WO2011075938A1 - 风力发电装置 - Google Patents

风力发电装置 Download PDF

Info

Publication number
WO2011075938A1
WO2011075938A1 PCT/CN2010/001900 CN2010001900W WO2011075938A1 WO 2011075938 A1 WO2011075938 A1 WO 2011075938A1 CN 2010001900 W CN2010001900 W CN 2010001900W WO 2011075938 A1 WO2011075938 A1 WO 2011075938A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
generator
rotation
receiving portion
rotating shaft
Prior art date
Application number
PCT/CN2010/001900
Other languages
English (en)
French (fr)
Inventor
梁涛
Original Assignee
Liang Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liang Tao filed Critical Liang Tao
Publication of WO2011075938A1 publication Critical patent/WO2011075938A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/311Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention relates to a wind power generation device that performs wind power generation using the force of natural wind. Background technique
  • the first technical problem of wind turbines is that the cost of power generation is too high, and the price of wind turbine generators is about four times that of coal-fired power. Therefore, wind power generation in all countries of the world has to rely on the government's financial subsidies to support. The larger the scale of wind power generation, the heavier the government's financial burden. Therefore, in order to popularize wind power on a large scale, it is necessary to solve the cost problem of wind power generation, and reduce the price of wind power generation to a level close to that of thermal power generation, so that wind power generation will have real competitiveness.
  • Wind turbine wind turbines have high power generation costs because the current wind turbine wind turbines are too expensive. Because the wind of natural wind varies greatly, the wind turbine of a wind turbine must be able to withstand very strong storms such as typhoons. For example, the average wind speed of a 12-class typhoon is 34m/s. At this time, the 1.5MW wind turbine Wind turbines generate wind pressures of up to several thousand tons, so the blades, shafts, etc. of the wind turbines must use expensive high-strength materials, which makes the cost of wind turbines very expensive.
  • the second technical problem of wind turbines is the poor wind resistance. Because the rotor blades that are several tens of meters long have only one support point at the root of the blade, the force is very unbalanced and easily damaged. Despite the use of high-strength materials for the manufacture of blades and the use of special unloading devices to control the wind pressure on the blades, it is still difficult to avoid damage from strong winds. Wind turbine type wind turbine failure The reason, more than 80% is due to various damage caused by strong winds. Therefore, the anti-strong wind performance is very important for wind turbines.
  • the third technical problem with wind turbines is that they cannot generate electricity during weak winds. Because the wind wheel has to resist the strong wind, the wind wheel is made very thick. This heavy wind wheel cannot be driven by the low wind speed weak wind, which makes the wind turbine type wind turbine unable to set at the annual average wind speed. The lower weak wind areas greatly limit the application range of wind power generation.
  • Wind turbine wind turbines have other technical problems. For example, an integral blade with a length of several tens of meters is difficult to transport to remote areas where road conditions are not good. High-speed rotation of the wind turbine generates loud noise and sometimes kills birds.
  • This new wind turbine type wind turbine does not require high-strength materials, can achieve low cost, and has good wind resistance. It can generate electricity at low wind speeds, with low failure rate and low noise, and will not harm birds.
  • the sail type wind power generator of the present invention is briefly described as follows.
  • a column that extends vertically.
  • One end of the above column is fixed to the ground, and the other end is provided with a connecting member which can rotate 360 degrees in the horizontal direction.
  • the above connector is mounted with a rotating shaft extending in the horizontal direction.
  • the above-mentioned rotating shaft can perform 360-degree free rotation in the vertical direction.
  • the above rotating shaft is fixed similarly The wind receiving part of the sail.
  • the natural wind blows onto the sail-type wind receiving portion, causing the rotation of the above-mentioned rotating shaft.
  • the rotational power of the above rotating shaft is transmitted to a generator through a transmission device to drive the generator to generate electricity.
  • the wind power generation device includes: a rotation shaft that can be rotated 360 degrees in a horizontal direction, a wind receiving portion that is fixed to the rotation shaft, and a connection member that supports the rotation shaft and the wind receiving portion, A pillar that supports the vertical extension of the connector, a first wind speed generator, and a first transmission mechanism that transmits rotation of the rotating shaft in a first rotation direction to the first wind speed generator.
  • the center of gravity of the wind receiving portion does not overlap with the center of the pillar, and an eccentric structure is formed.
  • the wind power generator further includes an automatic shifting mechanism that can change a rotational speed transmission ratio of the first transmission mechanism depending on a deployment angle of the wind receiving portion.
  • the wind power generator wherein the automatic shifting mechanism has a plurality of sector gears having different radii, and a plurality of transmission mechanisms of the same number as the plurality of sector gears, each of the sector gears corresponding to one transmission mechanism, and different gear ratios
  • the rotation is transmitted to the first wind speed generator.
  • the wind power generator further includes a second wind speed generator and a second transmission mechanism that transmits rotation of the rotating shaft in the second rotational direction to the second wind speed generator.
  • the wind power generator further includes an intermediate transmission device, wherein the intermediate transmission device transmits rotation of the first rotation direction of the rotary shaft to the first portion in an operation region of the first transmission mechanism a transmission mechanism, wherein the intermediate transmission transmits a rotation of the rotating shaft in a second rotational direction to the second transmission mechanism in an operation region of the second transmission mechanism, and when the rotating shaft is in the When the first transmission mechanism is in the operating region, the intermediate transmission device separates the second transmission mechanism from the transmission system, and when the rotating shaft is in the operating region of the second transmission mechanism, the intermediate transmission device The first transmission mechanism is separated from the transmission system.
  • the wind power generator wherein the intermediate transmission is constituted by a semicircular gear. Further, the wind power generator further includes a first airflow generator that transmits the rotation of the connector in the first rotational direction to the third transmission mechanism of the first airflow generator.
  • the wind receiving portion is constituted by a frame and a canvas fixed to the frame, and the frame and the canvas are connected by a plurality of connecting portions, and the connecting portion is subjected to a predetermined external force or more At this time, a break occurs to separate the canvas from the frame.
  • wind power generator of the present invention power generation is performed not by the speed of the natural wind but by the change in the speed of the natural wind.
  • the wind speed of the natural wind is constantly changing.
  • the trees are constantly shaking in the natural wind because the wind speed keeps changing.
  • the wind that keeps changing, the wind sails without shaking, the shaking of the sail causes the rotating shaft to rotate continuously, and the rotating rotation of the rotating shaft drives the generator to generate electricity continuously.
  • the wind power generator of the present invention because of the sail structure of the cloth shield, has a simple structure and does not require the use of high-strength high-strength materials, thereby greatly reducing the manufacturing cost of the wind power generator.
  • the wind power generation device of the invention can automatically reduce the windward area in the case of strong wind, thereby greatly reducing the wind pressure on the wind power generator, greatly improving the wind resistance of the wind power generator, and simultaneously reducing the wind power generator. Failure rate.
  • the natural wind is used to generate electricity. Therefore, in the case of a weak wind, the power can be efficiently generated, and the annual average wind speed can be set. Low wind and wind areas have greatly expanded the scope of wind power applications.
  • the wind power generator of the present invention since there is no rotating wind wheel, the noise during operation is small, and the injured bird is not killed. Further, the sail portion of the wind power generator of the present invention can be decomposed and is also convenient for transportation.
  • Figure 1 is a perspective view of a wind power generator according to a first embodiment of the present invention
  • FIG. 2A, 2B, and 2C are schematic views showing the operation of the wind receiving portion of the first embodiment shown in Fig. 1 at different wind speeds;
  • FIG. 3A and 3B are views showing a relationship between a wind receiving portion and a wind direction of the first embodiment shown in Fig. 1; and Fig. 4 is a perspective view showing a wind power generator according to a second embodiment of the present invention;
  • Figure 5 is a perspective view of a wind power generator according to a third embodiment of the present invention.
  • Figure 6 is a perspective view of a wind power generator according to a fourth embodiment of the present invention.
  • FIG. 7A, 7B, 7C, 7D, and 7E are schematic views of the operation of the fourth embodiment shown in Fig. 6;
  • Figure 8 is a plan view showing an automatic shifting portion of a wind power generator according to a fifth embodiment of the present invention.
  • Figures 9A, 9B and 9C are a side view and an operation view of the automatic shifting portion of the fifth embodiment shown in Figure 8;
  • Fig. 10 is a perspective view showing a wind power generator according to a sixth embodiment of the present invention. detailed description
  • the present invention is a novel wind power generation device that utilizes the wind speed variation of natural wind to generate electricity, and the wind power generation device that generates power by directly using the natural wind speed directly differs in the principle of operation.
  • the same or equivalent components will be omitted from the description of the same or equivalent components in FIG. 1 to FIG.
  • Fig. 1 is a perspective view showing a first embodiment of a wind power generator according to the present invention.
  • the wind power generator 101 of the first embodiment is installed on the floor 2.
  • the lower end of the hollow strut 20 perpendicular to the ground is fixed to the ground, and the inside of the hollow strut 20 is used to pass a cable (not shown) connected to the generator.
  • the upper end of the hollow pillar 20 is provided with a connecting member 30, and the connecting member 30 can be a hollow pillar 20
  • the horizontally extending rotating shaft 40 extends through the connecting member 30, and a bearing (not shown) is provided in a portion penetrating the connecting member 30.
  • the rotating shaft 40 is disposed on the bearing, and the rotating shaft 40 can be a bearing of the connecting member 30.
  • the center makes a 360 degree free rotation in the vertical direction.
  • Two wind receiving portions 50 similar to the sails are fixed below the rotating shaft 40.
  • the wind receiving portion 50 shown in Fig. 1 is symmetrically disposed about the pillar 20 as a center.
  • the frame 54 is made of a lightweight metal such as aluminum alloy
  • the sail 52 is made of a lightweight cloth material such as high-strength nylon, so that the wind receiving portion 50 can be made lighter.
  • the weight of the wind receiving portion 50 allows the breeze to propel the sails and generate electricity more efficiently.
  • the coupling portion 56 is designed as an automatic fracture structure in which a fracture occurs above a certain force. After the joint portion 56 is broken, the sail 52 and the frame 54 are separated. In the event of a sudden transient superb gust, the wind generated on the sail 52 exceeds the breaking force of the coupling portion 56, at which time the coupling portion 56 is automatically broken, and the sail 52 and the frame 54 are separated to protect the wind power generation device from being overtaken. Strong gusts of wind destroyed.
  • the wind force pushes the wind receiving portion 50 to generate a torque.
  • the entire wind receiving portion 50 and the rotating shaft 40 are centered on the bearing inside the connecting member 30. Rotate in the vertical direction.
  • the torque generated in the wind receiving portion 50 also changes, so that the whole of the wind receiving portion 50 and the rotating shaft 40 will rotate as the wind speed changes.
  • the torque generated in the wind receiving portion 50 also changes.
  • the entire portion of the wind receiving portion 50, the rotating shaft 40, and the connecting member 30 will be hollow pillars 20. Centered, the rotation occurs in the horizontal direction as the wind direction changes.
  • the wind power generator 101 of the present embodiment is provided with two generators.
  • the generator 60 is a generator that generates electric power according to a change in wind speed, and the cylinder is called a wind speed generator.
  • the generator 70 is a generator that generates electric power according to a change in the wind direction, and is simply referred to as a wind direction generator.
  • the wind receiving portion 50 and the rotating shaft 40 are caused to rotate in the vertical direction.
  • the rotation of the rotating shaft 40 transmits power to the wind speed generator 60 through the first transmission mechanism, and drives the wind speed generator 60.
  • Generate electricity When the wind direction of the natural wind changes, the wind receiving portion 50 and the connecting member 30 are caused to rotate in the horizontal direction.
  • the rotation of the link member 30 transmits power to the wind direction generator 70 through the third transmission mechanism, and the drive wind generator 70 generates electric power.
  • the first transmission mechanism is composed of a gear 42, an externally toothed ratchet 80, and a generator shaft 62.
  • the ratchet 80 meshes with the generator shaft 62 in the first vertical direction of rotation of the rotary shaft 40 (indicated by the arrow symbol A1 in Fig. 1) to transmit power to the generator 60.
  • the ratchet 80 is separated from the generator shaft 62 in the second vertical rotation direction of the rotary shaft 40 (indicated by the arrow symbol A2 in Fig. 1), and the power is not transmitted to the generator 60.
  • the configuration of the ratchet 80 is substantially the same as that of the common bicycle rear wheel.
  • the wind speed generator 60 is driven to generate electricity.
  • the third transmission mechanism is composed of a gear 22, an externally toothed ratchet 90 and a generator shaft 72.
  • the ratchet 90 meshes with the generator shaft 72 in the first horizontal direction of rotation of the connector 30 (indicated by the arrow B 1 in Fig. 1) to transmit power to the generator 70.
  • the ratchet 90 is separated from the generator shaft 72 in the second horizontal direction of rotation of the connector 30 (indicated by the arrow symbol B2 in Fig. 1), and power is not transmitted to the generator 70.
  • the configuration of the ratchet 90 is substantially the same as the ratchet of a conventional bicycle rear wheel.
  • the wind power generator 101 can efficiently generate electricity in the case of breeze, and has a function of automatic protection in the case of strong wind.
  • 2A to 2C are side views of the embodiment 1, showing the wind receiving The relationship between the part 50 and the wind speed.
  • Fig. 2A shows a weak wind condition at a low wind speed
  • Fig. 2B shows a case of a medium wind speed
  • Fig. 2C shows a strong wind condition at a high wind speed.
  • the wind generated on the wind receiving portion 50 is proportional to the effective windward area of the windward direction.
  • the effective windward area of the wind receiving portion 50 is equal to its projected area in the windward direction.
  • the projected area S1 of the wind receiving portion 50 in the windward direction is large, and the wind pressure generated in the wind receiving portion 50 is large, and the wind receiving portion 50 can be pushed even by the weak wind.
  • the general wind turbine generator because it cannot generate electricity during a weak wind, must be installed in a strong wind area with a higher annual average wind speed.
  • the wind power generator 101 according to the first embodiment of the present invention can efficiently generate electricity even at a low wind speed, so that it can be installed in a weak wind region where the annual average wind speed is low, and the application area range of the wind power generation is greatly expanded.
  • the projected area S3 of the wind receiving portion 50 for the windward direction is small, and the wind pressure generated on the wind receiving portion 50 is automatically reduced to act on the rotating shaft 40 and the strut 20.
  • the force is also automatically reduced, so that it is not necessary to use a support mechanism such as a particularly strong fulcrum and a strut, so that the wind power generator of the first embodiment has excellent wind resistance.
  • the blade rotation speed of a conventional wind turbine type wind turbine is proportional to the wind speed.
  • the blade will rotate too fast, causing overspeed and causing damage to the components.
  • an automatic braking system is required. After the wind speed exceeds a certain speed, the brake system is activated to stop the rotor blades to protect the entire wind power generation system.
  • Such an automatic braking system is not only prone to failure, but also requires frequent monitoring and maintenance.
  • the automatic braking system not only increases the cost of the rotating wind turbine type wind power generation device, but also causes a high failure rate of the system, resulting in high operating costs. Most of the current wind turbine wind turbine failures are on strong wind protection devices.
  • the wind power generation device of the first embodiment of the present invention does not require a complicated automatic braking system because of the strong wind automatic protection function, which not only greatly reduces the manufacturing cost of the wind power generation device, but also greatly reduces the possibility of failure of the wind power generation device. Sex.
  • the wind power generator of the present invention has excellent resistance to strong wind, and the excellent wind resistance of the wind power generator of the present invention comes from three designs.
  • the first design is a separable sail part. When the super strong wind is encountered, the sail part will fall off automatically to protect the wind turbine body from damage.
  • the second design is that the effective windward area of the sail can be automatically changed with the wind speed, high wind speed. When the strong wind is strong, the effective windward area of the sail is automatically reduced, so that the rotating shaft of the wind turbine and the force on the pillar are greatly reduced;
  • the third design is that the sail can be rotated 360 degrees in the vertical direction, and at the same time, The horizontal direction is free to rotate 360 degrees, and there is no mandatory limit system, so that the wind energy received on the sail can be released freely.
  • the first design of the detachable sail system has been described above, and the second design is described here, that is, the wind receiving system in which the effective windward area automatically changes with the wind speed.
  • the second design is described here, that is, the wind receiving system in which the effective windward area automatically changes with the wind speed.
  • a simulation calculation here to compare the force received by the wind receiving part and the wind receiving part with variable windward area.
  • the wind pressure generated on the wind receiving part is calculated using the aerodynamic standard wind pressure formula (Formula 1).
  • the simulated sail size here is 4 meters high and 3 meters long. The results of the simulation calculation are shown in Table 1.
  • the instantaneous wind pressure on the wind receiving part can reach several thousand kilograms when encountering super strong winds, while the large wind turbines, when encountering super strong winds, are exposed to the wind. Wind pressure can reach thousands of tons. If the wind receiving part is not free to rotate, but there is a rotation limit device, the high speed rotation of the wind receiving part suddenly stops on the rotation limit device, and the force of up to several thousand tons will inevitably damage the limit device, causing serious Mechanical damage.
  • the wind power generator 101 has a structure that automatically faces the wind direction, that is, a so-called downwind structure.
  • the above-described structure for automatically facing the wind direction is characterized in that the center of gravity G of the wind receiving portion 50 does not overlap with the center of the pillar 20, and an eccentric structure is formed.
  • Figure 3A and Figure 3B It is a schematic plan view of the wind power generator 101, and shows the relationship between the center of gravity G of the wind receiving part 50 and the wind direction.
  • Fig. 3A shows a case where the direction DW of the wind and the wind receiving portion 50 (the rotating shaft 40) are oblique.
  • the center of gravity G of the wind receiving portion 50, the center of the strut 20 and the wind direction DW are not in a straight line.
  • the projected area SL on the left side of the strut 20 is smaller than the projected area SR on the right side. Therefore, the wind force received on the left side of the strut 20 is greater than the wind force received on the right side, so that the entire wind receiving portion 50 rotates counterclockwise (in the direction indicated by the arrow symbol in Fig. 3A).
  • the center of gravity G of the wind portion 50, the center of the strut 20 and the wind direction ring are in a straight line, and the projected area SL on the left side of the strut 20 in the direction of the wind direction DW. It is equal to the projected area SR on the right side, at which time the rotation of the entire wind receiving portion is automatically stopped.
  • the entire wind receiving portion is automatically rotated to stop at a position facing the wind direction DW, that is, it has a function of automatically facing the wind direction.
  • Fig. 4 is a perspective view of a wind power generator 201 according to a second embodiment of the present invention.
  • the wind power generator 201 of the second embodiment is basically the same in structure as the wind power generator 101 of the first embodiment shown in Fig. 1, except that one windward rudder 32 is attached.
  • the function of the wind direction rudder 32 is that when the wind direction direction DW is oblique to the wind receiving portion 50, a rotational moment is generated on the wind direction rudder 32, and the wind receiving portion is automatically rotated in the direction of the wind direction.
  • the wind power generator of the present invention can be more sensitively and automatically oriented in the direction of the wind direction to maximize the energy of the wind.
  • the wind power generators of the first embodiment and the second embodiment of the present invention have the advantages of simple structure and low failure rate as compared with the conventional wind turbine type wind power generator. Moreover, the sail structure adopted by the present invention can be decomposed into parts for transportation and then assembled on site, which simplifies transportation problems. In the current wind turbine type wind power generation device, the wind turbine blades of several tens of meters must be transported as a whole, which is not only expensive, but also cannot be transported to areas with poor road conditions. Further, in the wind power generators of the first embodiment and the second embodiment of the present invention, since there is no rotating wind wheel, the noise during operation is small, and the environmental problem of killing birds does not occur.
  • Fig. 5 is a perspective view of a wind power generator 301 according to a third embodiment of the present invention.
  • the ratchet mechanism 80 transmits the rotation of the rotary shaft 40 in the first vertical rotation direction to the wind speed generator 60.
  • the ratchet mechanism 90 transmits the rotation of the link 30 in the first horizontal rotation direction to the wind direction generator 70.
  • This configuration is very simple, with a small number of parts and low cost.
  • only the rotation of one of the two directions of rotation of the rotary shaft 40 is utilized for power generation, and in the same two directions of rotation of the connecting member 30, only one of the directions of rotation is utilized for power generation, so The efficiency of power generation is not good enough.
  • both the rotation shaft 40 and the rotation of the connecting member 30 are used for power generation, and the power generation efficiency is improved.
  • wind speed generator 301 in addition to the above-described anemometer 60 (first wind speed generator), one wind speed generator 160 (second wind speed generator) is added.
  • the wind speed generator 160 is coupled to the gear 42 on the rotating shaft 40 via a drive shaft 162 and an externally toothed ratchet 180.
  • the ratchet 180 meshes with the generator shaft 162 in the second vertical direction of rotation of the rotary shaft 40 (indicated by the arrow symbol A2 in Fig. 5) to transmit power to the generator 160.
  • the ratchet wheel 180 is separated from the generator shaft 162 in the first vertical rotation direction of the rotary shaft 40 (indicated by an arrow symbol A1 in Fig. 5), and power is not transmitted to the generator 160.
  • wind direction generator 170 (second wind direction generator) is added.
  • the wind direction generator 170 is coupled to the gear 22 on the strut 20 via a drive shaft 172 and an externally toothed ratchet 190.
  • the ratchet 190 meshes with the generator shaft 172 in the second horizontal rotation direction of the connector 30 (indicated by the arrow symbol B2 in Fig. 5) to transmit power to the generator 170.
  • the ratchet wheel 190 is separated from the generator shaft 172 in the first horizontal direction of rotation of the link member 30 (indicated by the arrow symbol B1 in Fig. 5), and power is not transmitted to the generator 170.
  • the rotation in the first vertical direction is transmitted to the first aerofonic generator 60 by the ratchet 80 to generate electric power
  • the rotation in the second vertical direction is transmitted to the second aerometer 160 through the ratchet 180 to generate electric power, thereby fully utilizing the rotating shaft 40.
  • the two vertical rotations increase the power generation efficiency than the wind power generator of the first embodiment.
  • the wind blows the wind receiving portion 50, and two reciprocating rotations in the horizontal direction are generated in the connector 30.
  • the rotation in the first horizontal direction is transmitted to the first airflow generator 70 by the ratchet 90 to generate electric power
  • the rotation in the second horizontal direction is transmitted to the second airflow generator 170 through the ratchet 190 to generate electric power, thereby fully utilizing the connecting member 30.
  • the two horizontal rotations increase the power generation efficiency than the wind power generator of the first embodiment.
  • two wind speed generators 60 and 160 are provided, but the two wind speed generators can also be combined into one.
  • a transmission device is provided, the rotation of the second vertical rotation direction of the rotary shaft 40 is changed to the same rotation as the first vertical rotation direction, and then transmitted to the first wind speed generator 60, so that the second wind speed power generation can be omitted.
  • Machine 160 This transmission can be made up of a large number of gears and drive shafts.
  • two wind direction generators 70 and 170 are provided, but the two wind direction generators can also be combined into one.
  • a transmission device is provided to change the rotation of the link member 30 in the second horizontal rotation direction to the same rotation as the first horizontal rotation direction, and then to the first wind direction generator 70, so that the second wind power generation can be omitted.
  • Machine 170 This transmission can be made up of a number of gears and drive shafts.
  • the power generation efficiency is related to the weight of the wind receiving portion 50. Since the wind portion 50 is used to overcome the self-weight of the wind receiving portion 50 when the wind receiving portion 50 is blown by the wind, the lighter the weight of the wind receiving portion 50, the better the power generation efficiency.
  • the light receiving portion 50 has a light weight, which causes the following problems. That is, when the wind stops, the wind receiving portion 50 stops at the position blown by the wind, and cannot automatically return to the initial position (the wind receiving portion 50 is perpendicular to the stationary position below the rotating shaft 40). This is because the wind receiving portion 50 is rotated in the vertical direction and will be subjected to the torque resistance of the wind speed generator 60 or 160. When the self-weight of the wind receiving portion 50 is large, its self-weight is greater than the torque resistance of the wind speed generator. Overcoming the torque resistance of the wind speed generator returns to the initial position.
  • the present invention has devised a wind power generator 401 of a fourth embodiment having an automatic return device, so that a lighter sail can also automatically return to its initial position.
  • Fig. 6 is a perspective view showing a wind power generator according to a fourth embodiment of the present invention.
  • a second wind speed generator 260 is added in addition to the first wind speed generator 60 shown in the first embodiment.
  • a semicircular gear 242 is fixed to the rotary shaft 40 instead of the gear 42 fixed to the rotary shaft 40 in the first embodiment.
  • the first wind speed generator 60 is connected to the semicircular gear 242 through the first transmission mechanism.
  • the first transmission mechanism is composed of a transmission shaft 62 and a ratchet 80.
  • the second wind speed generator 260 is connected to the semicircular gear 242 via a second transmission mechanism.
  • the second transmission mechanism is composed of a transmission shaft 262 and a ratchet 280.
  • the configuration of the second wind speed generator 260, the transmission shaft 262 and the ratchet 280 is the same as that of the second wind speed generator 160, the transmission shaft 162 and the ratchet 180 in the third embodiment, and will not be repeated here.
  • the automatic return mechanism of the sail is mainly composed of a semicircular gear 242 fixed on the rotary shaft 40, and a ratchet 80 and a ratchet 280.
  • a semicircular gear 242 fixed on the rotary shaft 40
  • a ratchet 80 and a ratchet 280 When the ratchet 80 rotates in the clockwise direction, it meshes with the drive shaft 62 of the first wind speed generator 60 to drive the generator 60 to generate electricity.
  • the ratchet 80 is rotated in the counterclockwise direction, it is separated from the drive shaft 62 of the first wind speed generator 60, and the ratchet 80 is idling, and the power is not transmitted to the drive shaft 62.
  • the ratchet 280 when the ratchet 280 is rotated in the counterclockwise direction, it meshes with the drive shaft 262 of the second wind speed generator 260 to drive the generator 260 to generate electricity.
  • the ratchet wheel 280 When the ratchet wheel 280 is rotated in the clockwise direction, it is separated from the drive shaft 262 of the second wind speed generator 260, at which time the ratchet wheel 280 is idling and power is not transmitted to the drive shaft 262.
  • FIG. 7 is a schematic diagram of the operation of the automatic return mechanism.
  • Fig. 7A shows the stationary state in the absence of wind, in which the wind receiving portion 50 is at an initial position vertically below the rotary shaft 40.
  • the semicircular gear 242 acts only on the ratchet 80 and does not interact with the ratchet 280; when the rotating shaft 40 rotates from the initial position to the left, the semicircular gear 242 only The ratchet 280 acts and does not interact with the ratchet 80.
  • Fig. 7A In the stationary state shown in Fig. 7A, if the wind blows from the left to the right, the wind receiving portion 50 and the wind The rotating shaft 40 will rotate counterclockwise under the action of the wind force, and Fig. 7B shows the state when the rotating shaft 40 rotates counterclockwise.
  • the semicircular gear 242 drives the ratchet wheel 80 to rotate clockwise, and when the ratchet wheel 80 rotates clockwise, the power is transmitted to The first wind speed generator 60 is driven to generate electricity on the generator drive shaft 62.
  • FIG. 7C shows a state in which the rotary shaft 40 is rotated clockwise to return to the initial position.
  • the semicircular gear 242 drives the ratchet 80 to rotate counterclockwise, and when the ratchet 80 rotates counterclockwise, only idle rotation occurs, and power is not transmitted to the generator drive shaft 62.
  • the wind receiving portion 50 will be free to return to its original position without being affected by the torque resistance of the generator 60.
  • Fig. 7A In the stationary state shown in Fig. 7A, if the wind blows from the right to the left, the wind receiving portion 50 and the rotating shaft 40 will rotate clockwise under the action of the wind, and Fig. 7D shows the state when the rotating shaft 40 rotates clockwise.
  • the hourly circular gear 242 drives the ratchet wheel 280 to rotate counterclockwise.
  • the ratchet wheel 280 rotates counterclockwise, power is transmitted to the generator drive shaft 262 to drive the second wind speed generator 260 to generate electricity.
  • FIG. 7E shows a state in which the rotary shaft 40 rotates counterclockwise to return to the initial position.
  • the semicircular gear 242 drives the ratchet wheel 280 to rotate clockwise, and when the ratchet wheel 280 rotates clockwise, only idle rotation occurs, and power is not transmitted to the generator drive shaft 262.
  • the wind receiving portion 50 will freely return to its initial position without being affected by the torque resistance of the generator 260.
  • the semi-circular gear 242 having the upper half is used, and the semi-circular gear having the lower half of the tooth may be used instead, or the semi-circular gear having the left half may be used instead. Or use the right half of the toothed semi-circular gear, the principle of action is the same. Only after the position of the teeth of the semicircular gear is changed, the mounting positions of the ratchet 80 and the ratchet 280 are changed accordingly.
  • two wind speed generators 60 and 260 are provided, but the two wind speed generators can also be combined into one.
  • a transmission device is provided, the rotation of the first vertical rotation direction of the rotary shaft 40 is changed to the same rotation as the first vertical rotation direction, and then transmitted.
  • the first wind speed generator 60 is delivered to the first wind speed generator 260.
  • This transmission can be made up of a number of gears and drive shafts.
  • the unfolding angle ⁇ of the rotating shaft 40 by the wind varies with the wind speed.
  • the present invention has designed a wind power generator of a fifth embodiment having an automatic shifting mechanism, so that the gear ratio of the drive shaft 62 of the wind speed generator 60 varies with the expansion angle of the rotary shaft 40, so that the wind speed can be made.
  • the rotational speed of the generator 60 automatically changes with the wind speed to achieve the goal of optimal power generation.
  • Fig. 8 is a plan view showing an automatic shifting portion 501 of the wind power generator according to the fifth embodiment of the present invention.
  • Fig. 9 is a side view and an operation view of the automatic shifting portion 501 of the wind turbine generator of the fifth embodiment shown in Fig. 8.
  • the composite gear 342 having a plurality of sector gears having different radii is used instead of the gear 42 in the first embodiment.
  • the compound gear 342 has three sector gears 342a, 342b, 342c, the radius of the sector gear 342a is the smallest, the radius of the sector gear 342b is second, and the radius of the sector gear 342c is the largest.
  • the outer peripheral portions of the respective sector gears 342a, 342b, 342c are provided with teeth.
  • a composite ratchet mechanism 380 having a plurality of ratchets is provided instead of the ratchet 80 in the first embodiment.
  • the compound ratchet mechanism 380 has three ratchets 380a, 380b, 380c.
  • the ratchet 380a is designed to have an engaging relationship with the sector gear 342a
  • the ratchet 380b is designed to have an engaging relationship with the sector gear 342b
  • the ratchet 380c is designed to have an engaging relationship with the sector gear 342c.
  • the compound ratchet mechanism 380 transmits power to the generator 60 through a set of transmission mechanisms.
  • 388a, 388b, 388c are transmission gears which are connected to ratchets 380a, 380b, 380c through transmission shafts 386a, 386b, 386c, respectively.
  • 60 is an anemometer
  • 62 is a transmission shaft of the wind speed generator.
  • FIG. 9A, 9B, and 9C are schematic views showing the operation of the fifth embodiment shown in Fig. 8.
  • Fig. 9A shows the case where the wind speed is low, in which case the expansion angle of the rotary shaft 40 is between 0 and 30 degrees.
  • the sector gear 342a meshes with the ratchet 380a, and then transmits power to the generator shaft 62 through the transmission shaft 386a, the transmission gear 388a, and drives the generator 60 to generate electricity.
  • the transmission ratio is small, so the lower wind speed can easily drive the generator to generate electricity.
  • Fig. 9B shows the case where the wind speed is medium, and the expansion angle of the rotary shaft 40 is between 30 degrees and 60 degrees.
  • the sector gear 342b is engaged with the ratchet 380b, and then transmitted through the transmission shaft 386b, the transmission gear 388b, and the 4 bar power to the generator shaft 62 to drive the generator 60 to generate electricity.
  • the transmission ratio is moderate, and the generator can be efficiently driven to generate electricity at moderate wind speeds.
  • Fig. 9C shows a case where the wind speed is high, and the expansion angle of the rotary shaft 40 is between 60 and 90 degrees.
  • the sector gear 342c is engaged with the ratchet 380c, and then transmitted through the transmission shaft 386c, the transmission gear 388c, and the 4 bar power to the generator shaft 62 to drive the generator 60 to generate electricity.
  • the transmission ratio is large, and the generator can be efficiently driven to generate electricity at a high wind speed.
  • the fifth embodiment of the present invention only one wind speed generator 60 is provided.
  • the second wind speed generator may be provided to improve power generation efficiency.
  • the above-described composite ratchet mechanism 380 may be added in accordance with the additional generator.
  • Fig. 10 is a perspective view showing a wind power generator 601 according to a sixth embodiment of the present invention.
  • the sixth embodiment is basically the same as the first embodiment, except that the wind receiving portion 450 in the sixth embodiment is fixed above the rotating shaft 40, and the wind receiving portion 50 in the first embodiment is fixed. Rotate below the axis 40.
  • a weight 458 is added to the lower portion of each wind receiving portion 450 to balance the weight of the wind receiving portion 450 so that the wind receiving portion 450 is positioned above the rotating shaft 40.
  • the wind receiving portion 450 in the sixth embodiment has a higher height than the wind receiving portion 50 in the first embodiment, so that a higher speed wind can be captured and the power generation efficiency is higher.
  • the various embodiments and designs of the first embodiment to the fifth embodiment are also applicable to the sixth embodiment.
  • one or two wind direction generators are provided. These wind turbine generators and their transmission mechanisms can also be omitted to simplify the construction of the entire wind turbine.
  • the strut 20 is fixed to the ground, and the connecting member 30 is horizontally rotatable about the strut 20.
  • This design may also be modified such that the connecting member 30 is fixed to the upper end of the strut 20, and the lower end of the strut 20 is disposed in a set fixed to the ground bearing, and the connecting member 30 and the strut 20 are mounted along the set of bearings fixed to the ground for horizontal orientation. The rotation.
  • the power transmission system in each of the above embodiments uses a gear mechanism.
  • the power transmission system of the present invention is not limited to this, and other types of power transmission mechanisms such as belts and chains may be used.
  • the energy storage system such as spring, gravity, etc. can also be used to temporarily store the wind power generation to stabilize the wind power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

风力发电装置
-技术领域
本发明涉及一种利用自然风的力量进行风力发电的风力发电装置。 背景技术
风力本身是免费的和随处可得的, 但怎样利用随处可得的免费风力, 却需要人们的智慧。 早在 19世纪末欧洲就出现了利用风轮进行发电的尝 试。 但至今为止, 我们还无法大规模地普及利用免费的风力进行发电, 主 要是因为现行的风轮式风力发电装置存在严重的技术问题。
风轮式风力发电机的第一个技术问题, 是发电成本太高, 风轮式风力 发电机的发电价格大约是火力发电价格的 4倍。 因此现在世界各国的风力 发电, 都不得不依靠政府的财政补贴扶持, 风力发电的规模越大, 政府的 财政负担就越重。 所以要想大规模地普及风力发电, 就必须解决风力发电 的成本问题, 把风力发电的价格下降到与火力发电相近的程度, 这样风力 发电才会具有真正的竟争力。
风轮式风力发电机的发电成本高, 是因为现行的风轮式风力发电机组 的造价太高。 因为自然风的风力变化幅度很大, 风轮式风力发电机的风轮 必须能承受台风等非常强列的暴风, 例如 12级台风的平均风速为 34m/s, 此时在 1.5MW级风轮式风力发电机的叶片上产生高达数千吨的风压力, 因此风轮的叶片、 转轴等必须采用昂贵的高强度材料, 这就使风轮式风力 发电机的造价变得十分昂贵。
风轮式风力发电机的第二个技术问题, 是抗强风性差。 因为长达数十 米的旋转风轮叶片, 只有叶片根部一个支撑点, 所以受力非常不平衡, 容 易损坏。 尽管采用高强度的材料制作叶片, 并采用专门的卸载装置控制叶 片上的风压, 但仍然难于避免来自强风的破坏。 风轮式风力发电机的故障 原因, 80%以上是因为强风造成的各种损坏。 因此抗强风性能的好坏, 对 于风力发电机来说是至关重要的。
风轮式风力发电机的第三个技术问题, 是在弱风时无法发电。 因为风 轮要达到抵抗强风的强度, 所以风轮就被制作得十分厚重, 这种沉重的风 轮无法被低风速的弱风驱动, 也就使得风轮式风力发电机无法设置在年均 风速较低的弱风地区, 大大限制了风力发电的应用范围。
风轮式风力发电机还有其他的技术问题。例如长度数十米的整体叶片, 很难运送到道路条件不好的边远地区, 风轮高速旋转会产生较大的噪音, 有时还会打死鸟类。
为了取代技术问题较多的风轮式风力发电机, 人们想出了一些不使用 旋转风轮发电的方案和专利, 例如风帆方式发电、 风筝方式发电、 气球方 式发电、 压电体发电 ( Piezoelectrics ) 、 电气体发电 (Electrohydrodynamic) 等。 但至今为止, 这些不使用旋转风轮的风力发电技术, 还都停留在想象 或实验室阶段, 还没有一种不使用风轮的风力发电机能够达到实用发电的 程度。 发明内容
为了克服现行风轮式风力发电机的上述各种技术问题, 本发明的目的 在于提供一种不使用旋转风轮, 而使用风机的新型风力发电装置。 这种风 帆式的新型风力发电装置不需要高昂的高强度材料, 可以实现低成本, 而 且具有良好的抗强风性, 低风速时能发电, 故障率低, 噪音低, 不会伤害 鸟类。
本发明的风帆式风力发电装置, 简单描述如下。垂直方向延伸的立柱。 上述立柱的一端固定于地面, 另一端安装有一个可以在水平方向做 360度 自由旋转的连接件。 上述连接件安装有一个水平方向延伸的旋转轴。 上述 旋转轴可以在垂直方向做 360度的自由旋转。 上述旋转轴上固定有类似于 风帆的受风部。 自然风吹到风帆式的受风部上, 引起上述旋转轴的旋转。 上述旋转轴的旋转动力, 通过一套传动装置传递到一台发电机上, 驱动发 电机发电。
具体而言, 所述的风力发电装置包括: 水平方向伸展的能够 360度自 由旋转的旋转轴、 固定在所述旋转轴上的受风部、 支撑所述旋转轴和受风 部的连接件、 支撑所述连接件的垂直方向伸展的支柱、 第 1风速发电机以 及把所述旋转轴的第 1转动方向的旋转传递到所述第 1风速发电机的第 1 传动机构。
所述的风力发电装置, 其中, 所述受风部的重心与所述支柱的中心不 重合, 形成偏心构造。
所述的风力发电装置, 其中, 还包括自动变速机构, 能根据所述受风 部的展开角度的不同, 改变所述第 1传动机构的转速传动比。
所述的风力发电装置, 其中, 所述自动变速机构具有半径不同的多个 扇形齿轮, 以及与多个扇形齿轮同样数目的多个传动机构, 每个扇形齿轮 对应一个传动机构, 将不同传动比的旋转传递到所述第 1风速发电机。
所述的风力发电装置, 其中, 还包括第 2风速发电机, 以及把所述旋 转轴的第 2转动方向的旋转传递到所述第 2风速发电机的第 2传动机构。
所述的风力发电装置, 其中, 还包括一个中间传动装置, 在所述第 1 传动机构的动作区域内, 所述中间传动装置把所述旋转轴的第 1转动方向 的旋转传递到所述第 1传动机构, 在所述第 2传动机构的动作区域内, 所 述中间传动装置把所述旋转轴的第 2转动方向的旋转传递到所述第 2传动 机构, 当所述旋转轴处于所述第 1传动机构的动作区域内时, 所述中间传 动装置把所述第 2传动机构分离出传动体系, 当所述旋转轴处于所述第 2 传动机构的动作区域内时, 所述中间传动装置把所述第 1传动机构分离出 传动体系。
所述的风力发电装置, 其中, 所述中间传动装置由半圆形的齿轮构成。 所述的风力发电装置, 其中, 还包括第 1风向发电机, 把所述连接件 的第 1转动方向的旋转传递到所述第 1风向发电机的第 3传动机构。
所述的风力发电装置, 其中, 所述受风部由框架和固定在框架上的帆 布构成, 所述框架和所述帆布由多个连接部相连接, 所述连接部在受到规 定的外力以上时, 会发生断裂, 使所述帆布与所述框架分离。
本发明的风力发电装置, 不是利用自然风的速度进行发电, 而是利用 自然风的速度变化进行发电。 自然风的风速是不停变化的, 树木在自然风 中不停摇动, 就是因为风速不停变化的缘故。 不停变化的风, 吹动风帆不 停摇动, 风帆的摇动又引起旋转轴的不停旋转, 旋转轴的不停地旋转又带 动发电机不停地发电。
本发明的风力发电装置, 因为使用布盾的风帆构造, 结构简单, 不必 使用高昂的高强度材料, 大大降低了风力发电机的制造成本。
本发明的风力发电装置, 在强风的情况下能自动減小迎风面积, 从而 风力发电机上受到的风压力大为减小,大大提高了风力发电机的抗强风性, 也同时减少了风力发电机的故障率。
本发明的风力发电装置, 因为不是利用自然风的速度进行发电, 而是 利用自然风的速度变化进行发电,所以在弱风的情况下也能高效率的发电, 可以设置在广大年均风速较低的弱风地区,大大扩展了风力发电应用范围。
本发明的风力发电装置, 因为没有旋转的风轮, 运转时噪音小, 也不 会打死打伤鸟类。 而且本发明风力发电装置的风帆部可以分解, 在搬运方 面也 4艮方便。
目前已发表的采用风帆的风力发电装置的有关专利, 有法国专利 FR526804A, 美国专利 US4104006 , 美国专利 US7157805 , 美国专利申请 2008/0036214。 附图说明 附图中示出了优选和可替代的本发明实施例。 附图不应理解成限制本 发明的范围, 本发明的范围在权力要求书中说明。
图 1是本发明的第 1实施例的风力发电装置的斜视图;
图 2A、 图 2B、 图 2C是图 1所示的第 1实施例的受风部在不同风速情 况下的动作示意图;
图 3A、 图 3B是图 1所示第 1实施例的受风部和风向的关系示意图; 图 4是本发明的第 2实施例的风力发电装置的斜视图;
图 5是本发明的第 3实施例的风力发电装置的斜视图;
图 6是本发明的第 4实施例的风力发电装置的斜视图;
图 7A、 图 7B、 图 7C、 图 7D、 图 7E是图 6所示第 4实施例的动作示 意图;
图 8是本发明的第 5实施例的风力发电装置的自动变速部分的平面图; 图 9A、 图 9B、 图 9C是图 8所示第 5实施例的自动变速部分的侧视图 及动作示意图;
图 10是本发明的第 6实施例的风力发电装置的斜视图。 具体实施方式
以下将参照图 1到图 10, 对本发明的风力发电装置的实施例进行详细 说明。 总的说来, 本发明是利用自然风的风速变化进行发电的新型风力发 电装置, 与传统的直接利用自然风的风速进行发电的风力发电装置, 在动 作原理上有较大差异。 另外,从图 1到图 10, 凡是同样或相当的构成要素, 将省略对同样符号进行重复说明。
图 1是本发明的风力发电装置的第 1实施例的斜视图。 第 1实施例的 风力发电装置 101 , 被设置在地面 2上。 垂直于地面的中空支柱 20的下端 被固定在地面上, 中空支柱 20的内部用于通过连接发电机的电缆(图中未 示出)。 中空支柱 20的上端设有连接件 30, 连接件 30可以以中空支柱 20 为中心,在水平方向做 360度的自由旋转。水平方向延伸的旋转轴 40贯穿 连接件 30, 在贯穿连接件 30的部分设有轴承(图中未示出) , 旋转轴 40 被设置在轴承上, 旋转轴 40可以以连接件 30的轴承为中心在垂直方向做 360度的自由旋转。 旋转轴 40下方固定有两个类似于风帆的受风部 50。
图 1所示的受风部 50, 以支柱 20为中心左右对称设置。 每个受风部
50, 包括受风的风帆 52, 被固定在旋转轴 40下方的框架 54, 以及联结风 帆 52与框架 54的联结部 56。 框架 54由铝合金等轻量金属构成, 风帆 52 由高强度尼龙等轻量布质素材构成,这样可以使受风部 50轻量化。受风部 50的轻量化, 使微风也能推动风帆, 更有效地进行发电。
联结部 56被设计成在一定的受力以上就发生断裂的自动断裂构造。联 结部 56断裂后,风帆 52和框架 54发生分离。在遭遇突然发生的瞬间性超 强突风时, 风帆 52上产生的风力超过联结部 56的断裂力, 此时联结部 56 自动断裂, 风帆 52和框架 54分离, 保护风力发电装置不至于被超强突风 破坏。
当风吹到受风部 50的时候, 风力推动受风部 50发生转矩, 此时受风 部 50和旋转轴 40的两者构成的整体, 将以连接件 30内部的轴承为中心, 在垂直方向进行旋转。 当自然风的风速发生变化时,受风部 50上产生的转 矩也发生变化, 因此受风部 50和旋转轴 40的两者构成的整体将随着风速 的变化发生旋转。 同样, 当自然风的风向发生变化时, 受风部 50上产生的 转矩也发生变化,此时受风部 50和旋转轴 40以及连接件 30的三者构成的 整体, 将以中空支柱 20为中心, 随着风向的变化在水平方向发生旋转。
本实施形态的风力发电装置 101, 设置有两台发电机。 发电机 60是根 据风速的变化而发电的发电机, 筒称风速发电机。发电机 70是根据风向的 变化而发电的发电机, 简称风向发电机。 当自然风的风速发生变化时, 引 起受风部 50和旋转轴 40—起在垂直方向进行旋转。旋转轴 40发生的旋转, 通过第 1传动机构, 把动力传递到风速发电机 60上, 驱动风速发电机 60 产生电力。 当自然风的风向发生变化时, 引起受风部 50和连接件 30—起 在水平方向进行旋转。 连接件 30的旋转, 通过第 3传动机构,把动力传递 到风向发电机 70上, 驱动风向发电机 70产生电力。
第 1传动机构由齿轮 42、 外部有齿的棘轮 80和发电机轴 62组成。 棘 轮 80在旋转轴 40的第 1垂直旋转方向 (图 1中以箭形符号 A1表示) , 与发电机轴 62啮合,将动力传递到发电机 60。棘轮 80在旋转轴 40的第 2 垂直旋转方向 (图 1中以箭形符号 A2表示) , 与发电机轴 62分离, 动力 不被传递到发电机 60。 棘轮 80的构造与常见自行车后轮的棘轮大体上相 同。
当自然风的风速发生变化对, 风力作用在受风部 50上, 引起旋转轴
40沿第 1垂直旋转方向和第 2垂直旋转方向进行往复旋转。 通过棘轮 80 , 只传递第 1垂直旋转方向的动力, 而把第 2垂直旋转方向的旋转隔离, 这 样传递到风速发电机轴 62上的动力,变成只有第 1垂直旋转方向的单方向 旋转, 驱动风速发电机 60发电。
第 3传动机构由齿轮 22、 外部有齿的棘轮 90和发电机轴 72组成。 棘 轮 90在连接件 30的第 1水平旋转方向 (图 1以箭形符号 B 1表示) , 与 发电机轴 72啮合, 将动力传递到发电机 70。 棘轮 90在连接件 30的第 2 水平旋转方向 (图 1以箭形符号 B2表示) , 与发电机轴 72分离, 动力不 被传递到发电机 70。棘轮 90的构造与常见自行车后轮的棘轮大体上相同。
当自然风的风向发生变化时, 风力作用在受风部 50上, 引起连接件
30沿第 1水平旋转方向和第 2水平旋转方向进行往复旋转。 通过棘轮 90, 只传动第 1水平旋转方向的动力, 而把第 2水平旋转方向的旋转隔离, 这 样传递到风向发电机轴 72上的动力,就变成只有第 1水平旋转方向的单方 向旋转, 驱动风向发电机 70发电。
本发明实施例 1的风力发电装置 101 , 在微风时能有效地发电, 又具 有强风时自动保护的功能。 图 2A 图 2C是实施例 1的侧视图, 表示受风 部 50与风速的关系。 图 2A表示低风速的弱风情况, 图 2B表示中等风速 的情况, 图 2C表示高风速的强风情况。
受风部 50上产生的风力,' 与其正对于迎风方向的有效迎风面积成正 比。 受风部 50的有效迎风面积, 等于它在迎风方向的投影面积。 当受风部 50遭遇弱风时, 受风部 50在迎风方向的投影面积 S1较大, 此时受风部 50上产生的风压力较大, 即使是弱风也能推动受风部 50进行发电。 而一 般的风轮式发电装置, 因为在弱风时不能发电, 必须设置在年均风速较高 的强风地区。 本发明实施例 1的风力发电装置 101, 因为在低风速时也能 有效地发电, 所以可以设置在年均风速较低的弱风地区, 大大扩展了风力 发电的应用地区范围。
当受风部 50遭遇强风时, 受风部 50正对于迎风方向的投影面积 S3 较小, 此时在受风部 50上产生的风压力自动减小, 作用到旋转轴 40和支 柱 20上的受力也自动变小,这样就不必使用特别坚固的支轴和支柱等支撑 机构, 使实施例 1 的风力发电装置具有很好的抗强风性。
传统的风轮式风力发电机的叶片旋转速度与风速成正比, 强风时叶片 旋转过快, 会出现超速而导致部件的损坏。 为了防止风轮叶片在强风中超 速运转, 需要增加一个自动刹车系统, 在风速超过一定速度之后, 启动刹 车系统使风轮叶片停转, 以保护整个风力发电系统。 这样的自动刹车系统 不仅容易出故障, 而且需要经常有人监控维修。 自动刹车系统不仅提高了 旋转风轮式风力发电装置的造价, 也造成系统的故障率高, 导致运行成本 高昂。 现行的风轮式风力发电机的故障, 大半是出在强风保护装置上。 而 本发明实施例 1的风力发电装置, 因为具有强风自动保护功能, 不需要复 杂的自动刹车系统, 不仅大幅地降低了风力发电装置的制造成本, 同时还 大大减少了风力发电装置发生故障的可能性。
衡量风力发电机优劣的最重要指标之一是抗强风性能。 现行的风轮式 风力发电机的故障, 绝大多数是因为强风造成的。 因为风轮式风力发电机 的抗强风性较差, 遇到强风时, 轻则造成强风保护装置的故障, 重则造成 叶片或机轴的折断或损坏。
本发明的风力发电机具有优异的抗强风性能, 本发明的风力发电机的 优异抗强风性能来自三个设计。 第一个设计是可分离的风帆部分, 遇到超 强风时, 风帆部分自动脱落, 保护风力发电机本体不至于损坏; 第二个设 计是风帆的有效迎风面积可随风速自动改变, 高风速的强风时, 风帆的有 效迎风面积自动减小, 使风力发电机的旋转轴和支柱上的受力大为减小; 第三个设计是风帆可以在垂直方向 360度自由旋转, 同时还可以在水平方 向 360度自由旋转, 没有强制的限位系统, 使风帆上受到的风能可以自由 释放。
第一个设计的可分离风帆系统在前面已经说明 ,这里说明第二个设计, 即有效迎风面积随风速自动改变的受风部系统。 为了确认受风部的有效迎 风面积随风速自动改变的效果, 我们这里进行模拟计算, 对比迎风面积固 定的受风部与迎风面积可变的受风部的受力情况。受风部上产生的风压力, 使用空气动力学的标准风压公式 (数学式 1 ) 进行计算。
数学式 1
Figure imgf000011_0001
数学式 1中, F是风压力 (单位: N ) ; C d是风阻系数, 这里平面风 帆的 C d = 1.2、 V是风速 (m/s ) 、 p是空气密度( 1.29kg/m3 ) 、 A是风帆 面积 (m2 ) 。 这里模拟计算的风帆尺寸为高 4米, 长 3米, 模拟计算的结 果见表 1。
表 1
Figure imgf000011_0002
3 79 37
5 220 42
10 882 51
20 3529 84
30 7940 139
50 22056 315
70 43231 580 根据表 1的计算结果, 高 4米、 长 3米的受风部, 遭遇风速 70m/s的 瞬间超强风时,在受风部的迎风面积固定的情况下,旋转轴上将受到 43231 牛顿(441 1公斤)的力, 这么大的受力很容易损坏旋转轴和相关部件。 在 而受风部的迎风面积随风速自动改变的情况下, 旋转轴上只受到 580牛顿 ( 59公斤) 的力, 这样旋转轴和相关部件就不至于被超强风损坏。 度的自由旋转, 这是本发明的重要特点, 对于抗强风性具有非常重要的意 义。 表 1中模拟计算显示的小型风力发电机, 在遭遇超强风时, 受风部上 的瞬间风压可达数千公斤, 而大型风力发电机, 在遭遇超强风时, 受风部 上的瞬间风压可达数千吨。 如果受风部不能自由转动, 而是有一个转动限 位装置的话, 受风部的高速旋转在转动限位装置上骤然停止, 高达数千吨 的受力必然会破坏限位装置, 造成严重的机械损坏。
上述采用风帆进行风力发电的美国专利 US4104006 , 美国专利
US7157805 , 美国专利申请 2008/0036214中, 风力发电装置的受风部都设 置有限位装置, 受风部不能同时在水平方向和垂直方向进行 360度的自由 旋转, 所以这些专利描述的风力发电装置在抗强风性方面, 预计会有较大 的缺陷。
本发明的实施例 1的风力发电装置 101,具有自动地正对风向的构造, 即所谓的下风(downwind )构造。 上述的自动正对风向的构造, 特征是受 风部 50的重心 G与支柱 20的中心不重合, 形成偏心构造。 图 3A和图 3B 是风力发电装置 101的平面示意图, 表示受风部 50的重心 G与风向而 的关系。
图 3A表示风的方向 DW与受风部 50 (旋转轴 40 )斜向的情况。 这时 受风部 50的重心 G, 支柱 20的中心和风向 DW三者不在一条直线上, 在 风向 DW的方向上, 在支柱 20左侧的投影面积 SL, 小于在右侧的投影面 积 SR, 所以支柱 20左侧受到的风力, 大于右侧受到的风力, 这样整个受 风部 50就会反时针旋转(图 3A中箭形符号所示方向) 。 当整个受风部的 旋转到达 3B的位置, 此时风部 50的重心 G, 支柱 20的中心和风向環 三者在一条直线上, 在风向 DW的方向上, 支柱 20左侧的投影面积 SL等 于右侧的投影面积 SR, 这时整个受风部的旋转自动停止。 整个受风部自动 旋转到在正对于风向 DW的位置上停止,也就是具有自动正对风向的功能。
图 4是本发明的第 2实施例的风力发电装置 201的斜视图。 第 2实施 例的风力发电装置 201与图 1所示的第 1实施例的风力发电装置 101 , 在 结构上基本相同, 只是加装了一个风向舵 32。 风向舵 32的功能是在风向 方向 DW斜向于受风部 50的时候, 在风向舵 32上将会产生旋转力矩, 使 受风部自动地旋转到正对于风向的方向上。 加装风向舵 32, 可以使本发明 的风力发电装置, 更加灵敏地自动正对于风向的方向, 以便最大程度地获 取风的能量。
本发明的实施例 1和实施例 2的风力发电装置, 与现行的风轮式风力 发电装置相比, 具有结构简单, 故障率低的优点。 而且本发明采用的风帆 结构, 可以分解成零部件运输, 然后再到现场组装, 这样就简化了运输问 题。 而现行的风轮式风力发电装置, 长达数十米的风轮叶片必须整体运输, 不仅运费高昂, 而且无法运输到道路条件不好的地区。 另外, 本发明的实 施例 1和实施例 2的风力发电装置, 没有旋转的风轮, 所以运行时噪音较 小, 也不会发生打死鸟类的环境问题。
图 5是本发明的第 3实施例的风力发电装置 301的斜视图。 上述的第 1 实施例中, 棘轮机构 80把旋转轴 40的第 1垂直转动方向的旋转, 传递 到风速发电机 60。 棘轮机构 90把连接件 30的第 1水平转动方向的旋转, 传递到风向发电机 70。 这样的构成非常筒单, 零部件数少, 造价低廉。 然 而第 1实施例中,旋转轴 40的两个旋转方向, 只有其中一个方向的旋转被 利用于发电, 同样连接件 30的两个旋转方向, 也只有其中一个方向的旋转 被利用于发电, 所以发电的效率不够好。 在本发明的第 3实施例中, 把旋 转轴 40和连接件 30的两个方向的旋转都利用起来发电,提高了发电效率。
本发明的第 3实施例所示的风力发电装置 301 , 除了上述的风速发电 机 60(第 1风速发电机)之外, 又增加了一个风速发电机 160(第 2风速发电 机)。 风速发电机 160, 通过驱动轴 162和外部有齿的棘轮 180与旋转轴 40 上的齿轮 42相连。 棘轮 180在旋转轴 40的第 2垂直旋转方向 (图 5中以 箭形符号 A2表示) , 与发电机轴 162啮合, 将动力传递到发电机 160。 棘 轮 180在旋转轴 40的第 1垂直旋转方向 (图 5中以箭形符号 A1表示) , 与发电机轴 162分离, 动力不被传递到发电机 160。
本发明的第 3实施例所示的风力发电装置 301 , 除了上述的风向发电 机 70(第 1风向发电机)之外, 又增加了一个风向发电机 170(第 2风向发电 机)。 风向发电机 170, 通过驱动轴 172和外部有齿的棘轮 190与支柱 20 上的齿轮 22相连。 棘轮 190在连接件 30的第 2水平旋转方向 (图 5中以 箭形符号 B2表示) , 与发电机轴 172啮合, 将动力传递到发电机 170。 棘 轮 190在连接件 30的第 1水平旋转方向 (图 5中以箭形符号 B 1表示) , 与发电机轴 172分离, 动力不被传递到发电机 170。
在本发明的第 3实施例的风力发电装置中, 风吹动受风部 50, 在旋转 轴 40上产生两个垂直方向的往复旋转。其中第 1垂直方向的旋转, 通过棘 轮 80传递到第 1风速发电机 60进行发电; 第 2垂直方向的旋转, 通过棘 轮 180传递到第 2风速发电机 160进行发电, 这样充分利用了旋转轴 40 的两个垂直方向的旋转, 比第 1实施例的风力发电装置提高了发电效率。 在本发明的第 3实施例的风力发电装置中, 风吹动受风部 50, 在连接 件 30上产生两个水平方向的往复旋转。其中第 1水平方向的旋转,通过棘 轮 90传递到第 1风向发电机 70进行发电; 第 2水平方向的旋转, 通过棘 轮 190传递到第 2风向发电机 170进行发电, 这样充分利用了连接件 30 的两个水平方向的旋转, 比第 1实施例的风力发电装置提高了发电效率。
在本发明的第 3实施例中, 设置了两台风速发电机 60和 160, 不过这 两台风速发电机也能合并成 1台。 譬如设置一个传动装置, 把旋转轴 40 的第 2垂直转动方向的旋转, 改变成与第 1垂直转动方向相同的旋转, 然 后再传递到第 1风速发电机 60, 这样就可以省略第 2风速发电机 160。 这 个传动装置可以由多数的齿轮和传动轴构成。
同样, 在本发明的第 3实施例中, 设置了两台风向发电机 70和 170, 不过这两台风向发电机也能合并成 1台。 譬如设置一个传动装置, 把连接 件 30的第 2水平转动方向的旋转,改变成与第 1水平转动方向相同的旋转, 然后再传递到第 1风向发电机 70, 这样就可以省略第 2风向发电机 170。 这个传动装置可以由多数的齿轮和传动轴构成。
上述各个实施例的风帆式风力发电装置,其发电效率与受风部 50的重 量有关。 因为受风部 50被风吹起时, 一部分风力将用于克服受风部 50本 身的自重, 所以受风部 50的自重越轻, 发电效率就会越好。
另一方面, 受风部 50的自重较轻, 会产生以下的问题。 即在风停止的 时候, 受风部 50将停止在被风吹起的位置, 无法自动返回到初始位置(受 风部 50垂直于旋转轴 40下方的静止位置)。这是因为受风部 50在垂直方 向的旋转, 将受到风速发电机 60或 160转矩阻力, 在受风部 50的自重较 大时, 它的自重大于风速发电机的转矩阻力, 可以克服风速发电机的转矩 阻力返回到初始位置。 而在受风部 50的自重较小时, 它的自重小于风速发 电机的转矩阻力, 所以无法克服风速发电机的转矩阻力, 就停留在被风吹 起位置, 无法返回到初始位置。 针对上述问题, 本发明设计了一个具有自动返回装置的第 4实施例的 风力发电装置 401, 使较轻的风帆也能自动返回其初始位置。
图 6是本发明的第 4实施例的风力发电装置的斜视图。 图 6所示的第 4实施例的风力发电装置 401 , 除了第 1实施例所示的第 1风速发电机 60 外,又增加一个第 2风速发电机 260。旋转轴 40上固定一个半圆形齿轮 242, 取代了第 1实施例中旋转轴 40上固定的齿轮 42。第 1风速发电机 60通过 第 1传动机构与半圆形齿轮 242相连。 第 1传动机构由传动轴 62和棘轮 80构成。 第 2风速发电机 260通过第 2传动机构与半圆形齿轮 242相连。 第 2传动机构由传动轴 262和棘轮 280构成。 第 2风速发电机 260, 传动 轴 262和棘轮 280的构造, 与第 3实施例中的第 2风速发电机 160, 传动 轴 162和棘轮 180相同, 这里不再重述。
风帆的自动返回机构主要由旋转轴 40上固定的半圆形齿轮 242, 以及 棘轮 80和棘轮 280构成。 棘轮 80在顺时针方向转动时, 与第 1风速发电 机 60的传动轴 62啮合, 驱动发电机 60发电。 棘轮 80在反时针方向转动 时, 与第 1风速发电机 60的传动轴 62分离, 此时棘轮 80空转, 动力不会 传递到传动轴 62上。 与之相反, 棘轮 280在反时针方向转动时, 与第 2 风速发电机 260的传动轴 262啮合, 驱动发电机 260发电。 棘轮 280在顺 时针方向转动时,与第 2风速发电机 260的传动轴 262分离,此时棘轮 280 空转, 动力不会传递到传动轴 262上。
下面详细说明自动返回机构的工作原理。 图 7是自动返回机构的工作 示意图。 图 7A表示无风时的静止状态, 此时受风部 50在旋转轴 40垂直 下方的初始位置。 旋转轴 40从初始位置向右方旋转时, 半圆形齿轮 242 只与棘轮 80发生作用, 与棘轮 280不发生作用; 旋转轴 40从初始位置向 左方旋转时,半圆形齿轮 242只与棘轮 280发生作用,与棘轮 80不发生作 用。
在图 7A表示的静止状态下, 如果风从左面吹向右面, 受风部 50和旋 转轴 40将在风力的作用下反时针方向旋转, 图 7B表示旋转轴 40反时针 旋转时的状态, 此时半圆形齿轮 242驱动棘轮 80顺时针旋转, 棘轮 80顺 时针旋转时, 动力传递到发电机传动轴 62上, 驱动第 1风速发电机 60发 电。
当风停止时, 被风吹起的受风部在自重的作用下将返回其初始位置。 图 7C表示旋转轴 40顺时针旋转返回初始位置的状态,此时半圓形齿轮 242 驱动棘轮 80反时针旋转, 棘轮 80反时针旋转时, 只是发生空转, 动力不 会传递到发电机传动轴 62上, 所以受风部 50将自由地返回其初始位置, 不会受到发电机 60的转矩阻力的影响。
在图 7A表示的静止状态下, 如果风从右面吹向左面, 受风部 50和旋 转轴 40将在风力的作用下顺时针方向旋转, 图 7D表示旋转轴 40顺时针 旋转时的状态, 此时半圆形齿轮 242驱动棘轮 280反时针旋转, 棘轮 280 反时针旋转时,动力传递到发电机传动轴 262上,驱动第 2风速发电机 260 发电。
当风停止时, 被风吹起的受风部在自重的作用下将返回其初始位置。 图 7E表示旋转轴 40反时针旋转返回初始位置的状态,此时半圓形齿轮 242 驱动棘轮 280顺时针旋转, 棘轮 280顺时针旋转时, 只是发生空转, 动力 不会传递到发电机传动轴 262上,所以受风部 50将自由地返回其初始位置, 不会受到发电机 260的转矩阻力的影响。
本发明第 4实施例中使用了上半部有齿的半圓形齿轮 242 , 也可以改 用下半部有齿的半圆形齿轮, 或者改用左半部有齿的半圆形齿轮, 或者改 用右半部有齿的半圆形齿轮, 动作原理都是一样的。 只是半圓形齿轮的齿 的位置变更后, 棘轮 80和棘轮 280的安装位置也要相应地变更。
本发明第 4实施例中设置 2台风速发电机 60和 260, 不过这两台风速 发电机也能合并为成 1台。 譬如设置一个传动装置, 把旋转轴 40的第 1 垂直转动方向的旋转, 改变成与第 1垂直转动方向 同的旋转, 然后再传 递到第 1风速发电机 60, 这样就可以省略第 2风速发电机 260。 这个传动 装置可以由多数的齿轮和传动轴构成。
本发明中旋转轴 40被风吹起的展开角 Θ,是随着风速而变化的。 为了 更有效地利用风能, 有必要根据风速的不同, 改变发电机的转速, 达到最 佳发电的目的。 为此本发明设计了一个具有自动变速机构的第 5实施例的 风力发电装置, 使风速发电机 60的驱动轴 62的传动比, 随着旋转轴 40 的展开角 Θ而变化, 这样可以使风速发电机 60的转速随着风速而自动变 动, 达到最佳发电的目的。
图 8是本发明的第 5实施例的风力发电装置的自动变速部分 501的平 面图。 图 9是图 8所示第 5实施例的风力发电装置的自动变速部分 501的 侧视图及动作示意图。 在本发明的第 5实施例的风力发电装置中, 具有不 同半径的多个扇形齿轮构成的复合齿轮 342, 代替了第 1实施例中的齿轮 42。 在本实施例中, 复合齿轮 342具有 3个扇形齿轮 342a, 342b , 342c, 扇形齿轮 342a的半径最小, 扇形齿轮 342b的半径次之, 扇形齿轮 342c 的半径最大。 各个扇形齿轮 342a, 342b, 342c的外周部设置有齿。
在本发明的第 5实施例的风力发电装置中, 具有多个棘轮构成的复合 棘轮机构 380 , 代替了第 1实施例中的棘轮 80。 在本实施例中, 复合棘轮 机构 380具有三个棘轮 380a, 380b, 380c。 其中棘轮 380a被设计成与扇 形齿轮 342a具有啮合关系,棘轮 380b被设计成与扇形齿轮 342b具有啮合 关系, 棘轮 380c被设计成与扇形齿轮 342c具有啮合关系。
复合棘轮机构 380, 通过一套传动机构, 4巴动力传递到发电机 60。 其 中 388a, 388b, 388c是传动齿轮, 分别通过传动轴 386a, 386b, 386c连 接到棘轮 380a, 380b, 380c。 与第 1实施例中所示的一样, 60是风速发电 机, 62是风速发电机的传动轴。
图 9A、 图 9B、 图 9C是图 8所示第 5实施例的动作示意图。 下面根据 图 9的动作示意图, 详细说明自动变速机构的工作原理。 图 9A是风速较低时的情况, 此时旋转轴 40的展开角 Θ在 0度到 30 度之间。 在这种情况下, 扇形齿轮 342a与棘轮 380a啮合, 然后再通过传 动轴 386a, 传动齿轮 388a, 把动力传递到发电机轴 62上, 驱动发电机 60 发电。 这种情况下的传动比小, 所以较低的风速也能轻松地驱动发电机发 电。
图 9B是风速中等的情况, 此时旋转轴 40的展开角 Θ在 30度到 60度 之间。 在这种情况下, 扇形齿轮 342b与棘轮 380b啮合, 然后再通过传动 轴 386b, 传动齿轮 388b, 4巴动力传递到发电机轴 62上, 驱动发电机 60 发电。 这种情况下的传动比适中,在中等风速下能有效地驱动发电机发电。
图 9C是风速较高的情况, 此时旋转轴 40的展开角 Θ在 60度到 90度 之间。 在这种情况下, 扇形齿轮 342c与棘轮 380c啮合, 然后再通过传动 轴 386c, 传动齿轮 388c, 4巴动力传递到发电机轴 62上, 驱动发电机 60发 电。 这种情况下的传动比大, 在高风速下能高效地驱动发电机发电。
. 本发明的第 5实施例中只设置了 1台风速发电机 60 , 不过也可以像第 3实施例那样, 设置第 2台风速发电机提高发电效率。 此时只要按照追加 的发电机, 追加上述的复合棘轮机构 380即可。 同时也可以像第 4实施例 那样, 增加设计受风部 50的自动返回初始位置的机构。
图 10是本发明的第 . 6实施例的风力发电装置 601的斜视图。第 6实施 例和第 1实施例的构造基本一样, 只是第 6实施例中的受风部 450, 被固 定在旋转轴 40的上方, 而第 1实施例中的受风部 50, 被固定在旋转轴 40 的下方。 第 6实施例中在每个受风部 450的下部增加了一个配重 458 , 以 平衡受风部 450的自重, 使受风部 450位于旋转轴 40的上方。
一般来说, 自然风的风速是随高度而增大的。 第 6实施例中的受风部 450, 比第 1实施例中受风部 50的高度更高, 因此能捕获到更高速的风, 发电效率会更高。 另外, 第 1实施例到第 5实施例的各种实施形态和设计, 也都适用于第 6实施例。 上述各个实施例中, 设置了 1个或 2个风向发电机。 这些风向发电机 以及其传动机构, 也可以被省略, 简化整个风力发电机的构造。
上述各个实施例中, 支柱 20被固定在地面, 连接件 30可围绕支柱 20 做水平方向的转动。 这个设计也可以改为连接件 30固定在支柱 20上端, 支柱 20的下端设置在一套固定在地面轴承中,连接件 30和支柱 20—起沿 着这套固定在地面的轴承, 作水平方向的转动。
上述各个实施例中的动力传递系统, 使用了齿轮机构。 但本发明的动 力传递系统不受这个限定, 也可以釆用皮带、 链条等其他形式的动力传递 机构。
上述各个实施例, 也可以配合使用发条、 重力等储能系统, 将风力发 电暂时储存起来, 以达到稳定风力发电的作用。
注意, 本发明不限于上述各个实施例, 本发明技术思想的范围内的任 何实施形态, 都应当被认为是本发明的一部分。

Claims

权利要求
1、 一种风力发电装置, 其特征在于, 所述的风力发电装置包括: 水平 方向伸展的能够 360度自由旋转的旋转轴、固定在所述旋转轴上的受风部、 支撑所述旋转轴和受风部的连接件、 支撑所述连接件的垂直方向伸展的支 柱、 第 1风速发电机以及把所述旋转轴的第 1转动方向的旋转传递到所述 第 1风速发电机的第 1传动机构。
2、 如权力要求 1所述的风力发电装置, 其特征在于, 所述受风部的重 心与所述支柱的中心不重合, 形成偏心构造。
3、 如权力要求 1和权力要求 2所述的风力发电装置, 其特征在于, 还 包括自动变速机构, 能根据所述受风部的展开角度的不同, 改变所述第 1 传动机构的转速传动比。
4、 如权力要求 3所述的风力发电装置, 其特征在于, 所述自动变速机 构具有半径不同的多个扇形齿轮, 以及与多个扇形齿轮同样数目的多个传 动机构, 每个扇形齿轮对应一个传动机构, 将不同传动比的旋转传递到所 述第 1风速发电机。
5、 如权力要求 1至权力要求 4所述的风力发电装置, 其特征在于, 还 包括第 2风速发电机, 以及把所述旋转轴的第 2转动方向的旋转传递到所 述第 2风速发电机的第 2传动机构。
6、 如权力要求 5所述的风力发电装置, 其特征在于, 还包括一个中间 传动装置, 在所述第 1传动机构的动作区域内, 所述中间传动装置把所述 旋转轴的第 1转动方向的旋转传递到所述第 1传动机构, 在所述第 2传动 机构的动作区域内, 所述中间传动装置把所述旋转轴的第 2转动方向的旋 转传递到所述第 2传动机构, 当所述旋转轴处于所述第 1传动机构的动作 区域内时, 所述中间传动装置把所述第 2传动机构分离出传动体系, 当所 述旋转轴处于所述第 2传动机构的动作区域内时, 所述中间传动装置把所 述第 1传动机构分离出传动体系。
7、 如权力要求 6所述的风力发电装置, 其特征在于, 所述中间传动装 置由半圆形的齿轮构成。
8、 如权力要求 1至 Ί中任一项所述的风力发电装置, 其特征在于, 还 包括第 1风向发电机, 把所述连接件的第 1转动方向的旋转传递到所述第 1风向发电机的第 3传动机构。
9、 如权力要求 1至 8中任一项所述的风力发电装置, 其特征在于, 所 述受风部由框架和固定在框架上的帆布构成, 所述框架和所述帆布由多个 连接部相连接, 所述连接部在受到规定的外力以上时, 会发生断裂, 使所 述帆布与所述框架分离。
PCT/CN2010/001900 2009-12-25 2010-11-26 风力发电装置 WO2011075938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009299549 2009-12-25
JPJP2009-299549 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011075938A1 true WO2011075938A1 (zh) 2011-06-30

Family

ID=43425728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001900 WO2011075938A1 (zh) 2009-12-25 2010-11-26 风力发电装置

Country Status (2)

Country Link
JP (1) JP4596350B1 (zh)
WO (1) WO2011075938A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527412A (zh) * 2012-07-02 2014-01-22 李军 水平轴和垂直轴双主轴风力发电机
US20150164209A1 (en) * 2002-11-09 2015-06-18 Braun Gmbh Injection molded part
WO2020018025A1 (en) * 2017-07-08 2020-01-23 Ozturk Atilla Renewable mechanical energy generation unit capable of efficiently regulating low, medium and very high kinetic energies with unstable direction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762430A (zh) * 2016-12-30 2017-05-31 刘俏云 重力滑环自动伸缩式风电装置
JP2019138172A (ja) * 2018-02-07 2019-08-22 国立大学法人 東京大学 波力発電システムの液圧ポンプ装置、及びそれを備える波力発電システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2093245U (zh) * 1990-04-23 1992-01-15 陈南敬 帆形叶片风力发电风机
DE19741759A1 (de) * 1996-10-16 1998-07-23 Guenter Freudenau Strömungskraftmaschine, insbesondere Windkraftmaschine
JPH11117850A (ja) * 1997-10-20 1999-04-27 Takemaro Sakurai 風 車
CN2368996Y (zh) * 1999-04-29 2000-03-15 韩新占 滚摆叶片立轴式风机装置
CN2471962Y (zh) * 2001-04-11 2002-01-16 谭国运 摆翼风力机
CN2532267Y (zh) * 2002-02-28 2003-01-22 刘福宇 立式帆式风车
US20060152013A1 (en) * 2004-11-24 2006-07-13 Jon Mooring Wind powered pendulating land sail electricity generation system
US20090048051A1 (en) * 2007-08-17 2009-02-19 Alex Koleoglou Bearing tooth gears for wind turbine applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB237807A (en) * 1925-01-20 1925-08-06 Odoardo Harley Di San Giorgio Improvements in means for the utilisation of wave movement for producing motive power
US3965365A (en) * 1975-01-14 1976-06-22 Parr Edward L Power generating machine actuated by ocean swells
US4104006A (en) * 1977-01-10 1978-08-01 Northwestern University Wind-energy conversion device
JPH10274145A (ja) * 1997-03-28 1998-10-13 Denji Nakagawa 海水の干満を利用した発電装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2093245U (zh) * 1990-04-23 1992-01-15 陈南敬 帆形叶片风力发电风机
DE19741759A1 (de) * 1996-10-16 1998-07-23 Guenter Freudenau Strömungskraftmaschine, insbesondere Windkraftmaschine
JPH11117850A (ja) * 1997-10-20 1999-04-27 Takemaro Sakurai 風 車
CN2368996Y (zh) * 1999-04-29 2000-03-15 韩新占 滚摆叶片立轴式风机装置
CN2471962Y (zh) * 2001-04-11 2002-01-16 谭国运 摆翼风力机
CN2532267Y (zh) * 2002-02-28 2003-01-22 刘福宇 立式帆式风车
US20060152013A1 (en) * 2004-11-24 2006-07-13 Jon Mooring Wind powered pendulating land sail electricity generation system
US20090048051A1 (en) * 2007-08-17 2009-02-19 Alex Koleoglou Bearing tooth gears for wind turbine applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150164209A1 (en) * 2002-11-09 2015-06-18 Braun Gmbh Injection molded part
CN103527412A (zh) * 2012-07-02 2014-01-22 李军 水平轴和垂直轴双主轴风力发电机
WO2020018025A1 (en) * 2017-07-08 2020-01-23 Ozturk Atilla Renewable mechanical energy generation unit capable of efficiently regulating low, medium and very high kinetic energies with unstable direction
EP3665386A4 (en) * 2017-07-08 2020-11-04 Ozturk, Atilla RENEWABLE MECHANICAL ENERGY GENERATION UNIT THAT CAN EFFICIENTLY REGULATE LOW, MEDIUM AND VERY HIGH KINETIC ENERGIES WITH UNSTABLE DIRECTION

Also Published As

Publication number Publication date
JP4596350B1 (ja) 2010-12-08
JP2011149413A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
US9328717B1 (en) Golden ratio axial flow apparatus
US20180216599A1 (en) Horizontal axis wind machine with multiple rotors
EP1861619B1 (en) Tension wheel in a rotor system for wind and water turbines
CA2479165C (en) Windmill for wind power generation
US6688842B2 (en) Vertical axis wind engine
US20060140765A1 (en) Vertical axis wind engine
US20150110598A1 (en) Vertical Axis Wind Turbine with Wind Vanes
US8109732B2 (en) Horizontal-axis wind generator
WO2011075938A1 (zh) 风力发电装置
US20120121379A1 (en) Tower type vertical axle windmill
US8137052B1 (en) Wind turbine generator
US7766602B1 (en) Windmill with pivoting blades
JP2005090332A (ja) ダリウス形風車
US12012928B2 (en) Hurricane vertical-axis wind turbines
CA2532597A1 (en) Vertical axis fluid actuated turbine
JP5782145B2 (ja) 風力発電装置
CN110770435A (zh) 帆装置
JP4533991B1 (ja) 小型プロペラ風車
JP2015214982A (ja) 風力発電装置
US20130017085A1 (en) Wind turbine with anti-rotational locking mechanism, thrust channels, and blade tip winglets
WO2003098036A1 (en) Orbital-rotating turbine and propeller
JP2003254228A (ja) 風力エネルギ回収装置、及び、風力発電装置
RU25546U1 (ru) Ветроагрегат
JP2005054757A (ja) ハイブリッド形風車
KR100308339B1 (ko) 풍력발전기의날개

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23-10-2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10838504

Country of ref document: EP

Kind code of ref document: A1