WO2011077817A1 - Toothed belt - Google Patents

Toothed belt Download PDF

Info

Publication number
WO2011077817A1
WO2011077817A1 PCT/JP2010/068459 JP2010068459W WO2011077817A1 WO 2011077817 A1 WO2011077817 A1 WO 2011077817A1 JP 2010068459 W JP2010068459 W JP 2010068459W WO 2011077817 A1 WO2011077817 A1 WO 2011077817A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
core wire
diameter
pulley
toothed belt
Prior art date
Application number
PCT/JP2010/068459
Other languages
French (fr)
Japanese (ja)
Inventor
勇次 関口
伸二 藤原
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Publication of WO2011077817A1 publication Critical patent/WO2011077817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement

Definitions

  • the present invention relates to a toothed belt.
  • the present invention relates to a toothed belt used for driving a general OA device or a printer.
  • toothed belts with a tooth pitch of 1.0 mm, 1.5 mm, 2 mm, and 3 mm are mainly used.
  • use with a smaller pulley diameter, low speed fluctuation, and the like have been demanded.
  • printing unevenness has occurred due to belt speed fluctuations at the meshing cycle peculiar to toothed belts.
  • even in an apparatus using a toothed belt as a card / banknote discriminator there is a problem that the speed of the conveyed product varies due to uneven speed of the meshing cycle and cannot be accurately identified. On the other hand, it is necessary to reduce the size of the motor and save the equipment.
  • the pulley pitch diameter currently used for the drive belt of the printer is ⁇ 6.468 mm (pitch 1.016 mm, number of teeth 20). However, due to the labor saving of the motor, there has been a demand to use a smaller diameter.
  • the tooth shape of the belt is a round tooth, and the inter-tooth pitch of the belt is 0.75 to 1.0 mm.
  • a core wire of the toothed belt an aramid having a diameter of 0.10 to 0.20 mm obtained by bundling at least one filament group in which aramid fibers made of monofilament of 0.5 to 2.0 denier are bundled and twisted. A fiber rope is used.
  • a toothed belt in which 5 to 80 parts by weight of a porous filler is added to 100 parts by weight of an elastomer constituting a toothed belt, and the back of the belt is polished to expose the porous filler to the back of the belt.
  • a porous filler is added to 100 parts by weight of an elastomer constituting a toothed belt, and the back of the belt is polished to expose the porous filler to the back of the belt.
  • the object of the present invention is to develop a toothed belt that can be used with a small-diameter pulley.
  • an object of the present invention is to develop a toothed belt that can be used with a smaller diameter than a pulley pitch diameter of 6.468 mm (pitch: 1.016 mm, number of teeth: 20).
  • the main configuration of the present invention is as follows. 1.
  • 2. 1. Add 0.5 to 1.5% by weight of carbon to the urethane layer.
  • Carbon is electrically conductive and is characterized by the addition of 0.5 to 1.5% by weight of electrically conductive carbon.
  • Carbon is conductive and the belt has an electric resistance of 10 ⁇ 5 to 10 ⁇ 8 ⁇ ⁇ cm.
  • the urethane toothed belt as described.
  • a urethane precision belt having a smaller pitch can be provided. Since it can be used with a small-diameter pulley, the motor can be miniaturized and the equipment can be saved. By setting the pulley pitch diameter to 6.468 mm (pitch: 1.016 mm, number of teeth: 20), it was possible to realize a toothed belt that can be used with a smaller diameter. By twisting a glass fiber core wire to a thin wire diameter using a thin fiber, it was possible to realize a toothed belt that can sufficiently bend the curvature of a small pulley. By downsizing the motor, it can contribute to power saving and downsizing and weight reduction of the device. 2.
  • the dimensional change due to the influence of humidity is small, and the dimensional stability is improved.
  • the pulley becomes smaller in diameter, the clearance between the pulley teeth and the belt teeth becomes smaller, so that the meshing interference between the belt and the pulley is likely to occur due to the dimensional change, which causes the speed fluctuation to increase.
  • the stability could be improved, it can sufficiently cope with a small-diameter pulley and can suppress the speed fluctuation of the timing belt. 3. Since the speed fluctuation is small, image unevenness can be reduced. 4). Wear resistance can be improved by adding carbon.
  • the wear resistance of the urethane tooth portion can be improved. 5.
  • the number of rotations of the pulley is higher than when a large pulley is used.
  • the meshing speed of the belt and pulley teeth is increased, and the belt slides more with the pulley, so that static electricity is more likely to be generated.
  • By adding conductive carbon charging of the belt, pulley, and peripheral parts can be suppressed, and the ink mist can be prevented from being contaminated in the ink jet printer.
  • Belt wearing schematic configuration diagram Belt structure schematic Graph showing minimum and maximum speed fluctuations
  • Endurance test schematic diagram Graph showing the residual strength retention after 2 million reciprocations for core wire diameter
  • Dimensional stability test schematic diagram Graph showing dimensional change characteristics due to environmental humidity for glass core wire and aramid core wire Graph showing the dimensional change characteristics of glass core polyester core wire with environmental temperature
  • the present invention has been researched and developed with respect to a material, a wire diameter, a configuration, and a twist of a core wire that can be used even with a pulley pitch diameter of ⁇ 5.840 mm for a urethane toothed belt.
  • These examination elements have been found to contain the following contradictory items in the process of research and development, and it is difficult to deal with them with a simple solution. Since the core wire of the belt is polygonal when it is wound around the inner mold for molding, if the pulley for the toothed belt is small, the number of polygonal corners will be reduced if the pulley pitch is the same as the conventional one. Speed fluctuation due to fluctuation of the core wire pitch becomes large. As a solution, the pitch may be reduced.
  • the core wire material includes polyester fiber and aramid fiber, but the polyester fiber core wire has lower strength and a greater dimensional change due to temperature than the glass cord.
  • the aramid fiber has the same strength as the glass fiber, but the dimensional change due to the influence of humidity is large, and it has been found that the dimensional change causes meshing interference between the belt and the pulley, which causes a large speed fluctuation.
  • the tooth pitch is preferably 0.65 to 0.85 mm.
  • the tooth pitch is reduced, the tooth size is reduced, so that the surface pressure applied to the belt is increased, the belt tooth portion is worn, and the belt is damaged or shortened. For this reason, it is necessary to take measures against wear of the urethane tooth portion.
  • the addition of carbon was studied in order to improve the wear resistance.
  • the means for covering the surface with canvas is not suitable for the structure of a toothed belt because the ratio of the canvas to the tooth part becomes high and the resin amount of the tooth part cannot be secured sufficiently with a small pitch tooth profile. It is.
  • No canvas is used in the belt of the present invention.
  • a conventional urethane belt is an insulating type.
  • the problem of charging the parts due to sliding with the pulley increases.
  • a machine using a scale for example, a carriage driving belt of an ink jet printer, when the scale is charged, ink mist is drawn, the scale is contaminated, and positioning control becomes impossible.
  • the urethane toothed belt of the present invention is a urethane toothed belt having a core wire made of glass cord and a tooth pitch of 0.65 to 0.85 mm.
  • the core wire has a wire diameter of 0.20 to 0.28 mm, and the fibers constituting the core wire preferably have a diameter of 6 to 9 microns.
  • a material used for urethane toothed belts can be used.
  • the glass cord As an example of the glass cord, a cord configuration having a fiber diameter of 9 ⁇ m, a strand fiber number of 200, a strand count of 34 tex (g / 1000 m), two twisted strands, a twisted yarn number of 1, and a twisted number of 3.7 tpi is used. Can be mentioned.
  • the cord characteristics are as follows: the center value is a count of 84 g / 1000 m, the loss on ignition is 16% by weight, the number of twists is 3.7 tpi, the cord diameter is 0.24 mm, and the minimum tensile strength is 49N. 2.
  • the amount of carbon added for wear resistance to the urethane layer is preferably 0.5 to 1.5% by weight.
  • the additive carbon examples include carbon black such as thermal black, ketjen black, acetylene black, channel black, color black, and furnace black. 3.
  • the carbon to be added is conductive, and the amount of conductive carbon added is preferably 0.5 to 1.5% by weight.
  • the additive conductive carbon include ketjen black and acetylene black. If the amount added is too large, carbon aggregates in the polyurethane, and the tooth chipping durability of the belt deteriorates. Moreover, when the addition amount is too large, the viscosity of the polyurethane becomes high, and when forming the belt shape by casting urethane into the gap between the outer mold and the inner mold, formation failure due to air mixing occurs. 4).
  • Carbon is electrically conductive and the belt has an electric resistance of 10 ⁇ 5 to 10 ⁇ 8 ⁇ ⁇ cm.
  • the urethane toothed belt as described.
  • the amount of conductive carbon added is 0.5 to 1.5% by weight, desirably 0.8 to 1.2% by weight.
  • the electrical resistance is 10 ⁇ 5 to 10 ⁇ 8 ⁇ ⁇ cm, preferably 10 ⁇ 6 to 10 ⁇ 7 ⁇ ⁇ cm.
  • Examples of carbon imparting conductivity include conductive carbon black such as thermal black, ketjen black, acetylene black, channel black, color black, and furnace black, and graphite. 5.
  • the pitch circle diameter of pulleys used in glass fiber core wire urethane toothed belts was, for example, ⁇ 6.468 mm (pitch 1.016 mm, type 20 teeth) for driving an inkjet printer carriage.
  • a precision belt made of urethane that can be used for a small diameter pulley having a diameter of 5.840 mm (pitch: 0.7056 mm, 26 teeth) can be realized. 6).
  • the precision urethane belt of the present invention includes a carriage for driving a printer, an endless transport belt made of an elastomer for transporting cards, bills, etc., a carriage for a printer, a bill transport belt, a card transport belt, and a light belt.
  • toothed belt drive devices and toothed belt OA equipment (office equipment) used for load drive belts for example, printer carriage drive, paper feed, copier paper feed and photosensitive drum drive Used for etc.
  • a toothed belt having a normal configuration including a back portion made of urethane resin, a tooth portion, and a core wire was prepared by a normal manufacturing method.
  • no canvas is used.
  • the type of urethane is a composition usually used for urethane belts.
  • Ketjen Black EC-300J manufactured by Lion
  • the plasticizer DOP manufactured by CGS Star Co., di-2ethylhexyl phthalate, or the like can be added.
  • the measured speed fluctuation rates for Examples 2, 7, and 8 and Comparative Examples 7 and 8 are shown in Table 3, and a graph of the minimum value and the maximum value of the speed fluctuation rate is shown in FIG.
  • Comparative Example 7 can minimize the speed fluctuation rate, and Comparative Example 8 has a speed fluctuation rate of 2.5% or more, and sufficient stability cannot be obtained.
  • the small-diameter drive pulley pitch of the present invention it is estimated that the influence by the winding of the core wire around the polygon in the molding process is greatly affected when the tooth pitch is 0.9 mm. This result can be considered that a toothed belt having a tooth pitch of 0.85 mm or less is suitable for a small pulley having a drive pulley diameter of 6.0 mm or less and 20 or more teeth. From FIG. 3, it can be confirmed that Examples 2, 7, and 8 and Comparative Example 7 have a speed fluctuation rate of 2.5% or less and the width is small, but Comparative Example 8 has a speed fluctuation rate range. Is not suitable for fine driving control such as printing.
  • Table 5 shows specific numerical data for Examples 3, 4, and 6 and Comparative Examples 1, 2, 3, 4, and 9.
  • the examples show a residual strength of 80% or more with respect to bending fatigue after 2 million reciprocations, and it can be confirmed that a sufficient strength is maintained.
  • tooth loss occurs in the aramid fiber core wire, and the polyester fiber core wire is cut, and the test is not achieved 2 million times. Even a glass fiber core wire was cut less than 70,000 times with a diameter of 0.18 mm.
  • FIG. 5 is a graphical representation of the residual strength retention after 2 million cycles.
  • FIG. 5 shows the residual strength retention after the 2 million-times test. When the glass fiber has a diameter of 0.3 mm or more, the residual strength rapidly decreases to 70% or less.
  • ⁇ D Dimensional stability test> The belt was tested for dimensional stability, focusing on the type of core wire.
  • As the target core wire a glass fiber core wire, an aramid fiber core wire, or a polyeltel fiber core wire was used. As shown in FIG. 7, the belt was wound around two pulleys, and the dimensional change when a load was applied was measured. About the thickness of the fiber which comprises a core wire, it is as having described in Table 1 and Table 2. 1. Test conditions ⁇ Leaving time in each environment: 24 hours ⁇ Temperature setting under each environment: 20 °C ⁇ Each sample is left free in the environment ⁇ Axis length measurement within 2 minutes under each environment ⁇ Axis length measurement conditions 2.
  • the glass fiber core wire is in the range of 0.012 to -0.006%, whereas the aramid fiber core wire is 0.03 to 0.11% in size due to changes in the humidity environment. It was measured to change. It was confirmed that the glass fiber core wire has high humidity resistance stability.
  • Table 1 and Table 2 the test which changed the thickness of the fiber which comprises a core wire is also performed. As for the thickness of the fiber constituting the core wire, it is shown that the durability is inferior at 5 microns used in Comparative Example 5, and the bending resistance is lowered at 10 microns used in Comparative Example 6, so the fiber thickness It was confirmed that 6 to 9 microns was suitable.
  • the glass fiber core wire is in the range of 0.002 to -0.023%, whereas the polyester fiber core wire is -0.019 to -0.093% depending on the change of temperature environment. It was measured that the dimensions changed. It was confirmed that the glass fiber core wire has high temperature resistance stability.
  • a glass fiber core wire is suitable as the core wire material.
  • the glass fiber core wire has high dimensional stability against humidity change and temperature change.
  • a suitable thickness is necessary to ensure moderate durability.
  • the diameter was 0.18 mm, cutting was performed, and when the diameter was 0.32 mm, it was confirmed that the fatigue durability was greatly reduced (see Table 5).
  • the rigidity of the glass fiber cannot be applied to the small-diameter pulley of the present invention.
  • the thickness of the fiber constituting the core wire As for the thickness of the fiber constituting the core wire, it is shown that the durability is inferior at 5 microns used in Comparative Example 5, and the bending resistance is lowered at 10 microns used in Comparative Example 6, so the fiber thickness It was confirmed that 6 to 9 microns was suitable. Therefore, a glass fiber core wire is suitable for a urethane toothed belt having a tooth pitch of 0.65 to 0.85 mm, and the diameter of the wire is 0.20 to 0.28 mm. A diameter of 6 to 9 microns is suitable. 2. It was confirmed that the residual strength of 80% or more after the 2 million times bending durability test was exhibited. 3. The wear resistance can be sufficiently maintained by adding 0.5 to 1.5% by weight of carbon.
  • the conductive carbon also contributes to the improvement of wear resistance. 4). It was confirmed that sufficient conductivity can be obtained by adding 0.5 to 1.5% by weight of conductive carbon. In particular, in the belt of this example added with 1.5% by weight, since it was confirmed that the belt molding and durability were good, it was confirmed that there was no adverse effect on molding such as agglomeration and chipping. did it. 5. It is confirmed that the belt configuration of the present invention can provide a toothed belt that can be used with a diameter smaller than a pulley pitch diameter of ⁇ 6.468 mm (pitch: 1.016 mm, number of teeth: 20), has a small speed fluctuation, and is durable. did.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

Disclosed is a toothed belt wherein core wires are composed of glass cords, and the tooth pitch is 0.65 to 0.85 mm. The diameter of each core wire is 0.20 to 0.28 mm, and the diameter of each fiber constituting the core wire is 6 to 9 microns. The toothed belt has an excellent applicability to small-diameter pulleys.

Description

歯付ベルトToothed belt
 本発明は、歯付ベルトに関する。特に、一般OA機器やプリンタなどの駆動用に用いられる歯付ベルトに関する。 The present invention relates to a toothed belt. In particular, the present invention relates to a toothed belt used for driving a general OA device or a printer.
 一般OA機器やプリンタなどの駆動用として、主に歯ピッチ1.0mm、1.5mm、2mm、3mmの歯付ベルトが使用されている。近年、装置のコンパクト化、高精度化、省エネ化にともない、更に小プーリ径での使用、低速度変動等が要求されてきている。
 従来、歯付ベルト特有の噛み合い周期でのベルト速度変動により、印字ムラが起こっていた。また、カード、紙幣の識別機に歯付ベルトを使用した装置においても、噛み合い周期の速度ムラにより、搬送物の速度がバラツキ、正確に識別できない問題が発生していた。
 一方、モータを小型化し、装置を省力化する必要があり、プーリ径を小さくすると、プーリの歯数が少なくなり、ベルトとプーリの噛み合いが多角形になり、速度変動が増大する問題点がある。また、プーリ径を小さくすると、歯付ベルトの芯線の曲率が大きくなり、屈曲疲労による強度低下を生じ、耐久性が満足しない問題があった。
 現在プリンタの駆動ベルトに使用されているプーリピッチ径はΦ6.468mm(ピッチ1.016mm、歯数20)、であるが、モータの省力化により、更に小径で使用する要求があった。
To drive general OA equipment and printers, toothed belts with a tooth pitch of 1.0 mm, 1.5 mm, 2 mm, and 3 mm are mainly used. In recent years, along with downsizing, high accuracy, and energy saving of devices, use with a smaller pulley diameter, low speed fluctuation, and the like have been demanded.
Conventionally, printing unevenness has occurred due to belt speed fluctuations at the meshing cycle peculiar to toothed belts. Further, even in an apparatus using a toothed belt as a card / banknote discriminator, there is a problem that the speed of the conveyed product varies due to uneven speed of the meshing cycle and cannot be accurately identified.
On the other hand, it is necessary to reduce the size of the motor and save the equipment. If the pulley diameter is reduced, the number of teeth of the pulley decreases, the meshing between the belt and the pulley becomes a polygon, and the speed fluctuation increases. . Further, when the pulley diameter is reduced, the curvature of the core wire of the toothed belt is increased, the strength is reduced due to bending fatigue, and the durability is not satisfied.
The pulley pitch diameter currently used for the drive belt of the printer is Φ 6.468 mm (pitch 1.016 mm, number of teeth 20). However, due to the labor saving of the motor, there has been a demand to use a smaller diameter.
 例えば、特許文献1(特開平9-280329号公報)には、ベルトの歯形状を丸歯とし、ベルトの歯間ピッチが0.75~1.0mmである。この歯付ベルトの芯線として、0.5~2.0デニールのモノフィラメントからなるアラミド繊維を収束したフィラメント群を少なくとも一本束ねて片撚りして得られた直径0.10~0.20mmのアラミド繊維ロープを使用している。歯付ベルトを構成するエラストマー100重量部に対して多孔質充填剤を5~80重量部添加し、ベルト背部を研磨することにより多孔質充填剤をベルト背面に表出させた歯付ベルトが開示されている。ベルト速度の変動を小さくし、低温度においてもしなやかで、また油がベルト表面に付着しても摩擦係数の変化を極力小さくすることができる旨が記載されている。
 精密ベルト用ウレタン製ハス歯ベルトは、特許文献2(特開2009-014023号公報)等に開示されている。  
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 9-280329), the tooth shape of the belt is a round tooth, and the inter-tooth pitch of the belt is 0.75 to 1.0 mm. As a core wire of the toothed belt, an aramid having a diameter of 0.10 to 0.20 mm obtained by bundling at least one filament group in which aramid fibers made of monofilament of 0.5 to 2.0 denier are bundled and twisted. A fiber rope is used. Disclosed is a toothed belt in which 5 to 80 parts by weight of a porous filler is added to 100 parts by weight of an elastomer constituting a toothed belt, and the back of the belt is polished to expose the porous filler to the back of the belt. Has been. It is described that the change in the friction coefficient can be minimized as much as possible by reducing fluctuations in the belt speed, being supple at low temperatures, and even if oil adheres to the belt surface.
A urethane helical tooth belt for precision belts is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2009-014023) and the like.
特開平9-280329号公報JP-A-9-280329 特開2009-014023号公報JP 2009-014023 A
 本発明は、小径プーリで使用できる歯付ベルトを開発することを目的とする。特に、プーリピッチ径はΦ6.468mm(ピッチ1.016mm、歯数20)より、更に小径で使用できる歯付ベルトを開発することを目的とする。 The object of the present invention is to develop a toothed belt that can be used with a small-diameter pulley. In particular, an object of the present invention is to develop a toothed belt that can be used with a smaller diameter than a pulley pitch diameter of 6.468 mm (pitch: 1.016 mm, number of teeth: 20).
 すなわち、本発明の主な構成は、次のとおりである。
1.芯線がガラスコードであり、歯ピッチが0.65~0.85mmであるウレタン製歯付ベルトであって、芯線の線径が0.20~0.28mmであり、芯線を構成する繊維の直径が6~9ミクロンであることを特徴とするウレタン製歯付ベルト。
2. ウレタン層にカーボン0.5~1.5重量%を添加したことを特徴とする1.記載のウレタン製歯付ベルト。
3.カーボンは導電性であり、導電性カーボン0.5~1.5重量%を添加したことを特徴とする2.記載のウレタン歯付ベルト。
4.カーボンは導電性であり、ベルトの電気抵抗が10^5~10^8Ω・cmであることを特徴とする3.記載のウレタン歯付ベルト。
That is, the main configuration of the present invention is as follows.
1. A urethane toothed belt having a core wire made of glass cord and a tooth pitch of 0.65 to 0.85 mm, the core wire having a wire diameter of 0.20 to 0.28 mm, and the diameter of the fibers constituting the core wire Urethane toothed belt, characterized in that is 6-9 microns.
2. 1. Add 0.5 to 1.5% by weight of carbon to the urethane layer. The urethane toothed belt as described.
3. Carbon is electrically conductive and is characterized by the addition of 0.5 to 1.5% by weight of electrically conductive carbon. The urethane toothed belt as described.
4). 2. Carbon is conductive and the belt has an electric resistance of 10 ^ 5 to 10 ^ 8 Ω · cm. The urethane toothed belt as described.
1.本発明では、さらに小ピッチのウレタン製精密ベルトを提供することができた。小径プーリで使用できることから、モータを小型化でき、装置の省力化ができる。プーリピッチ径はΦ6.468mm(ピッチ1.016mm、歯数20)にすることにより、更に小径で使用できる歯付ベルトを実現することができた。ガラス繊維製の芯線を細い繊維を用い細い線径に撚ることにより、小径プーリの曲率にも十分に屈曲対応ができる歯付ベルトを実現することができた。モータを小型化することにより、省電力、装置の小型・軽量化に寄与することができる。
2.また、ガラス繊維性の芯線を採用することにより、湿度影響による寸法変化が小さく、寸法安定性が向上する。小径プーリになるに従い、プーリ歯とベルトの歯のかみ合わせのクリアランスが小さくなるので、寸法変化によりベルトとプーリの噛み合い干渉が生じ易くなり、速度変動が大きくなる要因となるが、本発明では、寸法安定性を向上させることができたので、小径プーリにも十分に対応でき、タイミングベルトの速度変動を押さえることができる。
3.速度変動が小さいので、画像ムラを低減できる。
4.カーボン添加により、耐摩耗性が向上できる。歯ピッチが小さくなると、歯の形状が小さくなってベルトに掛かる面圧が大きくなるが、ウレタンにカーボンを添加することによって、ウレタン歯部の耐摩耗性を向上させることができる。
5.小プーリを使用すると、プーリの回転数は大プーリのときより、多くなる。ベルトとプーリの歯の噛み合わせ速度が速くなり、よりプーリと摺動することとなり、より静電気が発生しやすくなる。導電性カーボンを添加することにより、ベルトやプーリおよび周辺部品の帯電を抑制し、インクジェットプリンターではインクミストの汚染を防止できる。絶縁タイプのベルトを使用した場合にはプーリとの摺動により部品が帯電し、スケールが帯電すると、インクミストを引きよせ、スケールが汚染することにより、位置決め制御が不能となる問題があるが、この問題を解決することができる。
 一方、導電性カーボンは、凝集が生じやすく、成形性を低下させ、分布密度が不均一となるとベルト歯欠けの原因となる。本発明では、添加量を0.5~1.5重量%と微量添加によって、耐久性を保ちながらミスト吸引を防止できる電気抵抗を実現している。
1. In the present invention, a urethane precision belt having a smaller pitch can be provided. Since it can be used with a small-diameter pulley, the motor can be miniaturized and the equipment can be saved. By setting the pulley pitch diameter to 6.468 mm (pitch: 1.016 mm, number of teeth: 20), it was possible to realize a toothed belt that can be used with a smaller diameter. By twisting a glass fiber core wire to a thin wire diameter using a thin fiber, it was possible to realize a toothed belt that can sufficiently bend the curvature of a small pulley. By downsizing the motor, it can contribute to power saving and downsizing and weight reduction of the device.
2. In addition, by adopting a glass fiber core wire, the dimensional change due to the influence of humidity is small, and the dimensional stability is improved. As the pulley becomes smaller in diameter, the clearance between the pulley teeth and the belt teeth becomes smaller, so that the meshing interference between the belt and the pulley is likely to occur due to the dimensional change, which causes the speed fluctuation to increase. Since the stability could be improved, it can sufficiently cope with a small-diameter pulley and can suppress the speed fluctuation of the timing belt.
3. Since the speed fluctuation is small, image unevenness can be reduced.
4). Wear resistance can be improved by adding carbon. When the tooth pitch is reduced, the tooth shape is reduced and the contact pressure applied to the belt is increased. However, by adding carbon to urethane, the wear resistance of the urethane tooth portion can be improved.
5. When a small pulley is used, the number of rotations of the pulley is higher than when a large pulley is used. The meshing speed of the belt and pulley teeth is increased, and the belt slides more with the pulley, so that static electricity is more likely to be generated. By adding conductive carbon, charging of the belt, pulley, and peripheral parts can be suppressed, and the ink mist can be prevented from being contaminated in the ink jet printer. When an insulation type belt is used, the parts are charged by sliding with the pulley, and if the scale is charged, there is a problem that the ink mist is drawn and the scale is contaminated, which makes positioning control impossible. This problem can be solved.
On the other hand, conductive carbon tends to agglomerate, lowers moldability, and causes unevenness of the belt teeth when the distribution density is not uniform. In the present invention, an electrical resistance capable of preventing mist suction while maintaining durability is realized by adding a small amount of 0.5 to 1.5% by weight.
ベルト装着概略構成図Belt wearing schematic configuration diagram ベルト構造概略図Belt structure schematic 速度変動の最小・最大値を示すグラフGraph showing minimum and maximum speed fluctuations 耐久試験模式図Endurance test schematic diagram 芯線径に関する200万回往復稼働後の残存強度保持率を示すグラフGraph showing the residual strength retention after 2 million reciprocations for core wire diameter 耐摩耗試験結果を示すグラフGraph showing wear resistance test results 寸法安定性試験模式図Dimensional stability test schematic diagram ガラス芯線とアラミド芯線に関する環境湿度による寸法変化特性を示すグラフGraph showing dimensional change characteristics due to environmental humidity for glass core wire and aramid core wire ガラス芯線ポリエステル芯線に関する環境温度による寸法変化特性を示すグラフGraph showing the dimensional change characteristics of glass core polyester core wire with environmental temperature
 本発明は、ウレタン製歯付ベルトについて、プーリピッチ径Φ5.840mmでも使用できる芯線の素材、線径、構成、撚りに関して研究開発を行った。これらの検討要素は、研究開発の過程で次のような矛盾した事項が含まれることが判明したので、単純な解決手法で対処することは困難である。ベルトの芯線は成型用内金型に巻線された状態が多角形になっているので、歯付ベルト用のプーリが小さくなると、プーリピッチを従来と同じにすると多角形の角数が少なくなり、芯線ピッチの変動に起因する速度変動が大きくなる。その解決として、ピッチを小さくすることがあるが、ピッチが小さくなることは、歯形が小さくなり、より精密な設計及び成形を実現する必要がある。
 芯線径が小さいとベルトが伝達できる力が少なく、機能を満足しない。一方、芯線が太いと小プーリに巻き付けたときの疲労性が増大し、寿命を満足しない。
 また、芯線用素材として、ガラスコード以外に、ポリエステル繊維、アラミド繊維があるが、ポリエステル繊維製芯線はガラスコードと比較し、強度が低く、温度による寸法変化が大きい。アラミド繊維はガラス繊維と同等の強度を有するが、湿度の影響による寸法変化が大きく、寸法変化によりベルトとプーリの噛み合い干渉を生じ、速度変動が大きくなる要因となることがわかった。
 よって、芯線は以下に示すガラスコードを使用することが好ましい。
 また、小径プーリにすることで、歯ピッチは小さい方が、多角形運動が円運動に近づくため、歯ピッチは0.65~0.85mmピッチが好ましい。他方、歯ピッチを小さくすると、歯の大きさが小さくなるため、ベルトに掛かる面圧が大きくなり、ベルト歯部の損耗が生じ、ベルトの破損や寿命が短くなる。このため、ウレタン歯部の摩耗性対策が必要となる。本発明では、耐摩耗性を向上させるために、カーボンを添加することを検討した。また、表面を帆布で被覆する手段は、小ピッチの歯形では、帆布が歯部に占める割合が高くなって、歯部の樹脂量を十分に確保できず、歯付ベルトの構造としては不適切である。本発明のベルトでは帆布を使用しない。
 従来のウレタンベルトは絶縁タイプであるが、ベルト歯部とプーリ歯部の摩擦が多くなると、プーリとの摺動により部品が帯電する問題が大きくなる。スケールを使用する機械例えばインクジェットプリンターのキャリッジ駆動用ベルトでは、スケールが帯電するとインクミストを引きよせ、スケールが汚染することとなり、位置決め制御が不能となる問題が発生する。この課題に対して、本研究開発では、導電性カーボンを付与することで、キャリッジ駆動ベルトにおける帯電を防止することを検討した。この結果、帯電を防止でき、インクミスト引きよせによるスケールが汚染することを防止することができた。特に導電性カーボンは、凝集など樹脂の成型には難点もあるので、成形性の及ぼす影響や成形されたベルトの強度などに及ぼす影響も考慮して、使用量を検討した。
The present invention has been researched and developed with respect to a material, a wire diameter, a configuration, and a twist of a core wire that can be used even with a pulley pitch diameter of Φ5.840 mm for a urethane toothed belt. These examination elements have been found to contain the following contradictory items in the process of research and development, and it is difficult to deal with them with a simple solution. Since the core wire of the belt is polygonal when it is wound around the inner mold for molding, if the pulley for the toothed belt is small, the number of polygonal corners will be reduced if the pulley pitch is the same as the conventional one. Speed fluctuation due to fluctuation of the core wire pitch becomes large. As a solution, the pitch may be reduced. However, if the pitch is reduced, the tooth profile becomes smaller, and it is necessary to realize a more precise design and molding.
If the core wire diameter is small, the belt can transmit less force and the function is not satisfied. On the other hand, if the core wire is thick, the fatigue property when wound around a small pulley increases and the life is not satisfied.
In addition to the glass cord, the core wire material includes polyester fiber and aramid fiber, but the polyester fiber core wire has lower strength and a greater dimensional change due to temperature than the glass cord. The aramid fiber has the same strength as the glass fiber, but the dimensional change due to the influence of humidity is large, and it has been found that the dimensional change causes meshing interference between the belt and the pulley, which causes a large speed fluctuation.
Therefore, it is preferable to use the following glass cord for the core wire.
Further, by using a small-diameter pulley, the smaller the tooth pitch, the closer the polygonal motion approaches to the circular motion, so the tooth pitch is preferably 0.65 to 0.85 mm. On the other hand, when the tooth pitch is reduced, the tooth size is reduced, so that the surface pressure applied to the belt is increased, the belt tooth portion is worn, and the belt is damaged or shortened. For this reason, it is necessary to take measures against wear of the urethane tooth portion. In the present invention, the addition of carbon was studied in order to improve the wear resistance. In addition, the means for covering the surface with canvas is not suitable for the structure of a toothed belt because the ratio of the canvas to the tooth part becomes high and the resin amount of the tooth part cannot be secured sufficiently with a small pitch tooth profile. It is. No canvas is used in the belt of the present invention.
A conventional urethane belt is an insulating type. However, when the friction between the belt tooth portion and the pulley tooth portion increases, the problem of charging the parts due to sliding with the pulley increases. In a machine using a scale, for example, a carriage driving belt of an ink jet printer, when the scale is charged, ink mist is drawn, the scale is contaminated, and positioning control becomes impossible. In order to deal with this problem, this research and development examined the prevention of charging in the carriage drive belt by applying conductive carbon. As a result, it was possible to prevent charging and to prevent the scale from being contaminated by drawing ink mist. In particular, conductive carbon has problems in molding resin such as agglomeration, so the amount used was examined in consideration of the effect on moldability and the strength of the molded belt.
1.本発明のウレタン製歯付ベルトは、芯線がガラスコードであり、歯ピッチが0.65~0.85mmであるウレタン製歯付ベルトである。芯線の線径が0.20~0.28mmであり、芯線を構成する繊維は直径が6~9ミクロンを用いることが好ましい。
 ウレタン素材は、ウレタン製歯付ベルト用に用いられている材料を使用することができる。
 ガラスコードの例としては、繊維直径9μm、ストランド繊維数200本、ストランド番手34tex(g/1000m)、下撚り構成ストランド2本、下撚り糸数1本、上撚り数3.7tpiとするコード構成が挙げられる。コード特性(規格値)は、中心値が番手84g/1000m、強熱減量16重量%、上撚り数3.7tpi、コード径0.24mm、最小引張強さ49Nである。
2.ウレタン層に耐摩耗用として添加するカーボン量は、0.5~1.5重量%が好ましい。添加カーボンとしては、サーマルブラック、ケッチェンブラック、アセチレンブラック、チャンネルブラック、カラーブラック、ファーネスブラック等のカーボンブラックがある。
3.添加するカーボンは導電性であり、導電性カーボンの添加量は0.5~1.5重量%が好ましい。添加導電性カーボンとしては、ケッチェンブラック、アセチレンブラック等がある。
 添加量が多すぎるとポリウレタン中にカーボンが凝集し、ベルトの歯欠け耐久性が悪化する。また、添加量が多すぎるとポリウレタンの粘度が高くなり、外型と内型の隙間にウレタンを注型し、ベルト形状形成する際、エアー混入による形成不良が発生する。
4.カーボンは導電性であり、ベルトの電気抵抗が10^5~10^8Ω・cmであることを特徴とする2.記載のウレタン歯付ベルト。導電性カーボンの添加量は0.5~1.5重量%、望ましくは0.8~1.2重量%である。電気抵抗は、10^5~10^8Ω・cm、望ましくは10^6~10^7Ω・cmである。
 導電性を付与するカーボンとしては、例えば、サーマルブラック、ケッチェンブラック、アセチレンブラック、チャンネルブラック、カラーブラック、ファーネスブラック等の導電性カーボンブラック、グラファイト等を挙げることができる。
5.これまで、グラスファイバー芯線のウレタン歯付ベルトで使用されたプーリのピッチ円直径は、例えば、インクジェットプリンターのキャリッジ駆動用としてφ6.468mm(ピッチ1.016mm、タイプ20歯)であったが、本発明によりφ5.840mm(ピッチ0.7056mm、歯数26歯)と小径プーリに使用できるウレタン製精密ベルトを実現できた。
6.本発明のウレタン製精密ベルトは、プリンタ用キャリッジ駆動用ベルト、カード、紙幣等を搬送するエラストマーからなる無端状の搬送用ベルト、プリンタ用キャリッジベルト、紙幣搬送用ベルト、カード搬送用ベルト、及び軽負荷用駆動ベルト等に使用する歯付ベルト駆動装置及び歯付ベルトOA機器(事務機器)などに適用されており、例えば、プリンタのキャリッジ駆動、紙送り、あるいは複写機の紙送りや感光ドラム駆動などに使用される。
1. The urethane toothed belt of the present invention is a urethane toothed belt having a core wire made of glass cord and a tooth pitch of 0.65 to 0.85 mm. The core wire has a wire diameter of 0.20 to 0.28 mm, and the fibers constituting the core wire preferably have a diameter of 6 to 9 microns.
As the urethane material, a material used for urethane toothed belts can be used.
As an example of the glass cord, a cord configuration having a fiber diameter of 9 μm, a strand fiber number of 200, a strand count of 34 tex (g / 1000 m), two twisted strands, a twisted yarn number of 1, and a twisted number of 3.7 tpi is used. Can be mentioned. The cord characteristics (standard values) are as follows: the center value is a count of 84 g / 1000 m, the loss on ignition is 16% by weight, the number of twists is 3.7 tpi, the cord diameter is 0.24 mm, and the minimum tensile strength is 49N.
2. The amount of carbon added for wear resistance to the urethane layer is preferably 0.5 to 1.5% by weight. Examples of the additive carbon include carbon black such as thermal black, ketjen black, acetylene black, channel black, color black, and furnace black.
3. The carbon to be added is conductive, and the amount of conductive carbon added is preferably 0.5 to 1.5% by weight. Examples of the additive conductive carbon include ketjen black and acetylene black.
If the amount added is too large, carbon aggregates in the polyurethane, and the tooth chipping durability of the belt deteriorates. Moreover, when the addition amount is too large, the viscosity of the polyurethane becomes high, and when forming the belt shape by casting urethane into the gap between the outer mold and the inner mold, formation failure due to air mixing occurs.
4). Carbon is electrically conductive and the belt has an electric resistance of 10 ^ 5 to 10 ^ 8 Ω · cm. The urethane toothed belt as described. The amount of conductive carbon added is 0.5 to 1.5% by weight, desirably 0.8 to 1.2% by weight. The electrical resistance is 10 ^ 5 to 10 ^ 8 Ω · cm, preferably 10 ^ 6 to 10 ^ 7 Ω · cm.
Examples of carbon imparting conductivity include conductive carbon black such as thermal black, ketjen black, acetylene black, channel black, color black, and furnace black, and graphite.
5. Up to now, the pitch circle diameter of pulleys used in glass fiber core wire urethane toothed belts was, for example, φ 6.468 mm (pitch 1.016 mm, type 20 teeth) for driving an inkjet printer carriage. According to the invention, a precision belt made of urethane that can be used for a small diameter pulley having a diameter of 5.840 mm (pitch: 0.7056 mm, 26 teeth) can be realized.
6). The precision urethane belt of the present invention includes a carriage for driving a printer, an endless transport belt made of an elastomer for transporting cards, bills, etc., a carriage for a printer, a bill transport belt, a card transport belt, and a light belt. Applied to toothed belt drive devices and toothed belt OA equipment (office equipment) used for load drive belts, for example, printer carriage drive, paper feed, copier paper feed and photosensitive drum drive Used for etc.
 ウレタン樹脂製の背部と歯部及び芯線とから構成される通常構成の歯付ベルトを通常の製法で作成した。本実施例、比較例では帆布を使用しない。
 歯ピッチ、芯線、カーボン添加量は、表1、2の構成を採用した。ベルト長さ787mm、ベルト幅3mmとした。ウレタンの種類は通常ウレタンベルトに用いられている組成である。添加カーボンは、導電性カーボンであるケッチェンブラックEC-300J(ライオン社製)を使用した。可塑化剤としては、CGSスター社製のDOP、ジ・2エチルヘキシル・フタレートなどを添加することができる。
 評価試験及び試験結果の全体のまとめを表1、2に記載し、それぞれの試験に関する詳述を次に展開する。表1は実施例1~10を、表2は比較例1~9を掲載する。
A toothed belt having a normal configuration including a back portion made of urethane resin, a tooth portion, and a core wire was prepared by a normal manufacturing method. In this example and the comparative example, no canvas is used.
For the tooth pitch, core wire, and carbon addition amount, the configurations shown in Tables 1 and 2 were adopted. The belt length was 787 mm and the belt width was 3 mm. The type of urethane is a composition usually used for urethane belts. As the added carbon, Ketjen Black EC-300J (manufactured by Lion), which is conductive carbon, was used. As the plasticizer, DOP manufactured by CGS Star Co., di-2ethylhexyl phthalate, or the like can be added.
A summary of the overall evaluation test and test results is listed in Tables 1 and 2, and the details of each test are developed next. Table 1 lists Examples 1 to 10, and Table 2 lists Comparative Examples 1 to 9.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<A 速度ムラ測定試験>
 駆動プーリと従動プーリ間に試験用ベルトを掛けまわし、従動プーリに2kgf(19.6N)の軸荷重を与え、駆動プーリを2500min-1の回転数で走行させて発生する速度ムラを計測した。測定装置の基本構成は特開2002-098202号公報図12に掲載されている公知の装置を用いた。
 試験結果の評価は次の基準とし、その結果は表1、2に記載したとおりである。
  速度変動率% ◎:1.0以下 ○:1.0以上2.5以下 ×:2.5以上
 
 実施例2、7、8及び比較例7、8について、測定した速度変動率を表3に示し、速度変動率の最小数値と最大数値のグラフを図3に示す。
<A Speed unevenness measurement test>
A test belt was wound between the driving pulley and the driven pulley, an axial load of 2 kgf (19.6 N) was applied to the driven pulley, and the speed unevenness generated by running the driving pulley at a rotational speed of 2500 min −1 was measured. As a basic configuration of the measuring apparatus, a known apparatus described in FIG. 12 of JP-A-2002-098202 is used.
The evaluation of the test results is based on the following criteria, and the results are as shown in Tables 1 and 2.
Speed fluctuation rate% ◎: 1.0 or less ○: 1.0 or more and 2.5 or less ×: 2.5 or more
The measured speed fluctuation rates for Examples 2, 7, and 8 and Comparative Examples 7 and 8 are shown in Table 3, and a graph of the minimum value and the maximum value of the speed fluctuation rate is shown in FIG.
 速度変動について着目すると、比較例7が速度変動率を最小に抑えることが可能であり、比較例8では、速度変動率が2.5%以上となり、十分な安定性が得られない。本発明の小径駆動プーリピッチでは、歯ピッチ0.9mmでは、成形工程で多角形に芯線が巻き付けられることによる、影響が大きく作用していると推測される。この結果は、駆動プーリ径6.0mm以下、歯数20以上の小径プーリでは、歯ピッチを0.85mm以下とする歯付ベルトが適しているとみなすことができる。図3から、実施例2、7、8及び比較例7は、速度変動率が2.5%以下であって、その幅も小さいことが確認できるが、比較例8は、速度変動率の幅が大きく、印字などの微細な駆動コントロールには不適である。 Focusing on speed fluctuation, Comparative Example 7 can minimize the speed fluctuation rate, and Comparative Example 8 has a speed fluctuation rate of 2.5% or more, and sufficient stability cannot be obtained. In the small-diameter drive pulley pitch of the present invention, it is estimated that the influence by the winding of the core wire around the polygon in the molding process is greatly affected when the tooth pitch is 0.9 mm. This result can be considered that a toothed belt having a tooth pitch of 0.85 mm or less is suitable for a small pulley having a drive pulley diameter of 6.0 mm or less and 20 or more teeth. From FIG. 3, it can be confirmed that Examples 2, 7, and 8 and Comparative Example 7 have a speed fluctuation rate of 2.5% or less and the width is small, but Comparative Example 8 has a speed fluctuation rate range. Is not suitable for fine driving control such as printing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<B 耐久性試験>
  図4に示す試験機を用いた。2軸のプーリ5、6に各仕様直歯ベルト1を巻き掛け、一定荷重を与える。下スパンにはベルトにプリンタのキャリッジを模擬したワークG(500gの重り)が装着されている。駆動プーリを正逆に回転させることによりワークを左右に往復させる。このとき、駆動プーリに巻き付いたべルトの歯部は繰り返し、駆動プーリに巻き付き、応力を受けることにより歯付べルトの歯部が疲労し、歯部がせん断破壊を生じる。200万回の往復屈曲試験後の残存強度を測定して評価した結果を表1、表2に示す。
  ○、◎:200万回往復走行を達成
     (注)200万回往復走行後の歯部の摩耗量の違いを目視評価
  ×:200万回往復走行未達成(ベルト歯欠け、切断が発生し、走行不能となる) 
<B durability test>
The testing machine shown in FIG. 4 was used. Each specification straight tooth belt 1 is wound around two- shaft pulleys 5 and 6 to give a constant load. A work G (500 g weight) simulating a printer carriage is attached to the belt on the lower span. The work is reciprocated left and right by rotating the drive pulley forward and backward. At this time, the tooth portion of the belt wound around the drive pulley is repeatedly wound around the drive pulley and is subjected to stress, whereby the tooth portion of the toothed belt is fatigued and the tooth portion is sheared. Tables 1 and 2 show the results of measuring and evaluating the residual strength after 2 million round-trip bending tests.
○, ◎: Achieved 2 million reciprocations (Note) Visual evaluation of difference in tooth wear after 2 million reciprocations ×: Not achieved 2 million reciprocations (belt teeth missing, cutting occurred, It becomes impossible to run)
 実施例3、4、6及び比較例1、2、3、4、9について具体的な数値データを表5に示す。実施例は、200万回往復動後の屈曲疲労性について残存強度80%以上を示し、十分な強度を維持することが確認できる。一方、アラミド繊維芯線では、歯欠けが発生し、ポリエステル繊維芯線では切断し、200万回試験を達成しない。ガラス繊維芯線でも、0.18mm径では7万回未満で切断した。図5に200万回後の残存強度保持率をグラフ表示した。図5に200万回試験後の残存強度保持率を示すと、ガラス繊維0.3mm径以上では、残存強度が70%以下に急激に低下することが示されている。 Table 5 shows specific numerical data for Examples 3, 4, and 6 and Comparative Examples 1, 2, 3, 4, and 9. The examples show a residual strength of 80% or more with respect to bending fatigue after 2 million reciprocations, and it can be confirmed that a sufficient strength is maintained. On the other hand, tooth loss occurs in the aramid fiber core wire, and the polyester fiber core wire is cut, and the test is not achieved 2 million times. Even a glass fiber core wire was cut less than 70,000 times with a diameter of 0.18 mm. FIG. 5 is a graphical representation of the residual strength retention after 2 million cycles. FIG. 5 shows the residual strength retention after the 2 million-times test. When the glass fiber has a diameter of 0.3 mm or more, the residual strength rapidly decreases to 70% or less.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<C 耐摩耗性試験(テーバー摩耗試験)JIS K7024>
 JIS K7024に規定されるプラスチック―摩耗輪による摩耗試験方法にしたがって試験を行った。試験条件を表6に示す。結果を表1、表2に示す。各試験例とも十分な対摩耗性を示す。導電性に差のある実施例1と実施例2について、具体的な試験データを表7に示し、図6にそのグラフを示す。
 表7、図6から、回数の増加、荷重の増加に比例して摩耗が進むことが示されている。
導電性カーボンを添加した実施例2は、非導電性カーボンを添加した実施例1よりも摩耗性が少ないことが示されている。実施例2は実施例1に比較して、50~80%程度に抑制されている。荷重が大きいほど抑制効果が大きい。
<C abrasion resistance test (Taber abrasion test) JIS K7024>
The test was conducted in accordance with the abrasion test method using plastic-abrasion wheels specified in JIS K7024. Table 6 shows the test conditions. The results are shown in Tables 1 and 2. Each test example shows sufficient wear resistance. Table 7 shows specific test data for Example 1 and Example 2 having a difference in conductivity, and FIG. 6 shows a graph thereof.
Table 7 and FIG. 6 show that wear progresses in proportion to the increase in the number of times and the increase in load.
It has been shown that Example 2 with the addition of conductive carbon has less wear than Example 1 with the addition of non-conductive carbon. Example 2 is suppressed to about 50 to 80% compared to Example 1. The greater the load, the greater the suppression effect.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<D 寸法安定性試験>
 芯線の種類に着目した、ベルトの寸法安定性について試験を行った。
 対象芯線は、ガラス繊維製芯線、アラミド繊維製芯線、ポリエルテル繊維製芯線を用いた。図7に示すように2つのプーリにベルトを掛け回し、荷重をかけたときの寸法変化を測定した。
 芯線を構成する繊維の太さについては、表1、表2に記載したとおりである。
1.試験条件
 ・各環境下での放置時間:24Hrs
 ・各環境下の温度設定 :20℃
 ・各試料は環境下にフリーの状態で放置
 ・軸間長さ測定は各環境下で2分以内に測定
 ・軸間長さ測定条件
 
2.芯線比較 ガラス繊維、アラミド繊維
 ガラス繊維製芯線とアラミド繊維製芯線を用いたウレタン製ベルトについて、湿度変化に影響されるベルト長の変化を試験した。結果を表8、図8に示す。
 ・ガラス繊維製芯線ベルト:実施例2
 ・アラミド繊維製芯線ベルト:比較例2
<D Dimensional stability test>
The belt was tested for dimensional stability, focusing on the type of core wire.
As the target core wire, a glass fiber core wire, an aramid fiber core wire, or a polyeltel fiber core wire was used. As shown in FIG. 7, the belt was wound around two pulleys, and the dimensional change when a load was applied was measured.
About the thickness of the fiber which comprises a core wire, it is as having described in Table 1 and Table 2.
1. Test conditions ・ Leaving time in each environment: 24 hours
・ Temperature setting under each environment: 20 ℃
・ Each sample is left free in the environment ・ Axis length measurement within 2 minutes under each environment ・ Axis length measurement conditions
2. Core Wire Comparison Glass Fiber, Aramid Fiber A urethane belt using a glass fiber core wire and an aramid fiber core wire was tested for changes in belt length affected by humidity changes. The results are shown in Table 8 and FIG.
Glass fiber core wire belt: Example 2
Aramid fiber core wire belt: Comparative Example 2
 結果は、ガラス繊維製芯線は、0.012~-0.006%の範囲であるのに対して、アラミド繊維製芯線は、湿度環境の変化によって、0.03~0.11%も寸法が変化することが測定された。ガラス繊維製芯線は耐湿度安定性が高いことが確認された。
 なお、表1、表2に示すように、芯線を構成する繊維の太さを変えた試験も行っている。芯線を構成する繊維の太さは、比較例5で用いた5ミクロンでは耐久性が劣り、比較例6で用いた10ミクロンでも屈曲耐性が低下することが示されているので、繊維の太さは、6~9ミクロンが適していることが確認された。
The results show that the glass fiber core wire is in the range of 0.012 to -0.006%, whereas the aramid fiber core wire is 0.03 to 0.11% in size due to changes in the humidity environment. It was measured to change. It was confirmed that the glass fiber core wire has high humidity resistance stability.
In addition, as shown in Table 1 and Table 2, the test which changed the thickness of the fiber which comprises a core wire is also performed. As for the thickness of the fiber constituting the core wire, it is shown that the durability is inferior at 5 microns used in Comparative Example 5, and the bending resistance is lowered at 10 microns used in Comparative Example 6, so the fiber thickness It was confirmed that 6 to 9 microns was suitable.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
3.芯線比較 ガラス繊維、ポリエステル繊維
 ガラス繊維製芯線とポリエステル繊維製芯線を用いたウレタン製ベルトについて、温度変化に影響されるベルト長の変化を試験した。結果を表9、図9に示す。
 ・ガラス繊維製芯線ベルト:実施例2
 ・ポリエステル繊維製芯線ベルト:比較例1
3. Core Wire Comparison Glass Fiber, Polyester Fiber For urethane belts using glass fiber core wires and polyester fiber core wires, changes in belt length affected by temperature changes were tested. The results are shown in Table 9 and FIG.
Glass fiber core wire belt: Example 2
Polyester fiber core wire belt: Comparative Example 1
 結果は、ガラス繊維製芯線は、0.002~-0.023%の範囲であるのに対して、ポリエステル繊維製芯線は、温度環境の変化によって、-0.019~-0.093%も寸法が変化することが測定された。ガラス繊維製芯線は耐温度安定性が高いことが確認された。 The results show that the glass fiber core wire is in the range of 0.002 to -0.023%, whereas the polyester fiber core wire is -0.019 to -0.093% depending on the change of temperature environment. It was measured that the dimensions changed. It was confirmed that the glass fiber core wire has high temperature resistance stability.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
<E 電気抵抗(導電性テスト)>
 帯電防止仕様のウレタンタイミングベルトの電気抵抗について、次のような試験を行った。測定装置、測定環境、測定方法を表10に示す。測定結果を表1、表2に示す。
 非導電性カーボン添加は、10^10~10^12Ω・cmであるのに対して、導電性カーボンの添加によって、10^5~10^8Ω・cmの電気抵抗に改善されることが確認された。
<E Electrical resistance (conductivity test)>
The electrical resistance of the antistatic specification urethane timing belt was tested as follows. Table 10 shows the measurement apparatus, measurement environment, and measurement method. The measurement results are shown in Tables 1 and 2.
The addition of non-conductive carbon is 10 ^ 10 to 10 ^ 12 Ω · cm, whereas the addition of conductive carbon has been confirmed to improve the electrical resistance to 10 ^ 5 to 10 ^ 8 Ω · cm. It was.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[考察]
 以上のように、各試験結果及び全体をまとめた表1、表2の結果から次のように言える。
1.芯線素材は、ガラス繊維製芯線が適している。ガラス繊維製芯線は、湿度変化及び温度変化に対する寸法安定性が高い。一方、適度な耐久性を確保するには、適した太さが必要であることも確認された。0.18mm径では切断してしまい、0.32mm径では、疲労耐久性の低下が大きいことが確認された(表5参照)。特に、太い芯線径では、ガラス繊維の剛性が本発明の小径プーリに適応できないと想定される。芯線を構成する繊維の太さは、比較例5で用いた5ミクロンでは耐久性が劣り、比較例6で用いた10ミクロンでも屈曲耐性が低下することが示されているので、繊維の太さは、6~9ミクロンが適していることが確認された。
 したがって、歯ピッチが0.65~0.85mmであるウレタン製歯付ベルト用として、ガラス繊維製芯線が適しており、その線径が0.20~0.28mmであり、芯線を構成する繊維の直径が6~9ミクロンが適している。
2.200万回屈曲耐久性試験後の80%以上の残存強度を発揮することが確認できた。
3.カーボン0.5~1.5重量%添加により対摩耗性は十分に維持できる。特に、導電性カーボンは、対摩耗性の向上にも寄与していることが確認できる。
4.導電性カーボン0.5~1.5重量%添加により、十分な導電性が得られることが確認された。特に、1.5重量%添加した本実施例のベルトにおいて、ベルト成型及び耐久性が良好であることが確認されているので、凝集や歯欠けなどの成型に悪影響を及ぼすことが無いことが確認できた。
5.本発明のベルト構成によって、プーリピッチ径Φ6.468mm(ピッチ1.016mm、歯数20)より小径で使用できる、速度変動が小さく安定し、耐久性のある歯付ベルトを提供することができることを確認した。
[Discussion]
As described above, it can be said as follows from the results of Table 1 and Table 2 that summarize the test results and the whole.
1. A glass fiber core wire is suitable as the core wire material. The glass fiber core wire has high dimensional stability against humidity change and temperature change. On the other hand, it was also confirmed that a suitable thickness is necessary to ensure moderate durability. When the diameter was 0.18 mm, cutting was performed, and when the diameter was 0.32 mm, it was confirmed that the fatigue durability was greatly reduced (see Table 5). In particular, with a thick core wire diameter, it is assumed that the rigidity of the glass fiber cannot be applied to the small-diameter pulley of the present invention. As for the thickness of the fiber constituting the core wire, it is shown that the durability is inferior at 5 microns used in Comparative Example 5, and the bending resistance is lowered at 10 microns used in Comparative Example 6, so the fiber thickness It was confirmed that 6 to 9 microns was suitable.
Therefore, a glass fiber core wire is suitable for a urethane toothed belt having a tooth pitch of 0.65 to 0.85 mm, and the diameter of the wire is 0.20 to 0.28 mm. A diameter of 6 to 9 microns is suitable.
2. It was confirmed that the residual strength of 80% or more after the 2 million times bending durability test was exhibited.
3. The wear resistance can be sufficiently maintained by adding 0.5 to 1.5% by weight of carbon. In particular, it can be confirmed that the conductive carbon also contributes to the improvement of wear resistance.
4). It was confirmed that sufficient conductivity can be obtained by adding 0.5 to 1.5% by weight of conductive carbon. In particular, in the belt of this example added with 1.5% by weight, since it was confirmed that the belt molding and durability were good, it was confirmed that there was no adverse effect on molding such as agglomeration and chipping. did it.
5. It is confirmed that the belt configuration of the present invention can provide a toothed belt that can be used with a diameter smaller than a pulley pitch diameter of Φ6.468 mm (pitch: 1.016 mm, number of teeth: 20), has a small speed fluctuation, and is durable. did.
1 歯付ベルト
2 歯部
3 芯線
4 背部
5 プーリ
6 プーリ 
1 Toothed belt 2 Tooth 3 Core wire 4 Back 5 Pulley 6 Pulley

Claims (4)

  1.  芯線がガラスコードであり、歯ピッチが0.65~0.85mmであるウレタン製歯付ベルトであって、芯線の線径が0.20~0.28mmであり、芯線を構成する繊維の直径が6~9ミクロンであることを特徴とするウレタン製歯付ベルト。 A urethane toothed belt having a core wire made of glass cord and a tooth pitch of 0.65 to 0.85 mm, the core wire having a wire diameter of 0.20 to 0.28 mm, and the diameter of the fibers constituting the core wire Urethane toothed belt, characterized in that is 6-9 microns.
  2.  ウレタン層にカーボン0.5~1.5重量%を添加したことを特徴とする請求項1記載のウレタン製歯付ベルト。 The urethane toothed belt according to claim 1, wherein 0.5 to 1.5% by weight of carbon is added to the urethane layer.
  3.  カーボンは導電性であり、導電性カーボン0.5~1.5重量%を添加したことを特徴とする請求項2記載のウレタン歯付ベルト。 3. The urethane toothed belt according to claim 2, wherein carbon is conductive and 0.5 to 1.5% by weight of conductive carbon is added.
  4.  カーボンは導電性であり、ベルトの電気抵抗が10^5~10^8Ω・cmであることを特徴とする請求項3記載のウレタン歯付ベルト。
     
    4. The urethane toothed belt according to claim 3, wherein carbon is electrically conductive, and the electric resistance of the belt is 10 ^ 5 to 10 ^ 8 Ω · cm.
PCT/JP2010/068459 2009-12-24 2010-10-20 Toothed belt WO2011077817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292530 2009-12-24
JP2009292530A JP5416573B2 (en) 2009-12-24 2009-12-24 Toothed belt

Publications (1)

Publication Number Publication Date
WO2011077817A1 true WO2011077817A1 (en) 2011-06-30

Family

ID=44195363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068459 WO2011077817A1 (en) 2009-12-24 2010-10-20 Toothed belt

Country Status (2)

Country Link
JP (1) JP5416573B2 (en)
WO (1) WO2011077817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108079A1 (en) * 2014-03-31 2017-04-20 Mitsuboshi Belting Ltd. Toothed Belt
JP2018530485A (en) * 2015-10-08 2018-10-18 バンドール・プロダクシー・ベー・フェーBandall Productie B.V. Product bundling device
JP2018530486A (en) * 2015-10-08 2018-10-18 バンドール・プロダクシー・ベー・フェーBandall Productie B.V. Product bundling device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379669B2 (en) * 2014-05-22 2018-08-29 株式会社ジェイテクト Electric power steering device
US10786854B2 (en) * 2015-03-12 2020-09-29 Robert Bosch Tool Corporation Table saw with electrically isolated arbor shaft
JP6530276B2 (en) * 2015-08-20 2019-06-12 三ツ星ベルト株式会社 Belt system and its toothed belt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173434A (en) * 1988-12-24 1990-07-04 Bando Chem Ind Ltd Thermoplastic elastomer transmission belt
JP2005042737A (en) * 2003-05-27 2005-02-17 Mitsuboshi Belting Ltd Toothed belt
JP2006009845A (en) * 2004-06-23 2006-01-12 Mitsuboshi Belting Ltd Urethane belt
JP2006068932A (en) * 2004-08-31 2006-03-16 Mitsuboshi Belting Ltd Manufacturing method of toothed belt made of thermoplastic elastomer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173434A (en) * 1988-12-24 1990-07-04 Bando Chem Ind Ltd Thermoplastic elastomer transmission belt
JP2005042737A (en) * 2003-05-27 2005-02-17 Mitsuboshi Belting Ltd Toothed belt
JP2006009845A (en) * 2004-06-23 2006-01-12 Mitsuboshi Belting Ltd Urethane belt
JP2006068932A (en) * 2004-08-31 2006-03-16 Mitsuboshi Belting Ltd Manufacturing method of toothed belt made of thermoplastic elastomer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108079A1 (en) * 2014-03-31 2017-04-20 Mitsuboshi Belting Ltd. Toothed Belt
JP2018530485A (en) * 2015-10-08 2018-10-18 バンドール・プロダクシー・ベー・フェーBandall Productie B.V. Product bundling device
JP2018530486A (en) * 2015-10-08 2018-10-18 バンドール・プロダクシー・ベー・フェーBandall Productie B.V. Product bundling device

Also Published As

Publication number Publication date
JP2011133022A (en) 2011-07-07
JP5416573B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2011077817A1 (en) Toothed belt
JP5116791B2 (en) Toothed belt
JP5219275B2 (en) Steel cord
KR101265821B1 (en) Friction belt for power transmission
JP2017512957A (en) Conductive power transmission belt
KR101812747B1 (en) Roller for image forming apparatus and image forming apparatus comprising the same
US20140206487A1 (en) Toothed belt
US20130059690A1 (en) High Performance Toothed Belt
EP3792521B1 (en) Toothed belt
CN104428463B (en) Belt including fiber
WO2018008204A1 (en) Toothed belt and production method therefor
KR20120023600A (en) Friction transmission belt
JP3859640B2 (en) Manufacturing method of helical tooth belt and helical tooth belt
JP2002069240A (en) Chloroprene rubber composition and transmission belt using the same
CN111727287A (en) Rubber reinforcing cord and rubber product using same
JP2005098470A (en) Toothed belt
JP2021500491A (en) Steel cord for elastomer reinforcement
JP4773277B2 (en) Steel cord manufacturing apparatus and method for manufacturing steel cord for reinforcing rubber articles
JP6530276B2 (en) Belt system and its toothed belt
JP2004108576A (en) Toothed belt
JP5254887B2 (en) Wire rod winding device and winding method
JP2003322218A (en) Polyurethane belt
JP2004245405A (en) Toothed belt
JPH10213182A (en) Nonchargeable toothed belt
EP4283159A1 (en) Toothed belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839054

Country of ref document: EP

Kind code of ref document: A1