JP2013084548A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2013084548A
JP2013084548A JP2012056160A JP2012056160A JP2013084548A JP 2013084548 A JP2013084548 A JP 2013084548A JP 2012056160 A JP2012056160 A JP 2012056160A JP 2012056160 A JP2012056160 A JP 2012056160A JP 2013084548 A JP2013084548 A JP 2013084548A
Authority
JP
Japan
Prior art keywords
salt
lifta
lithium
csfta
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012056160A
Other languages
Japanese (ja)
Other versions
JP5885199B2 (en
Inventor
Keigo Kubota
啓吾 窪田
Hajime Matsumoto
一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012056160A priority Critical patent/JP5885199B2/en
Publication of JP2013084548A publication Critical patent/JP2013084548A/en
Application granted granted Critical
Publication of JP5885199B2 publication Critical patent/JP5885199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a safe and practical charge/discharge capacity.SOLUTION: In the lithium secondary battery, a molten salt of a single body of a fluorosulfonyl(trifluoromethylsulfonyl)amide-based lithium salt (LiFTA) or a molten salt of a mixed salt is used as an electrolyte, the mixed salt being obtained by mixing an LiFTA with at least one salt selected from the group consisting of a fluorosulfonyl(trifluoromethylsulfonyl)amide-based cesium salt (CsFTA) and a fluorosulfonyl(trifluoromethylsulfonyl)amide-based potassium salt (KFTA).

Description

本発明は、リチウム二次電池(典型的にはリチウムイオン電池)に関し、詳しくは溶融塩電解質を用いた中温型リチウム二次電池に関する。   The present invention relates to a lithium secondary battery (typically a lithium ion battery), and more particularly to a medium temperature lithium secondary battery using a molten salt electrolyte.

非特許文献1は、アルカリ金属(フルオロスルフォニル)(トリフルオロメチルスルフォニル)アミド塩の合成と単塩の融点・熱分解温度について報告しているが、このアミド塩の混合塩の物性及びリチウムイオン電池の電解質として使用することについては開示していない。   Non-Patent Document 1 reports on the synthesis of alkali metal (fluorosulfonyl) (trifluoromethylsulfonyl) amide salt and the melting point and thermal decomposition temperature of the single salt. It is not disclosed that it is used as an electrolyte.

K. Kubota, T. Nohira, R. Hagiwara, H. Matsumoto, Chem. Lett., 39, 1303, (2010).K. Kubota, T. Nohira, R. Hagiwara, H. Matsumoto, Chem. Lett., 39, 1303, (2010).

本発明は、従来の蓄電デバイスの性能改善、または新たな電気化学デバイスの開発に資する電解質の開発を行うことを目的とする。   It is an object of the present invention to develop an electrolyte that contributes to improving the performance of a conventional power storage device or developing a new electrochemical device.

本発明は、以下のリチウム二次電池を提供するものである。
項1. フルオロスルホニル(トリフルオロメチルスルホニル)アミドのリチウム塩(LiFTA)単体の溶融塩、またはLiFTAにフルオロスルホニル(トリフルオロメチルスルホニル)アミドのセシウム塩(CsFTA)及びカリウム塩(KFTA)からなる群から選ばれる少なくとも1種の塩を混合した混合塩の溶融塩を電解質として使用してなるリチウム二次電池。
項2. 前記混合塩が、モル比でLiFTA:CsFTA/KFTA=0.2〜0.8:0.8〜0.2である、項1に記載のリチウム二次電池。
The present invention provides the following lithium secondary battery.
Item 1. Fluorosulfonyl (trifluoromethylsulfonyl) amide lithium salt (LiFTA) single molten salt or LiFTA selected from the group consisting of fluorosulfonyl (trifluoromethylsulfonyl) amide cesium salt (CsFTA) and potassium salt (KFTA) A lithium secondary battery using a molten salt of a mixed salt obtained by mixing at least one salt as an electrolyte.
Item 2. Item 2. The lithium secondary battery according to Item 1, wherein the mixed salt has a molar ratio of LiFTA: CsFTA / KFTA = 0.2 to 0.8: 0.8 to 0.2.

本発明は、LiFTAとCsFTA/KFTAを混合することで、低融点の溶融塩を作製した。特に、LiFTA がモル比で0.4である組成の塩は、融点33℃と非常に低融点であった。LiFTAとCsFTA/KFTAの混合塩を電解質に用いたリチウム二次電池を作成した。この溶融塩は5.1V広い電気化学窓を持ち、カソードリミットでリチウム金属が溶解析出する(図4)。この溶融塩を用いたLiCoO2正極, LiFePO4正極, 炭素負極の充放電試験の結果、良好な充放電曲線が得られた。以上の結果から、この溶融塩は、中温作動のリチウム二次電池用の電解質として有用である。 In the present invention, a low melting point molten salt was prepared by mixing LiFTA and CsFTA / KFTA. In particular, a salt having a composition with a molar ratio of LiFTA of 0.4 had a very low melting point of 33 ° C. A lithium secondary battery using LiFTA and CsFTA / KFTA mixed salt as an electrolyte was prepared. This molten salt has a 5.1V wide electrochemical window, and lithium metal dissolves and precipitates at the cathode limit (Fig. 4). As a result of a charge / discharge test of LiCoO 2 positive electrode, LiFePO 4 positive electrode, and carbon negative electrode using this molten salt, a good charge / discharge curve was obtained. From the above results, this molten salt is useful as an electrolyte for a lithium secondary battery operating at a medium temperature.

様々なリチウム塩の融点を示す。The melting points of various lithium salts are shown. LiFTAとCsFTAの混合塩について示差走査熱量分析(DSC)を行った結果、モル組成xLiFTA = 0.4 0の組成の塩が特に低い融点(33℃)を持つことが分かった。As a result of differential scanning calorimetry (DSC) on a mixed salt of LiFTA and CsFTA, it was found that a salt having a composition of molar composition x LiFTA = 0.40 has a particularly low melting point (33 ° C). LiFTAとCsFTAの混合塩について110℃で導電率とリチウムイオン輸率の測定を行った結果(図3(a))、xLiFTA = 0.40の組成の塩はリチウムイオンの導電率(導電率とリチウムイオン輸率の積)が近傍の組成の塩(xLiFTA = 0.20, 0.60)よりも高いことが分かった(図3(b))。As a result of conducting measurements of the conductivity and lithium ion transport number of LiFTA and CsFTA at 110 ° C (Fig. 3 (a)), the salt with the composition of x LiFTA = 0.40 is the lithium ion conductivity (conductivity and lithium ion). The product of the ion transport number) was found to be higher than the salt of the nearby composition (x LiFTA = 0.20, 0.60) (Fig. 3 (b)). 図2と図3の結果から、液相温度域が広く、リチウムイオン導電率の比較的高いxLiFTA = 0.40の混合塩についてサイクリックボルタンメトリーを行った。その結果、この溶融塩は5.1 Vと広い電気化学窓を持ち、カソードリミットでリチウム金属が溶解析出することが分かった。From the results shown in FIGS. 2 and 3, cyclic voltammetry was performed on a mixed salt of x LiFTA = 0.40 having a wide liquidus temperature range and relatively high lithium ion conductivity. As a result, it was found that this molten salt has a wide electrochemical window of 5.1 V, and lithium metal dissolves and precipitates at the cathode limit. LiFTA(0.40モル):CsFTA(0.60モル)の混合塩を電解質に用い、LiFePO4正極(図5(a)), LiCoO2正極(図5(b))についてそれぞれリチウム金属を対極に用いたハーフセルを作成し、サイクリックボルタンメトリーを行った。それぞれ3.4 V, 3.9 V付近で電極のリチウムイオンの脱離・挿入反応に起因する可逆な酸化還元電流が確認された。LiFTA (0.40 mol): A half cell using a mixed salt of CsFTA (0.60 mol) as the electrolyte and using a lithium metal as the counter electrode for the LiFePO 4 positive electrode (Fig. 5 (a)) and LiCoO 2 positive electrode (Fig. 5 (b)). And cyclic voltammetry was performed. Reversible redox currents due to the lithium ion desorption / insertion reactions were observed near 3.4 V and 3.9 V, respectively. LiFTA(0.40モル):CsFTA(0.60モル)の混合塩を電解質に用い、LiFePO4正極(図6(a)), LiCoO2正極(図6(b)), 炭素負極(図6(c))についてそれぞれリチウム金属を対極に用いたハーフセルを作成し、充放電試験を行った。その結果、それぞれ良好な充放電曲線が得られ、放電容量もそれぞれの電極の理論容量に近い値が得られた。LiFTA (0.40 mol): LiFePO 4 positive electrode (Fig. 6 (a)), LiCoO 2 positive electrode (Fig. 6 (b)), carbon negative electrode (Fig. 6 (c)) using mixed salt of CsFTA (0.60 mol) as electrolyte A half cell using a lithium metal as a counter electrode was prepared and a charge / discharge test was conducted. As a result, good charge / discharge curves were obtained, and the discharge capacity was close to the theoretical capacity of each electrode. エチレンカーボネート(EC)とジメチルカーボネート(DMC)混合溶媒にLiPF6を添加した(濃度1M)電解液と比較したところ、この溶融塩は導電率は低いが(図7(a))、LiFePO4正極を用いた充放電レート試験では65〜110℃の温度範囲で非常に高いレート特性を有することが分かった(図7(b))。Compared with the electrolyte solution in which LiPF 6 was added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (concentration 1M), this molten salt has low conductivity (Fig. 7 (a)), but the LiFePO 4 positive electrode In the charge / discharge rate test using, it was found that it has a very high rate characteristic in the temperature range of 65 to 110 ° C. (FIG. 7 (b)). LiFTAとCsFTAの混合塩と同様に、LiFTAとKFTAの混合塩においてもLiFePO4正極の充放電試験を行った結果、良好な充放電曲線と理論容量に近い放電容量が得られた。As with the LiFTA and CsFTA mixed salt, the LiFePO 4 positive electrode charge / discharge test was also performed on the LiFTA / KFTA mixed salt. As a result, a good charge / discharge curve and a discharge capacity close to the theoretical capacity were obtained. LiFTA単塩のも含めた140℃における輸率測定の結果、Li塩濃度が高い組成(0.9以上)ではリチウムイオン輸率が特異的に高く、LiFTA単塩の輸率は約0.9であった。As a result of transport number measurement at 140 ° C including LiFTA single salt, lithium ion transport number was specifically high in the composition with high Li salt concentration (0.9 or more), and the transport number of LiFTA single salt was about 0.9. LiFTA単塩の溶融塩においてCVを行った結果、145℃で5.0 Vと混合塩とほぼ同等の電気化学窓を有することが分かった。As a result of performing CV on the molten salt of LiFTA single salt, it was found that it has an electrochemical window of 5.0 V at 145 ° C, which is almost equivalent to the mixed salt. LiFTA単塩の溶融塩においてもLiFePO4正極の充放電試験を行った結果、150℃で良好な充放電曲線と理論容量に近い放電容量が得られた。As a result of the charge / discharge test of the LiFePO 4 positive electrode in the molten salt of LiFTA single salt, a good charge / discharge curve and a discharge capacity close to the theoretical capacity were obtained at 150 ° C.

本発明のリチウム二次電池は、LiFTA単体の溶融塩またはLiFTAとCsFTA/KFTAの混合塩を電解質として使用することが特徴である。ここで、「CsFTA/KFTA」とは、CsFTAとKFTAの少なくとも1種の塩を示す。本発明の混合塩は、LiFTAとCsFTAの混合塩、LiFTAとKFTAの混合塩、LiFTAとCsFTAとKFTAの3種の混合塩のいずれかを意味する。
前記混合塩は、モル比でLiFTA:CsFTA/KFTA=0.2〜0.8:0.8〜0.2であるものが好ましい。前記混合塩は、モル比でLiFTA:CsFTA/KFTA=0.2〜0.6:0.8〜0.4であるものがより好ましく、LiFTA:CsFTA/KFTA=0.3〜0.5:0.7〜0.5であるものがさらに好ましく、LiFTA:CsFTA/KFTA=約0.4:約0.6であるものが液相線温度及び固相線温度が低いために特に好ましい。
The lithium secondary battery of the present invention is characterized by using a molten salt of LiFTA alone or a mixed salt of LiFTA and CsFTA / KFTA as an electrolyte. Here, “CsFTA / KFTA” refers to at least one salt of CsFTA and KFTA. The mixed salt of the present invention means any one of a mixed salt of LiFTA and CsFTA, a mixed salt of LiFTA and KFTA, and a mixed salt of LiFTA, CsFTA, and KFTA.
The mixed salt preferably has a molar ratio of LiFTA: CsFTA / KFTA = 0.2 to 0.8: 0.8 to 0.2. The mixed salt is more preferably LiFTA: CsFTA / KFTA = 0.2 to 0.6: 0.8 to 0.4 by molar ratio, and LiFTA: CsFTA / KFTA = 0.3 to 0.5: More preferred is 0.7 to 0.5, and particularly preferred is LiFTA: CsFTA / KFTA = about 0.4: about 0.6 because the liquidus temperature and the solidus temperature are low.

本発明のリチウム二次電池には、さらに他のイオン液体、有機溶媒などを含んでいてもよい。   The lithium secondary battery of the present invention may further contain other ionic liquids, organic solvents, and the like.

本発明で使用するアニオンの構造を以下に示す。   The structure of the anion used in the present invention is shown below.

Figure 2013084548
Figure 2013084548

本発明のリチウム二次電池にはさらにLiCFSO、LiPF、LiClO、LiI、LiBF、LiBFCF、LiBF、LiCFCO、LiSCN、LiN(SOF)、LiN(SOCFなどの他のリチウム塩を配合してもよい。 The lithium secondary battery of the present invention further includes LiCF 3 SO 3 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiCF 3 CO 2 , LiSCN, LiN (SO 2 F ) 2 , LiN (SO 2 CF 3 ) 2 and other lithium salts may be blended.

本発明のリチウム二次電池は、前記混合塩の他に、正極、負極、セパレータなどを含む。   The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator and the like in addition to the mixed salt.

負極の主要構成成分である負極活物質としては、炭素質材料(例えば、石炭、コークス、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品及び黒鉛繊維)、及び、負極特性を向上させる目的でリンやホウ素を添加し改質を行った材料等が挙げられる。炭素質材料の中でも黒鉛は、金属リチウムに極めて近い作動電位を有するので電解質塩としてリチウム塩を採用した場合に自己放電を少なくでき、かつ充放電における不可逆容量を少なくできるので、負極活物質として好ましい。黒鉛結晶には良く知られている六方晶系とその他に菱面体晶系に属するものがある。特に、菱面体晶系の黒鉛は、電解液中の溶媒の選択性が広く、例えば、リチウムイオンと共挿入しやすい有機化合物や、比較的貴な電位で還元分解されやすい有機化合物を、非水電解質の構成材料として用いても、層剥離が抑制され優れた充放電効率を示すことから望ましい。   The negative electrode active material that is the main component of the negative electrode includes carbonaceous materials (for example, coal, coke, polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, organic carbonized products, natural graphite, artificial graphite, synthetic graphite, meso Carbon micro beads, organic graphitized products and graphite fibers), and materials modified by adding phosphorus or boron for the purpose of improving the negative electrode characteristics. Among carbonaceous materials, graphite has a working potential very close to that of metallic lithium. Therefore, when lithium salt is used as an electrolyte salt, self-discharge can be reduced, and irreversible capacity in charge / discharge can be reduced, which is preferable as a negative electrode active material. . Graphite crystals include the well-known hexagonal system and others belonging to the rhombohedral system. In particular, rhombohedral graphite has a wide selectivity for a solvent in an electrolytic solution. For example, an organic compound that easily co-inserts with lithium ions or an organic compound that is easily reductively decomposed at a relatively noble potential can be obtained using a non-aqueous solution. Even when it is used as a constituent material of an electrolyte, it is desirable because delamination is suppressed and excellent charge / discharge efficiency is exhibited.

正極としては、アルミニウム集電体に正極活物質を塗布して得られる正極を用いることが好ましい。正極活物質としては、リチウムイオン電池において用いられる公知の正極活物質を用いることができるが、特に、リチウム基準で3〜5Vの電位で作動する活物質を用いることが好ましい。正極活物質の具体例としては、高電圧を得るためには、リチウムコバルト酸化物(LiCoO、x=0.4〜1)、リチウムニッケル酸化物(LiNiO、x=0.3〜1)、リチウムマンガン酸化物(LiMnO、x=0〜1)、遷移金属置換リチウムマンガン酸化物(LiMn1−y、M=Co、Al、Ni、Cr又はBi、x=0〜1、y=0.01〜0.25)、リチウムニッケルコバルト酸化物(LiNi1−y−zCo、M=Al又はMn、x=0.3〜1、y=0.1〜0.4、z=0.01〜0.2)、オリビン相化合物LiMPO(M=Fe又はCo)等を用いることができる。これらの内で、リチウムマンガン酸化物は、スピネル相及び層状構造のいずれでも良く、オリビン相化合物LiMPOには、Mn、Ni等の遷移金属が少量含まれても良い。また、各酸化物は、異なる組成の酸化物の混合物であっても良い。 As the positive electrode, a positive electrode obtained by applying a positive electrode active material to an aluminum current collector is preferably used. As the positive electrode active material, a known positive electrode active material used in a lithium ion battery can be used. In particular, an active material that operates at a potential of 3 to 5 V based on lithium is preferably used. As a specific example of the positive electrode active material, in order to obtain a high voltage, lithium cobalt oxide (Li x CoO 2 , x = 0.4 to 1), lithium nickel oxide (Li x NiO 2 , x = 0. 3-1), lithium manganese oxide (Li x MnO 2 , x = 0 to 1), transition metal substituted lithium manganese oxide (Li x Mn 1- y My O 2 , M = Co, Al, Ni, Cr Or Bi, x = 0 to 1, y = 0.01 to 0.25), lithium nickel cobalt oxide (Li x Ni 1-yz Co y M z O 2 , M = Al or Mn, x = 0 .3-1, y = 0.1-0.4, z = 0.01-0.2), olivine phase compound LiMPO 4 (M = Fe or Co), etc. can be used. Among these, the lithium manganese oxide may have either a spinel phase or a layered structure, and the olivine phase compound LiMPO 4 may contain a small amount of transition metals such as Mn and Ni. Each oxide may be a mixture of oxides having different compositions.

また、高容量を得るためには、マンガン酸化物MnO(x=1.5〜2)、バナジウム酸化物Li(x=0〜3、y=1.5〜3.5)、これらの複合酸化物などを用いることが好ましい。正極活物質は、一種単独又は二種以上混合して用いることができる。 Further, in order to obtain a high capacity, manganese oxide MnO x (x = 1.5~2), vanadium oxide Li x V y O 5 (x = 0~3, y = 1.5~3.5 ) Or a composite oxide of these. A positive electrode active material can be used individually by 1 type or in mixture of 2 or more types.

正極は、常法に従って作製することができる。通常、上記した正極活物質に導電剤、バインダーなどを加え、この混合物を集電体上に塗布し、圧着することによって正極を製造することができる。導電剤、バインダー等は、公知の成分を使用できる。例えば、導電剤としては、アセチレンブラック、天然黒鉛、人造黒鉛、合成黒鉛などを使用できる。   The positive electrode can be produced according to a conventional method. Usually, a positive electrode can be produced by adding a conductive agent, a binder, and the like to the above-described positive electrode active material, applying the mixture onto a current collector, and pressing the mixture. Known components can be used for the conductive agent, binder and the like. For example, acetylene black, natural graphite, artificial graphite, synthetic graphite or the like can be used as the conductive agent.

本発明の混合塩電解質は、通常、セパレーター部分と電極の空隙部分に充填ないし含浸して用いられる。   The mixed salt electrolyte of the present invention is usually used by filling or impregnating the gap between the separator and the electrode.

上記した各構成要素は、コイン型、円筒型、ラミネートパッケージなどの公知の各種電池外装に封入され、密閉されて、リチウム二次電池とすることができる。   Each of the above-described constituent elements can be sealed in a well-known various battery exterior such as a coin type, a cylindrical type, and a laminate package to be a lithium secondary battery.

以下に、本発明を実施例及び比較例に基づき、さらに詳細に説明するが、本発明はこれらの記載により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to these descriptions.

参考例1
公知の様々なリチウムの融点を測定した。結果を図1に示す。図1に示すように、LiFTAは最も融点が低いリチウム塩であった。
Reference example 1
Various known lithium melting points were measured. The results are shown in FIG. As shown in FIG. 1, LiFTA was the lithium salt with the lowest melting point.

実施例1
LiFTAとCsFTAを種々のモル比で混合して、固相線温度及び液相線温度を示差走査熱量分析(DSC)により測定した。結果を図2に示す。なお、固相線温度は混合塩が溶け始める温度であり、融解開始点ともいう。液相線温度は、混合塩が溶け終わり、全て液体になる温度であり、融解終了点ともいう。固相線温度と液相線温度の間では、物体は固体と液体が混在している。
Example 1
LiFTA and CsFTA were mixed at various molar ratios, and the solidus temperature and liquidus temperature were measured by differential scanning calorimetry (DSC). The results are shown in FIG. The solidus temperature is a temperature at which the mixed salt starts to dissolve, and is also referred to as a melting start point. The liquidus temperature is a temperature at which the mixed salt is completely dissolved and becomes all liquid, and is also called a melting end point. Between the solidus temperature and the liquidus temperature, the object is a mixture of solid and liquid.

本発明の混合塩は、LiFTAと比較して融点が大きく低下することが明らかになった。   It has been clarified that the mixed salt of the present invention has a significantly lower melting point than LiFTA.

特に、モル組成xLiFTA = 0.40の組成の塩が低融点(33℃)を持つことが分かった。 In particular, it was found that a salt having a composition of molar composition x LiFTA = 0.40 has a low melting point (33 ° C).

実施例2
LiFTAとCsFTAの混合塩について110℃で導電率とリチウムイオン輸率の測定を行った結果(図3(a))、xLiFTA = 0.40の組成の塩はリチウムイオンの導電率(導電率とリチウムイオン輸率の積)が近傍の組成の塩(xLiFTA = 0.20, 0.60)よりも高いことが分かった(図3(b))
Example 2
As a result of conducting measurements of the conductivity and lithium ion transport number of LiFTA and CsFTA at 110 ° C (Fig. 3 (a)), the salt with the composition of x LiFTA = 0.40 is the lithium ion conductivity (conductivity and lithium ion). It was found that the product of the ion transport number was higher than the salt of the nearby composition (x LiFTA = 0.20, 0.60) (Fig. 3 (b))

実施例3
図2と図3の結果から、液相温度域が広く、リチウムイオン導電率の比較的高いxLiFTA = 0.40の混合塩についてサイクリックボルタンメトリーを行った(図4)。その結果、この溶融塩は5.1 Vと広い電気化学窓を持ち、カソードリミットでリチウム金属が溶解析出することが分かった。
Example 3
From the results in Fig. 2 and Fig. 3, cyclic voltammetry was performed on x LiFTA = 0.40 mixed salt with a wide liquidus temperature range and relatively high lithium ion conductivity (Fig. 4). As a result, it was found that this molten salt has a wide electrochemical window of 5.1 V, and lithium metal dissolves and precipitates at the cathode limit.

実施例4
LiFTA(0.40モル):CsFTA(0.60モル)の混合塩を電解質に用い、LiFePO4正極(図5(a)), LiCoO2正極(図5(b)))についてそれぞれリチウム金属を対極に用いたハーフセルを作成し、サイクリックボルタンメトリーを行った。それぞれの電位でリチウムイオンの脱離・挿入反応に起因する可逆な酸化還元電流が確認された。
Example 4
LiFTA (0.40 mol): Using a mixed salt of CsFTA (0.60 mol) as the electrolyte, the LiFePO4 positive electrode (Fig. 5 (a)) and the LiCoO2 positive electrode (Fig. 5 (b)) have half cells using lithium metal as the counter electrode. Prepared and subjected to cyclic voltammetry. Reversible redox currents due to lithium ion desorption / insertion reactions were confirmed at each potential.

実施例5
LiFTA(0.40モル):CsFTA(0.60モル)の混合塩を電解質に用い、LiFePO4正極(図6(a)), LiCoO2正極(図6(b)), 炭素負極(図6(c))についてそれぞれリチウム金属を対極に用いたハーフセルを作成し、充放電試験を行った。その結果、それぞれ良好な充放電曲線が得られ、放電容量もそれぞれの電極の理論容量に近い値が得られた。
Example 5
LiFTA (0.40 mol): LiFePO 4 positive electrode (Fig. 6 (a)), LiCoO 2 positive electrode (Fig. 6 (b)), carbon negative electrode (Fig. 6 (c)) using mixed salt of CsFTA (0.60 mol) as electrolyte A half cell using a lithium metal as a counter electrode was prepared and a charge / discharge test was conducted. As a result, good charge / discharge curves were obtained, and the discharge capacity was close to the theoretical capacity of each electrode.

実施例6
エチレンカーボネート(EC)とジメチルカーボネート(DMC)混合溶媒にLiPF6を添加した(濃度1M)従来の電解液と比較したところ、本発明の混合溶融塩は導電率は低いが(図7(a))、LiFePO4正極を用いた充放電レート試験では非常に高いレート特性を有することが分かった(図7(b))。
Example 6
Compared with a conventional electrolyte in which LiPF 6 was added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (concentration 1M), the mixed molten salt of the present invention has low conductivity (FIG. 7 (a) ), A charge / discharge rate test using a LiFePO 4 positive electrode was found to have very high rate characteristics (FIG. 7 (b)).

実施例7
LiFTAとCsFTAの混合塩と同様に、LiFTAとKFTAの混合塩においてもLiFePO4正極の充放電試験を行った結果、良好な充放電曲線と理論容量に近い放電容量が得られた(図8)。
Example 7
As with the LiFTA and CsFTA mixed salt, the LiFePO 4 cathode charge / discharge test was also performed on the LiFTA and KFTA mixed salt. As a result, a good charge / discharge curve and discharge capacity close to the theoretical capacity were obtained (Fig. 8). .

実施例8
より高温での電解液特性を調べるため、LiFTA単塩も含めた溶融塩について140℃で輸率測定を行った。LiFTA:CsFTA=0.2〜0.8:0.8〜0.2の混合塩は、図3の110℃における値とほぼ同じであったが、Li塩の割合が0.9以上の溶融塩ではリチウムイオン輸率が特異的に高く、LiFTA単塩の輸率は約0.9であった(図9)。
Example 8
In order to investigate the characteristics of the electrolyte at higher temperatures, the transport number was measured at 140 ° C for molten salts including LiFTA single salt. The mixed salt of LiFTA: CsFTA = 0.2 to 0.8: 0.8 to 0.2 was almost the same as the value at 110 ° C. in FIG. The lithium ion transport number was specifically high, and the transport number of LiFTA monosalt was about 0.9 (Fig. 9).

実施例9
LiFTA単塩の溶融塩においても同様の電気化学測定を行った。CVの結果、測定温度は145℃と混合塩よりも高温になるが、5.0 Vと混合塩とほぼ同等の電気化学窓を有することが分かった(図10)。
Example 9
The same electrochemical measurement was performed on the molten salt of LiFTA single salt. As a result of CV, the measurement temperature was 145 ° C, which was higher than that of the mixed salt, but 5.0 V was found to have an electrochemical window almost equivalent to the mixed salt (Fig. 10).

実施例10
LiFTA単塩においてもLiFePO4正極の充放電試験を行った結果、作動温度は150℃と混合塩よりも高温であるが、良好な充放電曲線と理論容量に近い放電容量が得られた(図11)。このことから溶媒・他のアルカリ金属等の添加物を一切含まないLiFTA塩単体のみからなる電解液は、150℃という高温環境下でも高容量の充放電が可能であることが確認された。図1〜8の混合溶融塩の実験は、このLiFTAの高い熱的・電気化学的安定性とLiFePO4正極に対する高い容量を保ちつつ、より低温まで作動温度を広げるための試みである。
Example 10
As a result of the LiFePO 4 positive electrode charge / discharge test for LiFTA single salt, the operating temperature was 150 ° C, which was higher than the mixed salt, but a good charge / discharge curve and a discharge capacity close to the theoretical capacity were obtained (Fig. 11). From this, it was confirmed that the electrolytic solution consisting only of the LiFTA salt alone containing no additives such as a solvent and other alkali metals can be charged and discharged with a high capacity even under a high temperature environment of 150 ° C. The mixed molten salt experiments in FIGS. 1-8 are attempts to extend the operating temperature to lower temperatures while maintaining the high thermal and electrochemical stability of this LiFTA and the high capacity for the LiFePO 4 cathode.

Claims (2)

フルオロスルホニル(トリフルオロメチルスルホニル)アミドのリチウム塩(LiFTA)単体の溶融塩、またはLiFTAにフルオロスルホニル(トリフルオロメチルスルホニル)アミドのセシウム塩(CsFTA)及びカリウム塩(KFTA)からなる群から選ばれる少なくとも1種の塩を混合した混合塩の溶融塩を電解質として使用してなるリチウム二次電池。 Fluorosulfonyl (trifluoromethylsulfonyl) amide lithium salt (LiFTA) single molten salt, or LiFTA selected from the group consisting of fluorosulfonyl (trifluoromethylsulfonyl) amide cesium salt (CsFTA) and potassium salt (KFTA) A lithium secondary battery using a molten salt of a mixed salt obtained by mixing at least one salt as an electrolyte. 前記混合塩が、モル比でLiFTA:CsFTA/KFTA=0.2〜0.8:0.8〜0.2である、請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the mixed salt has a molar ratio of LiFTA: CsFTA / KFTA = 0.2 to 0.8: 0.8 to 0.2.
JP2012056160A 2011-09-30 2012-03-13 Lithium secondary battery Active JP5885199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056160A JP5885199B2 (en) 2011-09-30 2012-03-13 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011216699 2011-09-30
JP2011216699 2011-09-30
JP2012056160A JP5885199B2 (en) 2011-09-30 2012-03-13 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013084548A true JP2013084548A (en) 2013-05-09
JP5885199B2 JP5885199B2 (en) 2016-03-15

Family

ID=48529535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056160A Active JP5885199B2 (en) 2011-09-30 2012-03-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5885199B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239006A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 Molten salt battery
EP4246642A1 (en) 2022-03-18 2023-09-20 Toyota Jidosha Kabushiki Kaisha Electrolytic material and secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101141A1 (en) * 2005-03-23 2006-09-28 Kyoto University Molten salt composition and use thereof
US20110111308A1 (en) * 2009-11-06 2011-05-12 Gm Global Technology Operations, Inc. Electrolyte for a lithium ion battery
WO2011077939A1 (en) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 Secondary battery having ion fluid
JP2011150958A (en) * 2010-01-25 2011-08-04 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
WO2011108716A1 (en) * 2010-03-05 2011-09-09 住友電気工業株式会社 Process for production of negative electrode precursor material for battery, negative electrode precursor material for battery, and battery
JP2012015057A (en) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd Molten salt battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101141A1 (en) * 2005-03-23 2006-09-28 Kyoto University Molten salt composition and use thereof
US20110111308A1 (en) * 2009-11-06 2011-05-12 Gm Global Technology Operations, Inc. Electrolyte for a lithium ion battery
WO2011077939A1 (en) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 Secondary battery having ion fluid
JP2011150958A (en) * 2010-01-25 2011-08-04 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
WO2011108716A1 (en) * 2010-03-05 2011-09-09 住友電気工業株式会社 Process for production of negative electrode precursor material for battery, negative electrode precursor material for battery, and battery
JP2012015057A (en) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd Molten salt battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239006A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 Molten salt battery
EP4246642A1 (en) 2022-03-18 2023-09-20 Toyota Jidosha Kabushiki Kaisha Electrolytic material and secondary battery
KR20230136547A (en) 2022-03-18 2023-09-26 도요타 지도샤(주) Electrolytic material and secondary battery

Also Published As

Publication number Publication date
JP5885199B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
Ao et al. Rechargeable aqueous hybrid ion batteries: developments and prospects
Lewandowski et al. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies
US10340550B2 (en) Lithium ion secondary cell
Zhu et al. Electrolyte additive combinations that enhance performance of high-capacity Li1. 2Ni0. 15Mn0. 55Co0. 1O2–graphite cells
JP6423453B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
US20210210795A1 (en) Materials to improve the performance of lithium and sodium batteries
Chen et al. Charge–discharge behavior of a Na2FeP2O7 positive electrode in an ionic liquid electrolyte between 253 and 363 K
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
US20150050561A1 (en) High voltage lithium ion batteries having fluorinated electrolytes and lithium-based additives
CN106463764B (en) Inorganic coordination polymers as gelling agent
KR20110102831A (en) Nonaqueous electrolyte secondary battery
CN104769757A (en) Positive electrode active material and hybrid ion battery
CN111542960A (en) Electrolyte composition comprising a combination of specific additives, its use as a non-aqueous liquid electrolyte in Na-ion batteries and Na-ion batteries comprising such an electrolyte composition
JPWO2010110290A1 (en) Non-aqueous electrolyte for lithium secondary battery
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
KR20150040975A (en) Negative-electrode active material for sodium-ion battery, and sodium-ion battery
US20230411698A1 (en) Electrolyte for na-ion battery
JP2009070636A (en) Nonaqueous electrolyte battery
WO2014170979A1 (en) Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
KR20230145581A (en) Ultra-high voltage rechargeable battery with sulfonamide electrolyte
Wu et al. Composition modulation of ionic liquid hybrid electrolyte for 5 V lithium-ion batteries
Zhang et al. Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery
KR102294200B1 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
JP6304733B2 (en) Lithium secondary battery using lithium molten salt as electrolyte
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5885199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250