WO2010000153A1 - 无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法 - Google Patents

无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法 Download PDF

Info

Publication number
WO2010000153A1
WO2010000153A1 PCT/CN2009/071435 CN2009071435W WO2010000153A1 WO 2010000153 A1 WO2010000153 A1 WO 2010000153A1 CN 2009071435 W CN2009071435 W CN 2009071435W WO 2010000153 A1 WO2010000153 A1 WO 2010000153A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
adjustment
traffic
wavelength
packet
Prior art date
Application number
PCT/CN2009/071435
Other languages
English (en)
French (fr)
Inventor
高波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010000153A1 publication Critical patent/WO2010000153A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access

Definitions

  • FTTH fiber optic access has large bandwidth and is suitable for long-distance transmission.
  • FTTH fiber to the home is an inevitable choice for access networks.
  • passive optical network (PON) technology is currently using more technologies.
  • 1 is a networking diagram of a PON network.
  • PON adopts a point-to-multipoint architecture, in which the signal transmission from the optical line terminal (OLT) to the optical network unit (ONU, optical network unit) is called downlink; and the signal from the ONU to the OLT direction. Transmission is called uplink; the downlink direction is broadcast mode, and the uplink direction is unicast mode.
  • PON can be divided into many types according to specific technologies. Among them, Gigabit Passive Optical Network (GPON) has high bandwidth efficiency. Synchronous timing mechanism follows the traditional synchronous digital system (SDH, Synchronous Digital
  • Hierarchy can adapt to different speeds of services, and thus has become a popular access system for telecom operators in various countries.
  • the White Paper for Full Service Access Network recommends that lOG bps be used for downlink transmission.
  • the burst transmission and burst reception above 5G bps it is difficult to implement, and the equipment cost is high and the stability is poor.
  • the 2.5G bps burst transmission and burst reception are easier to implement, and the existing mature devices can be partially reused. Therefore, the uplink can be 2.5G bps.
  • the number of uplink wavelengths used can be increased.
  • the uplink rate of 2.5G bps that is, the uplink bandwidth of each ONU is increased by reducing the number of ONUs carried by a single wavelength.
  • Figure 2 shows the architecture of the downlink 10G bps and uplink N x 2.5G bps described in the FS AN NGA 1 white paper; if uplink and downlink symmetry is required, the uplink can be 4 x 2.5G.
  • the existing high-branch ratio such as 1:512, 1:1024
  • PON system in order to solve the problem of limited resources such as ONU-ID and GEM-ID, at the same time, we want to modify the existing protocol as much as possible, and reuse it.
  • the existing part of the design and implementation can be grouped, that is, does not extend the length of the ONU-ID and GEM port-ID, only the ONUs are grouped, they are grouped when the ONU is registered, and the ONUs of the ONUs in the same group ID, Alloc-ID, GEM port-ID must be unique, and these identifiers can be between different groups. Same as the same. Due to the limitations of the existing agreement, the number of ONUs in each group cannot exceed 254; if the branch ratio is further expanded in the future, it is only necessary to increase the number of packets. Between the ONU packet and the upstream wavelength described here
  • the ONUs using the same upstream wavelength may be located in different packets.
  • the object of the present invention is to provide a passive optical network system, an optical line terminal, an optical network unit, and a method for implementing load balancing, thereby implementing load balancing between different uplink wavelengths or different ONU packets in an uplink multi-wavelength system. .
  • An embodiment of the present invention provides a passive optical network system, including an optical line terminal OLT and an optical network unit ONU;
  • the OLT is configured to monitor the uplink traffic of the at least one ONU, and collect the uplink traffic of each uplink wavelength according to the uplink traffic of the monitored ONUs; and determine whether uplink traffic occurs between the uplink wavelengths according to a predetermined condition. Unbalanced situation; when there is an unbalanced uplink traffic, the ONU that needs to perform wavelength adjustment is determined, and a wavelength adjustment message is generated and sent to the ONU that needs to perform wavelength adjustment;
  • the ONU is configured to receive a wavelength adjustment message from the OLT, and perform corresponding wavelength adjustment according to the wavelength adjustment message.
  • An embodiment of the present invention further provides a passive optical network system, including an optical line terminal OLT and an optical network unit ONU;
  • the OLT is configured to monitor downlink traffic of at least one ONU, according to the monitored Describe the downlink traffic of each ONU, and calculate the downlink traffic of each ONU packet. According to the predetermined conditions, determine whether there is a downlink traffic imbalance between the ONU packets. When the downlink traffic imbalance occurs, it is determined that it needs to be performed.
  • the packet-adjusted ONU generates a packet adjustment message and sends the packet to the ONU that needs to perform packet adjustment;
  • the ONU is configured to receive a packet adjustment message from the OLT, and perform corresponding packet adjustment according to the packet adjustment message.
  • the embodiment of the present invention further provides an optical line terminal, where the optical line terminal includes a traffic monitoring module and a load balancing adjustment module;
  • the traffic monitoring module is configured to monitor the uplink traffic of the ONU of the at least one optical network unit, and collect the uplink traffic of each uplink wavelength according to the uplink traffic of the each ONU obtained by the monitoring; determine the uplink wavelength according to a preset condition. Whether there is a situation in which the traffic is unbalanced; when the traffic is unbalanced, the load balancing adjustment module is instructed to perform corresponding processing;
  • the load balancing adjustment module After receiving the indication of the traffic monitoring module, the load balancing adjustment module determines an ONU that needs to perform wavelength adjustment, generates a wavelength adjustment message, and sends the wavelength adjustment message.
  • the embodiment of the present invention further provides an optical line terminal, where the optical line terminal includes a traffic monitoring module and a load balancing adjustment module;
  • the traffic monitoring module is configured to monitor downlink traffic of at least one optical network unit ONU, and collect downlink traffic of each ONU packet according to the monitored downlink traffic of each ONU; and determine ONU packet according to a preset condition. Whether there is a situation in which the traffic is unbalanced; when the traffic is unbalanced, the load balancing adjustment module is instructed to perform corresponding processing;
  • the load balancing adjustment module after receiving the indication of the traffic monitoring module, determines an ONU that needs to perform packet adjustment, generates a packet adjustment message, and sends the packet adjustment message.
  • An embodiment of the present invention further provides an optical network unit, where the optical network unit includes a Gigabit passive optical network transmission aggregation GTC frame processing module and a load balancing adjustment module;
  • the GTC frame processing module is configured to receive a GTC frame from the optical line terminal, parse the load balancing adjustment message therefrom, and forward the load balancing adjustment message to the load balancing adjustment module;
  • the load balancing adjustment module is configured to adjust the message according to the received load balancing, and replace the originally saved wavelength or group number with the newly allocated wavelength or group number to perform load balancing adjustment.
  • the embodiment of the invention further provides a method for implementing load balancing, including:
  • the embodiment of the invention further provides a method for implementing load balancing, including:
  • the load imbalance problem that may occur between different uplink wavelengths in the uplink multi-wavelength PON system is effectively solved; and, in the PON system in which the ONU packet exists, different ONU packets are between The problem of the load imbalance may occur, and the bandwidth resources of the system are fully utilized.
  • the existing partial protocol design and implementation can be reused; the uplink wavelength or the packet number is dynamically adjusted, and the networking configuration is flexibly enhanced. Sex, And load balancing can be effectively implemented.
  • Figure 1 is a networking diagram of a PON network
  • FIG. 2 shows the architecture described in the FSAN NGA1 white paper
  • FIG. 3 is a flow chart of an embodiment of a method of the present invention.
  • FIG. 5 is a system architecture diagram of an embodiment of the present invention.
  • FIG. 6 is a structural diagram of an optical line terminal according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an optical network unit according to an embodiment of the present invention.
  • FIG 8 is an internal structural diagram of an optical network unit according to an embodiment of the present invention.
  • FIG. 9 is an internal structural diagram of an optical network unit according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method embodiment of the present invention.
  • the embodiment is mainly directed to a situation in which an uplink traffic imbalance occurs between different uplink wavelengths in a multi-wavelength uplink GPON system, including the following steps:
  • Step 301 The optical line terminal (OLT) monitors the uplink traffic of the at least one optical network unit (ONU) in real time, and calculates the uplink traffic corresponding to each uplink wavelength in the system according to the uplink traffic of each ONU obtained by the monitoring, and according to the preset
  • the predetermined condition is used to determine whether there is an imbalance of uplink traffic between different uplink wavelengths; the preset condition may be, for example, specified as: the difference between the upstream traffic of different uplink wavelengths may not exceed one advance
  • the set threshold may also be specified as: the upstream traffic of each uplink wavelength may not exceed a preset threshold, or the upstream traffic of each uplink wavelength may not be lower than a preset threshold;
  • the upstream traffic of the wavelength simultaneously defines an upper threshold and a lower threshold, that is, each The upstream traffic of the upstream wavelength should be lower than the upper threshold and higher than the lower threshold. Otherwise, it is considered that the upstream traffic is unbalanced.
  • the threshold may be a fixed value set in advance;
  • Step 302 After the OLT determines that the uplink traffic is unbalanced between different uplink wavelengths, the OLT may determine an ONU that needs to perform wavelength adjustment according to a certain wavelength adjustment policy, and then generate a corresponding wavelength adjustment message. The ONU that needs to perform wavelength adjustment sends the wavelength adjustment message, and instructs the ONU to modify an uplink wavelength used when transmitting data;
  • the specific wavelength adjustment strategy may be: sorting traffic of multiple ONUs using the same uplink wavelength, and selecting an ONU whose traffic is higher than a certain threshold or lower than a certain threshold, The upstream wavelength used is adjusted to other wavelengths; it is also possible to adjust the upstream wavelength of one ONU to another wavelength in combination with the priority of different ONUs.
  • the wavelength adjustment message described herein may take the form of a PLOAM (Physical Layer OAM) message or an OMCI (ONU Management and Control Interface) message. Specifically, the following methods can be used:
  • Step 303 After receiving the wavelength adjustment message, the ONU modifies the uplink wavelength used when transmitting data according to the wavelength adjustment message, and adjusts the currently used uplink wavelength to a new uplink wavelength to carry the sent Upstream data;
  • the ONUs used here are all wavelength-tunable lasers.
  • the wavelength adjustment since the relevant ONU uses the original optical fiber, the distance between the ONU and the OLT does not change, and therefore, the ranging is not required to be performed; and, because the PON system carries the user service data.
  • the GEM port-ID is used to identify different service flows. When load balancing is performed, only the wavelength used by the ONU for uplink transmission is changed, and the GEM port-ID that identifies each service flow does not change.
  • Step 304 After completing the wavelength adjustment, the ONU sends an adjustment response message to the OLT.
  • the OLT receives the service flow from the ONU, it forwards the service flow to the network side service interface according to the GEM port-ID; because the load interruption adjustment is performed, the service interruption time mainly depends on the OLT.
  • the time to refresh the ONU registry is very short, usually a few microseconds, which is almost negligible, so there is no need to consider the impact of service interruption or packet loss caused by load balancing.
  • the existing partial design and implementation may adopt a grouping method, that is, the lengths of the ONU-ID and the GEM port-ID are not extended, only the ONUs are grouped, and the ONUs are grouped when they are registered, and the ONUs of the ONUs in the same group are-
  • the ID, Alloc-ID, and GEM port-ID must be unique, and these identifiers can be the same between different groups.
  • Step 401 The OLT monitors the downlink traffic of the at least one ONU in real time, and calculates the downlink traffic of the ONU packet according to the monitored downlink traffic of each ONU, and determines different ONUs according to preset conditions.
  • the preset condition may be, for example, specified as follows: the difference between the downlink traffic of different ONU packets cannot exceed a preset threshold; The downstream traffic of each ONU packet cannot exceed a preset threshold, or the downstream traffic of each ONU packet cannot be lower than a preset threshold; and an upper threshold may be specified for the downstream traffic of each ONU packet. And the lower threshold, that is, the downstream traffic of each ONU packet should be lower than the upper threshold and higher than the lower threshold, otherwise It is considered that there is a situation in which the downstream traffic is not balanced.
  • the threshold may be a fixed value set in advance; or may be a value that can be dynamically adjusted during system operation.
  • Step 402 When the OLT determines that the traffic imbalance occurs, the ONU that needs to perform packet adjustment may be determined according to a certain packet adjustment policy, and then a packet adjustment message is generated, and the packet adjustment message is sent to the An ONU that needs to perform packet adjustment, instructing the ONU to perform packet adjustment;
  • the packet adjustment policy may be specifically: sorting the ONUs in the same ONU packet by pressing the traffic, and selecting the traffic below a certain threshold or above a certain threshold.
  • ONU as an ONU that requires packet adjustment.
  • the packet adjustment message here may take the form of a PLOAM message or an OMCI message. Specifically, the following methods can be used:
  • An OMCI message is added to carry the packet adjustment policy.
  • Step 403 After receiving the packet adjustment message, the ONU that needs to perform packet adjustment adjusts a packet to which the ONU belongs according to the packet adjustment message.
  • the grouped ONU is adjusted to receive only GTC frames belonging to the new packet in the downlink direction; GTC frames based on the new packet are transmitted in the uplink direction. This enables load balancing between different ONU packets.
  • the GEM port-ID is used to identify different service flows.
  • load balancing is performed between different ONU packets, only the group to which the ONU belongs is changed, and each service is identified. The flow's GEM port-ID does not change.
  • Step 404 After completing the packet adjustment, the ONU generates an adjustment response message, and sends the adjustment response message to the OLT.
  • Step 405 After receiving the adjustment response message from the ONU, the OLT refreshes related entries in the ONU registry, in particular, entries related to the ONU.
  • the OLT receives the service flow from the ONU, and forwards the traffic to the network side service interface according to the GEM port-ID and the associated ONU packet number; The time depends mainly on the time that the OLT refreshes the ONU registry. The time that the OLT refreshes the ONU registry is very short, usually a few microseconds, which is almost negligible, so there is no need to consider the service interruption or packet loss caused by load balancing. influences.
  • Figure 5 shows an architectural diagram of an embodiment of the system of the present invention. As shown in the figure, the architecture includes an OLT 200, and the OLT 200 communicates with multiple optical network units ONUs 100;
  • the system embodiment provided by the present invention may be:
  • the OLT 200 is configured to monitor uplink traffic of the at least one ONU 100, and collect uplink traffic of each uplink wavelength according to the uplink traffic of the ONUs obtained by the monitoring; and determine whether uplink traffic occurs between uplink wavelengths according to predetermined conditions. Unbalanced situation; when there is an unbalanced uplink traffic, the ONU 100 that needs to perform wavelength adjustment is generated, and a wavelength adjustment message is generated and sent to the ONU 100 that needs to perform wavelength adjustment;
  • the ONU 100 is configured to receive a wavelength adjustment message from the OLT 200, and perform corresponding wavelength adjustment according to the wavelength adjustment message.
  • the OLT 200 in FIG. 5 and FIG. 6 may include a GTC framing module 201, a traffic monitoring module 202, and a load balancing adjustment module 203.
  • the traffic monitoring module 202 is configured to monitor the uplink traffic of the at least one ONU 100 in real time, and collect the uplink traffic of each uplink wavelength according to the uplink traffic of the ONUs obtained by the monitoring; determine the uplink wavelength according to a preset condition. Whether there is a situation in which the traffic is unbalanced; when the traffic is unbalanced, the load balancing adjustment module 203 is instructed to perform corresponding processing; for the pre-set conditions, refer to the description of the foregoing method embodiment.
  • the load balancing adjustment module 203 may determine the ONU 100 that needs to perform wavelength adjustment according to a certain wavelength adjustment policy, and then generate a wavelength adjustment message, and send the signal to the GTC framing module 201.
  • the load balancing adjustment module described herein may be a new module or an extension of the original OMCI or PLOAM module.
  • the wavelength adjustment strategy described herein can be referred to the description of the previous method embodiment;
  • the entire message can take the form of a PLOAM message or an OMCI message.
  • the GTC framing module 201 After receiving the wavelength adjustment message from the load balancing adjustment module 203, the GTC framing module 201 carries the wavelength adjustment message in the GTC frame and sends it to the ONU 100 that needs to perform wavelength adjustment.
  • the ONU 100 may include a GTC frame processing module 101 and a load balancing adjustment module 102.
  • the GTC frame processing module 101 may be configured to receive a GTC frame from the OLT 200, parse the wavelength adjustment message therefrom, and forward the wavelength adjustment message to the load balancing adjustment module 102;
  • the load balancing adjustment module 102 may be configured to perform load balancing adjustment according to the received wavelength adjustment message by using a newly allocated wavelength instead of the originally saved wavelength.
  • the load balancing adjustment is specifically as follows: The newly allocated wavelengths transmit uplink data, so that the uplink traffic of different uplink wavelengths is adjusted, and the uplink traffic between different uplink wavelengths can be balanced.
  • load balancing adjustment module 102 may be further configured to generate an adjustment response message, forwarded to the GTC frame processing module 101, and carried in the GTC frame and sent to the OLT 200.
  • the system embodiment provided by the present invention may be:
  • the OLT 200 is configured to monitor downlink traffic of at least one ONU 100, and collect downlink traffic of each ONU 100 packet according to the downlink traffic of each ONU 100 obtained by monitoring; and determine whether downlink traffic exists between ONU 100 packets according to predetermined conditions. Unbalanced situation; when there is a situation in which the downlink traffic is unbalanced, the ONU 100 that needs to perform packet adjustment is generated, and a packet adjustment message is generated and sent to the ONU 100 that needs to perform packet adjustment;
  • the ONU 100 is configured to receive a packet adjustment message from the OLT 200, and perform corresponding packet adjustment according to the packet adjustment message.
  • the specific structure of the OLT 200 and the 100 ONU is as follows:
  • the OLT 200 in FIG. 5 and FIG. 6 may include a GTC framing module 201, a traffic monitoring module 202, and a load balancing adjustment module 203.
  • the traffic monitoring module 202 can be configured to monitor at least one optical network unit.
  • the downstream traffic of the ONU 100 is calculated according to the downlink traffic of each ONU 100 obtained by monitoring, and the downlink traffic of each ONU 100 packet is counted; according to a preset condition, it is determined whether there is a traffic imbalance between the ONU 100 packets; When the traffic is unbalanced, the load balancing adjustment module 203 is instructed to perform corresponding processing; for the pre-set conditions, refer to the description of the foregoing method embodiment.
  • the load balancing adjustment module 203 may be configured to: after receiving the indication of the traffic monitoring module 202, determine an ONU 100 that needs to perform packet adjustment according to a certain packet adjustment policy, and then generate a packet adjustment message, and send the packet to the GTC framing. Module 201.
  • the load balancing adjustment module 203 described herein may be a new module or an extension of the original OMCI or PLOAM module.
  • the packet adjustment policy described herein can be referred to the description of the foregoing method embodiment; the packet adjustment message can be in the form of a PLOAM message or an OMCI message.
  • the description of the foregoing method embodiments For the specific manners that can be used, reference may be made to the description of the foregoing method embodiments, and details are not described herein again.
  • the GTC framing module 201 receives the packet adjustment message from the load balancing adjustment module 203, and then carries the packet adjustment message in the GTC frame and sends the packet to the ONU 100 that needs to perform packet adjustment.
  • the ONU 100 may include a GTC frame processing module 101 and a load balancing adjustment module 102.
  • the GTC frame processing module 101 is configured to receive a GTC frame from the OLT 200, parse the packet adjustment message therefrom, and forward the packet adjustment message to the load balancing adjustment module 102;
  • the load balancing adjustment module 102 is configured to perform load balancing adjustment according to the received packet adjustment message and replace the originally saved packet number with the newly allocated packet number.
  • the load balancing adjustment is specifically: The packet adjustment message adjusts a packet to which the ONU 100 belongs. The ONU 100 after the packet is adjusted, in the downlink direction, only the GTC frame belonging to the new packet is received; the GTC frame based on the new packet is transmitted in the uplink direction, so that load balancing can be implemented between different ONU 100 packets.
  • load balancing adjustment module 102 may be further configured to generate an adjustment response message, forwarded to the GTC frame processing module 101, and carried in the GTC frame and sent to the OLT 200.
  • FIG. 8 shows an internal structure diagram of the ONU 100 for load balancing in a packet adjustment manner, wherein the load balancing adjustment module 102 sends the adjusted packet number to the GTC frame processing module 101, and the GTC transmitter. 103 transmits a GTC frame to the OLT 200 with a new packet number.
  • FIG. 9 shows an internal structure diagram of the ONU 100 for load balancing in a wavelength adjustment manner, wherein the load balancing adjustment module 102 saves the adjusted upstream wavelength, and the GTC transmitter 103 uses the adjusted The upstream wavelength transmits uplink data.
  • the load imbalance problem that may occur between different uplink wavelengths in the uplink multi-wavelength PON system is effectively solved; and, in the PON system in which the ONU packet exists, different ONU packets are between A load imbalance problem that may occur.
  • the bandwidth resources of the system are fully utilized.
  • the existing partial protocol design and implementation can be reused; the uplink wavelength or the packet number can be dynamically adjusted, and the flexibility of the network configuration can be enhanced, thereby effectively realizing between different uplink wavelengths or between different ONU packets. Balance the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)

Description

无源光网络系统、 光线路终端、 光网络单元
及实现负载均衡的方法 本申请要求于 2008 年 06 月 30 日提交中国专利局、 申请号为 200810068241.4、 发明名称为"无源光网络系统、 光线路终端和光网络单元 以及实现负载均衡的方法"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种无源光网络系统、 光线路终 端、 光网络单元及实现负载均衡的方法。
背景技术
随着电信业务日益丰富, 用户对接入带宽的需求也越来越大; 在各种接 入技术中, 由于光纤接入具有巨大的带宽并且适宜于长距离传输, 世界各国 运营商纷纷将光纤到户 ( FTTH, fiber to the home )作为接入网的必然选择。 在 FTTH的具体实现中, 无源光网络( PON , passive optical network )技术是 目前采用较多的技术。 附图 1为 PON网络的一种组网图。 PON采用了点到多点的架构,其中光线 路终端( OLT , optical line terminal )到光网络单元 ( ONU , optical network unit ) 方向上的信号传输, 称为下行; 而从 ONU到 OLT方向的信号传输, 称为上行; 下行方向上是广播方式的, 而上行方向上是单播方式的。
PON根据具体技术的不同, 又可以分为很多种类, 其中千兆无源光网络 ( GPON, Gigabit Passive Optical Network ) , 由于具有较高的带宽效率, 其 同步定时机制沿用传统的同步数字体系 (SDH, Synchronous Digital
Hierarchy ) , 可以适配不同速率的业务, 因而成为各国电信运营商目前比较 热衷的接入系统。
随着用户规模的不断扩大和用户对带宽需求的日益增加, 现有的下行 2.5G bps、上行 1.25G bps的 GPON系统已经难以满足要求, 因此需要提高上下 行带宽。
全业务接入网络 (FSAN, Full Service Access Network)白皮书建议下行采 用 lOG bps发送, 考虑到 5G bps以上的突发发送和突发接收实现难度较大, 器 材成本较高, 稳定性较差, 而 2.5G bps的突发发送和突发接收较容易实现, 同时可以部分重用现有的成熟器件,因此上行可以采用 2.5G bps. 为了增加上 行带宽, 可以增加使用的上行波长数目, 每个波长承载 2.5G bps的上行速率, 即通过减少单个波长承载的 ONU数目来提高每个 ONU的上行带宽。
附图 2为 FS AN NGA 1白皮书中描述的下行 10G bps、 上行 N x 2.5G bps的 架构; 如果要求上下行对称, 那么上行可以采用 4 x 2.5G。
在上述的上行多波长系统中可能会出现负载不均衡的问题, 即某个波长 的上行流量^ [艮大甚至超过处理负荷, 而其他波长可能处于空闲。 这样会带来 极大的带宽浪费。
另外,在现有的高分支比 (如 1:512、 1:1024)PON系统中,为了解决 ONU-ID 和 GEM-ID等资源有限的问题, 同时又想尽可能不修改现有协议, 重用现有 的部分设计和实现, 可以采用分组的方法, 即不扩展 ONU-ID和 GEM port-ID 的长度, 仅仅对 ONU进行分组, 在 ONU注册时为其进行分组, 同一组内 ONU 的 ONU-ID、 Alloc-ID、 GEM port-ID必须唯一, 而不同分组之间这些标识可 以相同。 受现有协议的限制, 每组的 ONU数不能超过 254个; 如果将来分支 比进一步扩大, 只需增加分组数即可。 这里所述的 ONU分组和上行波长之间
时, 考虑到将来分支比有可能进一步扩大为 1024甚至 2048, 为了维持现有 TC 层协议帧不变, 使用同一上行波长的 ONU可能分别位于不同的分组中。
但这样也会带来负载不均衡的问题, 即某个分组的流量很大甚至超过 设备负载, 而其他分组则处于空闲状态, 这样就带来了带宽资源的极大浪 费。 发明内容
本发明的目的在于提供一种无源光网络系统、 光线路终端、 光网络单 元及实现负载均衡的方法, 从而实现上行多波长系统中不同的上行波长之 间或不同的 ONU分组之间的负载平衡 。
本发明的实施例提供了一种无源光网络系统, 包括光线路终端 OLT 和光网络单元 ONU; 其中,
所述 OLT, 用于监控至少一个 ONU的上行流量, 根据监控得到的所 述各个 ONU的上行流量, 统计出各个上行波长的上行流量; 根据预定的 条件, 判断上行波长之间是否出现了上行流量不均衡的情况; 当出现了上 行流量不均衡的情况时, 确定需要进行波长调整的 ONU, 生成波长调整 消息, 并发送给所述需要进行波长调整的 ONU;
所述 ONU, 用于接收来自于所述 OLT的波长调整消息, 根据所述波 长调整消息, 进行相应的波长调整。
本发明的实施例还提供了一种无源光网络系统, 包括光线路终端 OLT 和光网络单元 ONU; 其中,
所述 OLT, 用于监控至少一个 ONU的下行流量, 根据监控得到的所 述各个 ONU的下行流量, 统计出各个 ONU分组的下行流量; 根据预定的 条件, 判断 ONU分组之间是否出现了下行流量不均衡的情况; 当出现了 下行流量不均衡的情况时, 确定需要进行分组调整的 ONU, 生成分组调 整消息, 并发送给所述需要进行分组调整的 ONU;
所述 ONU, 用于接收来自于所述 OLT的分组调整消息, 根据所述分 组调整消息, 进行相应的分组调整。
本发明实施例还提供了一种光线路终端, 所述的光线路终端包括流量 监控模块和负载均衡调整模块; 其中,
所述流量监控模块,用于监控至少一个光网络单元 ONU的上行流量, 根据监控得到的所述各个 ONU的上行流量, 统计出各个上行波长的上行 流量; 根据预先设定的条件, 判断上行波长之间是否出现了流量不均衡的 情况; 当出现了流量不均衡的情况时, 指示所述负载均衡调整模块进行相 应处理;
所述的负载均衡调整模块, 接收到所述流量监控模块的指示后, 确定 需要进行波长调整的 ONU, 生成波长调整消息, 发送所述波长调整消息。
本发明实施例还提供了一种光线路终端, 所述的光线路终端包括流量 监控模块和负载均衡调整模块; 其中,
所述流量监控模块,用于监控至少一个光网络单元 ONU的下行流量, 根据监控得到的所述各个 ONU的下行流量,统计出各个 ONU分组的下行 流量; 根据预先设定的条件, 判断 ONU分组之间是否出现了流量不均衡 的情况; 当出现了流量不均衡的情况时, 指示所述负载均衡调整模块进行 相应处理;
所述的负载均衡调整模块, 接收到所述流量监控模块的指示后, 确定 需要进行分组调整的 ONU, 生成分组调整消息, 发送所述分组调整消息。
本发明实施例还提供了一种光网络单元, 所述的光网络单元包括千兆 无源光网络传输汇聚 GTC帧处理模块和负载均衡调整模块; 所述的 GTC帧处理模块, 用于接收来自于光线路终端的 GTC帧, 从 中解析出负载均衡调整消息, 将所述负载均衡调整消息转发给负载均衡调 整模块;
所述的负载均衡调整模块, 用于根据接收到的所述负载均衡调整消 息, 用新分配的波长或分组号, 取代原来保存的波长或分组号, 进行负载 均衡调整。
本发明实施例还提供了一种实现负载均衡的方法, 括:
监控至少一个光网络单元 ONU的上行流量, 计算出各个上行波长对 应的上行流量;
当所述上行波长之间出现上行流量不均衡的情况时, 确定需要进行波 长调整的 ONU, 生成相应的波长调整消息;
将所述的波长调整消息发送给所述需要进行波长调整的 ONU,指示所 述需要进行波长调整的 ONU修改发送数据时所使用的上行波长。
本发明实施例还提供了一种实现负载均衡的方法, 包括:
监控至少一个光网络单元 ONU的下行流量; 利用监控得到的所述各 个 ONU的下行流量, 统计出 ONU分组的下行流量;
当所述的 ONU分组之间出现流量不均衡的情况时, 确定需要进行分 组调整的 ONU, 生成相应的分组调整消息;
将所述的分组调整消息发送给所述需要进行分组调整的 ONU,指示所 述需要进行分组调整的 ONU进行分组调整。
本发明的有益效果:
通过实施本发明的实施例, 有效地解决了上行多波长 PON系统中不 同的上行波长之间可能会出现的负载不均衡问题; 以及, 在存在 ONU分 组的 PON系统中,不同的 ONU分组之间可能会出现的负载不均衡的问题, 系统的带宽资源得到充分利用; 利用本发明的实施例, 可以重用现有的部 分协议设计和实现;动态调整上行波长或分组号,增强组网配置的灵活性, 并可有效地实现负载均衡。
附图说明
图 1为 PON网络的一种组网图;
图 2为 FSAN NGA1白皮书中描述的架构;
图 3为本发明方法实施例的流程图;
图 4为本发明方法实施例的流程图;
图 5为本发明实施例的系统架构图;
图 6为本发明实施例提供的光线路终端的结构图;
图 7为本发明实施例提供的光网络单元的结构图;
图 8为本发明实施例提供的光网络单元的内部结构图;
图 9为本发明实施例提供的光网络单元的内部结构图。
具体实施方式
下面通过具体实施例并结合附图对本发明做进一步的详细描述。
附图 3示出了本发明一个方法实施例的流程, 该实施例主要针对多波 长上行的 GPON系统中, 不同的上行波长之间出现上行流量不均衡的情 况, 包括步骤如下:
步骤 301、 光线路终端(OLT ) 实时监控至少一个光网络单元(ONU ) 的上行流量, 根据监控得到的各个 ONU的上行流量, 统计出系统中各个 上行波长所对应的上行流量, 并根据预先设定的条件, 来判断不同的上行 波长之间是否出现了上行流量不均衡的情况; 所述预先设定的条件, 例如 可以规定为: 不同上行波长的上行流量之间的差值不能超过一个预先设定 的阈值; 也可以规定为: 每个上行波长的上行流量不能超过一个预先设定 的阈值, 或者每个上行波长的上行流量不能低于一个预先设定的阈值; 还 可以为每个上行波长的上行流量同时规定一个上限阈值和下限阈值, 即每 个上行波长的上行流量应该低于上限阈值, 且高于下限阈值, 否则就认为 是出现了上行流量不均衡的情况。 所述的阈值既可以是预先设定的一个固 定值; 也可以是在系统运行过程中可以动态调整的数值。
步骤 302、 当 OLT判断出在不同上行波长之间, 出现了上行流量不均 衡的情况后, 可以根据一定的波长调整策略, 确定需要进行波长调整的 ONU , 然后生成相应的波长调整消息; 向所述需要进行波长调整的 ONU 发出所述波长调整消息, 指示所述的 ONU修改发送数据时所使用的上行 波长;
该步骤中, 在确定需要进行波长调整的 ONU时, 具体的波长调整策 略可以是: 对使用同一上行波长的多个 ONU进行流量排序, 选择流量高 于一定阈值或低于一定阈值的 ONU , 将其使用的上行波长调整为其他波 长; 也可以结合不同 ONU的优先级,选择将某个 ONU的上行波长调整为 其他波长。 这里所述的波长调整消息可以采用的形式为 PLOAM ( Physical Layer OAM )消息或 OMCI ( ONU Management and Control Interface )消息。 具体的可以采用下列几种方式:
1 )使用 Assign— ONU-ID PLOAM消息的预留字段来携带所述的波长 调整策略, 具体格式如下:
Figure imgf000009_0001
2 )使用 Ranging— Time PLOAM消息的预留字段来携带所述的波长调 策略, 具体格式如下:
Figure imgf000010_0001
3 )新增一种 PLOAM消息, 用来携带所述的波长调整策略;
4 )新增一种 OMCI消息, 用来携带所述的波长调整策略。
步骤 303、 所述的 ONU接收到所述波长调整消息后, 根据所述波长 调整消息, 修改发送数据时所使用的上行波长, 即将当前使用的上行波长 调整为新的上行波长, 以承载发送的上行数据; 注意, 这里所说的 ONU 使用的均为波长可调的激光器。 另外, 在进行波长调整时, 由于相关 ONU 使用的还是原来的光纤, ONU到 OLT之间的距离并没有发生改变, 因此, 不需要重新进行测距; 而且, 由于 PON系统对用户业务数据进行承载时, 使用 GEM port - ID来标识不同的业务流, 在进行负载均衡时, 改变的只 是 ONU上行发送时使用的波长, 而标识各业务流的 GEM port-ID不会发 生改变。
步骤 304、 所述的 ONU完成波长调整后, 向所述 OLT发出调整响应 消息; 步骤 305、 所述的 OLT收到来自于所述 ONU的调整响应消息后, 刷 新 ONU注册表中的相关表项,特别是有关 ONU的上行波长的表项。按照 标准中规定的方式, 当所述的 OLT收到来自于所述 ONU的业务流, 根据 GEM port-ID向网络侧业务接口转发; 由于在进行负载均衡调整时, 业务 中断时间主要取决于 OLT刷新 ONU注册表的时间 , 而 OLT刷新 ONU注 册表的时间很短, 通常为几个微秒, 几乎可以忽略不计, 因此无需考虑因 负载均衡所带来的业务中断或丟包影响。
另外, 在现有的高分支比 (如 1 :512、 1 : 1024)PON系统中, 为了解决 ONU-ID和 GEM-ID等资源有限的问题,同时又想尽可能不修改现有协议, 重用现有的部分设计和实现, 可以采用分组的方法, 即不扩展 ONU-ID和 GEM port-ID的长度, 仅仅对 ONU进行分组, 在 ONU注册时为其进行分 组, 同一组内 ONU的 ONU-ID、 Alloc-ID、 GEM port-ID必须唯一, 而不 同分组之间这些标识可以相同。 相应地, 附图 4示出了本发明又一个方法 实施例的流程图, 本实施例主要针对在 PON系统中, 存在 ONU分组时, 不同的 ONU分组之间可能出现的上行流量不均衡的情况, 包括步骤如下: 步骤 401、 OLT实时监控至少一个 ONU的下行流量, 并根据所监控 得到的各个 ONU的下行流量, 统计出 ONU分组的下行流量,根据预先设 定的条件, 来判断不同的 ONU分组之间是否出现了下行流量不均衡的情 况; 所述预先设定的条件, 例如可以规定为: 不同 ONU分组的下行流量 之间的差值不能超过一个预先设定的阈值; 也可以规定为: 每个 ONU分 组的下行流量不能超过一个预先设定的阈值, 或每个 ONU分组的下行流 量不能低于一个预先设定的阈值; 还可以为每个 ONU分组的下行流量同 时规定一个上限阈值和下限阈值, 即每个 ONU分组的下行流量应该低于 上限阈值,且高于下限阈值,否则就认为是出现了下行流量不均衡的情况。 所述的阈值既可以是预先设定的一个固定值; 也可以是在系统运行过程中 可以动态调整的数值。 步骤 402、 当所述 OLT判断出现了流量不均衡的情况时, 可以根据一 定的分组调整策略, 确定需要进行分组调整的 ONU, 然后生成分组调整 消息, 将所述的分组调整消息发送给所述需要进行分组调整的 ONU, 指 示所述的 ONU进行分组调整;
在该步骤中, 当确定需要进行分组调整的 ONU时, 所述的分组调整 策略具体可以是: 为同一 ONU分组内的 ONU按下行流量进行排序, 选择 流量低于一定阈值或高于一定阈值的 ONU, 作为需要进行分组调整的 ONU。这里的分组调整消息可以采用的形式为 PLOAM消息或 OMCI消息。 具体的可以采用下列几种方式:
1 )使用 Assign— ONU-ID PLOAM消息的预留字段来携带所述的分组 调整策略, 具体格式如下:
Figure imgf000012_0001
2 )使用 Ranging— Time PLOAM消息的预留字段来携带所述的分组调 策略, 具体格式如下: 字 内容 描述
节编号
1 ONU-ID 向指定
2 00000100 消息标识 3 0000000b '0': 工作通道均衡时延
' 1 ': 保护通道均衡时延
4 dddddddd 时延的 MSB
5 dddddddd
6 dddddddd
7 dddddddd 时延的 LSB
8-12 未规定 预留
3 )新增一种 PLOAM消息, 用来携带所述的分组调整策略;
4 )新增一种 OMCI消息, 用来携带所述的分组调整策略。
步骤 403、 当所述需要进行分组调整的 ONU收到所述分组调整消息 后, 根据所述分组调整消息, 调整所述 ONU所属的分组。 调整分组后的 ONU, 在下行方向, 只接收属于新分组的 GTC帧; 在上行方向发送基于 新分组的 GTC帧。 从而可以在不同的 ONU分组之间实现负载均衡。
在本实施例中, PON系统对用户业务数据进行承载时, 使用 GEM port-ID来标识不同的业务流, 在不同的 ONU分组间进行负载均衡时, 改 变的只是 ONU所属的分组, 标识各业务流的 GEM port-ID并不会发生变 化。
步骤 404、 所述的 ONU完成分组调整后, 生成调整响应消息, 向所 述 OLT发出所述调整响应消息;
步骤 405、 所述的 OLT收到来自于所述 ONU的调整响应消息后, 刷 新 ONU注册表中的相关表项,特别是有关 ONU的分组号的表项。按照标 准中规定的方式,所述的 OLT收到来自于所述 ONU的业务流,根据 GEM port-ID和所属的 ONU分组号向网络侧业务接口转发; 由于在进行负载均 衡调整时, 业务中断时间主要取决于 OLT刷新 ONU注册表的时间, 而 OLT刷新 ONU注册表的时间很短,通常为几个微秒, 几乎可以忽略不计, 因此无需考虑因负载均衡所带来的业务中断或丟包影响。 附图 5示出了本发明系统实施例的架构图。 如图所示, 该架构中包括 OLT200, 所述 OLT200与多个光网络单元 ONU100进行通信;
在多波长上行的 PON系统中, 针对不同上行波长之间出现的上行流 量不均衡的情况, 本发明提供的系统实施例可以为:
所述 OLT200, 用于监控至少一个 ONU100的上行流量, 根据监控得 到的所述各个 ONU的上行流量, 统计出各个上行波长的上行流量; 根据 预定的条件, 判断上行波长之间是否出现了上行流量不均衡的情况; 当出 现了上行流量不均衡的情况时, 确定需要进行波长调整的 ONU100, 生成 波长调整消息, 并发送给所述需要进行波长调整的 ONU100;
所述 ONU100, 用于接收来自于所述 OLT200的波长调整消息, 根据 所述波长调整消息, 进行相应的波长调整。
在本实施例中,关于 OLT200和 ONU100的具体结构请参考如下描述: 附图 5及附图 6中的 OLT200可以包括 GTC成帧模块 201、 流量监控 模块 202和负载均衡调整模块 203。
所述的流量监控模块 202, 用于实时监控至少一个 ONU100的上行流 量, 根据监控得到的所述各个 ONU100的上行流量, 统计出各个上行波长 的上行流量; 根据预先设定的条件, 判断上行波长之间是否出现了流量不 均衡的情况; 当出现了流量不均衡的情况时, 指示负载均衡调整模块 203 进行相应处理; 关于所述预先设定的条件可以参见前边方法实施例的描 述。
所述的负载均衡调整模块 203 , 接收到流量监控模块 202的指示后, 可以根据一定的波长调整策略, 确定需要进行波长调整的 ONU100, 然后 生成波长调整消息, 发送给 GTC成帧模块 201。 这里所述的负载均衡调整 模块可以是新增的模块, 也可以是原有的 OMCI或 PLOAM模块的扩展。 这里所述的波长调整策略可以参见前面方法实施例的描述; 所述的波长调 整消息可以采用的形式为 PLOAM消息或 OMCI消息。 具体可以采用的几 种方式可以参考上边方法实施例的描述, 这里不再贅述。
所述的 GTC成帧模块 201 , 接收到来自于所述负载均衡调整模块 203 的波长调整消息后, 将所述波长调整消息携带于 GTC帧中, 发送给需要 进行波长调整的 ONU100。
请参见附图 5及附图 7 , 其中的 ONU100可以包括 GTC帧处理模块 101和负载均衡调整模块 102。
所述的 GTC帧处理模块 101 , 可以用于接收来自于 OLT200的 GTC 帧, 从中解析出波长调整消息, 将所述波长调整消息转发给负载均衡调整 模块 102;
所述的负载均衡调整模块 102, 可以用于根据接收到的所述波长调整 消息, 用新分配的波长, 取代原来保存的波长, 进行负载均衡调整; 所述 的负载均衡调整具体为: ONU100采用新分配的波长发送上行数据, 从而 不同上行波长的上行流量得到了调整, 可以实现不同上行波长之间的上行 流量的均衡。
另外, 所述的负载均衡调整模块 102还可以用于生成调整响应消息, 转发给所述 GTC帧处理模块 101 , 携带于 GTC帧中发送给 OLT200。
在存在 ONU100分组的 PON系统中, 针对不同 ONU100分组之间出 现的流量不均衡的情况, 本发明提供的系统实施例可以为:
所述 OLT200, 用于监控至少一个 ONU100的下行流量, 根据监控得到 的所述各个 ONU100的下行流量, 统计出各个 ONU100分组的下行流量; 根 据预定的条件, 判断 ONU100分组之间是否出现了下行流量不均衡的情况; 当出现了下行流量不均衡的情况时, 确定需要进行分组调整的 ONU100, 生 成分组调整消息, 并发送给所述需要进行分组调整的 ONU100;
所述 ONU100, 用于接收来自于所述 OLT200的分组调整消息, 根据 所述分组调整消息, 进行相应的分组调整。 在本实施例中 ,关于 OLT200和 100ONU的具体结构请参考如下描述: 附图 5及附图 6中的 OLT200可以包括 GTC成帧模块 201、 流量监控 模块 202和负载均衡调整模块 203。
所述的流量监控模块 202, 可以用于监控至少一个光网络单元
ONU100的下行流量, 根据监控得到的所述各个 ONU100的下行流量, 统 计出各个 ONU100分组的下行流量; 根据预先设定的条件, 判断 ONU100 分组之间是否出现了流量不均衡的情况; 当出现了流量不均衡的情况时, 指示所述负载均衡调整模块 203进行相应处理; 关于所述预先设定的条件 可以参见前边方法实施例的描述。
所述的负载均衡调整模块 203 , 可以用于在接收到流量监控模块 202 的指示后, 可以根据一定的分组调整策略, 确定需要进行分组调整的 ONU100, 然后生成分组调整消息, 发送给 GTC成帧模块 201。 这里所述 的负载均衡调整模块 203可以是新增的模块, 也可以是原有的 OMCI或 PLOAM模块的扩展。 这里所述的分组调整策略可以参见前面方法实施例 的描述; 所述的分组调整消息可以采用的形式为 PLOAM消息或 OMCI消 息。 具体可以采用的几种方式可以参考上边方法实施例的描述, 这里不再 贅述。
所述的 GTC成帧模块 201 , 接收到来自于所述负载均衡调整模块 203 的分组调整消息后, 将所述分组调整消息携带于 GTC帧中, 发送给需要 进行分组调整的 ONU100。
请参见附图 5及附图 7 , 其中的 ONU100可以包括 GTC帧处理模块 101和负载均衡调整模块 102。
所述的 GTC帧处理模块 101 , 用于接收来自于 OLT200的 GTC帧, 从中解析出分组调整消息, 将所述分组调整消息转发给负载均衡调整模块 102; 所述的负载均衡调整模块 102,用于根据接收到的所述分组调整消息, 用新分配的分组号, 取代原来保存的分组号, 进行负载均衡调整; 所述的 负载均衡调整具体为: 根据所述分组调整消息, 调整所述 ONU100所属的 分组。 调整分组后的 ONU 100, 在下行方向, 只接收属于新分组的 GTC 帧; 在上行方向发送基于新分组的 GTC帧, 从而可以在不同的 ONU100 分组之间实现负载均衡。
另外, 所述的负载均衡调整模块 102还可以用于生成调整响应消息, 转发给所述 GTC帧处理模块 101 , 携带于 GTC帧中发送给 OLT200。
结合附图 5 ,附图 8示出了以分组调整的方式进行负载均衡的 ONU100 的内部结构图, 其中, 负载均衡调整模块 102将调整后的分组号发送给 GTC帧处理模块 101 , GTC发送器 103采用新的分组号向 OLT200发送 GTC帧。
结合附图 5 ,附图 9示出了以波长调整的方式进行负载均衡的 ONU100 的内部结构图, 其中, 负载均衡调整模块 102将调整后的上行波长保存起 来, GTC发送器 103使用调整后的上行波长发送上行数据。
通过实施本发明的实施例, 有效地解决了上行多波长 PON系统中不 同的上行波长之间可能会出现的负载不均衡问题; 以及, 在存在 ONU分 组的 PON系统中, 不同的 ONU分组之间可能会出现的负载不均衡问题。 系统的带宽资源得到充分利用。 利用本发明的实施例, 可以重用现有的部 分协议设计和实现;动态调整上行波长或分组号,增强组网配置的灵活性, 从而有效地实现了不同上行波长之间或不同 ONU分组之间的均衡负载。 以上是对本发明具体实施例的说明, 在具体的实施过程中可对本发明 的方法进行适当的改进, 以适应具体情况的具体需要。 因此可以理解, 根 据本发明的具体实施方式只是起示范作用, 并不用以限制本发明的保护范 围。

Claims

权利要求
1、 一种无源光网络系统, 其特征在于, 包括光线路终端 OLT和光网 络单元 ONU; 其中,
所述 OLT, 用于监控至少一个 ONU的上行流量, 根据监控得到的所 述各个 ONU的上行流量, 统计出各个上行波长的上行流量; 根据预定的 条件, 判断上行波长之间是否出现了上行流量不均衡的情况; 当出现了上 行流量不均衡的情况时, 确定需要进行波长调整的 ONU, 生成波长调整 消息, 并发送给所述需要进行波长调整的 ONU;
所述 ONU, 用于接收来自于所述 OLT的波长调整消息, 根据所述波 长调整消息, 进行相应的波长调整。
2、 一种无源光网络系统, 其特征在于, 包括光线路终端 OLT和光网 络单元 ONU; 其中,
所述 OLT, 用于监控至少一个 ONU的下行流量, 根据监控得到的所 述各个 ONU的下行流量, 统计出各个 ONU分组的下行流量; 根据预定的 条件, 判断 ONU分组之间是否出现了下行流量不均衡的情况; 当出现了 下行流量不均衡的情况时, 确定需要进行分组调整的 ONU, 生成分组调 整消息, 并发送给所述需要进行分组调整的 ONU;
所述 ONU, 用于接收来自于所述 OLT的分组调整消息, 根据所述分 组调整消息, 进行相应的分组调整。
3、 一种光线路终端, 其特征在于, 所述的光线路终端包括流量监控 模块和负载均衡调整模块; 其中,
所述流量监控模块,用于监控至少一个光网络单元 ONU的上行流量, 根据监控得到的所述各个 ONU的上行流量, 统计出各个上行波长的上行 流量; 根据预先设定的条件, 判断上行波长之间是否出现了流量不均衡的 情况; 当出现了流量不均衡的情况时, 指示所述负载均衡调整模块进行相 应处理;
所述的负载均衡调整模块, 接收到所述流量监控模块的指示后, 确定 需要进行波长调整的 ONU, 生成波长调整消息, 发送所述波长调整消息。
4、 根据权利要求 3所述的光线路终端, 其特征在于, 还包括: 千兆无源光网络传输汇聚 GTC成帧模块, 用于接收来自于所述负载 均衡调整模块的波长调整消息, 将所述波长调整消息携带于 GTC帧中发 送出去。
5、 一种光线路终端, 其特征在于, 所述的光线路终端包括流量监控 模块和负载均衡调整模块; 其中,
所述流量监控模块,用于监控至少一个光网络单元 ONU的下行流量, 根据监控得到的所述各个 ONU的下行流量,统计出各个 ONU分组的下行 流量; 根据预先设定的条件, 判断 ONU分组之间是否出现了流量不均衡 的情况; 当出现了流量不均衡的情况时, 指示所述负载均衡调整模块进行 相应处理;
所述的负载均衡调整模块, 接收到所述流量监控模块的指示后, 确定 需要进行分组调整的 ONU, 生成分组调整消息, 发送所述分组调整消息。
6、 根据权利要求 5所述的光线路终端, 其特征在于, 还包括: 千兆无源光网络传输汇聚 GTC成帧模块, 用于接收来自于所述负载 均衡调整模块的分组调整消息, 将所述分组调整消息携带于 GTC帧中发 送出去。
7、 一种光网络单元, 其特征在于, 所述的光网络单元包括千兆无源 光网络传输汇聚 GTC帧处理模块和负载均衡调整模块;
所述的 GTC帧处理模块, 用于接收来自于光线路终端的 GTC帧, 从 中解析出负载均衡调整消息, 将所述负载均衡调整消息转发给负载均衡调 整模块;
所述的负载均衡调整模块, 用于根据接收到的所述负载均衡调整消 息, 用新分配的波长或分组号, 取代原来保存的波长或分组号, 进行负载 均衡调整。
8、 根据权利要求 7所述的光网络单元, 其特征在于,
所述的负载均衡调整消息, 包括波长调整消息或分组调整消息。
9、 一种实现负载均衡的方法, 其特征在于, 包括:
监控至少一个光网络单元 ONU的上行流量, 计算出各个上行波长对 应的上行流量;
当所述上行波长之间出现上行流量不均衡的情况时, 确定需要进行波 长调整的 ONU, 生成相应的波长调整消息;
将所述的波长调整消息发送给所述需要进行波长调整的 ONU,指示所 述需要进行波长调整的 ONU修改发送数据时所使用的上行波长。
10、 一种实现负载均衡的方法, 其特征在于, 包括:
监控至少一个光网络单元 ONU的下行流量; 利用监控得到的所述各 个 ONU的下行流量, 统计出 ONU分组的下行流量;
当所述的 ONU分组之间出现流量不均衡的情况时, 确定需要进行分 组调整的 ONU, 生成相应的分组调整消息; 将所述的分组调整消息发送给所述需要进行分组调整的 ONU, 指示 所述需要进行分组调整的 ONU进行分组调整。
PCT/CN2009/071435 2008-06-30 2009-04-24 无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法 WO2010000153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810068241 CN101621454B (zh) 2008-06-30 2008-06-30 无源光网络系统、光线路终端和光网络单元
CN200810068241.4 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010000153A1 true WO2010000153A1 (zh) 2010-01-07

Family

ID=41465481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071435 WO2010000153A1 (zh) 2008-06-30 2009-04-24 无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法

Country Status (2)

Country Link
CN (1) CN101621454B (zh)
WO (1) WO2010000153A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388566A (zh) * 2011-09-26 2012-03-21 华为技术有限公司 转换终端设备的标识符的方法、装置和系统
WO2016095381A1 (zh) * 2014-12-18 2016-06-23 中兴通讯股份有限公司 一种业务传输方法和装置
EP3905551A4 (en) * 2018-12-29 2022-10-19 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DATA, AND METHOD AND DEVICE FOR CONFIGURING WAVELENGTH

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170373A (zh) * 2010-02-25 2011-08-31 国信朗讯科技网络技术有限公司 一种网络流量监测方法和装置
US20130121684A1 (en) * 2011-11-10 2013-05-16 Alcatel-Lucent Usa Inc. Apparatus And Method For Providing Protection In A Passive Optical Network
WO2012163052A1 (zh) * 2011-11-15 2012-12-06 华为技术有限公司 无源光网络的通道均衡方法和装置
CN103379100B (zh) * 2012-04-20 2019-02-12 中兴通讯股份有限公司 光电混合系统的数据传输方法及光同轴单元
CN103841474B (zh) * 2012-11-23 2019-01-25 中兴通讯股份有限公司 一种无源光网络中的波长调谐方法、系统及设备
CN107294637B (zh) * 2013-02-06 2019-06-04 上海诺基亚贝尔股份有限公司 一种用于自动配置光网络单元的波长的方法
CN105792027B (zh) * 2014-12-22 2019-11-29 南京中兴新软件有限责任公司 无源光网络系统、控制器及通信的方法
CN105391644B (zh) * 2015-12-01 2019-06-07 上海斐讯数据通信技术有限公司 基于光网络的负载均衡系统及方法
CN106911578B (zh) * 2015-12-23 2020-09-08 中国移动通信集团公司 一种业务数据的传输方法及设备
CN107484043B (zh) * 2017-07-11 2020-02-07 北京邮电大学 一种电力光纤接入网络及其控制方法
CN107634815B (zh) * 2017-08-30 2019-05-07 北京国电通网络技术有限公司 一种波长分配方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564502A (zh) * 2004-04-14 2005-01-12 烽火通信科技股份有限公司 基于以太网无源光网络上行链路带宽动态分配方法和装置
JP2007019647A (ja) * 2005-07-05 2007-01-25 Mitsubishi Electric Corp 伝送システム及びその端末装置
CN1988433A (zh) * 2005-12-23 2007-06-27 华为技术有限公司 一种无源光网络维护方法及光网络单元和光线路终端
CN101141410A (zh) * 2007-10-24 2008-03-12 中兴通讯股份有限公司 一种千兆无源光网络系统中下行流控信息的传递方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564502A (zh) * 2004-04-14 2005-01-12 烽火通信科技股份有限公司 基于以太网无源光网络上行链路带宽动态分配方法和装置
JP2007019647A (ja) * 2005-07-05 2007-01-25 Mitsubishi Electric Corp 伝送システム及びその端末装置
CN1988433A (zh) * 2005-12-23 2007-06-27 华为技术有限公司 一种无源光网络维护方法及光网络单元和光线路终端
CN101141410A (zh) * 2007-10-24 2008-03-12 中兴通讯股份有限公司 一种千兆无源光网络系统中下行流控信息的传递方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388566A (zh) * 2011-09-26 2012-03-21 华为技术有限公司 转换终端设备的标识符的方法、装置和系统
CN102388566B (zh) * 2011-09-26 2014-03-05 华为技术有限公司 转换终端设备的标识符的方法、装置和系统
WO2016095381A1 (zh) * 2014-12-18 2016-06-23 中兴通讯股份有限公司 一种业务传输方法和装置
EP3905551A4 (en) * 2018-12-29 2022-10-19 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DATA, AND METHOD AND DEVICE FOR CONFIGURING WAVELENGTH
US11595147B2 (en) 2018-12-29 2023-02-28 Zte Corporation Data transceiving method and device, and wavelength configuration method and device

Also Published As

Publication number Publication date
CN101621454A (zh) 2010-01-06
CN101621454B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2010000153A1 (zh) 无源光网络系统、光线路终端、光网络单元及实现负载均衡的方法
JP4169595B2 (ja) 可変長パケットを利用するポイントツーマルチポイント受動光ネットワーク
US8315520B2 (en) Method, system and apparatus for transmitting data
US8150260B2 (en) Optical network terminal, method for configuring rate limiting attributes of ports, and method for processing packets
US8462656B2 (en) Method and apparatus for multi-service adaptation and carriage
CN100473053C (zh) 以太网无源光网络上行链路数据分组传输的方法
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
US8200088B2 (en) Optical communication system, and optical communication method and communication unit therefor
KR100738559B1 (ko) Epon 시스템의 대역폭 설정 방법 및 그 장치
JP2007174641A (ja) 放送サービスのためのtdmaponoltシステム
WO2012048643A1 (zh) 一种实现无源光网络拉远的方法和系统及中继装置
JP2007282037A (ja) Ponシステム
EP2389738B1 (en) Methods and systems for dynamic equalization delay passive optical networks
WO2010116561A1 (ja) 受動光網システムおよびその運用方法
WO2009039791A1 (fr) Système de communication à diffusion de groupe de réseau optique passif, procédé de gestion de diffusion de groupe et dispositif correspondant
WO2002097476A2 (en) Point-to-multipoint passive optical network that utilizes variable-length packets and variable-length upstream tine slots
WO2012090323A1 (ja) 論理リンク管理方法および通信装置
CN100581294C (zh) 以太网无源光网络多业务动态带宽请求的方法
WO2008080350A1 (fr) Procédé et dispositif pour ajuster une bande passante dans un réseau d'accès optique de façon dynamique et système apparenté
CN100546227C (zh) 以太网无源光网络多业务动态带宽分配的方法
WO2009155832A1 (zh) 一种点到多点光接入系统,及其数据传送方法和设备
JP4413797B2 (ja) 受動型光ネットワークシステム
Li et al. Flexible low-latency metro-access converged network architecture based on optical time slice switching
Liem et al. SD-enabled mobile fronthaul dynamic bandwidth and wavelength allocation (DBWA) mechanism in converged TWDM-EPON architecture
JP5720515B2 (ja) 局内光回線終端装置及び局内光回線終端装置の帯域付与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771923

Country of ref document: EP

Kind code of ref document: A1