WO2011077939A1 - Secondary battery having ion fluid - Google Patents

Secondary battery having ion fluid Download PDF

Info

Publication number
WO2011077939A1
WO2011077939A1 PCT/JP2010/071877 JP2010071877W WO2011077939A1 WO 2011077939 A1 WO2011077939 A1 WO 2011077939A1 JP 2010071877 W JP2010071877 W JP 2010071877W WO 2011077939 A1 WO2011077939 A1 WO 2011077939A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
anion
electrolyte
secondary battery
current collector
Prior art date
Application number
PCT/JP2010/071877
Other languages
French (fr)
Japanese (ja)
Inventor
晃純 木村
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011547449A priority Critical patent/JPWO2011077939A1/en
Publication of WO2011077939A1 publication Critical patent/WO2011077939A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery containing an ionic liquid.
  • Non-aqueous electrolyte secondary batteries particularly lithium ion secondary batteries
  • have high voltage and high energy density and have recently been widely used in applications such as portable electronic devices and personal computers.
  • it is also expected to be adapted for large-scale use such as stationary applications at home and automobiles, but it is important to further improve cycle characteristics, particularly to suppress deterioration of cycle characteristics in a high-temperature environment. It has become an issue.
  • a secondary battery containing 0.1 to 10% by volume of vinylene carbonate in an electrolyte is disclosed (for example, see Patent Document 1).
  • an SEI film can be formed on the graphite intercalation compound and the cycle characteristics can be improved.
  • an SEI film is formed on an electrode using a chemical species other than vinylene carbonate for the purpose of improving cycle characteristics.
  • a secondary battery using an electrolyte containing a cyclic sulfonate ester is disclosed.
  • an SEI film is formed on the surface of the positive electrode by sulfur atoms, thereby improving charge / discharge characteristics and storage characteristics (see, for example, Patent Documents 2 and 3).
  • the electrolyte for non-aqueous electrolyte secondary batteries using flammable vinylene carbonate does not have sufficient cycle characteristics, and further improvements are desired.
  • the electrolyte for non-aqueous electrolyte secondary batteries using vinylene carbonate may cause deformation or ignition of the secondary battery cells during abnormal heating of the secondary battery, and further improvement is desired from the viewpoint of safety. It is rare. Since there is no risk of ignition and safety is high, it may be possible to add a little vinylene carbonate to the electrolyte using a flame-retardant ionic liquid, but the SEI film with vinylene carbonate is an electrolyte cycle using an ionic liquid. The characteristics could not be improved greatly.
  • the secondary battery containing a cyclic sulfonate ester in the electrolyte has not enough SEI film formed by the cyclic sulfonate ester, and there is still room for improvement in cycle characteristics.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a secondary battery using an ionic liquid having high safety and cycle characteristics.
  • a further object of the present invention is to provide a secondary battery having high safety and cycle characteristics.
  • the configuration of the present invention is as follows.
  • the electrolyte has one type of supporting electrolyte salt and two types of ionic liquids, and the supporting electrolyte salt and the two types of ionic liquids
  • Each anion is different, and at least one of the anions is an anion that forms a passive film on the current collector, and an anion that forms a passive film on the current collector;
  • at least one is an anion that forms an SEI film on the carbon material on the negative electrode.
  • R represents an alkyl group, cycloalkyl group, aryl group, hydroxyl group, carboxyl group, nitro group, trifluoromethyl group, amide group, carbamoyl group, ester group, carbonyloxy Group, cyano group, halogen atom, alkoxy group, aryloxy group, sulfonyl group, alkylthio group, arylthio group, sulfonamido group, sulfamoyl group, amino group, alkylamino group and arylamino group.
  • X represents an integer from 1 to 5
  • Y represents an integer from 1 to 3.
  • the present invention has found that in an electrolyte containing an ionic liquid, the decomposition of the ionic liquid on the current collector as well as the decomposition of the ionic liquid on the current collector is a cause of poor cycle performance.
  • the anion forming the passive film it was possible to impart high cycle characteristics to the electrolyte having the ionic liquid.
  • SEI film The SEI film (SEI: solid electrolyte interface) in the present invention will be described. Means have been proposed for forming a SEI film (solid electrolyte interface) on the surface of the carbon material on the negative electrode so that the carbon material on the negative electrode does not react directly with an organic solvent. (Hiroyoshi Nakamura et al. “Decompression suppression of electrolyte for lithium battery using electrolyte containing acetate”, Electrochemistry and Industrial Physical Chemistry, Vol. 73, No. 6. pp 429-434 (June 2005)) The film needs to be a film that can transmit lithium ions and has low electron conductivity.
  • the passive film in the present invention will be described. It is a dense and strong film formed on a current collector metal and generated by an anion containing fluorine. This passive film suppresses corrosion of the current collector and decomposition of the electrolyte, which are causes of deterioration of battery performance.
  • the electrolyte of the present invention contains at least one lithium salt and two ionic liquids, and as a combination of anions, (1) When the two anions of the ionic liquid are an anion that can form a passive film on the current collector and an anion that can form an SEI film on the active material (2)
  • the anion of the supporting electrolyte salt is the current collector When an anion capable of forming a passive film on the body and one anion of the ionic liquid is an anion capable of forming an SEI film on the active material (3)
  • the anion of the supporting electrolyte salt is an SEI film on the active material
  • the remaining one anion may be an anion that can form a passive film on the current collector, an anion that can form an SEI film on the active material, or an anion that does not form a passive film.
  • an anion that does not form a dynamic membrane and an SEI coating it can be preferably used because it can be an electrolyte having high decomposition stability and high cycleability.
  • the blending amount of the supporting electrolyte salt in the electrolyte having an anion capable of forming a passive film on the current collector or an anion capable of forming a SEI film on the active material is preferably 5 to 40% by mass, particularly The content is preferably 10 to 30% by mass.
  • the total amount of the supporting electrolyte salt in the electrolyte of the ionic liquid having an anion capable of forming a passive film on the current collector or an anion capable of forming a SEI film on the active material is 10% by mass to 60% by mass. In particular, 15% by mass to 30% by mass is preferable.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, and a separator as necessary. If the electrolyte is sufficiently elastic and there is no fear that the electrodes will contact each other, such as when a solid electrolyte is used, the separator can be omitted.
  • the electrolyte according to the present invention contains at least one supporting electrolyte salt having different anions and two ionic liquids, an anion that can form a passive film on the current collector, and an anion that forms the passive film. Contains an anion capable of forming an SEI film on an active material made of different carbon materials.
  • the electrolyte according to the present invention contains at least one supporting electrolyte salt having different anions and two ionic liquids, and the anion can form a passive film on the current collector, and carbon on the negative electrode.
  • the material contains an anion capable of forming an SEI film.
  • an anion that forms a passive film, an anion that forms a SEI film, or both anions can be present in the electrolyte as an ionic liquid.
  • the amount of anion introduced is not limited because there is no salt precipitation at a low temperature as expected when a solid salt such as a Li salt is contained.
  • an anion capable of forming a passive film, and an anion capable of forming a SEI film in the carbon material on the negative electrode can be contained in the electrolyte in an arbitrary amount.
  • an organic solvent, inorganic fine particles, a polymer, and a polymerizable compound can be appropriately contained depending on the physical properties required for the electrolyte.
  • a separator is unnecessary, which is preferable.
  • the electrolyte according to the present invention is characterized by containing an anion capable of forming a passive film on the current collector and an anion capable of forming an SEI film on the carbon material on the negative electrode.
  • an anion capable of forming a passive film on the current collector and an anion capable of forming an SEI film on the carbon material on the negative electrode.
  • the present invention by forming an SEI film on each of the current collector and the active material, it is possible to prevent the electrolyte from being electrolyzed to the minimum necessary and to prevent the deterioration of the electrolyte, thereby improving the cycle characteristics of the secondary battery.
  • the present invention has been reached.
  • Tetrafluoroborate, hexafluorophosphate, and tris (pentafluoroethyl) trifluorophosphate can be used as the anion that can form a passive film on the current collector.
  • the anion mentioned by (1) and General formula (2) can be used preferably.
  • R represents an alkyl group (methyl, ethyl, i-propyl, hydroxyethyl, stearyl, dodecyl, eicosyl, docosyl, oleyl, etc.), a cycloalkyl group (cyclopropyl, cyclohexyl).
  • aryl group phenyl, p-tetradecanyloxyphenyl, o-octadecanylaminophenyl, naphthyl, hydroxyphenyl, etc.
  • hydroxyl group carboxyl group, nitro group, trifluoromethyl group, amide group (acetamide, Benzamide etc.), carbamoyl group (methylcarbamoyl, butylcarbamoyl, phenylcarbamoyl etc.), ester group (ethyloxycarbonyl, i-propyloxycarbonyl, phenyloxycarbonyl etc.), carbonyloxy group (methylcarbonyloxy) , Propylcarbonyloxy, phenylcarbonyloxy, etc.), cyano group, halogen atom (chlorine, bromine, iodine, fluorine), alkoxy group (methoxy, ethoxy, butoxy, etc.), aryloxy group (
  • bisfluorosulfonylamide or fluorosulfonyl can be used as an anion that can form a SEI film on the active material.
  • the anion capable of forming a passive film on the current collector or the anion capable of forming an SEI film on the active material is not limited to a cation when it is an ionic liquid, but imidazolium (eg, 1-alkyl-3 -Methylimidazolium, 1-allyl-3-alkylimidazolium, 1-alkyl-2,3-dimethylimidazolium, etc.), pyridinium, ammonium, piperidinium, pyrrolidinium, pyrazolium, phosphonium, guanidinium can be used.
  • imidazolium eg, 1-alkyl-3 -Methylimidazolium, 1-allyl-3-alkylimidazolium, 1-alkyl-2,3-dimethylimidazolium, etc.
  • pyridinium ammonium
  • piperidinium pyrrolidinium
  • pyrazolium phosphonium
  • Preferred cations include tetramethylammonium, ethyltrimethylammonium, n-propyltrimethylammonium, diethyldimethylammonium, di-n-propyldimethylammonium, triethylmethylammonium, n-butyldiethylmethylammonium, N, N-diethyl-N-methyl.
  • nonane dimethylimidazole, propylmethylimidazole, butyl Methylimidazole, N, N-dimethylpyrrolidinium, N-methyl-N-ethylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N, -Dimethyl-piperidinium, N-methyl-N-ethyl-piperidinium, N-methyl-N-propyl-piperidinium, N-methyl-N-butyl-piperidinium, tetraethylphosphonium and 5-phosphonia spiro [4.4] nonane Can be preferably used.
  • the supporting electrolyte salt according to the electrolyte of the present invention is a salt that gives ions in the electrolyte composition for secondary batteries, and known supporting electrolyte salts used for batteries can be used.
  • a lithium salt can be preferably used as the supporting electrolyte salt.
  • the anion that does not form a passive film and SEI film includes SCN ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 CF 2 SO 2 ). 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , CF 3 SO 3 — and the like can be mentioned.
  • An anion capable of forming a passive film on the current collector and an SEI film can be formed on the active material. Any anion is preferably used.
  • the ionic liquid according to the electrolyte of the present invention is not particularly limited as long as it is a salt that is liquid at room temperature, and preferably has a melting point of 80 ° C. or lower, more preferably 60 ° C. or lower, more preferably 30 ° C. or lower. .
  • alkyl ammonium salts pyrrolidinium salts, piperidinium salts, imidazolium salts, pyridinium salts, sulfonium salts, phosphonium salts and the like can be used.
  • An imidazolium salt represented by the following general formula (3) can also be preferably used.
  • R 1 and R 3 represent a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 , R 4 and R 5 represent a hydroxyl group, an amino group, respectively.
  • X represents a monovalent anion
  • Either an anion capable of forming a passive film on the current collector and an anion capable of forming a SEI film on the active material are preferably used, but an anion that does not form a passive film and SEI film may be used.
  • the compound represented by the general formula (3) include, for example, ethylmethylimidazole-bisfluoromethylsulfonylamide, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bisfluorosulfonyl Amide, ethylmethylimidazole-bistrifluorosulfonylamide, N-methyl-N-propylpyrrolidinium-bistrifluorosulfonylamide, 1-isopropyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-ethyl-2, 3-dimethylimidazolium bistrifluoromethanesulfonyl, 1-butyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-hexyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl
  • an ionic liquid that does not form a passive film or SEI film having a viscosity of 100 mPa ⁇ S or less.
  • an ionic liquid that does not contain an organic solvent, and a secondary battery with higher safety can be manufactured.
  • an electrolyte that does not contain an organic solvent is advantageous not only from the viewpoint of safety but also from the viewpoint of improving cycle characteristics because it does not have a volatile component in the electrolyte and can suppress an increase in internal pressure even at high temperatures.
  • ethylmethylimidazole-bisfluoromethylsulfonylamide N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bisfluorosulfonylamide, ethylmethylimidazole- Examples include, but are not limited to, bistrifluorosulfonylamide, N-methyl-N-propylpyrrolidinium-bistrifluorosulfonylamide, or 1-ethyl-2,3-dimethylimidazolium bisfluorosulfonyl salt.
  • the content of the ionic liquid in the electrolyte is preferably 10% by mass to 90% by mass, and particularly preferably 40% by mass to 80% by mass.
  • the electrolyte of the present invention contains a lithium salt and an ionic liquid, and an anion that can form a passive film. Therefore, an organic solvent containing vinylene carbonate that may impair flame retardancy is not necessary. However, it can also be contained within a range that does not hinder the effects of the present invention for the purpose of improving the conductivity of the electrolyte or reducing the viscosity.
  • organic solvent applicable to the electrolyte of the present invention examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amide; Carbamates such as 3-methyl-2-oxazolid
  • the electrolyte of the present invention can further contain inorganic fine particles, a polymerizable compound, and a polymer. It is also possible to obtain a solid electrolyte by containing a small amount or no use of the organic solvent and containing inorganic fine particles and a polymerizable compound or inorganic fine particles and a polymer in the electrolyte.
  • Examples of the inorganic fine particles related to the electrolyte of the present invention include iron oxide, zirconium oxide, niobium oxide, tantalum oxide, antimony oxide, clay, tin oxide, tungsten oxide, titanium oxide, aluminum phosphate, silicon oxide, zinc oxide, aluminum oxide, These composite oxides can be preferably used.
  • the average particle diameter of the inorganic fine particles is preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m from the viewpoint of safety and voltage characteristics.
  • the average particle diameter is a volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume, and this value can be evaluated from an electron micrograph. That is, by taking a transmission electron micrograph of the battery composition or particle powder, measuring 200 or more particles in a certain visual field range, obtaining a spherical equivalent particle diameter of each particle, and obtaining an average value thereof. Value.
  • the content of the inorganic fine particles is not particularly limited, but is preferably 0% by mass or more and 100% by mass or less with respect to 100% by mass of the ionic liquid. More preferably, it is 10 mass% or more and 70 mass% or less.
  • Polymerizable compound As the polymerizable compound according to the electrolyte of the present invention, a polymerizable monomer that can be polymerized by polymerization or a polymerizable oligomer can be used.
  • polymerizable monomer examples include radically polymerizable monomers and cationically polymerizable monomers. Although not particularly limited, ethylenically unsaturated monomers shown below are preferably used.
  • ethylenically unsaturated monomers examples include 2-vinylpyrrolidone, acryloylmorpholine, 2-hydroxybutyl vinyl ether, ethylethylene glycol mono (meth) acrylate, propylethylene glycol mono (meth) acrylate, and phenylethylene glycol mono (meth) acrylate.
  • Monofunctional monomer ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxa Modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerol di (meth) acrylate, pentaerythritol di (meth) acrylate, Bifunctional monomers such as ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth
  • Trifunctional or higher monomer polyethylene glycol mono (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol-polypropylene glycol mono (meth) acrylate , Poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-teto Ramethylene glycol) mono (meth) acrylate, methoxy polyethylene glycol mono (meth) acrylate, ethoxy polyethylene glycol mono (meth) acrylate, octoxy polyethylene glycol-polypropylene glycol mono (meth) acrylate, lauroxy polyethylene glycol mono (meth) acrylate And stearoxy polyethylene glycol mono (meth) acrylate.
  • methoxypolyethylene glycol mono (meth) acrylate is preferably used.
  • polymerizable oligomer examples include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate compounds, and urethane (meth) acrylate compounds are preferably used. These polymerizable monomers and polymerizable oligomers can be used in combination.
  • Examples of the method for polymerizing the above monomers include methods using heat, X-rays, ultraviolet rays, visible rays, infrared rays, microwaves, and the like.
  • a polymerization initiator that reacts with ultraviolet rays can be blended in the solid electrolyte composition in order to effectively advance the reaction.
  • Examples of the ultraviolet polymerization initiator include benzoin, benzyl, acetophenone, benzophenone, Michler ketone, biacetyl, benzoyl peroxide and the like. These initiators can be used alone or in combination.
  • thermal polymerization initiator In the case of polymerization by heat, infrared rays, or microwaves, a thermal polymerization initiator can be used.
  • thermal polymerization initiators 1,1-di (tertiarybutylperoxy) -3,3,5-trimethylcyclohexane, 2,2-bis- [4,4-di (tertiarybutylperoxycyclohexyl) propane ], 1,1-di (tertiarybutylperoxy) -cyclohexane, tertiarybutylperoxy-3,5,5-trimethylhexanonate, tertiarybutylperoxy-2-ethylhexanoate, benzoyl peroxide And dibenzoyl peroxide.
  • These initiators can be used alone or in combination.
  • the electrolyte according to the present invention can contain a polymer.
  • a battery that can withstand repeated charge and discharge over a long period of time can be stably produced by using a solid electrolyte to which the above-described inorganic fine particles, polymerizable compound and polymer are added.
  • the polymer in the present invention preferably has a polymerization unit (monomer) number average polymerization degree of 1000 or more.
  • polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, poly (meth) acrylate alkyl, Poly (meth) acrylate aryl, polyfluorene, polyamide, polyimide, polyester, polycarbonate, polyurethane and the like are preferably used.
  • alkyl poly (meth) acrylate is preferably used.
  • the blending amount of the above-described polymerizable compound and polymer in the electrolyte is preferably 0 to 40% by mass.
  • it is preferably contained in an amount of 10 to 30% by mass.
  • the electrode according to the secondary battery of the present invention includes a positive electrode in which a positive electrode active material is provided on a current collector, and a negative electrode in which a negative electrode active material is provided on a current collector.
  • Positive electrode active material As the positive electrode active material according to the secondary battery of the present invention, a mixture of an inorganic active material, an organic active material, or both, and an electrode mixture can be used.
  • the positive electrode active material preferably contains at least an inorganic active material because the energy density of the secondary battery can be increased.
  • x is preferably in the range of 0-1.
  • fluorine-based compounds such as FeF 3 , Li 3 FeF 6 , and Li 2 TiF 6
  • metal sulfides such as Li 2 FeS 2 , TiS 2 , MoS 2 , and FeS, and composite oxides of these compounds and lithium can be given.
  • metal oxides and metal phosphorous oxides are preferable, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 2 MPO 4 F, LiMn 0.875 Fe 0.125 PO 4 are more preferable, and LiFePO 4 is most preferable. .
  • organic active material examples include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene, organic disulfide compounds, organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole). ), Benzoquinone compound PDBM (poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene), carbon disulfide, sulfur-based positive electrode materials such as active sulfur, organic radical compounds, and the like.
  • conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene
  • organic disulfide compounds organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole).
  • DMcT organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole).
  • Benzoquinone compound PDBM poly 2,5-dihydroxy
  • the surface of the positive electrode active material is coated with an inorganic oxide from the viewpoint of extending the life of the battery.
  • a method of coating the surface of the positive electrode active material is preferable, and examples of the coating method include a method of coating using a surface modifying apparatus such as a hybridizer.
  • inorganic oxides include oxides of group 2 to 16 elements such as magnesium oxide, silicon oxide, alumina, zirconia, and titanium oxide, barium titanate, calcium titanate, lead titanate, ⁇ -LiAlO 2 , LiTiO 3.
  • silicon oxide is preferable.
  • Niobium electrode active material As the negative electrode active material according to the secondary battery of the present invention, a material obtained by applying a mixture of a carbon material and an electrode mixture onto a current collector and drying can be used.
  • the negative electrode active material that has been applied and dried may be formed by pressing.
  • Examples of carbon materials include graphite materials such as various natural graphites, synthetic graphites, and expanded graphites that have been appropriately pulverized, mesocarbon microbeads that have been carbonized, mesophase pitch carbon fibers, and vapor grown carbon. Carbon materials such as fibers, pyrolytic carbon, petroleum coke, pitch coke, and needle coke, and synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof.
  • the electrode mixture according to the secondary battery of the present invention contains a conductive agent and a binder.
  • a conductive agent As other materials, fillers, lithium salts, aprotic organic solvents and the like may be added.
  • the conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the configured secondary battery.
  • Conductive materials include carbon materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, and conductive materials such as metal powders such as copper, nickel, aluminum, and silver, metal fibers, and polyphenylene derivatives. Can be used as one or a mixture thereof. Among them, a mixture of graphite and acetylene black is particularly preferable.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. When using a carbon material, 2 to 15% by mass is particularly preferable.
  • binder used in the electrode mixture according to the present invention examples include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Specifically, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile , Polyacrylamide, polyhydroxy (meth) acrylate, water-soluble polymers such as styrene-maleic acid copolymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride -Tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polys
  • carboxymethylcellulose, polytetrafluoroethylene, and polyvinylidene fluoride are more preferable.
  • the binder can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the electrode unit volume or the capacity per unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the filler used in the electrode mixture according to the present invention can be any fibrous material that does not cause a chemical change in the secondary battery of the present invention.
  • olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used.
  • the amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
  • the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver.
  • aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector is preferably copper, stainless steel, nickel, or titanium, and more preferably copper or a copper alloy.
  • a film sheet is usually used, but a porous body, a foam, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • Electrode shape and electrode fabrication method The shape of the electrode and the method for producing the electrode according to the present invention will be described.
  • the shape of the secondary battery of the present invention can be applied to any shape such as a sheet type, a square type, and a cylinder type.
  • the electrode is manufactured by applying a positive electrode active material or a mixture of a negative electrode active material and an electrode mixture on a current collector, drying and then pressing.
  • Examples of the application method of the positive electrode active material or the mixture of the negative electrode active material and the electrode mixture include, for example, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, and a dip method.
  • a squeeze method and the like are preferable.
  • the blade method, knife method and extrusion method are preferred.
  • the coating is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application
  • the coating by the above method may be continuous, intermittent or striped.
  • the thickness, length and width of the coating layer are determined by the shape and size of the battery.
  • the thickness of the coating layer on one side is preferably 1 to 2000 ⁇ m in a compressed state after drying.
  • the drying temperature is preferably 80 to 350 ° C, more preferably 100 to 250 ° C.
  • a sheet pressing method a generally adopted method can be used, but a calendar pressing method is particularly preferable.
  • the pressing pressure is not particularly limited, but is preferably 20 to 300 MPa.
  • the press speed of the calendar press method is preferably 0.1 to 50 m / min, and the press temperature is preferably room temperature to 200 ° C.
  • the ratio of the negative electrode sheet width to the positive electrode sheet is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0.
  • the content ratio of the positive electrode active material and the negative electrode active material varies depending on the compound type and the mixture formulation.
  • the secondary battery 1 was produced according to the following method.
  • a slurry negative electrode active material in which 96% by mass of natural spherical graphite, 4% by mass of polyvinylidene fluoride copolymer and N-methylpyrrolidone are mixed is applied to a thickness of 200 ⁇ m on a copper foil having a thickness of 10 ⁇ m. did. After drying with hot air at 130 ° C. for 5 minutes, a negative electrode was produced by roll pressing.
  • Secondary batteries 2 to 14 were produced in the same manner as in the production of the secondary battery 1 except that the electrolytic solution was changed to the ionic liquid and supporting electrolyte salt shown in Table 1.
  • the fabricated secondary batteries 1 to 14 were evaluated as follows. A battery charged at a voltage of 4.2 V and a charge rate of 0.125 C for 8 hours was discharged at a discharge rate of 0.125 C until the voltage of the secondary battery became 3 V, which was defined as one cycle. This cycle was repeated, and the number of times until the initial discharge capacity fell below 80% was measured.
  • EMIFSA 1-ethyl-3-methylimidazolium bisfluorosulfonylamide
  • EMITFSA 1-ethyl-3-methylimidazolium bistrifluoromethylsulfonylamide
  • P13FSA N-methyl-N-propylpyrrolidinium bisfluorosulfonylamide
  • EMIBF 3 ( CF 2 CF 3 ): 1-ethyl-3-methylimidazolium (pentafluoroethyl) trifluoroborate
  • HNIPTP 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate
  • EMIFTA 1-ethyl- 3-Methylimidazolium fluorosulfonyl (trifluoromethylsulfonylamide)
  • EMIBF 4 1-ethyl-3-
  • the secondary battery having an anion that forms a passive film on the current collector and an anion that forms an SEI film on the carbon material on the negative electrode has safety and cycle characteristics. Is apparently high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a secondary battery which has: a cathode, an anode having a carbon material, and an electrolyte. The secondary battery is characterized in that: the electrolyte has a one type of supporting electrolyte salt and two types of ion fluid, but the anions in the supporting electrolyte salt and the two types of ion fluid are different; and at least one the of types of anion is an anion which forms a passive film on a collector. Furthermore, the secondary battery is characterized by at least one of the anion types which differ from the anion which forms the passive film on the collector being an anion which forms an SEI film on the carbon material on the anode.

Description

イオン液体を含有する二次電池Secondary battery containing ionic liquid
 本発明は、イオン液体を含有する二次電池に関する。 The present invention relates to a secondary battery containing an ionic liquid.
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧、高エネルギー密度を有するので、近年、携帯型電子機器やパソコン等の用途に広く利用されている。また、今後は家庭の据え置き用途や自動車用途などの大型化への適応も期待されているが、更なるサイクル特性の改善、特に高温環境下におけるサイクル特性の劣化を抑制することが、重要な技術的課題となっている。 Non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, have high voltage and high energy density, and have recently been widely used in applications such as portable electronic devices and personal computers. In the future, it is also expected to be adapted for large-scale use such as stationary applications at home and automobiles, but it is important to further improve cycle characteristics, particularly to suppress deterioration of cycle characteristics in a high-temperature environment. It has become an issue.
 ビニレンカーボネートを非水電解質二次電池用電解液に添加することで、ビニレンカーボネートの一部が分解して負極上にSEI皮膜を形成し、その被膜がそれ以上の酸化分解を抑制することで、サイクル特性が向上しうることが知られている。 By adding vinylene carbonate to the electrolyte for a non-aqueous electrolyte secondary battery, a part of vinylene carbonate is decomposed to form an SEI film on the negative electrode, and the film suppresses further oxidative decomposition, It is known that cycle characteristics can be improved.
 例えば、電解質にビニレンカーボネートを0.1~10体積%含有した二次電池が開示されて(例えば、特許文献1参照)いる。これにより、黒鉛層間化合物上にSEI皮膜を形成し、サイクル特性が向上できることが記載されている。 For example, a secondary battery containing 0.1 to 10% by volume of vinylene carbonate in an electrolyte is disclosed (for example, see Patent Document 1). Thus, it is described that an SEI film can be formed on the graphite intercalation compound and the cycle characteristics can be improved.
 また、サイクル特性の向上を目的として、ビニレンカーボネート以外の化学種を用いて電極上にSEI皮膜を形成する例としては、環状スルホン酸エステルを含有する電解質を用いた二次電池が開示されている。これにより、正極表面に硫黄原子によるSEI皮膜が形成され、これにより充放電特性及び保存特性が改善されることが開示されて(例えば、特許文献2、3参照)いる。 Further, as an example of forming an SEI film on an electrode using a chemical species other than vinylene carbonate for the purpose of improving cycle characteristics, a secondary battery using an electrolyte containing a cyclic sulfonate ester is disclosed. . Thereby, it is disclosed that an SEI film is formed on the surface of the positive electrode by sulfur atoms, thereby improving charge / discharge characteristics and storage characteristics (see, for example, Patent Documents 2 and 3).
特開2005-149750号公報JP 2005-149750 A 特開2005-251677号公報JP 2005-251677 A 国際公開2004/034491号International Publication No. 2004/034491
 しかしながら、可燃性のビニレンカーボネートを用いた非水電解質二次電池用電解液は、サイクル特性が十分ではなく、さらなる改善が望まれている。また、ビニレンカーボネートを用いた非水電解質二次電池用電解液は、二次電池の異常加熱時に二次電池セルの変形や発火を起こすおそれがあり、安全性の観点からも更なる改善が望まれている。発火のおそれが無く、安全性の高いため、難燃性のイオン液体を用いた電解質にわずかにビニレンカーボネートを添加することも考えられるが、ビニレンカーボネートによるSEI皮膜はイオン液体を用いた電解質のサイクル特性を大きく向上させることはできなかった。 However, the electrolyte for non-aqueous electrolyte secondary batteries using flammable vinylene carbonate does not have sufficient cycle characteristics, and further improvements are desired. In addition, the electrolyte for non-aqueous electrolyte secondary batteries using vinylene carbonate may cause deformation or ignition of the secondary battery cells during abnormal heating of the secondary battery, and further improvement is desired from the viewpoint of safety. It is rare. Since there is no risk of ignition and safety is high, it may be possible to add a little vinylene carbonate to the electrolyte using a flame-retardant ionic liquid, but the SEI film with vinylene carbonate is an electrolyte cycle using an ionic liquid. The characteristics could not be improved greatly.
 また、電解質に環状スルホン酸エステルを含有する二次電池も、環状スルホン酸エステルが形成するSEI皮膜が十分でなく、サイクル特性にはまだ改善の余地があった。 Also, the secondary battery containing a cyclic sulfonate ester in the electrolyte has not enough SEI film formed by the cyclic sulfonate ester, and there is still room for improvement in cycle characteristics.
 本発明は上記の課題に鑑みてなされたものであり、その目的は安全性及びサイクル特性が高いイオン液体を用いた二次電池を提供することにある。また、本発明の更なる目的は、安全性及びサイクル特性が高い二次電池を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a secondary battery using an ionic liquid having high safety and cycle characteristics. A further object of the present invention is to provide a secondary battery having high safety and cycle characteristics.
 上記の課題に鑑み発明者が誠意検討を行った結果、少なくともそれぞれのアニオンが異なる1つの支持電解質塩と2つのイオン液体を含有する電解質において、第1のアニオンが集電体上に不動態膜を形成しうるアニオンであり、第2のアニオンが前記炭素材料からなる活物質上にSEI皮膜を形成しうるアニオンを含有する電解質を用いることにより上記課題を解決できることを見出した。 As a result of inventor's sincere examination in view of the above-mentioned problems, at least one supporting electrolyte salt in which each anion is different and an electrolyte containing two ionic liquids, the first anion is formed on the current collector on the current collector. It was found that the above problem can be solved by using an electrolyte containing an anion that can form an SEI film on the active material made of the carbon material.
 即ち、本発明の構成は
 1.正極と、炭素材料を有する負極と、電解質とを有する二次電池において、該電解質は支持電解質塩の1種と、イオン液体2種とを有するが、該支持電解質塩と該2種類のイオン液体が有するそれぞれのアニオンは異なっており、かつ、該アニオンの少なくとも1種は集電体上に不動態膜を形成するアニオンであり、さらに、該集電体上に不動態膜を形成するアニオンとは異なるアニオンのうち、少なくとも1種が前記負極上の炭素材料にSEI皮膜を形成するアニオンであることを特徴とする二次電池。
That is, the configuration of the present invention is as follows. In a secondary battery having a positive electrode, a negative electrode having a carbon material, and an electrolyte, the electrolyte has one type of supporting electrolyte salt and two types of ionic liquids, and the supporting electrolyte salt and the two types of ionic liquids Each anion is different, and at least one of the anions is an anion that forms a passive film on the current collector, and an anion that forms a passive film on the current collector; Among the different anions, at least one is an anion that forms an SEI film on the carbon material on the negative electrode.
 2.前記電解質が集電体および炭素材料からなる活物質上に不動態膜もしくはSEI皮膜を形成しないアニオンを含有していることを特徴とする前記1に記載の二次電池。 2. 2. The secondary battery as described in 1 above, wherein the electrolyte contains an anion that does not form a passive film or SEI film on an active material comprising a current collector and a carbon material.
 3.集電体上に不導態を形成しうるアニオンが、下記一般式(1)ならびに一般式(2)から選ばれるアニオンであることを特徴とする前記1又は2に記載の二次電池。 3. 3. The secondary battery as described in 1 or 2 above, wherein the anion capable of forming a nonconductive state on the current collector is an anion selected from the following general formula (1) and general formula (2).
 一般式(1)
  P(R)6-X
 一般式(2)
  B(R)4-Y
(上記一般式(1)及び(2)においてRは、アルキル基、シクロアルキル基、アリール基、ヒドロキシル基、カルボキシル基、ニトロ基、トリフルオロメチル基、アミド基、カルバモイル基、エステル基、カルボニルオキシ基、シアノ基、ハロゲン原子、アルコキシ基、アリールオキシ基、スルホニル基、アルキルチオ基、アリールチオ基、スルホンアミド基、スルファモイル基、アミノ基、アルキルアミノ基及びアリールアミノ基から選ばれる少なくとも1種である。Xは1~5までの整数を表し、Yは1~3の整数を表す。)
General formula (1)
P (R) X F 6-X
General formula (2)
B (R) Y F 4-Y
(In the above general formulas (1) and (2), R represents an alkyl group, cycloalkyl group, aryl group, hydroxyl group, carboxyl group, nitro group, trifluoromethyl group, amide group, carbamoyl group, ester group, carbonyloxy Group, cyano group, halogen atom, alkoxy group, aryloxy group, sulfonyl group, alkylthio group, arylthio group, sulfonamido group, sulfamoyl group, amino group, alkylamino group and arylamino group. X represents an integer from 1 to 5, and Y represents an integer from 1 to 3.)
 上記の構成とすることにより、サイクル特性が高く、イオン液体にも好ましく適応が可能な二次電池を提供することができた。従来知られていたビニレンカーボネートや環状スルホン酸エステルは、イオン液体中でSEI皮膜を形成する能力が低いためイオン液体電解質の分解を防げず、十分なサイクル特性の向上には至らなかったと推測される。また、ビニレンカーボネートや環状スルホン酸エステルは可燃性であるため、二次電池の異常加熱時に二次電池セルの変形や発火を起こす危険性があるが、本発明の電解質は有機溶媒を必ずしも必要としないため、安全性の観点からも有利である。 By adopting the above configuration, it was possible to provide a secondary battery that has high cycle characteristics and can be preferably applied to an ionic liquid. Conventionally known vinylene carbonates and cyclic sulfonates have a low ability to form an SEI film in an ionic liquid, so it is estimated that decomposition of the ionic liquid electrolyte cannot be prevented and sufficient cycle characteristics have not been improved. . In addition, since vinylene carbonate and cyclic sulfonic acid esters are flammable, there is a risk of deformation or ignition of the secondary battery cell during abnormal heating of the secondary battery, but the electrolyte of the present invention does not necessarily require an organic solvent. Therefore, it is advantageous from the viewpoint of safety.
 さらに本発明はイオン液体を含有する電解質において、イオン液体の電極上での分解だけでなく集電体上での分解が、サイクル性を悪くする原因であるということを見出し、集電体上に不動態膜を形成するアニオンを共存させることにより、イオン液体を有する電解質に高いサイクル特性を付与することができた。 Furthermore, the present invention has found that in an electrolyte containing an ionic liquid, the decomposition of the ionic liquid on the current collector as well as the decomposition of the ionic liquid on the current collector is a cause of poor cycle performance. By allowing the anion forming the passive film to coexist, it was possible to impart high cycle characteristics to the electrolyte having the ionic liquid.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 (SEI皮膜)
 本発明におけるSEI皮膜(SEI:solid electrolyte interface)について説明する。負極上の炭素材料表面にSEI皮膜(solid electrolyte interface)を形成し、負極上の炭素材料が有機溶媒と直接反応しないようにする手段が提案されている。(中村博吉他「アセテート類を含む電解液を用いるリチウム電池用電解液の分解抑制」、電気化学および工業物理化学、Vol.73、No.6.pp429-434(2005年6月))このSEI皮膜はリチウムイオンの透過が可能で電子伝導度の低い膜であることが必要である。
(SEI film)
The SEI film (SEI: solid electrolyte interface) in the present invention will be described. Means have been proposed for forming a SEI film (solid electrolyte interface) on the surface of the carbon material on the negative electrode so that the carbon material on the negative electrode does not react directly with an organic solvent. (Hiroyoshi Nakamura et al. “Decompression suppression of electrolyte for lithium battery using electrolyte containing acetate”, Electrochemistry and Industrial Physical Chemistry, Vol. 73, No. 6. pp 429-434 (June 2005)) The film needs to be a film that can transmit lithium ions and has low electron conductivity.
 (不動態膜)
 本発明における不動態膜について説明する。集電体金属上に形成され、フッ素を含むアニオンにより生成される緻密で強固な皮膜である。この不動態膜は、電池性能を劣化させる原因である集電体の腐食や電解質の分解を抑える。
(Passive membrane)
The passive film in the present invention will be described. It is a dense and strong film formed on a current collector metal and generated by an anion containing fluorine. This passive film suppresses corrosion of the current collector and decomposition of the electrolyte, which are causes of deterioration of battery performance.
 本発明の電解質は、少なくとも1つのリチウム塩と2つのイオン液体を含有しており、アニオンの組み合わせとしては、
(1)イオン液体の2つのアニオンが集電体上に不動態膜を形成しうるアニオン及び、活物質上にSEI皮膜を形成しうるアニオンである場合
(2)支持電解質塩のアニオンが集電体上に不動態膜を形成しうるアニオンであり、イオン液体の1つのアニオンが活物質上にSEI皮膜を形成しうるアニオンである場合
(3)支持電解質塩のアニオンが活物質上にSEI皮膜を形成しうるアニオンであり、イオン液体の1つのアニオンが集電体上に不動態膜を形成しうるアニオンである場合
 の3つの場合が考えられるが、本発明においてはいずれの組み合わせであってもよい。
The electrolyte of the present invention contains at least one lithium salt and two ionic liquids, and as a combination of anions,
(1) When the two anions of the ionic liquid are an anion that can form a passive film on the current collector and an anion that can form an SEI film on the active material (2) The anion of the supporting electrolyte salt is the current collector When an anion capable of forming a passive film on the body and one anion of the ionic liquid is an anion capable of forming an SEI film on the active material (3) The anion of the supporting electrolyte salt is an SEI film on the active material There are three possible cases in which one anion of the ionic liquid is an anion that can form a passive film on the current collector. Also good.
 残る1つのアニオンは集電体上に不動態膜を形成しうるアニオンでも、活物質上にSEI皮膜を形成しうるアニオンでも、不動態膜を形成しないアニオンでもよいが、好ましくは下記で述べる不動態膜及びSEI皮膜を形成しないアニオンにすることで、分解安定性が高くサイクル性が高い電解質とすることができることから好ましく用いることができる。 The remaining one anion may be an anion that can form a passive film on the current collector, an anion that can form an SEI film on the active material, or an anion that does not form a passive film. By using an anion that does not form a dynamic membrane and an SEI coating, it can be preferably used because it can be an electrolyte having high decomposition stability and high cycleability.
 集電体上に不動態膜を形成しうるアニオン又は活物質上にSEI皮膜を形成しうるアニオンを有する電解質中の支持電解質塩の配合量は、5~40質量%とすることが好ましく、特に、10~30質量%とすることが好ましい。集電体上に不動態膜を形成しうるアニオン又は活物質上にSEI皮膜を形成しうるアニオンを有するイオン液体の電解質中の支持電解質塩の合計の配合量は、10質量%~60質量%が好ましく、特に15質量%~30質量%が好ましい。 The blending amount of the supporting electrolyte salt in the electrolyte having an anion capable of forming a passive film on the current collector or an anion capable of forming a SEI film on the active material is preferably 5 to 40% by mass, particularly The content is preferably 10 to 30% by mass. The total amount of the supporting electrolyte salt in the electrolyte of the ionic liquid having an anion capable of forming a passive film on the current collector or an anion capable of forming a SEI film on the active material is 10% by mass to 60% by mass. In particular, 15% by mass to 30% by mass is preferable.
 [二次電池]
 本発明の二次電池は正極、負極および電解質を有し、必要に応じてセパレータを有している。固体電解質を用いる場合など、電解質が十分に弾性を有していて電極同士が接触する恐れのない場合には、セパレータを省略することもできる。
[Secondary battery]
The secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, and a separator as necessary. If the electrolyte is sufficiently elastic and there is no fear that the electrodes will contact each other, such as when a solid electrolyte is used, the separator can be omitted.
 本発明に係る電解質は、少なくともそれぞれのアニオンが異なる1つの支持電解質塩と2つのイオン液体を含有し、集電体上に不動態膜を形成しうるアニオン及び、不動態膜を形成するアニオンとは異なる炭素材料からなる活物質上にSEI皮膜を形成しうるアニオンを含有することを特徴とする。 The electrolyte according to the present invention contains at least one supporting electrolyte salt having different anions and two ionic liquids, an anion that can form a passive film on the current collector, and an anion that forms the passive film. Contains an anion capable of forming an SEI film on an active material made of different carbon materials.
 以下本発明の工程について説明するが、本発明は以下の工程に限定されない。 Hereinafter, the steps of the present invention will be described, but the present invention is not limited to the following steps.
 [電解質]
 本発明に係る電解質は、少なくともそれぞれのアニオンが異なる1つの支持電解質塩と2つのイオン液体を含有し、前記のアニオンが集電体上に不動態膜を形成しうるアニオン及び、負極上の炭素材料にSEI皮膜を形成しうるアニオンを含有することを特徴とする。本発明においては、不動態膜を形成するアニオン、もしくはSEI皮膜を形成するアニオンの1種、もしくは、両方のアニオンをイオン液体として電解質中に存在させることができる。イオン液体としてアニオンを導入する場合、Li塩などのように固形塩を含有させた場合予想されるような低温での塩の析出がないため、アニオンの導入量が制限されない。したがって、本発明により、不動態膜を形成しうるアニオン、および負極上の炭素材料にSEI皮膜を形成しうるアニオンを任意の量で電解質中に含有させることができ、極めて安定な不動態膜、及びSEI皮膜形成を行う電解質の作製が可能となる。
[Electrolytes]
The electrolyte according to the present invention contains at least one supporting electrolyte salt having different anions and two ionic liquids, and the anion can form a passive film on the current collector, and carbon on the negative electrode. The material contains an anion capable of forming an SEI film. In the present invention, an anion that forms a passive film, an anion that forms a SEI film, or both anions can be present in the electrolyte as an ionic liquid. When an anion is introduced as an ionic liquid, the amount of anion introduced is not limited because there is no salt precipitation at a low temperature as expected when a solid salt such as a Li salt is contained. Therefore, according to the present invention, an anion capable of forming a passive film, and an anion capable of forming a SEI film in the carbon material on the negative electrode can be contained in the electrolyte in an arbitrary amount. In addition, it is possible to produce an electrolyte for forming an SEI film.
 さらに電解質に求められる物性に応じて、有機溶媒、無機微粒子、高分子及び重合性化合物を適宜含有することも出来る。特に無機微粒子と高分子、又は無機微粒子と重合性化合物を電解質に含有することで、固体電解質を形成することも可能である。本発明の二次電池に固体電解質を用いた場合にはセパレータが不要となるため好ましい。 Furthermore, an organic solvent, inorganic fine particles, a polymer, and a polymerizable compound can be appropriately contained depending on the physical properties required for the electrolyte. In particular, it is also possible to form a solid electrolyte by containing inorganic fine particles and a polymer or inorganic fine particles and a polymerizable compound in the electrolyte. When a solid electrolyte is used for the secondary battery of the present invention, a separator is unnecessary, which is preferable.
 (集電体上に不動態膜を形成しうるアニオン及び負極上の炭素材料にSEI皮膜を形成しうるアニオン)
 本発明に係る電解質は、集電体上に不動態膜を形成しうるアニオン及び負極上の炭素材料にSEI皮膜を形成しうるアニオンを含有していることを特徴とする。後でも説明するが、本発明に係る集電体と炭素材料は物性が異なるため、同一のアニオンでは不動態膜とSEI皮膜を形成しにくい。どちらか不動態膜とSEI皮膜の一方の形成が十分でないと、その部位から電解質の電気分解が起こるため、電解質の劣化を招きサイクル特性が低下すると考えられる。そこで本発明では、集電体、活物質それぞれにSEI皮膜を形成することで、電解質の電気分解を必要最小限に食い止め、電解質の劣化を防ぐことで二次電池のサイクル特性が向上することを見出し本発明に到った。
(Anion capable of forming a passive film on the current collector and anion capable of forming a SEI film on the carbon material on the negative electrode)
The electrolyte according to the present invention is characterized by containing an anion capable of forming a passive film on the current collector and an anion capable of forming an SEI film on the carbon material on the negative electrode. As will be described later, since the current collector and the carbon material according to the present invention have different physical properties, it is difficult to form a passive film and an SEI film with the same anion. If either one of the passive film and the SEI film is not sufficiently formed, the electrolyte is electrolyzed from that portion, and therefore, it is considered that the electrolyte is deteriorated and the cycle characteristics are lowered. Therefore, in the present invention, by forming an SEI film on each of the current collector and the active material, it is possible to prevent the electrolyte from being electrolyzed to the minimum necessary and to prevent the deterioration of the electrolyte, thereby improving the cycle characteristics of the secondary battery. The present invention has been reached.
 集電体上に不動態膜を形成しうるアニオンとしてはテトラフルオロボレート、ヘキサフルオロフォスフェイト、トリス(ペンタフルオロエチル)トリフルオロフォスフェイトを用いることができるが、水分に対する安定性の高さより下記一般式(1)並びに一般式(2)で挙げられるアニオンを好ましく用いることができる。
一般式(1)
  P(R)6-X
一般式(2)
  B(R)4-Y
 上記一般式(1)及び一般式(2)において、Rはアルキル基(メチル、エチル、i-プロピル、ヒドロキシエチル、ステアリル、ドデシル、エイコシル、ドコシル、オレイル等)、シクロアルキル基(シクロプロピル、シクロヘキシル等)、アリール基(フェニル、p-テトラデカニルオキシフェニル、o-オクタデカニルアミノフェニル、ナフチル、ヒドロキシフェニル等)、ヒドロキシル基、カルボキシル基、ニトロ基、トリフルオロメチル基、アミド基(アセトアミド、ベンズアミド等)、カルバモイル基(メチルカルバモイル、ブチルカルバモイル、フェニルカルバモイル等)、エステル基(エチルオキシカルボニル、i-プロピルオキシカルボニル、フェニルオキシカルボニル等)、カルボニルオキシ基(メチルカルボニルオキシ、プロピルカルボニルオキシ、フェニルカルボニルオキシ等)、シアノ基、ハロゲン原子(塩素、臭素、沃素、フッ素)、アルコキシ基(メトキシ、エトキシ、ブトキシ等)、アリールオキシ基(フェノキシ、ナフチルオキシ等)、スルホニル基(メタンスルホニル、p-トルエンスルホニル等)、アルキルチオ基(メチルチオ、エチルチオ、ブチルチオ等)、アリールチオ(フェニルチオ等)、スルホンアミド基(メタンスルホンアミド、ドデシルスルホンアミド、p-トルエンスルホンアミド等)、スルファモイル基(メチルスルファモイル、フェニルスルファモイル等)、アミノ基、アルキルアミノ基(エチルアミノ、ジメチルアミノ、ヒドロキシアミノ等)及びアリールアミノ基(フェニルアミノ、ナフチルアミノ等)から選ばれる置換基を表す。Xは1~6までの整数を表し、Yは1~4の整数を表す。尚、一般式(1)及び一般式(2)において複数のRを有する場合は、それぞれのRが同一であっても、異なっていてもよい。
Tetrafluoroborate, hexafluorophosphate, and tris (pentafluoroethyl) trifluorophosphate can be used as the anion that can form a passive film on the current collector. The anion mentioned by (1) and General formula (2) can be used preferably.
General formula (1)
P (R) X F 6-X
General formula (2)
B (R) Y F 4-Y
In the above general formulas (1) and (2), R represents an alkyl group (methyl, ethyl, i-propyl, hydroxyethyl, stearyl, dodecyl, eicosyl, docosyl, oleyl, etc.), a cycloalkyl group (cyclopropyl, cyclohexyl). Etc.), aryl group (phenyl, p-tetradecanyloxyphenyl, o-octadecanylaminophenyl, naphthyl, hydroxyphenyl, etc.), hydroxyl group, carboxyl group, nitro group, trifluoromethyl group, amide group (acetamide, Benzamide etc.), carbamoyl group (methylcarbamoyl, butylcarbamoyl, phenylcarbamoyl etc.), ester group (ethyloxycarbonyl, i-propyloxycarbonyl, phenyloxycarbonyl etc.), carbonyloxy group (methylcarbonyloxy) , Propylcarbonyloxy, phenylcarbonyloxy, etc.), cyano group, halogen atom (chlorine, bromine, iodine, fluorine), alkoxy group (methoxy, ethoxy, butoxy, etc.), aryloxy group (phenoxy, naphthyloxy, etc.), sulfonyl group (Methanesulfonyl, p-toluenesulfonyl, etc.), alkylthio groups (methylthio, ethylthio, butylthio, etc.), arylthio (phenylthio, etc.), sulfonamide groups (methanesulfonamide, dodecylsulfonamide, p-toluenesulfonamide, etc.), sulfamoyl groups (Methylsulfamoyl, phenylsulfamoyl etc.), amino group, alkylamino group (ethylamino, dimethylamino, hydroxyamino etc.) and arylamino group (phenylamino, naphthylamino etc.) It represents a substituent. X represents an integer from 1 to 6, and Y represents an integer from 1 to 4. In addition, when it has several R in General formula (1) and General formula (2), each R may be the same or different.
 また、活物質上にSEI皮膜を形成しうるアニオンとしてはビスフルオロスルホニルアミド、もしくはフルオロスルホニル(トリフルオロメチルスルホニルアミド)を用いることができる。 Also, bisfluorosulfonylamide or fluorosulfonyl (trifluoromethylsulfonylamide) can be used as an anion that can form a SEI film on the active material.
 上記のアニオンの対イオンであるカチオンには制限はない。 There is no limitation on the cation which is a counter ion of the above anion.
 集電体上に不動態膜を形成しうるアニオン又は活物質上にSEI皮膜を形成しうるアニオンが、イオン液体である場合のカチオンに制限はないが、イミダゾリウム(例えば、1-アルキル-3-メチルイミダゾリウム、1-アリル-3-アルキルイミダゾリウム、1-アルキル-2,3-ジメチルイミダゾリウム等)、ピリジニウム、アンモニウム、ピペリジニウム、ピロリジウム、ピラゾリウム、ホスホニウム、グアニシニウムを用いることができる。好ましいカチオンとしては、テトラメチルアンモニウム、エチルトリメチルアンモニウム、n-プロピルトリメチルアンモニウム、ジエチルジメチルアンモニウム、ジn-プロピルジメチルアンモニウム、トリエチルメチルアンモニウム、n-ブチルジエチルメチルアンモニウム、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム、テトラエチルアンモニウム、テトラn-プロピルアンモニウム、テトラn-ブチルアンモニウム、テトラn-ペンチルアンモニウム、5-アゾニアスピロ[4.4]ノナン、ジメチルイミダゾール、プロピルメチルイミダゾール、ブチルメチルイミダゾール、N,N-ジメチルピロリジニウム、N-メチル-N-エチルピロリジニウム、N-メチル-N-ブチルピロリジニウム、N,N-ジメチル-ピペリジニウム、N-メチル-N-エチル-ピペリジニウム、N-メチル-N-プロピル-ピペリジニウム、N-メチル-N-ブチル-ピペリジニウム、テトラエチルホスホニウム及び5-フォスフォニアスピロ[4.4]ノナンを好ましく用いることができる。 The anion capable of forming a passive film on the current collector or the anion capable of forming an SEI film on the active material is not limited to a cation when it is an ionic liquid, but imidazolium (eg, 1-alkyl-3 -Methylimidazolium, 1-allyl-3-alkylimidazolium, 1-alkyl-2,3-dimethylimidazolium, etc.), pyridinium, ammonium, piperidinium, pyrrolidinium, pyrazolium, phosphonium, guanidinium can be used. Preferred cations include tetramethylammonium, ethyltrimethylammonium, n-propyltrimethylammonium, diethyldimethylammonium, di-n-propyldimethylammonium, triethylmethylammonium, n-butyldiethylmethylammonium, N, N-diethyl-N-methyl. -N- (2-methoxyethyl) ammonium, tetraethylammonium, tetra-n-propylammonium, tetra-n-butylammonium, tetra-n-pentylammonium, 5-azoniaspiro [4.4] nonane, dimethylimidazole, propylmethylimidazole, butyl Methylimidazole, N, N-dimethylpyrrolidinium, N-methyl-N-ethylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N, -Dimethyl-piperidinium, N-methyl-N-ethyl-piperidinium, N-methyl-N-propyl-piperidinium, N-methyl-N-butyl-piperidinium, tetraethylphosphonium and 5-phosphonia spiro [4.4] nonane Can be preferably used.
 (支持電解質塩)
 本発明の電解質に係る支持電解質塩は、二次電池用電解質組成物中でイオンを与える塩であり、電池に用いられる公知の支持電解質塩を用いることができる。支持電解質塩としては、リチウム塩を好ましく用いることができる。
(Supporting electrolyte salt)
The supporting electrolyte salt according to the electrolyte of the present invention is a salt that gives ions in the electrolyte composition for secondary batteries, and known supporting electrolyte salts used for batteries can be used. As the supporting electrolyte salt, a lithium salt can be preferably used.
 金属イオンの塩のアニオンのうち不動態膜、およびSEI皮膜を形成しないアニオンとしてはSCN、ClO 、SbF 、(CFSO、(CFCFSO、(CFSO、CFSO などがあげられるが前記、集電体上に不動態膜を形成しうるアニオン及び活物質上にSEI皮膜を形成しうるアニオンのいずれであっても好ましく用いられる。 Among the anions of metal ion salts, the anion that does not form a passive film and SEI film includes SCN , ClO 4 , SbF 6 , (CF 3 SO 2 ) 2 N , (CF 3 CF 2 SO 2 ). 2 N , (CF 3 SO 2 ) 3 C , CF 3 SO 3 — and the like can be mentioned. An anion capable of forming a passive film on the current collector and an SEI film can be formed on the active material. Any anion is preferably used.
 (イオン液体)
 本発明の電解質に係るイオン液体は、常温で液体である塩であれば特に制限は無く、融点が80℃以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは30℃以下である。
(Ionic liquid)
The ionic liquid according to the electrolyte of the present invention is not particularly limited as long as it is a salt that is liquid at room temperature, and preferably has a melting point of 80 ° C. or lower, more preferably 60 ° C. or lower, more preferably 30 ° C. or lower. .
 そのようなイオン液体としてはアルキルアンモニウム塩、ピロリジニウム塩、ピペリジニウム塩、イミダゾリウム塩、ピリジニウム塩、スルホニウム塩、ホスホニウム塩などを用いることができる。下記一般式(3)で表されるイミダゾリウム塩も好ましく用いることができる。 As such ionic liquids, alkyl ammonium salts, pyrrolidinium salts, piperidinium salts, imidazolium salts, pyridinium salts, sulfonium salts, phosphonium salts and the like can be used. An imidazolium salt represented by the following general formula (3) can also be preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(3)中、R及びRは、置換基を有していても良い炭素数1~20の炭化水素基を示し、R、R及びRは、それぞれ水酸基、アミノ基、ニトロ基、シアノ基、カルボキシル基、エーテル基、もしくはアルデヒド基を有していてもよい炭素数1~10の炭化水素基又は水素原子を示し、Xは一価のアニオンを表し、前記、集電体上に不動態膜を形成しうるアニオン及び活物質上にSEI皮膜を形成しうるアニオンのいずれであっても好ましく用いられるが、不動態膜、およびSEI皮膜を形成しないアニオンでもよく、具体的には塩素、臭素、ヨウ素、NO 、CFCO 、CFSO 、(CFSO、(CFSO、(CSO、AlCl 、AlCl などが挙げられる。 In the general formula (3), R 1 and R 3 represent a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and R 2 , R 4 and R 5 represent a hydroxyl group, an amino group, respectively. A nitro group, a cyano group, a carboxyl group, an ether group, or a hydrocarbon group having 1 to 10 carbon atoms which may have an aldehyde group or a hydrogen atom, X represents a monovalent anion, Either an anion capable of forming a passive film on the current collector and an anion capable of forming a SEI film on the active material are preferably used, but an anion that does not form a passive film and SEI film may be used. Specifically, chlorine, bromine, iodine, NO 3 , CF 3 CO 2 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2) 2 N -, AlC 4 -, Al 2 Cl 7 -, and the like.
 一般式(3)で示される化合物の具体例としては、例えば、エチルメチルイミダゾール-ビスフルオロメチルスルホニルアミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビスフルオロスルホニルアミド、エチルメチルイミダゾール-ビストリフルオロスルホニルアミド、N-メチル-N-プロピルピロリジニウム-ビストリフルオロスルホニルアミド、1-イソプロピル-2,3-ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1-エチル-2,3-ジメチルイミダゾリウムビストリフルオロメタンスルホニル、1-ブチル-2,3-ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1-ヘキシル-2,3-ジメチルイミダゾリウムビストリフルオロメタンスルホニル、1-オクチル-2,3-ジメチルイミダゾリウムビストリフルオロメタンスルホニル、及び、上記ビストリフルオロメタンスルホニルアニオン部分をそれぞれビスフルオロスルホニルアニオンにしたイオン液体等が挙げられる。 Specific examples of the compound represented by the general formula (3) include, for example, ethylmethylimidazole-bisfluoromethylsulfonylamide, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bisfluorosulfonyl Amide, ethylmethylimidazole-bistrifluorosulfonylamide, N-methyl-N-propylpyrrolidinium-bistrifluorosulfonylamide, 1-isopropyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-ethyl-2, 3-dimethylimidazolium bistrifluoromethanesulfonyl, 1-butyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-hexyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl 1-octyl-2,3-dimethyl-imidazolium bis trifluoromethanesulfonyl, and the ionic liquid or the like to the respective bis-fluorosulfonyl anion the bis trifluoromethanesulfonyl anion moieties.
 本発明においては不動態膜もしくはSEI皮膜を形成しないイオン液体は、100mPa・S以下粘度のものを用いることが好ましく。そのようなイオン液体を用いることにより有機溶媒を含有しない電解質においても、十分なイオン電導度を確保することができ、安全性のより高い二次電池を作製することが可能となる。また、有機溶媒を含有しない電解質は高温時においても、電解質中の揮発成分がなく内圧上昇を抑えられるため、安全性のみならず、サイクル特性向上の観点からも有利である。粘度100mPa・S以下のイオン液体としては、エチルメチルイミダゾール-ビスフルオロメチルスルホニルアミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビスフルオロスルホニルアミド、エチルメチルイミダゾール-ビストリフルオロスルホニルアミド、N-メチル-N-プロピルピロリジニウム-ビストリフルオロスルホニルアミド又は1-エチル-2,3-ジメチルイミダゾリウムビスフルオロスルホニル塩などが挙げられるがこれらに限られない。 In the present invention, it is preferable to use an ionic liquid that does not form a passive film or SEI film having a viscosity of 100 mPa · S or less. By using such an ionic liquid, sufficient ionic conductivity can be ensured even in an electrolyte that does not contain an organic solvent, and a secondary battery with higher safety can be manufactured. In addition, an electrolyte that does not contain an organic solvent is advantageous not only from the viewpoint of safety but also from the viewpoint of improving cycle characteristics because it does not have a volatile component in the electrolyte and can suppress an increase in internal pressure even at high temperatures. As ionic liquids having a viscosity of 100 mPa · S or less, ethylmethylimidazole-bisfluoromethylsulfonylamide, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bisfluorosulfonylamide, ethylmethylimidazole- Examples include, but are not limited to, bistrifluorosulfonylamide, N-methyl-N-propylpyrrolidinium-bistrifluorosulfonylamide, or 1-ethyl-2,3-dimethylimidazolium bisfluorosulfonyl salt.
 イオン液体の電解質中における含有量としては、10質量%~90質量%が好ましく、特に40質量%~80質量%が好ましい。 The content of the ionic liquid in the electrolyte is preferably 10% by mass to 90% by mass, and particularly preferably 40% by mass to 80% by mass.
 (有機溶媒)
 本発明の電解質には、リチウム塩及びイオン液体、および不動態膜を形成しうるアニオンを含有している。したがって、難燃性を損なう可能性があるビニレンカーボネートを含めた有機溶媒は必要ではない。しかしながら、電解質の伝導性の向上や、粘度を低下させる目的において本発明の効果を妨げない範囲で含有することも可能である。
(Organic solvent)
The electrolyte of the present invention contains a lithium salt and an ionic liquid, and an anion that can form a passive film. Therefore, an organic solvent containing vinylene carbonate that may impair flame retardancy is not necessary. However, it can also be contained within a range that does not hinder the effects of the present invention for the purpose of improving the conductivity of the electrolyte or reducing the viscosity.
 本発明の電解質に適用可能な有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。 Examples of the organic solvent applicable to the electrolyte of the present invention include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone, or those obtained by further introducing a fluorine substituent into the above organic solvent Can be used.
 (無機微粒子)
 本発明の電解質においてはさらに、無機微粒子、重合性化合物及び高分子を含有することが出来る。有機溶媒の含有量を少量又は不使用とし、無機微粒子と重合性化合物、又は無機微粒子と高分子を電解質に含有することで固体電解質とすることも可能である。
(Inorganic fine particles)
The electrolyte of the present invention can further contain inorganic fine particles, a polymerizable compound, and a polymer. It is also possible to obtain a solid electrolyte by containing a small amount or no use of the organic solvent and containing inorganic fine particles and a polymerizable compound or inorganic fine particles and a polymer in the electrolyte.
 本発明の電解質に係る無機微粒子としては、酸化鉄、酸化ジルコニウム、酸化ニオブ、酸化タンタル、酸化アンチモン、クレー、酸化スズ、酸化タングステン、酸化チタン、リン酸アルミニウム、酸化ケイ素、酸化亜鉛、酸化アルミニウムや、これらの複合酸化物が好ましく使用できる。 Examples of the inorganic fine particles related to the electrolyte of the present invention include iron oxide, zirconium oxide, niobium oxide, tantalum oxide, antimony oxide, clay, tin oxide, tungsten oxide, titanium oxide, aluminum phosphate, silicon oxide, zinc oxide, aluminum oxide, These composite oxides can be preferably used.
 無機微粒子の平均粒径は、安全性、電圧特性の面から0.05~50μmであることが好ましく、更に0.1~20μmであることが好ましい。 The average particle diameter of the inorganic fine particles is preferably 0.05 to 50 μm, more preferably 0.1 to 20 μm from the viewpoint of safety and voltage characteristics.
 平均粒径は、各粒子を同体積の球に換算した時の直径(球換算粒径)の体積平均値であり、この値は電子顕微鏡写真から評価することができる。即ち、電池組成物または粒子紛体の透過型電子顕微鏡写真を撮影し、一定の視野範囲にある粒子を200個以上測定して各粒子の球換算粒径を求め、その平均値を求めることにより得られた値である。 The average particle diameter is a volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume, and this value can be evaluated from an electron micrograph. That is, by taking a transmission electron micrograph of the battery composition or particle powder, measuring 200 or more particles in a certain visual field range, obtaining a spherical equivalent particle diameter of each particle, and obtaining an average value thereof. Value.
 無機微粒子の含有量は特に限定はないが、イオン性液体100質量%に対して、0質量%以上100質量%以下が好ましい。更に好ましくは10質量%以上70質量%以下である。 The content of the inorganic fine particles is not particularly limited, but is preferably 0% by mass or more and 100% by mass or less with respect to 100% by mass of the ionic liquid. More preferably, it is 10 mass% or more and 70 mass% or less.
 (重合性化合物)
 本発明の電解質に係る重合性化合物には、重合により高分子化する重合性モノマー、または、重合性オリゴマーが用いることが出来る。
(Polymerizable compound)
As the polymerizable compound according to the electrolyte of the present invention, a polymerizable monomer that can be polymerized by polymerization or a polymerizable oligomer can be used.
 重合性モノマーとしては、ラジカル重合性モノマーやカチオン重合性モノマーが挙げられ、特に限定されないが以下に示されるエチレン性不飽和モノマーが好ましく用いられる。 Examples of the polymerizable monomer include radically polymerizable monomers and cationically polymerizable monomers. Although not particularly limited, ethylenically unsaturated monomers shown below are preferably used.
 エチレン性不飽和モノマーとしては、2-ビニルピロリドン、アクリロイルモルフォリン、2-ヒドロキシブチルビニルエーテル、エチルエチレングリコールモノ(メタ)アクリレート、プロピルエチレングリコールモノ(メタ)アクリレート、フェニルエチレングリコールモノ(メタ)アクリレート等の単官能モノマー、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート等の2官能モノマー、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の3官能以上のモノマー、ポリエチレングリコールモノ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。中でもメトキシポリエチレングリコールモノ(メタ)アクリレートが好ましく用いられる。 Examples of ethylenically unsaturated monomers include 2-vinylpyrrolidone, acryloylmorpholine, 2-hydroxybutyl vinyl ether, ethylethylene glycol mono (meth) acrylate, propylethylene glycol mono (meth) acrylate, and phenylethylene glycol mono (meth) acrylate. Monofunctional monomer, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxa Modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerol di (meth) acrylate, pentaerythritol di (meth) acrylate, Bifunctional monomers such as ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, etc. Trifunctional or higher monomer, polyethylene glycol mono (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol-polypropylene glycol mono (meth) acrylate , Poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-teto Ramethylene glycol) mono (meth) acrylate, methoxy polyethylene glycol mono (meth) acrylate, ethoxy polyethylene glycol mono (meth) acrylate, octoxy polyethylene glycol-polypropylene glycol mono (meth) acrylate, lauroxy polyethylene glycol mono (meth) acrylate And stearoxy polyethylene glycol mono (meth) acrylate. Of these, methoxypolyethylene glycol mono (meth) acrylate is preferably used.
 重合性オリゴマーとしては、例えば、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート系化合物が挙げられるが、ウレタン(メタ)アクリレート系化合物が好ましく用いられる。これら重合性モノマー、及び、重合性オリゴマーは、複数を組み合わせて用いることができる。 Examples of the polymerizable oligomer include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate compounds, and urethane (meth) acrylate compounds are preferably used. These polymerizable monomers and polymerizable oligomers can be used in combination.
 上記のモノマーの重合方法としては、熱、X線、紫外線、可視光線、赤外線、マイクロ波等による方法が挙げられる。紫外線による方法の場合、反応を効果的に進行させるため、固体電解質組成物中に紫外線に反応する重合開始剤を配合することも出来る。紫外線重合開始剤としては、ベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ビアセチル、ベンゾイルパーオキサイド等が挙げられる。これらの開始剤は、単独であるいは複数を組み合わせて用いることができる。 Examples of the method for polymerizing the above monomers include methods using heat, X-rays, ultraviolet rays, visible rays, infrared rays, microwaves, and the like. In the case of the method using ultraviolet rays, a polymerization initiator that reacts with ultraviolet rays can be blended in the solid electrolyte composition in order to effectively advance the reaction. Examples of the ultraviolet polymerization initiator include benzoin, benzyl, acetophenone, benzophenone, Michler ketone, biacetyl, benzoyl peroxide and the like. These initiators can be used alone or in combination.
 熱、赤外線、マイクロ波による重合の場合は、熱重合開始剤を使用することが出来る。熱重合開始剤としては、1,1-ジ(ターシャルブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス-[4,4-ジ(ターシャルブチルパーオキシシクロヘキシル)プロパン]、1,1-ジ(ターシャルブチルパーオキシ)-シクロヘキサン、ターシャリブチルパーオキシ-3,5,5-トリメチルヘキサノネート、ターシャリブチルパーオキシ-2-エチルヘキサノネート、ベンゾイルパーオキサイド、ジベンゾイルパーオキサイド等が挙げられる。これらの開始剤は、単独であるいは複数を組み合わせて用いることができる。 In the case of polymerization by heat, infrared rays, or microwaves, a thermal polymerization initiator can be used. As thermal polymerization initiators, 1,1-di (tertiarybutylperoxy) -3,3,5-trimethylcyclohexane, 2,2-bis- [4,4-di (tertiarybutylperoxycyclohexyl) propane ], 1,1-di (tertiarybutylperoxy) -cyclohexane, tertiarybutylperoxy-3,5,5-trimethylhexanonate, tertiarybutylperoxy-2-ethylhexanoate, benzoyl peroxide And dibenzoyl peroxide. These initiators can be used alone or in combination.
 (高分子)
 本発明に係る電解質は高分子を含有することが出来る。固体電解質を製造する際には、上に挙げた無機微粒子、重合性化合物および高分子を加えた固体電解質とすることで、長期間の繰り返し充放電に耐える電池を安定に製造することができる。
(High molecular)
The electrolyte according to the present invention can contain a polymer. When producing a solid electrolyte, a battery that can withstand repeated charge and discharge over a long period of time can be stably produced by using a solid electrolyte to which the above-described inorganic fine particles, polymerizable compound and polymer are added.
 本発明における高分子は、重合単位(モノマー)の数平均重合度が1000個以上のものであることが好ましく、例えば、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフロライド、ポリ(メタ)アクリル酸アルキル、ポリ(メタ)アクリル酸アリール、ポリフルオレン、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリウレタンなどが好適に用いられる。中でもポリ(メタ)アクリル酸アルキルが好ましく用いられる。 The polymer in the present invention preferably has a polymerization unit (monomer) number average polymerization degree of 1000 or more. For example, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, poly (meth) acrylate alkyl, Poly (meth) acrylate aryl, polyfluorene, polyamide, polyimide, polyester, polycarbonate, polyurethane and the like are preferably used. Of these, alkyl poly (meth) acrylate is preferably used.
 上述した重合性化合物及び高分子を合わせた電解質中の配合量は、0~40質量%が好ましい。特に、固体電解質とする場合には、10~30質量%含有することが好ましい。 The blending amount of the above-described polymerizable compound and polymer in the electrolyte is preferably 0 to 40% by mass. In particular, when a solid electrolyte is used, it is preferably contained in an amount of 10 to 30% by mass.
 [電極]
 本発明の二次電池に係る電極は、集電体上に正極活物質を設けた正極、および集電体上に負極活物質を設けた負極からなる。
[electrode]
The electrode according to the secondary battery of the present invention includes a positive electrode in which a positive electrode active material is provided on a current collector, and a negative electrode in which a negative electrode active material is provided on a current collector.
 (正極活物質)
 本発明の二次電池に係る正極活物質としては、無機系活物質、有機系活物質又はその両方と、電極合剤の混合物を用いることができる。正極活物質には少なくとも無機系活物質を含有することが、二次電池のエネルギー密度を大きくすることができる点から好ましい。
(Positive electrode active material)
As the positive electrode active material according to the secondary battery of the present invention, a mixture of an inorganic active material, an organic active material, or both, and an electrode mixture can be used. The positive electrode active material preferably contains at least an inorganic active material because the energy density of the secondary battery can be increased.
 無機系活物質として、例えば、Li0.3MnO、LiMn12、V、LiCoO、LiMn、LiNiO、LiFePOLiCo1/3Ni1/3Mn1/3、Li1.2(Fe0.5Mn0.50.8、Li1.2(Fe0.4Mn0.4Ti0.20.8、Li1+x(Ni0.5Mn0.51-x、LiNi0.5Mn1.5、LiMnO、Li0.76Mn0.51Ti0.49、LiNi0.8Co0.15Al0.05、Fe、等の金属酸化物、LiFePO、LiCoPO、LiMnPO、LiMPOF(M=Fe、Mn)、LiMn0.875Fe0.125PO、LiFeSiO、Li2-xMSi1-x(M=Fe、Mn)、LiMBO(M=Fe、Mn)などの金属リン酸化物、金属ケイ酸化物、金属ホウ酸化物が上げられる。なお、これらの化学式中、xは0~1の範囲であることが好ましい。更に、FeF、LiFeF、LiTiFなどのフッ素系、LiFeS、TiS、MoS、FeS等の金属硫化物、これらの化合物とリチウムの複合酸化物が挙げられる。 As the inorganic active material, for example, Li 0.3 MnO 2 , Li 4 Mn 5 O 12 , V 2 O 5 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 LiCo 1/3 Ni 1/3 Mn 1 / 3 O 2 , Li 1.2 (Fe 0.5 Mn 0.5 ) 0.8 O 2 , Li 1.2 (Fe 0.4 Mn 0.4 Ti 0.2 ) 0.8 O 2 , Li 1 + x (Ni 0.5 Mn 0.5 ) 1-x O 2 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 , Li 0.76 Mn 0.51 Ti 0.49 O 2 , LiNi 0 .8 Co 0.15 Al 0.05 O 2 , Fe 2 O 3 , etc., metal oxides, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 2 MPO 4 F (M = Fe, Mn), LiMn 0.875 Fe 0. 25 PO 4, Li 2 FeSiO 4 , Li 2-x MSi 1-x P x O 4 (M = Fe, Mn), LiMBO 3 (M = Fe, Mn) metal phosphate such as metal silicate oxides, Metal borate is raised. In these chemical formulas, x is preferably in the range of 0-1. Further, fluorine-based compounds such as FeF 3 , Li 3 FeF 6 , and Li 2 TiF 6 , metal sulfides such as Li 2 FeS 2 , TiS 2 , MoS 2 , and FeS, and composite oxides of these compounds and lithium can be given.
 上記の中でも金属酸化物、金属リン酸化物が好ましく、LiFePO、LiCoPO、LiMnPO、LiMPOF、LiMn0.875Fe0.125POがさらに好ましく、もっとも好ましくはLiFePOである。 Among these, metal oxides and metal phosphorous oxides are preferable, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 2 MPO 4 F, LiMn 0.875 Fe 0.125 PO 4 are more preferable, and LiFePO 4 is most preferable. .
 有機系活物質としては、例えば、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリパラフェニレン、等の導電性高分子、有機ジスルフィド化合物、有機イオウ化合物DMcT(2,5-ジメルカプト-1,3,4-チアジアゾール)、ベンゾキノン化合物PDBM(ポリ2,5-ジヒドロキシ-1,4-ベンゾキノン-3,6-メチレン)、カーボンジスルフィド、活性硫黄等の硫黄系正極材料、有機ラジカル化合物等が用いられる。 Examples of the organic active material include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene, organic disulfide compounds, organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole). ), Benzoquinone compound PDBM (poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene), carbon disulfide, sulfur-based positive electrode materials such as active sulfur, organic radical compounds, and the like.
 また、正極活物質の表面には、無機酸化物が被覆されていることが電池の寿命を延ばす点で好ましい。無機酸化物を被覆するに当たっては、正極活物質の表面にコーティングする方法が好ましく、コーティングする方法としては、例えばハイブリタイザーなどの表面改質装置を用いてコーティングする方法などが挙げられる。 In addition, it is preferable that the surface of the positive electrode active material is coated with an inorganic oxide from the viewpoint of extending the life of the battery. In coating the inorganic oxide, a method of coating the surface of the positive electrode active material is preferable, and examples of the coating method include a method of coating using a surface modifying apparatus such as a hybridizer.
 無機酸化物としては、例えば、酸化マグネシウム、酸化ケイ素、アルミナ、ジルコニア、酸化チタン等の2~16族元素の酸化物、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ-LiAlO、LiTiO等が挙げられ、特に酸化ケイ素が好ましい。 Examples of inorganic oxides include oxides of group 2 to 16 elements such as magnesium oxide, silicon oxide, alumina, zirconia, and titanium oxide, barium titanate, calcium titanate, lead titanate, γ-LiAlO 2 , LiTiO 3. In particular, silicon oxide is preferable.
 (負極活物質)
 本発明の二次電池に係る負極活物質としては、炭素材料と電極合剤の混合物を集電体上に塗布して乾燥したものが使用できる。塗布し、乾燥させた負極活物質はプレスによって成形してもよい。炭素材料の例としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料、及びこれら炭素材料に黒鉛化処理を施した合成黒鉛材料、又はこれらの混合物等である。
(Negative electrode active material)
As the negative electrode active material according to the secondary battery of the present invention, a material obtained by applying a mixture of a carbon material and an electrode mixture onto a current collector and drying can be used. The negative electrode active material that has been applied and dried may be formed by pressing. Examples of carbon materials include graphite materials such as various natural graphites, synthetic graphites, and expanded graphites that have been appropriately pulverized, mesocarbon microbeads that have been carbonized, mesophase pitch carbon fibers, and vapor grown carbon. Carbon materials such as fibers, pyrolytic carbon, petroleum coke, pitch coke, and needle coke, and synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof.
 (電極合剤)
 本発明の二次電池に係る電極合剤は、導電剤および結着剤を含有している。その他の材料として、フィラー、リチウム塩、非プロトン性有機溶媒等が添加されていても良い。
(Electrode mixture)
The electrode mixture according to the secondary battery of the present invention contains a conductive agent and a binder. As other materials, fillers, lithium salts, aprotic organic solvents and the like may be added.
 導電剤は、構成された二次電池において化学変化を起こさない電子伝導性材料であれば、特に制限はない。導電材としては、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの炭素材料や銅、ニッケル、アルミニウム、銀などの金属粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を1種またはこれらの混合物として用いることができる。その中でも黒鉛とアセチレンブラックの混合物が特に好ましい。 The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the configured secondary battery. Conductive materials include carbon materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, and conductive materials such as metal powders such as copper, nickel, aluminum, and silver, metal fibers, and polyphenylene derivatives. Can be used as one or a mixture thereof. Among them, a mixture of graphite and acetylene black is particularly preferable.
 導電剤の添加量としては、1~50質量%が好ましく、2~30質量%がより好ましい。炭素材料を用いる場合は、2~15質量%が特に好ましい。 The addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. When using a carbon material, 2 to 15% by mass is particularly preferable.
 本発明に係る電極合剤に用いられる結着剤としては、多糖類、熱可塑性樹脂およびゴム弾性を有するポリマーなどが挙げられる。具体的にはでんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョン及びポリアクリル酸エステル系のラテックスが挙げられる。 Examples of the binder used in the electrode mixture according to the present invention include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Specifically, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile , Polyacrylamide, polyhydroxy (meth) acrylate, water-soluble polymers such as styrene-maleic acid copolymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride -Tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, poly (Meth) acrylic acid ester copolymer containing (meth) acrylic acid ester such as propylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, (Meth) acrylic acid ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluororubber, poly Emulsions such as ethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, phenol resin, epoxy resin Scan) or latex suspension and polyacrylate systems.
 上記の中でも、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンがより好ましい。 Among these, carboxymethylcellulose, polytetrafluoroethylene, and polyvinylidene fluoride are more preferable.
 結着剤は単独で用いることも二種以上を混合して用いることも出来る。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し、電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で、結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 The binder can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the electrode unit volume or the capacity per unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
 本発明に係る電極合剤に用いられるフィラーは、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0~30質量%が好ましい。 The filler used in the electrode mixture according to the present invention can be any fibrous material that does not cause a chemical change in the secondary battery of the present invention. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
 (集電体)
 正極および負極の集電体としては、化学変化を起こさない電子伝導体が用いられる。
(Current collector)
As the current collector for the positive electrode and the negative electrode, an electron conductor that does not cause a chemical change is used.
 正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。 As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、銅、ステンレス鋼、ニッケル、チタンが好ましく、銅あるいは銅合金がより好ましい。 The negative electrode current collector is preferably copper, stainless steel, nickel, or titanium, and more preferably copper or a copper alloy.
 集電体の形状としては、通常フィルムシート状のものが使用されるが、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。 As the shape of the current collector, a film sheet is usually used, but a porous body, a foam, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
 [電極の形状および電極の作製方法]
 本発明に係る電極の形状および電極の作製方法について説明する。
[Electrode shape and electrode fabrication method]
The shape of the electrode and the method for producing the electrode according to the present invention will be described.
 本発明の二次電池の形状としては、シート型、角型、シリンダー型などいずれの形にも適用できる。電極の作製方法としては、集電体の上に正極活物質又は負極活物質と電極合剤の混合物を塗布、乾燥の後圧着することにより作製される。 The shape of the secondary battery of the present invention can be applied to any shape such as a sheet type, a square type, and a cylinder type. The electrode is manufactured by applying a positive electrode active material or a mixture of a negative electrode active material and an electrode mixture on a current collector, drying and then pressing.
 正極活物質又は負極活物質と電極合剤の混合物の塗布方法としては、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等が好適に挙げられる。その中でも、ブレード法、ナイフ法およびエクストルージョン法が好ましい。また、塗布は、0.1~100m/分の速度で実施されることが好ましい。この際、合剤の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は、片面ずつ逐時でも、両面同時に行ってもよい。 Examples of the application method of the positive electrode active material or the mixture of the negative electrode active material and the electrode mixture include, for example, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, and a dip method. A squeeze method and the like are preferable. Of these, the blade method, knife method and extrusion method are preferred. The coating is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application | coating method according to the solution physical property and dryability of a mixture. Application may be performed one side at a time or both sides simultaneously.
 さらに、上記の方法による塗布は、連続でも間欠でもストライプでもよい。その塗布層の厚み、長さおよび巾は、電池の形状や大きさにより決められるが、片面の塗布層の厚みは、ドライ後の圧縮された状態で、1~2000μmが好ましい。 Furthermore, the coating by the above method may be continuous, intermittent or striped. The thickness, length and width of the coating layer are determined by the shape and size of the battery. The thickness of the coating layer on one side is preferably 1 to 2000 μm in a compressed state after drying.
 前記電極シート塗布物の乾燥および脱水方法としては、熱風、真空、赤外線、遠赤外線、電子線および低湿風を、単独あるいは組み合わせた方法を用いることできる。乾燥温度は80~350℃が好ましく、100~250℃がより好ましい。シートのプレス法は、一般に採用されている方法を用いることができるが、特にカレンダープレス法が好ましい。プレス圧は特に限定されないが、20~300MPaが好ましい。前記カレンダープレス法のプレス速度としては、0.1~50m/分が好ましく、プレス温度は室温~200℃が好ましい。正極シートに対する負極シート幅の比としては、0.9~1.1が好ましく、0.95~1.0が特に好ましい。正極活物質と負極活物質との含有量比は、化合物種類や合剤処方により異なる。 As a method for drying and dehydrating the electrode sheet coated product, a method in which hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air are used alone or in combination can be used. The drying temperature is preferably 80 to 350 ° C, more preferably 100 to 250 ° C. As a sheet pressing method, a generally adopted method can be used, but a calendar pressing method is particularly preferable. The pressing pressure is not particularly limited, but is preferably 20 to 300 MPa. The press speed of the calendar press method is preferably 0.1 to 50 m / min, and the press temperature is preferably room temperature to 200 ° C. The ratio of the negative electrode sheet width to the positive electrode sheet is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0. The content ratio of the positive electrode active material and the negative electrode active material varies depending on the compound type and the mixture formulation.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 [二次電池1の作製]
 以下の方法に従って二次電池1を作製した。
[Production of Secondary Battery 1]
The secondary battery 1 was produced according to the following method.
 (正電極の製造)
 厚さ15μmのアルミ箔の上に、90質量%のコバルト酸リチウム及び、6質量%のグラファイト粉末、4質量%のポリフッ化ビニリデン共重合体及びN-メチルピロリドンを混合したスラリー状の正極活物質を、200μmの厚さで塗布した。130℃で5分間温風乾燥後、ロールプレスすることにより正電極を作製した。
(Manufacture of positive electrode)
Slurry positive electrode active material in which 90% by mass of lithium cobaltate, 6% by mass of graphite powder, 4% by mass of polyvinylidene fluoride copolymer and N-methylpyrrolidone are mixed on a 15 μm thick aluminum foil Was applied in a thickness of 200 μm. After drying with warm air at 130 ° C. for 5 minutes, a positive electrode was produced by roll pressing.
 (負電極の製造)
 厚さ10μmの銅箔の上に、96質量%の天然球状グラファイト、4質量%のポリフッ化ビニリデン共重合体及びN-メチルピロリドンを混合したスラリー状の負極活物質を、200μmの厚さで塗布した。130℃で5分間温風乾燥後、ロールプレスすることにより負電極を作製した。
(Manufacture of negative electrode)
A slurry negative electrode active material in which 96% by mass of natural spherical graphite, 4% by mass of polyvinylidene fluoride copolymer and N-methylpyrrolidone are mixed is applied to a thickness of 200 μm on a copper foil having a thickness of 10 μm. did. After drying with hot air at 130 ° C. for 5 minutes, a negative electrode was produced by roll pressing.
 (二次電池1の製造)
 露点-60℃のグローブボックスに、上記で作製した正極及び負極の一部をタブとして残し、30mm×50mmの大きさとなるように切り取り、32mm×52mmの大きさのセパレータCelgard3501(Celgard、LLC製)と共にラミネートフィルムD-EL40H(大日本印刷株式会社製)に挿入した。その後1-エチル-3-メチルイミダゾリウムビスフルオロスルフォニルアミドを20部、1-エチル-3-メチルイミダゾリウムビストリフルオロメチルスルフォニルアミドを60部及びLiBF20部を混合した電解液をラミネートフィルムに注液した後に真空ヒートシールを行い、二次電池1を作製した。
(Manufacture of secondary battery 1)
In the glove box with a dew point of −60 ° C., a part of the positive electrode and the negative electrode prepared above is left as a tab, and is cut out to a size of 30 mm × 50 mm, and a separator Celgard 3501 of 32 mm × 52 mm (Celgard, manufactured by LLC) At the same time, it was inserted into a laminate film D-EL40H (Dai Nippon Printing Co., Ltd.). Thereafter, an electrolytic solution obtained by mixing 20 parts of 1-ethyl-3-methylimidazolium bisfluorosulfonylamide, 60 parts of 1-ethyl-3-methylimidazolium bistrifluoromethylsulfonylamide and 20 parts of LiBF 4 was poured into the laminate film. After the liquefaction, vacuum heat sealing was performed, and the secondary battery 1 was produced.
 [二次電池2~14の作製]
 電解液を表1に記載のイオン液体及び支持電解質塩に変更した以外は二次電池1の作製と同様の方法で、二次電池2~14を作製した。
[Production of secondary batteries 2 to 14]
Secondary batteries 2 to 14 were produced in the same manner as in the production of the secondary battery 1 except that the electrolytic solution was changed to the ionic liquid and supporting electrolyte salt shown in Table 1.
 [二次電池の評価]
 作製した二次電池1~14の評価は以下のようにして行った。電圧4.2V及び充電レート0.125Cで8時間充電した電池に対し、放電レート0.125Cで二次電池の電圧が3Vになるまで放電しこれを1サイクルとした。このサイクルを繰り返し、初回放電容量の80%を下回るまでの回数を測定した。
[Evaluation of secondary battery]
The fabricated secondary batteries 1 to 14 were evaluated as follows. A battery charged at a voltage of 4.2 V and a charge rate of 0.125 C for 8 hours was discharged at a discharge rate of 0.125 C until the voltage of the secondary battery became 3 V, which was defined as one cycle. This cycle was repeated, and the number of times until the initial discharge capacity fell below 80% was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また表1において、各イオン液体および支持電解質に記載された略語は以下の化合物を表す。
EMIFSA:1-エチル-3-メチルイミダゾリウムビスフルオロスルフォニルアミドEMITFSA:1-エチル-3-メチルイミダゾリウムビストリフルオロメチルスルフォニルアミド
P13FSA:N-メチル-N-プロピルピロリジニウムビスフルオロスルフォニルアミド
EMIBF(CFCF):1-エチル-3-メチルイミダゾリウム(ペンタフルオロエチル)トリフルオロボレート
HNIPTP:1-ヘキシル-3-メチルイミダゾリウムトリス(ペンタフルオロエチル)トリフルオロホスフェイト
EMIFTA:1-エチル-3-メチルイミダゾリウムフルオロスルホニル(トリフルオロメチルスルホニルアミド)
EMIBF:1-エチル-3-メチルイミダゾリウムテトラフルオロボレート
P13TFSA:N-メチル-N-プロピルピロリジニウムビストリフルオロメチルスルフォニルアミド
LiBF:リチウムテトラフルオロボレート
LiTFSA:リチウムビストリフルオロメチルスルフォニルアミド
LiFSA:リチウムビスフルオロスルフォニルアミド
 これらの化合物の内、EMIFSA、P13FSA、EMIFTA及びLiFSAはSEI皮膜を形成するアニオンを有する化合物であり、EMIBF(CFCF)、HNIPTP、EMIBF及びLiBFは不動態膜を形成するアニオンを有する化合物である。EMITFSAとP13TFSAは、SEI皮膜も不動態膜も形成しないアニオンを有する化合物である。
Moreover, in Table 1, the abbreviation described in each ionic liquid and supporting electrolyte represents the following compounds.
EMIFSA: 1-ethyl-3-methylimidazolium bisfluorosulfonylamide EMITFSA: 1-ethyl-3-methylimidazolium bistrifluoromethylsulfonylamide P13FSA: N-methyl-N-propylpyrrolidinium bisfluorosulfonylamide EMIBF 3 ( CF 2 CF 3 ): 1-ethyl-3-methylimidazolium (pentafluoroethyl) trifluoroborate HNIPTP: 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate EMIFTA: 1-ethyl- 3-Methylimidazolium fluorosulfonyl (trifluoromethylsulfonylamide)
EMIBF 4 : 1-ethyl-3-methylimidazolium tetrafluoroborate P13TFSA: N-methyl-N-propylpyrrolidinium bistrifluoromethylsulfonylamide LiBF 4 : lithium tetrafluoroborate LiTFSA: lithium bistrifluoromethylsulfonylamide LiFSA: lithium Bisfluorosulfonylamide Among these compounds, EMIFSA, P13FSA, EMIFTA, and LiFSA are compounds having an anion that forms an SEI film, and EMIBF 3 (CF 2 CF 3 ), HNIPTP, EMIBF 4 and LiBF 4 are passive films. It is a compound which has an anion which forms. EMITFSA and P13TFSA are compounds having anions that do not form SEI films or passive films.
 表1からも明らかなように、集電体上に不動態膜を形成するアニオンと、負極上の炭素材料にSEI皮膜を形成するアニオンを含む電解質を有する二次電池は、安全性及びサイクル特性が高いことが明らかである。 As is clear from Table 1, the secondary battery having an anion that forms a passive film on the current collector and an anion that forms an SEI film on the carbon material on the negative electrode has safety and cycle characteristics. Is apparently high.

Claims (3)

  1.  正極と、炭素材料を有する負極と、電解質とを有する二次電池において、該電解質は支持電解質塩の1種と、イオン液体2種とを有するが、該支持電解質塩と該2種類のイオン液体が有するそれぞれのアニオンは異なっており、かつ、該アニオンの少なくとも1種は集電体上に不動態膜を形成するアニオンであり、さらに、該集電体上に不動態膜を形成するアニオンとは異なるアニオンのうち、少なくとも1種が前記負極上の炭素材料にSEI皮膜を形成するアニオンであることを特徴とする二次電池。 In a secondary battery having a positive electrode, a negative electrode having a carbon material, and an electrolyte, the electrolyte has one type of supporting electrolyte salt and two types of ionic liquids, and the supporting electrolyte salt and the two types of ionic liquids Each anion is different, and at least one of the anions is an anion that forms a passive film on the current collector, and an anion that forms a passive film on the current collector; Among the different anions, at least one is an anion that forms an SEI film on the carbon material on the negative electrode.
  2.  前記電解質が集電体および炭素材料からなる活物質上に不動態膜もしくはSEI皮膜を形成しないアニオンを含有していることを特徴とする請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrolyte contains an anion that does not form a passive film or SEI film on an active material made of a current collector and a carbon material.
  3.  集電体上に不導態を形成しうるアニオンが、下記一般式(1)ならびに一般式(2)から選ばれるアニオンであることを特徴とする請求項1又は2に記載の二次電池。
     一般式(1)
      P(R)6-X
     一般式(2)
      B(R)4-Y
    (上記一般式(1)及び(2)においてRは、アルキル基、シクロアルキル基、アリール基、ヒドロキシル基、カルボキシル基、ニトロ基、トリフルオロメチル基、アミド基、カルバモイル基、エステル基、カルボニルオキシ基、シアノ基、ハロゲン原子、アルコキシ基、アリールオキシ基、スルホニル基、アルキルチオ基、アリールチオ基、スルホンアミド基、スルファモイル基、アミノ基、アルキルアミノ基及びアリールアミノ基から選ばれる少なくとも1種である。Xは1~5までの整数を表し、Yは1~3の整数を表す。)
    The secondary battery according to claim 1 or 2, wherein the anion capable of forming a nonconductive state on the current collector is an anion selected from the following general formula (1) and general formula (2).
    General formula (1)
    P (R) X F 6-X
    General formula (2)
    B (R) Y F 4-Y
    (In the above general formulas (1) and (2), R represents an alkyl group, cycloalkyl group, aryl group, hydroxyl group, carboxyl group, nitro group, trifluoromethyl group, amide group, carbamoyl group, ester group, carbonyloxy Group, cyano group, halogen atom, alkoxy group, aryloxy group, sulfonyl group, alkylthio group, arylthio group, sulfonamido group, sulfamoyl group, amino group, alkylamino group and arylamino group. X represents an integer from 1 to 5, and Y represents an integer from 1 to 3.)
PCT/JP2010/071877 2009-12-24 2010-12-07 Secondary battery having ion fluid WO2011077939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547449A JPWO2011077939A1 (en) 2009-12-24 2010-12-07 Secondary battery containing ionic liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009292047 2009-12-24
JP2009-292047 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077939A1 true WO2011077939A1 (en) 2011-06-30

Family

ID=44195474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071877 WO2011077939A1 (en) 2009-12-24 2010-12-07 Secondary battery having ion fluid

Country Status (2)

Country Link
JP (1) JPWO2011077939A1 (en)
WO (1) WO2011077939A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204133A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Nonaqueous electrolyte lithium ion battery having carbonaceous negative electrode
WO2013051302A1 (en) * 2011-10-05 2013-04-11 国立大学法人東北大学 Secondary battery
JP2013084548A (en) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology Lithium secondary battery
WO2013069597A1 (en) * 2011-11-10 2013-05-16 住友電気工業株式会社 Anode active material for sodium battery, anode, and sodium battery
KR20140142705A (en) * 2012-03-07 2014-12-12 메사추세츠 인스티튜트 오브 테크놀로지 Rechargeable lithium battery for wide temperature operation
WO2015146265A1 (en) * 2014-03-28 2015-10-01 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for fluoride ion battery and fluoride ion battery
WO2015163254A1 (en) * 2014-04-24 2015-10-29 三洋化成工業株式会社 Battery additive, electrode, electrolyte, and electrochemical device
US20160020462A1 (en) * 2014-07-16 2016-01-21 Prologium Holding Inc. Anode Electrode
KR20170057263A (en) * 2014-09-25 2017-05-24 바이에리셰 모토렌 베르케 악티엔게젤샤프트 Electrochemical cell, electrolyte suitable for the filling thereof, production method thereof, and method for the operation thereof
JP2019091525A (en) * 2017-11-10 2019-06-13 日立化成株式会社 Method for manufacturing lithium ion secondary battery
JP2021077608A (en) * 2019-11-13 2021-05-20 株式会社Gsユアサ Nonaqueous electrolyte, nonaqueous electrolyte power storage element and method for manufacturing nonaqueous electrolyte power storage element
CN113451054A (en) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 Lithium ion capacitor battery and preparation method thereof
WO2024028684A1 (en) * 2022-08-04 2024-02-08 株式会社半導体エネルギー研究所 Secondary battery
JP7510891B2 (en) 2021-02-03 2024-07-04 日本特殊陶業株式会社 Electrolyte composition, electrode layer, electrolyte layer and electricity storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071965A (en) * 2012-09-28 2014-04-21 Yamagata Univ Electrode and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034256A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2008156597A (en) * 2006-09-05 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Ionic liquid composition and method of using the same
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
WO2009142251A1 (en) * 2008-05-19 2009-11-26 日本電気株式会社 Secondary battery
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868350B2 (en) * 2005-11-15 2012-02-01 株式会社Gsユアサ Non-aqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034256A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2008156597A (en) * 2006-09-05 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Ionic liquid composition and method of using the same
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
WO2009142251A1 (en) * 2008-05-19 2009-11-26 日本電気株式会社 Secondary battery
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204133A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Nonaqueous electrolyte lithium ion battery having carbonaceous negative electrode
JP2013084548A (en) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JPWO2013051308A1 (en) * 2011-10-05 2015-07-30 国立大学法人東北大学 Secondary battery
WO2013051302A1 (en) * 2011-10-05 2013-04-11 国立大学法人東北大学 Secondary battery
WO2013051308A1 (en) * 2011-10-05 2013-04-11 国立大学法人東北大学 Secondary battery
US9583750B2 (en) 2011-10-05 2017-02-28 Tohoku University Secondary battery
JPWO2013069597A1 (en) * 2011-11-10 2015-04-02 住友電気工業株式会社 Negative electrode active material for sodium battery, negative electrode and sodium battery
WO2013069597A1 (en) * 2011-11-10 2013-05-16 住友電気工業株式会社 Anode active material for sodium battery, anode, and sodium battery
KR20140142705A (en) * 2012-03-07 2014-12-12 메사추세츠 인스티튜트 오브 테크놀로지 Rechargeable lithium battery for wide temperature operation
KR102084807B1 (en) * 2012-03-07 2020-03-04 메사추세츠 인스티튜트 오브 테크놀로지 Rechargeable lithium battery for wide temperature operation
US10305145B2 (en) 2014-03-28 2019-05-28 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for fluoride ion battery and fluoride ion battery
WO2015146265A1 (en) * 2014-03-28 2015-10-01 Toyota Jidosha Kabushiki Kaisha Liquid electrolyte for fluoride ion battery and fluoride ion battery
WO2015163254A1 (en) * 2014-04-24 2015-10-29 三洋化成工業株式会社 Battery additive, electrode, electrolyte, and electrochemical device
US20160020462A1 (en) * 2014-07-16 2016-01-21 Prologium Holding Inc. Anode Electrode
US10483534B2 (en) * 2014-07-16 2019-11-19 Prologium Holding Inc. Lithium metal anode electrode
JP2017528880A (en) * 2014-09-25 2017-09-28 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Electrochemical cell, electrolyte suitable for filling electrochemical cell, method for producing electrochemical cell, and method for operating electrochemical cell
KR20170057263A (en) * 2014-09-25 2017-05-24 바이에리셰 모토렌 베르케 악티엔게젤샤프트 Electrochemical cell, electrolyte suitable for the filling thereof, production method thereof, and method for the operation thereof
KR102495553B1 (en) * 2014-09-25 2023-02-02 바이에리셰 모토렌 베르케 악티엔게젤샤프트 Electrochemical cell, electrolyte suitable for the filling thereof, production method thereof, and method for the operation thereof
JP2019091525A (en) * 2017-11-10 2019-06-13 日立化成株式会社 Method for manufacturing lithium ion secondary battery
JP2021077608A (en) * 2019-11-13 2021-05-20 株式会社Gsユアサ Nonaqueous electrolyte, nonaqueous electrolyte power storage element and method for manufacturing nonaqueous electrolyte power storage element
JP7510891B2 (en) 2021-02-03 2024-07-04 日本特殊陶業株式会社 Electrolyte composition, electrode layer, electrolyte layer and electricity storage device
CN113451054A (en) * 2021-06-28 2021-09-28 鹏盛国能(深圳)新能源集团有限公司 Lithium ion capacitor battery and preparation method thereof
WO2024028684A1 (en) * 2022-08-04 2024-02-08 株式会社半導体エネルギー研究所 Secondary battery

Also Published As

Publication number Publication date
JPWO2011077939A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2011077939A1 (en) Secondary battery having ion fluid
JP4012174B2 (en) Lithium battery with efficient performance
CN113273000A (en) Rechargeable battery unit
TWI580097B (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
CN107251307B (en) Electrolyte composition comprising fluorinated carbonate and battery comprising the same
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JP2007165125A (en) Electrolyte for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2005085608A (en) Nonaqueous solvent-based secondary battery
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
EP3637522B1 (en) Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
JP2011129400A (en) Secondary battery having ionic liquid and method of manufacturing the same
JP5890860B2 (en) Lithium ion secondary battery and its electrolyte
CN107417530B (en) Bicarboxylate compound for nonaqueous electrolyte, nonaqueous electrolyte containing same and secondary battery
US20210119253A1 (en) Polymer electrolyte composition, and polymer secondary battery
KR20110023820A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US11296356B2 (en) Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
JP2004111272A (en) Lithium polymer battery and its manufacturing method
JP2012014973A (en) Electrolyte composition for secondary battery and secondary battery
JP4707312B2 (en) Non-aqueous solvent type secondary battery
JPH10334730A (en) Organic electrolyte and its use
JP2005100740A (en) Nonaqueous solvent secondary battery
JP2008146891A (en) Lithium secondary battery
WO2018192556A1 (en) Polymer electrolyte composition and polymer secondary battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
CN114222748A (en) Thermal runaway inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547449

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839173

Country of ref document: EP

Kind code of ref document: A1