waveguide 32a is used as a reference at a predetermined position on both sides in the arrangement direction.
  • the alignment mark WAM is formed mechanically or chemically.
  • the alignment mark WAM is not limited to a round cylindrical hole, and may be a cross shape ( ⁇ ), a cross shape (+), or the like, and may be a concave shape instead of a convex shape. You may install in the place of.
  • the long member IM1 is longer than the rod member IM2 so as to be exposed when the rod member IM2 is joined. This completes the step of forming the long member IM1.
  • a light source member IM3 in which a plurality of light sources 33 are separately arranged in series is prepared. Further, in FIG. 7A, an adhesive is applied to the front side surface IM1a of the long member IM1, and the light source member IM3 is positioned and fixed with the alignment mark WAM as a reference. Next, an adhesive is applied to the upper surface IM1b of the long member IM1 and the upper surface IM3a of the light source member IM3, and the rod-shaped member IM2 is positioned so that the alignment mark IM2e of the rod-shaped member IM2 is at a predetermined position with respect to the alignment mark WAM.
  • the second surface IM2b of the rod-like member IM2 is fixed so as to be in close contact.
  • the boundary between the optical waveguide 32a and the substrate W19 formed on the long member IM1 and the laminated portion W40 is omitted.
  • the assist magnetic head 3 can be manufactured efficiently. Thereby, the light emitted from each light source 33 is condensed with high accuracy on the upper end of the optical waveguide 32 a of the slider 32 via the deflection surface of the optical element 31 facing the light source 33. According to the above head manufacturing method, the light source 33 and the optical element 31 can be assembled on the basis of the end face of the optical waveguide, and high assembly accuracy can be ensured.
  • the optically assisted magnetic head 3 including the slider 32 and the light source 33 can be formed at one time by positioning and fixing the substrate W50 on which the light sources 33 are formed in a matrix, and then cutting the substrate W50 as indicated by dotted lines.
  • the matrix light source 33 may be directly stacked on the stacked portion W40.
  • the overall height of the optically assisted magnetic head 3 can be lowered, and there is no space in the thickness direction. It is suitable as an optically assisted magnetic head for use in a recording device mounted on the like. Further, the distance between the light source 33 and the magnetic head portion 32 b is widened by reflecting twice by the optical element 31, so that a heat insulating layer 32 c can be formed between the light source 33 and the magnetic head portion 32 b, and the light source 33 emits light. Thermal damage and deterioration of the magnetic head portion 32b due to heat can be avoided.
  • the slider 32 and the optical element 31 are integrally formed.
  • the ease of assembly of the optically assisted magnetic head 3 which is a minute component can be improved.
  • FIG. 9 is a perspective view (a) of the optically assisted magnetic head 3A according to the modification and a cross-sectional view (b) similar to FIG.
  • the optically assisted magnetic head 3A shown in FIG. 9 has a condensing reflection surface 31d made of a spherical surface or an aspherical surface of the optical element 31 as a diffractive lens 31e formed on the first reflection surface 31b in the embodiment of FIG. Only the point is different. About another structure, it is the same as that of the above-mentioned embodiment.
  • the diffractive lens 31e is formed from a circular or substantially elliptical grating whose pitch decreases from the center toward the periphery, and a reflective film is formed on the surface thereof.
  • FIG. 10 is a perspective view of an optically assisted magnetic head 3B according to another modification.
  • the first reflecting surface 31b of the optical element 31 has a cylindrical shape, and a one-dimensional diffractive lens 31f is provided on the cylindrical first reflecting surface 31b. Only the points provided are different. About another structure, it is the same as that of the above-mentioned embodiment.
  • the one-dimensional diffractive lens 31f extends so that the grooves of the diffraction grating are orthogonal to the cylindrical axis, and the pitch decreases from the center toward the periphery along the cylindrical axis. It has a light collecting function only in the axial direction.
  • a reflective film is formed on the surface of the one-dimensional diffractive lens 31f.
  • the cylindrical first reflecting surface 31b and the one-dimensional diffractive lens 31f allow the light beam reflected from this surface to be condensed at one point.
  • FIG. 11 is a perspective view of an optically assisted magnetic head 3C according to another modification.
  • the optically assisted magnetic head 3C shown in FIG. 11 differs from the embodiment shown in FIG. 3 only in that the condensing / reflecting surface 31d is eliminated and the first reflecting surface 31b of the optical element 31 is formed in a cylindrical shape.
  • the light source 33 is an edge emitting semiconductor laser
  • the intensity distribution of the emitted laser light is an ellipse
  • the lamination direction of the active layer 33b is a major axis. Accordingly, even if only this direction is condensed by the cylindrical first reflecting surface 31b, the waveguide coupling efficiency necessary for recording can be obtained.
  • an optical element having a shape only in the one-dimensional direction as shown in the present embodiment its manufacture becomes easy.
  • FIG. 12 is a perspective view (a) and a cross-sectional view (b) similar to FIG. 3 of an optically assisted magnetic head 3D according to a modification.
  • the optically assisted magnetic head 3D shown in FIG. 12 differs from the embodiment of FIG. 11 only in that the first reflecting surface 31b is planar and a one-dimensional diffractive lens 31g is provided on the first reflecting surface 31b.
  • the one-dimensional diffractive lens 31g is formed of a linear grating in which a grating groove extends along the longitudinal direction of the rod-shaped member IM2, and the pitch becomes narrower from the center toward the periphery along the direction orthogonal to the groove.
  • a reflective film is formed on the surface.
  • the optical element 31 of the optically assisted magnetic head 3D has the same optical function as the optical element 31 of the optically assisted magnetic head 3C.
  • FIG. 13 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3E according to another modification.
  • the optically assisted magnetic head 3E shown in FIG. 13 differs from the embodiment of FIG. 3 only in that the condensing reflection surface 31d of the optical element 31 is eliminated and only the planar first reflection surface 31b is used.
  • the condensing reflection surface 31d of the optical element 31 is eliminated and only the planar first reflection surface 31b is used.
  • the planar first reflection surface 31b is used.
  • it is the same as that of the above-mentioned embodiment.
  • FIG. 14 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3F according to another modification.
  • the optically assisted magnetic head 3F shown in FIG. 14 has a shape in which the light source 33 is fixed to the side surface on the opposite side of the slider 32 and the optical element 31 covers substantially the entire upper surface of the slider 32 in the embodiment of FIG. And the only difference is that a spherical or aspherical second condensing reflection surface 31h is formed on the planar second reflection surface 31c.
  • the divergent light emitted from the light source 33 is reflected by the second condensing / reflecting surface 31h to become substantially parallel light, and then reflected and collected by the condensing / reflecting surface 31d, and then enters the optical waveguide 32a of the slider 32.
  • the heat insulating layer 32c functions as a protective layer for the magnetic head portion 32b, and may be a non-heat insulating member.
  • FIG. 15 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3G according to another modification.
  • the optically assisted magnetic head 3G shown in FIG. 15 eliminates the condensing / reflecting surface 31d of the optical element 31 from the embodiment shown in FIG. 14, only the planar first reflecting surface 31b, and the second condensing / reflecting surface 31h. The only difference is that the optical power is increased.
  • the divergent light emitted from the light source 33 is reflected by the second condensing / reflecting surface 31 h to become weakly convergent light, and then reflected by the first reflecting surface 31 b and then enters the optical waveguide 32 a of the slider 32.
  • FIG. 16 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3H according to another modification.
  • the optically assisted magnetic head 3H shown in FIG. 16 differs from the embodiment shown in FIG. 14 only in that the second condensing / reflecting surface 31h is eliminated and a diffractive lens 31i is formed on the planar second reflecting surface 31c.
  • a diffractive lens 31i is formed on the planar second reflecting surface 31c.
  • a grating coupler GC is provided in the vicinity of the entrance of the optical waveguide 32a, and the light beam emitted from the light source 33 and reflected by the reflecting surface 31j is directly applied to the grating coupler GC via the cladding portion 35. By making it enter, it can also couple
  • Grooves of a lattice extend along the longitudinal direction of the rod-shaped member IM2 on the reflective surface 31j, and are formed from a linear lattice with equal intervals, and a reflective film is formed on the surface thereof.
  • the incident angle at which the coupling efficiency is maximized varies depending on the wavelength.
  • the optical element 31 has a function of correcting the angle of incidence on the grating coupler GC with respect to wavelength fluctuations by means of an equally spaced diffraction grating.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

Provided is a light-assisted magnetic head which is compact, is hardly affected by the heat generated from the light source for a magnetic recording/reproducing unit, and can be easily assembled. A light-assisted magnetic head is provided with: a slider which has an optical wave guide, is suspended above a disc-shaped recording medium, and moves relative to said recoding medium in accordance with the rotation thereof; a light source which is attached to the side surface of the slider; and an optical element which has a deflected surface which deflects the light beam from the light source towards the optical waveguide disposed on the slider. The light beam emitted from the light source enters the optical waveguide via the deflected surface of the optical element, and exits towards the recording medium from the light-exiting edge of the optical waveguide, which faces the recording medium.

Description

光アシスト磁気ヘッドOptically assisted magnetic head
 本発明は、熱アシスト磁気記録方式に用いると好適な光アシスト磁気ヘッドに関する。 The present invention relates to an optically assisted magnetic head suitable for use in a thermally assisted magnetic recording system.
 一般的なHDD(ハードディスクドライブ)に用いられる磁気記録方式は、記録密度を高くしようとすると磁気ビットの間隔が狭くなり、超常磁性効果等により極性が不安定になる。このため高い保磁力を有する記録媒体が必要になるが、そのような記録媒体を使用すると記録時に必要な磁場も大きくなる。しかるに、記録ヘッドによって発生する磁場は飽和磁束密度によって上限が決まるが、その値は材料限界に近づいており飛躍的な増大は望めないという実情がある。そこで、記録時に局所的に加熱して磁気軟化を生じさせて、保磁力が小さくなった状態で記録し、その後、加熱を止めて自然冷却することにより、記録した磁気ビットの安定性を保証する記録方式が提案されている。この記録方式は熱アシスト磁気記録方式と呼ばれている。 In a magnetic recording system used for a general HDD (hard disk drive), when an attempt is made to increase the recording density, the interval between magnetic bits becomes narrow, and the polarity becomes unstable due to a superparamagnetic effect or the like. For this reason, a recording medium having a high coercive force is required. However, when such a recording medium is used, the magnetic field required for recording increases. However, the upper limit of the magnetic field generated by the recording head is determined by the saturation magnetic flux density, but the value is approaching the material limit, and there is a fact that a dramatic increase cannot be expected. Therefore, the recording is performed by locally heating during recording to cause magnetic softening and recording in a state where the coercive force is small, and thereafter, heating is stopped and natural cooling is performed to guarantee the stability of the recorded magnetic bit. Recording methods have been proposed. This recording method is called a heat-assisted magnetic recording method.
 熱アシスト磁気記録方式では、記録媒体の加熱を瞬間的に行うことが望ましい。また、加熱する機構と、高速で回転する記録媒体とが接触することは許されない。このため、加熱はレーザ光の微小スポットを記録媒体に照射して行われることが一般的であり、よって加熱に光を用いるこの方式は光アシスト磁気記録方式と呼ばれている。光アシスト式で超高密度記録を行う場合、必要なスポット径は20nm程度になるが、通常の光学系では回折限界があるため、光をそこまで集光することはできない。 In the heat-assisted magnetic recording method, it is desirable to instantaneously heat the recording medium. Further, the heating mechanism and the recording medium rotating at high speed are not allowed to come into contact with each other. For this reason, heating is generally performed by irradiating a recording medium with a minute spot of laser light. Therefore, this method using light for heating is called an optically assisted magnetic recording method. When ultra-high-density recording is performed by the optical assist method, the required spot diameter is about 20 nm. However, since a normal optical system has a diffraction limit, the light cannot be condensed to that extent.
 そのため、入射光波長以下のサイズの光学的開口から発生する近接場光(近視野光と称する場合がある)を利用する光ヘッドが利用されている(特許文献1参照)。この光ヘッドは、光源ユニットと、光源ユニットからの光を受けて近接場光を発生させて、光の回折限界よりも微小なディスク領域を加熱するスライダとを備えている。このような光ヘッドにおいては、スライダに設けられた近接場光発生部によって近接場光を発生させ、光の回折限界よりも微小なディスク領域を加熱し、加熱されたディスク領域のみが磁気記録されるようになっている。 For this reason, an optical head using near-field light (sometimes referred to as near-field light) generated from an optical aperture having a size equal to or smaller than the incident light wavelength is used (see Patent Document 1). This optical head includes a light source unit and a slider that receives light from the light source unit to generate near-field light and heats a disk area smaller than the diffraction limit of the light. In such an optical head, near-field light is generated by a near-field light generator provided on the slider, a disk area smaller than the diffraction limit of light is heated, and only the heated disk area is magnetically recorded. It has become so.
 一方、特許文献2には、光源としての半導体レーザがスライダ側面に配置された光アシスト磁気ヘッドが開示されている。この光アシスト磁気ヘッドにおいては、半導体レーザから記録媒体に向けて出射された光がヘッド部の記録媒体対向面に形成された微小開口を有する光吸収膜を照射して近接場光を発生し、この近接場光によって記録媒体を加熱する。特許文献2に開示されている光アシスト磁気ヘッドおいては、開口の形状を工夫して近接場光の発生効率を改善し、半導体レーザの光出力を低減させる事により、半導体レーザ発光時における発熱を抑え、半導体レーザに近接配置された磁気素子を含むデバイスの熱的な損傷や劣化を低減させている。 On the other hand, Patent Document 2 discloses an optically assisted magnetic head in which a semiconductor laser as a light source is disposed on a side surface of a slider. In this optically assisted magnetic head, the light emitted from the semiconductor laser toward the recording medium irradiates a light absorbing film having a minute opening formed on the recording medium facing surface of the head portion to generate near-field light, The recording medium is heated by the near-field light. In the optically assisted magnetic head disclosed in Patent Document 2, the shape of the opening is devised to improve the generation efficiency of near-field light, and the light output of the semiconductor laser is reduced, thereby generating heat during light emission of the semiconductor laser. This reduces thermal damage and deterioration of a device including a magnetic element disposed close to the semiconductor laser.
特開2009-266365号公報JP 2009-266365 A 特開2001-216603号公報JP 2001-216603 A
 特許文献1の光アシスト磁気ヘッドによれば、光源ユニットをスライダの記録媒体とは反対側の面に取り付けているため、光アシスト磁気ヘッドの全高が高くなり、記録媒体を積層した記録装置の大型化を招き、例えば厚さ方向にスペースの余裕のないノート型PC等に搭載しにくくなるという問題がある。又、特許文献1の光アシスト磁気ヘッドは微小な構造であるが、光源ユニットをスライダに個々に接合しているため、組み付けに手間取るという問題もある。 According to the optically assisted magnetic head of Patent Document 1, since the light source unit is attached to the surface of the slider opposite to the recording medium, the overall height of the optically assisted magnetic head is increased, and the recording apparatus in which the recording media are stacked is large. For example, there is a problem that it becomes difficult to mount on a notebook type PC or the like having no space in the thickness direction. Further, although the optically assisted magnetic head of Patent Document 1 has a minute structure, since the light source unit is individually joined to the slider, there is a problem that it takes time to assemble.
 また、特許文献2に開示されている光アシスト磁気ヘッドにおいて、開口と記録磁極を近接させるためには、半導体レーザの活性層を磁気記録再生部側に向けて配置する必要があり、半導体レーザからの光出力を数10mWに抑えたとしても活性層での発熱は生じるため、磁気記録再生部への熱的影響を完全に無くす事はできない。特にHDDはディスクの回転制御が角速度一定であるため、ディスク外周側のほうが内周側よりも線速度が速く、より多くの記録のための光出力が必要となる。従って、内周側で数10mWの光出力に抑えられたとしても外周側では1.5~2倍もの光出力が必要となり、光源の発熱の影響が無視できなくなる。 Further, in the optically assisted magnetic head disclosed in Patent Document 2, in order to make the aperture and the recording magnetic pole close to each other, it is necessary to dispose the active layer of the semiconductor laser toward the magnetic recording / reproducing unit side. Even if the optical output is suppressed to several tens of mW, heat is generated in the active layer, so that the thermal influence on the magnetic recording / reproducing portion cannot be completely eliminated. In particular, since the rotation control of the disk is constant in angular velocity, the HDD has a higher linear velocity on the outer peripheral side than on the inner peripheral side, and requires more light output for recording. Therefore, even if the optical output is suppressed to several tens of mW on the inner peripheral side, 1.5 to twice as much optical output is required on the outer peripheral side, and the influence of heat generation of the light source cannot be ignored.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、コンパクトであり、磁気記録再生部に対する光源の発熱の影響が極めて小さく、かつ組付容易性を確保できる光アシスト磁気ヘッドを提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and is an optically assisted magnetic head that is compact, has an extremely small influence of light source heat generation on the magnetic recording / reproducing unit, and can ensure ease of assembly. The purpose is to provide.
 請求項1に記載の光アシスト磁気ヘッドは、
 光導波路を備え、ディスク状の記録媒体の回転に応じて、前記記録媒体に対して浮上して相対移動するスライダと、
 前記スライダの側面に取り付けられた光源と、
 前記スライダに設けられた光導波路に向けて前記光源からの光束を偏向する偏向面を備えた光学素子とを有し、
 前記光源から出射された光束は、前記光学素子の偏向面を介して前記光導波路に入射し、前記光導波路の前記記録媒体と対向する出射端から前記記録媒体に向かって出射することを特徴とする。
The optically assisted magnetic head according to claim 1 comprises:
A slider that includes an optical waveguide and floats and moves relative to the recording medium according to the rotation of the disk-shaped recording medium;
A light source attached to a side surface of the slider;
An optical element having a deflecting surface for deflecting a light beam from the light source toward an optical waveguide provided in the slider;
The light beam emitted from the light source is incident on the optical waveguide via the deflection surface of the optical element, and is emitted from the emission end of the optical waveguide facing the recording medium toward the recording medium. To do.
 本発明によれば、前記光源が前記スライダの側面に取り付けられているために、光アシスト磁気ヘッドの全高を下げることが出来、厚さ方向にスペースの余裕のないノート型PC等に搭載される記録装置に用いる光アシスト磁気ヘッドとして好適である。尚、「側面」とはスライダの面のうち、記録媒体に対向する面に交差する方向に延在する面をいい、例えば図2を参照すると、32w、32x、32y、32zの面をいう。さらに好ましい側面は、上記側面のうち、スライダを保持するサスペンションアームの延在する方向と交差する方向に延在する端面であり、例えば図2を参照すると、32w、32yの面である。このような側面を利用して、スライダの製造時に前記光源を、後述するスライダの長尺部材に取り付けることが出来るため、微小な部品である光アシスト磁気ヘッドの製造性を向上させることが出来る。 According to the present invention, since the light source is attached to the side surface of the slider, the overall height of the optically assisted magnetic head can be lowered and mounted on a notebook PC or the like having no space in the thickness direction. It is suitable as an optically assisted magnetic head used in a recording apparatus. The “side surface” means a surface extending in a direction intersecting with a surface facing the recording medium among the surfaces of the slider. For example, referring to FIG. 2, the surfaces are 32w, 32x, 32y, and 32z. A more preferable side surface is an end surface that extends in a direction intersecting with a direction in which the suspension arm that holds the slider extends among the above-mentioned side surfaces. For example, referring to FIG. 2, the surfaces are 32w and 32y. By utilizing such a side surface, the light source can be attached to a long member of the slider, which will be described later, at the time of manufacturing the slider, so that the manufacturability of the optically assisted magnetic head, which is a minute component, can be improved.
 請求項2に記載の光アシスト磁気ヘッドは、請求項1に記載の発明において、前記記録媒体に入射する光束の入射方向とは逆向きの成分を有する方向に、前記光源から光束が出射されることを特徴とするので、前記光源を前記スライダの側面に取り付けた場合でも、前記光源から出射された光束を、有効なスペースを使って前記光導波路に入射させることができる。尚、「光束の入射方向とは逆向きの成分を有する方向」とは、光束の入射方向と正反対の方向に対し、平行か或いは90度未満の角度で交差する方向をいう。好ましくは、45度以下で交差する方向がよい。さらに好ましくは、15度以下で交差する方向がよい。 According to a second aspect of the present invention, in the optically assisted magnetic head according to the first aspect of the invention, the light source is emitted from the light source in a direction having a component opposite to the incident direction of the light beam incident on the recording medium. Thus, even when the light source is attached to the side surface of the slider, the light beam emitted from the light source can be incident on the optical waveguide using an effective space. The “direction having a component opposite to the incident direction of the light beam” refers to a direction that is parallel to or intersects the direction opposite to the incident direction of the light beam at an angle of less than 90 degrees. Preferably, the crossing direction is 45 degrees or less. More preferably, the crossing direction is 15 degrees or less.
 請求項3に記載の光アシスト磁気ヘッドは、請求項1又は2に記載の発明において、前記光学素子は少なくとも1つの面に集光手段を有することを特徴とする。これにより、前記光源から照射された光束を前記光導波路に効率的に結合させることができる。 The optically assisted magnetic head according to a third aspect is characterized in that, in the invention according to the first or second aspect, the optical element has a condensing means on at least one surface. Thereby, the light beam emitted from the light source can be efficiently coupled to the optical waveguide.
 請求項4に記載の光アシスト磁気ヘッドは、請求項1~3のいずれかに記載の発明において、前記光学素子には、少なくとも1つの面に回折格子が形成されていることを特徴とする。前記回折格子の集光作用や波長補償機能によって、前記光源から照射された光束を前記光導波路に効率的に結合させることができる。 The optically assisted magnetic head according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the optical element has a diffraction grating formed on at least one surface. The light beam emitted from the light source can be efficiently coupled to the optical waveguide by the light collecting action and wavelength compensation function of the diffraction grating.
 請求項5に記載の光アシスト磁気ヘッドは、請求項4に記載の発明において、前記回折格子のピッチは、中央から周辺に向かうにつれてピッチが狭くなっていることを特徴とするので、前記回折格子がストレートな溝形状を有し且つ平面に形成されていた場合でも、集光機能を発揮させることができる。特に、回折格子を設ける偏向面をシリンドリカル形状にし、回折格子の溝をシリンドリカル形状の軸線に対して直交するように延在させると、反射した光束を一点(例えば光導波路端)に集光させることもできる。 The optically assisted magnetic head according to claim 5 is characterized in that, in the invention according to claim 4, the pitch of the diffraction grating is narrowed from the center toward the periphery. Even when it has a straight groove shape and is formed on a flat surface, the light collecting function can be exhibited. In particular, when the deflecting surface on which the diffraction grating is provided has a cylindrical shape and the groove of the diffraction grating extends so as to be orthogonal to the axis of the cylindrical shape, the reflected light beam is condensed at one point (for example, the end of the optical waveguide). You can also.
 請求項6に記載の光アシスト磁気ヘッドは、請求項4に記載の発明において、前記回折格子のピッチは、等間隔であることを特徴とするので、入射光束の波長が変動した場合における前記光導波路への結合効率の低下を補正する機能(波長補償機能)を有することを特徴とする。前記光源に半導体レーザを用いると、モードホップ現象等により出射光束の波長変動が生じる場合があるが、このような波長変動が生じても前記回折格子の回折機能を用いて結合効率の低下を補正することができる。 The optically assisted magnetic head according to a sixth aspect is characterized in that, in the invention according to the fourth aspect, the pitches of the diffraction gratings are equal, so that the light guide when the wavelength of the incident light beam fluctuates is used. It has a function (wavelength compensation function) for correcting a decrease in the coupling efficiency to the waveguide. When a semiconductor laser is used as the light source, the wavelength fluctuation of the emitted light beam may occur due to the mode hop phenomenon, etc., but even if such wavelength fluctuation occurs, the decrease in coupling efficiency is corrected using the diffraction function of the diffraction grating. can do.
 請求項7に記載の光アシスト磁気ヘッドは、請求項1~6のいずれかに記載の発明において、前記光源から出射された光束は、前記光学素子で2回反射された後、前記光導波路に入射することを特徴とするので、前記光導波路の入射端が前記光源の出射口と同じ方向を向いている場合でも、前記光導波路に垂直に入射させることができる。さらに、第1の反射面と第2の反射面の間隔だけ前記光源と前記光導波路を離して配置する事が可能となり、磁気記録再生部に対する光源の発熱の影響を極めて小さくすることができる。 A light-assisted magnetic head according to a seventh aspect of the present invention is the optically assisted magnetic head according to any one of the first to sixth aspects, wherein the light beam emitted from the light source is reflected twice by the optical element and then reflected on the optical waveguide. Since it is incident, even when the incident end of the optical waveguide is oriented in the same direction as the exit of the light source, it can be incident perpendicularly to the optical waveguide. Furthermore, the light source and the optical waveguide can be arranged apart from each other by the distance between the first reflection surface and the second reflection surface, and the influence of heat generation of the light source on the magnetic recording / reproducing unit can be extremely reduced.
 請求項8に記載の光アシスト磁気ヘッドは、請求項1~7のいずれかに記載の発明において、前記スライダは前記光導波路に隣接した磁気ヘッド部を有し、前記光源は断熱層を介して前記磁気ヘッド部に取り付けられたことを特徴とするので、前記光源から発せられた熱が前記磁気ヘッド部に伝わることを抑制でき、前記磁気ヘッド部の熱的損傷や劣化を防止できる。 An optically assisted magnetic head according to an eighth aspect of the present invention is the optical head according to any one of the first to seventh aspects, wherein the slider has a magnetic head portion adjacent to the optical waveguide, and the light source passes through a heat insulating layer. Since it is attached to the magnetic head part, it is possible to suppress the heat generated from the light source from being transmitted to the magnetic head part, and to prevent thermal damage and deterioration of the magnetic head part.
 請求項9に記載の光アシスト磁気ヘッドは、請求項1~8のいずれかに記載の発明において、前記光学素子はプラスチックからなることを特徴とする。素材がプラスチックであれば、射出成形やナノプリント法により精度良く形成できる。 The optically assisted magnetic head according to claim 9 is characterized in that, in the invention according to any one of claims 1 to 8, the optical element is made of plastic. If the material is plastic, it can be accurately formed by injection molding or nanoprinting.
 請求項10に記載の光アシスト磁気ヘッドは、請求項1~8のいずれかに記載の発明において、前記光学素子はガラスからなることを特徴とする。素材がガラスであれば、プラスチックの場合と比較して、耐環境性に優れた特性を得ることができる。 The optically assisted magnetic head according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 8, the optical element is made of glass. If the material is glass, it is possible to obtain characteristics excellent in environmental resistance as compared with the case of plastic.
 請求項11に記載の光アシスト磁気ヘッドは、請求項1~8のいずれかに記載の発明において、前記光学素子はガラスとプラスチックのハイブリッドであることを特徴とする。これにより両素材の長所を活用できる。 An optically assisted magnetic head according to an eleventh aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the optical element is a hybrid of glass and plastic. This allows you to take advantage of both materials.
 請求項12に記載の光アシスト磁気ヘッドは、請求項1~11のいずれかに記載の発明において、前記スライダを複数個含む部材と前記光学素子を複数個含む部材とを接合した後に、分断することによって、前記スライダと前記光学素子とが一体的に形成されることを特徴とする。前記スライダを複数個含む部材と前記光学素子を複数個含む部材とを接合した後に、分断することによって、前記スライダと前記光学素子とが一体的に形成されるので、微小な部品である光アシスト磁気ヘッドの組付容易性を向上させることができる。 The optically assisted magnetic head according to a twelfth aspect is the optical head according to any one of the first to eleventh aspects, wherein a member including a plurality of the sliders and a member including a plurality of the optical elements are joined and then divided. Thus, the slider and the optical element are integrally formed. Since the member including the plurality of sliders and the member including the plurality of optical elements are joined and then divided, the slider and the optical elements are integrally formed. The ease of assembly of the magnetic head can be improved.
 請求項13に記載の光アシスト磁気ヘッドは、請求項1~11のいずれかに記載の発明において、前記光源を複数個含む部材を、前記スライダを複数個含む部材と前記光学素子を複数個含む部材とに接合した後に、分断することによって、前記スライダと前記光学素子と前記光源とが一体的に形成されることを特徴とするので、更に光アシスト磁気ヘッドの組付容易性を向上させることができる。 A light-assisted magnetic head according to a thirteenth aspect of the present invention is the optical head according to any one of the first to eleventh aspects, comprising a plurality of members including the light source, a plurality of members including the slider, and a plurality of the optical elements. Since the slider, the optical element, and the light source are integrally formed by dividing after joining to the member, the ease of assembling the optically assisted magnetic head is further improved. Can do.
 本発明によれば、コンパクトであり、磁気記録再生部に対する光源の発熱の影響が極めて小さく、かつ組付容易性を確保できる光アシスト磁気ヘッドを提供することができる。 According to the present invention, it is possible to provide an optically assisted magnetic head that is compact, has a very small influence of heat generation of the light source on the magnetic recording / reproducing unit, and can ensure ease of assembly.
光アシスト式磁気記録装置の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of an optically assisted magnetic recording apparatus. この発明の第1実施形態に係る光アシスト磁気ヘッド及びヘッド支持部の分解斜視図である。1 is an exploded perspective view of an optically assisted magnetic head and a head support according to a first embodiment of the present invention. 図2の光アシスト磁気ヘッド3をIII-III線を含む面で切断して矢印方向に見た図を示す図である。FIG. 3 is a diagram showing a view of the optically assisted magnetic head 3 of FIG. 2 cut along a plane including a line III-III and viewed in the arrow direction. 棒状部材IM2の斜視図である。It is a perspective view of rod-shaped member IM2. 長尺部材IM1を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming elongate member IM1. 長尺部材IM1を形成する工程を説明するための図である。It is a figure for demonstrating the process of forming elongate member IM1. 長尺部材IM1,IM2を接合し分断する工程を説明するための図である。It is a figure for demonstrating the process of joining and dividing long member IM1, IM2. 光アシスト磁気ヘッド3を形成する別な工程を説明するための図である。FIG. 6 is a diagram for explaining another process of forming the optically assisted magnetic head 3. 変形例にかかる光アシスト磁気ヘッド3Aの斜視図と断面図である。It is the perspective view and sectional drawing of 3 A of optically assisted magnetic heads concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Bの斜視図である。It is a perspective view of the optically assisted magnetic head 3B concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Cの斜視図である。It is a perspective view of 3 C of optically assisted magnetic heads concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Dの斜視図と断面図である。It is the perspective view and sectional drawing of optically assisted magnetic head 3D concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Eの断面図である。It is sectional drawing of the optically assisted magnetic head 3E concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Fの断面図である。It is sectional drawing of the optically assisted magnetic head 3F concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Gの断面図である。It is sectional drawing of the optically assisted magnetic head 3G concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Hの断面図である。It is sectional drawing of the optically assisted magnetic head 3H concerning a modification. 変形例にかかる光アシスト磁気ヘッド3Iの断面図である。It is sectional drawing of the optically assisted magnetic head 3I concerning a modification.
 以下、図面を参照して本発明の実施の形態について説明する。図1に、光アシスト式磁気記録ヘッドを搭載した光アシスト式磁気記録装置(例えばハードディスク装置)の概略構成を示す。光アシスト式磁気記録装置1は、記録用の複数枚の回転可能なディスク(磁気記録媒体)2と、ヘッド支持部4と、トラッキング用アクチュエータ6と、光アシスト磁気ヘッド3と、図示しない駆動装置と、を筐体1A内に備えている。ヘッド支持部4は、支軸5を支点として矢印Aの方向(トラッキング方向)に回動可能に設けられている。トラッキング用アクチュエータ6は、ヘッド支持部4に取り付けられている。光アシスト磁気ヘッド3は、ヘッド支持部4の先端に取り付けられている。図示しない駆動装置は、ディスク2を矢印Bの方向に回転させる。この光アシスト式磁気記録装置1は、光アシスト磁気ヘッド3がディスク2の上面(又は下面)に対して浮上しながら相対的に移動しうるように構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an optically assisted magnetic recording device (for example, a hard disk device) equipped with an optically assisted magnetic recording head. The optically assisted magnetic recording apparatus 1 includes a plurality of recording disks (magnetic recording media) 2, a head support 4, a tracking actuator 6, an optically assisted magnetic head 3, and a drive device (not shown). In the housing 1A. The head support portion 4 is provided to be rotatable in the direction of arrow A (tracking direction) with the support shaft 5 as a fulcrum. The tracking actuator 6 is attached to the head support portion 4. The optically assisted magnetic head 3 is attached to the tip of the head support 4. A drive device (not shown) rotates the disk 2 in the direction of arrow B. The optically assisted magnetic recording apparatus 1 is configured such that the optically assisted magnetic head 3 can move relative to the upper surface (or lower surface) of the disk 2 while floating.
 図2に、光アシスト磁気ヘッド3及びヘッド支持部4の分解斜視図を示す。又、図3に、図2の光アシスト磁気ヘッド3をIII-III線を含む面で切断して矢印方向に見た図を示す。光アシスト磁気ヘッド3は、ディスク2に対する情報記録に光を利用する光ヘッドであって、光学素子31とスライダ32と光源33とを備えている。図2において、ヘッド支持部4は、支軸5に一端を取り付けたサスペンションアーム41と、フレクシャ(板ばね)44とを備えている。サスペンションアーム41とフレクシャ44とは、溶接などによって固定されている。 FIG. 2 shows an exploded perspective view of the optically assisted magnetic head 3 and the head support 4. FIG. 3 shows a view of the optically assisted magnetic head 3 of FIG. 2 cut along a plane including the line III-III and viewed in the direction of the arrow. The optically assisted magnetic head 3 is an optical head that uses light for information recording on the disk 2, and includes an optical element 31, a slider 32, and a light source 33. In FIG. 2, the head support portion 4 includes a suspension arm 41 having one end attached to the support shaft 5 and a flexure (plate spring) 44. The suspension arm 41 and the flexure 44 are fixed by welding or the like.
 サスペンションアーム41の先端部には、矩形状の開口部42が形成されている。この開口部42の一辺には、開口部42の内側に向かって突出するピボット(突出部)43が設けられている。一方、フレクシャ44の先端部には矩形状の開口部45が形成されている。この開口部45の一辺から、その内部に張り出すようにして、平坦な面を有する舌片部46が突出している。 A rectangular opening 42 is formed at the tip of the suspension arm 41. A pivot (protruding portion) 43 that protrudes toward the inside of the opening 42 is provided on one side of the opening 42. On the other hand, a rectangular opening 45 is formed at the tip of the flexure 44. A tongue piece 46 having a flat surface protrudes from one side of the opening 45 so as to protrude into the inside.
 図2において、光アシスト磁気ヘッド3のスライダ32の手前側側面32y(端面)に、半導体レーザである光源33が固定され、スライダ32と光源33の上面にまたがるようにして、光学素子31が接合されている。尚、「上面」とはスライダ32のディスク2と対向する面とは反対側の面をいう。本実施の形態においては、フレクシャ44の舌片部46の下面がスライダ32の上面に接着されて、サスペンションアーム41の先端部に光アシスト磁気ヘッド3が固定されるようになっているが、これに限られない。 In FIG. 2, a light source 33, which is a semiconductor laser, is fixed to the front side surface 32 y (end surface) of the slider 32 of the optically assisted magnetic head 3, and the optical element 31 is bonded so as to straddle the slider 32 and the upper surface of the light source 33. Has been. The “upper surface” refers to the surface of the slider 32 opposite to the surface facing the disk 2. In the present embodiment, the lower surface of the tongue piece portion 46 of the flexure 44 is bonded to the upper surface of the slider 32, and the optically assisted magnetic head 3 is fixed to the tip of the suspension arm 41. Not limited to.
 光学素子31はプラスチック又はガラスなどの透明な素材からなる。光学素子31は、後述するように射出成形やインプリント製法やガラスモールド法などによって作製される。射出成形用の樹脂としては、熱可塑性樹脂であるポリカーボネイト(例えばAD5503、帝人化成株式会社)やZEONEX 480R(日本ゼオン株式会社)などが挙げられる。また、インプリント製法用の樹脂としては、光硬化性樹脂であるPAK-02(東洋合成工業株式会社)などが挙げられる。 The optical element 31 is made of a transparent material such as plastic or glass. As will be described later, the optical element 31 is manufactured by injection molding, imprinting, glass molding, or the like. Examples of the resin for injection molding include polycarbonate (for example, AD5503, Teijin Chemicals Limited) and ZEONEX 480R (Nippon Zeon Corporation), which are thermoplastic resins. Examples of the resin for imprint manufacturing include PAK-02 (Toyo Gosei Co., Ltd.), which is a photocurable resin.
 光学素子31は、全体的にプリズム状であって、平面状の下面31aと、第1反射面31bと、第1反射面31bに形成された球面または非球面形状の集光反射面(偏向面)31dと、平面状の第2反射面(偏向面)31cとを有する。第1反射面31b、集光反射面31d、及び第2反射面31cの表面には反射膜Mが形成されている。集光反射面31dが集光手段を構成する。尚、集光反射面31dと第2反射面31cにおける光の反射は光学素子31の内面反射となるため、全反射が使える場合がある。この場合には反射膜Mは無くてもよい。 The optical element 31 has an overall prism shape, and includes a planar lower surface 31a, a first reflecting surface 31b, and a spherical or aspherical condensing reflecting surface (deflecting surface) formed on the first reflecting surface 31b. ) 31d and a planar second reflecting surface (deflection surface) 31c. A reflective film M is formed on the surfaces of the first reflective surface 31b, the condensing reflective surface 31d, and the second reflective surface 31c. The condensing reflection surface 31d constitutes a condensing means. In addition, since reflection of the light in the condensing reflective surface 31d and the 2nd reflective surface 31c becomes internal surface reflection of the optical element 31, total reflection may be used. In this case, the reflective film M may be omitted.
 光源33は、レーザ光が射出される活性層33bの出射口33aを図3で上方に向け、光学素子31の下面31aに対向させて配置されている。光源33から出射される光の波長は可視光から近赤外の波長(波長帯としては、0.6μmから2μm程度であり、具体的な波長としては、650nm、830nm、1310nm、1550nmなどが挙げられる)が好ましい。 The light source 33 is disposed so that the emission port 33a of the active layer 33b from which the laser beam is emitted faces upward in FIG. 3 and faces the lower surface 31a of the optical element 31. The wavelength of light emitted from the light source 33 ranges from visible light to near-infrared wavelengths (the wavelength band is about 0.6 μm to 2 μm, and specific wavelengths include 650 nm, 830 nm, 1310 nm, 1550 nm, and the like. Are preferred).
 スライダ32のディスク2と対向する面(図3で下面)は、浮上特性向上のための空気ベアリング面(ABS:Air Bearing Surface)であり、浮上エア捕獲用の溝((図6(b)の32d)が形成されている。またスライダ32は、光学素子の下面31aに対向して、上下に貫通した断面が矩形状の光導波路32aを有する。又、光導波路32aの近傍には磁気記録部と磁気再生部から成る磁気ヘッド部32bが設けられている。光導波路32aの末端には、近接場発生部34が形成されている。近接場発生部、金属薄膜からなる磁気ヘッド部32bについては、例えば特開2003-45004号等に記載されている。磁気ヘッド部32bと光源33の間にはアルミナ等からなる断熱層32cが形成されている。本実施例では光学素子31の集光反射面31dと第2反射面31cにより2回反射されるため、光源33と光導波路32aの間隔を広げられ、光源33と磁気ヘッド部32bの間に光源33の発する熱を遮断するのに十分な厚さの断熱層32cを設けることができる。尚、光源33と磁気ヘッド部32bの間隔が熱的に十分離れている場合には非断熱部材にて積層してもよい。 The surface of the slider 32 facing the disk 2 (the lower surface in FIG. 3) is an air bearing surface (ABS: Air Bearing Surface) for improving the floating characteristics, and a groove for capturing the floating air (see FIG. 6B). The slider 32 has an optical waveguide 32a having a rectangular cross-section penetrating vertically, facing the lower surface 31a of the optical element, and a magnetic recording portion in the vicinity of the optical waveguide 32a. A magnetic head part 32b comprising a magnetic reproducing part is provided, and a near-field generating part 34 is formed at the end of the optical waveguide 32a, with respect to the near-field generating part and the magnetic head part 32b comprising a metal thin film. For example, it is described in Japanese Patent Application Laid-Open No. 2003-4504, etc. A heat insulating layer 32c made of alumina or the like is formed between the magnetic head portion 32b and the light source 33. In the embodiment, since the light is reflected twice by the condensing reflection surface 31d and the second reflection surface 31c of the optical element 31, the distance between the light source 33 and the optical waveguide 32a is widened, and the light source 33 is provided between the light source 33 and the magnetic head portion 32b. It is possible to provide a heat insulating layer 32c having a sufficient thickness to block the heat generated by the light source 33. When the distance between the light source 33 and the magnetic head portion 32b is sufficiently thermally separated, the heat insulating layer 32c is laminated with a non-heat insulating member May be.
 記録/再生時において、スライダ32の浮上はディスク2に近接した状態で安定させる必要があり、スライダ32に浮上力を抑える圧力を適宜加える必要がある。このため、スライダ32の上に固定されるヘッド支持部4は、光アシスト磁気ヘッド3のトラッキングを行う機能の他に、スライダ32の浮上力を抑える力を適宜加える機能を有している。サスペンションアーム41に形成されたピボット43とフレクシャ44のばね効果とによって光アシスト磁気ヘッド3に圧力を加えることで、スライダ32のディスク2と対向する面に設けられた図示しない空気ベアリング面が受ける空気の浮上力とバランスが取れ、スライダ32とディスク2とは数十nmの浮上量を保つことができる。このようにスライダ32とディスク2との間の距離が非常に狭いため、表面にしか存在しない近接場光であっても、ディスク2を加熱することができる。 At the time of recording / reproduction, the flying of the slider 32 needs to be stabilized in the state of being close to the disk 2, and it is necessary to appropriately apply a pressure for suppressing the flying force to the slider 32. For this reason, the head support 4 fixed on the slider 32 has a function of appropriately applying a force for suppressing the flying force of the slider 32 in addition to the function of tracking the optically assisted magnetic head 3. By applying pressure to the optically assisted magnetic head 3 by the spring effect of the pivot 43 and the flexure 44 formed on the suspension arm 41, air received by an air bearing surface (not shown) provided on the surface of the slider 32 facing the disk 2 is received. Therefore, the slider 32 and the disk 2 can maintain a flying height of several tens of nanometers. Thus, since the distance between the slider 32 and the disk 2 is very narrow, the disk 2 can be heated even with near-field light that exists only on the surface.
 スライダ32は、浮上しながら磁気記録媒体であるディスク2に対して相対的に移動するが、媒体に付着したごみや媒体に欠陥がある場合には、ディスク2と接触する可能性がある。その場合に発生する摩擦を低減するために、スライダ32の材質には耐摩擦性の高い硬質の材料を用いることが望ましい。例えば、Alを含むセラミック材料、AlTiCやジリコニア、TiNなどを用いれば良い。また、摩擦防止処理として、スライダ32のディスク2側の面に耐摩擦性を増すために表面処理を行っても良い。例えば、DLC(Diamond Like Carbon)被膜を用いると、近赤外光の透過率も高く、ダイヤモンドに次ぐHv=3000以上の硬度が得られる。 The slider 32 moves relative to the disk 2 which is a magnetic recording medium while flying, but there is a possibility of contact with the disk 2 if there is dust or a defect on the medium. In order to reduce the friction generated in that case, it is desirable to use a hard material having high friction resistance as the material of the slider 32. For example, a ceramic material containing Al 2 O 3 , AlTiC, zirconia, TiN, or the like may be used. Further, as the friction preventing treatment, a surface treatment may be performed on the surface of the slider 32 on the disk 2 side in order to increase the friction resistance. For example, when a DLC (Diamond Like Carbon) film is used, the transmittance of near-infrared light is high, and a hardness of Hv = 3000 or higher after diamond is obtained.
 以上の構成を有する光アシスト磁気ヘッド3の作用について、図3を参照して説明する。光源33から、ディスク2への入射方向とは反対方向に出射した発散光は、点線で示すように光学素子31の下面31aから入射し、集光反射面31dで反射する際に、集光反射面31dが有する光学パワーにより収束光に変換され、更に第2反射面31cで反射した後、再び下面31aから出射し、スライダ32の光導波路32aの入口に集光する。 The operation of the optically assisted magnetic head 3 having the above configuration will be described with reference to FIG. The divergent light emitted from the light source 33 in the direction opposite to the direction of incidence on the disk 2 is incident on the lower surface 31a of the optical element 31 as indicated by the dotted line and is reflected by the light when reflected by the light collecting / reflecting surface 31d. The light is converted into convergent light by the optical power of the surface 31d, further reflected by the second reflecting surface 31c, then emitted from the lower surface 31a, and condensed at the entrance of the optical waveguide 32a of the slider 32.
 集光された光は、ディスク2に向かってスライダ32の光導波路32aを導波して、スライダ32の底面に設けられた近接場発生部34(プラズモンプローブ)を照射すると、近接場発生部34によって生じた近接場光がディスク2に向かって伝播する。光導波路32aに入射する光束の光軸は、光導波路32aの入射端面に対して垂直であることが光結合効率の観点から好ましい。光アシスト磁気ヘッド3から出射した光が微小な光スポットとしてディスク2に照射されると、ディスク2の照射された領域の温度が一時的に上昇してディスク2の保磁力が低下する。保磁力が低下した領域が磁気ヘッド部32bに達すると、磁気ヘッド部32bに設置された図示しないコイルにより発生させられた磁場によって、保磁力が低下した領域に情報が記録される。保磁力が低下した領域が磁気ヘッド部32bを通過すると、この領域は自然冷却されて、記録された磁気ビットの磁化が安定して保持される。また、磁気ヘッド部32bが、記録された磁化の方向を検出することで情報の再生を行うことができる。 When the condensed light is guided through the optical waveguide 32 a of the slider 32 toward the disk 2 and irradiates the near-field generating unit 34 (plasmon probe) provided on the bottom surface of the slider 32, the near-field generating unit 34. The near-field light generated by the light propagates toward the disk 2. The optical axis of the light beam incident on the optical waveguide 32a is preferably perpendicular to the incident end face of the optical waveguide 32a from the viewpoint of optical coupling efficiency. When the light emitted from the optically assisted magnetic head 3 is irradiated onto the disk 2 as a minute light spot, the temperature of the irradiated area of the disk 2 temporarily rises and the coercive force of the disk 2 decreases. When the area where the coercive force is reduced reaches the magnetic head part 32b, information is recorded in the area where the coercive force is reduced by a magnetic field generated by a coil (not shown) installed in the magnetic head part 32b. When a region having a reduced coercive force passes through the magnetic head portion 32b, the region is naturally cooled, and the magnetization of the recorded magnetic bit is stably retained. The magnetic head unit 32b can reproduce information by detecting the recorded magnetization direction.
 次に、光アシスト磁気ヘッド3の製造方法について説明する。まず、ガラス又はプラスチック、或いはガラスとプラスチックのハイブリッド構造により、図4に示すような棒状部材IM2を金型で成形する。棒状部材IM2は、光学素子31を直列に並べたごとき形状を有する。 Next, a method for manufacturing the optically assisted magnetic head 3 will be described. First, a rod-like member IM2 as shown in FIG. 4 is molded with a mold by glass or plastic or a hybrid structure of glass and plastic. The rod-shaped member IM2 has a shape such that the optical elements 31 are arranged in series.
 図4において、全体的に細長い略三角柱状の棒状部材IM2は、第1面IM2a、第2面IM2b、第3面IM2cとを有している。第3面IM2cには、球面または非球面形状をした集光反射面IM2dが金型により同時に転写成形されている。また、棒状部材IM2の両端には凸状のアライメントマークIM2eが同時に転写成形されている。アライメントマークIM2eは、丸筒孔に限らず、クロス型(×)、十字型(+)などの形状でも良く、凸状ではなく、凹状でもよいし、棒状部材IM2の両端ではなく、両端以外の場所に設置しても良い。 In FIG. 4, a generally elongated substantially triangular columnar rod-like member IM2 has a first surface IM2a, a second surface IM2b, and a third surface IM2c. On the third surface IM2c, a condensing / reflecting surface IM2d having a spherical or aspherical shape is simultaneously transferred and molded by a mold. Further, convex alignment marks IM2e are simultaneously transferred and molded on both ends of the rod-like member IM2. The alignment mark IM2e is not limited to a round cylindrical hole, and may be a cross shape (×), a cross shape (+), or the like, may not be a convex shape, may be a concave shape, and may be other than the opposite ends of the rod-like member IM2. You may install in the place.
 ここで、棒状部材IM2の全長はLであり、スライダの幅はwであり、L≧3wの条件を満たしている。一般的なフェムトスライダ幅は、0.7mm程度であるので、少なくともL≧2.1mmとできるから、棒状部材IM2をハンドリングするには十分大きなサイズとなっている。尚、L≦30wである事が望ましい。あまり棒状部材IM2の全長が長いとハンドリングの際に折れてしまう危険があるためである。w=0.7mmの場合、L≦21mmであるが、例えばシャープペンシルの芯が長さ60mmであり、その約1/3に抑えられるためハンドリングの際に誤って折ってしまう事を抑制できる。 Here, the total length of the rod-shaped member IM2 is L, the width of the slider is w, and the condition of L ≧ 3w is satisfied. Since the general femto slider width is about 0.7 mm, it can be set to at least L ≧ 2.1 mm. Therefore, the width is sufficiently large to handle the rod-shaped member IM2. It is desirable that L ≦ 30w. This is because if the full length of the rod-like member IM2 is too long, there is a risk of breaking during handling. In the case of w = 0.7 mm, L ≦ 21 mm. For example, the mechanical pencil core has a length of 60 mm and can be suppressed to about 3, so that it can be prevented from being accidentally broken during handling.
 金型成形により形成された棒状部材IM2において、第1面IM2a及び第3面IM2c、集光反射面IM2dに反射膜を、また第2面IM2bに反射防止膜を蒸着等により形成する。以上で、棒状部材IM2の形成ステップが完了する。 In the rod-like member IM2 formed by molding, a reflective film is formed on the first surface IM2a, the third surface IM2c, and the condensing reflection surface IM2d, and an antireflection film is formed on the second surface IM2b by vapor deposition or the like. Thus, the step of forming the rod-shaped member IM2 is completed.
 次に、スライダ32の製造について説明する。図5はスライダ32の製造工程の一部を示す図である。図5に示すように、円盤状の基板W19(材料:AlTiC等)に、フォトリソグラフ工程を含む半導体プロセスにて光導波路32a部と磁気記録部と磁気再生部からなる磁気ヘッド部32b、さらに断熱層32cや電極等を積層し、積層部W40を形成する。以上で、基板W19と積層部W40から成るウエハWの形成ステップが完了する。 Next, manufacturing of the slider 32 will be described. FIG. 5 shows a part of the manufacturing process of the slider 32. As shown in FIG. 5, a disk-shaped substrate W19 (material: AlTiC or the like) is formed on a magnetic head portion 32b including an optical waveguide 32a portion, a magnetic recording portion, and a magnetic reproducing portion in a semiconductor process including a photolithography process, and further heat insulation. The layer 32c, electrodes, and the like are stacked to form a stacked portion W40. Thus, the step of forming the wafer W composed of the substrate W19 and the stacked portion W40 is completed.
 次に、図5に点線で示す位置でウエハWを、ダイシング,ミリング等の加工方法により、矩形板状に切断加工する。すると、図6(a)に示す長尺部材IM1が得られる。長尺部材IM1は、距離wで等間隔に並んだ6つの光導波路32aを有している(図6(c)参照)。 Next, the wafer W is cut into a rectangular plate shape by a processing method such as dicing or milling at a position indicated by a dotted line in FIG. Then, the long member IM1 shown in FIG. 6A is obtained. The long member IM1 has six optical waveguides 32a arranged at equal intervals at a distance w (see FIG. 6C).
 次に、長尺部材IM1において、図6(b)に示すように、手前側の側面(スライダのABSになる)に、五角形浅溝状の溝32dを機械加工により形成する。その後、ABSを下面とする図6(c)に示すように、溝32dを形成した面と対向する面において、光導波路32aを基準として、その並び方向の両側の所定位置に、位置決め部としてのアライメントマークWAMを機械的又は化学的に形成する。アライメントマークWAMは、丸筒孔に限らず、クロス型(×)、十字型(+)などの形状でも良く、凸状ではなく、凹状でもよいし、長尺部材IM1の両端ではなく、両端以外の場所に設置しても良い。アライメントマークWAMを長尺部材IM1の両端に設ける場合、棒状部材IM2の接合時に露出するように、長尺部材IM1は棒状部材IM2より長いことが望ましい。以上で、長尺部材IM1の形成ステップが完了する。 Next, in the long member IM1, as shown in FIG. 6B, a pentagonal shallow groove 32d is formed by machining on the front side surface (becomes the ABS of the slider). Thereafter, as shown in FIG. 6C with the ABS as the bottom surface, on the surface facing the surface on which the grooves 32d are formed, the optical waveguide 32a is used as a reference at a predetermined position on both sides in the arrangement direction. The alignment mark WAM is formed mechanically or chemically. The alignment mark WAM is not limited to a round cylindrical hole, and may be a cross shape (×), a cross shape (+), or the like, and may be a concave shape instead of a convex shape. You may install in the place of. When the alignment mark WAM is provided at both ends of the long member IM1, it is desirable that the long member IM1 is longer than the rod member IM2 so as to be exposed when the rod member IM2 is joined. This completes the step of forming the long member IM1.
 次に、別個に複数個の光源33を直列に並べた光源部材IM3を準備する。更に図7(a)において、長尺部材IM1の手前側側面IM1aに接着剤を塗布し、アライメントマークWAMを基準に光源部材IM3を位置決めした上で固定する。次いで、長尺部材IM1の上面IM1b及び光源部材IM3の上面IM3aに接着剤を塗布し、アライメントマークWAMを基準に棒状部材IM2のアライメントマークIM2eが所定の位置にくるように棒状部材IM2を位置決めし、棒状部材IM2の第2面IM2bを密着するようにして固定する。尚、図7において長尺部材IM1に形成されている光導波路32aや基板W19と積層部W40との境界部は省略してある。 Next, a light source member IM3 in which a plurality of light sources 33 are separately arranged in series is prepared. Further, in FIG. 7A, an adhesive is applied to the front side surface IM1a of the long member IM1, and the light source member IM3 is positioned and fixed with the alignment mark WAM as a reference. Next, an adhesive is applied to the upper surface IM1b of the long member IM1 and the upper surface IM3a of the light source member IM3, and the rod-shaped member IM2 is positioned so that the alignment mark IM2e of the rod-shaped member IM2 is at a predetermined position with respect to the alignment mark WAM. Then, the second surface IM2b of the rod-like member IM2 is fixed so as to be in close contact. In FIG. 7, the boundary between the optical waveguide 32a and the substrate W19 formed on the long member IM1 and the laminated portion W40 is omitted.
 その後、図7(b)の点線の位置で、短手方向に長尺部材IM1と棒状部材IM2と光源部材IM3とを一度に分断するステップを実行することで、幅wである6個の光アシスト磁気ヘッド3を効率的に製造することができる。これにより、各光源33から出射された光が、対向する光学素子31の偏向面を介して、スライダ32の光導波路32aの上端に高精度に集光するようになる。以上のヘッド製造方法によれば、光導波路端面基準で光源33と光学素子31を組み付ける事ができ、高い組立精度を確保できる。 Thereafter, at a position indicated by a dotted line in FIG. 7B, a step of dividing the long member IM1, the rod-like member IM2, and the light source member IM3 at a time in the short direction is performed, so that six lights having a width w are obtained. The assist magnetic head 3 can be manufactured efficiently. Thereby, the light emitted from each light source 33 is condensed with high accuracy on the upper end of the optical waveguide 32 a of the slider 32 via the deflection surface of the optical element 31 facing the light source 33. According to the above head manufacturing method, the light source 33 and the optical element 31 can be assembled on the basis of the end face of the optical waveguide, and high assembly accuracy can be ensured.
 但し、図8に示すように、ウエハ状の基板W19に、スライダとして必要な光導波路、磁気ヘッド部、断熱層、電極等を含む積層部W40を積層した後、さらに接着剤BDを塗布した上で、光源33をマトリクス状に形成した基板W50を位置決め固定し、その後点線で示すように切断することで、一度にスライダ32と光源33を含む光アシスト磁気ヘッド3を形成することもできる。また、マトリクス状の光源33を積層部W40の上に直接積層形成してもよい。 However, as shown in FIG. 8, after laminating a laminated portion W40 including an optical waveguide, a magnetic head portion, a heat insulating layer, an electrode and the like necessary as a slider on a wafer-like substrate W19, an adhesive BD is further applied. Thus, the optically assisted magnetic head 3 including the slider 32 and the light source 33 can be formed at one time by positioning and fixing the substrate W50 on which the light sources 33 are formed in a matrix, and then cutting the substrate W50 as indicated by dotted lines. Alternatively, the matrix light source 33 may be directly stacked on the stacked portion W40.
 以上、本実施の形態によれば、光源33がスライダ32の側面に取り付けられているために、光アシスト磁気ヘッド3の全高を下げることが出来、厚さ方向にスペースの余裕のないノート型PC等に搭載される記録装置に用いる光アシスト磁気ヘッドとして好適である。また、光学素子31で2回反射する事により光源33と磁気ヘッド部32bの間隔が広げられ、光源33と磁気ヘッド部32bの間に断熱層32cを形成する事が可能となり、光源33の発する熱による磁気ヘッド部32bの熱的な損傷や劣化を回避できる。更に、スライダ32を複数個含む長尺部材IM1と光学素子31を複数個含む棒状部材IM2とを接合した後に、分断することによって、スライダ32と光学素子31とが一体的に形成されるので、微小な部品である光アシスト磁気ヘッド3の組付容易性を向上させることができる。 As described above, according to the present embodiment, since the light source 33 is attached to the side surface of the slider 32, the overall height of the optically assisted magnetic head 3 can be lowered, and there is no space in the thickness direction. It is suitable as an optically assisted magnetic head for use in a recording device mounted on the like. Further, the distance between the light source 33 and the magnetic head portion 32 b is widened by reflecting twice by the optical element 31, so that a heat insulating layer 32 c can be formed between the light source 33 and the magnetic head portion 32 b, and the light source 33 emits light. Thermal damage and deterioration of the magnetic head portion 32b due to heat can be avoided. Furthermore, since the elongated member IM1 including a plurality of sliders 32 and the rod-shaped member IM2 including a plurality of optical elements 31 are joined and then divided, the slider 32 and the optical element 31 are integrally formed. The ease of assembly of the optically assisted magnetic head 3 which is a minute component can be improved.
 図9は、変形例にかかる光アシスト磁気ヘッド3Aの斜視図(a)と図3と同様な断面図(b)である。図9に示す光アシスト磁気ヘッド3Aは、図3の実施の形態に対し、光学素子31の球面または非球面からなる集光反射面31dを第1反射面31bに形成された回折レンズ31eにした点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。回折レンズ31eは中央から周辺に向かうにつれてピッチが狭くなる円または略楕円形状の格子から形成されており、その表面には反射膜が形成されている。 FIG. 9 is a perspective view (a) of the optically assisted magnetic head 3A according to the modification and a cross-sectional view (b) similar to FIG. The optically assisted magnetic head 3A shown in FIG. 9 has a condensing reflection surface 31d made of a spherical surface or an aspherical surface of the optical element 31 as a diffractive lens 31e formed on the first reflection surface 31b in the embodiment of FIG. Only the point is different. About another structure, it is the same as that of the above-mentioned embodiment. The diffractive lens 31e is formed from a circular or substantially elliptical grating whose pitch decreases from the center toward the periphery, and a reflective film is formed on the surface thereof.
 図10は、別な変形例にかかる光アシスト磁気ヘッド3Bの斜視図である。図10に示す光アシスト磁気ヘッド3Bは、図3の実施の形態に対し、光学素子31の第1反射面31bをシリンドリカル形状とし、このシリンドリカル形状の第1反射面31bに1次元回折レンズ31fを設けた点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。1次元回折レンズ31fは、回折格子の溝がシリンドリカル形状の軸線に対して直交するように延在され、中央からシリンドリカル形状の軸線に沿って周辺に向かうにつれてピッチが狭くなっており、シリンドリカル形状の軸線方向にのみ集光機能を有する。1次元回折レンズ31fの表面には反射膜が形成されている。シリンドリカル状の第1反射面31bと1次元回折レンズ31fにより、この面を反射した光束を一点に集光させることができる。 FIG. 10 is a perspective view of an optically assisted magnetic head 3B according to another modification. In the optically assisted magnetic head 3B shown in FIG. 10, the first reflecting surface 31b of the optical element 31 has a cylindrical shape, and a one-dimensional diffractive lens 31f is provided on the cylindrical first reflecting surface 31b. Only the points provided are different. About another structure, it is the same as that of the above-mentioned embodiment. The one-dimensional diffractive lens 31f extends so that the grooves of the diffraction grating are orthogonal to the cylindrical axis, and the pitch decreases from the center toward the periphery along the cylindrical axis. It has a light collecting function only in the axial direction. A reflective film is formed on the surface of the one-dimensional diffractive lens 31f. The cylindrical first reflecting surface 31b and the one-dimensional diffractive lens 31f allow the light beam reflected from this surface to be condensed at one point.
 図11は、別な変形例にかかる光アシスト磁気ヘッド3Cの斜視図である。図11に示す光アシスト磁気ヘッド3Cは、図3の実施の形態に対し、集光反射面31dをなくし、光学素子31の第1反射面31bをシリンドリカル形状とした点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。光源33が端面発光半導体レーザの場合、出射されるレーザ光の強度分布は長円であり、活性層33bの積層方向が長軸となっている。従って、この方向だけをシリンドリカル形状の第1反射面31bにより集光しても、記録に必要な導波路結合効率を得る事ができる。本実施例に示したような1次元方向のみに形状を有する光学素子の場合には、その製造が容易となる。 FIG. 11 is a perspective view of an optically assisted magnetic head 3C according to another modification. The optically assisted magnetic head 3C shown in FIG. 11 differs from the embodiment shown in FIG. 3 only in that the condensing / reflecting surface 31d is eliminated and the first reflecting surface 31b of the optical element 31 is formed in a cylindrical shape. About another structure, it is the same as that of the above-mentioned embodiment. When the light source 33 is an edge emitting semiconductor laser, the intensity distribution of the emitted laser light is an ellipse, and the lamination direction of the active layer 33b is a major axis. Accordingly, even if only this direction is condensed by the cylindrical first reflecting surface 31b, the waveguide coupling efficiency necessary for recording can be obtained. In the case of an optical element having a shape only in the one-dimensional direction as shown in the present embodiment, its manufacture becomes easy.
 図12は、変形例にかかる光アシスト磁気ヘッド3Dの斜視図(a)と図3と同様な断面図(b)である。図12に示す光アシスト磁気ヘッド3Dは、図11の実施の形態に対し、第1反射面31bを平面状とし、第1反射面31bに1次元回折レンズ31gを設けた点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。1次元回折レンズ31gは棒状部材IM2の長手方向に沿って格子の溝が延在され、溝と直交する方向に沿って中央から周辺に向かうにつれてピッチが狭くなる直線状の格子から形成されており、その表面には反射膜が形成されている。光アシスト磁気ヘッド3Dの光学素子31は、光アシスト磁気ヘッド3Cの光学素子31と同じ光学的機能を有する。 FIG. 12 is a perspective view (a) and a cross-sectional view (b) similar to FIG. 3 of an optically assisted magnetic head 3D according to a modification. The optically assisted magnetic head 3D shown in FIG. 12 differs from the embodiment of FIG. 11 only in that the first reflecting surface 31b is planar and a one-dimensional diffractive lens 31g is provided on the first reflecting surface 31b. About another structure, it is the same as that of the above-mentioned embodiment. The one-dimensional diffractive lens 31g is formed of a linear grating in which a grating groove extends along the longitudinal direction of the rod-shaped member IM2, and the pitch becomes narrower from the center toward the periphery along the direction orthogonal to the groove. A reflective film is formed on the surface. The optical element 31 of the optically assisted magnetic head 3D has the same optical function as the optical element 31 of the optically assisted magnetic head 3C.
 図13は、別な変形例にかかる光アシスト磁気ヘッド3Eの図3と同様な断面図である。図13に示す光アシスト磁気ヘッド3Eは、図3の実施の形態に対し、光学素子31の集光反射面31dをなくし、平面状の第1反射面31bのみとした点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。 FIG. 13 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3E according to another modification. The optically assisted magnetic head 3E shown in FIG. 13 differs from the embodiment of FIG. 3 only in that the condensing reflection surface 31d of the optical element 31 is eliminated and only the planar first reflection surface 31b is used. About another structure, it is the same as that of the above-mentioned embodiment.
 図14は、別な変形例にかかる光アシスト磁気ヘッド3Fの図3と同様な断面図である。図14に示す光アシスト磁気ヘッド3Fは、図3の実施の形態に対し、光源33をスライダ32の反対側の側面に固定し、且つ光学素子31を、スライダ32の上面の略全体を覆う形状とし、平面状の第2反射面31cに球面または非球面形状の第2集光反射面31hを形成した点のみが異なる。光源33から出射された発散光は、第2集光反射面31hで反射され略平行光となり、次いで集光反射面31dで反射集光された後、スライダ32の光導波路32aに入射する。それ以外の構成については、上述の実施の形態と同様である。光アシスト磁気ヘッド3Fにおいては、光源33が磁気ヘッド部32bとスライダ32を介して反対側に配置されているため、光源33の発する熱は磁気ヘッド部32bに伝わることはなく、熱的にさらに有利な構成となっている。尚、断熱層32cは磁気ヘッド部32bの保護層としての機能を有しており、非断熱部材であってもよい。 FIG. 14 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3F according to another modification. The optically assisted magnetic head 3F shown in FIG. 14 has a shape in which the light source 33 is fixed to the side surface on the opposite side of the slider 32 and the optical element 31 covers substantially the entire upper surface of the slider 32 in the embodiment of FIG. And the only difference is that a spherical or aspherical second condensing reflection surface 31h is formed on the planar second reflection surface 31c. The divergent light emitted from the light source 33 is reflected by the second condensing / reflecting surface 31h to become substantially parallel light, and then reflected and collected by the condensing / reflecting surface 31d, and then enters the optical waveguide 32a of the slider 32. About another structure, it is the same as that of the above-mentioned embodiment. In the optically assisted magnetic head 3F, since the light source 33 is disposed on the opposite side via the magnetic head portion 32b and the slider 32, the heat generated by the light source 33 is not transmitted to the magnetic head portion 32b, and further thermally It has an advantageous configuration. The heat insulating layer 32c functions as a protective layer for the magnetic head portion 32b, and may be a non-heat insulating member.
 図15は、別な変形例にかかる光アシスト磁気ヘッド3Gの図3と同様な断面図である。図15に示す光アシスト磁気ヘッド3Gは、図14の実施の形態に対し、光学素子31の集光反射面31dをなくし、平面状の第1反射面31bのみとし、第2集光反射面31hの光学パワーを高めた点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。光源33から出射された発散光は、第2集光反射面31hで反射され弱収束光となり、次いで第1反射面31bで反射された後、スライダ32の光導波路32aに入射する。 FIG. 15 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3G according to another modification. The optically assisted magnetic head 3G shown in FIG. 15 eliminates the condensing / reflecting surface 31d of the optical element 31 from the embodiment shown in FIG. 14, only the planar first reflecting surface 31b, and the second condensing / reflecting surface 31h. The only difference is that the optical power is increased. About another structure, it is the same as that of the above-mentioned embodiment. The divergent light emitted from the light source 33 is reflected by the second condensing / reflecting surface 31 h to become weakly convergent light, and then reflected by the first reflecting surface 31 b and then enters the optical waveguide 32 a of the slider 32.
 図16は、別な変形例にかかる光アシスト磁気ヘッド3Hの図3と同様な断面図である。図16に示す光アシスト磁気ヘッド3Hは、図14の実施の形態に対し、第2集光反射面31hをなくし、平面状の第2反射面31cに回折レンズ31iを形成した点のみが異なる。それ以外の構成については、上述の実施の形態と同様である。 FIG. 16 is a cross-sectional view similar to FIG. 3 of an optically assisted magnetic head 3H according to another modification. The optically assisted magnetic head 3H shown in FIG. 16 differs from the embodiment shown in FIG. 14 only in that the second condensing / reflecting surface 31h is eliminated and a diffractive lens 31i is formed on the planar second reflecting surface 31c. About another structure, it is the same as that of the above-mentioned embodiment.
 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、図17に示すように、光導波路32aの入口付近にグレーティングカプラGCを設けて、光源33から出射され、反射面31jで反射された光束を、クラッド部35を介して直接グレーティングカプラGCに入射させることにより、スライダ32の光導波路32aに結合させることもできる。反射面31jには棒状部材IM2の長手方向に沿って格子の溝が延在され、等間隔の直線状の格子から形成されており、その表面には反射膜が形成されている。グレーティングカプラGCは結合効率が最大となる入射角が波長によって変化する。光学素子31は、等間隔の回折格子により波長変動に対するグレーティングカプラGCへの入射角補正の機能を有する。 As described above, the present invention has been described with reference to the embodiment. However, the present invention should not be construed as being limited to the above-described embodiment, and can be appropriately changed or improved. For example, as shown in FIG. 17, a grating coupler GC is provided in the vicinity of the entrance of the optical waveguide 32a, and the light beam emitted from the light source 33 and reflected by the reflecting surface 31j is directly applied to the grating coupler GC via the cladding portion 35. By making it enter, it can also couple | bond with the optical waveguide 32a of the slider 32. FIG. Grooves of a lattice extend along the longitudinal direction of the rod-shaped member IM2 on the reflective surface 31j, and are formed from a linear lattice with equal intervals, and a reflective film is formed on the surface thereof. In the grating coupler GC, the incident angle at which the coupling efficiency is maximized varies depending on the wavelength. The optical element 31 has a function of correcting the angle of incidence on the grating coupler GC with respect to wavelength fluctuations by means of an equally spaced diffraction grating.
 1 光アシスト式磁気記録装置
 2 ディスク
 3 光アシスト磁気ヘッド
 3A~3E 光アシスト磁気ヘッド
 4 ヘッド支持部
 5 支軸
 6 トラッキング用アクチュエータ
 31 光学素子
 31a 下面
 31b 第1反射面
 31c 第2反射面
 31d 集光反射面
 31e、31i 回折レンズ
 31f、31g 1次元回折レンズ
 31h 第2集光反射面
 31j 反射面
 32 スライダ
 32a 光導波路
 32b 磁気ヘッド部
 32d 溝
 33 光源
 33a 出射口
 34 近接場発生部
 35 クラッド部
 41 サスペンションアーム
 42 開口部
 43 ピボット
 44 フレクシャ
 45 開口部
 46 舌片部
 BD 接着剤
 GC グレーティングカプラ
 IM1 長尺部材
 IM2 棒状部材
 IM2a 第1面
 IM2b 第2面
 IM2c 第3面
 IM2d 集光反射面
 IM3 光源部材
 M 反射膜
 W19 基板
 W40 積層部
 W50 基板
 WAM アライメントマーク
DESCRIPTION OF SYMBOLS 1 Optical assist type magnetic recording apparatus 2 Disc 3 Optical assist magnetic head 3A-3E Optical assist magnetic head 4 Head support part 5 Support shaft 6 Tracking actuator 31 Optical element 31a Lower surface 31b First reflective surface 31c Second reflective surface 31d Condensing light Reflective surface 31e, 31i Diffractive lens 31f, 31g One-dimensional diffractive lens 31h Second condensing reflective surface 31j Reflective surface 32 Slider 32a Optical waveguide 32b Magnetic head part 32d Groove 33 Light source 33a Exit port 34 Near field generating part 35 Cladding part 41 Suspension Arm 42 Opening portion 43 Pivot 44 Flexure 45 Opening portion 46 Tongue piece BD Adhesive GC Grating coupler IM1 Long member IM2 Rod member IM2a First surface IM2b Second surface IM2c Third surface IM2d Condensing / reflecting surface IM3 Light source member M Reflective film W19 Substrate W40 Laminate part W50 Substrate WAM Alignment mark

Claims (13)

  1.  光導波路を備え、ディスク状の記録媒体の回転に応じて、前記記録媒体に対して浮上して相対移動するスライダと、
     前記スライダの側面に取り付けられた光源と、
     前記スライダに設けられた光導波路に向けて前記光源からの光束を偏向する偏向面を備えた光学素子とを有し、
     前記光源から出射された光束は、前記光学素子の偏向面を介して前記光導波路に入射し、前記光導波路の前記記録媒体と対向する出射端から前記記録媒体に向かって出射することを特徴とする光アシスト磁気ヘッド。
    A slider that includes an optical waveguide and floats and moves relative to the recording medium according to the rotation of the disk-shaped recording medium;
    A light source attached to a side surface of the slider;
    An optical element having a deflecting surface for deflecting a light beam from the light source toward an optical waveguide provided in the slider;
    The light beam emitted from the light source is incident on the optical waveguide via the deflection surface of the optical element, and is emitted from the emission end of the optical waveguide facing the recording medium toward the recording medium. An optically assisted magnetic head.
  2.  前記記録媒体に入射する光束の入射方向とは逆向きの成分を有する方向に、前記光源から光束が出射されることを特徴とする請求項1に記載の光アシスト磁気ヘッド。 2. The optically assisted magnetic head according to claim 1, wherein a light beam is emitted from the light source in a direction having a component opposite to the incident direction of the light beam incident on the recording medium.
  3.  前記光学素子は少なくとも1つの面に集光手段を有することを特徴とする請求項1又は2に記載の光アシスト磁気ヘッド。 3. The optically assisted magnetic head according to claim 1, wherein the optical element has a condensing means on at least one surface.
  4.  前記光学素子には、少なくとも1つの面に回折格子が形成されていることを特徴とする請求項1~3のいずれかに記載の光アシスト磁気ヘッド。 The optically assisted magnetic head according to any one of claims 1 to 3, wherein a diffraction grating is formed on at least one surface of the optical element.
  5.  前記回折格子のピッチは、中央から周辺に向かうにつれてピッチが狭くなっていることを特徴とする請求項4に記載の光アシスト磁気ヘッド。 5. The optically assisted magnetic head according to claim 4, wherein the pitch of the diffraction grating becomes narrower from the center toward the periphery.
  6.  前記回折格子のピッチは、等間隔であることを特徴とする請求項4に記載の光アシスト磁気ヘッド。 5. The optically assisted magnetic head according to claim 4, wherein the pitches of the diffraction gratings are equally spaced.
  7.  前記光源から出射された光束は、前記光学素子で2回反射された後、前記光導波路に入射することを特徴とする請求項1~6のいずれかに記載の光アシスト磁気ヘッド。 The light-assisted magnetic head according to claim 1, wherein the light beam emitted from the light source is reflected twice by the optical element and then enters the optical waveguide.
  8.  前記スライダは前記光導波路に隣接した磁気ヘッド部を有し、前記光源は断熱層を介して前記磁気ヘッド部に取り付けられたことを特徴とする請求項1~7のいずれかに記載の光アシスト磁気ヘッド。 8. The optical assist according to claim 1, wherein the slider has a magnetic head portion adjacent to the optical waveguide, and the light source is attached to the magnetic head portion via a heat insulating layer. Magnetic head.
  9.  前記光学素子はプラスチックからなることを特徴とする請求項1~8のいずれかに記載の光アシスト磁気ヘッド。 9. The optically assisted magnetic head according to claim 1, wherein the optical element is made of plastic.
  10.  前記光学素子はガラスからなることを特徴とする請求項1~8のいずれかに記載の光アシスト磁気ヘッド。 9. The optically assisted magnetic head according to claim 1, wherein the optical element is made of glass.
  11.  前記光学素子はガラスとプラスチックのハイブリッドであることを特徴とする請求項1~8のいずれかに記載の光アシスト磁気ヘッド。 The optically assisted magnetic head according to any one of claims 1 to 8, wherein the optical element is a hybrid of glass and plastic.
  12.  前記スライダを複数個含む部材と前記光学素子を複数個含む部材とを接合した後に、分断することによって、前記スライダと前記光学素子とが一体的に形成されることを特徴とする請求項1~11のいずれかに記載の光アシスト磁気ヘッド。 The slider and the optical element are integrally formed by joining a member including a plurality of the sliders and a member including the plurality of the optical elements and then dividing the member. The optically assisted magnetic head according to any one of 11.
  13.  前記光源を複数個含む部材を、前記スライダを複数個含む部材と前記光学素子を複数個含む部材とに接合した後に、分断することによって、前記スライダと前記光学素子と前記光源とが一体的に形成されることを特徴とする請求項1~12のいずれかに記載の光アシスト磁気ヘッド。 The member including the plurality of light sources is joined to the member including the plurality of sliders and the member including the plurality of optical elements, and then divided, whereby the slider, the optical element, and the light source are integrated. 13. The optically assisted magnetic head according to claim 1, wherein the optically assisted magnetic head is formed.
PCT/JP2010/072533 2009-12-24 2010-12-15 Light-assisted magnetic head WO2011078025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291698 2009-12-24
JP2009-291698 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078025A1 true WO2011078025A1 (en) 2011-06-30

Family

ID=44195555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072533 WO2011078025A1 (en) 2009-12-24 2010-12-15 Light-assisted magnetic head

Country Status (1)

Country Link
WO (1) WO2011078025A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230819A (en) * 2001-02-06 2002-08-16 Alps Electric Co Ltd Optical member made of resin, and method for manufacturing the same
JP2007122847A (en) * 2005-09-28 2007-05-17 Konica Minolta Holdings Inc Heat-assisted magnetic recording head and magnetic recording device
JP2007207350A (en) * 2006-02-02 2007-08-16 Sharp Corp Method for manufacturing optical pickup device
JP2008016096A (en) * 2006-07-04 2008-01-24 Tdk Corp Light source unit for heat assisted magnetic recording and method for manufacturing thin-film magnetic head equipped with the unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230819A (en) * 2001-02-06 2002-08-16 Alps Electric Co Ltd Optical member made of resin, and method for manufacturing the same
JP2007122847A (en) * 2005-09-28 2007-05-17 Konica Minolta Holdings Inc Heat-assisted magnetic recording head and magnetic recording device
JP2007207350A (en) * 2006-02-02 2007-08-16 Sharp Corp Method for manufacturing optical pickup device
JP2008016096A (en) * 2006-07-04 2008-01-24 Tdk Corp Light source unit for heat assisted magnetic recording and method for manufacturing thin-film magnetic head equipped with the unit

Similar Documents

Publication Publication Date Title
US8649245B2 (en) Direct waveguide light delivery to NFT for heat assisted magnetic recording
KR101553872B1 (en) Multi-portion heat sink for use with write pole and near-field tranducer
US8054570B2 (en) Recording head and data recording and reproducing apparatus
WO2010010806A1 (en) Optical recording head and optical recording device
JP2009277285A (en) Head mechanism, optical assist type magnetic recording device, and optical recording device
JP4305575B2 (en) Optical element manufacturing method
WO2011078025A1 (en) Light-assisted magnetic head
JP4148300B1 (en) Optical recording head, optical recording head manufacturing method, and recording / reproducing apparatus
JP2010129141A (en) Flexure and method of manufacturing the same
WO2010104030A1 (en) Optical recording head and optical recording apparatus
WO2011078069A1 (en) Method for assembling optically-assisted magnetic head
JP4479860B2 (en) Optical recording head and optical recording apparatus
JP2009176354A (en) Optical element, slider and optical head
JP4853398B2 (en) Optically assisted magnetic recording head, optically assisted magnetic recording device
JP4400697B2 (en) Information recording apparatus and arm mechanism
JP2009110562A (en) Optical element and optical head
JP2013004160A (en) Optical assist magnetic head and optical coupling structure
WO2011074442A1 (en) Intermediate
JP5553302B2 (en) Near-field optical head manufacturing method, near-field optical head, and information recording / reproducing apparatus
JP5597000B2 (en) Recording flexure, head gimbal assembly including the same, and manufacturing method of recording flexure
JP4788661B2 (en) Manufacturing method of optical head
WO2012105472A1 (en) Light-assisted magnetic head
JP2009217880A (en) Optical head and manufacturing method of optical head
WO2011074322A1 (en) Intermediate and method of manufacturing optically assisted magnetic head
WO2011158413A1 (en) Optical head, optical element and data recording device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP