JPH10334730A - Organic electrolyte and its use - Google Patents

Organic electrolyte and its use

Info

Publication number
JPH10334730A
JPH10334730A JP9221467A JP22146797A JPH10334730A JP H10334730 A JPH10334730 A JP H10334730A JP 9221467 A JP9221467 A JP 9221467A JP 22146797 A JP22146797 A JP 22146797A JP H10334730 A JPH10334730 A JP H10334730A
Authority
JP
Japan
Prior art keywords
electrolyte
organic
alumina
electrolytic solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9221467A
Other languages
Japanese (ja)
Inventor
Masataka Takeuchi
正隆 武内
Shiyuuichi Uchijiyou
秀一 内條
Takashi Okubo
隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9221467A priority Critical patent/JPH10334730A/en
Publication of JPH10334730A publication Critical patent/JPH10334730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a stable, high-performance, inexpensive electrolyte minimized in impurity and easy to manufacture and handle to provide a long-lived, highly reliable, and high-performance nonaqueous battery by adding an alumina fine particle having a high specific surface area of a specified value or more and a low water content of a specified value or less to an organic electrolyte. SOLUTION: This organic electrolyte comprises at least one each of alumina fine particles, organic solvents and electrolytic salts. The alumina particle has a BET specific surface area of 10 m<2> /g or more, a maximum diameter of 5 μm or less, and a water content (Karl Fischer titration value) of 3000 ppm or loess, and its addition amount is set to 0.05-30 wt.% of the whole electrolyte. The electrolyte preferably has a viscosity of 2000 cPs (shear rate of 20-400 s<-1> ) or less at room temperature, a moisture value of 200 ppm or less, and a free acid quantity (neutralization titration value) of 100 ppm or less. An organic solvent is formed of cyclic and/or chain carbonates, and the electrolyte is preferably formed of an alkali metal salt, quaternary ammonium salt, or transition metal salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高比表面積で低含
水量のアルミナ系微粒子を含む有機電解液及び該有機電
解液を用いた電池に関する。
The present invention relates to an organic electrolyte containing alumina-based fine particles having a high specific surface area and a low water content, and a battery using the organic electrolyte.

【0002】[0002]

【従来の技術】小型電池の中でリチウム一次電池やリチ
ウム(イオン)二次電池はその高エネルギー密度という
特徴から最近急速に小型携帯機器に搭載され、急激な伸
びを示している。例えば、LiCoO2 、LiNiO
2 、LiMnO2 、MoS2 等の金属酸化物、金属硫化
物を正極に用い、リチウム、リチウム合金、リチウムイ
オンを吸蔵放出できる炭素材料や無機化合物を負極に用
いたリチウム二次電池が多く研究されている。「ジャー
ナル・オブ・エレクトロケミカル・ソサイエティ (J. E
lectrochem. Soc.) 、第138巻(No.3)、665
頁、1991年」には、MnO2 あるいはNiO2 を正
極とする電池が報告されている。これらリチウム一次電
池やリチウム(イオン)二次電池の正負極以外の重要な
構成要素としては有機電解液及びセパレータが挙げられ
る。
2. Description of the Related Art Among small batteries, lithium primary batteries and lithium (ion) secondary batteries have recently been rapidly mounted on small portable devices due to their high energy density, and have shown rapid growth. For example, LiCoO 2 , LiNiO
2, LiMnO 2, MoS metal oxides such as 2, with a metal sulfide in the positive electrode, lithium, lithium alloy, a lithium secondary battery using a carbon material or an inorganic compound with lithium ion can occluding and releasing the negative electrode is much studied ing. "Journal of the Electrochemical Society (J. E
138 (No. 3), 665.
1991, a battery using MnO 2 or NiO 2 as a positive electrode is reported. Important components other than the positive and negative electrodes of these lithium primary batteries and lithium (ion) secondary batteries include organic electrolytes and separators.

【0003】セパレータにはポリオレフィン不織布やポ
リオレフィン製マイクロポーラスフィルムという多孔性
フィルムが用いられている。セパレータの機能としては
正極、負極を電子的に隔離し短絡させないことと、正、
負極間に介在する有機電解液中のイオン移動を妨げない
ことが要求されている。また前述した機能を有していれ
ばできるだけ薄い方が、電池全体のエネルギー密度が大
きくなり好ましい。これら機能を持たせるため現在のセ
パレータとしては多孔性の薄膜フィルムが用いられてい
る。
[0003] A porous film such as a polyolefin nonwoven fabric or a polyolefin microporous film is used as a separator. The function of the separator is to electrically isolate the positive electrode and the negative electrode so that they do not short-circuit,
It is required not to hinder the movement of ions in the organic electrolyte interposed between the negative electrodes. In addition, it is preferable that the battery has the above-described function, as thin as possible because the energy density of the whole battery is increased. To provide these functions, a porous thin film is currently used as a separator.

【0004】有機電解液はLiPF6 、LiBF4 、L
iAsF6 、LiCF3 SO3 等のフッ素系リチウム塩
を各種有機溶媒に溶解し、水分30ppm 以下、その他無
機不純物1ppm 以下の脱水精製した状態で用いられてい
る。有機電解液に用いられている有機溶媒としては、高
誘電率、高粘性のプロピレンカーボネート(PC)、エ
チレンカーボネート(EC)、γ−ブチルラクトン(γ
−BL)等の環状炭酸エステル類またはラクトン類と低
粘性のジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)等の鎖状炭酸エステル類または1,
2−ジメトキシエタン(DME)、ジグライム(D
G)、ジオキソラン(DOX)等のエーテル等の混合溶
媒が用いられている。特にこの中で最近上市され、高エ
ネルギー密度二次電池として今後大きな伸びが期待され
ているLiイオン電池には、EC+DECまたはEC+
DMC混合溶媒が黒鉛系負極、金属酸化物系正極に対す
る安定性に優れ、また分解電圧が高いという利点から主
に用いられている。しかしながらECは室温で固体であ
る為低温特性に問題があり、またDECやDMCは蒸気
圧が高く、電池作製工程上の問題や高温特性に問題があ
る。またPCは使用温度範囲が広いが、黒鉛系負極やL
i負極との反応性が高い為、単独では使用できないとい
う問題がある。
The organic electrolyte is LiPF 6 , LiBF 4 , L
Fluorine-based lithium salts such as iAsF 6 and LiCF 3 SO 3 are dissolved in various organic solvents, and are used after being dehydrated and purified to have a water content of 30 ppm or less and other inorganic impurities of 1 ppm or less. Examples of the organic solvent used in the organic electrolyte include propylene carbonate (PC), ethylene carbonate (EC), and γ-butyl lactone (γ) having high dielectric constant and high viscosity.
-BL) and low-viscosity chain carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC);
2-dimethoxyethane (DME), diglyme (D
A mixed solvent such as G) and ethers such as dioxolan (DOX) is used. In particular, Li + batteries recently launched on the market and expected to grow significantly as high energy density secondary batteries include EC + DEC or EC +
A DMC mixed solvent is mainly used because it has excellent stability to a graphite-based negative electrode and a metal oxide-based positive electrode, and has a high decomposition voltage. However, EC is a solid at room temperature and therefore has a problem in low-temperature characteristics. DEC and DMC have a high vapor pressure, and thus have problems in the battery manufacturing process and high-temperature characteristics. PC has a wide operating temperature range.
There is a problem that it cannot be used alone because it has high reactivity with the negative electrode.

【0005】電解質塩としては、フッ素系アニオンを有
するリチウム塩が有機溶媒中での解離度が大きく、高イ
オン伝導度となること、また電気化学的安定性が良好で
あるという理由から好んで用いられており、LiPF6
は特性的に特に優れている。しかしながらこれらのフッ
素系リチウム塩は合成時に強酸であるHF及びその誘導
体を生成し、残存しており、電解液中に不純物として放
出する。また、熱や水に対して不安定で、分解しHF及
びその誘導体が生成する。HF及びその誘導体はLiや
炭素材料負極、酸化物正極と反応し、LiF被膜や水素
ガスを発生する為、電池の劣化を引起こすばかりでな
く、他の溶媒や封止材料等の有機高分子材料を劣化さ
せ、また電池缶等の金属材料を腐食する。従って、当該
業者は電解液製造中のHF発生の防止、調製後の保管方
法等に多大な労力を払っている。
As an electrolyte salt, a lithium salt having a fluorine-based anion is preferably used because it has a high degree of dissociation in an organic solvent, has a high ionic conductivity, and has good electrochemical stability. LiPF 6
Is particularly excellent in characteristics. However, these fluorine-based lithium salts generate HF and its derivatives which are strong acids at the time of synthesis, remain, and release them as impurities into the electrolytic solution. It is unstable to heat and water and decomposes to produce HF and its derivatives. HF and its derivatives react with Li and carbon material anodes and oxide cathodes to generate LiF coatings and hydrogen gas, not only causing battery deterioration, but also organic polymers such as other solvents and sealing materials. Deteriorates materials and corrodes metal materials such as battery cans. Therefore, the trader pays a great deal of effort on prevention of HF generation during the production of the electrolyte, storage method after preparation, and the like.

【0006】一方、これら電解液は流動性、揮発性を有
しているため、電池として応用する場合、漏液や液がれ
等の問題があり、それらを解決するためや、また前述し
た取扱い性を改善するために、電解液の高分子化または
ゲル化が最近活発に行なわれているが、イオン伝導度等
の特性でまだ電解液を越えるものは得られていない。特
開平3−98263号公報には有機電解液にシリカやア
ルミナ、チタニア等の粉末状の不活性で非電導性固体を
多量に添加し、流動性をなくすことにより、前記電解液
の問題点を解決する試みがなされているが、電解液中の
水分等の不純物除去については何等検討はなされていな
い。1997年3月電気化学協会春期年会(神奈川大
学)1A21には、LiClO4 系有機電解液にα−ア
ルミナを多量に添加した場合の物性が報告されている。
On the other hand, since these electrolytes have fluidity and volatility, when applied as a battery, there are problems such as liquid leakage and liquid leakage. In order to improve the property, the polymerization or gelation of the electrolytic solution has been actively carried out recently, but there is still no ionic conductivity or the like exceeding the electrolytic solution. Japanese Patent Application Laid-Open No. 3-98263 discloses a problem of the electrolytic solution by adding a large amount of a powdery inert, non-conductive solid such as silica, alumina, or titania to an organic electrolytic solution to eliminate fluidity. Attempts have been made to solve the problem, but no study has been made on the removal of impurities such as moisture in the electrolytic solution. In March 1997, the Electrochemical Society of Japan Spring Meeting (Kanagawa University) 1A21 reported physical properties when a large amount of α-alumina was added to a LiClO 4 -based organic electrolyte.

【0007】[0007]

【発明が解決しようとする課題】本発明は、不純物が少
なく、製造、取扱いが簡便で、安定で高性能、低コスト
な電気化学素子用有機電解液を提供することを目的とす
る。また、長寿命で信頼性に優れた高性能な非水電池を
得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stable, high-performance, and low-cost organic electrolyte solution for an electrochemical device, which has a small amount of impurities, is easy to manufacture and handle. Another object of the present invention is to obtain a high-performance non-aqueous battery having a long life and excellent reliability.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題に
鑑み鋭意検討した結果、有機電解液に高比表面積で低含
水量の特定のアルミナ微粒子を添加することにより、電
解液中の不純物を低減でき安定性を向上できることを見
出した。また、該電解液を用いた電気化学素子内の不純
物も吸着できることを見出した。また、特にアルミナ表
面とアニオンとの相互作用により、電解液中のカチオン
移動度を向上させることができることを見出した。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above problems, and as a result, by adding specific alumina fine particles having a high specific surface area and a low water content to an organic electrolytic solution, impurities in the electrolytic solution have been obtained. And improved stability. Further, they have found that impurities in an electrochemical element using the electrolytic solution can also be adsorbed. In addition, they have found that the cation mobility in the electrolytic solution can be improved particularly by the interaction between the alumina surface and the anion.

【0009】即ち本発明は (1) 少なくとも一種のアルミナ系微粒子、少なくと
も一種の有機溶媒、少なくとも一種の電解質塩を含む有
機電解液であって、アルミナ系微粒子がBET 比表面積1
0m2 /g以上、最大径が5μm 以下、含水量(カール
フィッシャー滴定値)が3000ppm 以下であり、その
添加量が電解液全体の0.05〜30wt%である有機
電解液。 (2) 電解液の粘度が室温で2000cps(ずり速
度20〜400s-1)以下で、電解液の水分値(カール
フィッシャー滴定値)が200ppm 以下で、電解液の遊
離酸量(中和滴定値)が100ppm 以下である前記
(1)記載の有機電解液。
That is, the present invention provides (1) an organic electrolytic solution containing at least one kind of alumina fine particles, at least one kind of organic solvent, and at least one kind of electrolyte salt, wherein the alumina type fine particles have a BET specific surface area of 1
An organic electrolyte having 0 m 2 / g or more, a maximum diameter of 5 μm or less, a water content (Karl Fischer titration value) of 3000 ppm or less, and an addition amount of 0.05 to 30 wt% of the whole electrolyte. (2) At room temperature, the viscosity of the electrolytic solution is 2000 cps or less (shear speed: 20 to 400 s -1 ), the moisture value of the electrolytic solution (Karl Fischer titration value) is 200 ppm or less, and the free acid amount of the electrolytic solution (neutralization titration value). ) Is 100 ppm or less.

【0010】(3) アルミナ系微粒子が600〜12
00℃で熱処理されたγ−アルミナであることを特徴と
する前記(1)または(2)記載の有機電解液。 (4) アルミナ系微粒子が600〜1200℃で熱処
理されたアルカリ金属/アルミニウム複合酸化物である
ことを特徴とする前記(1)または(2)記載の有機電
解液。 (5) アルミナ系微粒子が結晶粒子径0.1μm 以下
の一次粒子の凝集体であって、該凝集体の大きさが0.
01〜5μm であることを特徴とする前記(1)〜
(4)のいずれかに記載の有機電解液。
(3) 600 to 12 alumina-based fine particles
The organic electrolyte according to the above (1) or (2), which is γ-alumina heat-treated at 00 ° C. (4) The organic electrolytic solution as described in (1) or (2) above, wherein the alumina-based fine particles are an alkali metal / aluminum composite oxide heat-treated at 600 to 1200 ° C. (5) The alumina-based fine particles are aggregates of primary particles having a crystal particle diameter of 0.1 μm or less, and the size of the aggregates is 0.1 μm.
(1) to (5) above, wherein
The organic electrolytic solution according to any one of (4).

【0011】(6) 電解質塩がアルカリ金属塩、4級
アンモニウム塩、4級ホスホニウム塩、または遷移金属
塩から選ばれた少なくとも一種である前記(1)〜
(5)のいずれか記載の有機電解液。 (7) 少なくとも一種の電解質塩がLiPF6 及び/
またはLiBF4 及び/またはLiN(CF3 SO2
2 であることを特徴とする前記(6)記載の有機電解
液。 (8) 少なくとも一種の有機溶媒が環状及び/または
鎖状炭酸エステル類であることを特徴とする前記(1)
〜(7)のいずれかに記載の有機電解液。
(6) The above-mentioned (1) to (1), wherein the electrolyte salt is at least one selected from alkali metal salts, quaternary ammonium salts, quaternary phosphonium salts, and transition metal salts.
The organic electrolytic solution according to any one of (5). (7) At least one electrolyte salt is LiPF 6 and / or
Or LiBF 4 and / or LiN (CF 3 SO 2 )
2. The organic electrolytic solution according to the above (6), which is 2 . (8) The above (1), wherein the at least one organic solvent is a cyclic and / or chain carbonate.
The organic electrolytic solution according to any one of (1) to (7).

【0012】(9) 前記(1)〜(8)記載の少なく
とも一種の有機電解液を用いることを特徴とする電池。 (10) 負極活物質としてリチウム、リチウム合金、
またはリチウムイオンを吸蔵放出できる炭素材料、無機
酸化物もしくは無機カルコゲナイドから選ばれる少なく
とも一つの材料を用いることを特徴とする前記(9)記
載のリチウム系二次電池。 (11) 正極活物質として導電性高分子、金属酸化
物、金属硫化物及び/または炭素材料からなる材料を用
いることを特徴とする前記(10)記載のリチウム系二
次電池。
(9) A battery using at least one kind of the organic electrolyte described in (1) to (8). (10) Lithium, lithium alloy,
Alternatively, the lithium secondary battery according to the above (9), wherein at least one material selected from a carbon material capable of inserting and extracting lithium ions, an inorganic oxide and an inorganic chalcogenide is used. (11) The lithium secondary battery according to (10), wherein a material composed of a conductive polymer, a metal oxide, a metal sulfide, and / or a carbon material is used as the positive electrode active material.

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。 [1]有機電解液 本発明の有機電解液は、少なくとも一種のアルミナ系微
粒子、少なくとも一種の有機溶媒、少なくとも一種の電
解質塩を含む。以下各成分について説明する。 (1−a)有機溶媒 本発明の有機電解液に用いる有機溶媒としては、電解質
塩の溶解性が高く、使用する電気化学素子に悪影響を与
えないものが良い。即ち、誘電率が大きく、電気化学的
安定範囲が広い化合物が適している。そのような溶媒と
しては、エチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネート、ビスメトキシエチルカーボネ
ート、エチルメトキシエチルカーボネート等の環状およ
び/または鎖状カーボネート類、テトラヒドロフラン、
ジオキソラン、1,2−ジメトキシエタン等の環状およ
び/または鎖状エーテル類、トリエチレングリコールジ
メチルエーテル、テトラエチレングリコールジメチルエ
ーテル等のオリゴエーテル類、γ−ブチルラクトン等の
ラクトン類、アセトニトリル、ベンゾニトリル、トルニ
トリル等の脂肪族および/または芳香族ニトリル類、ジ
メチルホルムアミド、ジメチルスルホキシド、N−メチ
ルピロリドン、N−ビニルピロリドン等の含窒素化合
物、スルホラン等の硫黄化合物、リン酸エステル類等が
挙げられる。この中で、カーボネート類、エーテル類、
オリゴエーテル類、ラクトン類が好ましく、カーボネー
ト類が特に好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. [1] Organic Electrolyte Solution The organic electrolyte solution of the present invention contains at least one kind of alumina-based fine particles, at least one kind of organic solvent, and at least one kind of electrolyte salt. Hereinafter, each component will be described. (1-a) Organic Solvent As the organic solvent used in the organic electrolytic solution of the present invention, those having high solubility of the electrolyte salt and not adversely affecting the electrochemical element to be used are preferable. That is, a compound having a large dielectric constant and a wide electrochemical stability range is suitable. Such solvents include cyclic and / or chain carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, bismethoxyethyl carbonate, ethylmethoxyethyl carbonate, tetrahydrofuran,
Cyclic and / or chain ethers such as dioxolane and 1,2-dimethoxyethane; oligoethers such as triethylene glycol dimethyl ether and tetraethylene glycol dimethyl ether; lactones such as γ-butyl lactone; acetonitrile, benzonitrile and tolunitrile And nitrogen-containing compounds such as dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, and N-vinylpyrrolidone; sulfur compounds such as sulfolane; and phosphoric acid esters. Among them, carbonates, ethers,
Oligoethers and lactones are preferred, and carbonates are particularly preferred.

【0014】(1−b)電解質塩 本発明の有機電解液に用いる電解質塩の複合比は、溶媒
の重量に対し、1〜50重量%が好ましく、5〜30重
量%が特に好ましい。複合に用いる電解質塩が50重量
%以上の比率で存在すると、溶解しにくく、また粘度が
増大し、イオンの移動が大きく阻害され、逆に1重量%
以下の比率では、イオンの絶対量が不足となってイオン
伝導度が小さくなる。
(1-b) Electrolyte salt The composite ratio of the electrolyte salt used in the organic electrolyte of the present invention is preferably from 1 to 50% by weight, particularly preferably from 5 to 30% by weight, based on the weight of the solvent. If the electrolyte salt used in the composite is present at a ratio of 50% by weight or more, it is difficult to dissolve, the viscosity increases, and the movement of ions is greatly inhibited.
At the following ratio, the absolute amount of ions becomes insufficient and the ionic conductivity decreases.

【0015】複合に用いる電解質塩の種類は特に限定さ
れるものではなく、電池等の電気化学素子でキャリアー
としたいイオンを含んだ電解質塩を用いればよいが、有
機電解液中での解離定数が大きいことが望ましく、Li
CF3 SO3 、LiN(CF3 SO22 、LiPF
6 、LiClO4 、LiI、LiBF4 、LiSCN、
LiAsF6 、NaCF3 SO3 、NaPF6 、NaC
lO4 、NaI、NaBF4 、NaAsF6 、KCF3
SO3 、KPF6 、KI等のアルカリ金属塩、(CH
34 NBF4 等の4級アンモニウム塩、(CH34
PBF4 等の4級ホスホニウム塩、AgClO4 等の遷
移金属塩が推奨される。
The type of electrolyte salt used for the composite is not particularly limited, and an electrolyte salt containing ions to be used as a carrier in an electrochemical element such as a battery may be used. Desirably large, Li
CF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiPF
6 , LiClO 4 , LiI, LiBF 4 , LiSCN,
LiAsF 6 , NaCF 3 SO 3 , NaPF 6 , NaC
10 4 , NaI, NaBF 4 , NaAsF 6 , KCF 3
Alkali metal salts such as SO 3 , KPF 6 and KI;
3 ) 4 Quaternary ammonium salts such as 4 NBF 4 , (CH 3 ) 4
Quaternary phosphonium salts such as PBF 4 and transition metal salts such as AgClO 4 are recommended.

【0016】本発明の電池に用いる負極活物質として
は、後述のように、アルカリ金属、アルカリ金属合金、
炭素材料のようなアルカリ金属イオンをキャリアーとす
る低酸化還元電位のものを用いることにより、高電圧、
高容量の電池が得られるので好ましい。従って、かかる
負極を用い、アルカリ金属イオンをキャリアーとする電
池に用いる場合の高分子固体電解質中の電解質としては
アルカリ金属塩が必要となる。このアルカリ金属塩の種
類としては、例えば、LiCF3 SO3 、LiPF6
LiClO4 、LiBF4 、LiSCN、LiAsF
6 、LiN(CF3SO22 、NaCF3 SO3 、L
iI、NaPF6 、NaClO4 、NaI、NaBF
4 、NaAsF6 、KCF3 SO3 、KPF6 、KI等
を挙げることができる。負極の中で、アルカリ金属とし
ては、リチウムまたはリチウム合金を用いた場合が、高
電圧、高容量である点から最も好ましく、従って電解質
塩もリチウム塩が用いられる。その中で、LiPF6
LiCF3 SO3 、LiBF4、LiAsF6 、LiN
(CF3 SO22 等のフッ素系アニオンを含むものが
高解離度、高イオン伝導度、電気化学的安定領域が広い
という点で好ましく、LiPF6 が特に好ましい。
As the negative electrode active material used in the battery of the present invention, an alkali metal, an alkali metal alloy,
By using a material having a low oxidation-reduction potential using an alkali metal ion such as a carbon material as a carrier, a high voltage,
This is preferable because a high-capacity battery can be obtained. Therefore, when such a negative electrode is used in a battery using an alkali metal ion as a carrier, an alkali metal salt is required as an electrolyte in the solid polymer electrolyte. Examples of the kind of the alkali metal salt include LiCF 3 SO 3 , LiPF 6 ,
LiClO 4 , LiBF 4 , LiSCN, LiAsF
6 , LiN (CF 3 SO 2 ) 2 , NaCF 3 SO 3 , L
iI, NaPF 6 , NaClO 4 , NaI, NaBF
4 , NaAsF 6 , KCF 3 SO 3 , KPF 6 , KI and the like. Among the negative electrodes, the use of lithium or a lithium alloy as the alkali metal is most preferable in terms of high voltage and high capacity. Therefore, a lithium salt is also used as the electrolyte salt. Among them, LiPF 6 ,
LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN
Those containing a fluorine-based anion such as (CF 3 SO 2 ) 2 are preferable in terms of high degree of dissociation, high ionic conductivity, and a wide electrochemical stability region, and LiPF 6 is particularly preferable.

【0017】(1−c)アルミナ系微粒子 本発明の有機電解液にはアルミナ系微粒子が添加されて
いることを特徴とする。アルミナ系微粒子の表面は特に
電解液中のアニオンとの親和性が高く、イオン伝導度、
特にカチオンの束縛を減少させることによりカチオンの
移動度を向上させることができるので、できるだけ比表
面積が高く、表面の吸着水を除去した状態で使用するこ
とが好ましい。また添加されるアルミナ系微粒子を高比
表面積で吸着水が低減された表面活性の高いものとする
ことにより、電解液内のみではなく、電気化学素子内の
不純物、特にリチウム電池等の非水系で用いる場合には
水分や遊離酸を非常によく吸着することができ、封止材
料や他の電池材料の劣化を低減することに大きな効果を
発揮でき、結果として電池の寿命を改善できる。
(1-c) Alumina-based fine particles The organic electrolytic solution of the present invention is characterized in that alumina-based fine particles are added. The surface of the alumina-based fine particles has particularly high affinity for anions in the electrolytic solution, and has high ionic conductivity,
In particular, since the mobility of cations can be improved by reducing the binding of cations, it is preferable to use the cations in a state where the specific surface area is as high as possible and water adsorbed on the surface is removed. In addition, by adding alumina-based fine particles having a high specific surface area and a high surface activity with reduced adsorbed water, not only in the electrolytic solution but also in impurities in the electrochemical element, particularly in non-aqueous systems such as lithium batteries. When used, water and free acid can be adsorbed very well, and a great effect can be exhibited in reducing deterioration of the sealing material and other battery materials, and as a result, the life of the battery can be improved.

【0018】無機微粒子の中でアルミナ系微粒子はシリ
カ、チタニア、マグネシア等に比べ、リチウムとの反応
性が小さく、アニオンとの相互作用が大きく、また触媒
活性もなく、電気化学的安定性も良好で非電子伝導性で
ある為、本発明の有機電解液に添加する微粒子としては
最も適している。
Among the inorganic fine particles, alumina-based fine particles have lower reactivity with lithium, higher interaction with anions, lower catalytic activity, and better electrochemical stability than silica, titania, magnesia and the like. And is non-electron conductive, so that it is most suitable as fine particles to be added to the organic electrolyte solution of the present invention.

【0019】またアルミナ系微粒子表面は特にフッ素系
化合物との親和性が高いため、LiPF6 等のLiイオ
ン電池に使用されるフッ素系アニオンがアルミナ系微粒
子表面に特異的に吸着することにより、リチウムカチオ
ンが動きやすくなり、結果として系内のカチオン輸率を
向上させることができ、電池の電流特性を改善できる。
またLiイオン電池等のLi電池にはその解離度が高
く、高イオン伝導度となるLiPF6 ,LiBF4 ,L
iN(CF3 SO32 等のフッ素系電解質塩が好んで
用いられているが、これらは電解液中で分解しやすく、
遊離酸としてHFが多量に放出され、電極や電解液、各
種高分子、金属を劣化させる。一方、本発明のアルミナ
系微粒子が添加された有機電解液では、HFは殆ど検出
されず、他の電池構成材料の寿命が向上する。
Since the surface of the alumina-based fine particles has a particularly high affinity for the fluorine-based compound, the fluorine-based anion used in a Li-ion battery such as LiPF 6 is specifically adsorbed on the surface of the alumina-based fine particles, and thus the lithium-based particles are lithium ion. The cations move easily, and as a result, the cation transport number in the system can be improved, and the current characteristics of the battery can be improved.
Li batteries such as Li ion batteries have a high degree of dissociation and high ion conductivity, such as LiPF 6 , LiBF 4 , L
Fluorinated electrolyte salts such as iN (CF 3 SO 3 ) 2 are preferably used, but they are easily decomposed in the electrolytic solution.
A large amount of HF is released as a free acid, deteriorating electrodes, electrolytes, various polymers, and metals. On the other hand, in the organic electrolytic solution to which the alumina-based fine particles of the present invention are added, HF is hardly detected, and the life of other battery constituent materials is improved.

【0020】本発明のアルミナ系微粒子の具体例として
は、固相法、気相法等の種々の製法で得られるα、β、
γ型Al23 微粒子や、これらとLi塩等の各種無機
物とを反応させたLiAlO2 等のアルミナ系複合酸化
物微粒子が挙げられる。この中で比表面積が大きく、表
面活性の大きいデグサ社製の商品名アルミニウムオキサ
イド−C、昭和電工製UA−5805等のγ型Al2
3 微粒子やLiAlO2 が、本発明の有機電解液には適
している。
Specific examples of the alumina-based fine particles of the present invention include α, β, and α obtained by various production methods such as a solid phase method and a gas phase method.
Examples include γ-type Al 2 O 3 fine particles and alumina-based composite oxide fine particles such as LiAlO 2 obtained by reacting these with various inorganic substances such as Li salts. Among them, γ-type Al 2 O such as aluminum oxide-C (trade name, manufactured by Degussa Co., Ltd.) and UA-5805 manufactured by Showa Denko Co., Ltd.
3 Fine particles and LiAlO 2 are suitable for the organic electrolyte of the present invention.

【0021】電解液のイオン伝導性、イオン移動度を増
加させ、さらに不純物の吸着を行うという目的で、アル
ミナ系微粒子の比表面積はできるだけ大きいことが好ま
しく、BET法で10m2/g以上のものが用いられ、好ま
しくは50m2/g以上のものが用いられる。また、大きさ
は小さい方が好ましく、5μm 以下、望ましくは1μm
以下、より望ましくは0.1μm 以下のものが用いられ
る。また、形状としては球形、卵形、立方体状、直方体
状、円筒ないし棒状等の種々の形状のものを用いること
ができる。但し、電解液の不純物除去効率、イオン伝導
度等の観点から、アルミナ系微粒子は結晶粒子が凝集し
た二次粒子構造をもつものが好ましく、結晶粒子径が
0.05μm 以下で凝集体の大きさが0.01μm 〜5
μm のものが特に好ましい。
The ionic conductivity of the electrolyte, increasing the ion mobility, further the purpose of performing the adsorption of impurities, it is preferable specific surface area of the alumina particles is as large as possible, not less than 10 m 2 / g by the BET method And preferably 50 m 2 / g or more. Also, the size is preferably smaller, 5 μm or less, preferably 1 μm.
Below, more preferably, those having a size of 0.1 μm or less are used. In addition, various shapes such as a sphere, an egg, a cube, a rectangular parallelepiped, a cylinder or a rod can be used. However, from the viewpoints of the efficiency of removing impurities from the electrolyte, the ion conductivity, and the like, the alumina-based fine particles preferably have a secondary particle structure in which crystal particles are aggregated. Is 0.01 μm to 5
μm is particularly preferred.

【0022】アルミナ系微粒子の添加量は多すぎると有
機電解液の粘度を上昇させ、またイオン伝導性を低下さ
せるという問題を生じる。従って好ましい添加量として
は、有機電解液に対して0.05〜30wt%以下であ
り、0.5から20wt%の範囲が特に好ましい。
If the amount of the alumina-based fine particles is too large, there arises a problem that the viscosity of the organic electrolytic solution is increased and the ionic conductivity is lowered. Therefore, the preferable addition amount is 0.05 to 30 wt% or less, particularly preferably 0.5 to 20 wt% based on the organic electrolyte.

【0023】本発明のアルミナ系微粒子は有機電解液に
添加する前に熱処理されることが好ましい。熱処理する
ことにより、アルミナ系微粒子の表面吸着水を低減し、
他材料に拡散する遊離水分を抑えるばかりでなく、逆に
他材料の不純物を吸着することができ、系内の安定性を
向上できる。また、適度に熱処理することにより、部分
的な焼結を引き起こし、二次粒子化にも効果がある。熱
処理の温度、時間は用いるアルミナ系微粒子の形状や種
類によって異なるが、200〜1200℃の範囲で2時
間〜300時間程度行えば良く、温度としては600〜
1200℃の範囲が特に好ましい。熱処理温度はできる
だけ高い方が好ましいが、1200℃を越えると、アル
ミナ系微粒子の焼結が進み、また表面の活性も低下する
ので好ましくない。また、熱処理時の雰囲気は減圧、空
気中、不活性雰囲気中と特に限定されないが、熱処理後
は水分の再吸着等を防止する為、露点−30℃以下の雰
囲気で取扱うことが必要で、露点−50℃以下が特に好
ましい。このようにして熱処理したアルミナ系微粒子の
含水量をカールフィッシャー法で定量した場合、300
0ppm 以下の値になることが必要である。
The alumina-based fine particles of the present invention are preferably heat-treated before being added to the organic electrolyte. By heat treatment, water adsorbed on the surface of alumina-based particles is reduced,
In addition to suppressing free moisture diffusing into other materials, it is also possible to adsorb impurities of other materials and to improve stability in the system. In addition, moderate heat treatment causes partial sintering, which is also effective in forming secondary particles. The temperature and time of the heat treatment vary depending on the shape and type of the alumina-based fine particles to be used, but may be performed in the range of 200 to 1200 ° C. for about 2 to 300 hours, and the temperature is 600 to
A range of 1200 ° C. is particularly preferred. The heat treatment temperature is preferably as high as possible. However, if it exceeds 1200 ° C., sintering of the alumina-based fine particles proceeds and the activity of the surface is lowered, which is not preferable. The atmosphere during the heat treatment is not particularly limited to reduced pressure, in air, or in an inert atmosphere. However, after the heat treatment, it is necessary to handle in an atmosphere having a dew point of −30 ° C. or less to prevent re-adsorption of moisture. Particularly preferred is -50 ° C or lower. When the water content of the alumina-based fine particles thus heat-treated was determined by the Karl Fischer method,
It must be below 0 ppm.

【0024】(1−d)電解液の含水量等 上記熱処理したアルミナ系微粒子を用いることにより、
本発明の有機電解液の含水量が200ppm 以下(カール
フィッシャー滴定値)で、遊離酸量が100ppm 以下
(中和滴定値)となり、好ましくは含水量が50ppm 以
下(カールフィッシャー滴定値)で、遊離酸量が30pp
m 以下(中和滴定値)となり、Liイオン電池等の非水
系電池に好適な電解液とすることができる。
(1-d) Water content of electrolyte solution, etc.
When the water content of the organic electrolytic solution of the present invention is 200 ppm or less (Karl Fischer titration value) and the free acid content is 100 ppm or less (neutralization titration value), preferably the water content is 50 ppm or less (Karl Fischer titration value). Acid amount is 30pp
m (neutralization titration value) or less, and can be used as an electrolyte suitable for non-aqueous batteries such as Li-ion batteries.

【0025】また、本発明のアルミナ系微粒子が添加さ
れた有機電解液の粘度は低くなるように調製する。電気
化学素子の他の構成成分は、電気化学反応を効率的に行
なう為に、電極、セパレータ等一般的に多孔質で微孔性
のものが多く用いられ、電解液の粘度が高過ぎると、そ
れらへの含浸、複合を行ないにくくなり好ましくない。
また、イオンの移動度も一般的には低下する傾向にあ
る。したがって本発明の有機電解液の粘度は室温で20
00cps以下(回転粘度計でのずり速度が20〜40
0s-1の場合)が好ましく、1000cps以下がさら
に好ましく、500cps以下がさらに好ましい。
Further, the viscosity of the organic electrolytic solution to which the alumina-based fine particles of the present invention are added is adjusted to be low. Other components of the electrochemical element are generally porous and microporous, such as electrodes and separators, in order to efficiently perform the electrochemical reaction.If the viscosity of the electrolyte is too high, It is difficult to impregnate and composite them, which is not preferable.
In addition, the mobility of ions generally tends to decrease. Therefore, the viscosity of the organic electrolyte of the present invention is 20 at room temperature.
00 cps or less (shear speed with a rotational viscometer is 20 to 40)
0 s −1 ) is preferable, 1000 cps or less is more preferable, and 500 cps or less is more preferable.

【0026】[2]電池 本発明の有機電解液を電池に応用した場合、本有機電解
液の不純物が少なく、イオン移動も速いため、サイクル
寿命が長く、取り出し電流が大きく、安全性及び信頼性
が高い電池が得られる。また、アルミナ微粒子の不純物
吸着能が高いため、電解液製造や電気化学素子製造時の
雰囲気や工程管理が簡便になり、コスト的にも有利とな
る。本発明の電池は、電解液に本発明の有機電解液を使
用すること以外は、既知の方法により製造することがで
きる。以下にその構成要素について説明する。 (2−a)負極 本発明の電池はリチウム、リチウム合金、炭素材料、導
電性高分子、金属酸化物や金属カルコゲナイドのような
アルカリ金属イオンをキャリアーとする低酸化還元電位
のものを用いることにより、高電圧、高容量の電池が得
られるので好ましい。このような負極活物質の中では、
リチウム金属あるいはリチウム/アルミニウム合金、リ
チウム/鉛合金、リチウム/アンチモン合金等のリチウ
ム合金類が最も低酸化還元電位であるため特に好まし
い。また、炭素材料もLiイオンを吸蔵した場合低酸化
還元電位となり、しかも安定、安全であるという点で特
に好ましい。Liイオンを吸蔵放出できる炭素材料とし
ては、天然黒鉛、人造黒鉛、気相法黒鉛、石油コーク
ス、石炭コークス、ピッチ系炭素、ポリアセン、C60
70等のフラーレン類等が挙げられる。
[2] Battery When the organic electrolyte of the present invention is applied to a battery, the organic electrolyte contains a small amount of impurities and has a fast ion transfer, and thus has a long cycle life, a large take-out current, safety and reliability. , A battery with a high value is obtained. In addition, since the alumina fine particles have a high ability to adsorb impurities, the atmosphere and the process management during the production of the electrolytic solution and the electrochemical element are simplified, which is advantageous in terms of cost. The battery of the present invention can be manufactured by a known method except that the organic electrolytic solution of the present invention is used as the electrolytic solution. The components will be described below. (2-a) Negative Electrode The battery of the present invention uses lithium, a lithium alloy, a carbon material, a conductive polymer, and a low oxidation-reduction potential using an alkali metal ion such as a metal oxide or a metal chalcogenide as a carrier. It is preferable because a battery with high voltage and high capacity can be obtained. Among such negative electrode active materials,
Lithium metal or lithium alloys such as lithium / aluminum alloy, lithium / lead alloy and lithium / antimony alloy are particularly preferable because they have the lowest oxidation-reduction potential. In addition, the carbon material is particularly preferable because it has a low oxidation-reduction potential when occluding Li ions, and is stable and safe. Examples of carbon materials capable of inserting and extracting Li ions include natural graphite, artificial graphite, vapor-grown graphite, petroleum coke, coal coke, pitch-based carbon, polyacene, C 60 ,
Fullerenes such as C 70 and the like.

【0027】(2−b)正極 本発明の電池の構成において、正極に金属酸化物、金属
硫化物、導電性高分子あるいは炭素材料のような高酸化
還元電位の電極活物質(正極活物質)を用いることによ
り、高電圧、高容量の電池が得られるので好ましい。こ
のような電極活物質の中では、充填密度が高くなり、体
積容量密度が高くなるという点では、酸化コバルト、酸
化マンガン、酸化バナジウム、酸化ニッケル、酸化モリ
ブデン等の金属酸化物、硫化モリブデン、硫化チタン、
硫化バナジウム等の金属硫化物が好ましく、特に酸化マ
ンガン、酸化ニッケル、酸化コバルト等が高容量、高電
圧という点から好ましい。
(2-b) Positive Electrode In the structure of the battery of the present invention, the positive electrode has a high oxidation-reduction potential electrode active material such as metal oxide, metal sulfide, conductive polymer or carbon material (positive electrode active material). Is preferable because a high-voltage, high-capacity battery can be obtained. Among such electrode active materials, metal oxides such as cobalt oxide, manganese oxide, vanadium oxide, nickel oxide, molybdenum oxide, molybdenum sulfide, and sulfide Titanium,
Metal sulfides such as vanadium sulfide are preferable, and manganese oxide, nickel oxide, cobalt oxide and the like are particularly preferable in terms of high capacity and high voltage.

【0028】この場合の金属酸化物や金属硫化物を製造
する方法は特に限定されず、例えば、「電気化学、第2
2巻、574頁、1954年」に記載されているよう
な、一般的な電解法や加熱法によって製造される。ま
た、これらを電極活物質としてリチウム電池に使用する
場合、電池の製造時に、例えば、Lix CoO2 やLi
xMnO2 等の形でLi元素を金属酸化物あるいは金属
硫化物に挿入(複合)した状態で用いるのが好ましい。
このようにLi元素を挿入する方法は特に限定されず、
例えば、電気化学的にLiイオンを挿入する方法や、米
国特許第4357215号に記載されているように、L
2 CO3 等の塩と金属酸化物を混合、加熱処理するこ
とによって実施できる。
In this case, the method for producing the metal oxide or metal sulfide is not particularly limited.
2, pp. 574, 1954 "by a general electrolytic method or a heating method. When these are used in a lithium battery as an electrode active material, for example, Li x CoO 2 or Li x
It is preferable to use a state in which the Li element is inserted (composite) into the metal oxide or metal sulfide in the form of x MnO 2 or the like.
The method of inserting the Li element in this way is not particularly limited,
For example, the method of electrochemically inserting Li ions or the method described in U.S. Pat.
It can be carried out by mixing a salt such as i 2 CO 3 and a metal oxide and performing a heat treatment.

【0029】また柔軟で、薄膜にし易いという点では、
導電性高分子が好ましい。導電性高分子の例としては、
ポリアニリン、ポリアセチレン及びその誘導体、ポリパ
ラフェニレン及びその誘導体、ポリピロール及びその誘
導体、ポリチエニレン及びその誘導体、ポリピリジンジ
イル及びその誘導体、ポリイソチアナフテニレン及びそ
の誘導体、ポリフリレン及びその誘導体、ポリセレノフ
ェン及びその誘導体、ポリパラフェニレンビニレン、ポ
リチエニレンビニレン、ポリフリレンビニレン、ポリナ
フテニレンビニレン、ポリセレノフェンビニレン、ポリ
ピリジンジイルビニレン等のポリアリーレンビニレン及
びそれらの誘導体等が挙げられる。中でも有機溶媒に可
溶性のアニリン誘導体の重合体が特に好ましい。また、
炭素材料としては、天然黒鉛、人造黒鉛、気相法黒鉛、
石油コークス、石炭コークス、フッ化黒鉛、ピッチ系炭
素、ポリアセン等が挙げられる。
Also, in terms of being flexible and easy to form a thin film,
Conductive polymers are preferred. Examples of conductive polymers include:
Polyaniline, polyacetylene and its derivatives, polyparaphenylene and its derivatives, polypyrrole and its derivatives, polythienylene and its derivatives, polypyridinediyl and its derivatives, polyisothianaphthenylene and its derivatives, polyfurylene and its derivatives, polyselenophene and its Derivatives, polyarylenevinylenes such as polyparaphenylenevinylene, polythienylenevinylene, polyfurylenevinylene, polynaphthenylenevinylene, polyselenophenvinylene, polypyridinediylvinylene, and derivatives thereof, and the like. Among them, a polymer of an aniline derivative soluble in an organic solvent is particularly preferable. Also,
Carbon materials include natural graphite, artificial graphite, vapor-phase graphite,
Examples include petroleum coke, coal coke, graphite fluoride, pitch-based carbon, polyacene, and the like.

【0030】(2−c)集電体 集電体は電子伝導性で電気化学的に耐食性があり、でき
るだけ比表面積の大きい材料を用いることが好ましい。
例えば、各種金属及びその燒結体、電子伝導性高分子、
カーボンシート等を挙げることができる。
(2-c) Current Collector The current collector is preferably made of a material having electron conductivity, electrochemical corrosion resistance, and as large a specific surface area as possible.
For example, various metals and their sintered bodies, electron conductive polymers,
A carbon sheet and the like can be mentioned.

【0031】[0031]

【作用】本発明の有機電解液は、電解質塩、有機溶媒、
アルミナ系微粒子を含み、高イオン伝導度でカチオン移
動性が良好であり、電池等の各種電気化学素子の電流特
性やサイクル特性を向上することができる。さらに、本
発明の有機電解液は熱処理された低水分で表面活性が高
く、高比表面積のアルミナ系微粒子が添加されることに
より、不純物が少なく、また他材料の不純物の吸着能力
が高い為、安定性に優れており、電池等の電気化学素子
の寿命を向上することができる。さらに本発明では、該
有機電解液を用いることにより、高寿命で取り出し電流
の大きい、安全で信頼性があり、加工性に優れた電池を
得ることができる。また、本発明の有機電解液は非水系
であるため、低酸化還元電位の負極及び/または高酸化
還元電位の正極と組合せることができ、出力電圧が高
く、高エネルギー密度の非水一次または二次電池が得ら
れる。
The organic electrolyte of the present invention comprises an electrolyte salt, an organic solvent,
It contains alumina-based fine particles, has high ionic conductivity and good cation mobility, and can improve current characteristics and cycle characteristics of various electrochemical devices such as batteries. Furthermore, the organic electrolyte solution of the present invention has a high surface activity at a low moisture content after being heat-treated, and the addition of alumina-based fine particles having a high specific surface area has a small amount of impurities, and has a high ability to adsorb impurities of other materials. It is excellent in stability and can improve the life of electrochemical devices such as batteries. Further, in the present invention, by using the organic electrolytic solution, a battery having a long life, a large take-out current, a safe, reliable, and excellent workability can be obtained. Further, since the organic electrolytic solution of the present invention is non-aqueous, it can be combined with a negative electrode having a low oxidation-reduction potential and / or a positive electrode having a high oxidation-reduction potential. A secondary battery is obtained.

【0032】[0032]

【実施例】以下に本発明について代表的な例を示しさら
に具体的に説明する。なお、これらは説明のための単な
る例示であって、本発明はこれらに何等制限されるもの
ではない。
The present invention will be described more specifically with reference to representative examples. These are merely examples for explanation, and the present invention is not limited to these.

【0033】[実施例1] <アルミナ系微粒子熱処理>昭和電工製高純度γ−アル
ミナ UA5805(結晶粒子径0.03μm、平均二
次粒子径1.8μm、BET比表面積80m2 /g)を
大気中、電気炉で1000℃で5時間加熱後、高温の状
態で露点−60℃のアルゴン雰囲気グローブボックス内
に入れ、室温まで空冷した。このUA5805の含水量
をカールフィッシャー水分測定装置で測定したところ、
600ppm であった。また熱処理後のBET比表面積は
75m2 /gとやや焼結が起こっていた。
Example 1 <Heat treatment of alumina-based fine particles> High-purity γ-alumina UA5805 manufactured by Showa Denko (crystal particle size 0.03 μm, average secondary particle size 1.8 μm, BET specific surface area 80 m 2 / g) was applied to the atmosphere. After heating at 1000 ° C. for 5 hours in a medium and electric furnace, it was placed in an argon atmosphere glove box having a dew point of −60 ° C. in a high temperature state, and air-cooled to room temperature. When the water content of the UA5805 was measured with a Karl Fischer moisture meter,
It was 600 ppm. Further, the BET specific surface area after the heat treatment was 75 m 2 / g, indicating that some sintering had occurred.

【0034】[実施例2]実施例1で調製した熱処理U
A58050.33g、ジエチルカーボネート(DEC)4.
0 g、エチレンカーボネート(EC)2.0 g、LiPF
6 (橋本化成製電池グレード)0.60gをアルゴン雰囲気
中、室温でよく混合し、電解液を調製した。この電解液
の含水量(カールフィッシャー法)は20ppm であり、
遊離酸(HF換算)は20ppm 以下であった(中和滴定
法)。この電解液の25℃、−10℃でのイオン伝導度
をインピーダンス法にて測定したところ、それぞれ、6.
0 ×10-3、1.5×10-3S/cmであった。また、回転粘度
計での粘度は室温(25℃)で40cps(380
-1)であった。
Example 2 Heat treatment U prepared in Example 1
A58050.33 g, diethyl carbonate (DEC) 4.
0 g, ethylene carbonate (EC) 2.0 g, LiPF
6 (Hashimoto Chemical Battery Grade) 0.60 g was mixed well at room temperature in an argon atmosphere to prepare an electrolytic solution. The water content (Karl Fischer method) of this electrolyte is 20 ppm,
The free acid (in terms of HF) was 20 ppm or less (neutralization titration method). The ionic conductivity at 25 ° C. and −10 ° C. of the electrolytic solution was measured by an impedance method, and was 6.
It was 0 × 10 −3 and 1.5 × 10 −3 S / cm. The viscosity measured by a rotational viscometer at room temperature (25 ° C.) is 40 cps (380
s -1 ).

【0035】[実施例3] <アルミナ系微粒子熱処理>日本エアロジル製アルミニ
ウムオキサイドC(結晶粒子径0.013μm、平均二
次粒子径約0.1μm(SEM観察)、BET比表面積
100m2 /g)を大気中、電気炉で1000℃で5時
間加熱後、高温の状態で露点−60℃のアルゴン雰囲気
グローブボックス内に入れ、室温まで空冷した。このア
ルミニウムオキサイドCの含水量をカールフィッシャー
水分測定装置で測定したところ、700ppm であった。
また、熱処理後のBET比表面積は85m2 /gとやや
焼結が起こっていた。
[Example 3] <Heat treatment of alumina-based fine particles> Aluminum oxide C manufactured by Nippon Aerosil (crystal particle size 0.013 µm, average secondary particle size about 0.1 µm (SEM observation), BET specific surface area 100 m 2 / g) Was heated in an electric furnace at 1000 ° C. for 5 hours in the air, and then put in a high-temperature argon atmosphere glove box having a dew point of −60 ° C., and air-cooled to room temperature. The water content of the aluminum oxide C was measured by a Karl Fischer moisture meter and found to be 700 ppm.
In addition, the BET specific surface area after the heat treatment was 85 m 2 / g, indicating that some sintering had occurred.

【0036】[実施例4]アルミナ系微粒子としてUA
5805の代りに実施例3で熱処理したアルミニウムオ
キサイドCを0.33g添加した以外は実施例2と同様にし
て、有機電解液を調製した。この電解液の含水量(カー
ルフィッシャー法)は15ppm であった。遊離酸(HF
換算)は20ppm 以下であった(中和滴定法)。この電
解液の25℃、−10℃でのイオン伝導度をインピーダ
ンス法にて測定したところ、それぞれ、6.4 ×10-3、1.6
×10-3S/cmであった。また、回転粘度計での粘度は
室温(25℃)で48cps(380s-1)であった。
Example 4 UA as alumina-based fine particles
An organic electrolyte solution was prepared in the same manner as in Example 2 except that 0.33 g of the aluminum oxide C heat-treated in Example 3 was added instead of 5805. The water content (Karl Fischer method) of this electrolytic solution was 15 ppm. Free acid (HF
(Converted) was 20 ppm or less (neutralization titration method). The ionic conductivity of this electrolyte at 25 ° C. and −10 ° C. was measured by an impedance method, and was 6.4 × 10 −3 and 1.6, respectively.
× 10 -3 S / cm. The viscosity measured by a rotational viscometer at room temperature (25 ° C.) was 48 cps (380 s −1 ).

【0037】[実施例5]LiPF6 に代えて橋本化成
製電池グレードLiBF4 0.50g用いた以外は実施例4
と同様にして、有機電解液を得た。この電解液の含水量
(カールフィッシャー法)は25ppm であった。遊離酸
(HF換算)は20ppm 以下であった(中和滴定法)。
この電解液の25℃、−10℃でのイオン伝導度をイン
ピーダンス法にて測定したところ、それぞれ、3.8 ×10
-3、0.8×10-3S/cmであった。また、回転粘度計での
粘度は室温(25℃)43cps(380s-1)であっ
た。
Example 5 Example 4 was repeated except that 0.50 g of battery grade LiBF 4 manufactured by Hashimoto Kasei was used instead of LiPF 6.
In the same manner as in the above, an organic electrolytic solution was obtained. The water content (Karl Fischer method) of this electrolytic solution was 25 ppm. The free acid (in terms of HF) was 20 ppm or less (neutralization titration method).
The ionic conductivity of this electrolyte at 25 ° C. and −10 ° C. was measured by an impedance method.
-3 , 0.8 × 10 -3 S / cm. The viscosity measured with a rotational viscometer was 43 cps (380 s -1 ) at room temperature (25 ° C.).

【0038】[実施例6]実施例3で調製した熱処理ア
ルミニウムオキサイドC 0.33 g、プロピレンカーボネ
ート(PC)3.0 g、γ−ブチルラクトン(γ−BL)
3.0g、橋本化成製精製テトラエチルアンモニウムテト
ラフルオロボレート( TEAB) 0.80gをアルゴン雰囲
気中、室温でよく混合し、電解液を調製した。この電解
液の含水量(カールフィッシャー法)は70ppm であっ
た。遊離酸(HF換算)は20ppm以下であった(中和
滴定法)。この電解液の25℃、−10℃でのイオン伝
導度をインピーダンス法にて測定したところ、それぞ
れ、12.0×10-3、3.0×10-3S/cmであった。また、回
転粘度計での粘度は室温(25℃)で120cps(3
80s-1)であった。
Example 6 0.33 g of the heat-treated aluminum oxide C prepared in Example 3, 3.0 g of propylene carbonate (PC), γ-butyl lactone (γ-BL)
3.00 g and purified tetraethylammonium tetrafluoroborate (TEAB) 0.80 g manufactured by Hashimoto Kasei were mixed well at room temperature in an argon atmosphere to prepare an electrolyte solution. The water content (Karl Fischer method) of this electrolytic solution was 70 ppm. The free acid (in terms of HF) was 20 ppm or less (neutralization titration method). The ionic conductivity of this electrolyte at 25 ° C. and −10 ° C. was measured by an impedance method, and was found to be 12.0 × 10 −3 and 3.0 × 10 −3 S / cm, respectively. The viscosity measured by a rotational viscometer at room temperature (25 ° C.) is 120 cps (3
80 s -1 ).

【0039】[実施例7] <アルミナ系微粒子熱処理>昭和電工製高純度γ−アル
ミナ UA5605(結晶粒子径0.05μm、平均二
次粒子径1.8μm、BET比表面積60m2 /g)を
大気中、電気炉で700℃で5時間加熱後、高温の状態
で露点−60℃のアルゴン雰囲気グローブボックス内に
入れ、室温まで空冷した。このUA5605の含水量を
カールフィッシャー水分測定装置で測定したところ、6
00ppm であった。また熱処理後のBET比表面積の変
化はなかった。
[Example 7] <Heat treatment of alumina-based fine particles> High-purity γ-alumina UA5605 manufactured by Showa Denko (crystal particle size: 0.05 µm, average secondary particle size: 1.8 µm, BET specific surface area: 60 m 2 / g) was applied to the atmosphere. After heating at 700 ° C. for 5 hours in a medium and electric furnace, it was placed in an argon atmosphere glove box having a dew point of −60 ° C. in a high temperature state, and air-cooled to room temperature. When the water content of the UA5605 was measured with a Karl Fischer moisture meter, it was 6%.
It was 00 ppm. There was no change in the BET specific surface area after the heat treatment.

【0040】[実施例8]実施例7で調製した熱処理U
A5605 0.66 g、ジメチルカーボネート(DMC)
2.0 g、DEC 2.0g、EC 2.0g、橋本化成製LiP
6 0.60gをアルゴン雰囲気中、室温でよく混合し、電
解液を調製した。この電解液の含水量(カールフィッシ
ャー法)は25ppm であった。遊離酸(HF換算)は2
0ppm 以下であった(中和滴定法)。この電解液の25
℃、−10℃でのイオン伝導度をインピーダンス法にて
測定したところ、それぞれ、6.3 ×10-3、1.5×10-3S/
cmであった。また、回転粘度計での粘度は室温(25
℃)で30cps(380s-1)であった。
Example 8 Heat treatment U prepared in Example 7
A5605 0.66 g, dimethyl carbonate (DMC)
2.0 g, DEC 2.0 g, EC 2.0 g, Hashimoto Chemicals LiP
0.60 g of F 6 was mixed well at room temperature in an argon atmosphere to prepare an electrolytic solution. The water content (Karl Fischer method) of this electrolytic solution was 25 ppm. Free acid (HF conversion) is 2
It was 0 ppm or less (neutralization titration method). 25 of this electrolyte
The ionic conductivity at -10 ° C and -10 ° C was measured by the impedance method, and the values were 6.3 × 10 -3 and 1.5 × 10 -3 S /, respectively.
cm. Further, the viscosity measured with a rotational viscometer at room temperature (25
° C) was 30 cps (380 s -1 ).

【0041】[実施例9] <コバルト酸リチウム正極の製造>11gのLi2 CO3
と24gのCo34 を良く混合し、酸素雰囲気下、80
0℃で24時間加熱後、粉砕することによりLiCoO
2 粉末を得た。このLiCoO2 粉末とアセチレンブラ
ック、ポリフッ化ビニリデンを重量比8:1:1で混合
し、さらに過剰のN−メチルピロリドン溶液を加え、ゲ
ル状組成物を得た。この組成物を約25μmのアルミ箔
上に、約180μmの厚さに塗布成型した。さらに、約
100℃で24時間加熱真空乾燥することにより、コバ
ルト酸リチウム正極シートを得た。このシートをポンチ
で14mmφ(115mg)に打抜き電池用の正極とした。
Example 9 <Production of Lithium Cobaltate Cathode> 11 g of Li 2 CO 3
And 24 g of Co 3 O 4 are mixed well, and the mixture is
After heating at 0 ° C. for 24 hours, pulverization is performed to obtain LiCoO.
Two powders were obtained. This LiCoO 2 powder, acetylene black, and polyvinylidene fluoride were mixed at a weight ratio of 8: 1: 1, and an excess N-methylpyrrolidone solution was added to obtain a gel composition. The composition was applied on an aluminum foil of about 25 μm to a thickness of about 180 μm and molded. Furthermore, by heating and vacuum drying at about 100 ° C. for 24 hours, a lithium cobaltate positive electrode sheet was obtained. This sheet was punched into a 14 mmφ (115 mg) sheet with a punch to provide a positive electrode for a battery.

【0042】[実施例10] <黒鉛負極の製造>MCMB黒鉛(大阪ガス製)、気相
法黒鉛繊維(昭和電工(株)製:平均繊維径 0.3μm、
平均繊維長 2.0μm、2700℃熱処理品)、ポリフッ
化ビニリデンの重量比 8.6 : 0.4 : 1.0の混合物に過剰
のN−メチルピロリドン溶液を加え、ゲル状組成物を得
た。この組成物を約15μmの銅箔上に、約250μm
の厚さに塗布成型した。さらに、約100℃で24時間
加熱真空乾燥することにより、黒鉛負極シートを得た。
このシートをポンチで15mmφ(62mg)に打抜き電池
用の負極とした。
Example 10 <Production of Graphite Anode> MCMB graphite (manufactured by Osaka Gas), vapor-grown graphite fiber (manufactured by Showa Denko KK: average fiber diameter: 0.3 μm,
Excessive N-methylpyrrolidone solution was added to a mixture having an average fiber length of 2.0 μm and a heat treatment at 2700 ° C.) and a weight ratio of polyvinylidene fluoride of 8.6: 0.4: 1.0 to obtain a gel composition. This composition was coated on a copper foil of about 15 μm in a thickness of about 250 μm.
And molded to a thickness of Furthermore, the resultant was vacuum-dried at about 100 ° C. for 24 hours to obtain a graphite negative electrode sheet.
This sheet was punched into a 15 mmφ (62 mg) sheet with a punch to form a negative electrode for a battery.

【0043】[実施例11] <Liイオン二次電池の製造>アルゴン雰囲気グローブ
ボックス内で、実施例10で製造した黒鉛負極(15mm
φ)に実施例2で調製した電解液(UA5805/Li
PF6 /DEC+EC系)を含浸させた。この黒鉛負極
上に旭化成製ポリオレフィンマイクロポーラスフィル
ム:ハイポア(開孔率約65%、厚み25μm)に実施
例2で調製した電解液を含浸させたものを貼り合わせ、
さらに実施例9で製造したコバルト酸リチウム正極(1
4mmφ)に実施例2で調製した電解液を含浸させたも
のを貼り合わせ、2016コイン型缶(直径20mm,
厚み1.6mm)に封印し、黒鉛/酸化コバルト系Li
イオンコイン電池を得た。
Example 11 <Production of Li-ion secondary battery> The graphite negative electrode (15 mm) produced in Example 10 was placed in an argon atmosphere glove box.
φ) to the electrolyte solution prepared in Example 2 (UA5805 / Li)
PF 6 / DEC + EC system). On the graphite negative electrode, a polyolefin microporous film manufactured by Asahi Kasei: a product obtained by impregnating the electrolyte prepared in Example 2 into a hypopore (porosity: about 65%, thickness: 25 μm) was attached.
Further, the lithium cobaltate positive electrode (1
4 mmφ), which was impregnated with the electrolytic solution prepared in Example 2, was attached, and a 2016 coin-shaped can (20 mm in diameter,
(Thickness: 1.6 mm) and sealed with graphite / cobalt oxide Li
An ion coin battery was obtained.

【0044】この電池を、作動電圧2.75〜4.1 V、電流
0.77mAで充放電を繰返したところ、最大放電容量は1
1.0mAhで、容量が50%に減少するまでのサイクル
寿命は710回であった。また、この電池を、作動電圧
2.5 〜4.2 V、電流11mAで充放電を繰返したところ、
最大放電容量は10.5mAhで、容量が50%に減少する
までのサイクル寿命は630回であった。
The battery was operated at an operating voltage of 2.75 to 4.1 V and a current of
When the charge and discharge were repeated at 0.77 mA, the maximum discharge capacity was 1
At 1.0 mAh, the cycle life before the capacity was reduced to 50% was 710 cycles. In addition, this battery
When charging and discharging were repeated at 2.5 to 4.2 V and current of 11 mA,
The maximum discharge capacity was 10.5 mAh, and the cycle life until the capacity was reduced to 50% was 630 times.

【0045】[実施例12] <Liイオン二次電池の製造>実施例11で用いた電解
液の代りに、実施例4で調製した電解液(アルミニウム
オキサイドC/LiPF6 /DEC+EC系)を用いた
以外は実施例11と同様の方法で2016型黒鉛/酸化
コバルト系Liイオンコイン電池を得た。この電池を、
作動電圧2.75〜4.1V、電流0.77mAで充放電を繰返した
ところ、最大放電容量は11.3mAhで、容量が50%に
減少するまでのサイクル寿命は780回であった。ま
た、この電池を、作動電圧2.5 〜4.2 V、電流11mAで
充放電を繰返したところ、最大放電容量は10.8mAh
で、容量が50%に減少するまでのサイクル寿命は70
0回であった。
[Example 12] <Manufacture of Li-ion secondary battery> Instead of the electrolyte used in Example 11, the electrolyte prepared in Example 4 (aluminum oxide C / LiPF 6 / DEC + EC system) was used. A 2016 type graphite / cobalt oxide-based Li-ion coin battery was obtained in the same manner as in Example 11 except for the difference. This battery
When charging and discharging were repeated at an operating voltage of 2.75 to 4.1 V and a current of 0.77 mA, the maximum discharge capacity was 11.3 mAh, and the cycle life until the capacity was reduced to 50% was 780 times. When the battery was repeatedly charged and discharged at an operating voltage of 2.5 to 4.2 V and a current of 11 mA, the maximum discharge capacity was 10.8 mAh.
And the cycle life until the capacity is reduced to 50% is 70
It was 0 times.

【0046】[0046]

【発明の効果】本発明の有機電解液は、電解質塩、有機
溶媒、アルミナ系微粒子を含み、高イオン伝導度でカチ
オン移動性が良好であり、リチウムイオン電池の電流特
性やエネルギー密度を向上することができた。本発明の
有機電解液は熱処理された低水分で表面活性が高く、高
比表面積なアルミナ系微粒子が添加されており、不純物
が少なく、また他材料の不純物の吸着能力が高い為、安
定性に優れており、リチウムイオン電池のサイクル寿命
を向上することができた。
The organic electrolyte solution of the present invention contains an electrolyte salt, an organic solvent, and alumina-based fine particles, has high ionic conductivity and good cation mobility, and improves current characteristics and energy density of a lithium ion battery. I was able to. The organic electrolyte solution of the present invention has a high surface activity at a low moisture content and is added with alumina-based fine particles having a high specific surface area, and has a small amount of impurities and a high ability to adsorb impurities of other materials. It was excellent, and the cycle life of the lithium ion battery could be improved.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一種のアルミナ系微粒子、少
なくとも一種の有機溶媒、少なくとも一種の電解質塩を
含む有機電解液であって、アルミナ系微粒子がBET 比表
面積10m2 /g以上、最大径が5μm 以下、含水量
(カールフィッシャー滴定値)が3000ppm 以下であ
り、その添加量が電解液全体の0.05〜30wt%で
ある有機電解液。
1. An organic electrolytic solution containing at least one kind of alumina-based fine particles, at least one kind of organic solvent, and at least one kind of electrolyte salt, wherein the alumina-based fine particles have a BET specific surface area of 10 m 2 / g or more and a maximum diameter of 5 μm or less. An organic electrolyte having a water content (Karl Fischer titration value) of 3000 ppm or less and an addition amount of 0.05 to 30% by weight of the whole electrolyte.
【請求項2】 電解液の粘度が室温で2000cps
(ずり速度20〜400s-1)以下で、電解液の水分値
(カールフィッシャー滴定値)が200ppm 以下で、電
解液の遊離酸量(中和滴定値)が100ppm 以下である
請求項1記載の有機電解液。
2. The electrolyte has a viscosity of 2000 cps at room temperature.
2. The electrolyte solution according to claim 1 , wherein the water content (Karl Fischer titration value) of the electrolyte is 200 ppm or less, and the free acid content (neutralization titration value) of the electrolyte is 100 ppm or less at a shear rate of 20 to 400 s -1 or less. Organic electrolyte.
【請求項3】 アルミナ系微粒子が600〜1200℃
で熱処理されたγ−アルミナであることを特徴とする請
求項1または2記載の有機電解液。
3. An alumina-based fine particle having a temperature of 600 to 1200 ° C.
The organic electrolytic solution according to claim 1 or 2, wherein the organic electrolytic solution is γ-alumina heat-treated in (1).
【請求項4】 アルミナ系微粒子が600〜1200℃
で熱処理されたアルカリ金属/アルミニウム複合酸化物
であることを特徴とする請求項1または2記載の有機電
解液。
4. An alumina-based fine particle having a temperature of 600 to 1200 ° C.
The organic electrolytic solution according to claim 1 or 2, wherein the organic electrolytic solution is an alkali metal / aluminum composite oxide that has been heat-treated in (1).
【請求項5】 アルミナ系微粒子が結晶粒子径0.1μ
m 以下の一次粒子の凝集体であって、該凝集体の大きさ
が0.01〜5μm であることを特徴とする請求項1〜
4のいずれかに記載の有機電解液。
5. The method according to claim 1, wherein the alumina-based fine particles have a crystal particle diameter of 0.1 μm.
m, wherein the size of the primary particles is 0.01 to 5 μm.
5. The organic electrolytic solution according to any one of 4.
【請求項6】 電解質塩がアルカリ金属塩、4級アンモ
ニウム塩、4級ホスホニウム塩、または遷移金属塩から
選ばれた少なくとも一種である請求項1〜5のいずれか
に記載の有機電解液。
6. The organic electrolyte solution according to claim 1, wherein the electrolyte salt is at least one selected from an alkali metal salt, a quaternary ammonium salt, a quaternary phosphonium salt, and a transition metal salt.
【請求項7】 少なくとも一種の電解質塩がLiPF
6 、LiBF4 及び/またはLiN(CF3 SO22
であることを特徴とする請求項6記載の有機電解液。
7. The method according to claim 7, wherein the at least one electrolyte salt is LiPF.
6 , LiBF 4 and / or LiN (CF 3 SO 2 ) 2
The organic electrolyte according to claim 6, wherein
【請求項8】 少なくとも一種の有機溶媒が環状及び/
または鎖状炭酸エステル類であることを特徴とする請求
項1〜7のいずれかに記載の有機電解液。
8. The method according to claim 1, wherein the at least one organic solvent is cyclic and / or
The organic electrolytic solution according to any one of claims 1 to 7, wherein the organic electrolytic solution is a chain carbonate.
【請求項9】 請求項1〜8記載の少なくとも一種の有
機電解液を用いることを特徴とする電池。
9. A battery using at least one organic electrolyte according to claim 1.
【請求項10】 負極活物質としてリチウム、リチウム
合金、またはリチウムイオンを吸蔵放出できる炭素材
料、無機酸化物もしくは無機カルコゲナイドから選ばれ
る少なくとも一つの材料を用いることを特徴とする請求
項9記載のリチウム系二次電池。
10. The lithium according to claim 9, wherein as the negative electrode active material, at least one material selected from the group consisting of lithium, lithium alloy, a carbon material capable of inserting and extracting lithium ions, an inorganic oxide and an inorganic chalcogenide is used. Secondary battery.
【請求項11】 正極活物質として導電性高分子、金属
酸化物、金属硫化物及び/または炭素材料からなる材料
を用いることを特徴とする請求項10記載のリチウム系
二次電池。
11. The lithium secondary battery according to claim 10, wherein a material comprising a conductive polymer, a metal oxide, a metal sulfide, and / or a carbon material is used as the positive electrode active material.
JP9221467A 1997-04-04 1997-08-18 Organic electrolyte and its use Pending JPH10334730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9221467A JPH10334730A (en) 1997-04-04 1997-08-18 Organic electrolyte and its use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8671797 1997-04-04
JP9-86717 1997-04-04
JP9221467A JPH10334730A (en) 1997-04-04 1997-08-18 Organic electrolyte and its use

Publications (1)

Publication Number Publication Date
JPH10334730A true JPH10334730A (en) 1998-12-18

Family

ID=26427808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9221467A Pending JPH10334730A (en) 1997-04-04 1997-08-18 Organic electrolyte and its use

Country Status (1)

Country Link
JP (1) JPH10334730A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239531A2 (en) * 2001-03-07 2002-09-11 Nisshinbo Industries Inc. Pregel compositions for polymer gel electrolytes, method of dehydrating pregel compositions, secondary cell, and electrical double-layer capacitor
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
JP2005050601A (en) * 2003-07-31 2005-02-24 Sanyo Electric Co Ltd Lithium secondary battery
JP2005327680A (en) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
JP2014003321A (en) * 2007-07-25 2014-01-09 Honeywell Internatl Inc High voltage electrolytes
JP2018133258A (en) * 2017-02-16 2018-08-23 株式会社豊田中央研究所 Electrolyte
JP2019071194A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10347941B2 (en) 2016-05-11 2019-07-09 Samsung Electronics Co., Ltd. Lithium metal battery
CN111579711A (en) * 2020-04-24 2020-08-25 江苏中兴派能电池有限公司 Method for evaluating water content of baked lithium ion battery
CN112673507A (en) * 2018-09-10 2021-04-16 赢创运营有限公司 Gelled electrolyte and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239531A3 (en) * 2001-03-07 2006-03-15 Nisshinbo Industries Inc. Pregel compositions for polymer gel electrolytes, method of dehydrating pregel compositions, secondary cell, and electrical double-layer capacitor
US6838211B2 (en) 2001-03-07 2005-01-04 Nisshinbo Industries, Inc. Pregel compositions for polymer gel electrolytes, method of dehydrating pregel compositions, secondary cell, and electrical double-layer capacitor
EP1239531A2 (en) * 2001-03-07 2002-09-11 Nisshinbo Industries Inc. Pregel compositions for polymer gel electrolytes, method of dehydrating pregel compositions, secondary cell, and electrical double-layer capacitor
JP4497858B2 (en) * 2003-07-31 2010-07-07 三洋電機株式会社 Lithium secondary battery
JP2005050601A (en) * 2003-07-31 2005-02-24 Sanyo Electric Co Ltd Lithium secondary battery
EP1505680A3 (en) * 2003-08-08 2005-04-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
JP2005327680A (en) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2014003321A (en) * 2007-07-25 2014-01-09 Honeywell Internatl Inc High voltage electrolytes
US10347941B2 (en) 2016-05-11 2019-07-09 Samsung Electronics Co., Ltd. Lithium metal battery
JP2018133258A (en) * 2017-02-16 2018-08-23 株式会社豊田中央研究所 Electrolyte
JP2019071194A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN112673507A (en) * 2018-09-10 2021-04-16 赢创运营有限公司 Gelled electrolyte and preparation method thereof
EP3850699A4 (en) * 2018-09-10 2022-06-08 Evonik Operations GmbH Gelled electrolyte and preparation method thereof
CN111579711A (en) * 2020-04-24 2020-08-25 江苏中兴派能电池有限公司 Method for evaluating water content of baked lithium ion battery

Similar Documents

Publication Publication Date Title
US11876223B2 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
KR100560539B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP2113957B1 (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
KR100560546B1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
KR20140063591A (en) Electrode material comprising metal sulfide
JP2003203674A (en) Nonaqueous electrolyte secondary cell
CN111095658A (en) Electrolyte for metal-ion battery cells with high capacity, micron-scale, volume-changing negative electrode particles
US7919208B2 (en) Anode active material and battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JPH10334730A (en) Organic electrolyte and its use
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP2004031244A (en) Nonaqueous electrolyte and secondary battery using the same
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP3748995B2 (en) Polymer solid electrolyte and use thereof
JPH1092222A (en) Solvent for electrolytic solution
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4284934B2 (en) Secondary power supply
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
US20220085358A1 (en) Sulfur-carbon composite, positive electrode for lithium-sulfur battery comprising same, and lithium-sulfur battery comprising positive electrode
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH10294016A (en) Organic electrolyte and usage thereof
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817