WO2011077220A1 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
WO2011077220A1
WO2011077220A1 PCT/IB2010/003301 IB2010003301W WO2011077220A1 WO 2011077220 A1 WO2011077220 A1 WO 2011077220A1 IB 2010003301 W IB2010003301 W IB 2010003301W WO 2011077220 A1 WO2011077220 A1 WO 2011077220A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
amount
power generation
power
storage tank
Prior art date
Application number
PCT/IB2010/003301
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 本間
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011077220A1 publication Critical patent/WO2011077220A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a cogeneration system that supplies electricity and heat.
  • the cogeneration system described in Patent Document 1 includes a hot water supply device having a hot water storage tank (water storage tank) for storing hot water, and heats the hot water stored in the hot water storage tank by exhaust heat generated by the power generation device (fuel cell). The thermal energy generated by the power generator is used.
  • the generator is not operated constantly, but is operated according to a time schedule (operation start time, operation time) determined based on past power consumption data. Controlled. In general, the power consumption of the next day is predicted from the power consumption of the current day, and the power generator is operated so that the amount of power corresponding to the predicted value is generated.
  • a heating device that heats the hot water stored in the hot water storage tank is provided separately from the power generation device. It is conceivable that a certain amount of hot water is secured in the hot water storage tank in advance with a heating device before operation to prevent the hot water in the hot water storage tank from running out.
  • Patent Document 1 Japanese Patent No. 4 2 9 6 7 4 1 (paragraph 0 0 1 5-0 0 2 3) A certain amount of water is applied to the hot water storage tank by hot water heated by a heating device. If hot water is secured after that, if the hot water in the hot water storage tank is hardly used, the amount of hot water in the hot water storage tank immediately saturates and the operation of the power generation device stops even if the power generation device starts operating. . If this happens, the generator cannot be operated until the amount of hot water in the hot water storage tank is reduced, and the necessary electrical energy may not be generated by the generator. Summary of the Invention
  • the present invention has been made in view of the above reasons, and is capable of appropriately determining the amount of heat applied in advance by the heating device while allowing a sufficient amount of hot water to be supplied before the start of operation of the power generation device. Provide a single system.
  • a hot water supply apparatus having a hot water storage tank for storing hot water and supplying hot water using hot water in the hot water storage tank, and hot water stored in the hot water storage tank is heated using exhaust heat generated during power generation.
  • a heating device that heats hot water stored in a hot water storage tank separately from the power generation device, and a control device that controls the operating status of the heating device based on the amount of power generated by the power generation device.
  • Predicting means for predicting the amount of power consumed in the future unit period based on the amount of power consumed in the past unit period, and predicting the heat generation amount of the power generation device based on the predicted amount of power;
  • the amount of heat applied from the heating device is determined so as to ensure the amount of heat necessary for the unit period in combination with the amount of heat generated by the power generation device predicted by the prediction unit, and when the amount of heat is not zero, the unit period Co one-generation system and a preheating control means for operating the heating device before the power generator starts operating is provided.
  • the amount of heat applied in advance by the heating device is determined based on the heat generation amount of the power generation device so as to ensure the amount of heat necessary for the unit period together with the heat generation amount of the power generation device predicted by the prediction means. Therefore, it is possible to appropriately determine the amount of heat applied in advance by the heating device while allowing a sufficient amount of hot water to be supplied before the operation of the power generation device is started.
  • the hot water storage tank is filled with hot water.
  • An upper limit value of the amount of heat that can be stored in a range that is less than or equal to the limit value of the amount of heat that can be stored in the entire hot water is set, and the preheating control means determines that the amount of heat in the hot water storage tank during the unit period It is also possible to determine the amount of heat applied to the hot water from the heating device so as not to exceed.
  • the amount of heat applied to the hot water from the heating device is determined so that the amount of heat in the hot water storage tank does not exceed the upper limit value during the unit period, so the amount of heat generated by the heating device and the power generation device can be used without waste. can do.
  • the control device predicts the amount of hot water consumed in a future unit period based on the amount of hot water consumed in the unit period in the past, and based on the prediction, the more hot water consumed in the unit period, the more the unit period It is also possible to have adjusting means for changing the upper limit value so as to increase the upper limit value.
  • the adjustment means changes the upper limit value so that the upper limit value of the unit period increases as the predicted amount of hot water consumption increases, so the amount of heat that can be accumulated in the hot water storage tank is consumed. It will be possible to adjust appropriately according to the amount of hot water.
  • control device may include heating control means for operating the heating device when the amount of hot water in the hot water storage tank falls below a predetermined lower limit value.
  • the predicting means may predict the heat generation amount of the power generation device with the unit period as a unit of one day.
  • the heat generation amount of the power generation device is predicted in units of 1 km, where the amount of consumed electric power and the amount of hot water are substantially stabilized, compared to the case where the unit period is, for example, one hour unit, The accuracy of calorific value prediction is increased.
  • the prediction means acquires weather forecast data for the unit period in the future, and calculates the amount of power predicted to be consumed during the unit period between the preset weather forecast data and the power consumption of the load.
  • a correction function that corrects using a correspondence relationship may be provided.
  • weather forecast data is reflected in the prediction of power consumption.
  • the power consumption of a load whose power consumption changes due to the influence of weather conditions such as an air conditioner can be predicted.
  • the accuracy of heat generation prediction is increased.
  • the cogeneration system of the present invention may further include a power generation device that generates power using natural energy separately from the power generation device, and the prediction means is consumed in the unit period in the future.
  • the power generation amount of the power generation device may be obtained by subtracting the power generation amount of the power generation device from the power amount.
  • the natural energy here includes, for example, sunlight, solar heat, wind power, hydropower, biomass, snow and ice heat, and the like.
  • a solar cell is provided as the power generation device, and the prediction means acquires weather forecast data for the unit period in the future, and predicts the power generation amount of the solar cell in the unit period based on the weather forecast data. Then, the power generation amount of the power generation device may be obtained by subtracting the power generation amount from the power amount predicted to be consumed in the unit period.
  • weather forecast data is reflected in the prediction of the amount of power generated by the solar cell, so it is possible to predict the amount of power generated by the solar cell whose power generation capacity changes due to the influence of weather conditions.
  • the accuracy of prediction is increased.
  • FIG. 1 is a schematic system configuration diagram showing a configuration of a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the relationship between the power generation amount and the heat generation amount of the power generation device of the above.
  • FIG. 3 is a conceptual diagram for explaining the operation described above.
  • FIG. 4 is a flowchart showing the operation described above. BEST MODE FOR CARRYING OUT THE INVENTION
  • the cogeneration system of the present embodiment uses a hot water supply device 1 having a hot water storage tank 10 for storing hot water as shown in FIG. 1 and supplying hot water using hot water in the hot water storage tank 10 and exhaust heat generated during power generation. And a power generator 2 that heats the hot water stored in the hot water storage tank 10.
  • the cogeneration system includes a heating device 3 that heats hot water stored in the hot water storage tank 10, and a control device that controls the operating status of the heating device 3 and the power generation device 2. 4 and.
  • the power generation device 2 is mainly composed of a fuel cell 20, and steam reforms raw fuel such as city gas mainly composed of methane gas or the like by a reformer (not shown).
  • the power generation device 2 in the present embodiment generates exhaust heat in the fuel cell 20 and the reformer during stagnation.
  • the exhaust heat is recovered by the refrigerant and used for heating hot water in the exhaust heat exchange section 21 provided in the power generation device 2.
  • the power generation amount and the heat generation amount in the power generation device 2 have a correspondence relationship as illustrated in FIG.
  • the power generator 2 only needs to have a configuration capable of recovering exhaust heat generated during power generation.
  • the power generator 2 is not limited to the fuel cell 20, and may be a main configuration of, for example, a gas engine.
  • the heating device 3 is installed outside the house and includes a heat pump type heating device 3.
  • the hot water storage tank 10 is connected to a water supply or the like and has a water supply port 11 at the bottom for supplying low temperature water to the inside, and connected to a hot water supply pipe for discharging hot water to discharge hot water. It has a discharge port 1 2 at the top. Hot water in the hot water storage tank 10 is transported from the bottom of the hot water storage tank 10 to the heat exchanger 30 in the heating device 3 through the outgoing line 1 3, and stored in the hot water tank 10 through the return pipe 1 4.
  • the heat in the atmosphere is collected in a natural refrigerant (for example, CO 2), compressed to a high temperature by compressing the natural refrigerant with a compressor, and then the heat of the natural refrigerant is transferred to hot water in the heat exchanger 30.
  • a natural refrigerant for example, CO 2
  • the hot water storage tank 10 has a heat insulating structure so that the heat of the hot water in the hot water storage tank 10 is not easily released.
  • the hot water storage tank 10 is always filled with hot water, the water supply port 1 1 is provided at the bottom of the hot water storage tank 10 and the hot water heated by the heating device 3 is returned from the top of the hot water storage tank 10.
  • the temperature of the hot water in the hot water storage tank 10 becomes higher as it goes upward.
  • a plurality of temperature sensors 15 are arranged in the hot water storage tank 10 in the vertical direction, and the output of the temperature sensor 15 allows the hot water to flow from above to any position in the hot water storage tank 10.
  • the amount of hot water in the hot water storage tank 10 can be determined.
  • the amount of hot water in the hot water storage tank 10 means the amount of hot water in the hot water storage tank 10 that is not lower than a predetermined temperature.
  • the heat pump type thing which receives the electric power supply to a compressor and operates as the heating apparatus 3 was illustrated here, it is not limited to this example, a heater type heating apparatus, or a gas combustion type heating apparatus, etc. Can also be used.
  • the hot water stored in the hot water storage tank 10 is heated not only by the heating device 3 but also by the exhaust heat exchanger 21 provided in the power generation device 2 as described above. That is, the heat exchanger 30 of the heating device 3 and the exhaust heat exchange unit 21 of the power generator 2 are connected to the upper pipe 13 connected to the bottom of the hot water storage tank 10 and the upper part of the hot water storage tank 10. It is provided in parallel with the road 14. As a result, the hot water in the hot water storage tank 10 is transferred to the heat exchanger in the heating device 3 through the outgoing line 1 3 if necessary. It is transported to at least one of 30 and the exhaust heat exchanging portion 21 in the power generator 2, and returned to the hot water storage tank 10 from the upper part of the hot water storage tank 10 through the return pipe 14.
  • Hot water is transferred from the hot water storage tank 1 0 to the heat exchanger 3 0 to the exhaust heat exchanger 2 1 by the pump 1 6 provided on the outgoing pipe 1 3, and the heat exchanger 3 0 and the exhaust heat exchanger 2
  • the flow rate of hot water supplied to each of 1 and 1 is individually adjusted by flow control valves 1 7 and 1 8 provided between the heat exchanger 30 and the exhaust heat exchanger 21 and the outgoing pipe 1 3 respectively. Is done.
  • the pump 16 and the flow control valves 17 and 18 on the outgoing line 13 are controlled by the controller 4 together with the heating device 3 and the power generator 2.
  • both the heat energy generated by the heating device 3 and the heat energy of exhaust heat generated during power generation by the power generation device 2 are stored in the hot water storage tank 1 It can be used for heating hot water in the water.
  • the power generator 2 does not always operate, but operates according to a time schedule (operation start time, operation time) determined based on past power consumption data, etc. To be controlled. Generally, the power consumption of the next day is predicted from the power consumption of the current day, and the power generator 2 is operated so that the amount of power corresponding to the predicted value is generated.
  • the control device 4 does not always operate the power generation device 2, but operates the power generation device 2 according to a time schedule (operation start time, operation time) determined based on past power consumption data and the like. To control. Here, the control device 4 starts the operation of the power generation device 2 in the morning.
  • the power generation system also supplies power from a commercial power source during times when there is a demand for power that exceeds the power generation capacity of the power generation device 2 or when the power generation device 2 is not in operation.
  • the control device 4 sets the hot water storage tank 10 to 10 by operating the heating device 3 regardless of whether the power generation device 2 is in operation. It has a heating control means 40 for heating the hot and cold water stored. As a result, even when a large amount of hot water is used all at once, the heating device 3 starts operation when the amount of hot water in the hot water storage tank 10 falls below the lower limit value. It is possible to avoid running out of hot water.
  • control device 4 stores the hot water storage tank 10 in the hot water storage tank 10 even when the power generation device 2 is not operating so that a certain amount of hot water is secured in the hot water storage tank 10 before the power generation device 2 starts operation. Heat the hot and cold water. As a result, it is possible to avoid running out of hot water in the hot water storage tank 10 even if a large amount of hot water is used in the time period before the power generation device 2 starts operation, such as in the early morning. However, if the hot water heated by the heating device 3 is stored in the hot water storage tank 10 before starting the operation of the power generation device 2, then the hot water in the hot water storage tank 10 is almost not used.
  • the power generation device 2 cannot be operated because the amount of hot water in the hot water storage tank 10 is saturated, and the power generation device 2 is efficiently operated. Unusable situations can occur.
  • control device 4 controls the operation status of the heating device 3 as described below in order to avoid the amount of hot water in the hot water storage tank 10 being saturated.
  • control device 4 includes a prediction unit 41 that predicts the heat generation amount of the power generation device 2 every predetermined unit period (here, 1 day), and heating before the power generation device 2 starts operation in the unit period. Preheating control means 4 2 for operating the device 3.
  • a measurement unit for measuring electric energy provided in a distribution board (not shown) is connected, and a function for monitoring the electric energy consumed by the load in the house is added. Yes.
  • Prediction means 4 1 is the amount of power consumed in the last unit period in the past (here, the current day) from the amount of power measured by the measurement unit at a predetermined time (here, 2 o'clock). And predict the amount of power consumed in the future unit period (here, the next day) based on the amount of power. Prediction method 4 1 calculates the amount of power generation (electric power demand) of power generation device 2 based on the prediction result of power amount, and the heat generation amount of power generation device 2 corresponding to the power generation amount (amount of exhaust heat generated during power generation). Predict.
  • the storage means 43 provided in the control device 4 stores a table indicating the correspondence between the power generation amount and the heat generation amount of the power generation device 2.
  • the preheating control means 4 2 is a hot water stored in the hot water storage tank 10 from the heating device 3 so that the amount of hot water in the hot water storage tank 10 is not saturated based on the calorific value of the power generator 2 predicted by the prediction means 4 1. Reverse heat applied to s :.
  • the preheating control means 4 2 uses the amount of heat applied to the hot water storage tank 10 to the remaining heat quantity q (i-1) of the hot water storage tank 10 at the end of the unit period (24:00).
  • the amount of heat qin is calculated so that the sum of the two values (qin + qfc) is within the upper limit qma X.
  • the amount of heat applied from the heating device 3 is q i n
  • the amount of heat generated in the power generation device 2 is q f c.
  • the upper limit qmax is set to an initial value that can be arbitrarily set by the user using the setting function of the hot water supply device 1. It is assumed that the adjustment means 44 of the control device 4 can be changed so as to increase as the amount of hot water consumed per unit period increases. Specifically, the amount of hot water consumed in the future unit period is predicted based on the amount of hot water consumed in the past unit period, and the upper limit value qmax is changed step by step based on the prediction result. To. Here, the sum of the amount of heat qout consumed by hot water supply during the unit period and the amount of heat lost due to heat loss during the unit period q I oss is added to the upper limit value qma X as the new upper limit value q ma X . However, not limited to this configuration, the upper limit qmax may be a fixed value.
  • the heat quantity qout consumed by the hot water supply and the heat quantity q I OSS that becomes the heat dissipation loss are predicted by the control device 4 based on the amount of hot water consumed in the past unit period.
  • the amount of hot water consumed can be obtained from a sensor (not shown) provided in the hot water supply apparatus 1.
  • the residual heat quantity q (i-1) can be obtained from the temperature sensor 15 of the hot water storage tank 10.
  • control device 4 Next, the operation of the control device 4 will be described with reference to the flowchart of FIG.
  • the predicting means 41 At a predetermined time (here, 24:00), the predicting means 41 first obtains the power generation amount (electric power demand) of the power generation device 2 required in the future unit period (S 1), and calculates the calorific value qfc corresponding thereto. Predict (S 2). Then, the preheating control means 42 adds a difference value between the heat generation amount qfc of the power generator 2 and the total amount of heat generated from the hot water storage tank 10 (qout + q IOSS) to the residual heat amount q (i-1). It is determined whether or not the value is less than the upper limit value qmax (S 3).
  • the heat quantity qin applied from the heating device 3 may be zero, or the upper limit after the change Using the value q ma X, calorific value qin 3 ⁇ 4T “qmax— qfc— q (i — 1) + qout + q I os sj is also acceptable.
  • the changed upper limit q ma X is the latest It is valid only for the unit period (here, the next day), and is restored to the original upper limit qmax at the end of the unit period.
  • the preheating control means 42 heats the hot water stored in the hot water storage tank 10 by operating the heating device 3 before the power generation device 2 starts operation, so that the heat quantity qin obtained as described above is heated.
  • the heating device 3 is operated during the midnight hours when power consumption due to the load in the house is reduced.
  • the preheating control means 4 2 operates the heating device 3 in advance to ensure a certain amount of hot water in the hot water storage tank 10 before the operation of the power generation device 2 starts. As a result, it is possible to supply a sufficient amount of hot water even in the early morning, even before the generator 2 is started.
  • the amount of heat applied in advance by the heating device 3 is determined based on the amount of heat generated by the power generation device 2 within the unit period predicted by the prediction means 41 so that the amount of hot water in the hot water storage tank 10 is not saturated. Therefore, it is possible to avoid saturation of the amount of hot water in the hot water storage tank 10 even if the power generator 2 is operated later.
  • different patterns may be used for each season and day of the week for prediction of power consumption and hot water consumption.
  • the power consumption of the next day is predicted from the power consumption of the past unit period (1 ⁇ ) with the same conditions for the season and day of the week. You may make it measure.
  • the preheating control means 42 may predict the power consumption and hot water consumption for each time zone, and may determine the operation schedule of the heating device 3 more finely based on the prediction result.
  • the prediction means 41 has a correction function that corrects the predicted value of power consumption based on weather forecast data.
  • the correspondence between the weather forecast data and the power consumption of the load is stored in advance in the storage means 43, and the forecast means 41 acquires the weather forecast data for the future unit period, and The predicted value of the power consumption is corrected using the correspondence relationship with the power consumption.
  • the unit period is described as 1 unit.
  • the present invention is not limited to this example, and any unit period such as a time zone unit, a week unit, or a month unit can be set. is there.
  • the timing for determining the amount of heat from the heating device 3 and the timing for operating the heating device 3 are not limited to the above-described example, and can be set as appropriate.
  • the cogeneration system of the present embodiment is different from the cogeneration system of the first embodiment in that a solar cell 5 is added separately from the power generator 2.
  • a power conditioner is connected to the solar cell, and the DC power generated by the solar cell is converted to AC power by an inverter circuit in the power conditioner and supplied to the load in the house. That is, in this embodiment, both the power generation device 2 and the solar battery can supply power to the load. Therefore, the power generation amount required for the power generation device 2 during the unit period is consumed in the unit period. From the expected electric energy The amount of power generated by the solar cell is subtracted.
  • the power generation capacity of solar cells is not constant, and greatly depends on weather conditions even in the same time zone. Therefore, in the present embodiment, it is assumed that the predicting means 41 has a function of acquiring weather forecast data for a future unit period and predicting the power generation amount of the solar cell in the unit period based on the weather forecast data. Thereby, the prediction accuracy of the power generation amount of the solar cell is improved, and as a result, the prediction accuracy of the heat generation amount of the power generation device 2 is increased.
  • a power generation device that generates power using natural energy sources other than sunlight (for example, renewable energy sources such as solar heat, wind power, hydropower, biomass, snow and ice heat, etc.) It may be provided separately from 2. Even in this case, the prediction means 41 determines the power generation amount of the power generation device 2 by subtracting the power generation amount of the power generation device from the power amount consumed in the future unit period.
  • natural energy sources for example, renewable energy sources such as solar heat, wind power, hydropower, biomass, snow and ice heat, etc.
  • the prediction means 41 determines the power generation amount of the power generation device 2 by subtracting the power generation amount of the power generation device from the power amount consumed in the future unit period.
  • Other configurations and functions are the same as those in the first embodiment. With this configuration, the same effect as in the first embodiment can be obtained.
  • the preheating control means 4 2 can operate the heating device 3 in advance and secure a certain amount of hot water in the hot water storage tank 10 before starting the operation of the power generation device 2, the power generation device 2 such as early morning Even before the start of operation, a sufficient amount of hot water can be supplied.
  • the amount of heat applied in advance by the heating device 3 is determined based on the amount of heat generated by the power generation device 2 within the unit period predicted by the prediction means 41 so that the amount of hot water in the hot water storage tank 10 is not saturated. Even if the power generation device 2 is operated later, it is possible to avoid saturation of the amount of hot water in the hot water storage tank 10.

Abstract

Disclosed is a cogeneration system provided with: a hot water supply device which has a hot water storage tank for storing hot water, and which supplies hot water from the hot water storage tank; an electricity generation device which heats the hot water stored in the hot water storage tank using the waste heat generated during electricity generation; a heating device which heats the hot water stored in the hot water storage tank separately to the electricity generation device; and a control device which controls the operating conditions of the heating device on the basis of the amount of electricity generated by the electricity generation device.

Description

明細書  Specification
コージエネレーションシステム  Koji energy system
技術分野 Technical field
本発明は、 電気と熱とを供給するコ一ジェネレーションシステムに関するものである。 背景技術  The present invention relates to a cogeneration system that supplies electricity and heat. Background art
従来から、 たとえば燃料電池等の発電装置を用いる場合、 発電時に発生する排熱を冷媒にて回 収することにより、 発電装置で発生した排熱を給湯などに利用することができるコージエネレー シヨンシステムが提案されている。  Conventionally, when using a power generation device such as a fuel cell, there is a cordage energy generation system that can use waste heat generated by a power generation device for hot water supply by collecting the exhaust heat generated during power generation with a refrigerant. Proposed.
この種のコージェネレーションシステムを用いれば、 発電装置にて発生する電気工ネルギと熱 エネルギとの両方を利用することができるから、 住宅等の需要家において必須の電気工ネルギぉ よび熱エネルギを効率よく供給することが可能になる (たとえば特許文献 1参照)。 特許文献 1 記載のコ一ジェネレーションシステムは、 湯水を貯める貯湯タンク (貯水槽) を有した給湯装置 を備え、 発電装置 (燃料電池) で生じた排熱によって貯湯タンクに貯められる湯水を加熱するこ とにより、 発電装置で発生する熱エネルギを利用する。  If this type of cogeneration system is used, it is possible to use both the electric energy and heat energy generated by the power generation equipment. It is possible to supply well (see, for example, Patent Document 1). The cogeneration system described in Patent Document 1 includes a hot water supply device having a hot water storage tank (water storage tank) for storing hot water, and heats the hot water stored in the hot water storage tank by exhaust heat generated by the power generation device (fuel cell). The thermal energy generated by the power generator is used.
通常、 この種のコ一ジェネレーションシステムでは、 発電装置は常時運転するのではなく、 過 去の消費電力量のデータ等に基づいて決められたタイムスケジュール(運転開始時刻、運転時間) に従って運転するように制御される。 一般的には、 当日の消費電力量から、 翌日の消費電力量を 予測し、 当該予測値に見合った電力量の発電がされるように発電装置を運転させる。  Normally, in this type of cogeneration system, the generator is not operated constantly, but is operated according to a time schedule (operation start time, operation time) determined based on past power consumption data. Controlled. In general, the power consumption of the next day is predicted from the power consumption of the current day, and the power generator is operated so that the amount of power corresponding to the predicted value is generated.
ただし、 タイムスケジュールに従って運転中であっても、 貯湯タンクの湯量が飽和してそれ以 上発電装置の排熱を回収できない状態になると、 発電装置は運転を自動的に停止し、 エネルギに 無駄が生じないようにする。 そのため、 発電装置の発電能力を超える電力需要がある時間帯や、 発電装置が運転を停止している時間帯には、 商用電源からの電力供給も併せて行うことになる。 ところで、 上述したコージェネレーションシステムでは、 発電装置が運転を開始する前の時間 帯に、 貯湯タンクの湯量が残り少ないにも関わらず湯を大量に使用すると、 貯湯タンク内の湯が なくなることがある。 このような場合に対応するため、 バックアップ熱源を設け、 使用する分の 湯水をバックアツプ熱源で加熱しながら供給できるようにする措置がとられているが、 パックァ ップ熱源で加熱しながらだと十分な湯量を供給できないという問題がある。  However, even if it is operating according to the time schedule, if the amount of hot water in the hot water storage tank is saturated and the exhaust heat of the power generation device cannot be recovered any more, the power generation device automatically stops operation, and energy is wasted. Prevent it from occurring. For this reason, power is also supplied from the commercial power source during times when there is a demand for power that exceeds the power generation capacity of the power generation equipment and during times when the power generation equipment is not in operation. By the way, in the above-mentioned cogeneration system, if a large amount of hot water is used in a time zone before the power generator starts operation, even if the hot water amount in the hot water storage tank is small, the hot water in the hot water storage tank may be lost. In order to deal with such cases, measures have been taken to provide a backup heat source so that hot water can be supplied while being heated by the backup heat source. There is a problem that a sufficient amount of hot water cannot be supplied.
そこで、 貯湯タンクに貯められる湯を加熱する加熱装置を発電装置とは別に設け、 発電装置を 運転する前に加熱装置で予め貯湯タンク内に一定量の湯を確保し、 貯湯タンク内の湯がなくなる ことを防止することが考えられる。 Therefore, a heating device that heats the hot water stored in the hot water storage tank is provided separately from the power generation device. It is conceivable that a certain amount of hot water is secured in the hot water storage tank in advance with a heating device before operation to prevent the hot water in the hot water storage tank from running out.
【特許文献 1】 日本特許第 4 2 9 6 7 4 1号公報 (第 0 0 1 5— 0 0 2 3段落) し力、し、 加熱装置により加熱された湯によって貯湯タンク内に一定量の湯が確保されるように した場合、 その後、 貯湯タンク内の湯が殆ど使われなければ、 発電装置の運転を開始してもすぐ に貯湯タンクの湯量が飽和して発電装置の運転が停止する。 そうなると、 貯湯タンク内の湯量が 減るまでは発電装置を運転させることができず、 必要な電気工ネルギが発電装置で生成されなく なる可能性がある。 発明の概要  [Patent Document 1] Japanese Patent No. 4 2 9 6 7 4 1 (paragraph 0 0 1 5-0 0 2 3) A certain amount of water is applied to the hot water storage tank by hot water heated by a heating device. If hot water is secured after that, if the hot water in the hot water storage tank is hardly used, the amount of hot water in the hot water storage tank immediately saturates and the operation of the power generation device stops even if the power generation device starts operating. . If this happens, the generator cannot be operated until the amount of hot water in the hot water storage tank is reduced, and the necessary electrical energy may not be generated by the generator. Summary of the Invention
本発明は上記事由に鑑みて為されたものであって、 発電装置の運転開始前に十分な湯量を供給 可能としながらも、 加熱装置で予め加える熱量を適切に決定することができるコ一ジエネレ一シ ョンシステムを提供する。  The present invention has been made in view of the above reasons, and is capable of appropriately determining the amount of heat applied in advance by the heating device while allowing a sufficient amount of hot water to be supplied before the start of operation of the power generation device. Provide a single system.
本発明の一態様によると、 湯水を貯める貯湯タンクを有し貯湯タンク内の湯水によリ給湯を行 う給湯装置と、 発電時に発生する排熱を利用して貯湯タンクに貯められる湯水を加熱する発電装 置と、 発電装置とは別に貯湯タンクに貯められる湯水を加熱する加熱装置と、 前記発電装置の発 電量に基づいて前記加熱装置の運転状況を制御する制御装置とを備え、 制御装置は、 過去の単位 期間に消費された電力量に基づいて将来の単位期間に消費される電力量を予測し、 予測された電 力量に基づいて前記発電装置の発熱量を予測する予測手段と、 前記予測手段で予測された前記発 電装置の発熱量と合わせて前記単位期間に必要な熱量を確保するように、 前記加熱装置から加え る熱量を決め、 前記熱量がゼロではない場合、 前記単位期間に前記発電装置が運転を開始する前 に前記加熱装置を運転させる予熱制御手段とを有するコ一ジェネレーションシステムが提供さ れる。  According to one aspect of the present invention, a hot water supply apparatus having a hot water storage tank for storing hot water and supplying hot water using hot water in the hot water storage tank, and hot water stored in the hot water storage tank is heated using exhaust heat generated during power generation. A heating device that heats hot water stored in a hot water storage tank separately from the power generation device, and a control device that controls the operating status of the heating device based on the amount of power generated by the power generation device. Predicting means for predicting the amount of power consumed in the future unit period based on the amount of power consumed in the past unit period, and predicting the heat generation amount of the power generation device based on the predicted amount of power; The amount of heat applied from the heating device is determined so as to ensure the amount of heat necessary for the unit period in combination with the amount of heat generated by the power generation device predicted by the prediction unit, and when the amount of heat is not zero, the unit period Co one-generation system and a preheating control means for operating the heating device before the power generator starts operating is provided.
この構成によれば、 単位期間において発電装置が運転を開始する前に、 予め加熱装置にて貯湯 タンク内にある程度の湯量を確保しておくことができるので、 発電装置が運転を開始する前であ つても、 十分な湯量の供給が可能となる。 しかも、 加熱装置で予め加えておく熱量は、 予測手段 で予測された発電装置の発熱量と合わせて単位期間に必要な熱量を確保するように、 発電装置の 発熱量に基づいて決められる。 したがって、 発電装置の運転開始前に十分な湯量を供給可能とし ながらも、 加熱装置で予め加える熱量を適切に決定することができる。  According to this configuration, a certain amount of hot water can be secured in the hot water storage tank in advance by the heating device before the power generation device starts operation in the unit period. Therefore, before the power generation device starts operation, In any case, a sufficient amount of hot water can be supplied. In addition, the amount of heat applied in advance by the heating device is determined based on the heat generation amount of the power generation device so as to ensure the amount of heat necessary for the unit period together with the heat generation amount of the power generation device predicted by the prediction means. Therefore, it is possible to appropriately determine the amount of heat applied in advance by the heating device while allowing a sufficient amount of hot water to be supplied before the operation of the power generation device is started.
本発明のコージェネレーションシステムにおいては、 前記貯湯タンクが、 内部が湯水で満たさ れ、 当該湯水全体に蓄積可能な熱量の限界値以下の範囲において蓄積可能な熱量の上限値が設定 されており、 前記予熱制御手段が、 前記単位期間中に貯湯タンク内の熱量が前記上限値を超えな いように、 前記加熱装置から湯水に加える熱量を決めることとしてもよい。 In the cogeneration system of the present invention, the hot water storage tank is filled with hot water. An upper limit value of the amount of heat that can be stored in a range that is less than or equal to the limit value of the amount of heat that can be stored in the entire hot water is set, and the preheating control means determines that the amount of heat in the hot water storage tank during the unit period It is also possible to determine the amount of heat applied to the hot water from the heating device so as not to exceed.
この構成によれば、 加熱装置から湯水に加えられる熱量は、 単位期間中に貯湯タンク内の熱量 が上限値を超えないように決められるので、 加熱装置および発電装置で生じる熱量を無駄なく使 用することができる。  According to this configuration, the amount of heat applied to the hot water from the heating device is determined so that the amount of heat in the hot water storage tank does not exceed the upper limit value during the unit period, so the amount of heat generated by the heating device and the power generation device can be used without waste. can do.
前記制御装置が、 過去の前記単位期間に消費された湯量に基づいて将来の単位期間に消費され る湯量を予測し、 当該予測に基づいて、 単位期間に消費される湯量が多くなるほど当該単位期間 の前記上限値を大きくするように前記上限値を変化させる調整手段を有することもできる。  The control device predicts the amount of hot water consumed in a future unit period based on the amount of hot water consumed in the unit period in the past, and based on the prediction, the more hot water consumed in the unit period, the more the unit period It is also possible to have adjusting means for changing the upper limit value so as to increase the upper limit value.
この構成によれば、 調整手段が、 予測される単位期間の消費湯量が多くなるほど当該単位期間 の上限値を大きくするように上限値を変化させるので、 貯湯タンク内に蓄積可能な熱量を消費さ れる湯量に応じて適切に調節可能となる。  According to this configuration, the adjustment means changes the upper limit value so that the upper limit value of the unit period increases as the predicted amount of hot water consumption increases, so the amount of heat that can be accumulated in the hot water storage tank is consumed. It will be possible to adjust appropriately according to the amount of hot water.
また、 前記制御装置が、 俞記貯湯タンク内の湯量が既定の下限値を下回ると前記加熱装置を運 転させる加熱制御手段を備えてもよい。  Further, the control device may include heating control means for operating the heating device when the amount of hot water in the hot water storage tank falls below a predetermined lower limit value.
この構成によれば、 消費される湯量が多い場合でも、 貯湯タンク内の湯量が既定の下限値を下 回った時点で加熱装置を運転させることにより貯湯タンク内の湯がなくなることを回避するこ とができる。  According to this configuration, even when the amount of hot water consumed is large, it is possible to avoid running out of hot water in the hot water storage tank by operating the heating device when the amount of hot water in the hot water storage tank falls below a predetermined lower limit value. You can.
前記予測手段が、 前記単位期間を 1 日単位として前記発電装置の発熱量を予測することであつ てもよい。  The predicting means may predict the heat generation amount of the power generation device with the unit period as a unit of one day.
この構成によれば、 消費される電力量および湯量が概ね安定する 1曰単位で発電装置の発熱量 を予測するので、 単位期間をたとえば 1時間単位とするような場合に比べて、 発電装置の発熱量 の予測の精度が高くなる。  According to this configuration, since the heat generation amount of the power generation device is predicted in units of 1 km, where the amount of consumed electric power and the amount of hot water are substantially stabilized, compared to the case where the unit period is, for example, one hour unit, The accuracy of calorific value prediction is increased.
また、 前記予測手段が、 将来の前記単位期間の気象予報データを取得し、 当該単位期間に消費 されると予測された電力量を、 予め設定されている気象予報データと負荷の消費電力との対応関 係を用いて補正する補正機能を備えるものとしてもよい。  Further, the prediction means acquires weather forecast data for the unit period in the future, and calculates the amount of power predicted to be consumed during the unit period between the preset weather forecast data and the power consumption of the load. A correction function that corrects using a correspondence relationship may be provided.
この構成によれば、 消費電力量の予測に気象予報データが反映されるので、 たとえば空調装置 等の気象条件の影響で消費電力が変化する負荷の消費電力量を予測しゃすくなリ、 発電装置の発 熱量の予測の精度が高くなる。  According to this configuration, weather forecast data is reflected in the prediction of power consumption. For example, the power consumption of a load whose power consumption changes due to the influence of weather conditions such as an air conditioner can be predicted. The accuracy of heat generation prediction is increased.
本発明のコージェネレーションシステムは、 前記発電装置とは別に自然エネルギを利用して発 電する電力発生装置をさらに含んでもよく、 前記予測手段が、 将来の前記単位期間に消費される 電力量から電力発生装置の発電量を差し引いて発電装置の発電量を求めてもよい。 The cogeneration system of the present invention may further include a power generation device that generates power using natural energy separately from the power generation device, and the prediction means is consumed in the unit period in the future. The power generation amount of the power generation device may be obtained by subtracting the power generation amount of the power generation device from the power amount.
この構成によれば、 発電装置の発電量に電力発生装置の発電量が反映されるので、 発電装置の 発熱量の予測の精度が高くなる。なお、 ここでいう自然エネルギには、たとえば太陽光、太陽熱、 風力、 水力、 バイオマス、 雪氷熱などを含む。  According to this configuration, since the power generation amount of the power generation device is reflected in the power generation amount of the power generation device, the accuracy of prediction of the heat generation amount of the power generation device is increased. The natural energy here includes, for example, sunlight, solar heat, wind power, hydropower, biomass, snow and ice heat, and the like.
望ましくは、 前記電力発生装置として太陽電池が設けられ、 前記予測手段は、 将来の前記単位 期間の気象予報データを取得し、 当該単位期間における太陽電池の発電量を気象予報データに基 づいて予測し、 当該発電量を当該単位期間に消費されると予測された電力量から差し引いて発電 装置の発電量を求めることとしてもよい。  Preferably, a solar cell is provided as the power generation device, and the prediction means acquires weather forecast data for the unit period in the future, and predicts the power generation amount of the solar cell in the unit period based on the weather forecast data. Then, the power generation amount of the power generation device may be obtained by subtracting the power generation amount from the power amount predicted to be consumed in the unit period.
この構成によれば、 太陽電池の発電量の予測に気象予報データが反映されるので、 気象条件の 影響で発電能力が変化する太陽電池の発電量を予測しゃすくなリ、 発電装置の発熱量の予測の精 度が高くなる。 図面の簡単な説明  According to this configuration, weather forecast data is reflected in the prediction of the amount of power generated by the solar cell, so it is possible to predict the amount of power generated by the solar cell whose power generation capacity changes due to the influence of weather conditions. The accuracy of prediction is increased. Brief Description of Drawings
本発明の目的及び特徴は以下のような添付図面とともに与えられる以後の望ましい実施例の説 明から明確になる。 Objects and features of the present invention will become apparent from the following description of the preferred embodiment given in conjunction with the accompanying drawings.
【図 1】 本発明の実施形態 1の構成を示す概略システム構成図である。  FIG. 1 is a schematic system configuration diagram showing a configuration of a first embodiment of the present invention.
【図 2】 同上の発電装置の発電量一発熱量の関係を示す説明図である。  FIG. 2 is an explanatory diagram showing the relationship between the power generation amount and the heat generation amount of the power generation device of the above.
【図 3】 同上の動作を説明するための概念図である。  FIG. 3 is a conceptual diagram for explaining the operation described above.
【図 4】 同上の動作を示すフローチャートである。 発明を実施するための形態  FIG. 4 is a flowchart showing the operation described above. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態が本明細書の一部を成す添付図面を参照して一層詳細に説明される。 図面全体で同一又は類似の部分には同一の符号を付けてそれに関する重複する説明を省略する。  Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings, which form a part of this specification. Throughout the drawings, the same or similar parts are denoted by the same reference numerals, and redundant description thereof is omitted.
(実施形態 1 )  (Embodiment 1)
本実施形態のコ一ジェネレーションシステムは、 図 1に示すように湯水を貯める貯湯タンク 1 0を有し貯湯タンク 1 0内の湯水により給湯を行う給湯装置 1と、 発電時に発生する排熱を利用 して貯湯タンク 1 0に貯められる湯水を加熱する発電装置 2とを備えている。 さらに、 コ一ジェ ネレ一シヨンシステムは、 発電装置 2とは別に、 貯湯タンク 1 0に貯められる湯水を加熱する加 熱装置 3と、 加熱装置 3および発電装置 2の運転状況を制御する制御装置 4とを備えている。 発電装置 2は、 ここでは燃料電池 2 0を主構成とするものであって、 メタンガス等を主成分と した都市ガスなどの原燃料を改質器 (図示せず) にて水蒸気改質して水素に富んだ改質ガスを生 成し、 当該改質ガスを燃料電池 2 0に導入して発電を行う。 本実施形態における発電装置 2は、 孝電に際して燃料電池 2 0および改質器にて排熱を生じる。 当該排熱は、 冷媒で回収されること により、 発電装置 2に設けた排熱交換部 2 1で湯水の加熱に用いられる。 発電装置 2での発電量 と発熱量とは図 2に例示するような対応関係を有する。 ただし、 発電装置 2は、 発電時に生じる 排熱を回収可能な構成であればよく、 燃料電池 2 0に限らず、 たとえばガスエンジン等を主構成 とするものであってもよい。 The cogeneration system of the present embodiment uses a hot water supply device 1 having a hot water storage tank 10 for storing hot water as shown in FIG. 1 and supplying hot water using hot water in the hot water storage tank 10 and exhaust heat generated during power generation. And a power generator 2 that heats the hot water stored in the hot water storage tank 10. In addition, the cogeneration system includes a heating device 3 that heats hot water stored in the hot water storage tank 10, and a control device that controls the operating status of the heating device 3 and the power generation device 2. 4 and. Here, the power generation device 2 is mainly composed of a fuel cell 20, and steam reforms raw fuel such as city gas mainly composed of methane gas or the like by a reformer (not shown). Producing reformed gas rich in hydrogen Then, the reformed gas is introduced into the fuel cell 20 to generate power. The power generation device 2 in the present embodiment generates exhaust heat in the fuel cell 20 and the reformer during stagnation. The exhaust heat is recovered by the refrigerant and used for heating hot water in the exhaust heat exchange section 21 provided in the power generation device 2. The power generation amount and the heat generation amount in the power generation device 2 have a correspondence relationship as illustrated in FIG. However, the power generator 2 only needs to have a configuration capable of recovering exhaust heat generated during power generation. The power generator 2 is not limited to the fuel cell 20, and may be a main configuration of, for example, a gas engine.
加熱装置 3は、 宅外に設置され、 ヒートポンプ方式の加熱装置 3からなる。 ここで、 貯湯タン ク 1 0は、 水道等に接続され低温の水を内部に供給するための給水口 1 1を底部に有し、 給湯用 の給湯管に接続され高温の湯を吐出するための吐出口 1 2を上部に有する。 貯湯タンク 1 0内の 湯水は、 貯湯タンク 1 0の底部から往管路 1 3を通して加熱装置 3内の熱交換器 3 0に搬送され、 復管路 1 4を通して貯湯タンク 1 0の上部から貯湯タンク 1 0内に戻される。 加熱装置 3では、 大気中の熱を自然冷媒 (たとえば C O 2 ) に集め、 当該自然冷媒をコンプレッサにて圧縮して 高温にした後、 自然冷媒の熱を熱交換器 3 0にて湯水に伝達することで湯水を加熱する。 また、 貯湯タンク 1 0には断熱構造を採用し、 貯湯タンク 1 0内の湯水の熱を逃しにくい構造としてあ る。  The heating device 3 is installed outside the house and includes a heat pump type heating device 3. Here, the hot water storage tank 10 is connected to a water supply or the like and has a water supply port 11 at the bottom for supplying low temperature water to the inside, and connected to a hot water supply pipe for discharging hot water to discharge hot water. It has a discharge port 1 2 at the top. Hot water in the hot water storage tank 10 is transported from the bottom of the hot water storage tank 10 to the heat exchanger 30 in the heating device 3 through the outgoing line 1 3, and stored in the hot water tank 10 through the return pipe 1 4. Returned to tank 10 In the heating device 3, the heat in the atmosphere is collected in a natural refrigerant (for example, CO 2), compressed to a high temperature by compressing the natural refrigerant with a compressor, and then the heat of the natural refrigerant is transferred to hot water in the heat exchanger 30. By heating the hot water. The hot water storage tank 10 has a heat insulating structure so that the heat of the hot water in the hot water storage tank 10 is not easily released.
しかして、 貯湯タンク 1 0内は常に湯水で充満され、 給水口 1 1を貯湯タンク 1 0の底部に設 けるとともに加熱装置 3で加熱された湯水を貯湯タンク 1 0の上部から戻すようにしたことで、 貯湯タンク 1 0内の湯水は上方ほど温度が高い状態となる。 ここで、 貯湯タンク 1 0内には上下 方向に複数配置された温度センサ 1 5が設けられており、 当該温度センサ 1 5の出力により、 貯 湯タンク 1 0内で上方からどの位置まで湯水が所定温度 (たとえば 9 0 °C) の湯となっているか を検出し、 貯湯タンク 1 0内の湯量を判断することができる。 ここに、 貯湯タンク 1 0内の湯量 とは、 貯湯タンク 1 0内の湯水のうち所定温度以上の湯の量を意味するものとする。  Therefore, the hot water storage tank 10 is always filled with hot water, the water supply port 1 1 is provided at the bottom of the hot water storage tank 10 and the hot water heated by the heating device 3 is returned from the top of the hot water storage tank 10. Thus, the temperature of the hot water in the hot water storage tank 10 becomes higher as it goes upward. Here, a plurality of temperature sensors 15 are arranged in the hot water storage tank 10 in the vertical direction, and the output of the temperature sensor 15 allows the hot water to flow from above to any position in the hot water storage tank 10. By detecting whether the hot water is at a predetermined temperature (for example, 90 ° C.), the amount of hot water in the hot water storage tank 10 can be determined. Here, the amount of hot water in the hot water storage tank 10 means the amount of hot water in the hot water storage tank 10 that is not lower than a predetermined temperature.
なお、 ここでは加熱装置 3としてコンプレッサへの電力供給を受けて動作するヒートポンプ方 式のものを例示したが、 この例に限らず、 ヒータ方式の加熱装置や、 あるいはガス燃焼方式の加 熱装置などを用いることもできる。  In addition, although the heat pump type thing which receives the electric power supply to a compressor and operates as the heating apparatus 3 was illustrated here, it is not limited to this example, a heater type heating apparatus, or a gas combustion type heating apparatus, etc. Can also be used.
ところで、 本実施形態では、 貯湯タンク 1 0に貯められる湯水は、 加熱装置 3だけでなく上述 したように発電装置 2に設けられている排熱交換部 2 1でも加熱されることになる。 すなわち、 加熱装置 3の熱交換器 3 0と発電装置 2の排熱交換部 2 1とは、 貯湯タンク 1 0の底部につなが る往管路 1 3と貯湯タンク 1 0の上部につながる復管路 1 4との間に並列に設けられている。 こ れにより、 貯湯タンク 1 0内の湯水は、 必要により往管路 1 3を通して加熱装置 3内の熱交換器 3 0と発電装置 2内の排熱交換部 2 1との少なくとも一方に搬送され、 復管路 1 4を通して貯湯 タンク 1 0の上部から貯湯タンク 1 0内に戻されることになる。 By the way, in the present embodiment, the hot water stored in the hot water storage tank 10 is heated not only by the heating device 3 but also by the exhaust heat exchanger 21 provided in the power generation device 2 as described above. That is, the heat exchanger 30 of the heating device 3 and the exhaust heat exchange unit 21 of the power generator 2 are connected to the upper pipe 13 connected to the bottom of the hot water storage tank 10 and the upper part of the hot water storage tank 10. It is provided in parallel with the road 14. As a result, the hot water in the hot water storage tank 10 is transferred to the heat exchanger in the heating device 3 through the outgoing line 1 3 if necessary. It is transported to at least one of 30 and the exhaust heat exchanging portion 21 in the power generator 2, and returned to the hot water storage tank 10 from the upper part of the hot water storage tank 10 through the return pipe 14.
貯湯タンク 1 0から熱交換器 3 0ゃ排熱交換部 2 1への湯水の搬送は往管路 1 3上に設けた ポンプ 1 6によって行われ、 熱交換器 3 0と排熱交換部 2 1との各々に供給する湯水の流量は、 熱交換器 3 0並びに排熱交換部 2 1と往管路 1 3との間にそれぞれ設けられた流量制御弁 1 7 , 1 8によって個別に調節される。 往管路 1 3上のポンプ 1 6および流量制御弁 1 7 , 1 8は、 加 熱装置 3や発電装置 2と共に制御装置 4によつて制御される。  Hot water is transferred from the hot water storage tank 1 0 to the heat exchanger 3 0 to the exhaust heat exchanger 2 1 by the pump 1 6 provided on the outgoing pipe 1 3, and the heat exchanger 3 0 and the exhaust heat exchanger 2 The flow rate of hot water supplied to each of 1 and 1 is individually adjusted by flow control valves 1 7 and 1 8 provided between the heat exchanger 30 and the exhaust heat exchanger 21 and the outgoing pipe 1 3 respectively. Is done. The pump 16 and the flow control valves 17 and 18 on the outgoing line 13 are controlled by the controller 4 together with the heating device 3 and the power generator 2.
上述したような構成によリ、 本実施形態のコ一ジヱネレ一ションシステムでは加熱装置 3で発 生する熱エネルギと発電装置 2で発電時に生じる排熱の熱エネルギとの両方を、 貯湯タンク 1 0 内の湯水の加熱に用いることができる。  With the configuration as described above, in the cogeneration system of this embodiment, both the heat energy generated by the heating device 3 and the heat energy of exhaust heat generated during power generation by the power generation device 2 are stored in the hot water storage tank 1 It can be used for heating hot water in the water.
通常、 この種のコ一ジェネレーションシステムでは、 発電装置 2は常時運転するのではなく、 過去の消費電力量のデータ等に基づいて決められたタイムスケジュール (運転開始時刻、 運転時 間) に従って運転するように制御される。 一般的には、 当日の消費電力量から、 翌日の消費電力 量を予測し、 当該予測値に見合った電力量の発電がされるように発電装置 2を運転させる。 ここにおいて、 制御装置 4は、 発電装置 2を常時運転させるのではなく、 過去の消費電力量の データ等に基づいて決められたタイムスケジュール (運転開始時刻、 運転時間) に従って発電装 置 2を運転させるように制御する。 ここでは、 制御装置 4は朝方に発電装置 2の運転を開始し、 その後、 貯湯タンク 1 0の湯量が飽和してそれ以上発電装置 2の排熱を回収できない状態になる と、 発電装置 2の運転を停止し、 エネルギに無駄が生じないようにする。 そのため、 コージエネ レーシヨンシステムは、 発電装置 2の発電能力を超える電力需要がある時間帯や、 発電装置 2が 運転を停止している時間帯には、 商用電源からの電力供給も併せて行う。  Normally, in this type of cogeneration system, the power generator 2 does not always operate, but operates according to a time schedule (operation start time, operation time) determined based on past power consumption data, etc. To be controlled. Generally, the power consumption of the next day is predicted from the power consumption of the current day, and the power generator 2 is operated so that the amount of power corresponding to the predicted value is generated. Here, the control device 4 does not always operate the power generation device 2, but operates the power generation device 2 according to a time schedule (operation start time, operation time) determined based on past power consumption data and the like. To control. Here, the control device 4 starts the operation of the power generation device 2 in the morning. After that, when the amount of hot water in the hot water storage tank 10 is saturated and the exhaust heat of the power generation device 2 cannot be recovered any more, Stop operation so that energy is not wasted. For this reason, the power generation system also supplies power from a commercial power source during times when there is a demand for power that exceeds the power generation capacity of the power generation device 2 or when the power generation device 2 is not in operation.
また、 制御装置 4は、 貯湯タンク 1 0の湯量が所定の下限値を下回ると、 発電装置 2が運転中 か否かによらず、 加熱装置 3を運転させることによリ貯湯タンク 1 0に貯められる湯水を加熱す る加熱制御手段 4 0を有する。 これにより、 一時にまとめて大量の湯が使用された場合にも、 貯 湯タンク 1 0内の湯量が下限値を下回った時点で加熱装置 3が運転を開始するので、 貯湯タンク 1 0内の湯がなくなることを回避できる。  In addition, when the amount of hot water in the hot water storage tank 10 falls below a predetermined lower limit value, the control device 4 sets the hot water storage tank 10 to 10 by operating the heating device 3 regardless of whether the power generation device 2 is in operation. It has a heating control means 40 for heating the hot and cold water stored. As a result, even when a large amount of hot water is used all at once, the heating device 3 starts operation when the amount of hot water in the hot water storage tank 10 falls below the lower limit value. It is possible to avoid running out of hot water.
さらに、 制御装置 4は、 発電装置 2が運転を開始する前に予め貯湯タンク 1 0内にある程度の 湯量を確保するように、 発電装置 2が運転していないときにも貯湯タンク 1 0に貯められる湯水 を加熱する。 これにより、 たとえば早朝などの発電装置 2が運転を開始する前の時間帯に湯を大 量に使用することがあっても、 貯湯タンク 1 0内の湯がなくなることを避けることができる。 ただし、 発電装置 2の運転開始前に、 加熱装置 3により加熱された湯を貯湯タンク 1 0内に貯 めるようにした場合、 その後、 貯湯タンク 1 0内の湯が殆ど使われなければ、 発電装置 2の運転 を開始してもすぐに貯湯タンク 1 0の湯量が飽和して発電装置 2の運転が停止することになる。 その結果、 電力需要が多いため発電装置 2に発電させたいときであっても、 貯湯タンク 1 0内の 湯量が飽和しているために発電装置 2を運転できず、 発電装置 2を効率的に利用できない事態を 生じ得る。 Further, the control device 4 stores the hot water storage tank 10 in the hot water storage tank 10 even when the power generation device 2 is not operating so that a certain amount of hot water is secured in the hot water storage tank 10 before the power generation device 2 starts operation. Heat the hot and cold water. As a result, it is possible to avoid running out of hot water in the hot water storage tank 10 even if a large amount of hot water is used in the time period before the power generation device 2 starts operation, such as in the early morning. However, if the hot water heated by the heating device 3 is stored in the hot water storage tank 10 before starting the operation of the power generation device 2, then the hot water in the hot water storage tank 10 is almost not used. As soon as the operation of the power generator 2 is started, the amount of hot water in the hot water storage tank 10 is saturated and the operation of the power generator 2 is stopped. As a result, even when it is desired to generate power to the power generation device 2 because of a large demand for power, the power generation device 2 cannot be operated because the amount of hot water in the hot water storage tank 10 is saturated, and the power generation device 2 is efficiently operated. Unusable situations can occur.
そこで、 本実施形態では、 制御装置 4は、 貯湯タンク 1 0内の湯量が飽和することを回避する ため、 以下に説明するように加熱装置 3の運転状況を制御する。  Therefore, in the present embodiment, the control device 4 controls the operation status of the heating device 3 as described below in order to avoid the amount of hot water in the hot water storage tank 10 being saturated.
すなわち、 制御装置 4は、 所定の単位期間 (ここでは 1日とする) ごとに発電装置 2の発熱量 を予測する予測手段 4 1と、 単位期間において発電装置 2が運転を開始する前に加熱装置 3を運 転させる予熱制御手段 4 2とを有する。 予測手段 4 1においては、 分電盤 (図示せず) 内に設け られる電力量計測用の計測ュニッ卜が接続され、 住宅内の負荷で消費される電力量を監視する機 能が付加されている。  That is, the control device 4 includes a prediction unit 41 that predicts the heat generation amount of the power generation device 2 every predetermined unit period (here, 1 day), and heating before the power generation device 2 starts operation in the unit period. Preheating control means 4 2 for operating the device 3. In the prediction means 41, a measurement unit for measuring electric energy provided in a distribution board (not shown) is connected, and a function for monitoring the electric energy consumed by the load in the house is added. Yes.
予測手段 4 1は、 所定の時刻 (ここでは 2 4時とする) になると、 計測ユニットで計測された 電力量から、 過去の直近の単位期間 (ここでは当日とする) に消費された電力量を求め、 当該電 力量に基づいて将来の単位期間 (ここでは翌日とする) に消費される電力量を予測する。 予測手 段 4 1は、 電力量の予測結果に基づいて発電装置 2の発電量 (電力需要) を求め、 当該発電量に 対応する発電装置 2の発熱量 (発電時に発生する排熱の量) を予測する。制御装置 4に設けた記 憶手段 4 3には、 発電装置 2の発電量と発熱量との対応関係を示すテーブルが格納されている。 予熱制御手段 4 2は、 予測手段 4 1で予測された発電装置 2の発熱量に基づいて、 貯湯タンク 1 0内の湯量が飽和しないように、 加熱装置 3から貯湯タンク 1 0に貯められる湯水に加える熱 s:を逆 する。  Prediction means 4 1 is the amount of power consumed in the last unit period in the past (here, the current day) from the amount of power measured by the measurement unit at a predetermined time (here, 2 o'clock). And predict the amount of power consumed in the future unit period (here, the next day) based on the amount of power. Prediction method 4 1 calculates the amount of power generation (electric power demand) of power generation device 2 based on the prediction result of power amount, and the heat generation amount of power generation device 2 corresponding to the power generation amount (amount of exhaust heat generated during power generation). Predict. The storage means 43 provided in the control device 4 stores a table indicating the correspondence between the power generation amount and the heat generation amount of the power generation device 2. The preheating control means 4 2 is a hot water stored in the hot water storage tank 10 from the heating device 3 so that the amount of hot water in the hot water storage tank 10 is not saturated based on the calorific value of the power generator 2 predicted by the prediction means 4 1. Reverse heat applied to s :.
要するに、 貯湯タンク 1 0の湯量が飽和するときの熱量を上限値 q m a Xとすると、 発電装置 2を効率的に利用するためには、 発電装置 2が運転を開始しても貯湯タンク 1 0内の湯水に加わ る熱量が上限値 q m a xを超えないように加熱装置 3からの熱量を制限する必要がある。 そこで、 予熱制御手段 4 2は、 図 3のように、 単位期間の終了時点 (2 4時) での貯湯タンク 1 0の残熱 量 q ( i - 1 ) に、 貯湯タンク 1 0に加わる熱量の合算値 (q i n + q f c ) を加えた値が、 上 限値 q m a X以下に収まるように熱量 q i nを求めることになる。 ここでは加熱装置 3から加え られる熱量を q i n、 発電装置 2で生じる熱量を q f cとする。  In short, if the amount of heat when the amount of hot water in the hot water storage tank 10 saturates is the upper limit qma X, in order to use the power generation device 2 efficiently, even if the power generation device 2 starts operation, It is necessary to limit the amount of heat from the heating device 3 so that the amount of heat applied to the hot water does not exceed the upper limit qmax. Therefore, as shown in Fig. 3, the preheating control means 4 2 uses the amount of heat applied to the hot water storage tank 10 to the remaining heat quantity q (i-1) of the hot water storage tank 10 at the end of the unit period (24:00). The amount of heat qin is calculated so that the sum of the two values (qin + qfc) is within the upper limit qma X. Here, the amount of heat applied from the heating device 3 is q i n, and the amount of heat generated in the power generation device 2 is q f c.
上限値 q m a xは、 給湯装置 1の設定機能によリュ一ザが任意に設定できる値を初期値として、 単位期間に消費される湯量が多くなるほど大きくなるように、 制御装置 4の調整手段 44により 変化させられるものとする。 具体的には、 過去の単位期間に消費された湯量に基づいて将来の単 位期間に消費される湯量を予測し、 その予測結果に基づいて、 段階的に上限値 qma xを変化さ せるようにする。 ここでは、 単位期間に給湯により消費される熱量 q o u tと、 単位期間に放熱 ロスにより失われる熱量 q I o s sとの合算値を上限値 q m a Xに加算したものを新たな上限 値 q ma Xとする。 ただし、 この構成に限らず、 上限値 q m a xは固定的に設定される値として もよい。 The upper limit qmax is set to an initial value that can be arbitrarily set by the user using the setting function of the hot water supply device 1. It is assumed that the adjustment means 44 of the control device 4 can be changed so as to increase as the amount of hot water consumed per unit period increases. Specifically, the amount of hot water consumed in the future unit period is predicted based on the amount of hot water consumed in the past unit period, and the upper limit value qmax is changed step by step based on the prediction result. To. Here, the sum of the amount of heat qout consumed by hot water supply during the unit period and the amount of heat lost due to heat loss during the unit period q I oss is added to the upper limit value qma X as the new upper limit value q ma X . However, not limited to this configuration, the upper limit qmax may be a fixed value.
ここにおいて、 給湯により消費される熱量 q o u tおよび放熱ロスとなる熱量 q I O S Sは、 制御装置 4で、 過去の単位期間に消費された湯量に基づいて予測される。 消費された湯量は、 給 湯装置 1に設けたセンサ (図示せず) から取得することができる。 また、 残熱量 q ( i - 1 ) は 貯湯タンク 1 0の温度センサ 1 5から取得することができる。 Here, the heat quantity qout consumed by the hot water supply and the heat quantity q I OSS that becomes the heat dissipation loss are predicted by the control device 4 based on the amount of hot water consumed in the past unit period. The amount of hot water consumed can be obtained from a sensor (not shown) provided in the hot water supply apparatus 1. Further, the residual heat quantity q (i-1) can be obtained from the temperature sensor 15 of the hot water storage tank 10.
次に、 制御装置 4の動作について図 4のフローチャートを参照して説明する。  Next, the operation of the control device 4 will be described with reference to the flowchart of FIG.
所定の時刻 (ここでは 24時) になると、 予測手段 41は、 まず将来の単位期間に必要な発電 装置 2の発電量 (電力需要) を求め (S 1 )、 これに対応する発熱量 q f cを予測する (S 2)。 それから、 予熱制御手段 42は、 残熱量 q ( i - 1 ) に、 発電装置 2の発熱量 q f cと貯湯タン ク 1 0から出される熱量の合計 (q o u t + q I O S S) との差分値を加えた値が、 上限値 q m a x未満であるか否かを判断する (S 3)。  At a predetermined time (here, 24:00), the predicting means 41 first obtains the power generation amount (electric power demand) of the power generation device 2 required in the future unit period (S 1), and calculates the calorific value qfc corresponding thereto. Predict (S 2). Then, the preheating control means 42 adds a difference value between the heat generation amount qfc of the power generator 2 and the total amount of heat generated from the hot water storage tank 10 (qout + q IOSS) to the residual heat amount q (i-1). It is determined whether or not the value is less than the upper limit value qmax (S 3).
このとき、 上限値 qma X未満と判断されれば (S 3 : Y e s)、 加熱装置 3から加えられる 熱量 q i nを、 rqma x— q f c— q ( i — 1 ) + q o u t + q I o s sj によリ求め (S 4)。 一方、 上限値 qma x以上と判断されれば ( S 3 : N o )、 「 q f c + q ( i — 1 ) — q o u t -q I o s s」 が上限値 q m a x未満で収まるように、 上限値 qma xを 「q f c + q ( i — 1 ) 一 q o u t— q l o s sj 以上になるように変更する (S 5)。 このとき、 加熱装置 3か ら加えられる熱量 q i nはゼロとしてもよいし、 変更後の上限値 q ma Xを用いて、 熱量 q i n ¾T「q m a x— q f c— q ( i — 1 ) + q o u t + q I o s sjにより求めるよつ し もよし、。 ただし、 変更された上限値 q ma Xは直近の単位期間 (ここでは翌日) のみ有効とし、 当該単位 期間の終了時点で元の上限値 qma xに戻されるものとする。 At this time, if it is determined that it is less than the upper limit value qma X (S 3 : Y es), the amount of heat qin applied from the heating device 3 is changed to rqma x— qfc— q (i — 1) + qout + q I ask you (S 4). On the other hand, if it is determined that the upper limit value qma x is greater than or equal to (S 3: No), the upper limit value qma x (Q 5 + q (i — 1) one qout— qlos sj or more (S 5). At this time, the heat quantity qin applied from the heating device 3 may be zero, or the upper limit after the change Using the value q ma X, calorific value qin ¾T “qmax— qfc— q (i — 1) + qout + q I os sj is also acceptable. However, the changed upper limit q ma X is the latest It is valid only for the unit period (here, the next day), and is restored to the original upper limit qmax at the end of the unit period.
その後、 予熱制御手段 42は、 発電装置 2が運転を開始する前に加熱装置 3を運転させること により、 上述のようにして求めた熱量 q i nが貯湯タンク 1 0内に貯められる湯水に対して加熱 装置 3から加わるようにする。 ここでは、 一般的に宅内の負荷による電力消費が少なくなる深夜 の時間帯に加熱装置 3を運転させている。 以上説明した構成のコージヱネレ一シヨンシステムによれば、 予熱制御手段 4 2が、 発電装置 2の運転開始前に、 予め加熱装置 3を運転させて貯湯タンク 1 0内にある程度の湯量を確保して おくことができるので、 早朝など発電装置 2の運転開始前であっても、 十分な湯量の供給が可能 となる。 しかも、 加熱装置 3により予め加えられる熱量は、 貯湯タンク 1 0内の湯量が飽和しな いように、 予測手段 4 1で予測された単位期間内の発電装置 2の発熱量に基づいて決められるの で、 後に発電装置 2が稼働しても貯湯タンク 1 0内の湯量が飽和することは回避できる。 Thereafter, the preheating control means 42 heats the hot water stored in the hot water storage tank 10 by operating the heating device 3 before the power generation device 2 starts operation, so that the heat quantity qin obtained as described above is heated. Add from device 3. Here, in general, the heating device 3 is operated during the midnight hours when power consumption due to the load in the house is reduced. According to the cordierization system having the above-described configuration, the preheating control means 4 2 operates the heating device 3 in advance to ensure a certain amount of hot water in the hot water storage tank 10 before the operation of the power generation device 2 starts. As a result, it is possible to supply a sufficient amount of hot water even in the early morning, even before the generator 2 is started. Moreover, the amount of heat applied in advance by the heating device 3 is determined based on the amount of heat generated by the power generation device 2 within the unit period predicted by the prediction means 41 so that the amount of hot water in the hot water storage tank 10 is not saturated. Therefore, it is possible to avoid saturation of the amount of hot water in the hot water storage tank 10 even if the power generator 2 is operated later.
ところで、 消費電力量の予測や消費湯量の予測には、 季節や曜日ごとに異なるパターンを用い るようにしてもよい。 つまり、 単に当日の消費電力量から翌日の消費電力量を予測するのではな く、 季節や曜日が同条件となる過去の単位期間 (1曰) の消費電力量から翌日の消費電力量を予 測するようにしてもよい。 さらに、 予熱制御手段 4 2は、 時間帯ごとに消費電力量や消費湯量を 予測するようにして、 当該予測結果に基づいて加熱装置 3の運転スケジュールをより細かく決定 するようにしてもよい。  By the way, different patterns may be used for each season and day of the week for prediction of power consumption and hot water consumption. In other words, instead of simply predicting the power consumption of the next day from the power consumption of the current day, the power consumption of the next day is predicted from the power consumption of the past unit period (1 曰) with the same conditions for the season and day of the week. You may make it measure. Further, the preheating control means 42 may predict the power consumption and hot water consumption for each time zone, and may determine the operation schedule of the heating device 3 more finely based on the prediction result.
また、 消費電力量の予測値を気象予報データにより補正する補正機能を、 予測手段 4 1に設け ることも考えられる。 この場合、 気象予報データと負荷の消費電力との対応関係は予め記憶手段 4 3に格納され、 予測手段 4 1では、 将来の単位期間の気象予報データを取得し、 当該気象予報 データと負荷の消費電力との対応関係を用いて消費電力量の予測値を補正する。 これにより、 外 気温や湿度の影響で消費電力が変化する空調装置や、 日照時間の影響で消費電力 (使用時間) が 変化する照明器具等の負荷の消費電力量の予測が立てやすくなリ、 結果的に発電装置 2の発熱量 の予測精度が高くなる。  It is also conceivable that the prediction means 41 has a correction function that corrects the predicted value of power consumption based on weather forecast data. In this case, the correspondence between the weather forecast data and the power consumption of the load is stored in advance in the storage means 43, and the forecast means 41 acquires the weather forecast data for the future unit period, and The predicted value of the power consumption is corrected using the correspondence relationship with the power consumption. This makes it easier to predict the power consumption of loads such as air conditioners that change power consumption due to the influence of outside air temperature and humidity, and lighting fixtures whose power consumption (usage time) changes due to the effects of sunlight. As a result, the prediction accuracy of the heat generation amount of the power generator 2 is increased.
また、 本実施形態では、 単位期間を 1曰単位として説明したが、 この例に限るものではなく、 時間帯単位、 1週間単位、 1月単位等、 任意の単位期間を設定することが可能である。 さらに、 加熱装置 3からの熱量を決定するタイミングや、 加熱装置 3を運転させるタイミングに関しても、 上述の例に限らず適宜設定できるものとする。  In the present embodiment, the unit period is described as 1 unit. However, the present invention is not limited to this example, and any unit period such as a time zone unit, a week unit, or a month unit can be set. is there. Furthermore, the timing for determining the amount of heat from the heating device 3 and the timing for operating the heating device 3 are not limited to the above-described example, and can be set as appropriate.
(実施形態 2 )  (Embodiment 2)
本実施形態のコ一ジェネレーションシステムは、 発電装置 2とは別に太陽電池 5を付加した点 が実施形態 1のコ一ジェネレーションシステムと相違する。  The cogeneration system of the present embodiment is different from the cogeneration system of the first embodiment in that a solar cell 5 is added separately from the power generator 2.
太陽電池にはパワーコンデイショナが接続され、 太陽電池で生成される直流電力はパワーコン ディショナ内のインバ一タ回路にて交流電力に変換され、 宅内の負荷に供給される。 すなわち、 本実施形態では発電装置 2と太陽電池との両方で負荷への電力供給を行うことができるため、 単 位期間当リに発電装置 2に求められる発電量は、 単位期間に消費されると予想された電力量から 太陽電池で生成される電力量を差し引いたものとなる。 A power conditioner is connected to the solar cell, and the DC power generated by the solar cell is converted to AC power by an inverter circuit in the power conditioner and supplied to the load in the house. That is, in this embodiment, both the power generation device 2 and the solar battery can supply power to the load. Therefore, the power generation amount required for the power generation device 2 during the unit period is consumed in the unit period. From the expected electric energy The amount of power generated by the solar cell is subtracted.
ここで、 太陽電池の発電能力は一定ではなく、 同じ時間帯であっても気象条件に大きく左右さ れる。 そこで本実施形態では、 予測手段 4 1が、 将来の単位期間の気象予報データを取得し、 当 該単位期間における太陽電池の発電量を気象予報データに基づいて予測する機能を有するもの とする。 これにより、 太陽電池の発電量の予測精度が向上し、 結果的に発電装置 2の発熱量の予 測精度が高くなる。  Here, the power generation capacity of solar cells is not constant, and greatly depends on weather conditions even in the same time zone. Therefore, in the present embodiment, it is assumed that the predicting means 41 has a function of acquiring weather forecast data for a future unit period and predicting the power generation amount of the solar cell in the unit period based on the weather forecast data. Thereby, the prediction accuracy of the power generation amount of the solar cell is improved, and as a result, the prediction accuracy of the heat generation amount of the power generation device 2 is increased.
また、 上述した太陽電池に代えて、 太陽光以外の自然エネルギ源 (たとえば太陽熱、 風力、 水 力、 バイオマス、 雪氷熱などの再生可能エネルギ源) を利用して発電する電力発生装置を発電装 置 2とは別に設けるようにしてもよい。 この場合でも、 予測手段 4 1は、 将来の単位期間に消費 される電力量から電力発生装置の発電量を差し引いて発電装置 2の発電量を求めるものとする。 その他の構成および機能は実施形態 1と同様である。 このような構成によっても実施形態 1と 同様の効果が得られる。 すなわち、 予熱制御手段 4 2が、 発電装置 2の運転開始前に、 予め加熱 装置 3を運転させて貯湯タンク 1 0内にある程度の湯量を確保しておくことができるので、 早朝 など発電装置 2の運転開始前であっても、 十分な湯量の供給が可能となる。 しかも、 加熱装置 3 により予め加えられる熱量は、 貯湯タンク 1 0内の湯量が飽和しないように、 予測手段 4 1で予 測された単位期間内の発電装置 2の発熱量に基づいて決められるので、 後に発電装置 2が稼働し ても貯湯タンク 1 0内の湯量が飽和することは回避できる。  In addition, instead of the solar cell described above, a power generation device that generates power using natural energy sources other than sunlight (for example, renewable energy sources such as solar heat, wind power, hydropower, biomass, snow and ice heat, etc.) It may be provided separately from 2. Even in this case, the prediction means 41 determines the power generation amount of the power generation device 2 by subtracting the power generation amount of the power generation device from the power amount consumed in the future unit period. Other configurations and functions are the same as those in the first embodiment. With this configuration, the same effect as in the first embodiment can be obtained. That is, since the preheating control means 4 2 can operate the heating device 3 in advance and secure a certain amount of hot water in the hot water storage tank 10 before starting the operation of the power generation device 2, the power generation device 2 such as early morning Even before the start of operation, a sufficient amount of hot water can be supplied. In addition, the amount of heat applied in advance by the heating device 3 is determined based on the amount of heat generated by the power generation device 2 within the unit period predicted by the prediction means 41 so that the amount of hot water in the hot water storage tank 10 is not saturated. Even if the power generation device 2 is operated later, it is possible to avoid saturation of the amount of hot water in the hot water storage tank 10.
以上、 本発明の望ましい実施形態が説明されたが、 本発明はこれら特定の実施形態に限定され ず、 後続する請求範囲の範疇から外れず多様な変更及び修正が成り立てるし、 それも本発明の範 疇内に属するという。  The preferred embodiments of the present invention have been described above, but the present invention is not limited to these specific embodiments, and various changes and modifications can be made without departing from the scope of the subsequent claims. It belongs to the category.

Claims

請求範囲 Claim
【請求項 1】  [Claim 1]
湯水を貯める貯湯タンクを有し貯湯タンク内の湯水により給湯を行う給湯装置と、 発電時に発生する排熱を利用して貯湯タンクに貯められる湯水を加熱する発電装置と、 前記発電装置とは別に貯湯タンクに貯められる湯水を加熱する加熱装置と、  A hot water supply apparatus that has a hot water storage tank for storing hot water and that supplies hot water using hot water in the hot water storage tank, a power generation apparatus that heats hot water stored in the hot water storage tank using exhaust heat generated during power generation, and A heating device for heating hot water stored in a hot water storage tank;
前記発電装置の発電量に基づいて前記加熱装置の運転状況を制御する制御装置と  A control device for controlling the operating status of the heating device based on the power generation amount of the power generation device;
を備えるコ一ジェネレーションシステム。 Cogeneration system with
【請求項 2】  [Claim 2]
前記制御装置は、 過去の単位期間に消費された電力量に基づいて将来の単位期間に消費される 電力量を予測し、 予測された電力量に基づいて前記発電装置の発熱量を予測する予測手段と、 前記予測手段で予測された前記発電装置の発熱量と合わせて前記単位期間に必要な熱量を確保 するように、 前記加熱装置から加える熱量を決め、 前記熱量がゼロではない場合、 前記単位期間 に前記発電装置が運転を開始する前に前記加熱装置を運転させる予熱制御手段とを有する請求 項 1記載のコ一ジェネレーションシステム。  The control device predicts the amount of power consumed in a future unit period based on the amount of power consumed in a past unit period, and predicts the amount of heat generated by the power generation device based on the predicted amount of power And the amount of heat applied from the heating device so as to ensure the amount of heat necessary for the unit period together with the heat generation amount of the power generation device predicted by the prediction unit, and when the amount of heat is not zero, The cogeneration system according to claim 1, further comprising preheating control means for operating the heating device before the power generation device starts operation during a unit period.
【請求項 3】  [Claim 3]
前記貯湯タンクは、 内部が湯水で満たされ、 当該湯水全体に蓄積可能な熱量の限界値以下の範 囲において蓄積可能な熱量の上限値が設定されておリ、 前記予熱制御手段は、 前記単位期間中に 貯湯タンク内の熱量が前記上限値を超えないように、 前記加熱装置から湯水に加える熱量を決め ることを特徴とする請求項 2記載のコ一ジェネレーションシステム。  The hot water storage tank is filled with hot water, and an upper limit value of the amount of heat that can be stored in a range that is less than or equal to the limit value of the heat amount that can be stored in the entire hot water is set, and the preheating control means includes the unit 3. The cogeneration system according to claim 2, wherein the amount of heat applied to the hot water from the heating device is determined so that the amount of heat in the hot water storage tank does not exceed the upper limit value during the period.
【請求項 4】  [Claim 4]
前記制御装置は、 過去の前記単位期間に消費された湯量に基づいて将来の単位期間に消費され る湯量を予測し、 当該予測に基づいて、 単位期間に消費される湯量が多くなるほど当該単位期間 の前記上限値を大きくするように前記上限値を変化させる調整手段を更に有することを特徴と する請求項 3記載のコ一ジヱネレ一シヨンシステム。  The control device predicts the amount of hot water consumed in a future unit period based on the amount of hot water consumed in the unit period in the past, and based on the prediction, the amount of hot water consumed in the unit period increases. 4. The cogeneration system according to claim 3, further comprising adjusting means for changing the upper limit value so as to increase the upper limit value.
【請求項 5】  [Claim 5]
前記制御装置は、 前記貯湯タンク内の湯量が既定の下限値を下回ると前記加熱装置を運転させ る加熱制御手段を更に有することを特徴とする請求項 2ないし請求項 4のいずれか 1項に記載 のコーシェ不レーションシステム。  5. The control device according to claim 2, further comprising a heating control unit configured to operate the heating device when the amount of hot water in the hot water storage tank falls below a predetermined lower limit value. Coaches relation system as described.
【請求項 6】 前記予測手段は、 前記単位期間を 1曰単位として前記発電装置の発熱量を予測することを特徴 とする請求項 2ないし請求項 5のいずれか 1項に記載のコ一ジェネレーションシステム。 [Claim 6] The cogeneration system according to any one of claims 2 to 5, wherein the predicting unit predicts the amount of heat generated by the power generation device with the unit period as one unit.
【請求項 7】  [Claim 7]
前記予測手段は、 将来の前記単位期間の気象予報データを取得し、 当該単位期間に消費される と予測された電力量を、 予め設定されている気象予報データと負荷の消費電力との対応関係を用 いて補正する補正機能を有することを特徴とする請求項 2ないし請求項 6のいずれか 1項に記 載のコ一ジェネレーションシステム。  The forecasting means obtains weather forecast data for the unit period in the future, and calculates the amount of power predicted to be consumed during the unit period as a correspondence relationship between preset weather forecast data and power consumption of the load. The cogeneration system according to any one of claims 2 to 6, further comprising a correction function that corrects the noise by using the.
【請求項 8】  [Claim 8]
自然エネルギを利用して発電する電力発生装置を更に備え、 前記予測手段は、 将来の前記単位 期間に消費されると予測された電力量から電力発生装置の発電量を差し引いた電力量に基づい て発電装置の発電量を求めることを特徴とする請求項 2ないし請求項 7のいずれか 1項に記載 のコ一ジェネレーションシステム。  The power generation device further generates power using natural energy, and the predicting means is based on a power amount obtained by subtracting a power generation amount of the power generation device from a power amount predicted to be consumed in the unit period in the future. The cogeneration system according to any one of claims 2 to 7, wherein a power generation amount of the power generation device is obtained.
【請求項 9】  [Claim 9]
前記電力発生装置は太陽電池であり、 前記予測手段は、 将来の前記単位期間の気象予報データ を取得し、 当該単位期間における前記太陽電池の発電量を気象予報データに基づいて予測し、 当 該予測された発電量を当該単位期間に消費されると予測された電力量から差し引いた電力量に 基づいて発電装置の発電量を求めることを特徴とする請求項 8記載のコ一ジヱネレーシヨンシ ステム。  The power generation device is a solar cell, and the predicting means acquires weather forecast data for the unit period in the future, predicts the power generation amount of the solar cell in the unit period based on the weather forecast data, and 9. The cogeneration system according to claim 8, wherein the power generation amount of the power generation device is obtained based on the power amount obtained by subtracting the predicted power generation amount from the power amount predicted to be consumed in the unit period. Yon system.
PCT/IB2010/003301 2009-12-21 2010-12-20 Cogeneration system WO2011077220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-289689 2009-12-21
JP2009289689A JP5457818B2 (en) 2009-12-21 2009-12-21 Cogeneration system

Publications (1)

Publication Number Publication Date
WO2011077220A1 true WO2011077220A1 (en) 2011-06-30

Family

ID=44195013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/003301 WO2011077220A1 (en) 2009-12-21 2010-12-20 Cogeneration system

Country Status (2)

Country Link
JP (1) JP5457818B2 (en)
WO (1) WO2011077220A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940263B2 (en) * 2011-08-12 2016-06-29 京セラ株式会社 Power control apparatus and power control method
JP5934041B2 (en) * 2012-07-10 2016-06-15 京セラ株式会社 Power system, apparatus and method
JP5980025B2 (en) * 2012-07-17 2016-08-31 大阪瓦斯株式会社 Fuel cell cogeneration system
JP5422067B1 (en) * 2013-01-28 2014-02-19 大阪瓦斯株式会社 Cogeneration system and operation method thereof
JP5982648B2 (en) * 2013-03-28 2016-08-31 パナソニックIpマネジメント株式会社 Fuel cell system
JP6023985B2 (en) * 2013-03-28 2016-11-09 パナソニックIpマネジメント株式会社 Fuel cell system
JP2021158017A (en) * 2020-03-27 2021-10-07 東京瓦斯株式会社 Fuel cell cogeneration system controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002171673A (en) * 2000-11-30 2002-06-14 Ebara Corp Co-generation system and operating method of co- generation system facility
JP2005287210A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Energy supply system
JP2005291561A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Operating method for cogeneration system and cogeneration system
JP2007057107A (en) * 2005-08-22 2007-03-08 Rinnai Corp Cogeneration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151121A (en) * 2000-11-09 2002-05-24 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2002171673A (en) * 2000-11-30 2002-06-14 Ebara Corp Co-generation system and operating method of co- generation system facility
JP2005287210A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Energy supply system
JP2005291561A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Operating method for cogeneration system and cogeneration system
JP2007057107A (en) * 2005-08-22 2007-03-08 Rinnai Corp Cogeneration system

Also Published As

Publication number Publication date
JP5457818B2 (en) 2014-04-02
JP2011127883A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2011077220A1 (en) Cogeneration system
JP6001712B2 (en) Power conditioner, power system and control method
US8180499B2 (en) Power supply system
JP6066296B2 (en) Equipment operation plan determination method
WO2006006445A1 (en) Control device of fuel cell power generation system, control method, control program and computer-readable recording medium recording control program
US6988024B2 (en) Cogeneration system, operation controller for cogeneration facility, and operation program for cogeneration facility
JP5254500B1 (en) Distributed power generation system and control method of distributed power generation system
JP4378120B2 (en) Operation control system for home cogeneration system
US20040106024A1 (en) Cogeneration apparatus, cogeneration method, program, and medium
JP5819225B2 (en) Equipment operation plan determination method
JP5444020B2 (en) Cogeneration system
JP2005012906A (en) Method and device for controlling output of cogeneration system
JP4966066B2 (en) Cogeneration system
JP2005248820A (en) Operation control system for cogeneration device
JP4133628B2 (en) Cogeneration system
JP5108720B2 (en) Control system for distributed energy generator
JP5295694B2 (en) Fuel cell system and operation method thereof
JP2002048004A (en) Heat/electric power cogenerating device and environment control room using the same
JP6084077B2 (en) Private power generation system
JP4994108B2 (en) Thermal storage control device
JP4883900B2 (en) FUEL CELL SYSTEM, FUEL CELL SYSTEM CONTROL METHOD, AND BUILDING
JP6694757B2 (en) Hot water supply system
JP4716446B2 (en) Cogeneration system and operation control method thereof
JP5647925B2 (en) Cogeneration system
JP2023139866A (en) fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838770

Country of ref document: EP

Kind code of ref document: A1