WO2011075888A1 - 一种功率控制方法和装置 - Google Patents
一种功率控制方法和装置 Download PDFInfo
- Publication number
- WO2011075888A1 WO2011075888A1 PCT/CN2009/075853 CN2009075853W WO2011075888A1 WO 2011075888 A1 WO2011075888 A1 WO 2011075888A1 CN 2009075853 W CN2009075853 W CN 2009075853W WO 2011075888 A1 WO2011075888 A1 WO 2011075888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- pilot power
- interference ratio
- pilot
- gain factor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/241—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
Definitions
- the present invention relates to the field of wireless communications, and more particularly to power control methods and apparatus in a code division multiple access (CDMA) system.
- CDMA code division multiple access
- a CDMA wireless communication system signals of respective wireless terminals interfere with each other, and signals between adjacent cells also interfere with each other.
- the power control method is crucial.
- the CDMA system avoids the near-far effect of the UE, the Doppler fading effect of the wireless link, and the effects of Rayleigh fading through power control to ensure the quality of service (QoS) of the user.
- QoS quality of service
- DS is a co-channel self-interference system
- any excess power that is not allowed to transmit is the general principle of power control.
- the power control is usually carried out according to the principle of signal-to-interference ratio, that is, the signal-to-interference ratio of the useful signals received by the receiving end is equal. Power control techniques are used to overcome edge problems and near-far effects in CDMA systems, thereby limiting the transmit power of base stations and terminals to a minimum, reducing interference and maximizing system capacity.
- WCDMA Wideband Code Division Multiple Access
- 3GPP The 3rd Generation Partnership Project
- uplink power control is divided into two categories: inner loop power control and outer loop power control.
- the main function of the inner loop power control is to converge the receiving SIR to the target SIR by controlling the transmit power of the physical channel.
- the base station frequently estimates the SIR value and compares it to the target SIR value. If the measured SIR value is higher than the target SIR, the base station commands the mobile station to increase power. For each mobile station, the period of this "measurement-indication-reaction" cycle is 1.5k/s, which is faster than any significant path loss change. In fact, even for mobile stations moving at low to medium speeds. The resulting Rayleigh fading is fast.
- the inner loop power control can prevent any power imbalance in all uplink signals received by the base station.
- the accuracy of the inner loop power control depends on the accuracy of the SIR estimate.
- WCDMA Wideband Code Division Multiple Access
- the uplink channel gain is large, and the power required for uplink channel demodulation is received. Power) is often less than the power of the interference noise.
- the interference noise received by a user terminal (UE) signal is mainly caused by the noise of the bottom noise and other cells of the user, and the interference between the multiple paths of the UE signal itself does not occupy a dominant position. Therefore, the SIR estimation algorithms in R99 and R5 are usually:
- ISCP(s) VV ( ⁇ ; , - x M ⁇ ) 2
- ISCP(s) where ISCP is noise, RSCP is signal energy, s is the slot number, N is the pilot number, L is the multipath number, and X is the depolarized pilot.
- a TPC command for controlling the UE transmit power can be determined.
- the above estimation method does not distinguish the mutual interference of the same UE, and the interference I between the multipaths is approximately equal to the other noise.
- the power of one UE in order to support high-speed uplink services, the power of one UE is likely to be relatively large, even larger than the interference noise.
- the paths interfere with each other, and the energy of the interference Affected by the energy of the multipath signal, the measured value is much lower than the true value.
- the technical problem to be solved by the present invention is to provide a power control method and device, which solves the problem of UE When the radio power is large, the SIR estimation is inaccurate due to the influence of multipath interference, which causes the problem of deterioration of the inner loop power control.
- the present invention provides a power control method, including:
- Obtaining pilot power after the antenna data passes through the automatic gain controller referred to as first pilot power; acquiring a gain factor of the automatic gain controller;
- a pilot power of the antenna data before the automatic gain controller which is referred to as a second pilot power
- the foregoing method may further have the following characteristics, where the first pilot power and the second pilot power refer to pilot power in one slot of antenna data.
- the foregoing method may further have the following features, where the gain factors of the automatic gain controller are:
- the automatic gain controller gain factor of each symbol in a time slot is averaged to obtain the gain factor of the automatic gain controller.
- the foregoing method may further have the following feature: the second pilot power is the first pilot power divided by the gain factor, and the estimated signal to interference ratio is the second pilot power divided by Said output power.
- the foregoing method may further have the following feature: performing power control according to the estimated signal to interference ratio means comparing the estimated signal to interference ratio with a target signal to interference ratio, when the estimated signal to interference ratio is greater than the target signal When the ratio is, the user equipment is instructed to reduce power; when the estimated signal to interference ratio is less than the target signal to interference ratio, the user equipment is instructed to increase power.
- performing power control according to the estimated signal to interference ratio means comparing the estimated signal to interference ratio with a target signal to interference ratio, when the estimated signal to interference ratio is greater than the target signal When the ratio is, the user equipment is instructed to reduce power; when the estimated signal to interference ratio is less than the target signal to interference ratio, the user equipment is instructed to increase power.
- the invention also provides a power control system, comprising:
- a first pilot power calculation module configured to acquire pilot power after the antenna data passes through the automatic gain controller
- a gain factor calculation module configured to acquire a gain factor of the automatic gain controller
- a second pilot power calculation module configured to obtain, according to the first pilot power and the gain factor, a pilot power of the antenna data before an automatic gain controller, referred to as a second pilot power
- a power control module And acquiring an estimated signal to interference ratio value of the antenna data according to the second pilot power and an output power of the automatic gain controller; performing power control according to the estimated signal to interference ratio.
- the above system may further have the following feature, the first pilot power calculation module and the second pilot power calculation module are configured to calculate pilot power in one slot of the antenna data.
- the gain factor calculation module includes a measurement unit and an averaging unit, wherein:
- the measuring unit is configured to measure an automatic gain controller gain factor of each symbol in a time slot
- the averaging unit averages an automatic gain controller gain factor of each symbol in a time slot to obtain a gain factor of the automatic gain controller.
- the foregoing system may further have the following feature, the second pilot power calculation module, configured to divide the first pilot power by the gain factor to obtain the second pilot power;
- the power control module is configured to divide the second pilot power by the output power to obtain the estimated signal to interference ratio.
- the power control module is configured to compare the estimated signal to interference ratio with a target signal to interference ratio, and when the estimated signal to interference ratio is greater than a target signal to interference ratio, instruct the user The device reduces power; when the estimated signal to interference ratio is less than the target signal to interference ratio, the user equipment is instructed to increase power.
- the invention uses the pilot power before the AGC to perform the signal-to-interference ratio estimation, and performs power control according to the signal-to-interference ratio, thereby improving the accuracy of the SIR estimation, and effectively avoiding the system performance deterioration caused by the failure of the inner loop power control due to the SIR estimation being inaccurate.
- the phenomenon is a phenomenon that causes the failure of the inner loop power control due to the SIR estimation to inaccurate.
- Figure 1 is a schematic view of the structure of the present invention
- 2 is a flow chart of the inner loop power control of the present invention
- FIG. 3 is a schematic illustration of the SIR estimation effect of the present invention.
- the present invention uses an SIR estimation method for eliminating multipath interference to accurately estimate the SIR, thereby accurately performing inner loop power control.
- £% is measured after the AGC (Automatic Gain Controller).
- ⁇ , i ⁇ is the pilot chip level power, because of the AGC, Ecp - AGC is constant at this time.
- the Ecp-AGC before the AGC varies with the transmission power of the channel and the UE. Therefore, the £ ⁇ ⁇ before the AGC can be used for uplink inner loop power control.
- [Phi] £ AGC typically only measured in the base station, if so required before the AGC £ ⁇ " ⁇ acting control, the gain value of the AGC is required to compensate back g, to obtain the value before the AGC. If this calculation method
- the Ecp pre Aac before the AGC has a certain offset compared to the real SIR, but this offset is easily calculated.
- FIG. 1 is a block diagram of a power control apparatus according to the present invention, including: an AGC (Automatic Gain Controller), a pilot descrambling and despreading module connected to the AGC, and a first pilot power calculation module connected to the pilot descrambling and despreading module, a gain factor calculation module connected to the AGC, a second pilot power calculation module connected to the gain factor calculation module and the first pilot power calculation module, and a power control module connected to the second pilot power calculation module, wherein:
- AGC Automatic Gain Controller
- pilot descrambling and despreading module connected to the AGC
- a first pilot power calculation module connected to the pilot descrambling and despreading module
- a gain factor calculation module connected to the AGC
- a second pilot power calculation module connected to the gain factor calculation module and the first pilot power calculation module
- a power control module connected to the second pilot power calculation module
- the AGC is used for performing amplitude adjustment on the antenna data, so that the output of the AGC is a constant power K.
- the pilot descrambling and despreading module is used for descrambling and despreading the pilot channel to obtain symbol level data of the pilot. ;
- a first pilot power calculation module configured to acquire pilot power after the antenna data passes through the AGC, and is referred to as a first pilot power.
- the first pilot power is calculated by using symbol level data of the pilot, to a time slot.
- the first pilot power is the pilot chip-level power Ecp ⁇ ;
- a gain factor calculation module configured to acquire a gain factor of the AGC
- a second pilot power calculation module configured to obtain pilot power of the antenna data before the automatic gain controller according to the first pilot power and the gain factor, which is called second pilot power, and divide the first pilot power by The gain factor can be used to obtain the second pilot power
- Ecp p is utilized.
- a power control module configured to obtain an estimated signal to interference ratio according to the output power of the second pilot power and the AGC, perform power control according to the estimated signal to interference ratio, and specifically, perform the estimated signal to interference ratio and the target signal to interference ratio For comparison, when the estimated signal to interference ratio is greater than the target signal to interference ratio, the user equipment is instructed to reduce power; when the estimated signal to interference ratio is less than the target signal to interference ratio, the user equipment is instructed to increase power.
- the specific control method is to generate a corresponding TPC command and send it to the UE.
- the estimated signal to interference ratio is determined based on the values of ⁇ and K, and power control is performed.
- the gain factor calculation module further includes:
- a measuring unit configured to measure an automatic gain controller gain factor for each symbol in a time slot; an averaging unit averaging an automatic gain controller gain factor of each symbol in a time slot to obtain a gain of the automatic gain controller factor.
- FIG. 2 is a flow chart of the inner loop power control of the present invention.
- the specific steps of the inner loop power control using ⁇ before the AGC are as follows:
- Step 201 Obtain pilot power after the antenna data passes through the AGC, that is, the first pilot power.
- the first pilot power is the pilot chip-level power ⁇ .
- Step 202 Acquire a gain factor corresponding to the AGC.
- the specific calculation method is: measuring the AGC gain factor g(k) of each symbol in one time slot, k represents a symbol index; Calculating the average power gain factor of the AGC in one time slot:
- Step 203 Obtain, according to the first pilot power and the gain factor, a pilot power of the antenna data before the AGC, which is called a second pilot power, where the second pilot power is the first pilot power divided by the Gain factor, when using 1 time slot as the time granularity, calculate the pilot chip-level power before AGC
- Step 204 Obtain an estimated signal to interference ratio value of the antenna data according to the second pilot power and the output power of the AGC, and perform power control according to the estimated signal to interference ratio, where the estimated signal to interference ratio is the second pilot power divided by the Output Power.
- Ec PA ⁇ is used as the estimated signal-to-interference ratio siR es t , and the size of Ecp n AGC ⁇ and the target signal-to-interference ratio SIRtarget is compared, and K is the output power of the AGC (ie, the target power).
- K is the output power of the AGC (ie, the target power).
- one time slot is used as the time granularity of control, but the present invention is not limited to the case of one time slot.
- the pilot power after the AGC in other time lengths and the corresponding gain factor can also be calculated, and the pilot power in the time length before the AGC is obtained, and the signal-to-interference ratio is obtained by combining the output power of the AGC, and the signal-to-interference ratio is obtained. Compare with the target signal-to-interference ratio for power control.
- the corresponding outer loop power control is:
- the SIR value estimated by the conventional SIR method has been compressed.
- the SIR estimate never reaches the value of SIRtarget. Therefore, the base station will require the UE to continuously raise the power, so that interference will occur to other UEs, and other UEs cannot access the network.
- the estimated value of the SIR is not compressed at any operating point, and the change in the signal power of the UE and the change in fading can be accurately reflected. In this way, the UE will only require a certain amount of power without causing additional interference to other UEs.
- Fig. 3 is a view showing the effect of the SIR estimating method of the present invention. It can be seen from Fig. 3 that the conventional SIR estimation method has a very large deviation from the ideal SIR when the power is increased. However, the method of the present invention has a very small deviation compared to the ideal SIR.
- the method of the invention effectively improves the accuracy of the SIR estimation, and effectively avoids the phenomenon that the performance of the system deteriorates due to the failure of the inner loop power control due to the SIR estimation.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供了一种功率控制方法,包括:获取天线数据经过自动增益控制器之后的导频功率,称为第一导频功率;获取所述自动增益控制器的增益因子;根据所述第一导频功率和所述增益因子得到所述天线数据在自动增益控制器之前的导频功率,称为第二导频功率;根据所述第二导频功率与所述自动增益控制器的输出功率获取所述天线数据的估计信干比值;根据所述估计信干比值进行功率控制。本发明还提供了一种功率控制系统。本发明有效的提高了SIR估计的准确性,有效避免了由于SIR估计不准引起内环功控失效导致系统性能恶化的现象。
Description
一种功率控制方法和装置
技术领域
本发明涉及无线通讯领域, 更具体的说是码分多址(CDMA ) 系统中功 率控制方法和装置。
背景技术
在 CDMA无线通信系统中, 各个无线终端的信号相互干扰, 邻近小区 ( Cell )之间的信号也相互干扰。为了防止各个小区内各个终端的信号相互攀 升, 功率控制方法至关重要。 CDMA系统通过功率控制避免 UE的远近效应、 无线链路的多普勒 (Doppler )衰落效应和瑞利 ( Rayleigh )衰落的影响以保 证用户的服务质量(QoS ) 。 因直扩 CDMA是同频自干扰系统, 因此任何多 余不必要的功率不允许发送是功率控制的总原则。 在该总原则下, 功率控制 通常按信干比平衡原则进行, 即保证接收端收到的有用信号信干比相等。 功 率控制技术用于克服 CDMA系统中的边缘问题和远近效应,从而将基站和终 端的发射功率限制在最低水平, 减小干扰, 最大限度提高系统容量。
以宽带码分多址( WCDMA: Wideband CDMA )为例, 在 3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)协议中定义了多种功率控 制的方法。在 WCDMA系统中,上行功控分为两大类: 内环功控和外环功控。 内环功控的主要作用是是通过控制物理信道的发射功率使接收 SIR收敛于目 标 SIR。 WCDMA系统中, 基站频繁的估计 SIR值, 并把它同目标 SIR值进 行比较。 如果测得的 SIR值高于目标 SIR, 基站就命令移动台提高功率。 对 每一个移动台, 这个 "测量-指示-反应"循环的周期为 1.5k/s, 比任何较明 显的路径损耗的改变都要快, 实际上, 甚至比以低速到中速运动的移动台产 生的瑞利快衰落的速度还快。 这样, 内环功控就能够防止在基站接收的所有 上行链路信号中出现任何功率失衡的现象。
在 CDMA系统中, 内环功率控制的准确度取决于 SIR估计的准确度。 以 3GPP组织制定的宽带码分多址( WCDMA ) 系统为例, 在 R99和 R5版本的 业务中, 由于上行扩频增益较大, 上行信道解调所需的功率(天线口接收的
功率)往往小于干扰噪声的功率。 一个用户终端(UE )信号受到的干扰噪声 主要是由底噪和其它用户其它小区的干扰引起, 该 UE信号本身多条径之间 的干扰不占主要地位。 因此, 在 R99和 R5中的 SIR估计算法通常为:
L N—\
ISCP(s) = V V (χ; , - xM { )2
ISCP(s) = (l - a) - ISCP(s - \) + a - ISCP(s) « = 1/16
—ISCP(s)
N
SIR(s) = 10 - \og \0(RSCP{s))
ISCP(s) 其中, ISCP为噪声, RSCP为信号能量, s为时隙号, N为导频个数, L 为多径个数, X为去极性后的导频。
将该 SIR和信干比目标值 SIRtarget比较, 就可以确定控制 UE发射功率 的 TPC命令。
上述的估计方法中没有区分同一 UE各条径的相互干扰, 在多径之间的 干扰 I相对其它噪声非常小的前提下才近似成立。 然而, 在 R6版本的高速上 行分组接入(HSUPA )业务中, 为了支持高速上行业务, 一个 UE的功率很 可能比较大, 甚至比干扰噪声还大, 这时各条径相互干扰, 干扰的能量受多 径信号能量影响很大, 测量值远低于真实值。 带来的后果为, 真实的 SIR已 经超过 SIRtarget了, 但测量 SIR还是小于 SIRtarget, 从而发送功控命令让 UE继续抬升功率,直到测量 SIR达到 SIRtarget,从而造成 UE发射功率过高, 造成对其它 UE的严重干扰, 恶化系统性能。 在 R7支持 16QAM调制方式以 后的 HSUPA业务中, 更加容易出现这种现象。
由此可见, 在 R99和 R5中通常使用的不考虑多径间干扰的 SIR估计方 法来进行功控, 在信号能量较大时会带来较大的误差, 从而对系统性能造成 严重恶化。
发明内容
本发明要解决的技术问题是提供一种功率控制方法和装置, 解决 UE发
射功率较大时, 由于多径干扰的影响, SIR估计不准确, 从而造成内环功控 恶化的问题。
为了解决上述问题, 本发明提供了一种功率控制方法, 包括:
获取天线数据经过自动增益控制器之后的导频功率,称为第一导频功率; 获取所述自动增益控制器的增益因子;
根据所述第一导频功率和所述增益因子得到所述天线数据在自动增益控 制器之前的导频功率, 称为第二导频功率;
根据所述第二导频功率与所述自动增益控制器的输出功率获取所述天线 数据的估计信干比值; 根据所述估计信干比值进行功率控制。
进一步地, 上述方法还可具有以下特点, 所述第一导频功率和第二导频 功率是指天线数据一个时隙内的导频功率。
进一步地, 上述方法还可具有以下特点, 所述获取自动增益控制器的增 益因子包括:
测量一个时隙内每个符号的自动增益控制器增益因子;
对一个时隙内各符号的自动增益控制器增益因子进行平均, 得到所述自 动增益控制器的增益因子。
进一步地, 上述方法还可具有以下特点, 所述第二导频功率为所述第一 导频功率除以所述增益因子, 所述估计信干比值为所述第二导频功率除以所 述输出功率。
进一步地, 上述方法还可具有以下特点, 所述根据估计信干比值进行功 率控制是指, 将所述估计信干比值与目标信干比值进行比较, 当所述估计信 干比值大于目标信干比值时, 指示用户设备降低功率; 当所述估计信干比值 小于目标信干比值时, 指示用户设备提高功率。 本发明还提供一种功率控制系统, 包括:
第一导频功率计算模块, 用于获取天线数据经过自动增益控制器之后的 导频功率;
增益因子计算模块, 用于获取所述自动增益控制器的增益因子;
第二导频功率计算模块, 用于根据所述第一导频功率和所述增益因子得 到所述天线数据在自动增益控制器之前的导频功率, 称为第二导频功率; 功率控制模块, 用于根据所述第二导频功率与所述自动增益控制器的输 出功率获取所述天线数据的估计信干比值; 根据所述估计信干比值进行功率 控制。
进一步地, 上述系统还可具有以下特点, 所述第一导频功率计算模块和 所述第二导频功率计算模块用于计算天线数据一个时隙内的导频功率。
进一步地, 上述系统还可具有以下特点, 所述增益因子计算模块包括测 量单元和平均单元, 其中:
所述测量单元, 用于测量一个时隙内每个符号的自动增益控制器增益因 子;
所述平均单元, 对一个时隙内各符号的自动增益控制器增益因子进行平 均, 得到所述自动增益控制器的增益因子。
进一步地, 上述系统还可具有以下特点, 所述第二导频功率计算模块, 用于将所述第一导频功率除以所述增益因子得到所述第二导频功率;
所述功率控制模块, 用于将所述第二导频功率除以所述输出功率得到所 述估计信干比值。
进一步地, 上述系统还可具有以下特点, 所述功率控制模块, 用于将所 述估计信干比值与目标信干比值进行比较, 当所述估计信干比值大于目标信 干比值时, 指示用户设备降低功率; 当所述估计信干比值小于目标信干比值 时, 指示用户设备提高功率。
本发明使用 AGC之前的导频功率进行信干比估计,根据该信干比值进行 功率控制, 提高了 SIR估计的准确性, 有效避免了由于 SIR估计不准引起内 环功控失效导致系统性能恶化的现象。
附图概述
图 1是本发明的结构图示意;
图 2是本发明的内环功控的流程图;
图 3是本发明 SIR估计效果的示意图。
本发明的较佳实施方式
本发明通过下面结合附图的详细描述可以得到完全的解释和理解, 本发 明的特征、 性质和优点将变得更加明显。
本发明釆用消除多径干扰的 SIR估计方法, 准确的估计 SIR, 从而准确 的进行内环功率控制。
通常, 在 AGC (自动增益控制器)之后测量£%。^ , i ^为导频码片 级功率,因为 AGC的原因,此时的 Ecp — AGC是恒定的。而 AGC之前的 Ecp ― AGC 是随着信道和 UE的发射功率变化的。 因此, AGC之前的 £^^ ^可以用来 做上行内环功控。在基站中通常仅仅测量 AGC之后的 £φ , 所以如果需 要使用 AGC之前的 £^„^做功控, 需要把 AGC的增益值 g补偿回去, 从 而得到 AGC之前的 的值。 如果使用这种计算方法, AGC之前的 Ecppre Aac与真实 SIR相比有一定的偏移量, 但是这个偏移量是很容易计算得 到的。
图 1为本发明功率控制装置框图, 包括: AGC (自动增益控制器) 、 与 AGC相连的导频解扰解扩模块、 与导频解扰解扩模块相连的第一导频功率计 算模块, 与 AGC相连的增益因子计算模块, 与增益因子计算模块和第一导频 功率计算模块相连的第二导频功率计算模块, 以及和第二导频功率计算模块 相连的功率控制模块, 其中:
AGC,用于对天线数据进行幅度调整,使 AGC的输出为一恒定的功率 K; 导频解扰解扩模块, 用于对导频信道进行解扰、 解扩, 得到导频的符号 级数据;
第一导频功率计算模块, 用于获取天线数据经过 AGC之后的导频功率, 称为第一导频功率, 具体的, 利用导频的符号级数据计算第一导频功率, 以 一个时隙为时间粒度时, 第一导频功率即导频码片级功率 Ecp ― ;
增益因子计算模块, 用于获取 AGC的增益因子;
第二导频功率计算模块, 用于根据第一导频功率和增益因子得到天线数 据在自动增益控制器之前的导频功率, 称为第二导频功率, 将第一导频功率 除以所述增益因子即可得到第二导频功率;
以一个时隙为时间粒度时, 即利用 Ecpp。st Aac的值以及 AGC的增益因子, 计算及 的值;
功率控制模块,用于才艮据第二导频功率和 AGC的输出功率得到估计信干 比值, 根据估计信干比值进行功率控制, 具体地, 将所述估计信干比值与目 标信干比值进行比较, 当所述估计信干比值大于目标信干比值时, 指示用户 设备降低功率; 当所述估计信干比值小于目标信干比值时, 指示用户设备提 高功率。 具体控制方式是产生对应的 TPC命令并发送给 UE。
当以一个时隙为时间粒度时, 根据 ςρ^ 以及 K的值, 确定估计信干 比值, 进行功率控制。
其中, 增益因子计算模块进一步包括:
测量单元, 用于测量一个时隙内每个符号的自动增益控制器增益因子; 平均单元, 对一个时隙内各符号的自动增益控制器增益因子进行平均, 得到所述自动增益控制器的增益因子。
图 2为本发明的内环功控的流程图,使用 AGC之前的 ^^进行内环 功控的具体步骤如下:
步骤 201 , 获取天线数据经过 AGC之后的导频功率, 即第一导频功率, 以 1个时隙为时间粒度时, 第一导频功率为导频码片级功率 φ
步骤 202 , 获取 AGC对应的增益因子;
具体计算方法为: 测量 1个时隙内每个符号的 AGC增益因子 g(k), k表示符号索引; 计算 1个时隙内的 AGC的平均功率增益因子:
g2(i = , 丄为时隙号索引;
步骤 203 , 根据第一导频功率和增益因子得到天线数据在 AGC之前的导 频功率, 称为第二导频功率, 所述第二导频功率为所述第一导频功率除以所 述增益因子, 以 1个时隙为时间粒度时, 计算 AGC之前的导频码片级功率
以 1个时隙为时间粒度时, 使用 EcP A ^作为估计的信干比值 siRest , 并比较 EcpnAGC ^与目标信干比值 SIRtarget的大小, K为 AGC的输出功率(即 目标功率) , 当估计的信干比值大于目标信干比值时, 指示 UE降低功率; 当估计的信干比值小于目标信干比值时, 指示 UE提高功率。 具体的, 如果 £i^re-^^>SIRtarget, 发送降低 UE功率的 TPC命令; 如 果 £e ^e^<SIRtarget,发送抬高 UE功率的 TPC命令;通过下行物理信道, 发送所述 TPC命令给 UE。 上述功率控制中, 使用一个时隙作为控制的时间粒度, 但本发明不限于 一个时隙的情形。也可以计算其他时间长度内经过 AGC后的导频功率, 以及 对应的增益因子, 得到 AGC之前的该时间长度内的导频功率, 结合 AGC的 输出功率, 得到信干比值, 将该信干比值和目标信干比值进行比较, 进行功 率控制。
相对应的外环功率控制为:
估计目标 EcP ― 的值, 并以此值作为 SIRtarget; 根据 CRC校验的结果调整目标 EcPpf/^的值。
下面结合实例来说明本发明方法。
假设小区内存在一个 UE工作在较高的工作点, 这时利用传统 SIR方法 估计的 SIR值已经压缩。 此时 SIR估计值永远达不到 SIRtarget的值。 因此, 基站会要求 UE不停的抬高功率, 这样, 就会对其他 UE产生干扰, 造成其他 UE不能接入网络。 如果釆用本发明的方法, 不管在任何工作点, SIR的估计 值都不会压缩, 都能够准确的反应 UE信号功率的变化以及经过衰落的变化。 这样 UE只会要求一定的功率, 而不会对其他 UE产生额外的干扰。
图 3为本发明 SIR估计方法的效果图。 由图 3可以看出, 功率变大时, 传统 SIR估计方法与理想 SIR相比偏差非常大。 而本发明的方法和理想 SIR 相比, 偏差非常小。
工业实用性
本发明方法有效的提高了 SIR估计的准确性, 有效避免了由于 SIR估计 不准引起内环功控失效导致系统性能恶化的现象。
Claims
1、 一种功率控制方法, 包括:
获取天线数据经过自动增益控制器之后的导频功率,称为第一导频功率; 获取所述自动增益控制器的增益因子;
根据所述第一导频功率和所述增益因子得到所述天线数据在自动增益控 制器之前的导频功率, 称为第二导频功率;
根据所述第二导频功率与所述自动增益控制器的输出功率获取所述天线 数据的估计信干比值; 根据所述估计信干比值进行功率控制。
2、 如权利要求 1所述的方法,其中, 所述第一导频功率和第二导频功 率是指天线数据一个时隙内的导频功率。
3、 如权利要求 2所述的方法,其中, 所述获取自动增益控制器的增益 因子包括:
测量一个时隙内每个符号的自动增益控制器增益因子;
对一个时隙内各符号的自动增益控制器增益因子进行平均, 得到所述自 动增益控制器的增益因子。
4、 如权利要求 1所述的方法, 其中,
所述第二导频功率为所述第一导频功率除以所述增益因子, 所述估计信 干比值为所述第二导频功率除以所述输出功率。
5、 如权利要求 1所述的方法,其特征在于, 所述根据估计信干比值进 行功率控制是指, 将所述估计信干比值与目标信干比值进行比较, 当所述估 计信干比值大于目标信干比值时, 指示用户设备降低功率; 当所述估计信干 比值小于目标信干比值时, 指示用户设备提高功率。
6、 一种功率控制系统, 包括:
第一导频功率计算模块, 用于获取天线数据经过自动增益控制器之后的 导频功率;
增益因子计算模块, 用于获取所述自动增益控制器的增益因子; 第二导频功率计算模块, 用于根据所述第一导频功率和所述增益因子得 到所述天线数据在自动增益控制器之前的导频功率, 称为第二导频功率; 功率控制模块, 用于根据所述第二导频功率与所述自动增益控制器的输 出功率获取所述天线数据的估计信干比值; 根据所述估计信干比值进行功率 控制。
7、 如权利要求 6所述的系统,其中, 所述第一导频功率计算模块和所 述第二导频功率计算模块用于计算天线数据一个时隙内的导频功率。
8、 如权利要求 7所述的系统,其中, 所述增益因子计算模块包括测量 单元和平均单元, 其中:
所述测量单元, 用于测量一个时隙内每个符号的自动增益控制器增益因 子;
所述平均单元, 对一个时隙内各符号的自动增益控制器增益因子进行平 均, 得到所述自动增益控制器的增益因子。
9、 如权利要求 6所述的系统, 其中,
所述第二导频功率计算模块, 用于将所述第一导频功率除以所述增益因 子得到所述第二导频功率;
所述功率控制模块, 用于将所述第二导频功率除以所述输出功率得到所 述估计信干比值。
10、 如权利要求 6所述的系统, 其中, 所述功率控制模块, 用于将所述 估计信干比值与目标信干比值进行比较, 当所述估计信干比值大于目标信干 比值时, 指示用户设备降低功率; 当所述估计信干比值小于目标信干比值时, 指示用户设备提高功率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/075853 WO2011075888A1 (zh) | 2009-12-22 | 2009-12-22 | 一种功率控制方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/075853 WO2011075888A1 (zh) | 2009-12-22 | 2009-12-22 | 一种功率控制方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011075888A1 true WO2011075888A1 (zh) | 2011-06-30 |
Family
ID=44194905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/075853 WO2011075888A1 (zh) | 2009-12-22 | 2009-12-22 | 一种功率控制方法和装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011075888A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120293A (zh) * | 1994-06-08 | 1996-04-10 | 美国电报电话公司 | 蜂窝式无线系统中分布式功率控制的方法和设备 |
CN1363137A (zh) * | 2000-02-17 | 2002-08-07 | 松下电器产业株式会社 | 无线接收装置和无线接收方法 |
WO2005032011A1 (en) * | 2003-09-30 | 2005-04-07 | Utstarcom Korea Limited | Method of controlling power in a w-cdma mobile communication system |
WO2008092299A1 (en) * | 2007-01-25 | 2008-08-07 | Zte Corporation | Power control apparatus and method |
CN101401330A (zh) * | 2006-03-15 | 2009-04-01 | 日本电气株式会社 | 移动台、控制信号发送功率的装置、方法及程序 |
-
2009
- 2009-12-22 WO PCT/CN2009/075853 patent/WO2011075888A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120293A (zh) * | 1994-06-08 | 1996-04-10 | 美国电报电话公司 | 蜂窝式无线系统中分布式功率控制的方法和设备 |
CN1363137A (zh) * | 2000-02-17 | 2002-08-07 | 松下电器产业株式会社 | 无线接收装置和无线接收方法 |
WO2005032011A1 (en) * | 2003-09-30 | 2005-04-07 | Utstarcom Korea Limited | Method of controlling power in a w-cdma mobile communication system |
CN101401330A (zh) * | 2006-03-15 | 2009-04-01 | 日本电气株式会社 | 移动台、控制信号发送功率的装置、方法及程序 |
WO2008092299A1 (en) * | 2007-01-25 | 2008-08-07 | Zte Corporation | Power control apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4283309B2 (ja) | ダウンリンク送信電力の検出を用いた、動的範囲を限定するダウンリンク電力制御 | |
JP5167369B2 (ja) | 個別チャネル送信電力制御を実行する方法および装置 | |
US20090291642A1 (en) | Systems and Methods for SIR Estimation for Power Control | |
JP4230288B2 (ja) | 送信電力制御方法及び移動局 | |
US8422962B2 (en) | Method and arrangement in a communication system | |
US9294220B2 (en) | Adjusting channel quality report in a wireless communication network | |
EP2250840A1 (en) | Method of closed loop power control adjusted by self- interference and apparatus | |
WO2014067092A1 (zh) | 功率调整方法及设备 | |
US7664523B2 (en) | Base station and mobile apparatus | |
TWI486076B (zh) | 以自干擾調整閉路功率控制之方法 | |
US20080051126A1 (en) | Method for allocating transmit power in a wireless communication system | |
EP2143211A2 (en) | Wireless transmission power control method and system | |
US8670401B2 (en) | Method of load estimation | |
EP2550829A1 (en) | Reducing load in a communications network | |
US20070225027A1 (en) | Initial downlink transmit power adjustment for non-real-time services using dedicated or shared channel | |
KR101699793B1 (ko) | 광대역 무선 접속 시스템에서 전력 제어 장치 및 방법 | |
JP4789705B2 (ja) | 送信電力制御方法、アウターループ制御方法及び移動局 | |
WO2011075888A1 (zh) | 一种功率控制方法和装置 | |
US20110190023A1 (en) | Method for Selecting Reference E-TFCI Based on Requested Service | |
JP4785899B2 (ja) | 送信電力制御方法 | |
JP5310603B2 (ja) | 移動機、及び電力制御方法 | |
KR20010066567A (ko) | 디지탈 통신 시스템의 순방향 전력제어를 위한 snr평가 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09852438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09852438 Country of ref document: EP Kind code of ref document: A1 |