WO2011074680A1 - 電力抽出回路及び電力供給システム - Google Patents

電力抽出回路及び電力供給システム Download PDF

Info

Publication number
WO2011074680A1
WO2011074680A1 PCT/JP2010/072818 JP2010072818W WO2011074680A1 WO 2011074680 A1 WO2011074680 A1 WO 2011074680A1 JP 2010072818 W JP2010072818 W JP 2010072818W WO 2011074680 A1 WO2011074680 A1 WO 2011074680A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switch
power supply
inductor
diode
Prior art date
Application number
PCT/JP2010/072818
Other languages
English (en)
French (fr)
Inventor
高橋 久
武藤 佳恭
幸市郎 小路
Original Assignee
サイエンスパーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイエンスパーク株式会社 filed Critical サイエンスパーク株式会社
Priority to JP2011546188A priority Critical patent/JP5355715B2/ja
Publication of WO2011074680A1 publication Critical patent/WO2011074680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power extraction circuit that forcibly extracts power from a power source such as a solar cell or a thermoelectric element and supplies the power to a load, and a power supply system including the power extraction circuit.
  • Patent Document 1 discloses a solar power generation system that converts the output of a solar cell into AC power using an inverter.
  • the operating voltage corresponding to the maximum power point corresponding to the amount of solar radiation and temperature is stored in the database, the varying amount of solar radiation and temperature are sequentially measured, and the operating voltage corresponding to the measured amount of solar radiation and temperature is stored from the database.
  • This is a control method that selects and sets the operating voltage (optimum value) for the inverter.
  • Patent Document 2 discloses a technology that achieves both the followability and stability of the maximum power point follow-up control by changing the conduction ratio of the switching elements constituting the DC / DC converter connected to the photovoltaic power generator. It is disclosed.
  • Pmax E 2 / 4r (FIG. 2).
  • what can be a direct current power source is not limited to one using solar power generation, one using wind power generation, one using temperature difference power generation (power supply constituted by thermoelectric elements such as Seebeck elements), etc.
  • power supply constituted by thermoelectric elements such as Seebeck elements power supply constituted by thermoelectric elements such as Seebeck elements
  • the conventional maximum power point tracking control requires a mechanism for specifying the maximum power point that varies depending on the environment and load.
  • a specified maximum power point such as a mechanism for setting an operating voltage of an inverter shown in Patent Document 1, a mechanism for changing a conduction ratio of a switching element constituting a DC / DC converter shown in Patent Document 2, and the like.
  • a feedback mechanism or the like for following the movement was necessary.
  • the current output power itself must be monitored. Due to these factors, there is a problem that a system including a circuit and software for maximum power point tracking control becomes complicated.
  • the present invention has been made to solve such problems, and its purpose is to increase the power that can be extracted from the DC power supply by a simple circuit and system as compared with the conventional maximum power point tracking control. And providing a power extraction circuit capable of improving power generation efficiency and a power supply system including the power extraction circuit.
  • FIG. 3 shows an outline of the power extraction circuit 10 and the power supply system 1 of the present invention.
  • the power extraction circuit 10 forcibly extracts power from a DC power source 2 such as a solar cell or Seebeck element and supplies the power to the load 3. It comprises an inductor 11, diodes 12 and 13, a capacitor 14, and switches 15 and 16.
  • the power supply system 1 includes a DC power source 2 connected to an input terminal of the power extraction circuit 10, a power extraction circuit 10, and a load 3 connected to an output terminal of the power extraction circuit 10.
  • the power extraction circuit 10 includes a positive input terminal connected to the positive electrode of the DC power supply 2 and a negative input terminal connected to the negative electrode.
  • the power extraction circuit 10 includes a first path composed of an inductor 11, a first diode 12, and a first switch 15 connected between the positive electrode and the negative electrode of the DC power supply 2, and the positive electrode and the negative electrode of the same DC power supply 2.
  • a second path including the inductor 11, the second switch 16, and the second diode 13 connected to each other is included. This inductor 11 is connected to the positive electrode of the DC power source 2.
  • the anode of the first diode 12 is connected to the inductor 11, the cathode is connected to the first switch 15, and the first switch 15 controls conduction between the cathode and the negative electrode of the DC power supply 2.
  • the second switch 16 is connected to the inductor 11, the anode of the second diode 13 is connected to the second switch 16, the cathode is connected to the negative electrode of the DC power supply 2, and the second switch 16 is connected to the anode And the conduction of the inductor 11 is controlled.
  • a capacitor 14 is connected between the cathode of the first diode 12 and the anode of the second diode 13. Output terminals are provided at both ends of the capacitor 14, and the load 3 is connected in parallel with the capacitor 14.
  • the electromotive force of the DC power source 2 is assumed to be V 1.
  • a state I when both the switches 15 and 16 are in an OFF state (this state is referred to as a state I), assuming that the forward voltage drops of the diodes 12 and 13 are V F1 and V F2 , they are connected in parallel with the load 3.
  • the voltage V 2 between the terminals of the capacitor 14 is a value obtained by subtracting the forward voltage drop V F1 + V F2 of the diodes 12 and 13 from the electromotive force V 1 , and is expressed by Equation 1.
  • V 2 V 1 ⁇ (V F1 + V F2 ) (1)
  • the increase in the voltage between the terminals of the capacitor 14 due to repeated switching described above varies depending on the load, switching frequency and switching time, inductance L, and the like.
  • the terminal voltage of the capacitor 14 (terminal voltage of the load 3) becomes constant.
  • the current flowing through the load 3 increases due to the increase of the voltage between the terminals accompanying the repetition of the switching, and the power consumed by the load increases. Since the law of energy conservation is established here, the power is supplied from the DC power source 2.
  • the switches 15 and 16 may be constituted by semiconductor switches (for example, MOSFETs). Since the switches 15 and 16 can be switched at high speed, the inductance L and the capacitance C of the capacitor 14 can be reduced, and the power extraction circuit 10 can be downsized. Further, as shown in FIG. 5, the time for which the switches 15 and 16 are turned on may be controlled by the control device 20 so that the voltage between the terminals of the capacitor 14 is maximized.
  • the control device 20 is configured by a semiconductor circuit.
  • the present invention it is possible to increase the power that can be taken out from the DC power source without performing the conventional maximum power point tracking control, and to improve the power generation efficiency. Further, in the power extraction circuit and power supply system of the present invention, the measurement mechanism, current and voltage of environmental conditions (sunshine amount, wind speed, temperature, water temperature, etc.) required for performing the conventional maximum power point tracking control. Measurement mechanism, maximum power point specifying mechanism, feedback mechanism for following the maximum power point (for example, a mechanism for setting an operating voltage of an inverter shown in Patent Document 1, a DC / DC converter shown in Patent Document 2) No mechanism or the like for changing the conduction ratio of the switching element is required, and the circuit and system can be simplified.
  • the power extraction circuit of the present invention is applicable not only to solar cells but also to DC power sources in general.
  • the power supply system of the present invention efficiently supplies power generated by solar power generation, wind power generation, temperature difference power generation, and the like to a load without being limited by the maximum power point.
  • FIG. 1 is a diagram showing a VI curve according to the irradiance to the solar cell and the module temperature, and respective maximum power points.
  • FIG. 2 is a diagram showing the maximum power point in the VI curve.
  • FIG. 3 is a circuit diagram showing a power extraction circuit and a power supply system.
  • FIG. 4 is a circuit diagram when a MOSFET is used as a switch of the power extraction circuit.
  • FIG. 5 is a circuit diagram when the switch of the power extraction circuit is controlled by the control device.
  • FIG. 6 is a circuit diagram when measuring input power and output power in the power extraction system.
  • FIG. 7 shows an apparatus for measuring the maximum power point.
  • FIG. 8 is a diagram comparing the maximum power point when not passing through the power extraction circuit and the power extracted by the power extraction circuit.
  • FIG. 9 is a diagram showing the relationship between the duty ratio and the power (P O ).
  • Light bulbs were arranged so as to face the surface of the solar cell panel in parallel (4 ⁇ 3 rows), and the whole surface was adjusted so that the light bulbs were illuminated almost uniformly.
  • a motor was connected as the load 3. When the electric power supplied to the motor increases, the rotational speed of the motor increases, and it can be confirmed that more electric power is extracted from the solar cell.
  • Example 1 As described with reference to FIG. 3, first, the switches 15 and 16 are turned off (state I).
  • the inductance of the inductor 11 is 10 mH
  • the capacitance of the capacitor 14 is 2200 ⁇ F.
  • the power consumption of the control device 20 that controls the switching of the switches 15 and 16 is supplied from the solar cell. That is, the power supply source of the power supply system shown in FIG. 6 is only the solar battery as the DC power supply 2, and no other power is supplied from the outside.
  • the voltage between the terminals of the solar cell is measured by the voltmeter 31, and the current flowing through the inductor 11 is measured by the ammeter 32.
  • the voltage measured by the voltmeter 31 at this time is defined as the input voltage V O
  • the current measured by the ammeter 32 is defined as the input current I O
  • the voltage across the load 3 is measured by the voltmeter 33
  • the current flowing through the load 3 is measured by the ammeter 34.
  • a voltage measured by the voltmeter 33 is an output voltage V L
  • a current measured by the ammeter 34 is an output current I L.
  • VL rises through the state II mentioned above.
  • V L is V O in a stable state, I O, V L, and the value of I L shown in Table 1 (switching state). Also shows the values of P O and P L at this time. From comparison in Table 1, whereas P O is 2.58W in a switching stop state, since P O in the switching state is 4.66W, has increased the power itself is taken out from the solar cell 80% .
  • the power extraction circuit 10 forcibly extracts power from the solar cell and supplies it to the load.
  • Example 6 Next, an experiment similar to Experimental Example 1 was performed using an electronic load device as a load. The same solar cell 2 as in Experimental Example 1 was used, and the electronic load device set to the conditions (current value, voltage value) when the maximum power Pmax was obtained in Experimental Example 5 was used as the load 3. As a result, Table 5 (switching state) shows values of V O , I O , V L , I L , P O, and P L when the power extraction circuit is in the switching state.
  • the power value that can be taken out when the power extraction circuit is in the switching state is 5.45 W.
  • 111.4% of the maximum power Pmax 4.89 W when not passing through the power extraction circuit could be extracted from the solar cell. From FIG. 8, it can be understood that the power extraction circuit of the present invention has an unprecedented effect.
  • conventional maximum power point tracking which is commonly used as a technology for optimizing power supply, is a technology that sets a line.
  • the very simple circuit shown in FIG. 3 can increase the amount of power supplied to the load.
  • the power consumed by the power extraction circuit it is possible to supply a larger amount of power to the load itself. For example, since it is possible to reduce the power consumption of the control device 20 shown in FIG. 6, it is possible to supply a larger amount of power to the load.
  • the present invention is not limited to a solar battery, but increases the power that can be extracted from a DC power source.
  • the present inventors conducted an experiment using a power source constituted by a Seebeck element instead of a solar cell.
  • the power source used is “Thermoelectric Modules for Power Generation” (model number TGM-287-1.0-1.5) from Kryotherm.
  • TGM-287-1.0-1.5 Thermoelectric Modules for Power Generation
  • the power source configured by the Seebeck element is used as the DC power source 2, and the electronic load device set to the conditions (current value, voltage value) when the maximum power Pmax is obtained is used as the load 3.
  • An experiment similar to Experimental Example 1 was performed using the apparatus shown in FIG. 6 (a solar cell replaced with a Seebeck element).
  • the capacitance of the capacitor 14 used here is 50F.
  • the switching frequency was 20 kHz
  • the duty ratio of the switching pulse was increased from 40% to 50% in 1% increments
  • the results of measuring V O , I O , and P O for each duty ratio are shown in Table 6 and As shown in FIG.
  • the horizontal axis of FIG. 9 is a duty ratio and the vertical axis represents P O. As shown in FIG. 9, PO in the switching state exceeds both the maximum power point before the start of measurement and the maximum power point after the end of measurement regardless of the duty ratio.
  • a primary battery such as a dry battery can efficiently use energy by forcibly extracting power by a power extraction circuit when the voltage becomes low.
  • a power extraction circuit In the case of a fuel cell, the consumption of oxygen is increased by using the power extraction circuit, but the output per unit volume is increased and the size can be reduced.
  • Power supply system 2 ... DC power supply (solar cell, Seebeck element) 3 ... Load (motor, electronic load device) DESCRIPTION OF SYMBOLS 10 ... Power extraction circuit 11 ... Inductor 12 ... Diode 13 ... Diode 14 ... Capacitor 15 ... Switch 16 ... Switch 20 ... Control device 31 ... Voltmeter 32 ... Ammeter 33 ... Voltmeter 34 ... Ammeter 35 ... Voltmeter 36 ... Current Total

Abstract

 最大電力点追従制御を行うことなく、直流電源から取り出すことのできる電力を増大させ、且つ、負荷に供給することができる電力を増大させる。第1のスイッチ及び第2のスイッチが共にONになると、キャパシタと直流電源とが直列接続され、電力供給システム全体としてみたときの起電力が高くなる。その結果、インダクタを通過する電流が増加し、直流電源から取り出すことができる電力が増大する。第1のスイッチ及び第2のスイッチが共にOFFになると、インダクタに蓄積された磁気エネルギーは、キャパシタに移管され、結果としてキャパシタの端子間電圧が高くなる。その結果、負荷に供給される電力が増大する。

Description

電力抽出回路及び電力供給システム
 本発明は、太陽電池又は熱電素子等の電力源から強制的に電力を抽出して負荷に供給する電力抽出回路、及び、その電力抽出回路を備えた電力供給システムに関する。
 近年、太陽電池を用いた電力供給システムの開発が活発に行われている。太陽電池に関しては、日射量や温度によって出力特性が変化する。即ち、図1に示すように、太陽電池への放射照度及びモジュール温度に応じたV-I曲線が存在し、各V-I曲線毎に最大電力点Pmax(V-I曲線中でV×I=Pが最大となる点)が異なる。このような特性に基づいて、太陽電池から効率良く電力を取り出すべく、最大電力点追従制御(MPPT:Maximum Power Point Tracking)に関する技術が多く提案されている。
 例えば、特許文献1には、太陽電池の出力をインバータで交流電力に変換する太陽光発電システムが開示されている。日射量及び温度に応じた最大電力点に対応する動作電圧をデータベースに記憶しておき、変動する日射量及び温度を逐次計測して、計測された日射量及び温度に対応する動作電圧をデータベースから選択して、その動作電圧(最適値)をインバータに対して設定する制御方法である。また、特許文献2には、太陽光発電装置に接続されたDC/DCコンバータを構成するスイッチング素子の導通比を変更することによって、最大電力点追従制御の追従性と安定性を両立させる技術が開示されている。
特開2000-181555号公報 特開2003-216255号公報
 これらの技術は、いずれも直流電源としての太陽電池の内部インピーダンスを考慮して、これに接続される負荷に対して最大電力点に近い電力を供給しようとするものである。この最大電力点Pmaxは、直流電源の起電力をE、その内部抵抗をr、この直流電源に接続される負荷の抵抗をRとすると、R=rのときの負荷に供給される電力であり、Pmax=E/4rであらわされる(図2)。言い換えると、最大電力点追従制御とは、負荷に対し、いかにしてPmax=E/4rに近い電力を供給するかという技術である。ここで直流電源となりうるものとしては、太陽光発電を利用したものに限らず、風力発電を利用したもの、温度差発電を利用したもの(ゼーベック素子等の熱電素子によって構成された電源)等が存在する。いずれの発電方法についても最大電力点追従制御に関する技術が提案されており、時々刻々と変化する風速、気温又は水温等の条件に対応させてその時の最大電力点に近い電力を負荷に供給するようにしている。
 これら最大電力点追従制御に関する技術は既に多数提案されており、実用化されている。しかしながら、従来型の最大電力点追従制御は、環境及び負荷等によって変動する最大電力点を特定するための機構が必要である。また、特許文献1に示すインバータの動作電圧の設定するための機構、特許文献2に示すDC/DCコンバータを構成するスイッチング素子の導通比を変更する機構等のように、特定された最大電力点に追従するためのフィードバック機構等が必要であった。さらに、現状の出力電力自体をモニタリングしなければならない場合もあった。これらの要因により最大電力点追従制御のための回路及びソフトウェアを含めたシステムが複雑化してしまうという問題があった。
 本発明はこのような課題を解決するためになされたものであり、その目的は、従来型の最大電力点追従制御と比較して簡素な回路及びシステムによって直流電源から取り出すことのできる電力を増大させ、発電効率を高めることができる電力抽出回路、及び、その電力抽出回路を備えた電力供給システムを提供することにある。
 (電力抽出回路及び電力供給システムの構成)
 本発明は、以下に説明する電力抽出回路及び電力供給システムによって上記課題を解決する。図3に、本発明の電力抽出回路10及び電力供給システム1の概要を示す。電力抽出回路10は、太陽電池又はゼーベック素子等の直流電源2から強制的に電力を抽出して負荷3に供給するものである。インダクタ11、ダイオード12、13、キャパシタ14、及びスイッチ15、16からなる。電力供給システム1は、電力抽出回路10の入力端子に接続される直流電源2、電力抽出回路10、及び電力抽出回路10の出力端子に接続される負荷3により構成される。
 図3に示すように、電力抽出回路10は、直流電源2の正極に接続される正極側入力端子、及び負極に接続される負極側入力端子を備えている。電力抽出回路10は、直流電源2の正極と負極の間に接続されるインダクタ11、第1のダイオード12、及び第1のスイッチ15からなる第1の経路と、同じ直流電源2の正極と負極の間に接続される当該インダクタ11、第2のスイッチ16、及び第2のダイオード13からなる第2の経路を含む。このインダクタ11は直流電源2の正極に接続されている。第1のダイオード12のアノードはインダクタ11に接続され、カソードは第1のスイッチ15に接続され、第1のスイッチ15は当該カソードと直流電源2の負極間の導通を制御するものである。一方、第2のスイッチ16はインダクタ11に接続され、第2のダイオード13のアノードは第2のスイッチ16に接続され、カソードは直流電源2の負極に接続され、第2のスイッチ16は当該アノードとインダクタ11の導通を制御するものである。第1のダイオード12のカソードと第2のダイオード13のアノード間にはキャパシタ14が接続されている。このキャパシタ14の両端には出力端子が設けられており、キャパシタ14と並列に負荷3が接続されることになる。
 (電力抽出回路の動作)
 図3において、直流電源2の起電力がVであるとする。最初にスイッチ15、16がいずれもOFFの状態であるとき(この状態を状態Iとする)、ダイオード12、13の順方向電圧降下がVF1、VF2とすると、負荷3と並列に接続されているキャパシタ14の端子間電圧Vは、起電力Vからダイオード12及び13の順方向電圧降下VF1+VF2を減じた値であり、式1によってあらわされる。
  V=V-(VF1+VF2) ・・・式(1)
 次に、スイッチ15、16が共にONになると(この状態を状態IIとする)、キャパシタ14と、起電力V1の直流電源2とが直列接続され、電力供給システム1全体としてみたときの起電力はV1よりも高くなる。その結果、状態Iと比較して、直流電源2の内部インピーダンス及びインダクタ11を通過する電流が増加する。ここでインダクタ11を通過する電流をIとし、インダクタ11のインダクタンスをLとすると、インダクタ11には以下の式(2)に示す磁気エネルギーUが蓄積される。
 U=LI/2 ・・・式(2)
 即ち、インダクタ11に流れる電流が増加するときは、電流の二乗に比例して、蓄積される磁気エネルギーUも増加する。
 この状態Iから状態IIにかけて増加した磁気エネルギーをdUとすると、このdUは、スイッチ15、16が共にOFFとなっても瞬時に0にはならず、インダクタ11に流れる電流の減少に抗って、電流を流し続けようとする。その結果、最初にスイッチ15、16が共にOFFであった状態Iのときにインダクタ11に流れていた電流よりも大きな電流がインダクタ11に流れる。そして、最終的に増加した磁気エネルギーdUは、キャパシタ14に移管され、結果としてキャパシタ14の端子間電圧が状態Iのときよりも高くなる。
 さらに、キャパシタ14の端子間電圧が状態Iのときよりも高くなることで、次にスイッチ15、16が共にONとなると、前回スイッチ15、16が共にONであった状態IIのときに直流電源2の内部インピーダンス及びインダクタ11に流れていた電流よりも大きな電流が、直流電源2の内部インピーダンス及びインダクタ11に流れることになる。このようにして、スイッチ15及び16のON/OFF制御を同時に繰り返すことによって、キャパシタ14の端子間電圧、即ち負荷の端子間電圧が高くなり、より多くの電力を直流電源2から取り出すことができるようになる。
 上述したスイッチングの繰り返しによるキャパシタ14の端子間電圧の上昇幅は、負荷、スイッチング周波数及びスイッチング時間、インダクタンスLなどによって異なる。キャパシタ14に対するエネルギー供給と負荷によるエネルギー放出が平衡したときにキャパシタ14の端子間電圧(負荷3の端子間電圧)は一定になる。上記スイッチングの繰り返しに伴う端子間電圧の上昇によって負荷3に流れる電流も増加し、負荷によって消費される電力が大きくなる。ここでエネルギー保存の法則が成立するため、その電力は直流電源2から供給されていることになる。
 ここで図4に示すように、スイッチ15及び16を半導体スイッチ(例えばMOSFET)によって構成するようにすると良い。スイッチ15及び16を高速にスイッチングさせることが可能であるため、インダクタンスL及びキャパシタ14の容量Cを小さくすることができ、電力抽出回路10の小型化が可能となる。また、図5に示すようにスイッチ15及び16をONにしておく時間は、キャパシタ14の端子間電圧が最大となるように制御装置20によって制御すると良い。制御装置20は半導体回路によって構成される。
 本発明によって、従来型の最大電力点追従制御を行うことなく、直流電源から取り出すことのできる電力を増大させ、発電効率を高めることができる。また、本発明の電力抽出回路及び電力供給システムにおいては、従来型の最大電力点追従制御を行うにあたって必要であった環境条件(日照量、風速、気温、水温等)の測定機構、電流及び電圧の計測機構、最大電力点の特定機構、最大電力点に追従するためのフィードバック機構(例えば特許文献1に示すインバータの動作電圧の設定するための機構、特許文献2に示すDC/DCコンバータを構成するスイッチング素子の導通比を変更する機構等)は一切必要なく、回路及びシステムを簡素化することができる。
 本発明の電力抽出回路は、太陽電池に限らず、直流電源全般に適用可能である。また、本発明の電力供給システムは、太陽発電、風力発電、温度差発電等によって生じた電力を、最大電力点の制限を受けることなく、効率よく負荷に対して供給するものである。
図1は、太陽電池への放射照度及びモジュール温度に応じたV-I曲線と、それぞれの最大電力点を示す図である。 図2は、V-I曲線における最大電力点を示す図である。 図3は、電力抽出回路及び電力供給システムを示す回路図である。 図4は、電力抽出回路のスイッチにMOSFETを用いたときの回路図である。 図5は、電力抽出回路のスイッチを制御装置によって制御するときの回路図である。 図6は、電力抽出システムにおける入力電力及び出力電力を計測するときの回路図である。 図7は、最大電力点を測定するための装置である。 図8は、電力抽出回路を介さないときの最大電力点と電力抽出回路によって取り出される電力を比較した図である。 図9は、デューティ比と電力(P)の関係を示す図である。
[1.電力抽出回路による効率向上の確認]
 本発明者らは図6に示す装置を用いて、本発明の電力供給システムの動作及び電力抽出回路の効果を確認した。直流電源2としては太陽電池を用いた。この太陽電池は、秋月電子通商株式会社製の「ポータブル太陽電池パネル(型番738 SM1000-12V-FP)」を、一定距離から12個の電球(AC100V,40W)で照らすことによって発電する。この太陽電池パネルの出力解放時の定格電圧は12Vであり、短絡時の最大電流は1000mAである。この太陽電池パネルの表面に平行に対向させるように電球を配置し(4個×3列)、表面全体を概ね一様に電球が照らすように調整した。また、本実験においては負荷3としてモータを接続した。モータに供給される電力が増加するとモータの回転数が上がり、より多くの電力を太陽電池から抽出していることを確認することができる。
 (実験例1)
 図3を用いて説明したように、まず最初にスイッチ15及び16をOFFの状態としておく(状態I)。本実験例においてインダクタ11のインダクタンスは10mH、キャパシタ14の容量は2200μFである。ここでスイッチ15及び16のスイッチングを制御する制御装置20の消費電力は、太陽電池から供給される。即ち、この図6に示す電力供給システムの電力供給源は直流電源2としての太陽電池のみであり、この他に外部からの電力供給はない。この状態で太陽電池の端子間電圧を電圧計31によって計測し、インダクタ11に流れる電流を電流計32によって計測する。このときの電圧計31で計測される電圧を入力電圧V、電流計32で計測される電流を入力電流Iとする。一方、負荷3の両端の電圧(キャパシタ14の端子間電圧)を電圧計33によって計測し、負荷3に流れる電流を電流計34によって計測する。このとき電圧計33で計測される電圧を出力電圧V、電流計34で計測される電流を出力電流Iとする。この状態におけるV、I、V、及びIの値を表1(スイッチング停止状態)に示す。また、このときの入力電力P=V×I、出力電力P=V×Iの値も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 次に、制御装置20によってスイッチ15及び16を繰り返しON/OFFさせた。スイッチング周波数は20kHzとした。これにより、前述した状態IIを経て、Vが上昇していく。Vが安定した状態におけるV、I、V、及びIの値を表1(スイッチング状態)に示す。また、このときのP及びPの値も併せて示す。表1における比較から、スイッチング停止状態におけるPが2.58Wであるのに対し、スイッチング状態におけるPが4.66Wであるから、太陽電池から取り出している電力自体が80%増加している。また、負荷に供給する電力の比較では、スイッチング停止状態におけるPが2.04Wであるのに対し、スイッチング状態におけるPが3.21Wであるから、負荷に供給する電力が57%増加している。即ち、スイッチング停止状態において太陽電池から取り出されていた電力が2.58Wであるのに対し、スイッチング状態において負荷に供給されている電力が3.21Wとなり、スイッチング停止状態において負荷に供給できる電力の124%を負荷に対して供給可能としたものである。即ち、電力抽出回路10が太陽電池から強制的に電力を抽出して負荷に供給したことになる。
 (実験例2)
 次に、キャパシタ14を容量12200μFのキャパシタに交換して実験例1と同様の実験を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2における比較より、スイッチング停止状態におけるPが2.60Wであるのに対し、スイッチング状態におけるPが4.56Wであるから、太陽電池から取り出している電力自体が75%増加している。また、負荷に供給する電力の比較では、スイッチング停止状態におけるPが2.04Wであるのに対し、スイッチング状態におけるPが3.22Wであるから、負荷に供給する電力が58%増加している。即ち、スイッチング停止状態において太陽電池から取り出されていた電力が2.60Wであるのに対し、スイッチング状態において負荷に供給されている電力が3.22Wとなり、スイッチング停止状態において負荷に供給できる電力の124%を負荷に対して供給可能としたものである。即ち、電力抽出回路10が太陽電池から強制的に電力を抽出して負荷に供給したことになる。表1及び表2に示す結果から、キャパシタ14の容量を変更しても結果に大きな影響を与えなかった。
 (実験例3)
 次に、12個の電球の位置を太陽電池パネルの表面に近づけて、実験例1と同様の実験を行った。スイッチ15及び16を繰り返しON/OFFさせるときのスイッチング周波数は20kHzとした。Vが安定した状態におけるV、I、V、I、P及びPの値を表3(スイッチング状態)に示す。表3に示すように、電球を太陽電池パネル表面に近づけたことによりPが増加し、これに伴ってPが増加している。なお、表1及び表2に示す実験を行った際、スイッチング状態において、太陽電池パネルの表面温度が上昇することを温度計で確認した。
Figure JPOXMLDOC01-appb-T000003
 (実験例4)
 次に、実験例3の状態(電球の位置を太陽電池パネルに近づけた状態)から太陽電池パネルの表面に送風し、冷却をしたときのV、I、V、I、P及びPの値を表4(スイッチング状態)に示す。表3の結果と比較して、太陽電池パネル表面を冷却したことによりPが増加し、これに伴ってPが増加している。
Figure JPOXMLDOC01-appb-T000004
[2.最大電力点との比較]
 (実験例5)
 図7に示す装置を用いて、上記実験において直流電源2として用いた太陽電池の最大電力点を測定した。負荷3として菊水電子工業株式会社製の電子負荷装置「PLZ164WA」を使用して、これを定電流モードにした。この状態で太陽電池から供給される電力が最大となる点を特定した。即ち図7に示す電圧計35によって計測される電圧Vと、電流計36によって計測される電流Iとを乗算した値が最大となるときの電力Pmaxを特定した。その結果、I=0.336A、V=14.56Vのときの電力が4.89Wとなり最大となった。
 (実験例6)
 次に、負荷として電子負荷装置を使用して実験例1と同様の実験を行った。実験例1と同じ太陽電池2を使用し、実験例5で最大電力Pmaxが得られたときの条件(電流値,電圧値)に設定した電子負荷装置を負荷3として使用した。その結果、電力抽出回路をスイッチング状態としたときの、V、I、V、I、P及びPの値を表5(スイッチング状態)に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果より、電力抽出回路をスイッチング状態としたときに、取り出すことができる電力値は5.45Wとなった。図8に示すように、電力抽出回路を介さないときの最大電力Pmax=4.89Wの111.4%の電力を太陽電池から取り出すことができた。この図8から、本発明の電力抽出回路が、従来にない作用を奏することを把握することができる。特に昨今において、電力供給を最適化する技術として常用されている従来型の最大電力点追従とは一線を画する技術である。本発明では環境及び負荷等によって変動する最大電力点を特定するための機構が不要であり、また特定された最大電力点に追従するためのフィードバック機構等も一切不要である。図3に示す極めて簡潔な回路によって負荷への電力供給量を増大させることができる。
 表5に示すように、負荷に供給することができる電力Pは4.79Wとなった。これは上記最大電力Pmax=4.89Wよりは低い値であるが、電力抽出回路で消費される電力が5.45-4.79=0.66Wとなっているからである。この電力抽出回路で消費される電力を低減させることで、負荷自体に対してさらに大きな電力を供給することが可能となる。例えば図6に示す制御装置20の消費電力を低減させることは可能であるため、これによりさらに大きな電力を負荷に供給することも可能となる。
[3.他の直流電源を使用した実験]
 (実験例7)
 本発明は、太陽電池に限らず、直流電源から取り出すことができる電力を大きくするものである。本発明者らは、太陽電池に代えて、ゼーベック素子によって構成された電源を使用した実験を行った。使用した電源は、Kryotherm社の「Thermoelectric Modules for Power Generation(型番TGM-287-1.0-1.5)」である。この電源について、電力抽出回路10を接続する前に、実験例5に示した方法で最大電力点を測定した。このとき吸熱側温度は80℃、放熱側温度は27.3℃とした。その結果、I=0.430A、V=1.66Vのときの電力が0.71Wとなり最大となった。
 次に、上記ゼーベック素子によって構成された電源を直流電源2として使用し、最大電力Pmaxが得られたときの条件(電流値,電圧値)に設定した電子負荷装置を負荷3として使用して、図6に示す装置(太陽電池をゼーベック素子に置き換えたもの)を用いて実験例1と同様の実験を行った。ここで使用するキャパシタ14の容量は50Fである。また、スイッチング周波数は20kHzとし、スイッチングパルスのデューティ比を40%から50%まで1%区切りで増加させて、各々のデューティ比についてV、I、及びPを測定した結果を表6及び図9に示す。
Figure JPOXMLDOC01-appb-T000006
 測定を開始したときのデューティ比は40%であり、このときの吸熱側温度は80.2℃、放熱側温度は26.2℃であった。その後、デューティ比を1%ずつ増大させて、V、I、及びPを測定した。最終的に50%としたときの吸熱側温度は80.1℃、放熱側温度は26.3℃であった。測定後、電力抽出回路10を取り外して、再度、実験例5に示した方法で最大電力点を測定した。その結果、I=0.445A、V=1.85Vのときの電力が0.82Wとなり最大となった。図9の横軸はデューティ比であり、縦軸はPを示す。図9に示されるように、スイッチング状態におけるPは、デューティ比にかかわらず測定開始前の最大電力点、測定終了後の最大電力点のいずれも超過している。
 表6及び図9に示した結果から、電力抽出回路を動作させたことによる顕著な効果を確認することができた。電力抽出回路の動作中はゼーベック素子の吸熱量が増加しており、電力抽出回路によって強制的に電源から多くの電力を取り出していることを確認することができた。本発明の適用によって、温度差が小さい環境であっても、多くの電力を取り出すことができるようになる。
 その他、乾電池のような一次電池であっても、電圧が低くなったときに電力抽出回路によって強制的に電力を取り出すことで、効率よくエネルギーを利用することができる。燃料電池の場合には、電力抽出回路を利用することで酸素の消費量が大きくなるが、単位体積あたりの出力が増加し、小型化を図ることができる。
1…電力供給システム
2…直流電源(太陽電池,ゼーベック素子)
3…負荷(モータ,電子負荷装置)
10…電力抽出回路
11…インダクタ
12…ダイオード
13…ダイオード
14…キャパシタ
15…スイッチ
16…スイッチ
20…制御装置
31…電圧計
32…電流計
33…電圧計
34…電流計
35…電圧計
36…電流計

Claims (6)

  1.  直流電源の正極と負極の間に接続されるインダクタ、第1のダイオード、及び第1のスイッチからなる第1の経路と、同じ直流電源の正極と負極の間に接続される当該インダクタ、第2のスイッチ、及び第2のダイオードからなる第2の経路を含み、
     前記インダクタは前記直流電源の正極に接続され、
     前記第1のダイオードのアノードは前記インダクタに接続され、カソードは前記第1のスイッチに接続され、当該第1のスイッチは当該カソードと前記直流電源の負極間の導通を制御するものであり、
     前記第2のスイッチは前記インダクタに接続され、前記第2のダイオードのアノードは当該第2のスイッチに接続され、カソードは前記直流電源の負極に接続され、当該第2のスイッチは当該アノードと前記インダクタ間の導通を制御するものであり、
     前記第1のダイオードのカソードと前記第2のダイオードのアノード間に接続されたキャパシタをさらに含み、
     前記第1のスイッチ及び前記第2のスイッチを共に導通させ、共に非導通とする制御を交互に繰り返すことによって、前記インダクタに流れる電流を増大させ、前記直流電源から取り出すことができる電力を増大させることを特徴とする電力抽出回路。
  2.  直流電源の正極と負極の間に接続されるインダクタ、第1のダイオード、及び第1のスイッチからなる第1の経路と、同じ直流電源の正極と負極の間に接続される当該インダクタ、第2のスイッチ、及び第2のダイオードからなる第2の経路を含み、
     前記インダクタは前記直流電源の正極に接続され、
     前記第1のダイオードのアノードは前記インダクタに接続され、カソードは前記第1のスイッチに接続され、当該第1のスイッチは当該カソードと前記直流電源の負極間の導通を制御するものであり、
     前記第2のスイッチは前記インダクタに接続され、前記第2のダイオードのアノードは当該第2のスイッチに接続され、カソードは前記直流電源の負極に接続され、当該第2のスイッチは当該アノードと前記インダクタ間の導通を制御するものであり、
     前記第1のダイオードのカソードと前記第2のダイオードのアノード間に接続されたキャパシタをさらに含み、
     前記第1のスイッチ及び前記第2のスイッチを共に導通させ、共に非導通とする制御を交互に繰り返すことによって、前記キャパシタの端子間電圧を増大させ、これにより前記キャパシタに並列に接続される負荷に供給する電力を増大させることを特徴とする電力抽出回路。
  3.  直流電源の正極と負極の間に接続されるインダクタ、第1のダイオード、及び第1のスイッチからなる第1の経路と、同じ直流電源の正極と負極の間に接続される当該インダクタ、第2のスイッチ、及び第2のダイオードからなる第2の経路を含み、
     前記インダクタは前記直流電源の正極に接続され、
     前記第1のダイオードのアノードは前記インダクタに接続され、カソードは前記第1のスイッチに接続され、当該第1のスイッチは当該カソードと前記直流電源の負極間の導通を制御するものであり、
     前記第2のスイッチは前記インダクタに接続され、前記第2のダイオードのアノードは当該第2のスイッチに接続され、カソードは前記直流電源の負極に接続され、当該第2のスイッチは当該アノードと前記インダクタ間の導通を制御するものであり、
     前記第1のダイオードのカソードと前記第2のダイオードのアノード間に接続されたキャパシタをさらに含み、
     前記第1のスイッチ及び前記第2のスイッチを共に導通させ、共に非導通とする制御を交互に繰り返すことによって、前記インダクタに流れる電流を増大させ、前記直流電源から取り出すことができる電力を増大させ、且つ、前記キャパシタの端子間電圧を増大させ、これにより前記キャパシタに並列に接続される負荷に供給する電力を増大させることを特徴とする電力抽出回路。
  4.  直流電源、当該直流電源と接続される電力抽出回路、及び当該電力抽出回路に接続される負荷から構成される電力供給システムであって、
     前記電力抽出回路は、前記直流電源の正極と負極の間に接続されるインダクタ、第1のダイオード、及び第1のスイッチからなる第1の経路と、同じ直流電源の正極と負極の間に接続される当該インダクタ、第2のスイッチ、及び第2のダイオードからなる第2の経路を含み、
     前記インダクタは前記直流電源の正極に接続され、
     前記第1のダイオードのアノードは前記インダクタに接続され、カソードは前記第1のスイッチに接続され、当該第1のスイッチは当該カソードと前記直流電源の負極間の導通を制御するものであり、
     前記第2のスイッチは前記インダクタに接続され、前記第2のダイオードのアノードは当該第2のスイッチに接続され、カソードは前記直流電源の負極に接続され、当該第2のスイッチは当該アノードと前記インダクタ間の導通を制御するものであり、
     前記第1のダイオードのカソードと前記第2のダイオードのアノード間に接続されたキャパシタをさらに含み、
     前記負荷は前記キャパシタに並列に接続され、
     前記第1のスイッチ及び前記第2のスイッチを共に導通させ、共に非導通とする制御を交互に繰り返すことによって、前記インダクタに流れる電流を増大させ、前記直流電源から取り出すことができる電力を増大させ、且つ、前記キャパシタの端子間電圧を増大させ、これにより前記負荷に供給する電力を増大させることを特徴とする電力供給システム。
  5.  請求項4に記載した電力供給システムであって、
     前記直流電源は太陽電池であることを特徴とする電力供給システム。
  6.  請求項4に記載した電力供給システムであって、
     前記直流電源はゼーベック素子によって構成されていることを特徴とする電力供給システム。
PCT/JP2010/072818 2009-12-19 2010-12-19 電力抽出回路及び電力供給システム WO2011074680A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546188A JP5355715B2 (ja) 2009-12-19 2010-12-19 電力抽出回路及び電力供給システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-288540 2009-12-19
JP2009288540 2009-12-19

Publications (1)

Publication Number Publication Date
WO2011074680A1 true WO2011074680A1 (ja) 2011-06-23

Family

ID=44167430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072818 WO2011074680A1 (ja) 2009-12-19 2010-12-19 電力抽出回路及び電力供給システム

Country Status (2)

Country Link
JP (1) JP5355715B2 (ja)
WO (1) WO2011074680A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304431B6 (cs) * 2012-12-31 2014-04-30 Vysoká Škola Báňská - Technická Univerzita Ostrava Napájecí jednotka pracující na principu energy harvesting a způsob získávání a transformace energie z volných zdrojů
JP2017011857A (ja) * 2015-06-19 2017-01-12 矢崎総業株式会社 電源制御装置および電源制御方法
KR102379157B1 (ko) * 2020-11-04 2022-03-25 한국항공우주연구원 통합형 dc/dc 및 ac/dc 컨버터 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202365A (ja) * 1989-01-26 1990-08-10 Matsushita Electric Works Ltd 電源装置
JP2007104810A (ja) * 2005-10-05 2007-04-19 Seiko Instruments Inc 昇圧型dc−dcコンバータを有する電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202365A (ja) * 1989-01-26 1990-08-10 Matsushita Electric Works Ltd 電源装置
JP2007104810A (ja) * 2005-10-05 2007-04-19 Seiko Instruments Inc 昇圧型dc−dcコンバータを有する電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304431B6 (cs) * 2012-12-31 2014-04-30 Vysoká Škola Báňská - Technická Univerzita Ostrava Napájecí jednotka pracující na principu energy harvesting a způsob získávání a transformace energie z volných zdrojů
JP2017011857A (ja) * 2015-06-19 2017-01-12 矢崎総業株式会社 電源制御装置および電源制御方法
KR102379157B1 (ko) * 2020-11-04 2022-03-25 한국항공우주연구원 통합형 dc/dc 및 ac/dc 컨버터 시스템
US11824435B2 (en) 2020-11-04 2023-11-21 Korea Aerospace Research Institute Integrated DC/DC and AC/DC converter system

Also Published As

Publication number Publication date
JPWO2011074680A1 (ja) 2013-05-02
JP5355715B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
Swiegers et al. An integrated maximum power point tracker for photovoltaic panels
CN102163871B (zh) 一种多电源供电系统及方法
CN109066847B (zh) 一种光伏发电充放电控制电路
JP5355715B2 (ja) 電力抽出回路及び電力供給システム
CN101557117A (zh) 一种太阳能风能蓄电池充电方法
CN109962482B (zh) 基于市电功率补偿的风电非并网制氢系统及其控制方法
US9948172B2 (en) Power converter for eliminating ripples
WO2014062168A1 (en) Systems and methods for controlling maximum power point tracking controllers
CN112928774A (zh) 全钒液流电池光伏逆变系统的充放电控制电路及方法
Raj et al. Comparative Analysis of Incremental Conductance and Perturb & Observe Mppt Methods For Single-Switch Dc/Dc Converter
KR20150071396A (ko) 광전지 컨버터와 저전압 직류/직류 컨버터의 병렬 운전 방법 및 이를 위한 장치
JP2004244653A (ja) 水電解システム
Ravichandrudu et al. Design and performance of a bidirectional isolated Dc-Dc converter for renewable power system
Lin et al. MPPT photovoltaic wide load-range ZVS phase-shift full-bridge charger with DC-link current regulation
Philip et al. DC link voltage regulation of a battery integrated solar photo voltaic system
CN110519887B (zh) 路灯快速储电节电系统
CN104485883B (zh) 太阳能电池板最大功率输出器
CN204559398U (zh) 风力发电可调反激电源电路
Dileep et al. Conditional battery charging in solar PV based system
CN117175932B (zh) 光伏智能变结构电源插座
CN108494005A (zh) 基于自适应滑模控制光伏发电mppt控制器及其算法
CN220172915U (zh) 供电电路及电子设备
Potturi et al. Development of solar coupled synchronous buck converter
Kumar et al. Comparitive Analysis of dc-dc Boost Converter Topologies for Solar Powered Lead-Acid Battery Charging
CN202309195U (zh) 太阳能冰箱的供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837704

Country of ref document: EP

Kind code of ref document: A1