WO2011075885A1 - 一种光网络单元集成装置 - Google Patents

一种光网络单元集成装置 Download PDF

Info

Publication number
WO2011075885A1
WO2011075885A1 PCT/CN2009/075828 CN2009075828W WO2011075885A1 WO 2011075885 A1 WO2011075885 A1 WO 2011075885A1 CN 2009075828 W CN2009075828 W CN 2009075828W WO 2011075885 A1 WO2011075885 A1 WO 2011075885A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
onu
uplink
port
frame
Prior art date
Application number
PCT/CN2009/075828
Other languages
English (en)
French (fr)
Inventor
吴春华
郭晗
娄本刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09852435.8A priority Critical patent/EP2501058B1/en
Priority to PCT/CN2009/075828 priority patent/WO2011075885A1/zh
Publication of WO2011075885A1 publication Critical patent/WO2011075885A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to a PON (Passive Optical Network) transmission technology in the field of communications, and more particularly to an ONU (Optical Network Unit) in a Gigabit Passive Optical Network (GPON) Integrated device.
  • PON Passive Optical Network
  • ONU Optical Network Unit
  • GPON Gigabit Passive Optical Network
  • GPON technology has many advantages such as high bandwidth, high efficiency, large coverage, and rich user interfaces. It is regarded by most operators as an ideal technology for broadband integration of access network services. It consists of an OLT (Optical Line Terminal) at the central office, an ONT/ONU (Optical Network Terminal or Optical Network Unit), and an Optical Distribute Network (ODN). . See Figure 1 for the network topology of GPON.
  • OLT Optical Line Terminal
  • ONT/ONU Optical Network Terminal or Optical Network Unit
  • ODN Optical Distribute Network
  • the main function of the OLT in the GPON system is to complete the access control and service processing of each ONU, such as uplink bandwidth allocation, framing and deframing of GTC (GPON Transmission Convergence) frames, and state control of the ONU.
  • the main function of the ODN is to complete the physical connection between the OLT and the ONU.
  • the ONU mainly performs GTC framing and deframing of user
  • GPON provides an asymmetric access.
  • the OLT performs data transmission in a broadcast manner.
  • Each ONU intercepts its own GEM (GPON Encapsulation Method) frame and completes data reassembly.
  • the OLT needs to send the bandwidth allocation information of each ONU to the Each ONU.
  • the payload portion of the GEM can be densely ported according to the Port-ID (Port Identifier) to ensure the confidentiality of information between the downlink ONUs.
  • Port-ID Port Identifier
  • each ONU completes its own data transmission and bandwidth request reporting at a specified time, and completes multiple fiber-to-connections connected to the ONU at the ODN splitter. All GPON information is encapsulated in GTC frames.
  • the structure of the uplink and downlink directions of the GTC frame is different.
  • the GTC frame is a fixed length of 125 s (38880 bytes), and its frame contains PCBd.
  • PCBd Physical Control Block downstream, downlink physical control block
  • PCBd includes PSync (Physical Synchronization) i or Ident (Identifier) domain, PLOAMd (Physical Layer OAM downstream) domain, BIP (Bit Interleaved Parity) ) domain, PLEND
  • the uplink GTC frame is mainly composed of Preamble (preamble, clock extraction for optical module) domain, Delimiter (delimiter for frame delimiting) domain, BIP (Bit Interleaved Parity) domain, ONU -ID (ONU Identifier, ONU) field, Ind (Indication, indicating the status of the ONU, including whether to enable forward error correction, etc.), PLOAMu (Physical Layer OAM upstream) , DBRu (Dynamic Bandwidth Report upstream) domain, Payload (4 ⁇ payload) domain.
  • Preamble preamble, clock extraction for optical module
  • Delimiter delimiter for frame delimiting
  • BIP Bit Interleaved Parity domain
  • ONU -ID ONU Identifier, ONU
  • Ind Indication, indicating the status of the ONU, including whether to enable forward error correction, etc.
  • PLOAMu Physical Layer OAM upstream
  • DBRu Dynamic Bandwidth Report upstream
  • the GEM frame in the payload portion of the frame consists of the GEM frame header and the GEM payload.
  • GEM frame header is defined by PLI ( Payload Length Indicator) field, Port-ID field, PTI
  • PLI Payment Type Indicator
  • HEC Head Error Control
  • PLI indicates the length of the GEM payload segment after the GEM frame header in bytes
  • Port-ID is used to mark 4096 different service flows of the PON
  • PTI is used to indicate the content type and corresponding processing mode of the GEM payload
  • the HEC provides error detection and error correction functions of the frame header, and provides a demarcation function of the GEM frame together with the PLI.
  • the architecture of a conventional GPON ONU currently on the market is generally as shown in FIG. 2.
  • the MAC (Media Access Control) module performs the processing of the user access part, including the GTC framing and de-frame of the user data, the dynamic bandwidth allocation (DBA), and the like.
  • CPU Center Process Unit
  • PHY Physical Layer
  • the present invention aims to provide an optical network unit integration apparatus for solving technical problems such as difficulty in networking and high cost in testing of existing GPON systems.
  • An optical network unit integrated device comprising:
  • a line decoding and downlink physical control block (PCBd) processing module for receiving downlink optical port data from the optical module; providing a frame header indication to the uplink Gigabit passive optical network transmission aggregation (GTC) frame transmission control module;
  • the BWMAP) processing module submits an Upstream BWMAP domain; submits a downlink physical layer operation control management (PLOAMd) domain to the optical network unit (ONU) state management module; and submits a GTC frame payload portion to the downlink GTC frame payload processing module , PCBd length information and superframe count;
  • a downlink GTC frame payload processing module for using a port provided by the ONU state management module
  • the port-ID filter table, the Port-ID encryption enable table, and the Port-ID key table complete the filtering and decryption of the Gigabit passive optical network encapsulation method (GEM) frame; according to the external parallel bus interface module
  • the Port-ID attribute table completes the separation of user data and management information; performs Ethernet message reassembly for each ONU's Port-ID; according to the Port-ID and hardware interface provided by the central processing unit (CPU) through the external parallel bus interface module
  • the mapping table completes the sending of the Ethernet packet.
  • the ONU state management module is configured to respond to the downlink physical layer operation control management (PLOAMd) message, and maintain the status information of each ONU.
  • the ONU in response to the BWMAP processing module finds the registration application, and generates an uplink physical layer operation management (PLOAMu) domain to send to the uplink GTC.
  • Framing module complete bandwidth allocation identifier (Alloc-ID) filter table, Alloc-ID to ONU identifier (ONU-ID) mapping table, equivalent delay between optical line terminal and ONU according to PLOAMd message (EqD The configuration of the table, the Port-ID encryption enable table, the Port-ID key table, and the Port-ID filter table;
  • the BWMAP processing module is configured to process the Upstream BWMAP domain of each ONU; filter the BWMAP domain of the non-system according to the Alloc-ID filtering table provided by the ONU state management module; and select the Alloc-ID to the ONU-ID according to the ONU state management module.
  • the mapping table and the EqD table obtain GTC frame control information and send it to the uplink GTC framing module; initiate an ONU discovery registration request to the ONU state management module; and initiate an uplink dynamic bandwidth report (DBRu) domain generation by the uplink Ethernet packet queue management module. Applying; initiating a GEM framing application to the uplink GEM framing module;
  • the uplink Ethernet packet processing module is configured to receive the Ethernet packet from each Gigabit Ethernet interface, and according to the CPU configuration information sent by the external parallel bus interface module, find the Port-ID and Alloc to which the packet belongs. -ID, and then apply for packet enqueue according to the Alloc-ID up to the Ethernet 4 queue queue management module;
  • the uplink Ethernet packet queue management module is used to complete the queue management of each Alloc-ID; when the BWMAP processing module applies for the DBRu report, the DBRu report is generated; and the ONU management control interface (OMCI) that is inserted by the external parallel bus interface module is processed. ) Enrollment of the message Application;
  • An uplink GEM framing module configured to complete GEM framing according to GEM frame length information given by the BWMAP processing module;
  • An uplink GTC framing module configured to perform framing processing of the GTC frame according to the GTC frame control information given by the BWMAP processing module and the PLO AMu message of the ONU state management module; and an uplink GTC frame transmission control module, configured to perform line decoding according to the line The clock given by the PCBd processing module and the superframe count send the uplink GTC frame;
  • An external parallel bus interface module for providing an interface with an external CPU chip; providing a query interface for the CPU to read each ONU state;
  • the Gigabit Ethernet interface module is used to receive and send packets of the Gigabit Ethernet interface of each ONU.
  • the ONU state management module includes:
  • the PLOAMd checksum filtering module is configured to perform checksum filtering on the downlink PLOAMd domain.
  • the PLOAMd domain processing module is configured to complete the feedback of the PLOAMd domain, and complete the application for initiating a state transition to the ONU state saving module.
  • the ONU state saving module is configured to save the state of each ONU; the migration request is completed according to the state of the ONU, and the state transition of each ONU is completed; and the timer management module is started according to the old and new state of the migration;
  • the timer management module is configured to complete the ONU ranging status monitoring and the suspension status monitoring.
  • the PLOAMu generating module is configured to respond to the ONU discovery initiated by the BWMAP processing module.
  • the downlink GTC frame payload processing module includes:
  • a GEM frame delimiting module for searching and delimiting a GEM frame of a payload portion of a downlink GTC frame; a GEM frame filtering module for filtering a Port-ID filter table according to an ONU state management module Filtering GEM frames that are not in the system;
  • a GEM frame decryption module configured to perform GEM frame decryption according to the Port-ID encryption enable table and the Port-ID key table provided by the ONU state management module;
  • a GEM frame Port-ID determining module configured to perform separation of user data and management information according to a Port-ID attribute table provided by the CPU through an external parallel bus interface module; send the management information to the CPU through an external parallel bus interface module; The data is sent to the GEM frame packet reassembly module for processing;
  • the GEM frame message reassembly module is configured to perform Ethernet packet reassembly by using user data in a Port-ID manner;
  • a message hardware port obtaining module configured to search for a destination Gigabit Ethernet interface module corresponding to a port-ID of the packet according to a mapping table of the port-ID and the hardware interface provided by the CPU through the external parallel bus interface module, and report the Ethernet The text is sent out through the corresponding purpose Gigabit Ethernet interface module.
  • the BWMAP processing module is further configured to calculate whether the bandwidth allocation of each ONU is a continuous allocation, and if it is continuous, the uplink GTC framing module does not have to send the PLOu domain in the uplink GTC frame corresponding to the second Upstream BWMAP domain. .
  • the uplink Ethernet packet queue management module includes:
  • the queue enqueue module is configured to receive the content of the packet sent by the uplink Ethernet packet processing module, the packet Port-ID, the packet Alloc-ID, and the OMCI message sent by the external parallel bus interface module to enter the P application operation. ;
  • the message storage module is configured to store and store the message in the queue; the message storage module stores the content of the message through the external storage chip, and the content of the flag message is stored in the queue.
  • the queue statistics module is configured to count the total number of bytes of the packets stored in each queue.
  • DBRu generation module used to receive the DBRu application sent by the BWMAP processing module After that, a DBRu report is generated according to the statistical result of the queue statistics module, and the DBRu report is sent to the uplink GTC framing module;
  • the P-Peer module is configured to perform the packet dequeuing according to the statistics result of the queue statistics module, according to the packet dequeuing application sent by the framing module of the uplink GEM frame.
  • the uplink GTC framing module includes:
  • the GTC framing unit is used for the BWMAP processing module to read the PLOAMu domain, the DBRu domain, and the uplink GEM frame, and adds the uplink physical layer pre-frame (PLOu) field to complete the framing of the uplink GTC frame.
  • PLOu physical layer pre-frame
  • BIP bit interleaved parity
  • the FEC coding unit is configured to perform forward error correction coding of the uplink GTC frame, and send the encoded GTC frame to the uplink GTC frame transmission control module.
  • the uplink GTC framing module is further configured to be the next Alloc- when the information given by the BWMAP processing module indicates that the time slot of the next Alloc-ID is connected with the timing of the Alloc-ID.
  • the time slot of the ID reads the DBRu domain and the GEM frame, but it is no longer necessary to generate the PLOu domain.
  • the CPU reads each ONU state from the ONU state management module by using the external parallel bus interface module; the uplink Ethernet packet processing module reads the Alloc saved by the CPU through the external parallel bus interface module.
  • the ID and Port-ID acquisition rule table, and the Port-ID and Alloc-ID to which the message belongs are found according to the table.
  • the CPU is integrated with the external parallel bus interface module.
  • the present invention integrates the functions of a plurality of ONU units into one ONU integrated device, and can support up to 128 ONU units on a single chip.
  • only one PON port per OLT is required for the full load test of the LOT device.
  • the device can simulate a fully loaded configuration. Testing with this invention can save ONUs, ODNs, switches, and a large number of fibers, thereby reducing test costs, optimizing the test network structure, and improving test efficiency.
  • Figure 1 shows the network topology of GPON
  • Figure 2 is a structural diagram of a common GPON ONU system
  • Figure 3 is a network topology of a traditional GPON system for full load testing of OLT devices
  • FIG. 4 is a schematic diagram showing the physical structure of an ONU integrated device according to the present invention.
  • FIG. 5 is a schematic diagram of the integration of multiple ONU units by the ONU integrated device of the present invention
  • FIG. 6 is a network topology of the OLT device full load test using the ONU integrated device of the present invention
  • FIG. 7 is a module of the MAC module of the ONU integrated device of the present invention. Functional block diagram;
  • FIG. 8 is an ONU state management mode in a MAC module of an ONU integrated device according to the present invention. Functional block diagram of the block;
  • FIG. 9 is a functional block diagram of a downlink GTC frame payload processing module in a MAC module of an ONU integrated device according to the present invention.
  • FIG. 10 is a functional block diagram of a BWMAP processing module in a MAC module of an ONU integrated device according to the present invention
  • FIG. 11 is a functional block diagram of an uplink Ethernet packet queue management module in a MAC module of an ONU integrated device according to the present invention
  • FIG. 12 is a functional block diagram of an uplink GTC framing module in a MAC module of an ONU integrated device according to the present invention
  • FIG. 13 is a connection diagram of an external parallel bus interface module and other modules in a MAC module of an ONU integrated device according to the present invention. detailed description
  • the basic idea of the present invention is to transform the existing ONU structure, integrating up to 128 ONU functions into one ONU, and providing up to 128 Gigabit Ethernet interface modules.
  • the physical structure of the ONU integrated device of the present invention is shown in FIG. 4.
  • the present invention reconfigures the MAC module to process data of multiple ONUs, thereby enabling the ONU integrated device of the present invention to integrate multiple ONU units, and the ONU integration of the present invention.
  • a schematic diagram of the logical structure of the device for implementing integration of multiple ONU units is shown in FIG. 5.
  • FIG. 6 when a full-load test is performed on a single OLT device, only one integrated ONU needs to be connected, only A fiber is connected to the OLT, which saves the intermediate ODN and a large number of fibers.
  • FIG. 7 is a structural diagram of a MAC module in an ONU integrated device according to the present invention, and the device includes:
  • PCBd Line decoding and downlink physical control block (PCBd) processing module
  • the module receives the downlink optical port data from the optical module, completes the alignment of the downlink GTC frame, the decoding of the line code, the FEC (Forward Error Correction) decoding of the data, the synchronization of the downlink superframe counter, and the verification of the BIP. And complete the distribution of each data domain.
  • the implementation of each function refers to the G984.3 standard.
  • the module is further configured to provide an 8KHz frame header indication to the uplink GTC frame transmission control module, and the uplink GTC frame transmission control module completes the determination of the uplink transmission time.
  • the module is further configured to submit all uplink bandwidth mapping (Upstream BWMAP) fields in the downlink GTC frame to the BWMAP processing module for processing.
  • Upstream BWMAP uplink bandwidth mapping
  • the module is further configured to forward the downlink physical layer operation control management (PLOAMd) domain in the downlink GTC frame to the ONU state management module for processing.
  • PLOAMd physical layer operation control management
  • the module is further configured to forward the payload portion of the GTC frame to the downlink GTC frame payload processing module, and also needs to provide the length information and the superframe count of the PCBd to the downlink GTC frame payload processing module.
  • the length information of the PCBd and the superframe count will be used for the downstream GTC payload processing module pair. Decryption processing of GTC payload.
  • Alloc-ID Allocation Identifier
  • a mapping table from Alloc-ID to ONU-ID is used by the BWMAP module to query the ONU-ID according to the Alloc-ID.
  • Port-ID filter table this table is used for the downlink GTC frame payload processing module to filter the GEM frame of the Port-ID that is not the system.
  • Port-ID Port Identifier
  • Port-ID is used to mark the actual physical port on the ONU or a packet stream with certain characteristics; the table and the Port-ID key The table is used for the downlink GTC frame payload processing module to complete the decryption of the GEM frame corresponding to each port-ID.
  • Port-ID key table the table is used together with the Port-ID encryption enable table for the downlink GTC frame payload processing module to complete the decryption of the GEM frame corresponding to each Port-ID.
  • EqD Equivalent Delay between OLT and ONU
  • the module needs to respond to the ONU discovery registration application given by the BWMAP processing module. If the BWMAP processing module gives an application, the module needs to query the status of each ONU of the system, obtain the device number of the first unregistered ONU, and then generate a PLOAMu message for the registration response to the uplink GTC framing module. If all ONUs If the BWMAP processing module has been registered, the BWMAP processing module has no ONU to register, and the BWMAP processing module discards the processing of the Upstream BWMAP domain.
  • the module also needs to scan the ONUs that are not registered in the system, and generate an appropriate type of uplink physical layer operation management (PLOAMu) domain to send to the uplink GTC framing module.
  • PLOAMu physical layer operation management
  • the module is also used to generate a suitable PLOAMu domain according to the PLOAMu request of the BWMAP processing module or according to the PLOAMd domain, or generate a blank PLOAMu domain to send to the uplink GTC framing module when no PLOAMu needs to respond.
  • ONU state management module 8 is a functional block diagram of an ONU state management module according to the present invention, and the ONU state management module further includes:
  • PLOAMd checksum filtering module which completes the verification of the downlink PLOAMd domain, and checks whether the ONU-ID managed by the system is based on the ONU-ID in the PLOAMd domain.
  • the PLOAMd domain processing module which completes the feedback of the PLOAMd domain and completes the state transition request to the ONU state saving module to complete the state transition of each ONU.
  • this sub-module completes the saving of each ONU state.
  • the sub-module performs the ONU state transition according to the state transition request of the ONU, and starts the timing of the timer management module 1 and the timer management module 2 in the ONU state according to the old and new state of the migration.
  • a timer management module including a timer 1 management module and a timer 2 management module; a timer 1 management module, configured for each ONU ranging status monitoring, when an ONU is in the ranging state of the ONU registration process, the module Start timing 1. If the ONU has not migrated out of the ranging state before the timer 1 times out, initiate the transition of the state of the ONU to the initial state.
  • the timer 2 management module is used to monitor the suspension state of each ONU, and the timing 2 is started when an ONU is in the suspended state. If the ONU has not migrated out of the suspended state before Timer 2 times out, then Initiate migration of the state of the ONU to an initial state.
  • the sub-module completes the interaction with the BWMAP processing module, responds to the ONU registration application initiated by the BWMAP processing module, queries the ONU state saving module for the first unregistered ONU of the system, and if found, the feedback The BWMAP processing module then obtains the random delay given by the BWMAP processing module, and generates an appropriate PLOAMu domain to send to the uplink GTC framing module.
  • This module needs to manage the status of multiple ONUs, process the PLOAMd domain of multiple ONUs, complete the configuration of the Alloc-ID to ONU-ID mapping table, and complete the Alloc-ID filtering table. Configure and complete the configuration of the Port-ID encryption enablement table.
  • the module is configured to complete the search, decryption, and discarding of the GEM frame of the payload portion of the downlink GTC frame; and separate the user data and the management information according to the type of the GEM frame and the type of the Port-ID;
  • the information is sent to the CPU through the external parallel bus interface module; the user data is reorganized in the Port-ID unit, and the Ethernet packet is sent according to the mapping relationship between the Port-ID and the Gigabit Ethernet interface module.
  • the management information that this part needs to provide to the CPU includes two types, one is OMCK ONU Management and Control Interface, and the ONU management control interface is based on the Port-ID, which is the Port-ID of the ONU management control interface;
  • the class of the GEM frame type is OAM (Operation, Administration, and Maintenance). The judgment is based on the GEM OAM type.
  • the module needs to be able to maintain message reassembly of up to 4096 Port-IDs, and decrypt the packets for each Port-ID of the ONU. At the same time, it is necessary to complete the extraction of the OMCI message and the OAM message of each ONU.
  • FIG. 9 is a functional block diagram of a downlink GTC frame payload processing module in a MAC module of a GPON ONU implemented by the present invention, the module includes: a GEM frame delimiting module for searching and delimiting a GEM frame of a payload portion of a downlink GTC frame;
  • a GEM frame filtering module configured to filter a GEM frame that is not in the system according to a Port-ID filtering table provided by the ONU state management module;
  • a GEM frame decryption module configured to perform GEM frame decryption according to the Port-ID encryption enable table and the Port-ID key table provided by the ONU state management module;
  • a GEM frame Port-ID determining module configured to perform separation of user data and management information according to a Port-ID attribute table provided by the CPU through an external parallel bus interface module; send the management information to the CPU through an external parallel bus interface module; The data is sent to the GEM frame packet reassembly module for processing;
  • the GEM frame message reassembly module is configured to perform Ethernet packet reassembly by using user data in a Port-ID manner;
  • a message hardware port obtaining module configured to search for a destination Gigabit Ethernet interface module corresponding to a port-ID of the packet according to a mapping table of the port-ID and the hardware interface provided by the CPU through the external parallel bus interface module, and report the Ethernet The text is sent out through the corresponding purpose Gigabit Ethernet interface module.
  • the module completes the processing of the Upstream BWMAP domain of each ONU in the downlink GTC frame, and filters the BWMAP domain of the non-system according to the Alloc-ID filter table.
  • FIG. 10 is a functional block diagram of a BWMAP processing module in a MAC module of a GPON ONU implemented by the present invention, the module includes:
  • the BWMAP filtering module is configured to filter the BWMAP domain of the non-system according to the Alloc-ID filtering table provided by the ONU state management module.
  • the method of filtering the BWMAP domain of the system is:
  • the Alloc-ID is used to search for the Alloc-ID filter table maintained by the ONU state management module. If the Alloc-ID does not exist in the Alloc-ID filter table, the BWMAP domain is not The domain of the system discards the BWMAP domain.
  • the BWMAP processing unit mainly performs the processing of the Upstream BWMAP domain.
  • the main functions include: sending GTC frame control information to the uplink GTC framing module; initiating an ONU discovery registration application and initiating a PLOAMu domain generation application to the ONU state management module;
  • the frame framing module initiates a GEM framing application; initiates a DBRu application to the uplink Ethernet packet queue management module;
  • the GTC frame control information includes: the start and end times of the uplink GTC frame, and whether the uplink GTC frame needs to include the uplink physical layer pre-frame (PLOu) domain, the uplink physical layer operation management (PLOAMu) domain, and the DBRu domain.
  • PLOu physical layer pre-frame
  • PLOAMu uplink physical layer operation management
  • the module queries the mapping table of the Alloc-ID to the ONU-ID in the ONU state management module according to the Alloc-ID, queries the corresponding ONU-ID, and then queries the corresponding ONU-ID, and then Querying the EqD table in the ONU state management module according to the ONU-ID, and obtaining an equivalent delay between the ONU and the OLT corresponding to the ONU-ID, that is, the EqD value corresponding to the ONU-ID, and obtaining the corresponding ONU-ID
  • the module For an Upstream BWMAP domain with an Alloc-ID equal to the broadcast Alloc-ID, the module needs to initiate an ONU discovery registration request to the ONU state management module.
  • the ONU state management module completes the unregistered ONU type as the device serial number of the feedback ONU (Serial- Number—ONU)
  • the generation of PLOAMu completes the discovery of the ONU and subsequent ranging and registration. If the ONU state management module returns no ONU to register, the Upstream BWMAP domain is discarded. Otherwise, a random delay is generated and fed back to the ONU state management module, and the start and end times of the Upstream BWMAP domain are combined according to the random delay. , Calculate the transmission timing of the uplink GTC frame.
  • the module also needs to complete the application for generating the uplink dynamic bandwidth report (DBRu) domain by the uplink Ethernet 4 queue queue management module according to the contents of the BWMAP domain, and initiate the GEM framing application to the uplink GEM framing module.
  • ONU state management module initiates PLOAMu domain generation Applying and informing the uplink GTC framing module whether the uplink GTC frame needs to include an uplink physical layer pre-frame (PLOu) domain, an uplink physical layer operation management (PLOAMu) domain, and a DBRu domain.
  • PLOu physical layer pre-frame
  • PLOAMu uplink physical layer operation management
  • the module is further configured to calculate whether the bandwidth allocation of each ONU is continuous allocation (that is, whether the Alloc-ID of the consecutive Upstream BWMAP domain belongs to the same ONU-ID, and the end time of the previous Upstream BWMAP is equal to 1 For the start time of an Upstream BWMAP, if it is continuous, it needs to indicate that the uplink GTC framing module should not send the PLOu domain in the uplink GTC frame corresponding to the second Upstream BWMAP domain.
  • the module receives Ethernet packets from each Gigabit Ethernet interface and checks the CPU configuration information (including the Port-ID acquisition rule table and the Alloc-ID acquisition rule table) of the external parallel bus interface module.
  • the Port-ID and the Alloc-ID to which the packet belongs are obtained, and then the packet is sent to the Ethernet packet queue management module according to the Alloc-ID.
  • the acquisition rule of the Alloc-ID or Port-ID is configured by the CPU. It can be configured to obtain the VLAN ID based on the VLAN ID or the type of the packet.
  • the module completes the queue management of the uplink Alloc-IDs, and counts the total number of bytes of the packets stored in each queue, and according to the number of bytes, the DBRu report is generated when the BWMAP processing module applies for the DBRu report.
  • the Port-ID to which the message belongs is also managed along with each message. This module also needs to process the enqueue request for the OMCI message inserted by the external parallel bus interface module.
  • FIG. 11 is a functional block diagram of a MAC module of a GPON ONU implemented by the present invention, where the module includes:
  • the queue enqueue module is configured to receive the content of the packet sent by the uplink Ethernet packet processing module, the packet Port-ID, the packet Alloc-ID, and the OMCI message sent by the external parallel bus interface module to enter the P application operation.
  • a packet storage module is used for storage management of packets that have been queued. Due to the large number of queues to be maintained, this module may need to connect an external memory chip to store the contents of the message, and the content of the flag message, such as the address and length of the message in the external memory, is stored in the queue.
  • the queue statistics module is configured to count the total number of bytes of the packets stored in each queue.
  • a DBRu generation module configured to generate a DBRu report according to a statistical result of the queue statistics module after receiving the DBRu application sent by the BWMAP processing module, and send the DBRu report to the uplink GTC framing module;
  • the P-Peer module is configured to perform the packet dequeuing according to the statistics result of the queue statistics module, according to the packet dequeuing application sent by the framing module of the uplink GEM frame.
  • the module completes the GEM framing according to the GEM frame length information given by the BWMAP processing module. If the remaining length of the packet is less than the length of the GEM frame field, the uplink GEM framing module needs to apply for dequeuing to the upstream Ethernet packet queue management module, and GEM framing the next Ethernet packet. If the queue is empty, the free GEM frame is filled. After the GEM is framed, it sends the information to the upstream GTC framing module.
  • This module completes the framing processing of the GTC frame according to the GTC frame control information given by the BWMAP processing module.
  • the module needs to read the DBRu for the next Alloc-ID time slot (if it is to be generated), GEM frames, but no longer need to generate PLOu domains.
  • the GTC framing unit is configured to read the PLOAMu domain, the DBRu domain, and the uplink GEM frame according to the indication given by the BWMAP processing module, and add an uplink physical layer pre-frame (PLOu) domain to complete framing of the uplink GTC frame;
  • the information required to generate a GTC frame includes: a GEM frame of the GEM framing module, a PLOAMu message of the ONU state management module, an uplink physical layer pre-frame (PLOu) field generated by the module, and a DBRu domain generated by the uplink queue management module.
  • the BIP calculation storage unit is configured to generate and store bit interleaved parity (BIP) of each uplink GTC frame; the BIP domain is across the uplink GTC frame, so it needs to be saved, and the BIP domain is part of the PLOu domain.
  • BIP bit interleaved parity
  • the FEC coding unit is configured to perform forward error correction coding of the uplink GTC frame, and send the encoded GTC frame to the uplink GTC frame transmission control module.
  • the module completes the uplink GTC frame transmission at a specified time node according to the start and end times of the uplink GTC frame given by the uplink GTC framing module. Its time node is determined by the 8KHz clock and the superframe count sent by the line decoding and PCBd processing modules.
  • This module completes the receiving and sending of packets on the Gigabit Ethernet interface corresponding to each ONU.
  • the module is an interface module of an external CPU chip. Through this interface, the CPU can complete the processing of the OMCI messages of each ONU managed by the system, the PLOAMd domain processing, the OAM packet processing, and the configuration management of various entries in the system.
  • Port-ID attribute table the table is used to determine whether the Port-ID is an OMCI Port-ID, and is used for providing the downlink GTC frame payload processing module to complete user data and management information according to the type of Port-ID of each ONU. Separation.
  • Alloc-ID and Port-ID acquisition rule table This table is used by the uplink Ethernet packet processing module to find the Port-ID and Alloc-ID of the 4 ⁇ text according to the characteristics of the physical port or the 4 ⁇ text.
  • the modules that need to interact with this module are: an uplink Ethernet packet processing module, an uplink Ethernet packet queue management module, an ONU state management module, and a downlink GTC frame payload processing module.
  • FIG. 13 is a connection diagram of an external parallel bus interface module and other modules in a MAC module of a GPON ONU implemented by the present invention.
  • the CPU reads each ONU from the ONU state management module through an external parallel bus interface module.
  • the upstream Ethernet packet processing module reads the Alloc-ID and Port-ID acquisition rule table saved by the CPU through the external parallel bus interface module, and checks the Port-ID and the packet to which the packet belongs according to the table. Alloc-ID.
  • the module also adds the configuration interface of each ONU's OMCI Port-ID.
  • the CPU is integrated in the ONU integrated device of the present invention, that is, the CPU chip and the MAC module in FIG. 4 are integrated together. If FIG. 13 is taken as an example, the CPU and the external parallel bus interface module are integrated as A module, the functions performed by the CPU are unchanged, and the integration speed can increase the processing speed and efficiency of the system.
  • the processing steps for the downlink data are:
  • Step 11 The optical module receives the downlink optical port data from the optical fiber line and transmits the data to the line decoding and downlink physical control block (PCBd) processing module.
  • PCBd physical control block
  • Step 12 After the line decoding and the PCBd processing module complete the decoding of the line coding, the uplink bandwidth mapping (Upstream BWMAP) domain is submitted to the BWMAP processing module for processing, and the downlink physical layer operation control management (PLOAMd) domain is submitted to the BWMAP processing.
  • Module Processing transferring the payload portion of the GTC frame to the downlink GTC frame payload processing module for processing.
  • the downlink GTC frame payload processing module receives the downlink GTC frame payload sent by the line decoding and the PCBd processing module, completes the search, decryption, and filtering of the GEM frame.
  • the user data is completed according to the type of the GEM frame and the type of the Port-ID.
  • the management information is separated, and the management information is sent to the CPU through the external parallel bus interface module, and the user data is reorganized in the Port-ID unit, and the mapping is based on the Port-ID and the Gigabit Ethernet interface module. The relationship is completed by Ethernet.
  • the method of performing the GEM frame filtering in the step is: querying the port-ID filtering table maintained by the ONU state management module by using the port-ID of the GEM frame as an index, and determining whether the GEM frame is a GEM frame that is not processed by the system, and if the port-ID is If the corresponding port-ID does not exist in the filter table, the GEM frame is a GEM frame that is not processed by the system, and the GEM frame is discarded.
  • the method for decrypting the GEM frame in the step is: querying the Port-ID encryption enable table and the Port-ID key table maintained by the ONU state management module with the Port-ID of the GEM frame as the key and the superframe of the GEM frame. Count, byte offset, complete the decryption of the GEM frame.
  • the method for separating the user data and the management information in the step is: querying the port-ID attribute table of the CPU maintenance by the external parallel bus interface module by using the GEM frame Port-ID as an index to determine whether the port-ID is an ONU management control interface (OMCI) Port-ID, if yes, submit the GEM frame to the CPU for processing via the external parallel bus interface module.
  • OMCI ONU management control interface
  • the processing steps for the upstream data are:
  • Step 21 Receive uplink data from the Gigabit Ethernet interface to the uplink Ethernet packet processing module, and the uplink Ethernet packet processing module completes the acquisition of the Alloc-ID and the Port-ID of the packet according to the configuration of the CPU; Then apply for enqueue according to the Alloc-ID uplink Ethernet packet queue management module;
  • the Port-ID and Alloc-ID acquisition rules are configured by the CPU. This rule can be set according to the identifier of the virtual local area network (VLAN-ID) or the type of the packet.
  • Step 22 After receiving the packet enqueue request of the uplink Ethernet packet processing module, the uplink Ethernet packet queue management module completes the packet enrollment by using the Alloc-ID as an index;
  • the uplink Ethernet packet queue management module is further configured to receive an OAM message sent by the CPU through the external parallel bus interface module, and join the queue;
  • the uplink Ethernet packet queue management module saves the Port-ID, packet storage address, and length information of the enqueue message.
  • the message data can be stored either inside the MAC chip or in the external memory.
  • the uplink queue management module also needs to calculate the packet length stored in each queue, and generate a DBRu domain in response to the BWMAP module's uplink dynamic bandwidth report (DBRu) domain generation request.
  • DBRu uplink dynamic bandwidth report
  • Step 23 The uplink Ethernet packet queue management module responds to the dequeue operation of the GEM framing module, and completes the 4 ⁇ text exit;
  • the uplink Ethernet packet queue management module is further configured to complete the generation of the DBRu domain of the uplink GTC frame in response to the DBRu request sent by the BWMAP processing module.
  • DBRu is generated in accordance with the G.984.3 standard.
  • Step 24 The uplink GEM framing module responds to the GEM framing request of the BWMAP processing module, completes the GEM framing according to the length of the Alloc-ID and the GEM domain, and sends the GEM frame to the uplink GTC framing module for processing;
  • the uplink GEM framing module sends an outgoing packet request to the Ethernet packet queue management module to request a new packet for GEM framing.
  • the queue is empty, the free GEM frame is filled. If the GTC frame tail is not sufficient to send a complete GEM frame header, it is filled with a partial GEM IDLE frame.
  • the uplink GEM framing module is also used to complete the framing of the OAM message inserted by the CPU.
  • Step 25 The uplink GTC framing module sends the GTC frame to the uplink after completing the work of forming the PLOu domain, the PLOAMu domain, the DBRu domain, and the GEM domain into GTC frames according to the information of each domain to be sent in the uplink GTC frame given by the BWMAP.
  • GTC frame transmission control module If the BWMAP indicates that the timing window of the two Alloc-IDs is a continuous frame transmission mode, the two windows are combined into one transmission. In this module, it is also necessary to calculate the BIP of the uplink GTC frame and update the BIP value of the corresponding ONU-ID.
  • Step 26 The uplink GTC frame transmission control module sends the GTC frame through the uplink optical port; the sending time is determined by the start and end time of the time slot and according to the 8KHz clock and the superframe count given by the downlink line decoding and PCBd processing module. .
  • the system control of the integrated ONU device of the present invention is mainly completed by three modules: BWMAP processing module, ONU state control module, and external parallel bus interface module.
  • BWMAP processing module BWMAP processing module
  • ONU state control module ONU state control module
  • external parallel bus interface module external parallel bus interface module
  • the control operations of the BWMAP processing module include:
  • This module completes the downlink line decoding and the reception of the BWMAP domain data given by the PCBd processing module. It first completes the verification of the BWAMP domain, and obtains the result of whether the Alloc-ID belongs to the system by querying the Alloc-ID filter table, and completes the discarding failure and the discarding of the BWMAP i of the Alloc-ID of the system.
  • the BWMAP domain finds its own ONU-ID according to the Alloc-ID, and then queries the EqD table maintained by the ONU state management module to obtain the EqD of the ONU-ID, and adds a fixed delay of 34us ⁇ 36us to obtain the GTC.
  • the BWMAP domain also needs to determine whether the ONU registration response message needs to be fed back according to the content of the BWMAP domain. If necessary, the ONU state management module issues information for generating an ONU registration response message, and waits for feedback from the ONU state management module. With The same delay is generated by the BWMAP processing module.
  • the BWMAP processing module also needs to transmit the indication information in the FLAG field of the BWMAP domain to the uplink GTC framing module, which includes whether the uplink GTC frame needs to send the DBRu domain, the PLOu domain, and the PLOAMu domain.
  • the Alloc-ID filter table, the Alloc-ID to ONU-ID mapping table, and the EqD table used by this module are all configured by the ONU state control module according to the PLOAMd field it receives.
  • the control operations of the ONU state management module include:
  • the ONU state management module completes the state management of all ONUs in the system. It needs to maintain the state table of each ONU, complete the configuration of the EqD table, configure the Alloc-ID filter table, and configure the Alloc-ID to the ONU-ID mapping table. The configuration of the -ID filter table. At the same time, the checksum reception of the downlink PLOAMd field needs to be completed, and the related PLOAMd domain is fed back to the CPU through the external parallel bus interface module.
  • control operations of the external parallel bus interface module include:
  • the external parallel bus interface module completes the interaction with the CPU outside the system. It submits the OMCI message and the PLOAMd field that needs to be fed back to the CPU to the CPU, and then sends the configuration of the CPU to each module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

一种光网络单元集成装置 技术领域
本发明涉及通信领域的 PON ( Passive Optical Network, 无源光网络) 传输技术, 尤其涉及一种 GPON ( Gigabit Passive Optical Network, 千兆无 源光网络) 中的 ONU ( Optical Network Unit, 光网络单元 ) 的集成装置。 背景技术
GPON技术具有带宽高, 效率高, 覆盖范围大, 用户接口丰富等众多 优点, 被大多数运营商视为实现接入网业务宽带化综合化改造的理想技术。 其由局端的 OLT(Optical Line Terminal , 光线路终端), 用户端的 ONT/ONU(Optical Network Terminal or Optical Network Unit , 光网络终端或 光网络单元), 以及 ODN(Optical Distribute Network, 光分配网络)组成。 GPON的网络拓朴参看附图 1。 在 GPON系统的 OLT的主要功能是完成各 个 ONU的接入控制和业务处理,如上行带宽分配、 GTC( GPON Transmission Convergence, GPON传输汇聚)帧的成帧和解帧、 ONU的状态控制等。 ODN 主要功能是完成 OLT到 ONU之间的物理连接。 ONU则主要完成用户数据 的 GTC成帧和解帧。
GPON提供的是一种非对称接入。 其在下行方向, OLT以广播的方式 进行数据传输, 各个 ONU 截取属于自己的 GEM ( GPON Encapsulation Method, GPON封装方法) 帧并完成数据的重组, 同时 OLT还需将各个 ONU的带宽分配信息发送到各个 ONU。 下行方向, GEM的净荷部分可以 按照 Port-ID ( Port Identifier, 端口标志符 )进行力口密, 以确保下行 ONU之 间的信息保密。 在上行方向, 各个 ONU在规定的时刻完成自己的数据发送 和带宽请求上报, 在 ODN的光分器处完成连接到 ONU的多根光纤到连接 GPON的所有信息都封装在 GTC帧中。 GTC帧上下行方向的结构是不 同的。下行方向, GTC帧为固定长度 125 s( 38880字节),其帧内包含 PCBd
( Physical Control Block downstream, 下行物理控制块)和净荷部分。 PCBd 内包含 PSync ( Physical Synchronization,物理同步) i或、 Ident ( Identifier, 信 息提示)域、 PLOAMd ( Physical Layer OAM downstream, 下行物理层操作 控制管理 )域、 BIP ( Bit Interleaved Parity, 比特交织奇偶校验 )域、 PLEND
( Payload Length downstream , 下行净荷长度) 域、 Upstream BWMAP
( Upstream Bandwidth Map , 上行带宽映射, 以下筒称为 BWMAP )域; 而 净荷部分由一个或多个 GEM帧组成。 上行方向, GTC帧为可变长度, 其 具体长度由 OLT的分配。 上行 GTC帧主要由 Preamble (前导码, 用于光模 块进行时钟提取)域、 Delimiter (定界符, 用于进行帧定界)域、 BIP ( Bit Interleaved Parity, 比特交织奇偶校验)域、 ONU-ID ( ONU Identifier, ONU 标志符)域、 Ind ( Indication, 用于指示 ONU的状态, 包括是否使能前向 纠错等)域、 PLOAMu ( Physical Layer OAM upstream, 上行物理层操作管 理) i或、 DBRu ( Dynamic Bandwidth Report upstream, 上行动态带宽艮告) 域、 Payload ( 4艮文净荷 )域组成。 无论是上行 GTC帧还是下行 GTC帧, 其帧净荷部分中的 GEM帧都由 GEM帧头和 GEM有效净荷组成。 GEM帧 头由 PLI ( Payload Length Indicator, 净荷长度指示)域、 Port-ID域、 PTI
( Payload Type Indicator, 净荷类型指示)域和 HEC ( Head Error Control, 头部错误控制 )域组成; PLI以字节为单位指示 GEM帧头后面的 GEM净 荷段长度; Port-ID用来标志 PON的 4096个不同的业务流; PTI用于指示 GEM 净荷的内容类型和相应的处理方式; HEC 提供帧头的检错和纠错功 能, 并与 PLI—起提供 GEM帧的定界功能。
目前市场上的普通的 GPON ONU的架构大体如附图 2所示。在这种架 构中, MAC ( Media Access Control, 媒体访问控制)模块完成用户接入部 分的处理, 包括用户数据的 GTC成帧和解帧、 DBA ( Dynamic Bandwidth Allocation, 动态带宽分配 )上报等,其实现遵循 G.984.3标准; CPU ( Center Process Unit,中央处理单元)完成 ONU的控制和管理; PHY( Physical Layer, 物理层)模块完成以太网的物理层需要完成的功能。
采用现有 ONU结构,在传统 GPON系统的测试当中,如果需要对单个 OLT端的设备进行满载测试, 需要多达 128个 ONU, 1个 ODN网络和众 多光纤。 组成这样一个满载环境, 所需资金和时间都非常巨大。 假如需要 测试一插满 GPON OLT单板的整框满载测试, 其所需的 ONU、 ODN、 光 纤、 交换机和网络性能测试仪数量几乎是难以承受。 但目前世界顶级运营 商一般都要求做机框级别的满载测试, 以检查设备商提供的 OLT机框的交 换能力, 这给设备提供商的设备和资金占用带来巨大压力。 传统 GPON系 统测试的网络拓朴可参看附图 3。 发明内容
有鉴于此, 本发明目的在于提供一种光网络单元集成装置, 用于解决 现有 GPON系统测试中组网困难、 成本高等技术问题。
为实现本发明目的, 本发明提出的技术方案如下:
一种光网络单元集成装置, 该装置包括:
线路解码和下行物理控制块 (PCBd)处理模块, 用于从光模块接收下行 光口数据; 向上行千兆无源光网络传输汇聚(GTC ) 帧发送控制模块提供 帧头指示; 向带宽映射(BWMAP )处理模块提交上行带宽映射(Upstream BWMAP )域; 向光网络单元(ONU )状态管理模块提交下行物理层操作 控制管理(PLOAMd )域; 向下行 GTC帧净荷处理模块提交 GTC帧净荷 部分、 PCBd的长度信息及超帧计数;
下行 GTC帧净荷处理模块, 用于根据 ONU状态管理模块提供的端口 标志符( Port-ID )过滤表、 Port-ID加密使能表、 Port-ID密钥表完成千兆无 源光网络封装方法 (GEM ) 帧的过滤、 解密; 根据外部并行总线接口模块 提供的 Port-ID属性表完成用户数据和管理信息的分离; 针对各个 ONU的 Port-ID完成以太网报文重组; 根据中央处理单元(CPU )通过外部并行总 线接口模块提供的 Port-ID和硬件接口的映射表完成以太网报文的发送;
ONU状态管理模块, 用于响应下行物理层操作控制管理 (PLOAMd)消 息, 维护各 ONU的状态信息; 响应 BWMAP处理模块的 ONU发现注册申 请, 生成上行物理层操作管理(PLOAMu )域发送给上行 GTC成帧模块; 根据 PLOAMd消息完成带宽分配标志符(Alloc-ID )过滤表、 Alloc-ID到 ONU标志符(ONU-ID ) 的映射表、 光线路终端和 ONU之间的等效时延 ( EqD )表、 Port-ID加密使能表、 Port-ID密钥表、 Port-ID过滤表的配置;
BWMAP处理模块,用于完成各 ONU的 Upstream BWMAP域的处理; 根据 ONU状态管理模块提供的 Alloc-ID过滤表过滤非本系统的 BWMAP 域; 根据 ONU状态管理模块提供的 Alloc-ID到 ONU-ID的映射表及 EqD 表获取 GTC帧控制信息发送给上行 GTC成帧模块;向 ONU状态管理模块 发起 ONU发现注册申请;向上行以太网报文队列管理模块发起上行动态带 宽报告(DBRu )域生成的申请; 向上行 GEM成帧模块发起 GEM成帧申 请;
上行以太网报文处理模块, 用于完成从各千兆以太网接口接收以太网 报文, 并根据外部并行总线接口模块下发的 CPU配置信息, 查得该报文所 属的 Port-ID和 Alloc-ID, 然后根据 Alloc-ID向上行以太网 4艮文队列管理模 块申请报文入队;
上行以太网报文队列管理模块, 用于完成上行各个 Alloc-ID的队列管 理; 在 BWMAP处理模块申请 DBRu报告时, 完成 DBRu报告的生成; 处 理外部并行总线接口模块插入的 ONU管理控制接口 (OMCI ) 消息的入队 申请;
上行 GEM成帧模块,用于根据 BWMAP处理模块给出的 GEM帧域长 度信息, 完成 GEM成帧;
上行 GTC成帧模块, 用于根据 BWMAP处理模块给出的 GTC帧控制 信息、 ONU状态管理模块的 PLO AMu消息, 完成 GTC帧的成帧处理; 上行 GTC帧发送控制模块, 用于根据线路解码和 PCBd处理模块给出 的时钟以及超帧计数发送上行 GTC帧;
外部并行总线接口模块, 用于提供与外部 CPU 芯片的接口; 为 CPU 提供读取各 ONU状态的查询接口;
千兆以太网接口模块,用于完成各 ONU的千兆以太网接口的报文接收 和发送。
进一步地, 所述 ONU状态管理模块包括:
PLOAMd校验和过滤模块, 用于完成下行 PLOAMd域的校验和过滤,
PLOAMd域处理模块, 用于完成 PLOAMd域的反馈, 并完成向 ONU 状态保存模块发起状态迁移申请;
ONU状态保存模块, 用于完成各 ONU状态的保存; 根据 ONU的状态 迁移申请, 完成各 ONU的状态迁移; 并根据迁移的新老状态, 启动定时器 管理模块;
定时器管理模块, 用于完成各 ONU测距状态监控及挂起状态监控; PLOAMu生成模块, 用于响应 BWMAP处理模块发起的 ONU发现注 进一步地, 所述下行 GTC帧净荷处理模块包括:
GEM帧定界模块,用于下行 GTC帧的净荷部分的 GEM帧的搜索定界; GEM帧过滤模块,用于根据 ONU状态管理模块提供的 Port-ID过滤表 过滤非本系统的 GEM帧;
GEM帧解密模块,用于根据 ONU状态管理模块提供的 Port-ID加密使 能表和 Port-ID密钥表进行 GEM帧解密;
GEM帧 Port-ID判定模块, 用于根据 CPU通过外部并行总线接口模块 提供的 Port-ID属性表完成用户数据和管理信息的分离; 将管理信息通过外 部并行总线接口模块发送给 CPU处理; 将用户数据发送给 GEM帧报文重 组模块处理;
GEM帧报文重组模块, 用于将用户数据以 Port-ID为单位进行以太网 报文重组;
报文硬件端口获取模块, 用于根据 CPU通过外部并行总线接口模块提 供的 Port-ID和硬件接口的映射表查找报文的 Port-ID对应的目的千兆以太 网接口模块, 并将以太网报文通过对应的目的千兆以太网接口模块发送出 去。
进一步地, 所述 BWMAP处理模块还用于计算各个 ONU的带宽分配 是否为连续分配,如果为连续,则指示上行 GTC成帧模块在第二个 Upstream BWMAP域对应的上行 GTC帧内不必发送 PLOu域。
进一步地, 所述上行以太网报文队列管理模块包括:
队列入队模块, 用于接收上行以太网报文处理模块发送的报文内容、 报文 Port-ID、 报文 Alloc-ID以及外部并行总线接口模块发送的 OMCI消息 入队申请执行入 P人操作;
报文存储模块, 用于已入队列的报文的存储管理; 所述报文存储模块 通过外部存储芯片进行报文内容的存储, 标志报文信息的内容存储在队列 中。
队列统计模块, 用于统计各个队列中存放的报文的总字节数;
DBRu生成模块, 用于在接收到 BWMAP处理模块发送的 DBRu申请 后, 根据队列统计模块的统计结果生成 DBRu报告, 并将 DBRu报告发送 给上行 GTC成帧模块;
队列出 P人模块, 用于根据上行 GEM帧成帧模块发送的报文出队申请, 通过报文存储模块获取报文内容, 根据队列统计模块的统计结果执行队列 出队。
进一步地, 所述上行 GTC成帧模块包括:
GTC成帧单元, 用于 BWMAP处理模块 GTC控制信息读取 PLOAMu 域、 DBRu域、 上行 GEM帧, 并添加上行物理层帧前(PLOu )域, 完成 上行 GTC帧的成帧;
BIP计算存储单元, 用于生成和保存各个上行 GTC帧的比特交织奇偶 校验 ( BIP );
FEC编码单元, 用于执行上行 GTC帧的前向纠错编码, 并将编码后的 GTC帧发送给上行 GTC帧发送控制模块。
进一步地, 所述上行 GTC成帧模块,在所述 BWMAP处理模块给出的 信息指示下一个 Alloc-ID的时隙和本 Alloc-ID的时序连在一起时, 还用于 为下一个 Alloc-ID的时隙读取 DBRu域、 GEM帧, 但不再需要生成 PLOu 域。
进一步地, 所述 CPU通过所述外部并行总线接口模块从所述 ONU状 态管理模块读取各个 ONU状态;所述上行以太网报文处理模块通过所述外 部并行总线接口模块读取 CPU保存的 Alloc-ID和 Port-ID的获取规则表, 并根据该表查得报文所属的 Port-ID和 Alloc-ID。
进一步地, 将所述 CPU与所述外部并行总线接口模块集成。
本发明将多个 ONU单元的功能集成于一个 ONU集成装置中, 可在单 个芯片上模拟实现支持多达 128个 ONU单元。结合本发明以及相应的 CPU 软件系统, 在进行 LOT设备满载测试时, 每个 OLT的 PON口只需要 1个 设备即可模拟满载配置。 采用此发明进行测试, 可以节省 ONU、 ODN、 交 换机和大量光纤, 从而降低了测试成本、 筒化了测试网络结构、 提高了测 试效率。 附图说明
图 1 为 GPON的网络拓朴结构图;
图 2 为普通 GPON ONU系统结构图;
图 3为传统 GPON系统进行 OLT设备满载测试的网络拓朴;
图 4 为本发明 ONU集成装置物理结构示意图;
图 5 为本发明 ONU集成装置实现多个 ONU单元集成的逻辑示意图; 图 6 为采用本发明 ONU集成装置进行 OLT设备满载测试的网络拓朴; 图 7为本发明 ONU集成装置的 MAC模块的模块功能框图;
图 8为本发明 ONU集成装置的 MAC模块中的 ONU状态管理模。 块 的功能框图;
图 9为本发明 ONU集成装置的 MAC模块中的下行 GTC帧净荷处理 模块的功能框图;
图 10为本发明 ONU集成装置的 MAC模块中的 BWMAP处理模块的 功能框图;
图 11为本发明 ONU集成装置的 MAC模块中的上行以太网报文队列 管理模块的功能框图;
图 12为本发明 ONU集成装置的 MAC模块中的上行 GTC成帧模块的 功能框图;
图 13为本发明 ONU集成装置的 MAC模块中的外部并行总线接口模 块和其他模块的连接关系图。 具体实施方式
本发明基本思想是对现有 ONU结构进行改造, 将至多 128个 ONU的 功能集成到一个 ONU当中, 同时提供多达 128个的千兆以太网接口模块。 本发明 ONU集成装置物理结构示意图如图 4所示, 本发明通过重新设计 MAC模块,使其能够处理多路 ONU的数据,从而使本发明 ONU集成装置 能够集成多个 ONU单元, 本发明 ONU集成装置实现多个 ONU单元集成 的逻辑结构示意图如图 5 所示。 采用本发明的集成 ONU 结构进行传统 GPON系统的测试时, 其效果是相当明显的, 如图 6所示, 在对单个 OLT 端的设备进行满载测试时, 只需要接一个集成 ONU即可, 只需要一根光纤 接入 OLT, 节省了中间的 ODN及大量的光纤。
图 7为本发明 ONU集成装置中 MAC模块结构图, 该装置包括:。
( 1 )线路解码和下行物理控制块(PCBd )处理模块
该模块从光模块接收下行光口数据, 完成下行 GTC帧的对齐、 线路编 码的解码、 数据的 FEC ( Forward Error Correction, 前向纠错)解码、 下行 超帧计数器的同步、 BIP的校验, 并完成各个数据域的分发。 各个功能的实 现, 参照 G984.3标准。
该模块还用于向上行 GTC帧发送控制模块提供 8KHz的帧头指示, 用 于上行 GTC帧发送控制模块完成上行发送时刻的确定。
该模块还用于将下行 GTC帧中的上行带宽映射 ( Upstream BWMAP ) 域全部提交给 BWMAP处理模块处理。
该模块还用于将下行 GTC帧中的下行物理层操作控制管理( PLOAMd ) 域交给 ONU状态管理模块处理。
该模块还用于将 GTC帧的净荷部分转交给下行 GTC帧净荷处理模块 处理, 同时还需要向下行 GTC帧净荷处理模块提供 PCBd的长度信息、 超 帧计数。 PCBd的长度信息和超帧计数将被用于下行 GTC净荷处理模块对 GTC净荷的解密处理。
( 2 ) ONU状态管理模块
在本模块用于各个 ONU的注册、状态信息维护以及相应的下行物理层 操作控制管理 (PLOAMd)域的响应以及各个 ONU 状态的迁移, 并根据 PLOAMd域完成各个表项的配置, 所述表项配置包括:
a) Alloc-ID ( Allocation Identifier, 带宽分配标志符)过滤表; 该表用于 BWMAP处理模块过滤非本系统管理的 Alloc-ID的上行带宽映射( Upstream BWMAP )域;
b) Alloc-ID到 ONU-ID的映射表;该表用于 BWMAP模块根据 Alloc-ID 查询 ONU-ID。
c) Port-ID过滤表;该表用于下行 GTC帧净荷处理模块过滤非本系统的 Port-ID的 GEM帧。
d) Port-ID ( Port Identifier, 端口标志符)加密使能表, Port-ID用于标 志 ONU上的实际的物理端口或者是具有某种特征的报文流;该表与 Port-ID 密钥表一同用于下行 GTC帧净荷处理模块完成各个 Port-ID对应的 GEM帧 的解密。
e) Port-ID密钥表; 该表与 Port-ID加密使能表一同用于下行 GTC帧净 荷处理模块完成各个 Port-ID对应的 GEM帧的解密。
f) EqD ( Equalization Delay, OLT和 ONU之间的等效时延)表, 该表 用于 BWMAP处理模块根据 ONU-ID查询各 ONU-ID相对应的 ONU与 OLT 之间的等效时延。
本模块除需要完成上述各表项的配置外, 还需要响应 BWMAP处理模 块给出的 ONU发现注册申请。 假如 BWMAP处理模块给出申请, 本模块 需要查询本系统的各个 ONU的状态,得到第一个未注册的 ONU的设备号, 然后生成注册响应的 PLOAMu消息给上行 GTC成帧模块。假如所有的 ONU 都已经注册, 则告知 BWMAP 处理模块本系统已无 ONU 需要注册, 让 BWMAP处理模块丟弃此次上行带宽映射 ( Upstream BWMAP )域的处理。
在 ONU 的发现和注册阶段, 该模块还需要负责扫描本系统未注册的 ONU, 并生成合适类型的上行物理层操作管理(PLOAMu )域发送给上行 GTC 成帧模块。 在其他阶段, 该模块还用于根据 BWMAP 处理模块的 PLOAMu请求或根据 PLOAMd 域生成合适的 PLOAMu域, 或在没有 PLOAMu需要响应时, 生成空白 PLOAMu域发送给上行 GTC成帧模块。
另外, 在本模块还需要将一些 PLOAMd域通过外部并行总线接口模块 发送给 CPU, 并提供通道让 CPU查询各个 ONU的状态的通道。
图 8为本发明 ONU状态管理模块的功能结构框图, ONU状态管理模 块进一步包括:
a ) PLOAMd校验和过滤模块, 该子模块完成下行 PLOAMd域的校验, 并根据 PLOAMd域里的 ONU-ID, 查看是否为本系统管理的 ONU-ID。 将 b) PLOAMd域处理模块,该子模块完成 PLOAMd域的反馈,并完成向 ONU状态保存模块发起状态迁移申请, 完成各个 ONU的状态迁移。
c) ONU状态保存模块, 该子模块完成各个 ONU状态的保存。 本子模 块根据 ONU的状态迁移申请, 完成各 ONU状态迁移, 并根据迁移的新老 状态, 启动 ONU状态的定时器管理模块 1和定时器管理模块 2的定时。
d) 定时器管理模块, 包含定时器 1管理模块和定时器 2管理模块; 定时器 1管理模块, 用于各 ONU测距状态监控, 某个 ONU在 ONU 注册过程的测距状态时,该模块启动定时 1 ,如果在定时器 1超时前该 ONU 还未迁移出测距状态, 则发起将该 ONU的状态迁移到初始态。
定时器 2管理模块, 用于各 ONU挂起状态监控, 某个 ONU在挂起状 态时启动定时 2。 如果在定时器 2超时前该 ONU还未迁移出挂起状态, 则 发起将该 ONU的状态迁移到初始状态。
f) PLOAMu生成模块, 该子模块完成和 BWMAP处理模块的交互, 响 应 BWMAP处理模块发起的 ONU注册申请, 向 ONU状态保存模块查询本 系统的第一个未注册的 ONU, 如果查得, 则反馈 BWMAP处理模块, 然后 再获取 BWMAP处理模块给出的随机时延,生成合适的 PLOAMu域发送给 上行 GTC成帧模块。
该模块与现有技术中的同等模块的主要区别在于需要管理多个 ONU 的状态、 处理多个 ONU的 PLOAMd域、 完成 Alloc-ID到 ONU-ID映射表 的配置、 完成 Alloc-ID过滤表的配置、 完成 Port-ID加密使能表的配置。
( 3 ) 下行 GTC帧净荷处理模块
该模块用于完成下行 GTC帧的净荷部分的 GEM帧的搜索、 解密和非 本系统帧的丟弃; 根据 GEM帧的类型、 Port-ID的类型完成用户数据和管 理信息的分离; 将管理信息通过外部并行总线接口模块发送给 CPU处理; 将用户数据以 Port-ID为单位进行以太网报文重组, 并根据 Port-ID和千兆 以太网接口模块的映射关系完成以太网报文发送。
本部分需要提供给 CPU处理的管理信息包括两类,一类为 OMCK ONU Management and Control Interface, ONU管理控制接口 ) 消息, 其判断依据 是 Port-ID为 ONU管理控制接口的 Port-ID;另一类为 GEM帧类型为 OAM ( Operations、 Administration and Maintenance )的 艮文,其判断依据为 GEM 帧头部的净荷类型指示为 GEM OAM类型。
本发明一具体实施例中, 该模块需要能够维护多达 4096个 Port-ID的 报文重组, 并针对各个 ONU的 Port-ID完成报文的解密。 同时, 还需要完 成各个 ONU的 OMCI消息和 OAM消息的提取。
图 9本发明实现的 GPON ONU的 MAC模块中的下行 GTC帧净荷处 理模块的功能框图, 该模块包括: GEM帧定界模块,用于下行 GTC帧的净荷部分的 GEM帧的搜索定界;
GEM帧过滤模块,用于根据 ONU状态管理模块提供的 Port-ID过滤表 过滤非本系统的 GEM帧;
GEM帧解密模块,用于根据 ONU状态管理模块提供的 Port-ID加密使 能表和 Port-ID密钥表进行 GEM帧解密;
GEM帧 Port-ID判定模块, 用于根据 CPU通过外部并行总线接口模块 提供的 Port-ID属性表完成用户数据和管理信息的分离; 将管理信息通过外 部并行总线接口模块发送给 CPU处理; 将用户数据发送给 GEM帧报文重 组模块处理;
GEM帧报文重组模块, 用于将用户数据以 Port-ID为单位进行以太网 报文重组;
报文硬件端口获取模块, 用于根据 CPU通过外部并行总线接口模块提 供的 Port-ID和硬件接口的映射表查找报文的 Port-ID对应的目的千兆以太 网接口模块, 并将以太网报文通过对应的目的千兆以太网接口模块发送出 去。
( 4 ) 带宽映射(BWMAP )处理模块
该模块完成下行 GTC 帧中的各 ONU 的上行带宽映射 ( Upstream BWMAP )域的处理, 并根据 Alloc-ID过滤表过滤非本系统的 BWMAP域。
图 10为本发明实现的 GPON ONU的 MAC模块中的 BWMAP处理模 块的功能框图, 该模块包括:
BWMAP过滤模块,用于根据 ONU状态管理模块提供的 Alloc-ID过滤 表过滤非本系统的 BWMAP域。 过滤非本系统的 BWMAP域的方法为: 以 Alloc-ID为索引查找 ONU状态管理模块维护的 Alloc-ID过滤表,若 Alloc-ID 不存在于 Alloc-ID过滤表中, 说明该 BWMAP域为非本系统的域, 则丟弃 该 BWMAP域。 BWMAP处理单元, 该模块主要完成 Upstream BWMAP域的处理, 主 要功能包括: 发送 GTC帧控制信息给上行 GTC成帧模块; 向 ONU状态管 理模块发起 ONU发现注册申请及发起 PLOAMu域生成申请; 向上行 GEM 帧成帧模块发起 GEM 成帧申请; 向上行以太网报文队列管理模块发起 DBRu申请;
GTC帧控制信息包括:上行 GTC帧的发送起始和结束时刻、上行 GTC 帧是否需要包含上行物理层帧前 (PLOu ) 域、 上行物理层操作管理 ( PLOAMu )域、 DBRu域的信息。
对于 Alloc-ID为有效且非广播 Alloc-ID的 Upstream BWMAP, 该模块 根据该 Alloc-ID查询位于 ONU状态管理模块中的 Alloc-ID到 ONU-ID的 映射表, 查询对应的 ONU-ID , 然后根据 ONU-ID查询位于 ONU状态管理 模块中的 EqD表,获得该 ONU-ID相对应的 ONU与 OLT之间的等效时延, 即该 ONU-ID对应的 EqD值, 得到该 ONU-ID对应的上行 GTC帧的发送 起始和结束时刻。
对于 Alloc-ID等于广播 Alloc-ID的 Upstream BWMAP域,该模块需要 向 ONU状态管理模块发起 ONU发现注册申请, 由 ONU状态管理模块完 成未注册的 ONU的类型为反馈 ONU的设备串号( Serial— number— ONU )的 PLOAMu的生成, 完成 ONU的发现以及后续的测距、 注册。 如果 ONU状 态管理模块反馈无 ONU需要注册, 则丟弃此 Upstream BWMAP域, 否则 需要产生一随机时延并反馈给 ONU状态管理模块, 同时根据此随机时延结 合 Upstream BWMAP域的起始和结束时间, 计算出上行 GTC帧的发送时 刻。
该模块还需要根据 BWMAP域中的各项内容, 完成向上行以太网 4艮文 队列管理模块发起上行动态带宽报告 ( DBRu )域生成的申请、向上行 GEM 成帧模块发起 GEM成帧申请、向 ONU状态管理模块发起 PLOAMu域生成 申请、 告知上行 GTC成帧模块上行 GTC帧是否需要包含上行物理层帧前 ( PLOu )域、 上行物理层操作管理(PLOAMu )域、 DBRu域。
进一步地, 该模块还用于计算各个 ONU 的带宽分配是否为连续分配 (即判断连续的 Upstream BWMAP域的 Alloc-ID是否属于同一个 ONU-ID, 且上一个 Upstream BWMAP的结束时刻加 1等于下一个 Upstream BWMAP 的起始时刻), 如果为连续, 则需要指示上行 GTC 成帧模块应在第二个 Upstream BWMAP域对应的上行 GTC帧内不必发送 PLOu域。
( 5 )上行以太网报文处理模块
该模块完成从各千兆以太网接口接收以太网报文, 并根据外部并行总 线接口模块下发的 CPU 配置信息 (包括报文的 Port-ID 获取规则表和 Alloc-ID获取规则表), 查得该报文所属的 Port-ID和 Alloc-ID, 然后根据 Alloc-ID向上行以太网报文队列管理模块申请报文入队。
Alloc-ID或 Port-ID的获取规则由 CPU进行配置,其可以配置成根据 4艮 文的 VLAN-ID获取, 也可以根据报文的类型进行获取。
( 6 )上行以太网 4艮文队列管理模块
该模块完成上行各个 Alloc-ID的队列管理, 并统计各个队列中存放的 报文的总字节数, 并根据此字节数, 在 BWMAP处理模块申请 DBRu报告 时, 完成 DBRu报告的生成。 随同各个报文被管理的还有该报文所属的 Port-ID。 本模块还需要处理外部并行总线接口模块插入的 OMCI的消息的 入队申请。
图 11为本发明实现的 GPON ONU的 MAC模块中的 的功能框图, 该 模块包括:
队列入队模块, 用于接收上行以太网报文处理模块发送的报文内容、 报文 Port-ID、 报文 Alloc-ID以及外部并行总线接口模块发送的 OMCI消息 入队申请执行入 P人操作; 报文存储模块, 用于已入队列的报文的存储管理。 由于需要维护的队 列数众多, 本模块可能需要连接外部存储芯片进行报文内容的存储, 而标 志报文信息的内容, 如报文在外部存储器中的地址、 长度, 则存储在队列 中。
队列统计模块, 用于统计各个队列中存放的报文的总字节数;
DBRu生成模块, 用于在接收到 BWMAP处理模块发送的 DBRu申请 后, 根据队列统计模块的统计结果生成 DBRu报告, 并将 DBRu报告发送 给上行 GTC成帧模块;
队列出 P人模块, 用于根据上行 GEM帧成帧模块发送的报文出队申请, 通过报文存储模块获取报文内容, 根据队列统计模块的统计结果执行队列 出队。
( 7 )上行 GEM成帧模块
该模块根据 BWMAP处理模块给出的 GEM帧域长度信息, 完成 GEM 成帧。 假如报文剩余长度不足 GEM帧域的长度, 上行 GEM成帧模块需要 向上行以太网报文队列管理模块申请出队, 将下一个以太网报文进行 GEM 成帧。 如果队列为空, 则填充空闲 GEM帧。 GEM成帧后, 其将信息发送 给上行 GTC成帧模块。
( 8 )上行 GTC成帧模块
此模块根据 BWMAP处理模块给出的 GTC帧控制信息, 完成 GTC帧 的成帧处理。
如果 BWMAP 处理模块给出的信息指示下一个 Alloc-ID 的时隙和本 Alloc-ID 的时序连在一起, 则本模块需要为下一个 Alloc-ID 的时隙读取 DBRu (假如要生成 )、 GEM帧, 但不再需要生成 PLOu域。
图 12为本发明实现的 GPON ONU的 MAC模块中的上行 GTC成帧模 块的功能框图, 该模块包括: GTC成帧单元,用于根据 BWMAP处理模块给出的指示读取 PLOAMu 域、 DBRu域、 上行 GEM帧, 并添加上行物理层帧前(PLOu )域, 完成 上行 GTC帧的成帧;
生成 GTC帧所需的信息包括: GEM成帧模块的 GEM帧、 ONU状态 管理模块的 PLOAMu消息、 本模块生成的上行物理层帧前(PLOu )域、 上 行队列管理模块生成的 DBRu域。
BIP计算存储单元, 用于生成和保存各个上行 GTC帧的比特交织奇偶 校验 ( BIP ); BIP域是跨上行 GTC帧的, 所以需要保存, BIP域作为 PLOu 域的一部分。
FEC编码单元, 用于执行上行 GTC帧的前向纠错编码, 并将编码后的 GTC帧发送给上行 GTC帧发送控制模块。
( 9 )上行 GTC帧发送控制模块
该模块根据上行 GTC成帧模块给出的上行 GTC帧的发送起始和结束 时刻, 完成上行 GTC帧在规定的时间节点发送。 其时间节点根据线路解码 和 PCBd处理模块送出的 8KHz的时钟以及超帧计数来决定。
10)千兆以太网接口模块
此模块完成各 ONU对应的千兆以太网接口的报文接收和发送。
11) 外部并行总线接口模块
该模块为外部 CPU芯片的接口模块, 通过此接口, CPU可以完成本系 统管理的各个 ONU的 OMCI消息的处理、 PLOAMd域处理、 OAM报文处 理, 以及系统内部各个表项的配置管理。
需要 CPU完成配置的表项有:
a) Port-ID属性表; 该表用于判断 Port-ID是否为 OMCI Port-ID , 用于 提供给下行 GTC帧净荷处理模块根据各个 ONU的 Port-ID的类型完成用户 数据和管理信息的分离。 b) Alloc-ID和 Port-ID的获取规则表; 该表用于上行以太网报文处理模 块根据物理端口或者 4艮文的特征, 查得 4艮文的 Port-ID和 Alloc-ID。
c ) Port-ID和硬件接口的映射表; 该表用于下行 GTC净荷处理模块根 据报文的 Port-ID查找其目的千兆以太网接口模块。
需要和本模块交互的模块为: 上行以太网报文处理模块、 上行以太网 报文队列管理模块、 ONU状态管理模块、 下行 GTC帧净荷处理模块。
图 13为本发明实现的 GPON ONU的 MAC模块中的外部并行总线接 口模块和其他模块的连接关系图, 如图所示, CPU通过外部并行总线接口 模块从所述 ONU状态管理模块读取各个 ONU状态; 所述上行以太网报文 处理模块通过所述外部并行总线接口模块读取 CPU保存的 Alloc-ID 和 Port-ID的获取规则表, 并根据该表查得报文所属的 Port-ID和 Alloc-ID。 此 外该模块还增加了各个 ONU的 OMCI Port-ID的配置接口。
本发明一优选实施例中将 CPU集成在本发明的 ONU集成装置当中, 即将图 4中的 CPU芯片与 MAC模块集成到一起, 若以图 13为例, 即将 CPU与外部并行总线接口模块集成为一个模块, CPU所完成的功能不变, 集成后可提高系统的处理速度和效率。
数据处理流程:
以下基于上述本发明提供的 GPON ONU集成装置,说明本发明对上下 行数据的处理过程:
对于下行数据的处理步骤为:
步骤 11、 光模块从光纤线路接收下行光口数据将其传送给线路解码和 下行物理控制块(PCBd )处理模块;。
步骤 12、 线路解码和 PCBd处理模块完成线路编码的解码等操作后, 将上行带宽映射 ( Upstream BWMAP )域全部提交给 BWMAP处理模块处 理, 将下行物理层操作控制管理(PLOAMd )域提交给 BWMAP处理模块 处理, 将 GTC帧的净荷部分转交给下行 GTC帧净荷处理模块处理。
步骤 13、下行 GTC帧净荷处理模块接收线路解码和 PCBd处理模块发 送的下行 GTC帧净荷, 完成 GEM帧的搜索、 解密和过滤; 根据 GEM帧 的类型、 Port-ID的类型完成用户数据和管理信息的分离, 并将管理信息通 过外部并行总线接口模块发送给 CPU处理, 将用户数据以 Port-ID为单位 进行以太网报文重组, 并根据 Port-ID和千兆以太网接口模块的映射关系完 成以太网 ·^艮文发送。
该步骤中进行 GEM帧过滤的方法为: 以 GEM帧的 Port-ID为索引查 询 ONU状态管理模块维护的 Port-ID过滤表, 判断 GEM帧是否为非本系 统处理的 GEM帧, 若 Port-ID过滤表不存在对应的 Port-ID则该 GEM帧为 非本系统处理的 GEM帧, 丟弃该 GEM帧。
该步骤中对 GEM帧的解密方法为: 以 GEM帧的 Port-ID为索引查询 ONU状态管理模块维护的 Port-ID加密使能表和 Port-ID密钥表得到 GEM 帧的密钥以及超帧计数、 字节偏移, 完成 GEM帧的解密。
该步骤中进行用户数据和管理信息的分离方法为: 以 GEM帧 Port-ID 为索引通过外部并行总线接口模块查询 CPU维护的 Port-ID属性表判断该 Port-ID是否为 ONU管理控制接口( OMCI )的 Port-ID , 如果是则通过外部 并行总线接口模块将该 GEM帧提交给 CPU处理。
对于上行数据的处理步骤为:
步骤 21 : 从千兆以太网接口接收上行数据传送给上行以太网报文处理 模块, 上行以太网报文处理模块根据 CPU的配置, 完成报文的 Alloc-ID和 Port-ID的获取; 然后, 再根据 Alloc-ID向上行以太网报文队列管理模块申 请入队;
Port-ID和 Alloc-ID获取规则由 CPU配置,此规则可以根据报文的虚拟 局域网的标识(VLAN-ID )或者报文的类型进行设置等。 步骤 22: 上行以太网报文队列管理模块接收到上行以太网报文处理模 块的报文入队请求后, 以 Alloc-ID为索引完成报文入队;
上行以太网报文队列管理模块还用于接收 CPU通过外部并行总线接口 模块发送的 OAM消息, 并将其入队;
上行以太网报文队列管理模块保存入队报文的 Port-ID、 报文存储地址 以及长度信息。报文数据既可以存储在 MAC芯片内部,也可以存储在外部 存储器中。
上行队列管理模块还需要计算各个队列存储的报文长度, 并响应 BWMAP模块的上行动态带宽报告 ( DBRu )域生成申请, 生成 DBRu域。
步骤 23: 上行以太网报文队列管理模块响应 GEM成帧模块的出队操 作, 完成 4艮文出队;
上行以太网报文队列管理模块还用于响应 BWMAP 处理模块发送的 DBRu 申请, 完成上行 GTC 帧的 DBRu域的生成。 DBRu的生成需按照 G.984.3标准。
步骤 24: 上行 GEM成帧模块响应 BWMAP处理模块的 GEM成帧请 求, 根据 Alloc-ID和 GEM域的长度, 完成 GEM成帧, 并将 GEM帧发送 给上行 GTC成帧模块处理;
若当前报文不足以满足 GEM成帧需要, 则上行 GEM成帧模块向上行 以太网报文队列管理模块发起报文出队申请, 请求新的报文进行 GEM 成 帧。 当队列为空时, 则填充空闲 GEM帧。 如果 GTC帧尾部不足以发送一 完整的 GEM帧头部, 则以部分 GEM IDLE帧填充。
上行 GEM成帧模块还用于完成 CPU插入的 OAM消息的成帧。
步骤 25: 上行 GTC成帧模块按照 BWMAP给出的上行 GTC帧应发送 的各个域的信息, 完成将 PLOu域、 PLOAMu域、 DBRu域、 GEM域组成 GTC帧的工作后, 将 GTC帧发送给上行 GTC帧发送控制模块。 如果 BWMAP指示 2个 Alloc-ID的时序窗口为连续的帧发送模式, 则 将此 2个窗口合并成一次发送。在本模块,还需要计算上行 GTC帧的 BIP, 并更新相应的 ONU-ID的 BIP值。
步骤 26:上行 GTC帧发送控制模块通过上行光口将 GTC帧发送出去; 发送时刻由该时隙起始和结束时间以及根据下行的线路解码和 PCBd 处理模块给出的 8KHz时钟和超帧计数决定。
系统控制部分:
本发明的集成 ONU装置的系统控制主要由三个模块来完成, 分别是: BWMAP处理模块, ONU状态控制模块, 外部并行总线接口模块。 其各个 模块的详细工作过程如下:
( 1 ) BWMAP处理模块的控制操作包括:
本模块完成下行的线路解码和 PCBd处理模块给出的 BWMAP域数据 的接收。 其首先完成 BWAMP域的校验, 以及通过查询 Alloc-ID 过滤表得 到 Alloc-ID 是否属于本系统的结果, 完成对校验失败以及非本系统的 Alloc-ID的 BWMAP i或的丟弃。
正常情况下, BWMAP域根据 Alloc-ID查得其所属的 ONU-ID , 然后 查询 ONU状态管理模块维护的 EqD表得到此 ONU-ID 的 EqD, 并加上 34us ~ 36us的固定延时, 得到 GTC帧的起始发送时刻和 GTC帧长度; 并 根据指示, 向上行以太网报文队列管理模块申请生成 DBRu报告; 另外, 还需要分析下一个 BWMAP域是否和本 BWMAP域的结束时刻值相差 1 , 如果是, 则表示此 BWMAP域和下一个 BWMAP域需要连续在一起发送, 此信息需要告知上行 GTC成帧模块。
在 ONU注册阶段, BWMAP域还需要根据 BWMAP域的内容进行是 否需要反馈 ONU注册响应消息的判断, 如果需要, 则向 ONU状态管理模 块发出生成 ONU注册响应消息的信息, 等待 ONU状态管理模块反馈。 随 同送出的是由 BWMAP处理模块产生的随机时延。
BWMAP处理模块还需要将 BWMAP域的 FLAG字段中的指示信息传 递给上行 GTC成帧模块,其包括上行 GTC帧是否需要发送 DBRu域、 PLOu 域、 PLOAMu域。
本模块利用到的 Alloc-ID 过滤表、 Alloc-ID到 ONU-ID的映射表、 以 及 EqD表, 都由 ONU状态控制模块根据其收到的 PLOAMd域进行配置。
( 2 ) ONU状态管理模块的控制操作包括:
ONU状态管理模块完成系统内所有 ONU的状态管理, 其需要维护各 个 ONU 的状态表, 以及完成 EqD 表的配置、 Alloc-ID 过滤表的配置, Alloc-ID到 ONU-ID映射表的配置、 Port-ID 过滤表的配置, 同时, 需要完 成下行 PLOAMd域的校验和接收, 并将相关的 PLOAMd域通过外部并行 总线接口模块反馈给 CPU。 同时, 需要根据 PLOAMd 域, 生成合适的 PLOAMu域给上行 GTC成帧模块, 并且还需要响应 BWMAP处理模块发 出的 ONU注册 PLOAMu域的请求, 生成合适类型的 PLOAMu域给上行 GTC成帧模块。
( 3 )外部并行总线接口模块的控制操作包括:
外部并行总线接口模块完成和系统外部的 CPU的交互, 其将 OMCI消 息以及需要反馈给 CPU的 PLOAMd域, 提交给 CPU, 然后将 CPU的配置 下发到各个模块。

Claims

权利要求书
1、 一种光网络单元集成装置, 其特征在于, 该装置包括:
线路解码和下行物理控制块 (PCBd)处理模块, 用于从光模块接收下行 光口数据; 向上行千兆无源光网络传输汇聚(GTC ) 帧发送控制模块提供 帧头指示; 向带宽映射(BWMAP )处理模块提交上行带宽映射(Upstream BWMAP )域; 向光网络单元(ONU )状态管理模块提交下行物理层操作 控制管理(PLOAMd )域; 向下行 GTC帧净荷处理模块提交 GTC帧净荷 部分、 PCBd的长度信息及超帧计数;
下行 GTC帧净荷处理模块, 用于根据 ONU状态管理模块提供的端口 标志符( Port-ID )过滤表、 Port-ID加密使能表、 Port-ID密钥表完成千兆无 源光网络封装方法 (GEM ) 帧的过滤、 解密; 根据外部并行总线接口模块 提供的 Port-ID属性表完成用户数据和管理信息的分离; 针对各个 ONU的 Port-ID完成以太网报文重组; 根据中央处理单元(CPU )通过外部并行总 线接口模块提供的 Port-ID和硬件接口的映射表完成以太网报文的发送;
ONU状态管理模块, 用于响应下行物理层操作控制管理 (PLOAMd)消 息, 维护各 ONU的状态信息; 响应 BWMAP处理模块的 ONU发现注册申 请, 生成上行物理层操作管理(PLOAMu )域发送给上行 GTC成帧模块; 根据 PLOAMd消息完成带宽分配标志符(Alloc-ID )过滤表、 Alloc-ID到 ONU标志符(ONU-ID ) 的映射表、 光线路终端和 ONU之间的等效时延 ( EqD )表、 Port-ID加密使能表、 Port-ID密钥表、 Port-ID过滤表的配置;
BWMAP处理模块,用于完成各 ONU的 Upstream BWMAP域的处理; 根据 ONU状态管理模块提供的 Alloc-ID过滤表过滤非本系统的 BWMAP 域; 根据 ONU状态管理模块提供的 Alloc-ID到 ONU-ID的映射表及 EqD 表获取 GTC帧控制信息发送给上行 GTC成帧模块;向 ONU状态管理模块 发起 ONU发现注册申请;向上行以太网报文队列管理模块发起上行动态带 宽报告(DBRu )域生成的申请; 向上行 GEM成帧模块发起 GEM成帧申 请;
上行以太网报文处理模块, 用于完成从各千兆以太网接口接收以太网 报文, 并根据外部并行总线接口模块下发的 CPU配置信息, 查得该报文所 属的 Port-ID和 Alloc-ID, 然后根据 Alloc-ID向上行以太网 4艮文队列管理模 块申请报文入队;
上行以太网报文队列管理模块, 用于完成上行各个 Alloc-ID的队列管 理; 在 BWMAP处理模块申请 DBRu报告时, 完成 DBRu报告的生成; 处 理外部并行总线接口模块插入的 ONU管理控制接口 (OMCI ) 消息的入队 申请;
上行 GEM成帧模块,用于根据 BWMAP处理模块给出的 GEM帧域长 度信息, 完成 GEM成帧;
上行 GTC成帧模块, 用于根据 BWMAP处理模块给出的 GTC帧控制 信息、 ONU状态管理模块的 PLO AMu消息, 完成 GTC帧的成帧处理; 上行 GTC帧发送控制模块, 用于根据线路解码和 PCBd处理模块给出 的时钟以及超帧计数发送上行 GTC帧;
外部并行总线接口模块, 用于提供与外部 CPU 芯片的接口; 为 CPU 提供读取各 ONU状态的查询接口;
千兆以太网接口模块,用于完成各 ONU的千兆以太网接口的报文接收 和发送。
2、 根据权利要求 1所述的装置, 其特征在于, 所述 ONU状态管理模 块包括:
PLOAMd校验和过滤模块, 用于完成下行 PLOAMd域的校验和过滤, PLOAMd域处理模块, 用于完成 PLOAMd域的反馈, 并完成向 ONU 状态保存模块发起状态迁移申请;
ONU状态保存模块, 用于完成各 ONU状态的保存; 根据 ONU的状态 迁移申请, 完成各 ONU的状态迁移; 并根据迁移的新老状态, 启动定时器 管理模块;
定时器管理模块, 用于完成各 ONU测距状态监控及挂起状态监控; PLOAMu生成模块, 用于响应 BWMAP处理模块发起的 ONU发现注
3、 根据权利要求 1所述的装置, 其特征在于, 所述下行 GTC帧净荷 处理模块包括:
GEM帧定界模块,用于下行 GTC帧的净荷部分的 GEM帧的搜索定界;
GEM帧过滤模块,用于根据 ONU状态管理模块提供的 Port-ID过滤表 过滤非本系统的 GEM帧;
GEM帧解密模块,用于根据 ONU状态管理模块提供的 Port-ID加密使 能表和 Port-ID密钥表进行 GEM帧解密;
GEM帧 Port-ID判定模块, 用于根据 CPU通过外部并行总线接口模块 提供的 Port-ID属性表完成用户数据和管理信息的分离; 将管理信息通过外 部并行总线接口模块发送给 CPU处理; 将用户数据发送给 GEM帧报文重 组模块处理;
GEM帧报文重组模块, 用于将用户数据以 Port-ID为单位进行以太网 报文重组;
报文硬件端口获取模块, 用于根据 CPU通过外部并行总线接口模块提 供的 Port-ID和硬件接口的映射表查找报文的 Port-ID对应的目的千兆以太 网接口模块, 并将以太网报文通过对应的目的千兆以太网接口模块发送出 去。
4、 根据权利要求 1所述的装置, 其特征在于, 所述 BWMAP处理模块 还用于计算各个 ONU的带宽分配是否为连续分配, 如果为连续, 则指示上 行 GTC成帧模块在第二个 Upstream BWMAP域对应的上行 GTC帧内不必 发送 PLOu域。
5、 根据权利要求 1所述的装置, 其特征在于, 所述上行以太网报文队 列管理模块包括:
队列入队模块, 用于接收上行以太网报文处理模块发送的报文内容、 报文 Port-ID、 报文 Alloc-ID以及外部并行总线接口模块发送的 OMCI消息 入队申请执行入 P人操作;
报文存储模块, 用于已入队列的报文的存储管理;
队列统计模块, 用于统计各个队列中存放的报文的总字节数;
DBRu生成模块, 用于在接收到 BWMAP处理模块发送的 DBRu申请 后, 根据队列统计模块的统计结果生成 DBRu报告, 并将 DBRu报告发送 给上行 GTC成帧模块;
队列出 P人模块, 用于根据上行 GEM帧成帧模块发送的报文出队申请, 通过报文存储模块获取报文内容, 根据队列统计模块的统计结果执行队列 出队。
6、 根据权利要求 5所述的装置, 其特征在于, 所述报文存储模块通过 外部存储芯片进行报文内容的存储, 标志报文信息的内容存储在队列中。
7、 根据权利要求 1所述的装置, 其特征在于, 所述上行 GTC成帧模 块包括:
GTC成帧单元, 用于 BWMAP处理模块 GTC控制信息读取 PLOAMu 域、 DBRu域、 上行 GEM帧, 并添加上行物理层帧前(PLOu )域, 完成 上行 GTC帧的成帧;
BIP计算存储单元, 用于生成和保存各个上行 GTC帧的比特交织奇偶 校验 ( BIP ); FEC编码单元, 用于执行上行 GTC帧的前向纠错编码, 并将编码后的 GTC帧发送给上行 GTC帧发送控制模块。
8、 根据权利要求 4或 7所述的装置, 其特征在于, 如果 BWMAP处理 模块给出的信息指示下一个 Alloc-ID的时隙和本 Alloc-ID的时序连在一起, 则所述上行 GTC成帧模块需要为下一个 Alloc-ID的时隙读取 DBRu域、 GEM帧, 但不再需要生成 PLOu域。
9、 根据权利要求 1所述的装置, 其特征在于, 所述 CPU通过所述外 部并行总线接口模块从所述 ONU状态管理模块读取各个 ONU状态; 所述 上行以太网报文处理模块通过所述外部并行总线接口模块读取 CPU保存的 Alloc-ID和 Port-ID的获取规则表, 并根据该表查得报文所属的 Port-ID和 Alloc-ID。
10、 根据权利要求 1所述的装置, 其特征在于, 将所述 CPU与所述外 部并行总线接口模块集成。
PCT/CN2009/075828 2009-12-22 2009-12-22 一种光网络单元集成装置 WO2011075885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09852435.8A EP2501058B1 (en) 2009-12-22 2009-12-22 Device for optical network unit integration
PCT/CN2009/075828 WO2011075885A1 (zh) 2009-12-22 2009-12-22 一种光网络单元集成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075828 WO2011075885A1 (zh) 2009-12-22 2009-12-22 一种光网络单元集成装置

Publications (1)

Publication Number Publication Date
WO2011075885A1 true WO2011075885A1 (zh) 2011-06-30

Family

ID=44194902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075828 WO2011075885A1 (zh) 2009-12-22 2009-12-22 一种光网络单元集成装置

Country Status (2)

Country Link
EP (1) EP2501058B1 (zh)
WO (1) WO2011075885A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571198A (zh) * 2011-12-31 2012-07-11 武汉烽火网络有限责任公司 基于仿真onu进行epon性能测试的系统及测试方法
CN111327452A (zh) * 2018-12-17 2020-06-23 瞻博网络公司 使用消息总线的网络设备配置
CN111885209A (zh) * 2020-08-07 2020-11-03 北京明略软件系统有限公司 一种基于单向光闸的消息队列同步方法、装置及系统
CN112953627A (zh) * 2019-12-11 2021-06-11 中兴通讯股份有限公司 一种故障检测方法、装置、设备及存储介质
CN116095841A (zh) * 2023-03-06 2023-05-09 天津科谱技术有限公司 零等待调度方法、装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818188B2 (en) * 2012-10-05 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Traffic generation and analysis for ONU emulation
US8855493B2 (en) * 2012-10-05 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) ONU emulator deployment for mixed types of ONU traffic
CN104218995B (zh) * 2013-06-04 2018-06-05 中兴通讯股份有限公司 一种onu、通信系统及onu通信方法
CN104253735B (zh) * 2013-06-27 2019-05-24 中兴通讯股份有限公司 光网络单元、通信系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142529A (ja) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Ponシステムおよびその試験方法
CN101188502A (zh) * 2007-12-06 2008-05-28 上海大学 具有电信e1接口的以太无源光网络传输单元
CN101277320A (zh) * 2008-04-30 2008-10-01 华为技术有限公司 配置介质访问控制地址的方法、装置及系统
CN101472202A (zh) * 2007-08-28 2009-07-01 华为技术有限公司 传输测试数据的方法、设备及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351785B2 (en) * 2008-04-21 2013-01-08 Futurewei Technologies, Inc. Gigabit passive optical network transmission convergence extension for next generation access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142529A (ja) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Ponシステムおよびその試験方法
CN101472202A (zh) * 2007-08-28 2009-07-01 华为技术有限公司 传输测试数据的方法、设备及系统
CN101188502A (zh) * 2007-12-06 2008-05-28 上海大学 具有电信e1接口的以太无源光网络传输单元
CN101277320A (zh) * 2008-04-30 2008-10-01 华为技术有限公司 配置介质访问控制地址的方法、装置及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571198A (zh) * 2011-12-31 2012-07-11 武汉烽火网络有限责任公司 基于仿真onu进行epon性能测试的系统及测试方法
CN102571198B (zh) * 2011-12-31 2015-02-04 武汉烽火网络有限责任公司 基于仿真onu进行epon性能测试的系统及测试方法
CN111327452A (zh) * 2018-12-17 2020-06-23 瞻博网络公司 使用消息总线的网络设备配置
CN111327452B (zh) * 2018-12-17 2022-11-01 瞻博网络公司 使用消息总线的网络设备配置
CN112953627A (zh) * 2019-12-11 2021-06-11 中兴通讯股份有限公司 一种故障检测方法、装置、设备及存储介质
CN111885209A (zh) * 2020-08-07 2020-11-03 北京明略软件系统有限公司 一种基于单向光闸的消息队列同步方法、装置及系统
CN111885209B (zh) * 2020-08-07 2023-08-29 北京明略软件系统有限公司 一种基于单向光闸的消息队列同步方法、装置及系统
CN116095841A (zh) * 2023-03-06 2023-05-09 天津科谱技术有限公司 零等待调度方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP2501058B1 (en) 2018-10-24
EP2501058A1 (en) 2012-09-19
EP2501058A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2011075885A1 (zh) 一种光网络单元集成装置
JP4398317B2 (ja) ギガビット受動型光加入者網のgemモードにおけるマルチキャスト転送方法及びそのフレーム処理方法
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
EP2314002B1 (en) Upstream efficiency improvement method for passive optical networks
US8406636B2 (en) Method, system and device for passive optical network data transmission
JP3788785B2 (ja) ギガビットイーサネット(登録商標)受動光加入者網システムにおける動作具現方法
CA2438382C (en) Oam capability discovery method in ethernet passive optical network
US20110305458A1 (en) Method and device for service adaptation
US8462656B2 (en) Method and apparatus for multi-service adaptation and carriage
EP2348691B1 (en) Service transmission method and service transmission apparatus
WO2008040142A1 (fr) Procédé, système et dispositif de transmission de données
WO2010020130A1 (zh) 包分插复用设备及包分插复用设备的数据传输方法
WO2008025295A1 (fr) Dispositif, procédé et système de configuration de service ethernet dans un réseau optique passif
WO2009121275A1 (zh) 光网络传输处理方法、装置和系统
WO2009039791A1 (fr) Système de communication à diffusion de groupe de réseau optique passif, procédé de gestion de diffusion de groupe et dispositif correspondant
WO2007076671A1 (fr) Procédé de régulation du flux multidiffusion, dispositif et système d'un réseau optique passif
WO2007104230A1 (fr) Procédé et dispositif de transmission sur une couche de liaison de données d'un réseau optique passif (rop)
WO2010000153A1 (zh) 无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法
KR20040062336A (ko) 이더넷 수동형광가입자망에서 루프백 절차 제어 방법
WO2009000194A1 (fr) Procédé d'attribution de bande passante, système et appareil dans un réseau optique
WO2009155832A1 (zh) 一种点到多点光接入系统,及其数据传送方法和设备
US11902718B2 (en) Service data transmission method, related device, and digital processing chip
JP7183432B2 (ja) 光処理モジュール、及び光処理装置
WO2011020376A1 (zh) 无源光网络中处理的方法及无源光网络系统和网元
EP3446490B1 (en) Pon wavelength bonding for providing higher-rate data services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009852435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE