WO2011074580A1 - Method for producing toner - Google Patents

Method for producing toner Download PDF

Info

Publication number
WO2011074580A1
WO2011074580A1 PCT/JP2010/072491 JP2010072491W WO2011074580A1 WO 2011074580 A1 WO2011074580 A1 WO 2011074580A1 JP 2010072491 W JP2010072491 W JP 2010072491W WO 2011074580 A1 WO2011074580 A1 WO 2011074580A1
Authority
WO
WIPO (PCT)
Prior art keywords
release agent
particles
toner
resin
weight
Prior art date
Application number
PCT/JP2010/072491
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 水畑
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2011546133A priority Critical patent/JP5552493B2/en
Priority to DE112010004799T priority patent/DE112010004799T5/en
Priority to CN201080056507.9A priority patent/CN102652287B/en
Publication of WO2011074580A1 publication Critical patent/WO2011074580A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08726Polymers of unsaturated acids or derivatives thereof
    • G03G9/08733Polymers of unsaturated polycarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/0975Organic compounds anionic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09783Organo-metallic compounds
    • G03G9/09791Metallic soaps of higher carboxylic acids

Definitions

  • the present invention relates to a toner manufacturing method and an electrophotographic toner obtained by the manufacturing method.
  • Patent Document 1 discloses a release agent dispersion having improved this point, that is, a release agent dispersion for toner containing a release agent and a dibasic acid having an alkyl group and / or an alkenyl group or a salt thereof. Has been.
  • Patent Documents 2 and 3 disclose a technique in which two or more types of release agents are melt-mixed and used as a dispersion from the viewpoint of further improving hot offset resistance in fixability.
  • the present invention provides a small particle diameter at the time of toner production even when two or more types of release agents are used in the production of a chemical toner obtained by agglomerating and coalescing resin particles and release agent particles. It is an object of the present invention to provide a toner manufacturing method that can control the aggregation of the toner and does not release the release agent during the coalescence process. Another object of the present invention is to provide an electrophotographic toner excellent in fixability and storage stability including low-temperature fixability and hot offset resistance.
  • the present invention [1] (1) A release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) in an aqueous medium in the presence of a polycarboxylic acid salt And (2) a toner production method comprising a step of agglomerating and coalescing the obtained release agent particles and resin particles, and [2] described in [1] above.
  • the present invention provides an agglomerated control with a small particle size at the time of toner production, that is, an agglomerated particle having a sharp particle size distribution, and a toner production method that does not release a release agent during the coalescence process. can do. Further, according to the present invention, it is possible to provide an electrophotographic toner excellent in low-temperature fixability and hot offset resistance, that is, fixability and storage stability.
  • the toner production method of the present invention comprises (1) a release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) in an aqueous medium. Emulsifying in the presence of a carboxylate to obtain release agent particles, and (2) a step of aggregating and coalescing the obtained release agent particles and resin particles.
  • the release agent particles are prepared and aggregated with the resin particles. Furthermore, since the stability of the respective release agent particles is different, it is difficult to properly aggregate the two or more types of release agent particles and the resin particles, that is, to generate aggregate particles having a sharp particle size distribution. In that case, release of the release agent was likely to occur at the time of aggregation or at the same time. That is, depending on the type of the release agent, even if aggregation is possible, the release agent particles are easily released from the aggregated particles during the coalescence process because of low affinity with the resin particles.
  • the present invention solves the above-mentioned problems by providing a toner manufacturing method using release agent particles obtained by emulsifying at least the two specific types of release agents in the presence of a polycarboxylate. Can do.
  • step (1) in the method for producing a toner of the present invention, the release agent (A) and the release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) are contained in an aqueous medium.
  • the release agent particles are obtained by emulsification in the presence of a polycarboxylate.
  • the release agent particles are usually obtained as a dispersion of release agent particles containing the release agent particles, that is, as a release agent dispersion, and the release agent (A) and release agent (B) used are as follows. From the viewpoint of low-temperature fixability of the toner, those having a melting point of 100 ° C. or less are preferably used, more preferably those having a melting point of 60 to 95 ° C., and still more preferably those having a melting point of 65 to 90 ° C. In particular, in the present invention, from the above viewpoint, the release agent (B) has a melting point of 100 ° C.
  • the melting point is 75 to 90 ° C., and more preferably the melting point is 80 to 85 ° C.
  • the release agent (A) has a melting point of 100 ° C. or less, preferably 60 to 95 ° C., more preferably 65 to 90 ° C., and still more preferably 65 to 85 ° C. More preferably, the melting point is 70 to 80 ° C.
  • release agent (A) and the release agent (B) include low molecular weight polyolefins such as polyethylene, polypropylene and polybutene; silicones having a softening point by heating; oleic acid amide, erucic acid amide, Fatty acid amides such as ricinoleic acid amide and stearic acid amide; plant waxes such as carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil; animal waxes such as beeswax; montan wax, ozokerite, ceresin, paraffin Examples thereof include minerals such as wax, microcrystalline wax, and Fischer-Tropsch wax, and synthetic waxes such as petroleum wax and ester wax.
  • low molecular weight polyolefins such as polyethylene, polypropylene and polybutene
  • silicones having a softening point by heating oleic acid amide, erucic acid amide, Fatty acid amides such as ricinole
  • the release agent (B) is a release agent having a melting point higher by 5 ° C. or more than the melting point of the release agent (A).
  • the melting point is a release agent that is 6 ° C. or more higher than the release agent (A), and 8 ° C. or more higher than the release agent (A). More preferably, it is a mold release agent.
  • the upper limit of the difference between the melting points of the release agent (A) and the release agent (B) is not particularly limited, but the upper limit is preferably 30 ° C. from the viewpoint of low-temperature fixability of the toner. 20 ° C. is more preferable.
  • each of the release agent (A) and the release agent (B) is any one selected from carnauba wax, paraffin wax, polyolefin, and Fischer-Tropsch. More preferably, any of them is carnauba wax, more preferably, the release agent (B) is carnauba wax, and the release agent (A) is paraffin wax, polyolefin and One selected from Fischer-Tropsch.
  • the release agent particles in the release agent dispersion have a weight ratio of release agent (A) and release agent (B) (release agent (A) / release agent ( B)), preferably 5/95 to 95/5, more preferably 10/90 to 90/10, even more preferably 15/85 to 85/15, and 40/60 to 50 It is more preferable to contain / 50.
  • the release agent particles exhibit the effects of the present invention by containing the two types of release agents having different melting points, but may contain other release agents as long as the effects of the present invention are not impaired. .
  • the total amount of the release agent (A) and the release agent (B) in the present invention in all the release agents is preferably 90% by weight or more. 99% by weight or more is more preferable, and 100% by weight is more preferable.
  • the release agent dispersion containing the release agent particles is characterized by containing a polycarboxylate together with the release agent (A) and the release agent (B).
  • a polycarboxylate By using the polycarboxylate, moderate aggregation and coalescence of the resin particles and the release agent particles can be achieved by the interaction between the release agent (A), the release agent (B) and the polycarboxylate. It is considered possible.
  • the polycarboxylate used in the present invention include polyacrylate, salt of acrylic acid-maleic acid copolymer, polymaleate and the like from the viewpoint of cohesiveness and prevention of release during toner production. Preferred is a salt of an acrylic acid-maleic acid copolymer.
  • an alkali metal salt is preferable, and a sodium salt is preferable.
  • Specific examples include sodium polyacrylate represented by the following formulas (I) to (III), sodium salt of acrylic acid-maleic acid copolymer, sodium polymaleate and the like. More preferably, it is a sodium salt of an acid-maleic acid copolymer.
  • the degree of neutralization of the polymer end groups of the polycarboxylate is preferably from 50 to 100%, more preferably from 70 to 100%, still more preferably from 90 to 100%, from the viewpoint of the effect as a dispersant.
  • the degree of neutralization means a value measured by potentiometric titration of a polycarboxylate aqueous solution.
  • the weight average molecular weight of the polycarboxylate is preferably 3,000 to 90,000, more preferably 10,000 to 50,000, from the viewpoint of obtaining fine release agent particles. .
  • This weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the cation forming the polycarboxylate is not particularly limited, but ammonium ions and alkylammonium ions can be used in addition to alkali metal ions such as sodium and potassium, and alkaline earth metal ions such as magnesium and calcium. .
  • alkali metal ions are preferable, and sodium ions are more preferable.
  • a polycarboxylic acid salt is preferably added in an amount of 0.1 to 5 weights from the viewpoints of aggregation control during the aggregation process at the time of toner preparation and dispersibility of the release agent in the obtained toner. %, More preferably 0.5 to 2.5% by weight.
  • the release agent dispersion preferably contains 0.2 to 15 parts by weight of polycarboxylate salt, more preferably 0 to 100 parts by weight of the total release agent. 4 to 10 parts by weight, more preferably 0.6 to 6 parts by weight.
  • the release agent particles are usually obtained as a dispersion of release agent particles containing the release agent particles, that is, as a release agent dispersion.
  • the solid content concentration of the release agent in the release agent dispersion is preferably 5 to 40% by weight, more preferably 10 to 35% by weight, and more preferably 15 to 35% by weight from the viewpoints of emulsification and storage stability of the dispersion. Is more preferable.
  • the pH of the release agent dispersion is preferably 5 to 10, more preferably 6 to 9.5.
  • the release agent (A) and the release agent (B) are used from the viewpoint of aggregation control during the aggregation process at the time of toner preparation and the dispersibility of the release agent in the obtained toner.
  • the content ratio of the release agent (A) and the release agent (B) constituting the release agent particles in the release agent dispersion is the same as described above.
  • a conventionally known emulsifier can be used within a range not inhibiting the effects of the present invention. Examples of such an emulsifier include monobasic acid salts such as sodium stearate, potassium oleate, sodium dodecylbenzenesulfonate, and polymer dispersants such as polyvinyl alcohol.
  • the volume median particle size (D50) of the release agent particles is preferably 1 ⁇ m or less, more preferably 0.05 to 1 ⁇ m, and more preferably 0.1 to 0.85 ⁇ m. Further preferred.
  • the volume-median particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle size.
  • the release agent dispersion has excellent emulsification performance by having the above-described configuration.
  • the release agent particles in the release agent dispersion liquid preferably have a narrow particle size distribution from the viewpoints of toner fixing properties, durability, and aggregation properties.
  • the CV value (particle size distribution The standard deviation / volume median particle size (50) ⁇ 100) is preferably 50% or less, more preferably 45% or less, and still more preferably 40% or less.
  • the particle size and particle size distribution of the release agent particles can be specifically measured by a method described later using a light scattering particle size distribution measuring machine.
  • the release agent dispersion thus obtained has good emulsification performance and emulsification stability and is stable for a long time. Further, since the aggregation control during the aggregation process at the time of toner preparation is improved, the toner particle shape can be controlled, and the toner can be suitably used for an electrophotographic toner. Further, as will be described later, the release agent particles are used in a toner obtained by agglomerating and coalescing resin particles and release agent particles, and thereby achieve the effects of the present invention.
  • the release agent particles include a release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A). It is obtained by a method of emulsifying in the presence.
  • the release agent (A) and the release agent (B) are dispersed in an aqueous medium in the presence of a polycarboxylic acid salt, and preferably have a melting point higher than that of the release agent (B).
  • the aqueous medium is mainly composed of water. From the environmental viewpoint, the content of water in the aqueous medium is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 100% by weight.
  • components other than water in the aqueous medium include alcohol-based organic solvents such as methanol, ethanol, isopropanol, and butanol, and organic solvents that dissolve in water such as acetone, methyl ethyl ketone, and tetrahydrofuran.
  • alcohol-based organic solvents such as methanol, ethanol, isopropanol, and butanol, which are organic solvents that do not dissolve the resin, can be used.
  • the dispersion temperature is preferably 60 to 120 ° C., more preferably 80 to 110 ° C., and still more preferably 80 to 100 ° C. from the viewpoint of emulsifiability of the release agent.
  • Step (2) is a step of aggregating and coalescing the obtained release agent particles and resin particles. That is, the electrophotographic toner of the present invention is obtained by agglomerating and coalescing the aforementioned release agent particles and resin particles.
  • Resin Particles The resin particles in the present invention are obtained as a resin particle dispersion in which the resin particles are dispersed in an aqueous medium.
  • the resin particles in the present invention preferably contain polyester from the viewpoint of low-temperature fixability and durability of the toner. From the same viewpoint, the polyester content is preferably 50% by weight or more, more preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and substantially 100% by weight. Even more preferably.
  • known resins used for toners such as polyester, styrene acrylic copolymer, epoxy, polycarbonate, polyurethane and the like can be used.
  • carboxylic acids include dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, adipic acid and succinic acid, alkyl groups having 1 to 20 carbon atoms such as dodecenyl succinic acid and octenyl succinic acid, or 2 to 2 carbon atoms.
  • Divalent carboxylic acids such as succinic acid substituted with 20 alkenyl groups, trivalent or higher polyvalent carboxylic acids such as trimellitic acid and pyromellitic acid, anhydrides of these acids, and alkyls of these acids (carbon ## STR1 ## Examples include esters.
  • This carboxylic acid component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the alcohol component examples include bisphenol A such as polyoxypropylene-2,2-bis (4-hydroxyphenyl) propane and polyoxyethylene-2,2-bis (4-hydroxyphenyl) propane.
  • Alkylene (2 to 3 carbon atoms) oxide (average added mole number 1 to 16) adduct, hydrogenated bisphenol A, ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,3-butanediol, Examples include 1,6-hexanediol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, or an alkylene (2 to 4 carbon) oxide (average added mole number 1 to 16) adduct thereof. You may use the said alcohol in combination of 2 or more type.
  • the polyester can be produced, for example, by subjecting an alcohol component and a carboxylic acid component to condensation polymerization at a temperature of about 180 to 250 ° C. in an inert gas atmosphere, if necessary, using an esterification catalyst.
  • an esterification catalyst such as a tin compound such as dibutyltin oxide or tin dioctylate or a titanium compound such as titanium diisopropylate bistriethanolamate can be used.
  • the amount of the esterification catalyst used is preferably 0.01 to 1 part by weight, more preferably 0.1 to 0.6 part by weight based on 100 parts by weight of the total amount of the alcohol component and the carboxylic acid component.
  • the polyester may be either a crystalline polyester or an amorphous polyester, but is preferably an amorphous polyester from the viewpoint of toner fixability and chargeability.
  • the “amorphous polyester” means that the crystallinity index defined by the ratio of the softening point to the endothermic maximum peak temperature (softening point / endothermic maximum peak temperature) is preferably larger than 1.3 and not larger than 4 More preferably, it is 1.5-3.
  • the softening point of the polyester is preferably 70 to 165 ° C, more preferably 90 to 165 ° C, and the glass transition point is preferably 50 to 85 ° C, and 55 to 85 ° C.
  • the acid value is preferably 6 to 35 mgKOH / g, more preferably 10 to 35 mgKOH / g, and further preferably 15 to 35 mgKOH / g.
  • the desired softening point and acid value can be obtained by adjusting the charging ratio of alcohol and carboxylic acid, the temperature of condensation polymerization, and the reaction time.
  • the polyester includes not only unmodified polyester but also polyester modified to such an extent that its properties are not substantially impaired.
  • the modified polyester include grafting and blocking with phenol, urethane, epoxy and the like by the methods described in JP-A-11-133668, JP-A-10-239903, JP-A-8-20636, and the like.
  • a composite resin having two or more kinds of resin units including a polyester unit.
  • the softening point, glass transition point, and acid value of the resin constituting the resin particles are the softening point, glass transition point, acid value as a mixture of each resin.
  • Each value is preferably the same value as that of the polyester.
  • the resin constituting the resin particles can contain two kinds of polyesters having different softening points from the viewpoint of low-temperature fixability, hot offset resistance, and durability of the toner.
  • the softening point of polyester (I) is preferably 70 ° C. or higher and lower than 115 ° C.
  • the softening point of the other polyester (II) is preferably 115 ° C. or higher and 165 ° C. or lower.
  • the weight ratio (I / II) of polyester (I) to polyester (II) is preferably 10/90 to 90/10, more preferably 50/50 to 90/10.
  • the resin constituting the resin particles is preferably dispersed in an aqueous medium.
  • the aqueous medium in which the resin is dispersed is mainly composed of water, and the same one as that used in the above-mentioned release agent dispersion can be used.
  • additives such as a colorant and a charge control agent can be contained together with the resin as necessary.
  • the colorant is not particularly limited, and any known colorant can be used. Specifically, carbon black, inorganic complex oxide, chrome yellow, benzidine yellow, pyrazolone orange, vulcan orange, watch young red, brilliantamine 3B, brilliantamine 6B, lake red C, bengal, phthalocyanine blue, phthalocyanine green, etc.
  • Various pigments and various dyes such as acridine series, azo series, benzoquinone series, azine series, anthraquinone series, indico series, phthalocyanine series, aniline black series, etc. are used alone or in combination of two or more. Can do.
  • the content of the colorant is preferably 20 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin.
  • Examples of the charge control agent include a metal salt of benzoic acid, a metal salt of salicylic acid, a metal salt of alkyl salicylic acid, a metal salt of catechol, a metal-containing bisazo dye, and a quaternary ammonium salt. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the charge control agent in the toner is preferably 10 parts by weight or less, and more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin.
  • the resin particles when the resin particles are produced as a dispersion, from the viewpoint of improving the dispersion stability of the resin, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the resin. More preferably, 0.1 to 3 parts by weight, and still more preferably 0.5 to 2 parts by weight of a surfactant is present.
  • the surfactant include anionic surfactants such as sulfate ester, sulfonate, and soap; cationic surfactants such as amine salt type and quaternary ammonium salt type; polyethylene glycol type and alkylphenol ethylene Nonionic surfactants such as oxide adducts and polyhydric alcohols can be mentioned.
  • ionic surfactants such as anionic surfactants and cationic surfactants are preferable.
  • the nonionic surfactant is preferably used in combination with an anionic surfactant or a cationic surfactant.
  • the said surfactant may be used individually by 1 type, you may use it in combination of 2 or more type.
  • anionic surfactant examples include dodecyl benzene sulfonic acid, sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, sodium alkyl ether sulfate, and the like. Among these, sodium dodecylbenzenesulfonate is preferable.
  • Specific examples of the cationic surfactant include alkylbenzene dimethyl ammonium chloride, alkyl trimethyl ammonium chloride, distearyl ammonium chloride and the like.
  • Nonionic surfactants include, for example, polyoxyethylene nonylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl aryl ethers such as polyoxyethylene lauryl ether, polyoxyethylene alkyl ethers, polyethylene glycol mono Examples thereof include polyoxyethylene fatty acid esters such as laurate, polyethylene glycol monostearate, and polyethylene glycol monooleate, and oxyethylene / oxypropylene block copolymers.
  • the resin particles When preparing the resin particles as a dispersion, it is preferable to add an aqueous alkaline solution to the resin and disperse the resin and additives used as necessary.
  • the aqueous alkaline solution preferably has a concentration of 1 to 20% by weight, more preferably 1 to 10% by weight, and even more preferably 1.5 to 7.5% by weight.
  • the alkali to be used it is preferable to use an alkali that enhances the surface activity when the resin becomes a salt. Specific examples thereof include monovalent alkali metal hydroxides such as potassium hydroxide and sodium hydroxide.
  • the resin particles After the dispersion, preferably after neutralization at a temperature above the glass transition point of the resin, the resin particles can be produced by emulsification by adding an aqueous medium at a temperature above the glass transition point of the resin. .
  • the addition rate of the aqueous medium is preferably 0.1 to 50 g / min, more preferably 0.5 to 40 g / min, and further preferably 1 to 30 g / min per 100 g of resin from the viewpoint that emulsification can be effectively carried out. Minutes. This addition rate is generally maintained until an O / W type emulsion is substantially formed, and there is no particular limitation on the addition rate of water after forming a dispersion of O / W type resin particles.
  • the aqueous medium used for producing the resin particles as a dispersion include the same aqueous medium used for dispersing the resin constituting the resin particles described above, preferably deionized water or distilled water. It is.
  • the amount of the aqueous medium is preferably from 100 to 2,000 parts by weight, more preferably from 150 to 1,500 parts by weight, based on 100 parts by weight of the resin, from the viewpoint of obtaining uniform aggregated particles in the subsequent aggregation treatment.
  • the solid content concentration of the resin particle dispersion is preferably 7 to 50% by weight, more preferably 7 to 40% by weight, and even more preferably 10%.
  • the amount of aqueous medium is selected so that it is 35% by weight.
  • the solid content includes non-volatile components such as resins, pigments, and nonionic surfactants.
  • the temperature in the case of emulsification is the range more than the glass transition point of the resin which comprises a resin particle, and below a softening point from a viewpoint of preparing a fine resin particle.
  • the temperature is equal to or higher than (the glass transition point of the resin constituting the resin particle + 10 ° C.) (meaning “temperature higher by 10 ° C. than the glass transition point”, hereinafter the same notation is similarly understood). It is also preferable that the temperature is not higher than (softening point of the resin ⁇ 5 ° C.).
  • the volume median particle size (D50) of the resin particles thus obtained is preferably 0.02 to 2 ⁇ m, more preferably 0.05 to 1 ⁇ m in order to perform uniform aggregation in the subsequent aggregation process. More preferably, it is 0.05 to 0.6 ⁇ m.
  • Other methods for obtaining resin particles as a dispersion include, for example, a step of emulsifying and dispersing a polycondensable monomer as a target resin particle raw material in an aqueous medium by, for example, mechanical shearing or ultrasonic waves. A method is mentioned. At this time, if necessary, additives such as a polycondensation catalyst and a surfactant are also added to the water-soluble medium. And polycondensation is advanced by giving a heating etc. with respect to the obtained solution, for example.
  • the resin is polyester
  • the above-mentioned polyester polycondensable monomer and polycondensation catalyst can be used, and the above-mentioned surfactants can be used in the same manner.
  • polycondensation resins are accompanied by dehydration at the time of polymerization, and thus generally do not easily proceed in an aqueous medium.
  • a polycondensable monomer is emulsified in an aqueous medium together with a surfactant that forms micelles in the aqueous medium, the monomer is placed in a micro hydrophobic field in the micelle.
  • the dehydration reaction is facilitated, and the produced water can be discharged into an aqueous medium outside the micelles to allow the polymerization to proceed.
  • a resin particle dispersion in which the resin particles of the polycondensation resin are dispersed in an aqueous medium with low energy is obtained.
  • the release agent particles and the resin particles obtained as described above are aggregated and united. Specifically, the release agent dispersion and the resin are combined.
  • the mixing ratio of the release agent particles and the resin particles when mixing the release agent dispersion and the resin particle dispersion, or the content ratio of the release agent and the resin particles in the obtained agglomerated particles depends on the low temperature fixability of the toner. From the viewpoint of ensuring storage stability, the weight ratio of the release agent to the resin (release agent / resin) is preferably 1/99 to 15/85, and preferably 2/98 to 12/88. Is more preferably 3/97 to 10/90.
  • Examples of the flocculant include organic salts and polyethyleneimine for organic flocculants, and inorganic metal salts, inorganic ammonium salts, metal complexes, and the like for inorganic flocculants.
  • Examples of the organic salt include sodium acetate and ammonium acetate.
  • Examples of the inorganic metal salt include sodium sulfate, sodium chloride, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride, and aluminum sulfate. Examples thereof include inorganic metal salt polymers such as aluminum.
  • Examples of the inorganic ammonium salt include ammonium sulfate, ammonium chloride, and ammonium nitrate.
  • the monovalent salt means that the valence of the metal ion or cation constituting the salt is 1.
  • an inorganic flocculant such as the inorganic metal salt or ammonium salt is used.
  • a water-soluble nitrogen-containing compound having a molecular weight of 350 or less is preferably used.
  • the water-soluble nitrogen-containing compound having a molecular weight of 350 or less is preferably an acidic compound from the viewpoint of rapidly agglomerating primary particles, and a 10% by weight aqueous solution having a pH value of 4 to 6 at 25 ° C. Of these, 4.2 to 6 are more preferable. Further, from the viewpoint of maintaining the chargeability of the toner at high temperature and high humidity, the molecular weight is preferably 350 or less, and more preferably 300 or less.
  • water-soluble nitrogen-containing compounds examples include ammonium salts such as ammonium halide, ammonium sulfate, ammonium acetate, and ammonium salicylate, and quaternary ammonium salts such as tetraalkylammonium halide.
  • ammonium sulfate pH value of a 10 wt% aqueous solution at 25 ° C., hereinafter simply referred to as pH value: 5.4
  • ammonium chloride pH value: 4.6
  • tetraethylammonium bromide pH value: 5.
  • tetrabutylammonium bromide tetrabutylammonium bromide
  • the amount of the flocculant used varies depending on the valency of the flocculant, but generally may be an amount that makes the concentration of the flocculant in the aggregated particle dispersion liquid 0.0001 to 10 mol / L.
  • 50 parts by weight or less is preferable, 40 parts by weight or less is more preferable, and 30 parts by weight or less is more preferable.
  • 1 weight part or more is preferable with respect to 100 weight part of resin, 3 weight part or more is more preferable, and 5 weight part or more is further more preferable.
  • the amount of the flocculant used is preferably 1 to 50 parts by weight, more preferably 3 to 40 parts by weight, and even more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the resin.
  • the temperature in the agglomerated system is (temperature of the glass transition point of the resin constituting the resin particles + 25) ° C. or less. From the viewpoint of suppressing coarse particles, more preferably, (glass transition point ⁇ 30) ° C. to (glass transition point + 25 ° C.), more preferably 25 ° C. to (glass transition point + 15) ° C., even more Preferably, it is in the range of 35 ° C. to (glass transition point + 5) ° C.
  • the flocculant can be added as an aqueous medium solution.
  • the flocculant may be added at once, or may be added continuously or intermittently. Moreover, it can also be divided and added. It is preferable to sufficiently stir at the time of adding the flocculant and after completion of the addition.
  • the glass transition point of the aggregated particles in the aggregated particle dispersion is preferably 50 to 80 ° C., more preferably 52 to 75 ° C., and further preferably 55 to 70 ° C. from the viewpoint of storage stability of the toner. It is.
  • the aggregated particles contained in the aggregated particle dispersion have a volume median particle size (D50) of 1 to 10 ⁇ m, more preferably 2 to 9 ⁇ m, and still more preferably 2 to 2 ⁇ m, from the viewpoint of reducing the particle size of the obtained toner. It is preferably in the range of 5 ⁇ m.
  • the variation coefficient (CV value) of the particle size distribution is preferably 30% or less, more preferably 28% or less, and further preferably 25% or less.
  • the solid content concentration in the dispersion of the aggregated particles is preferably 5 to 50% by weight, more preferably 5 to 40% by weight from the viewpoint of controlling the aggregation of the aggregated particle dispersion.
  • the charge amount between the respective colors is set to the same level
  • the aggregated particle dispersion is added to the resin fine particle dispersion. It is preferable to manufacture the toner through a step of adding the resin at once or divided into a plurality of times to obtain resin fine particle-attached aggregated particles.
  • resin fine particles adhered to the aggregated particles with respect to the resin particles constituting the aggregated particles are hereinafter simply referred to as “resin fine particles”.
  • the amount of each resin fine particle is preferably the same amount, and when the resin fine particles are added in a divided manner, the amount of each resin fine particle is the same. An amount is preferred.
  • the number of times is not particularly limited, but is preferably 2 to 10 times and more preferably 2 to 8 times from the viewpoint of the particle size distribution of the formed aggregated particles. preferable.
  • the resin fine particles added to the aggregated particles are not particularly limited, and for example, those prepared in the same manner as the resin particles in the present invention can be used.
  • the resin fine particles may be the same as or different from the resin particles in the present invention.
  • the resin fine particles are preferably in the present invention.
  • the resin particles are resin fine particles having different physical properties such as a glass transition point, a softening point, and a molecular weight.
  • the addition timing of the resin fine particles is not particularly limited as long as it can be adhered to the aggregated particles, but from the viewpoint of controlling the particle diameter of the resin fine particle-adhered aggregated particles, after the first addition of the coagulant, the process of producing the coalesced particles Is preferably between.
  • the mixing ratio of the aggregated particles to the resin fine particles (aggregated particles / resin fine particles) in the aggregated particle dispersion is preferably 0.1 to 3.0 by weight from the viewpoint of low-temperature fixability and storage stability of the toner. More preferably, it is 0.2 to 2.5, and still more preferably 0.3 to 2.0. From the viewpoint of high image quality, the volume median particle size (D50) of the resin fine particle-attached aggregated particles is preferably 1 to 10 ⁇ m, more preferably 2 to 10 ⁇ m, and further preferably 3 to 9 ⁇ m.
  • an aggregation terminator before coalescence from the viewpoint of preventing further unnecessary aggregation after aggregation or after the addition of resin fine particles.
  • a surfactant is preferably used as the aggregation terminator, but an anionic surfactant is more preferably used.
  • anionic surfactants it is more preferable to add at least one selected from the group consisting of alkyl ether sulfates, alkyl sulfates, and linear alkylbenzene sulfonates.
  • the aggregation terminator may be used singly or in combination of two or more.
  • the addition amount of the aggregation terminator is selected from the viewpoints of aggregation termination properties and persistence to the toner, the resin constituting the aggregated particles or the resin constituting the resin particle-attached aggregated particles (that is, the resin and resin fine particles constituting the aggregated particles)
  • the total amount of the resin constituting the resin is preferably 0.1 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and still more preferably 0.1 to 8 parts by weight with respect to 100 parts by weight.
  • the aggregation terminator may be added in any form as long as it is the above addition amount, but it is preferably added in an aqueous solution from the viewpoint of productivity. Each said salt may be added at once, and may be added intermittently or continuously.
  • the aggregated particles or resin fine particle-attached aggregated particles are produced, they are fused and combined to obtain combined particles.
  • the resin fine particle adhering aggregated particles when coalesced, the resin particles and release agent particles in the aggregated particles, the resin particles and release agent particles in the resin fine particle adhering aggregate particles, the resin fine particles, and the resin fine particle adhering
  • the aggregated particles and the resin fine particles are mainly physically attached, and the aggregated particles are united together and the resin fine particles are combined with each other, and the aggregated particles and the resin fine particles are combined. It is presumed that the particles are fused together to form a unified particle.
  • the heating temperature at the time of combination is a temperature that is not less than the glass transition point of aggregated particles and not more than 100 ° C., more preferably a temperature that is not less than the glass transition point of aggregated particles and not more than 90 ° C., The temperature is preferably such that it is not less than the glass transition point of the aggregated particles and not more than 85 ° C. At temperatures lower than this, fusion may not proceed. If the temperature is higher than this, the release agent may be released from the aggregated particles.
  • the heating temperature is not less than the glass transition point of the resin constituting the resin fine particles and the softening point of the resin +20 from the viewpoint of target shape control and fusing property of the toner. ° C) or less, more preferably (glass transition point of the resin + 5 ° C.) or more and (softening point of the resin + 15 ° C.) or less, more preferably (glass transition point of the resin + 10 ° C.) or more and ( The softening point of the resin + 10 ° C. or lower.
  • the obtained coalesced particles become toner particles through a solid-liquid separation process such as filtration, a washing process, and a drying process.
  • the drying step is a step of obtaining toner particles by drying the coalesced particles obtained in the coalescing step through a solid-liquid separation step such as filtration and a washing step as necessary.
  • a drying method any method such as a vibration type fluidized drying method, a spray drying method, a freeze drying method, a flash jet method, or the like can be adopted.
  • the water content after drying of the toner particles is preferably adjusted to 1.5% by weight or less, more preferably 1.0% by weight or less, from the viewpoint of chargeability of the toner.
  • the volume median particle size (D50) of the coalesced particles and toner particles is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and even more preferably 3 to 8 ⁇ m. Further, the CV value of the coalesced particles and toner particles described above is preferably 30% or less, and more preferably 25% or less.
  • the particle size and particle size distribution of the toner (particles) can be measured by the method described below.
  • the electrophotographic toner of the present invention is obtained by the toner production method.
  • the softening point of the electrophotographic toner of the present invention is preferably from 60 to 140 ° C., more preferably from 65 to 130 ° C., still more preferably from 70 to 120 ° C., from the viewpoint of low-temperature fixability.
  • the glass transition point is preferably from 30 to 80 ° C., more preferably from 40 to 70 ° C., from the viewpoint of toner durability.
  • the measuring method of a softening point and a glass transition point is based on these measuring methods in resin.
  • the content of the release agent in the electrophotographic toner of the present invention is preferably 0.5 to 20 parts by weight from the viewpoint of toner fixability with respect to 100 parts by weight of the binder resin in the toner.
  • the amount is preferably 1 to 18 parts by weight, more preferably 1.5 to 15 parts by weight.
  • the content of the colorant is preferably 20 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the binder resin in the toner.
  • the charge control agent is preferably 10 parts by weight or less, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the binder resin in the toner.
  • the obtained toner particles may be used as they are, or a toner obtained by adding an additive such as a fluidizing agent to the toner particle surface as an external additive may be used as the toner.
  • an additive such as a fluidizing agent
  • known fine particles such as inorganic fine particles such as silica fine particles, titanium oxide fine particles, and alumina fine particles whose surface is hydrophobized, and polymer fine particles such as polymethyl methacrylate and silicone resin can be used.
  • the amount of the external additive is preferably 1 to 5 parts by weight, more preferably 1.5 to 3.5 parts by weight, based on 100 parts by weight of the toner particles before processing with the external additive.
  • the toner for electrophotography obtained by the present invention can be used as a one-component developer or as a two-component developer by mixing with a carrier.
  • each property value was measured and evaluated by the following method.
  • [Acid value of resin] Measured according to JIS K0070.
  • GPC gel permeation chromatography
  • Measurement is carried out under the following conditions using a measuring apparatus: CO-8010 (manufactured by Tosoh Corporation). The molecular weight of the sample is calculated based on a calibration curve prepared in advance using polyethylene glycol as the standard substance.
  • Eluent 0.2 mol / L phosphate buffer / acetonitrile (9/1)
  • Flow rate 1.0 mL / min
  • Injection volume 0.1 mL
  • [Particle size of resin particles, resin particles and release agent particles] (1) Measuring device: Laser scattering type particle size measuring machine (Horiba, LA-920) (2) Measurement conditions: Distilled water is added to the measurement cell, and the volume-median particle size (D50) is measured at a temperature where the absorbance falls within an appropriate range.
  • the particle size distribution is represented by a CV value (standard deviation of particle size distribution / volume median particle size (D50) ⁇ 100).
  • the particle size distribution is represented by a CV value (standard deviation of particle size distribution / volume median particle size (D50) ⁇ 100).
  • the fine powder amount is represented by the content ratio (number%) of components having a particle size of 2 ⁇ m or less in the number average particle size.
  • Polyester production example 1 Polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane 8,320 g, Polyoxyethylene (2.0) -2,2-bis (4-hydroxyphenyl) propane 80 g, terephthalic acid 1,592 g and 32 g of dibutyltin oxide (esterification catalyst) were reacted at 230 ° C. under normal pressure (101.3 kPa) for 5 hours under a nitrogen atmosphere, and further reacted under reduced pressure (8.3 kPa). After cooling to 210 ° C., 1,672 g of fumaric acid and 8 g of hydroquinone were added and reacted for 5 hours, and further reacted under reduced pressure to obtain polyester A. Polyester A had a softening point of 110 ° C., a glass transition point of 66 ° C., and an acid value of 24.4 mgKOH / g.
  • Polyester B had a softening point of 121 ° C, a glass transition point of 65 ° C, and an acid value of 21.0 mgKOH / g.
  • Resin particle dispersion production example 1 (Production of resin particle dispersion A) In a 2 liter stainless steel kettle, 390.0 g of polyester A, 210.0 g of polyester B, 45 g of copper phthalocyanine pigment (ECB-301: manufactured by Dainichi Seika Kogyo Co., Ltd.), and an anionic surfactant (“Neo” manufactured by Kao Corporation) Perex G-15 “Sodium dodecylbenzenesulfonate 15 wt% aqueous solution) 20.0 g, nonionic surfactant“ Emulgen 430 (manufactured by Kao) ”polyoxyethylene (26 mol) oleyl ether (HLB: 16.2) 6 0.08 g and 58.5% by weight potassium hydroxide aqueous solution 278.5 g were dispersed at 95 ° C.
  • the temperature was maintained at 95 ° C. for 1 hour.
  • the resin particle dispersion A was atomized through a 200 mesh (mesh: 105 ⁇ m) wire mesh.
  • the resin particles in the obtained resin particle dispersion A had a volume median particle size (D50) of 180 nm, a CV value of 28%, and a solid content concentration of 31% by weight.
  • Resin particle dispersion production example 2 (Production of resin particle dispersion B) In a 2 liter stainless steel kettle, 390.0 g of polyester A, 210.0 g of polyester B, and an anionic surfactant (“Neoperex G-15” sodium dodecylbenzenesulfonate 15 wt% aqueous solution manufactured by Kao Corporation) 20. 0 g, nonionic surfactant “Emulgen 430 (manufactured by Kao)” polyoxyethylene (26 mol) oleyl ether (HLB: 16.2) 6.0 g, and 58.5% by weight potassium hydroxide aqueous solution 278.5 g The mixture was dispersed at 95 ° C. with stirring of 200 r / min.
  • the mixture was held for 2 hours under stirring at 200 r / min with a Kai-type stirrer. Subsequently, deionized water was added dropwise at a rate of 6 g / min while stirring at 200 r / min with a Kai-type stirrer. The system temperature was maintained at 95 ° C. After cooling, the resin particle dispersion B was atomized through a 200 mesh (mesh: 105 ⁇ m) wire mesh. The resin particles in the obtained resin particle dispersion B had a volume median particle size (D50) of 141 nm, a CV value of 24%, and a solid content concentration of 31% by weight.
  • D50 volume median particle size
  • Release Agent Dispersion Production Example 1 (Production of Release Agent Dispersion A) In a 1 liter beaker, 400 g of deionized water, an aqueous solution of sodium salt of acrylic acid-maleic acid copolymer as an aqueous solution of sodium polycarboxylate, chemical formula (II), 7.5 g of “Poise 521” manufactured by Kao Corporation, weight average molecular weight: 2.0 ⁇ 10 4 , effective concentration 40% by weight) was dissolved, and then carnauba wax (manufactured by Kato Yoko Co., melting point 83) was dissolved therein.
  • Release agent dispersion production example 2 (Production of release agent dispersion B)
  • paraffin wax HNP-9 paraffin wax HNP-51 (manufactured by Nippon Seiki Co., Ltd., melting point 77 ° C.) was used, and an aqueous sodium salt solution of acrylic acid-maleic acid copolymer
  • a sodium polyacrylate aqueous solution (chemical formula (I), “Poise 530” manufactured by Kao Corporation, weight average molecular weight 3.8 ⁇ 10 4 , effective concentration 40% by weight) was used instead of An agent dispersion B was obtained.
  • Release agent dispersion production example 3 (Production of release agent dispersion C) In Release Agent Dispersion Production Example 1, release agent dispersion C was prepared in the same manner except that ester wax WEP-3 (manufactured by NOF Corporation, melting point 73 ° C.) was used instead of paraffin wax HNP-9. Obtained.
  • Comparative production example 1 In the release agent dispersion production example 1, 100 g of carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.) is used as a release agent without using paraffin wax HNP-9, and an acrylic acid-maleic acid copolymer. In the same manner, an aqueous sodium polyacrylate solution (compound of the above formula (I), “Poise 530” manufactured by Kao Corporation, weight average molecular weight 3.8 ⁇ 10 4 , effective concentration 40% by weight) was used instead of Although the dispersion treatment was performed, the viscosity increased and a dispersion liquid could not be obtained.
  • an aqueous sodium polyacrylate solution compound of the above formula (I), “Poise 530” manufactured by Kao Corporation, weight average molecular weight 3.8 ⁇ 10 4 , effective concentration 40% by weight
  • Comparative production example 2 In the release agent dispersion production example 1, dispersion treatment was performed in the same manner using 100 g of paraffin wax HNP-9 (manufactured by Nippon Seiki Co., Ltd., melting point 75 ° C.) without using carnauba wax as the release agent. The release agent and water were separated, and a dispersion was not obtained.
  • paraffin wax HNP-9 manufactured by Nippon Seiki Co., Ltd., melting point 75 ° C.
  • release agent dispersion E 100 g of carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.) is used as a release agent without using paraffin wax HNP-9, and an acrylic acid-maleic acid copolymer.
  • the release agent dispersion E was used in the same manner except that 3.6 g latemul ASK (dipotassium alkenyl succinate active ingredient concentration 28%, manufactured by Kao) was used instead of the sodium salt aqueous solution “Poise 521” (manufactured by Kao). Got.
  • Example 1 250 g of resin particle dispersion A, 58 g of deionized water, and 41 g of release agent dispersion A were placed in a 2-liter four-necked flask equipped with a dehydrating tube, a stirrer, and a thermocouple, and mixed at room temperature (25 ° C.). Next, an aqueous solution in which 18.2 g of ammonium sulfate was dissolved in 162 g of deionized water was dropped into this mixture over 30 minutes while stirring with a Kai-type stirrer. Next, the obtained mixed solution was heated up to 55 ° C. and held at 55 ° C. to form aggregated particles having a volume median particle size of 4.0 ⁇ m.
  • toner particles With respect to 100 parts by weight of the toner particles, 2.5 parts of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd .; RY50, number average particle size; 0.04 ⁇ m), hydrophobic silica (manufactured by Cabot; Cabo Seal TS720, number average particle size) 0.012 ⁇ m) and 0.8 part of organic fine particles (manufactured by Nippon Paint Co., Ltd .; Finesphere P2000, number average particle size; 0.5 ⁇ m) were externally added with a Henschel mixer, and a 150 mesh sieve was obtained. The fine particles that passed through were used as cyan toner.
  • hydrophobic silica manufactured by Nippon Aerosil Co., Ltd .
  • RY50 number average particle size; 0.04 ⁇ m
  • hydrophobic silica manufactured by Cabot
  • Cabo Seal TS720 number average particle size
  • organic fine particles manufactured by Nippon Paint Co., Ltd .
  • Example 2 A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion B was used instead of 41 g of the release agent dispersion A.
  • Example 3 A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion C was used instead of 41 g of the release agent dispersion A.
  • Comparative Example 1 A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion D was used instead of 41 g of the release agent dispersion A.
  • Comparative Example 2 A toner was obtained in the same manner as in Example 1, except that 24 g of the release agent dispersion E and 17 g of the release agent dispersion F were used instead of 41 g of the release agent dispersion A. With respect to the toners obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the following methods were used to evaluate the aggregation and temporary fine powder, the state of the supernatant, the fixability and the storage stability in the toner production process. . The results are shown in Table 2.
  • the fixing rate is 100, and the lower the value, the lower the fixability.
  • the fixing rate is 90 or more, the fixing property is good.
  • the test is performed at each fixing temperature in increments of 5 ° C., and the test is performed from a temperature at which a cold offset occurs or a temperature at which the fixing rate is less than 90 to a temperature at which a hot offset occurs.
  • the cold offset refers to a phenomenon in which the toner on the unfixed image does not melt sufficiently when the fixing temperature is low, and the toner adheres to the fixing roller.
  • the hot offset refers to a high fixing temperature.
  • Three different sieve openings are set in the order of 250 ⁇ m in the upper stage, 150 ⁇ m in the middle stage, and 75 ⁇ m in the lower stage on the powder tester's shaking table, and 2 g of toner is placed on the shaker for 60 seconds, and the remaining toner weight on each sieve. Measure. The measured toner weight is applied to the following equation and calculated to obtain the degree of aggregation [%].
  • the toner for electrophotography suitably used for electrophotography, electrostatic recording method, electrostatic printing method, etc.can be obtained.

Abstract

Disclosed are: a toner for electrophotography, which has excellent storage stability and excellent fixability including fixability at low temperatures and hot offset resistance; and a method for producing the toner for electrophotography. Specifically disclosed is a method for producing a toner, which comprises: (1) a step in which release agent particles are obtained by emulsifying (A) a release agent and (B) a release agent having a melting point higher than that of the release agent (A) by 5°C or more in an aqueous medium in the presence of a polycarboxylic acid salt; and (2) a step in which the thus-obtained release agent particles and resin particles are agglomerated and coalesced together.

Description

トナーの製造方法Toner production method
 本発明は、トナーの製造方法、及び該製造方法により得られた電子写真用トナーに関する。 The present invention relates to a toner manufacturing method and an electrophotographic toner obtained by the manufacturing method.
 電子写真用トナーの分野においては、電子写真システムの発展に伴い、高画質化及び高速化に対応したトナーの開発が要求されている。高画質化の観点からは、トナーを小粒径化する必要があり、従来の溶融混練法に代わり、重合法や乳化分散法などのケミカル法により得られる、いわゆるケミカルトナーが開示されている。さらに、高速化の観点からは定着性における低温定着性改善のため、離型剤を内添したケミカルトナーが報告されているが、ケミカル法では溶融混練粉砕法と異なり混練工程がないため、離型剤のトナー中の分散性が十分ではなかった。
 特許文献1では、この点を改良した離型剤分散液、すなわち、離型剤、及びアルキル基及び/又はアルケニル基を有する二塩基酸もしくはその塩を含有するトナー用離型剤分散液が開示されている。一方、特許文献2、3ではさらに定着性における耐ホットオフセット性を高める観点から、2種類以上の離型剤を溶融混合して分散液として使用する技術が開示されている。
In the field of electrophotographic toner, with development of an electrophotographic system, development of a toner corresponding to high image quality and high speed is required. From the viewpoint of high image quality, it is necessary to reduce the particle size of the toner, and so-called chemical toners obtained by a chemical method such as a polymerization method or an emulsification dispersion method instead of the conventional melt-kneading method are disclosed. Furthermore, from the viewpoint of speeding up, a chemical toner containing a release agent has been reported to improve low-temperature fixability in fixability. However, unlike the melt kneading and pulverizing method, the chemical method does not have a kneading step. The dispersibility of the mold in the toner was not sufficient.
Patent Document 1 discloses a release agent dispersion having improved this point, that is, a release agent dispersion for toner containing a release agent and a dibasic acid having an alkyl group and / or an alkenyl group or a salt thereof. Has been. On the other hand, Patent Documents 2 and 3 disclose a technique in which two or more types of release agents are melt-mixed and used as a dispersion from the viewpoint of further improving hot offset resistance in fixability.
特開2008-33139号公報JP 2008-33139 A 特開2006-267280号公報JP 2006-267280 A 特開2007-218961号公報JP 2007-218961 A
 しかしながら、樹脂粒子と離型剤粒子を凝集及び合一させてケミカルトナーを得る際、広い定着可能温度領域を得るために2種類以上の離型剤粒子を使用する場合、これを樹脂粒子と共に凝集させると、離型剤粒子の安定性がそれぞれ異なるため、樹脂粒子との凝集ができないか、あるいは、粒度分布が非常にブロードな凝集となってしまう。
 また、一方で離型剤の種類によっては、樹脂粒子との親和性が低く、例え凝集ができても凝集工程後の合一工程時に凝集粒子から離型剤粒子が遊離してしまう問題が発生することがある。
 すなわち、本発明は、樹脂粒子と離型剤粒子を凝集及び合一させて得られるケミカルトナーの製造において、2種類以上の離型剤を用いた場合でも、トナーの製造時における小粒径での凝集制御が可能で、合一工程時の離型剤の遊離がないトナーの製造方法を提供することを課題とする。
 また、本発明は、低温定着性及び耐ホットオフセット性を含む定着性及び保存安定性に優れた電子写真用トナーを提供することを課題とする。
However, when a chemical toner is obtained by agglomerating and coalescing resin particles and release agent particles, when two or more types of release agent particles are used in order to obtain a wide fixable temperature range, these are agglomerated together with the resin particles. In this case, the release agent particles have different stability, so that they cannot be aggregated with the resin particles, or the particle size distribution is very broad.
On the other hand, depending on the type of release agent, the affinity with resin particles is low, and even if aggregation is possible, there is a problem that the release agent particles are released from the aggregated particles during the coalescence process after the aggregation process. There are things to do.
That is, the present invention provides a small particle diameter at the time of toner production even when two or more types of release agents are used in the production of a chemical toner obtained by agglomerating and coalescing resin particles and release agent particles. It is an object of the present invention to provide a toner manufacturing method that can control the aggregation of the toner and does not release the release agent during the coalescence process.
Another object of the present invention is to provide an electrophotographic toner excellent in fixability and storage stability including low-temperature fixability and hot offset resistance.
  本発明は、
[1](1)離型剤(A)、及び該離型剤(A)の融点より5℃以上高い融点を有する離型剤(B)を、水系媒体中、ポリカルボン酸塩の存在下で乳化して離型剤粒子を得る工程、及び(2)得られた離型剤粒子と樹脂粒子を凝集及び合一させる工程を含むトナーの製造方法、及び
[2]前記[1]に記載の製造方法で得られる電子写真用トナー、
に関する。
The present invention
[1] (1) A release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) in an aqueous medium in the presence of a polycarboxylic acid salt And (2) a toner production method comprising a step of agglomerating and coalescing the obtained release agent particles and resin particles, and [2] described in [1] above. An electrophotographic toner obtained by the production method of
About.
 本発明により、トナー製造時における小粒径での凝集制御、すなわち、粒度分布がシャープな凝集粒子を生成することができ、合一工程時に離型剤の遊離がないトナーの製造方法及を提供することができる。
 また、本発明により、低温定着性及び耐ホットオフセット性、すなわち定着性及び保存安定性に優れた電子写真用トナーを提供することができる。
The present invention provides an agglomerated control with a small particle size at the time of toner production, that is, an agglomerated particle having a sharp particle size distribution, and a toner production method that does not release a release agent during the coalescence process. can do.
Further, according to the present invention, it is possible to provide an electrophotographic toner excellent in low-temperature fixability and hot offset resistance, that is, fixability and storage stability.
[トナーの製造方法]
 本発明のトナーの製造方法は、(1)離型剤(A)、及び該離型剤(A)の融点より5℃以上高い融点を有する離型剤(B)を、水系媒体中、ポリカルボン酸塩の存在下で乳化して離型剤粒子を得る工程、及び(2)得られた離型剤粒子と樹脂粒子を凝集及び合一させる工程を含む。
[Toner Production Method]
The toner production method of the present invention comprises (1) a release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) in an aqueous medium. Emulsifying in the presence of a carboxylate to obtain release agent particles, and (2) a step of aggregating and coalescing the obtained release agent particles and resin particles.
 すなわち、従来、樹脂粒子と離型剤粒子を凝集及び合一させて得られるケミカルトナーにおいて、2種類以上の離型剤粒子を使用すると、離型剤粒子を調製し、樹脂粒子と凝集させる際に、それぞれの離型剤粒子の安定性が異なるため、前記2種類以上の離型剤粒子と樹脂粒子との適正な凝集、すなわち、粒度分布がシャープな凝集粒子の生成が困難であった。また、その場合、凝集時や合一時において離型剤の遊離も発生しやすかった。すなわち、離型剤の種類によっては例え凝集が可能であっても、樹脂粒子との親和性が低いため合一工程時に凝集粒子から離型剤粒子の遊離が発生しやすかった。本発明では、少なくとも前記特定の2種類の離型剤をポリカルボン酸塩存在下で乳化させてなる離型剤粒子を用いたトナーの製造方法を提供することで、前記の課題を解決することができる。 That is, in a conventional chemical toner obtained by agglomerating and coalescing resin particles and release agent particles, when two or more types of release agent particles are used, the release agent particles are prepared and aggregated with the resin particles. Furthermore, since the stability of the respective release agent particles is different, it is difficult to properly aggregate the two or more types of release agent particles and the resin particles, that is, to generate aggregate particles having a sharp particle size distribution. In that case, release of the release agent was likely to occur at the time of aggregation or at the same time. That is, depending on the type of the release agent, even if aggregation is possible, the release agent particles are easily released from the aggregated particles during the coalescence process because of low affinity with the resin particles. The present invention solves the above-mentioned problems by providing a toner manufacturing method using release agent particles obtained by emulsifying at least the two specific types of release agents in the presence of a polycarboxylate. Can do.
(工程(1))
 本発明のトナーの製造方法における工程(1)は、離型剤(A)、及び該離型剤(A)の融点より5℃以上高い融点を有する離型剤(B)を、水系媒体中、ポリカルボン酸塩の存在下で乳化して離型剤粒子を得る工程である。
(Process (1))
In step (1) in the method for producing a toner of the present invention, the release agent (A) and the release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A) are contained in an aqueous medium. In this step, the release agent particles are obtained by emulsification in the presence of a polycarboxylate.
離型剤(A)及び離型剤(B)
 本発明においては、離型剤粒子は、通常これを含む離型剤粒子の分散液、すなわち離型剤分散液として得られ、用いられる離型剤(A)及び離型剤(B)としては、トナーの低温定着性の観点から、その融点が100℃以下のものが好ましく用いられ、より好ましくは融点が60~95℃のもの、さらに好ましくは、融点が65~90℃のものである。特に、本発明においては、前記の観点から、離型剤(B)の融点が100℃以下、好ましくは融点が60~95℃のもの、より好ましくは、融点が65~90℃のもの、更に好ましくは、融点が75~90℃のもの、更に好ましくは、融点が80~85℃のものである。また、離型剤(A)の融点は100℃以下、好ましくは融点が60~95℃のもの、より好ましくは、融点が65~90℃のもの、更に好ましくは、融点が65~85℃のもの、更に好ましくは、融点が70~80℃のものである。
Release agent (A) and release agent (B)
In the present invention, the release agent particles are usually obtained as a dispersion of release agent particles containing the release agent particles, that is, as a release agent dispersion, and the release agent (A) and release agent (B) used are as follows. From the viewpoint of low-temperature fixability of the toner, those having a melting point of 100 ° C. or less are preferably used, more preferably those having a melting point of 60 to 95 ° C., and still more preferably those having a melting point of 65 to 90 ° C. In particular, in the present invention, from the above viewpoint, the release agent (B) has a melting point of 100 ° C. or less, preferably 60 to 95 ° C., more preferably 65 to 90 ° C. Preferably, the melting point is 75 to 90 ° C., and more preferably the melting point is 80 to 85 ° C. In addition, the release agent (A) has a melting point of 100 ° C. or less, preferably 60 to 95 ° C., more preferably 65 to 90 ° C., and still more preferably 65 to 85 ° C. More preferably, the melting point is 70 to 80 ° C.
 離型剤(A)及び離型剤(B)としては、具体的には、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;加熱により軟化点を有するシリコーン類;オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス;ミツロウ等の動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の鉱物・石油系ワックス、エステルワックス等の合成ワックス等が挙げられる。離型剤(A)としては、鉱物・石油系ワックス、合成ワックスが好ましく、なかでも、トナーの低温定着性の観点から、パラフィンワックス、エステルワックスがより好ましく、トナーの保存安定性を向上させる観点から、パラフィンワックスが更に好ましい。離型剤(B)としては、植物系ワックスが好ましく、カルナウバワックスがより好ましい。 Specific examples of the release agent (A) and the release agent (B) include low molecular weight polyolefins such as polyethylene, polypropylene and polybutene; silicones having a softening point by heating; oleic acid amide, erucic acid amide, Fatty acid amides such as ricinoleic acid amide and stearic acid amide; plant waxes such as carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil; animal waxes such as beeswax; montan wax, ozokerite, ceresin, paraffin Examples thereof include minerals such as wax, microcrystalline wax, and Fischer-Tropsch wax, and synthetic waxes such as petroleum wax and ester wax. As the release agent (A), mineral / petroleum wax and synthetic wax are preferable, and paraffin wax and ester wax are more preferable from the viewpoint of low-temperature fixability of the toner, and viewpoint of improving the storage stability of the toner. Therefore, paraffin wax is more preferable. As the mold release agent (B), a plant wax is preferable, and carnauba wax is more preferable.
 本発明においては、例えばこれらの離型剤のうち、融点が5℃以上異なる離型剤(A)及び離型剤(B)を選択して使用すればよく、この限りにおいては、離型剤(A)及び離型剤(B)は同一種類のものであってもよいし、異なる種類のものであってもよい。本発明においては、このような融点が異なる離型剤を少なくとも2種用いることで、得られるトナーの定着性が良好となる。 In the present invention, for example, among these release agents, a release agent (A) and a release agent (B) having a melting point different by 5 ° C. or more may be selected and used. (A) and the release agent (B) may be of the same type or different types. In the present invention, the fixability of the obtained toner is improved by using at least two release agents having different melting points.
 離型剤(B)は、離型剤(A)の融点より5℃以上高い融点を有する離型剤であるが、トナー製造時における小粒径での凝集制御が可能な離型剤粒子を得ることができ、得られるトナーの定着性に優れる観点から、その融点が離型剤(A)より6℃以上高い離型剤であることが好ましく、離型剤(A)より8℃以上高い離型剤であることがより好ましい。なお、離型剤(A)と離型剤(B)の融点の差の上限値には特に制限はないが、トナーの低温定着性の観点から、その上限値は30℃であることが好ましく、20℃であることがより好ましい。すなわち、トナーの定着性の観点から、離型剤(A)と離型剤(B)の融点の差は、6~30℃が好ましく、7~20℃がより好ましく、8~20℃がより好ましく、8~9℃が更に好ましい。
 このような融点を有する離型剤を使用することで、低温定着による定着においても、トナーから離型剤が滲み出し離型効果が促進され低温定着が可能となると考えられる。
 なお、本発明においては、離型剤の融点は、示差走査熱量計を用いて測定することができ、具体的には後述の方法で測定することができる。
The release agent (B) is a release agent having a melting point higher by 5 ° C. or more than the melting point of the release agent (A). In view of excellent fixability of the obtained toner, it is preferable that the melting point is a release agent that is 6 ° C. or more higher than the release agent (A), and 8 ° C. or more higher than the release agent (A). More preferably, it is a mold release agent. The upper limit of the difference between the melting points of the release agent (A) and the release agent (B) is not particularly limited, but the upper limit is preferably 30 ° C. from the viewpoint of low-temperature fixability of the toner. 20 ° C. is more preferable. That is, from the viewpoint of toner fixability, the difference in melting point between the release agent (A) and the release agent (B) is preferably 6 to 30 ° C., more preferably 7 to 20 ° C., and more preferably 8 to 20 ° C. 8 to 9 ° C is more preferable.
By using a releasing agent having such a melting point, it is considered that even in fixing by low-temperature fixing, the releasing agent oozes out from the toner and the releasing effect is promoted to enable low-temperature fixing.
In the present invention, the melting point of the release agent can be measured using a differential scanning calorimeter, and specifically can be measured by the method described later.
 本発明においては、得られるトナーの定着性の観点から、前記離型剤(A)及び離型剤(B)は、各々が、カルナウバワックス、パラフィンワックス、ポリオレフィン及びフィッシャートロプシュから選ばれるいずれかであることが好ましく、より好ましくは、そのいずれかがカルナウバワックスであり、更に好ましくは、離型剤(B)がカルナウバワックスであり、離型剤(A)が、パラフィンワックス、ポリオレフィン及びフィッシャートロプシュから選ばれるいずれかである。
 離型剤分散液中の離型剤粒子には、トナーの定着性の観点から、離型剤(A)と離型剤(B)を重量比(離型剤(A)/離型剤(B))で5/95~95/5含有することが好ましく、10/90~90/10含有することがより好ましく、15/85~85/15含有することがさらに好ましく、40/60~50/50含有することがさらに好ましい。
 離型剤粒子は、前記融点の異なる2種の離型剤を含有することにより本発明の効果を奏するが、本発明の効果を阻害しない限りにおいて、他の離型剤を含有することができる。
 定着性及び保存安定性に優れた電子写真用トナーを得る観点から、全離型剤中の本発明における離型剤(A)及び該離型剤(B)の総量は90重量%以上が好ましく、99重量%以上がより好ましく、100重量%であることがさらに好ましい。
In the present invention, from the viewpoint of fixability of the obtained toner, each of the release agent (A) and the release agent (B) is any one selected from carnauba wax, paraffin wax, polyolefin, and Fischer-Tropsch. More preferably, any of them is carnauba wax, more preferably, the release agent (B) is carnauba wax, and the release agent (A) is paraffin wax, polyolefin and One selected from Fischer-Tropsch.
From the viewpoint of toner fixing properties, the release agent particles in the release agent dispersion have a weight ratio of release agent (A) and release agent (B) (release agent (A) / release agent ( B)), preferably 5/95 to 95/5, more preferably 10/90 to 90/10, even more preferably 15/85 to 85/15, and 40/60 to 50 It is more preferable to contain / 50.
The release agent particles exhibit the effects of the present invention by containing the two types of release agents having different melting points, but may contain other release agents as long as the effects of the present invention are not impaired. .
From the viewpoint of obtaining an electrophotographic toner excellent in fixing property and storage stability, the total amount of the release agent (A) and the release agent (B) in the present invention in all the release agents is preferably 90% by weight or more. 99% by weight or more is more preferable, and 100% by weight is more preferable.
ポリカルボン酸塩
 前記離型剤粒子を含む離型剤分散液は、前記離型剤(A)と離型剤(B)と共にポリカルボン酸塩を含有してなることに特徴を有する。ポリカルボン酸塩を用いることで、前記離型剤(A)と離型剤(B)及びポリカルボン酸塩との交互作用により、樹脂粒子と離型剤粒子との適度な凝集及び合一が可能となると考えられる。
 本発明において使用するポリカルボン酸塩の好ましい具体例としては、トナー作製時の凝集性や遊離防止の観点から、ポリアクリル酸塩、アクリル酸-マレイン酸共重合体の塩、ポリマレイン酸塩等が好ましく挙げられ、アクリル酸-マレイン酸共重合体の塩が好ましい。塩としては、アルカリ金属塩が好ましく、ナトリウム塩が好ましい。具体的には、下記式(I)~(III)で示されるポリアクリル酸ナトリウム、アクリル酸-マレイン酸共重合体のナトリウム塩、ポリマレイン酸ナトリウム等が好ましく挙げられるが、同様の観点から、アクリル酸-マレイン酸共重合体のナトリウム塩であることがより好ましい。
Polycarboxylate The release agent dispersion containing the release agent particles is characterized by containing a polycarboxylate together with the release agent (A) and the release agent (B). By using the polycarboxylate, moderate aggregation and coalescence of the resin particles and the release agent particles can be achieved by the interaction between the release agent (A), the release agent (B) and the polycarboxylate. It is considered possible.
Preferable specific examples of the polycarboxylate used in the present invention include polyacrylate, salt of acrylic acid-maleic acid copolymer, polymaleate and the like from the viewpoint of cohesiveness and prevention of release during toner production. Preferred is a salt of an acrylic acid-maleic acid copolymer. As the salt, an alkali metal salt is preferable, and a sodium salt is preferable. Specific examples include sodium polyacrylate represented by the following formulas (I) to (III), sodium salt of acrylic acid-maleic acid copolymer, sodium polymaleate and the like. More preferably, it is a sodium salt of an acid-maleic acid copolymer.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ポリカルボン酸塩のポリマー末端基の中和度は、分散剤としての効果の観点から、50~100%が好ましく、70~100%がより好ましく、更に好ましくは、90~100%である。ここで、中和度とは、ポリカルボン酸塩水溶液の電位差滴定することにより測定された値を意味する。 The degree of neutralization of the polymer end groups of the polycarboxylate is preferably from 50 to 100%, more preferably from 70 to 100%, still more preferably from 90 to 100%, from the viewpoint of the effect as a dispersant. Here, the degree of neutralization means a value measured by potentiometric titration of a polycarboxylate aqueous solution.
 ポリカルボン酸塩の重量平均分子量は、微細な離型剤粒子を得ることができる観点から、3,000~90,000であることが好ましく、より好ましくは、10,000~50,000である。この重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
 ポリカルボン酸塩を形成するカチオンとしては、特に限定されないが、ナトリウム、カリウム等のアルカリ金属のイオン、マグネシウム、カルシウム等のアルカリ土類金属のイオンのほかにアンモニウムイオンやアルキルアンモニウムイオン等が使用できる。これらの中でも離型剤の分散性の観点から、アルカリ金属のイオンが好ましく、ナトリウムイオンがより好ましい。
The weight average molecular weight of the polycarboxylate is preferably 3,000 to 90,000, more preferably 10,000 to 50,000, from the viewpoint of obtaining fine release agent particles. . This weight average molecular weight can be measured by gel permeation chromatography (GPC).
The cation forming the polycarboxylate is not particularly limited, but ammonium ions and alkylammonium ions can be used in addition to alkali metal ions such as sodium and potassium, and alkaline earth metal ions such as magnesium and calcium. . Among these, from the viewpoint of dispersibility of the release agent, alkali metal ions are preferable, and sodium ions are more preferable.
 離型剤分散液中には、トナー作成時の凝集工程時の凝集制御、及び得られるトナー中の離型剤の分散性の観点から、ポリカルボン酸塩を、好ましくは0.1~5重量%、より好ましくは0.5~2.5重量%含有する。また、離型剤分散液中には、同様の観点から、離型剤合計量100重量部に対し、0.2~15重量部のポリカルボン酸塩を含有することが好ましく、より好ましくは0.4~10重量部、さらに好ましくは0.6~6重量部含有する。 In the release agent dispersion, a polycarboxylic acid salt is preferably added in an amount of 0.1 to 5 weights from the viewpoints of aggregation control during the aggregation process at the time of toner preparation and dispersibility of the release agent in the obtained toner. %, More preferably 0.5 to 2.5% by weight. Further, from the same viewpoint, the release agent dispersion preferably contains 0.2 to 15 parts by weight of polycarboxylate salt, more preferably 0 to 100 parts by weight of the total release agent. 4 to 10 parts by weight, more preferably 0.6 to 6 parts by weight.
離型剤粒子
 離型剤粒子は、通常これを含む離型剤粒子の分散液、すなわち離型剤分散液として得られる。
 離型剤分散液中における離型剤の固形分濃度は、乳化性及び分散液の保存安定性の観点から5~40重量%が好ましく、10~35重量%がより好ましく、15~35重量%がさらに好ましい。また、離型剤分散液の保存安定性の観点から、離型剤分散液のpHは5~10であることが好ましく、より好ましくは6~9.5である。
Release agent particles The release agent particles are usually obtained as a dispersion of release agent particles containing the release agent particles, that is, as a release agent dispersion.
The solid content concentration of the release agent in the release agent dispersion is preferably 5 to 40% by weight, more preferably 10 to 35% by weight, and more preferably 15 to 35% by weight from the viewpoints of emulsification and storage stability of the dispersion. Is more preferable. Further, from the viewpoint of the storage stability of the release agent dispersion, the pH of the release agent dispersion is preferably 5 to 10, more preferably 6 to 9.5.
 また、離型剤分散液中には、トナー作成時の凝集工程時の凝集制御、及び得られるトナー中の離型剤の分散性の観点から、離型剤(A)と離型剤(B)を合計で5~40重量%、より好ましくは10~35重量%、更に好ましくは15~30重量%含有する。
 なお、離型剤分散液中の離型剤粒子を構成する離型剤(A)と離型剤(B)の含有割合も前記と同様である。
 離型剤分散液中には、前記離型剤(A)、離型剤(B)、ポリカルボン酸塩と共に、従来公知の乳化剤を本発明の効果を阻害しない範囲において使用することができる。このような乳化剤としては、例えば、ステアリン酸ナトリウム、オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム等の一塩基酸塩、ポリビニルアルコール等の高分子分散剤などが挙げられる。
Further, in the release agent dispersion, the release agent (A) and the release agent (B) are used from the viewpoint of aggregation control during the aggregation process at the time of toner preparation and the dispersibility of the release agent in the obtained toner. ) In a total amount of 5 to 40% by weight, more preferably 10 to 35% by weight, still more preferably 15 to 30% by weight.
The content ratio of the release agent (A) and the release agent (B) constituting the release agent particles in the release agent dispersion is the same as described above.
In the mold release agent dispersion, together with the mold release agent (A), mold release agent (B), and polycarboxylate, a conventionally known emulsifier can be used within a range not inhibiting the effects of the present invention. Examples of such an emulsifier include monobasic acid salts such as sodium stearate, potassium oleate, sodium dodecylbenzenesulfonate, and polymer dispersants such as polyvinyl alcohol.
 トナーの定着性及び耐久性の観点から、離型剤粒子の体積中位粒径(D50)は1μm以下であることが好ましく、0.05~1μmがより好ましく、0.1~0.85μmが更に好ましい。なお、本明細書において、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。
 離型剤分散液は、前記の構成を有することにより乳化性能に優れたものである。離型剤分散液中における離型剤粒子は、トナーの定着性、耐久性及び凝集性の観点から、その粒度分布が狭いものであることが好ましく、具体的には、CV値(粒度分布の標準偏差/体積中位粒径(50)×100)で50%以下であることが好ましく、より好ましくは45%以下、更に好ましくは40%以下である。ここで、離型剤粒子の粒径及び粒度分布は、光散乱式粒度分布測定機を使用して、具体的には後述の方法で測定することができる。
 このようにして得られた離型剤分散液は、良好な乳化性能及び乳化安定性を有し、長期に渡り安定である。また、そのトナー作成時の凝集工程時の凝集制御が向上することから、トナーの粒形制御が可能となり、電子写真用トナーに好適に用いることができる。また、離型剤粒子は、後述するように、樹脂粒子と離型剤粒子を凝集及び合一して得られるトナーに用いられ、これにより、本発明の効果を奏するものである。
From the viewpoint of toner fixing properties and durability, the volume median particle size (D50) of the release agent particles is preferably 1 μm or less, more preferably 0.05 to 1 μm, and more preferably 0.1 to 0.85 μm. Further preferred. In the present specification, the volume-median particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle size.
The release agent dispersion has excellent emulsification performance by having the above-described configuration. The release agent particles in the release agent dispersion liquid preferably have a narrow particle size distribution from the viewpoints of toner fixing properties, durability, and aggregation properties. Specifically, the CV value (particle size distribution The standard deviation / volume median particle size (50) × 100) is preferably 50% or less, more preferably 45% or less, and still more preferably 40% or less. Here, the particle size and particle size distribution of the release agent particles can be specifically measured by a method described later using a light scattering particle size distribution measuring machine.
The release agent dispersion thus obtained has good emulsification performance and emulsification stability and is stable for a long time. Further, since the aggregation control during the aggregation process at the time of toner preparation is improved, the toner particle shape can be controlled, and the toner can be suitably used for an electrophotographic toner. Further, as will be described later, the release agent particles are used in a toner obtained by agglomerating and coalescing resin particles and release agent particles, and thereby achieve the effects of the present invention.
 前記離型剤粒子は、水系媒体中で、離型剤(A)、及び該離型剤(A)の融点より5℃以上高い融点を有する離型剤(B)を、ポリカルボン酸塩の存在下で乳化する方法により得る。
 具体的には、前記離型剤(A)及び前記離型剤(B)を、水系媒体中に、ポリカルボン酸塩の存在下で分散し、好ましくは離型剤(B)の融点以上に加熱しながら、例えば強いせん断力を有するホモジナイザ-、圧力吐出型ホモジナイザ-、超音波分散機等で微粒子状に分散させ、離型剤粒子の分散液とすることができる。
In the aqueous medium, the release agent particles include a release agent (A) and a release agent (B) having a melting point higher by 5 ° C. than the melting point of the release agent (A). It is obtained by a method of emulsifying in the presence.
Specifically, the release agent (A) and the release agent (B) are dispersed in an aqueous medium in the presence of a polycarboxylic acid salt, and preferably have a melting point higher than that of the release agent (B). While being heated, for example, it can be dispersed in the form of fine particles by a homogenizer having a strong shearing force, a pressure discharge type homogenizer, an ultrasonic disperser, or the like to obtain a dispersion of release agent particles.
 前記水系媒体は、水を主成分とするものである。環境性の観点から、水系媒体中の水の含有量は80重量%以上が好ましく、90重量%以上がより好ましく、100重量%がさらに好ましい。
  水系媒体中の水以外の成分としては、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール系有機溶媒やアセトン、メチルエチルケトン、テトラヒドロフラン等の水に溶解する有機溶媒が挙げられる。これらのなかでは、トナーへの混入を防止する観点から、樹脂を溶解しない有機溶媒である、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール系有機溶媒が使用できる。本発明では、実質的に有機溶剤を用いることなく、水のみを用いて樹脂を微粒化させることが好ましい。
 また、分散温度は、離型剤の乳化性の点から、60~120℃であることが好ましく、80~110℃あることがより好ましく、80~100℃であることが更に好ましい。
The aqueous medium is mainly composed of water. From the environmental viewpoint, the content of water in the aqueous medium is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 100% by weight.
Examples of components other than water in the aqueous medium include alcohol-based organic solvents such as methanol, ethanol, isopropanol, and butanol, and organic solvents that dissolve in water such as acetone, methyl ethyl ketone, and tetrahydrofuran. Among these, from the viewpoint of preventing mixing into the toner, alcohol-based organic solvents such as methanol, ethanol, isopropanol, and butanol, which are organic solvents that do not dissolve the resin, can be used. In the present invention, it is preferable to atomize the resin using only water without substantially using an organic solvent.
The dispersion temperature is preferably 60 to 120 ° C., more preferably 80 to 110 ° C., and still more preferably 80 to 100 ° C. from the viewpoint of emulsifiability of the release agent.
(工程(2))
 工程(2)は、得られた離型剤粒子と樹脂粒子を凝集及び合一させる工程である。すなわち、本発明の電子写真用トナーは、前述の離型剤粒子と樹脂粒子を凝集及び合一させて得られるものである。
樹脂粒子
  本発明における樹脂粒子は、該樹脂粒子が水系媒体中に分散している樹脂粒子分散液として得られる。本発明における樹脂粒子は、トナーの低温定着性及び耐久性の観点からポリエステルを含有することが好ましい。ポリエステルの含有量は、同様の観点から、樹脂中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、実質100重量%であることがさらにより好ましい。樹脂粒子を構成する樹脂としては、ポリエステル以外に、トナーに用いられる公知の樹脂、例えば、ポリエステル、スチレンアクリル共重合体、エポキシ、ポリカーボネート、ポリウレタン等を使用することができる。
(Process (2))
Step (2) is a step of aggregating and coalescing the obtained release agent particles and resin particles. That is, the electrophotographic toner of the present invention is obtained by agglomerating and coalescing the aforementioned release agent particles and resin particles.
Resin Particles The resin particles in the present invention are obtained as a resin particle dispersion in which the resin particles are dispersed in an aqueous medium. The resin particles in the present invention preferably contain polyester from the viewpoint of low-temperature fixability and durability of the toner. From the same viewpoint, the polyester content is preferably 50% by weight or more, more preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and substantially 100% by weight. Even more preferably. As the resin constituting the resin particles, in addition to polyester, known resins used for toners such as polyester, styrene acrylic copolymer, epoxy, polycarbonate, polyurethane and the like can be used.
  ポリエステルを使用する場合、その原料モノマーは、特に限定されないが、公知のアルコール成分と、カルボン酸、カルボン酸無水物、カルボン酸エステル等の公知のカルボン酸成分が用いられる。
 カルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、フマル酸、マレイン酸、アジピン酸、コハク酸等のジカルボン酸、ドデセニルコハク酸、オクテニルコハク酸等の炭素数1~20のアルキル基又は炭素数2~20のアルケニル基で置換されたコハク酸等の2価のカルボン酸、トリメリット酸、ピロメリット酸等の3価以上の多価カルボン酸、それらの酸の無水物及びそれらの酸のアルキル(炭素数1~3)エステル等が挙げられる。
  このカルボン酸成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
When using polyester, although the raw material monomer is not specifically limited, Well-known alcohol components and well-known carboxylic acid components, such as carboxylic acid, carboxylic acid anhydride, and carboxylic acid ester, are used.
Examples of carboxylic acids include dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, adipic acid and succinic acid, alkyl groups having 1 to 20 carbon atoms such as dodecenyl succinic acid and octenyl succinic acid, or 2 to 2 carbon atoms. Divalent carboxylic acids such as succinic acid substituted with 20 alkenyl groups, trivalent or higher polyvalent carboxylic acids such as trimellitic acid and pyromellitic acid, anhydrides of these acids, and alkyls of these acids (carbon ## STR1 ## Examples include esters.
This carboxylic acid component may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、アルコール成分としては、具体的には、ポリオキシプロピレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン-2,2-ビス(4-ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレン(炭素数2~3)オキサイド(平均付加モル数1~16)付加物、水素添加ビスフェノールA、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、又はそれらのアルキレン(炭素数2~4)オキサイド(平均付加モル数1~16)付加物等が挙げられる。前記アルコールは、2種以上を組み合わせて用いてもよい。 Examples of the alcohol component include bisphenol A such as polyoxypropylene-2,2-bis (4-hydroxyphenyl) propane and polyoxyethylene-2,2-bis (4-hydroxyphenyl) propane. Alkylene (2 to 3 carbon atoms) oxide (average added mole number 1 to 16) adduct, hydrogenated bisphenol A, ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,3-butanediol, Examples include 1,6-hexanediol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, or an alkylene (2 to 4 carbon) oxide (average added mole number 1 to 16) adduct thereof. You may use the said alcohol in combination of 2 or more type.
  ポリエステルは、例えば、アルコール成分とカルボン酸成分とを不活性ガス雰囲気中にて、必要に応じエステル化触媒を用いて、180~250℃程度の温度で縮重合することにより製造することができる。
  エステル化触媒としては、酸化ジブチル錫、ジオクチル酸錫等の錫化合物やチタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等のエステル化触媒を使用することができる。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100重量部に対して、0.01~1重量部が好ましく、0.1~0.6重量部がより好ましい。
The polyester can be produced, for example, by subjecting an alcohol component and a carboxylic acid component to condensation polymerization at a temperature of about 180 to 250 ° C. in an inert gas atmosphere, if necessary, using an esterification catalyst.
As the esterification catalyst, an esterification catalyst such as a tin compound such as dibutyltin oxide or tin dioctylate or a titanium compound such as titanium diisopropylate bistriethanolamate can be used. The amount of the esterification catalyst used is preferably 0.01 to 1 part by weight, more preferably 0.1 to 0.6 part by weight based on 100 parts by weight of the total amount of the alcohol component and the carboxylic acid component.
 ポリエステルは、結晶性ポリエステル及び非晶質ポリエステルのいずれであってもよいが、トナーの定着性及び帯電性の観点から、非晶質ポリエステルであることが好ましい。
 本発明において、「非晶質ポリエステル」とは、軟化点と吸熱の最大ピーク温度の比(軟化点/吸熱の最大ピーク温度)で定義される結晶性指数が好ましくは1.3より大きく4以下、より好ましくは1.5~3であるものをいう。  トナーの定着性と保存安定性の観点から、ポリエステルの軟化点は70~165℃が好ましく、90~165℃であることがより好ましく、ガラス転移点は50~85℃が好ましく、55~85℃であることがより好ましい。酸価は、同様の観点から、6~35mgKOH/gが好ましく、10~35mgKOH/gがより好ましく、15~35mgKOH/gがさらに好ましい。軟化点や酸価はアルコールとカルボン酸の仕込み比率、縮重合の温度、反応時間を調節することにより所望のものを得ることができる。
The polyester may be either a crystalline polyester or an amorphous polyester, but is preferably an amorphous polyester from the viewpoint of toner fixability and chargeability.
In the present invention, the “amorphous polyester” means that the crystallinity index defined by the ratio of the softening point to the endothermic maximum peak temperature (softening point / endothermic maximum peak temperature) is preferably larger than 1.3 and not larger than 4 More preferably, it is 1.5-3. From the viewpoint of toner fixing properties and storage stability, the softening point of the polyester is preferably 70 to 165 ° C, more preferably 90 to 165 ° C, and the glass transition point is preferably 50 to 85 ° C, and 55 to 85 ° C. It is more preferable that From the same viewpoint, the acid value is preferably 6 to 35 mgKOH / g, more preferably 10 to 35 mgKOH / g, and further preferably 15 to 35 mgKOH / g. The desired softening point and acid value can be obtained by adjusting the charging ratio of alcohol and carboxylic acid, the temperature of condensation polymerization, and the reaction time.
  尚、本発明において、ポリエステルには、未変性のポリエステルのみならず、実質的にその特性を損なわない程度に変性されたポリエステルも含まれる。変性されたポリエステルとしては、例えば、特開平11-133668号公報、特開平10-239903号公報、特開平8-20636号公報等に記載の方法によりフェノール、ウレタン、エポキシ等によりグラフト化やブロック化したポリエステルや、ポリエステルユニットを含む2種以上の樹脂ユニットを有する複合樹脂が挙げられる。 In the present invention, the polyester includes not only unmodified polyester but also polyester modified to such an extent that its properties are not substantially impaired. Examples of the modified polyester include grafting and blocking with phenol, urethane, epoxy and the like by the methods described in JP-A-11-133668, JP-A-10-239903, JP-A-8-20636, and the like. And a composite resin having two or more kinds of resin units including a polyester unit.
  なお、樹脂粒子が複数の樹脂を含有する場合には、前記樹脂粒子を構成する樹脂の軟化点、ガラス転移点、及び酸価は、各樹脂の混合物としての軟化点、ガラス転移点、酸価を意味し、各々の値は前記ポリエステルの値と同様の値であることが好ましい。
  さらに、ポリエステルを含有する場合、樹脂粒子を構成する樹脂は、トナーの低温定着性及び耐ホットオフセット性及び耐久性の観点から、軟化点が異なる2種類のポリエステルを含有することができ、一方のポリエステル(I)の軟化点は70℃以上115℃未満が好ましく、他方のポリエステル(II)の軟化点のポリエステルの軟化点は115℃以上165℃以下が好ましい。ポリエステル(I)とポリエステル(II)の重量比(I/II)は、10/90~90/10が好ましく、50/50~90/10がより好ましい。
When the resin particles contain a plurality of resins, the softening point, glass transition point, and acid value of the resin constituting the resin particles are the softening point, glass transition point, acid value as a mixture of each resin. Each value is preferably the same value as that of the polyester.
Furthermore, when the polyester is contained, the resin constituting the resin particles can contain two kinds of polyesters having different softening points from the viewpoint of low-temperature fixability, hot offset resistance, and durability of the toner. The softening point of polyester (I) is preferably 70 ° C. or higher and lower than 115 ° C., and the softening point of the other polyester (II) is preferably 115 ° C. or higher and 165 ° C. or lower. The weight ratio (I / II) of polyester (I) to polyester (II) is preferably 10/90 to 90/10, more preferably 50/50 to 90/10.
  本発明においては、樹脂粒子を構成する樹脂を分散させるに際し、水系媒体中で行うことが好ましい。樹脂を分散させる水系媒体は水を主成分とするものであり、前述の離型剤分散液で使用したものと同様のものを使用することができる。
  樹脂粒子分散液中には、前記樹脂とともに必要に応じて着色剤、荷電制御剤などの添加剤を含有させることができる。
In the present invention, the resin constituting the resin particles is preferably dispersed in an aqueous medium. The aqueous medium in which the resin is dispersed is mainly composed of water, and the same one as that used in the above-mentioned release agent dispersion can be used.
In the resin particle dispersion, additives such as a colorant and a charge control agent can be contained together with the resin as necessary.
 着色剤としては、特に制限はなく公知の着色剤がいずれも使用できる。具体的には、カーボンブラック、無機系複合酸化物、クロムイエロー、ベンジジンイエロー、ピラゾロンオレンジ、バルカンオレンジ、ウオッチヤングレッド、ブリリアンカーミン3B、ブリリアンカーミン6B、レーキレッドC、ベンガル、フタロシアニンブルー、フタロシアニングリーン等の種々の顔料やアクリジン系、アゾ系、ベンゾキノン系、アジン系、アントラキノン系、インジコ系、フタロシアニン系、アニリンブラック系等の各種染料を、1種を単独で又は2種以上を組み合わせて使用することができる。
 着色剤の含有量は、樹脂100重量部に対して、20重量部以下が好ましく、0.01~10重量部がより好ましい。
The colorant is not particularly limited, and any known colorant can be used. Specifically, carbon black, inorganic complex oxide, chrome yellow, benzidine yellow, pyrazolone orange, vulcan orange, watch young red, brilliantamine 3B, brilliantamine 6B, lake red C, bengal, phthalocyanine blue, phthalocyanine green, etc. Various pigments and various dyes such as acridine series, azo series, benzoquinone series, azine series, anthraquinone series, indico series, phthalocyanine series, aniline black series, etc. are used alone or in combination of two or more. Can do.
The content of the colorant is preferably 20 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin.
 荷電制御剤としては、例えば安息香酸の金属塩、サリチル酸の金属塩、アルキルサリチル酸の金属塩、カテコールの金属塩、含金属ビスアゾ染料、第四級アンモニウム塩などが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 荷電制御剤のトナー中の含有量は、樹脂100重量部に対して、10重量部以下が好ましく、0.01~5重量部がより好ましい。
Examples of the charge control agent include a metal salt of benzoic acid, a metal salt of salicylic acid, a metal salt of alkyl salicylic acid, a metal salt of catechol, a metal-containing bisazo dye, and a quaternary ammonium salt. These may be used individually by 1 type and may be used in combination of 2 or more type.
The content of the charge control agent in the toner is preferably 10 parts by weight or less, and more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin.
 本発明においては、樹脂粒子を分散液として製造するに際して、樹脂の分散安定性の向上などの観点から、樹脂100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下、より好ましくは0.1~3重量部、さらに好ましくは0.5~2重量部の界面活性剤を存在させることが好ましい。
 界面活性剤としては、例えば、硫酸エステル系、スルホン酸塩系、せっけん系等のアニオン性界面活性剤;アミン塩型、4級アンモニウム塩型等のカチオン性界面活性剤;ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン性界面活性剤などが挙げられる。これらの中でも、アニオン性界面活性剤、カチオン性界面活性剤等のイオン性界面活性剤が好ましい。非イオン性界面活性剤は、アニオン性界面活性剤又はカチオン性界面活性剤と併用されるのが好ましい。前記界面活性剤は、1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
In the present invention, when the resin particles are produced as a dispersion, from the viewpoint of improving the dispersion stability of the resin, it is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the resin. More preferably, 0.1 to 3 parts by weight, and still more preferably 0.5 to 2 parts by weight of a surfactant is present.
Examples of the surfactant include anionic surfactants such as sulfate ester, sulfonate, and soap; cationic surfactants such as amine salt type and quaternary ammonium salt type; polyethylene glycol type and alkylphenol ethylene Nonionic surfactants such as oxide adducts and polyhydric alcohols can be mentioned. Among these, ionic surfactants such as anionic surfactants and cationic surfactants are preferable. The nonionic surfactant is preferably used in combination with an anionic surfactant or a cationic surfactant. Although the said surfactant may be used individually by 1 type, you may use it in combination of 2 or more type.
 前記アニオン性界面活性剤の具体例としては、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、アルキルエーテル硫酸ナトリウムなどが挙げられる。これらの中でもドデシルベンゼンスルホン酸ナトリウムが好ましい。
 また、前記カチオン性界面活性剤の具体例としては、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジステアリルアンモニウムクロライドなどが挙げられる。
Specific examples of the anionic surfactant include dodecyl benzene sulfonic acid, sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, sodium alkyl ether sulfate, and the like. Among these, sodium dodecylbenzenesulfonate is preferable.
Specific examples of the cationic surfactant include alkylbenzene dimethyl ammonium chloride, alkyl trimethyl ammonium chloride, distearyl ammonium chloride and the like.
 非イオン性界面活性剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルアリールエーテル類あるいはポリオキシエチレンアルキルエーテル類、ポリエチレングルコールモノラウレート、ポリチレングリコ-ルモノステアレート、ポリエチレングリコールモノオレエート等のポリオキシエチレン脂肪酸エステル類、オキシエチレン/オキシプロピレンブロックコポリマー等が挙げられる。 Nonionic surfactants include, for example, polyoxyethylene nonylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl aryl ethers such as polyoxyethylene lauryl ether, polyoxyethylene alkyl ethers, polyethylene glycol mono Examples thereof include polyoxyethylene fatty acid esters such as laurate, polyethylene glycol monostearate, and polyethylene glycol monooleate, and oxyethylene / oxypropylene block copolymers.
 前記樹脂粒子を分散液として調製するに際しては、樹脂にアルカリ水溶液を加え、樹脂及び必要に応じて用いられる添加剤を分散させることが好ましい。
 前記アルカリ水溶液は1~20重量%の濃度のものが好ましく、1~10重量%の濃度のものがより好ましく、1.5~7.5重量%の濃度のものがさらに好ましい。用いるアルカリについては、樹脂が塩になったときその界面活性能を高めるようなアルカリを用いることが好ましい。具体的には、水酸化カリウム、水酸化ナトリウムなどの1価のアルカリ金属の水酸化物などが挙げられる。
 分散後、好ましくは樹脂のガラス転移点以上の温度で中和させた後、樹脂のガラス転移点以上の温度で水系媒体を添加することによって、乳化させることにより、樹脂粒子を製造することができる。
When preparing the resin particles as a dispersion, it is preferable to add an aqueous alkaline solution to the resin and disperse the resin and additives used as necessary.
The aqueous alkaline solution preferably has a concentration of 1 to 20% by weight, more preferably 1 to 10% by weight, and even more preferably 1.5 to 7.5% by weight. As the alkali to be used, it is preferable to use an alkali that enhances the surface activity when the resin becomes a salt. Specific examples thereof include monovalent alkali metal hydroxides such as potassium hydroxide and sodium hydroxide.
After the dispersion, preferably after neutralization at a temperature above the glass transition point of the resin, the resin particles can be produced by emulsification by adding an aqueous medium at a temperature above the glass transition point of the resin. .
 前記水系媒体の添加速度は、乳化を効果的に実施し得る点から、樹脂100g当たり好ましくは0.1~50g/分、より好ましくは0.5~40g/分、さらに好ましくは1~30g/分である。この添加速度は、一般にO/W型の乳化液を実質的に形成するまで維持すればよく、O/W型の樹脂粒子の分散液を形成した後の水の添加速度に特に制限はない。
 当該樹脂粒子を分散液として製造するために用いる水系媒体としては、前述の樹脂粒子を構成する樹脂の分散に用いられる水系媒体と同じものを挙げることができ、好ましくは、脱イオン水又は蒸留水である。
 水系媒体の量は、後の凝集処理で均一な凝集粒子を得る観点から、樹脂100重量部に対して100~2,000重量部が好ましく、150~1,500重量部がより好ましい。得られる樹脂粒子の分散液の安定性と取扱い性などの観点から、樹脂粒子の分散液の固形分濃度は、好ましくは7~50重量%、より好ましくは7~40重量%、さらに好ましくは10~35重量%になるように水系媒体の量を選定する。なお、固形分には樹脂、顔料、非イオン性界面活性剤などの不揮発性成分が含まれる。
The addition rate of the aqueous medium is preferably 0.1 to 50 g / min, more preferably 0.5 to 40 g / min, and further preferably 1 to 30 g / min per 100 g of resin from the viewpoint that emulsification can be effectively carried out. Minutes. This addition rate is generally maintained until an O / W type emulsion is substantially formed, and there is no particular limitation on the addition rate of water after forming a dispersion of O / W type resin particles.
Examples of the aqueous medium used for producing the resin particles as a dispersion include the same aqueous medium used for dispersing the resin constituting the resin particles described above, preferably deionized water or distilled water. It is.
The amount of the aqueous medium is preferably from 100 to 2,000 parts by weight, more preferably from 150 to 1,500 parts by weight, based on 100 parts by weight of the resin, from the viewpoint of obtaining uniform aggregated particles in the subsequent aggregation treatment. From the viewpoint of the stability and handleability of the resulting resin particle dispersion, the solid content concentration of the resin particle dispersion is preferably 7 to 50% by weight, more preferably 7 to 40% by weight, and even more preferably 10%. The amount of aqueous medium is selected so that it is 35% by weight. The solid content includes non-volatile components such as resins, pigments, and nonionic surfactants.
  また、乳化の際の温度は、微細な樹脂粒子を調製する観点から、樹脂粒子を構成する樹脂のガラス転移点以上かつ軟化点以下の範囲であることが好ましい。前記範囲の温度で行うことにより、乳化がスムーズに行われ、また加熱に特別の装置を必要としない。この点から、前記温度は、(樹脂粒子を構成する樹脂のガラス転移点+10℃)(「ガラス転移点より10℃高い温度」を意味する、以下同様の表記は同様に解する)以上であることが好ましく、また、(前記樹脂の軟化点-5℃)以下であることが好ましい。
 このようにして得られた樹脂粒子の体積中位粒径(D50)は、後の凝集処理での均一な凝集を行うために、好ましくは0.02~2μm、より好ましくは0.05~1μm、さらに好ましくは0.05~0.6μmである。
Moreover, it is preferable that the temperature in the case of emulsification is the range more than the glass transition point of the resin which comprises a resin particle, and below a softening point from a viewpoint of preparing a fine resin particle. By carrying out at a temperature within the above range, emulsification is carried out smoothly and no special apparatus is required for heating. From this point, the temperature is equal to or higher than (the glass transition point of the resin constituting the resin particle + 10 ° C.) (meaning “temperature higher by 10 ° C. than the glass transition point”, hereinafter the same notation is similarly understood). It is also preferable that the temperature is not higher than (softening point of the resin −5 ° C.).
The volume median particle size (D50) of the resin particles thus obtained is preferably 0.02 to 2 μm, more preferably 0.05 to 1 μm in order to perform uniform aggregation in the subsequent aggregation process. More preferably, it is 0.05 to 0.6 μm.
 樹脂粒子を分散液として得る他の方法としては、例えば、まず、目的とする樹脂粒子原料として重縮合性単量体を水系媒体中に例えば機械的シェアや超音波などにより乳化分散させる工程を有する方法が挙げられる。この際、必要に応じて、重縮合触媒、界面活性剤などの添加剤も水溶性媒体に添加する。そして、得られた溶液に対して例えば加熱などを施すことで、重縮合を進行させる。樹脂がポリエステルである場合は、前述のポリエステルの重縮合性単量体、重縮合触媒が使用でき、界面活性剤としては前述のものが同様に使用できる。
 通常、重縮合樹脂は重合時に脱水を伴うために一般には水系媒体中では進行しにくい。しかしながら、例えば、水系媒体中にミセルを形成するような界面活性剤とともに重縮合性単量体を水系媒体中に乳化させた場合、単量体がミセル中のミクロな疎水場に置かれることによって、脱水反応が進みやすくなり、生成した水はミセル外の水系媒体中に排出されて重合を進行させることができる。このようにして、低エネルギーで、水系媒体に重縮合樹脂の樹脂粒子が分散した樹脂粒子分散液が得られる。
Other methods for obtaining resin particles as a dispersion include, for example, a step of emulsifying and dispersing a polycondensable monomer as a target resin particle raw material in an aqueous medium by, for example, mechanical shearing or ultrasonic waves. A method is mentioned. At this time, if necessary, additives such as a polycondensation catalyst and a surfactant are also added to the water-soluble medium. And polycondensation is advanced by giving a heating etc. with respect to the obtained solution, for example. When the resin is polyester, the above-mentioned polyester polycondensable monomer and polycondensation catalyst can be used, and the above-mentioned surfactants can be used in the same manner.
Usually, polycondensation resins are accompanied by dehydration at the time of polymerization, and thus generally do not easily proceed in an aqueous medium. However, for example, when a polycondensable monomer is emulsified in an aqueous medium together with a surfactant that forms micelles in the aqueous medium, the monomer is placed in a micro hydrophobic field in the micelle. The dehydration reaction is facilitated, and the produced water can be discharged into an aqueous medium outside the micelles to allow the polymerization to proceed. In this way, a resin particle dispersion in which the resin particles of the polycondensation resin are dispersed in an aqueous medium with low energy is obtained.
凝集工程
 本発明のトナーの製造方法においては、前述のようにして得られた離型剤粒子と樹脂粒子とを凝集及び合一させるが、具体的には、前記離型剤分散液と前記樹脂粒子分散液を混合し、好ましくは、これに凝集剤を添加して凝集粒子分散液を得た後、得られた凝集粒子分散液中の凝集粒子を合一して合一粒子を得ることにより製造することができる。
 離型剤分散液と樹脂粒子分散液を混合する際の離型剤粒子と樹脂粒子の混合割合、あるいは得られた凝集粒子中における離型剤と樹脂粒子の含有割合は、トナーの低温定着性及び保存安定性を確保する観点から、離型剤と樹脂の重量比(離型剤/樹脂)で、1/99~15/85であることが好ましく、2/98~12/88であることがより好ましく、3/97~10/90であることがさらに好ましい。
Aggregation step In the toner production method of the present invention, the release agent particles and the resin particles obtained as described above are aggregated and united. Specifically, the release agent dispersion and the resin are combined. By mixing the particle dispersion, preferably adding an aggregating agent to obtain an aggregated particle dispersion, and then coalescing the aggregated particles in the obtained aggregated particle dispersion to obtain coalesced particles Can be manufactured.
The mixing ratio of the release agent particles and the resin particles when mixing the release agent dispersion and the resin particle dispersion, or the content ratio of the release agent and the resin particles in the obtained agglomerated particles depends on the low temperature fixability of the toner. From the viewpoint of ensuring storage stability, the weight ratio of the release agent to the resin (release agent / resin) is preferably 1/99 to 15/85, and preferably 2/98 to 12/88. Is more preferably 3/97 to 10/90.
 凝集剤としては、有機系の凝集剤では、有機塩、ポリエチレンイミン等、無機系の凝集剤では、無機金属塩、無機アンモニウム塩、金属錯体等が用いられる。有機塩としては、例えば、酢酸ナトリウム、酢酸アンモニウムが、無機金属塩としては、例えば、硫酸ナトリウム、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム、硫酸アルミニウム等の金属塩、及びポリ塩化アルミニウム等の無機金属塩重合体が挙げられる。無機アンモニウム塩としては、例えば硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウムなどが挙げられる。
 本発明においては、高精度のトナーの粒径制御及びシャープな粒度分布を達成する観点から、前記凝集剤のうち、1価の塩を用いることが好ましい。ここで1価の塩とは、該塩を構成する金属イオン又は陽イオンの価数が1であることを意味する。1価の塩としては、前記無機金属塩、アンモニウム塩等の無機系凝集剤が用いられるが、本発明においては、分子量350以下の水溶性含窒素化合物が好ましく用いられる。
Examples of the flocculant include organic salts and polyethyleneimine for organic flocculants, and inorganic metal salts, inorganic ammonium salts, metal complexes, and the like for inorganic flocculants. Examples of the organic salt include sodium acetate and ammonium acetate. Examples of the inorganic metal salt include sodium sulfate, sodium chloride, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride, and aluminum sulfate. Examples thereof include inorganic metal salt polymers such as aluminum. Examples of the inorganic ammonium salt include ammonium sulfate, ammonium chloride, and ammonium nitrate.
In the present invention, from the viewpoint of achieving highly accurate toner particle size control and sharp particle size distribution, it is preferable to use a monovalent salt among the aggregating agents. Here, the monovalent salt means that the valence of the metal ion or cation constituting the salt is 1. As the monovalent salt, an inorganic flocculant such as the inorganic metal salt or ammonium salt is used. In the present invention, a water-soluble nitrogen-containing compound having a molecular weight of 350 or less is preferably used.
 分子量350以下の水溶性含窒素化合物は、一次粒子を速やかに凝集させる観点から、酸性を示す化合物であることが好ましく、その10重量%水溶液の25℃でのpH値が4~6であるものが好ましく、4.2~6のものがより好ましい。また、高温高湿におけるトナーの帯電性を維持する観点から、その分子量が350以下のものが好ましく、300以下のものがより好ましい。このような水溶性含窒素化合物としては、例えば、ハロゲン化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、サリチル酸アンモニウム等のアンモニウム塩、テトラアルキルアンモニウムハライド等の4級アンモニウム塩等が挙げられるが、トナーの粒径制御の点から、硫酸アンモニウム(10重量%水溶液の25℃でのpH値、以下単にpH値という:5.4)、塩化アンモニウム(pH値:4.6)、臭化テトラエチルアンモニウム(pH値:5.6)、臭化テトラブチルアンモニウム(pH値:5.8)が好ましく挙げられる。 The water-soluble nitrogen-containing compound having a molecular weight of 350 or less is preferably an acidic compound from the viewpoint of rapidly agglomerating primary particles, and a 10% by weight aqueous solution having a pH value of 4 to 6 at 25 ° C. Of these, 4.2 to 6 are more preferable. Further, from the viewpoint of maintaining the chargeability of the toner at high temperature and high humidity, the molecular weight is preferably 350 or less, and more preferably 300 or less. Examples of such water-soluble nitrogen-containing compounds include ammonium salts such as ammonium halide, ammonium sulfate, ammonium acetate, and ammonium salicylate, and quaternary ammonium salts such as tetraalkylammonium halide. In view of the above, ammonium sulfate (pH value of a 10 wt% aqueous solution at 25 ° C., hereinafter simply referred to as pH value: 5.4), ammonium chloride (pH value: 4.6), tetraethylammonium bromide (pH value: 5. 6) and tetrabutylammonium bromide (pH value: 5.8) are preferred.
 凝集剤の使用量は、凝集剤の価数により異なるが、一般に、凝集粒子分散液中の凝集剤の濃度を0.0001~10モル/Lとする量であればよい。一般に、トナーの帯電性、特に高温高湿環境の帯電特性の観点から、樹脂100重量部に対して、50重量部以下が好ましく、40重量部以下がより好ましく、30重量部以下がさらに好ましい。また、凝集性の観点から、樹脂100重量部に対して1重量部以上が好ましく、3重量部以上がより好ましく、5重量部以上がさらに好ましい。以上の点を考慮して、凝集剤の使用量は、樹脂100重量部に対して1~50重量部が好ましく、3~40重量部がより好ましく、5~30重量部がさらに好ましい。 The amount of the flocculant used varies depending on the valency of the flocculant, but generally may be an amount that makes the concentration of the flocculant in the aggregated particle dispersion liquid 0.0001 to 10 mol / L. In general, from the viewpoint of toner charging properties, particularly charging characteristics in a high-temperature and high-humidity environment, 50 parts by weight or less is preferable, 40 parts by weight or less is more preferable, and 30 parts by weight or less is more preferable. Moreover, from a cohesive viewpoint, 1 weight part or more is preferable with respect to 100 weight part of resin, 3 weight part or more is more preferable, and 5 weight part or more is further more preferable. Considering the above points, the amount of the flocculant used is preferably 1 to 50 parts by weight, more preferably 3 to 40 parts by weight, and even more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the resin.
 凝集の際には、凝集性及び凝集粒子を小粒径でシャープな粒度分布に制御する観点から、前記凝集系内の温度を(樹脂粒子を構成する樹脂のガラス転移点+25)℃以下の温度とすることが好ましく、粗大粒子の抑制の観点から、より好ましくは(ガラス転移点-30)℃~(ガラス転移点+25℃)、さらに好ましくは25℃~(ガラス転移点+15)℃、さらにより好ましくは35℃~(ガラス転移点+5)℃の範囲である。
  凝集剤の添加の際には、凝集剤は水系媒体溶液にして添加することができる。凝集剤は、一時に添加しても良いし、連続的あるいは断続的に添加してもよい。また、分割して添加することもできる。凝集剤の添加時及び添加終了後には十分な攪拌をすることが好ましい。
At the time of agglomeration, from the viewpoint of controlling the agglomeration and the agglomerated particles to have a small particle size and a sharp particle size distribution, the temperature in the agglomerated system is (temperature of the glass transition point of the resin constituting the resin particles + 25) ° C. or less. From the viewpoint of suppressing coarse particles, more preferably, (glass transition point−30) ° C. to (glass transition point + 25 ° C.), more preferably 25 ° C. to (glass transition point + 15) ° C., even more Preferably, it is in the range of 35 ° C. to (glass transition point + 5) ° C.
When adding the flocculant, the flocculant can be added as an aqueous medium solution. The flocculant may be added at once, or may be added continuously or intermittently. Moreover, it can also be divided and added. It is preferable to sufficiently stir at the time of adding the flocculant and after completion of the addition.
  凝集粒子分散液中の凝集粒子のガラス転移点は、トナーの保存安定性の観点から、50~80℃であることが好ましく、より好ましくは52~75℃であり、更に好ましくは55~70℃である。
 この凝集粒子分散液に含まれる凝集粒子は、得られるトナーの小粒径化の観点から、その体積中位粒径(D50)が1~10μm、より好ましくは2~9μm、さらに好ましくは2~5μmの範囲にあることが好ましい。また粒度分布の変動係数(CV値)は30%以下であることが好ましく、より好ましくは28%以下、さらに好ましくは25%以下である。
 凝集粒子の分散液中における固形分濃度は、凝集粒子分散液の凝集制御の観点から、5~50重量%であることが好ましく、より好ましくは5~40重量%である。
The glass transition point of the aggregated particles in the aggregated particle dispersion is preferably 50 to 80 ° C., more preferably 52 to 75 ° C., and further preferably 55 to 70 ° C. from the viewpoint of storage stability of the toner. It is.
The aggregated particles contained in the aggregated particle dispersion have a volume median particle size (D50) of 1 to 10 μm, more preferably 2 to 9 μm, and still more preferably 2 to 2 μm, from the viewpoint of reducing the particle size of the obtained toner. It is preferably in the range of 5 μm. The variation coefficient (CV value) of the particle size distribution is preferably 30% or less, more preferably 28% or less, and further preferably 25% or less.
The solid content concentration in the dispersion of the aggregated particles is preferably 5 to 50% by weight, more preferably 5 to 40% by weight from the viewpoint of controlling the aggregation of the aggregated particle dispersion.
 本発明においては、離型剤等のトナー粒子からの流出を防止する、あるいはカラートナーにおいて、各色間の帯電量を同レベルにする等の観点から、前記凝集粒子分散液に、樹脂微粒子分散液を一時に又は複数回分割して添加して、樹脂微粒子付着凝集粒子を得る工程を経てトナーを製造することが好ましい。
 本発明においては、凝集粒子を構成する樹脂粒子(以下、「本発明における樹脂粒子」ということがある)に対して、凝集粒子に付着させる樹脂微粒子を、以後単に「樹脂微粒子」と呼ぶ。
In the present invention, from the viewpoint of preventing the release of the release agent or the like from the toner particles, or in the color toner, the charge amount between the respective colors is set to the same level, the aggregated particle dispersion is added to the resin fine particle dispersion. It is preferable to manufacture the toner through a step of adding the resin at once or divided into a plurality of times to obtain resin fine particle-attached aggregated particles.
In the present invention, resin fine particles adhered to the aggregated particles with respect to the resin particles constituting the aggregated particles (hereinafter sometimes referred to as “resin particles in the present invention”) are hereinafter simply referred to as “resin fine particles”.
  樹脂微粒子を複数回に分割して添加する場合、各々の樹脂微粒子の量は同量であることが好ましく、また、樹脂微粒子を分割して添加する場合には、各々の樹脂微粒の量は同量であることが好ましい。また、樹脂微粒子を複数回に分割して添加する場合、その回数については特に制限はないが、形成される凝集粒子の粒度分布の観点から、2~10回が好ましく、2~8回がより好ましい。
  本発明においては、凝集粒子に添加される樹脂微粒子としては、特に制限はなく、例えば本発明における樹脂粒子と同様にして調製したものを用いることができる。
  本発明においては、樹脂微粒子は、本発明における樹脂粒子と同じものであってもよく、異なるものであってもよいが、トナーの低温定着性や保存安定性の観点から、好ましくは本発明における樹脂粒子とはガラス転移点、軟化点、分子量等の異なる物性を有する樹脂微粒子である。
  前記樹脂微粒子の添加時期は、凝集粒子に付着させることができれば特に制限はないが、樹脂微粒子付着凝集粒子の粒径制御の観点から、最初の凝集剤の添加終了後、合一粒子の製造工程までの間であることが好ましい。
When the resin fine particles are added in a plurality of times, the amount of each resin fine particle is preferably the same amount, and when the resin fine particles are added in a divided manner, the amount of each resin fine particle is the same. An amount is preferred. In addition, when the resin fine particles are added in a plurality of times, the number of times is not particularly limited, but is preferably 2 to 10 times and more preferably 2 to 8 times from the viewpoint of the particle size distribution of the formed aggregated particles. preferable.
In the present invention, the resin fine particles added to the aggregated particles are not particularly limited, and for example, those prepared in the same manner as the resin particles in the present invention can be used.
In the present invention, the resin fine particles may be the same as or different from the resin particles in the present invention. From the viewpoint of low-temperature fixability and storage stability of the toner, the resin fine particles are preferably in the present invention. The resin particles are resin fine particles having different physical properties such as a glass transition point, a softening point, and a molecular weight.
The addition timing of the resin fine particles is not particularly limited as long as it can be adhered to the aggregated particles, but from the viewpoint of controlling the particle diameter of the resin fine particle-adhered aggregated particles, after the first addition of the coagulant, the process of producing the coalesced particles Is preferably between.
  凝集粒子分散液における凝集粒子と樹脂微粒子の配合比(凝集粒子/樹脂微粒子)は、トナーの低温定着性、保存安定性の観点から、重量比で0.1~3.0であることが好ましく、より好ましくは0.2~2.5であり、更に好ましくは0.3~2.0である。
 高画質化の観点から、樹脂微粒子付着凝集粒子の体積中位粒径(D50)は1~10μmであることが好ましく、2~10μmがより好ましく、3~9μmがさらに好ましい。
The mixing ratio of the aggregated particles to the resin fine particles (aggregated particles / resin fine particles) in the aggregated particle dispersion is preferably 0.1 to 3.0 by weight from the viewpoint of low-temperature fixability and storage stability of the toner. More preferably, it is 0.2 to 2.5, and still more preferably 0.3 to 2.0.
From the viewpoint of high image quality, the volume median particle size (D50) of the resin fine particle-attached aggregated particles is preferably 1 to 10 μm, more preferably 2 to 10 μm, and further preferably 3 to 9 μm.
 本発明においては、凝集後あるいは樹脂微粒子添加終了後、さらなる不必要な凝集を防止する観点から、合一前に、凝集停止剤を添加することが好ましい。凝集停止剤として界面活性剤を用いることが好ましいが、アニオン性界面活性剤を用いることがより好ましい。アニオン性界面活性剤のうち、アルキルエーテル硫酸塩、アルキル硫酸塩、及び直鎖アルキルベンゼンスルホン酸塩からなる群から選ばれる少なくとも1種を添加することがさらに好ましい。
  前記凝集停止剤は1種で用いてもよいが、2種以上組み合わせて使用することもできる。
In the present invention, it is preferable to add an aggregation terminator before coalescence from the viewpoint of preventing further unnecessary aggregation after aggregation or after the addition of resin fine particles. A surfactant is preferably used as the aggregation terminator, but an anionic surfactant is more preferably used. Of the anionic surfactants, it is more preferable to add at least one selected from the group consisting of alkyl ether sulfates, alkyl sulfates, and linear alkylbenzene sulfonates.
The aggregation terminator may be used singly or in combination of two or more.
  前記凝集停止剤の添加量は、凝集停止性およびトナーへの残留性の観点から、凝集粒子を構成する樹脂あるいは樹脂粒子付着凝集粒子を構成する樹脂(すなわち、凝集粒子を構成する樹脂及び樹脂微粒子を構成する樹脂の総量)100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~8重量部である。凝集停止剤は、前記添加量であれば、いかなる形態で添加してもよいが、生産性の観点から、水溶液で添加することが好ましい。前記各塩は、一時に添加しても良いし、断続的あるいは連続的に添加してもよい。 The addition amount of the aggregation terminator is selected from the viewpoints of aggregation termination properties and persistence to the toner, the resin constituting the aggregated particles or the resin constituting the resin particle-attached aggregated particles (that is, the resin and resin fine particles constituting the aggregated particles) The total amount of the resin constituting the resin is preferably 0.1 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and still more preferably 0.1 to 8 parts by weight with respect to 100 parts by weight. The aggregation terminator may be added in any form as long as it is the above addition amount, but it is preferably added in an aqueous solution from the viewpoint of productivity. Each said salt may be added at once, and may be added intermittently or continuously.
合一工程
 本発明では、前記凝集粒子あるいは樹脂微粒子付着凝集粒子の製造後に、これらを融着、合一させて合一粒子を得ることが好ましい。
 樹脂微粒子付着凝集粒子は、合一の際、凝集粒子中の樹脂粒子や離型剤粒子同士、樹脂微粒子付着凝集粒子中の樹脂粒子や離型剤粒子同士、樹脂微粒子同士、及び、樹脂微粒子付着凝集粒子中の凝集粒子と樹脂微粒子とが、主として物理的に付着している状態であったものが、凝集粒子が一体となり合一されると共に、樹脂微粒子同士が、及び凝集粒子と樹脂微粒子が融着されて一体となり、合一粒子となっていると推定される。
Combined Step In the present invention, it is preferable that after the aggregated particles or resin fine particle-attached aggregated particles are produced, they are fused and combined to obtain combined particles.
The resin fine particle adhering aggregated particles, when coalesced, the resin particles and release agent particles in the aggregated particles, the resin particles and release agent particles in the resin fine particle adhering aggregate particles, the resin fine particles, and the resin fine particle adhering In the aggregated particles, the aggregated particles and the resin fine particles are mainly physically attached, and the aggregated particles are united together and the resin fine particles are combined with each other, and the aggregated particles and the resin fine particles are combined. It is presumed that the particles are fused together to form a unified particle.
  合一時における加熱温度は、凝集粒子のガラス転移点以上かつ100℃以下となるような温度であることが好ましく、より好ましくは凝集粒子のガラス転移点以上かつ90℃以下となるような温度、さらに好ましくは凝集粒子のガラス転移点以上かつ85℃以下となるような温度である。これより低い温度では、融着が進行しないことがある。またこれより温度が高いと、離型剤の凝集粒子からの遊離が発生することがある。
 樹脂微粒子付着凝集粒子の分散液の場合、その加熱温度は、目的とするトナーの形状制御、融着性の観点から、樹脂微粒子を構成する樹脂のガラス転移点以上かつ(該樹脂の軟化点+20℃)以下が好ましく、より好ましくは(該樹脂のガラス転移点+5℃)以上かつ(該樹脂の軟化点+15℃)以下であり、さらに好ましくは(該樹脂のガラス転移点+10℃)以上かつ(該樹脂の軟化点+10℃)以下である。
It is preferable that the heating temperature at the time of combination is a temperature that is not less than the glass transition point of aggregated particles and not more than 100 ° C., more preferably a temperature that is not less than the glass transition point of aggregated particles and not more than 90 ° C., The temperature is preferably such that it is not less than the glass transition point of the aggregated particles and not more than 85 ° C. At temperatures lower than this, fusion may not proceed. If the temperature is higher than this, the release agent may be released from the aggregated particles.
In the case of the dispersion of resin fine particle-adhered aggregated particles, the heating temperature is not less than the glass transition point of the resin constituting the resin fine particles and the softening point of the resin +20 from the viewpoint of target shape control and fusing property of the toner. ° C) or less, more preferably (glass transition point of the resin + 5 ° C.) or more and (softening point of the resin + 15 ° C.) or less, more preferably (glass transition point of the resin + 10 ° C.) or more and ( The softening point of the resin + 10 ° C. or lower.
トナー粒子
  得られた合一粒子は、ろ過などの固液分離工程、洗浄工程、乾燥工程を経て、トナー粒子となる。
 前記乾燥工程は、前記合一工程で得られた合一粒子を、必要に応じ、ろ過などの固液分離工程、洗浄工程等を経た後、乾燥させてトナー粒子を得る工程である。乾燥方法としては、振動型流動乾燥法、スプレードライ法、冷凍乾燥法、フラッシュジェット法等、任意の方法を採用することができる。トナー粒子の乾燥後の水分含量は、トナーの帯電性の観点から、好ましくは1.5重量%以下、さらには1.0重量%以下に調整することが好ましい。
The obtained coalesced particles become toner particles through a solid-liquid separation process such as filtration, a washing process, and a drying process.
The drying step is a step of obtaining toner particles by drying the coalesced particles obtained in the coalescing step through a solid-liquid separation step such as filtration and a washing step as necessary. As a drying method, any method such as a vibration type fluidized drying method, a spray drying method, a freeze drying method, a flash jet method, or the like can be adopted. The water content after drying of the toner particles is preferably adjusted to 1.5% by weight or less, more preferably 1.0% by weight or less, from the viewpoint of chargeability of the toner.
  トナーの高画質化の観点から、合一粒子及びトナー粒子の体積中位粒径(D50)は1~10μmであることが好ましく、2~8μmがより好ましく、3~8μmがさらに好ましい。また、前述の合一粒子及びトナー粒子のCV値は、いずれも30%以下が好ましく、より好ましくは25%以下である。トナー(粒子)の粒径及び粒度分布は、後述の方法で測定することができる。 From the viewpoint of improving the image quality of the toner, the volume median particle size (D50) of the coalesced particles and toner particles is preferably 1 to 10 μm, more preferably 2 to 8 μm, and even more preferably 3 to 8 μm. Further, the CV value of the coalesced particles and toner particles described above is preferably 30% or less, and more preferably 25% or less. The particle size and particle size distribution of the toner (particles) can be measured by the method described below.
[電子写真用トナー]
 本発明の電子写真用トナーは、前記トナーの製造方法で得られるものである。
  本発明の電子写真用トナーの軟化点は、低温定着性の観点から、60~140℃であることが好ましく、より好ましくは65~130℃、さらに好ましくは70~120℃である。また、ガラス転移点は、トナーの耐久性の観点から、30~80℃が好ましく、40~70℃がより好ましい。なお、軟化点及びガラス転移点の測定方法は、樹脂におけるこれらの測定方法に準ずる。
 本発明の電子写真用トナー中における離型剤については、その含有量は、トナー中の結着樹脂100重量部に対し、トナーの定着性の観点から好ましくは0.5~20重量部、より好ましくは1~18重量部、さらに好ましくは1.5~15重量部である。着色剤及び荷電制御剤を含有する場合は、着色剤については、その含有量は、トナー中の結着樹脂100重量部に対し、好ましくは20重量部以下、より好ましくは0.01~10重量部であり、荷電制御剤については、トナー中の結着樹脂100重量部に対し、好ましく10重量部以下、より好ましくは0.01~5重量部である。
[Electrophotographic toner]
The electrophotographic toner of the present invention is obtained by the toner production method.
The softening point of the electrophotographic toner of the present invention is preferably from 60 to 140 ° C., more preferably from 65 to 130 ° C., still more preferably from 70 to 120 ° C., from the viewpoint of low-temperature fixability. The glass transition point is preferably from 30 to 80 ° C., more preferably from 40 to 70 ° C., from the viewpoint of toner durability. In addition, the measuring method of a softening point and a glass transition point is based on these measuring methods in resin.
The content of the release agent in the electrophotographic toner of the present invention is preferably 0.5 to 20 parts by weight from the viewpoint of toner fixability with respect to 100 parts by weight of the binder resin in the toner. The amount is preferably 1 to 18 parts by weight, more preferably 1.5 to 15 parts by weight. When the colorant and the charge control agent are contained, the content of the colorant is preferably 20 parts by weight or less, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the binder resin in the toner. The charge control agent is preferably 10 parts by weight or less, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the binder resin in the toner.
 本発明のトナーは、前記得られたトナー粒子をそのままトナーとして使用してもよいし、外添剤として流動化剤等の助剤をトナー粒子表面に添加処理したものをトナーとして使用することができる。外添剤としては、表面を疎水化処理したシリカ微粒子、酸化チタン微粒子、アルミナ微粒子等の無機微粒子やポリメチルメタクリレート、シリコーン樹脂等のポリマー微粒子等、公知の微粒子が使用できる。
  外添剤の配合量は、外添剤による処理前のトナー粒子100重量部に対して、1~5重量部が好ましく、1.5~3.5重量部がより好ましい。
 本発明により得られる電子写真用トナーは、一成分系現像剤として、又はキャリアと混合して二成分系現像剤として使用することができる。
In the toner of the present invention, the obtained toner particles may be used as they are, or a toner obtained by adding an additive such as a fluidizing agent to the toner particle surface as an external additive may be used as the toner. it can. As the external additive, known fine particles such as inorganic fine particles such as silica fine particles, titanium oxide fine particles, and alumina fine particles whose surface is hydrophobized, and polymer fine particles such as polymethyl methacrylate and silicone resin can be used.
The amount of the external additive is preferably 1 to 5 parts by weight, more preferably 1.5 to 3.5 parts by weight, based on 100 parts by weight of the toner particles before processing with the external additive.
The toner for electrophotography obtained by the present invention can be used as a one-component developer or as a two-component developer by mixing with a carrier.
  以下の実施例等においては、各性状値は次の方法により測定、評価した。
[樹脂の酸価]
  JIS  K0070に従って測定する。但し、測定溶媒をアセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))とした。
In the following examples and the like, each property value was measured and evaluated by the following method.
[Acid value of resin]
Measured according to JIS K0070. However, the measurement solvent was a mixed solvent of acetone and toluene (acetone: toluene = 1: 1 (volume ratio)).
[樹脂の軟化点及びガラス転移点]
(1)軟化点
  フローテスター(島津製作所社製、「CFT-500D」)を用い、1gの試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのブランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
[Softening point and glass transition point of resin]
(1) Softening point Using a flow tester (manufactured by Shimadzu Corporation, “CFT-500D”), a 1 g sample was heated at a heating rate of 6 ° C./min, and a load of 1.96 MPa was applied by a plunger. Extrude from a nozzle of 1 mm length 1 mm. Plot the flow tester drop by the flow tester against the temperature, and let the softening point be the temperature at which half the sample flowed out.
(2)ガラス転移点
  示差走査熱量計(Parkin Elmer社製、Pyris6 DSC)を用いて200℃まで昇温し、その温度から降温速度10℃/分で-10℃まで冷却した試料を昇温速度10℃/分で測定する。軟化点より20℃以上低い温度でピークが観測される場合にはそのピークの温度を、また軟化点より20℃以上低い温度でピークが観測されずに段差が観測されるときは該段差部分の曲線の最大傾斜を示す接線と該段差の高温側のベースラインの延長線との交点の温度を、ガラス転移点として読み取る。なお、ガラス転移点は、樹脂の非晶質部分に特有の物性であり、一般には非晶質ポリエステルで観測されるが、結晶性ポリエステルでも非晶質部分が存在する場合には観測されることがある。
(2) Glass transition point Using a differential scanning calorimeter (Parkin Elmer, Pyris6 DSC), the temperature was raised to 200 ° C., and the sample was cooled to −10 ° C. at a temperature reduction rate of 10 ° C./min from that temperature. Measure at 10 ° C / min. When a peak is observed at a temperature 20 ° C. or more lower than the softening point, the peak temperature is measured. When a peak is not observed at a temperature 20 ° C. or higher lower than the softening point, a step is observed. The temperature at the intersection of the tangent line indicating the maximum slope of the curve and the extension line of the base line on the high temperature side of the step is read as the glass transition point. The glass transition point is a physical property peculiar to the amorphous part of the resin, and is generally observed in amorphous polyester, but is observed when amorphous part exists even in crystalline polyester. There is.
[離型剤の融点]
 示差走査熱量計(セイコー電子工業社製、DSC210)を用いて20℃から昇温速度10℃/分で測定し、最大ピーク温度を融点とする。
[Melting point of release agent]
Using a differential scanning calorimeter (DSC210, manufactured by Seiko Denshi Kogyo Co., Ltd.), the temperature is measured from 20 ° C. at a heating rate of 10 ° C./min, and the maximum peak temperature is taken as the melting point.
[ポリアクリル酸塩の分子量]
GPC(ゲルパーミエーションクロマトグラフィー)
測定装置:CO-8010(東ソー社製)により、下記条件で測定する。なお  試料の分子量は、標準物質にポリエチレングリコールを用いあらかじめ作成した検量線に基づき算出する。
カラム:TSK PWXL+G4000PWXL+G2500PWXL(いずれも東ソー社製)
カラム温度:40℃
溶離液:0.2mol/L  リン酸緩衝液/アセトニトリル(9/1)
流速:1.0mL/min
注入量:0.1mL
[Molecular weight of polyacrylate]
GPC (gel permeation chromatography)
Measurement is carried out under the following conditions using a measuring apparatus: CO-8010 (manufactured by Tosoh Corporation). The molecular weight of the sample is calculated based on a calibration curve prepared in advance using polyethylene glycol as the standard substance.
Column: TSK PWXL + G4000PWXL + G2500PWXL (both manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: 0.2 mol / L phosphate buffer / acetonitrile (9/1)
Flow rate: 1.0 mL / min
Injection volume: 0.1 mL
[樹脂粒子、樹脂微粒子及び離型剤粒子の粒径]
(1)測定装置:レーザー散乱型粒径測定機(堀場製作所製、LA-920)
(2)測定条件:測定用セルに蒸留水を加え、吸光度を適正範囲になる温度で体積中位粒径(D50)を測定する。粒度分布は、CV値(粒度分布の標準偏差/体積中位粒径(D50)×100)で示す。
[Particle size of resin particles, resin particles and release agent particles]
(1) Measuring device: Laser scattering type particle size measuring machine (Horiba, LA-920)
(2) Measurement conditions: Distilled water is added to the measurement cell, and the volume-median particle size (D50) is measured at a temperature where the absorbance falls within an appropriate range. The particle size distribution is represented by a CV value (standard deviation of particle size distribution / volume median particle size (D50) × 100).
[分散液の固形分濃度]
  赤外線水分計(ケット科学研究所社製:FD-230)を用いて、分散液5gを乾燥温度150℃,測定モード96(監視時間2.5分/変動幅0.05%)にて、水分%を測定する。固形分は下記の式に従って算出した。
  固形分(%)=100-M
    M:水分(%)=[(W-W0)/W]×100
    W:測定前の試料重量(初期試料重量)
    W0:測定後の試料重量(絶対乾燥重量)
[Solid concentration of dispersion]
Using an infrared moisture meter (Kett Science Laboratory Co., Ltd .: FD-230), 5 g of the dispersion was dried at a drying temperature of 150 ° C. in a measurement mode 96 (monitoring time 2.5 minutes / variation width 0.05%). % Is measured. The solid content was calculated according to the following formula.
Solid content (%) = 100-M
M: Moisture (%) = [(W−W0) / W] × 100
W: Sample weight before measurement (initial sample weight)
W0: Sample weight after measurement (absolute dry weight)
〔凝集粒子、樹脂微粒子付着凝集粒子、合一粒子の粒径〕
・測定機:コールターマルチサイザー III(ベックマンコールター社製)
・アパチャー径:50μm
・解析ソフト: マルチサイザーIIIバージョン3.51(ベックマンコールター社製)
・電解液:アイソトンII(ベックマンコールター社製)
測定条件:凝集粒子分散液、樹脂微粒子付着凝集粒子分散液又は合一粒子分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。粒度分布は、CV値(粒度分布の標準偏差/体積中位粒径(D50)×100)で示す。また微粉量は個数平均粒径における2μm以下の粒径の成分の含有割合(個数%)で表す。
[Agglomerated particles, aggregated particles of resin fine particles, and particle size of coalesced particles]
・ Measuring machine: Coulter Multisizer III (Beckman Coulter)
・ Aperture diameter: 50μm
-Analysis software: Multisizer III version 3.51 (manufactured by Beckman Coulter)
・ Electrolyte: Isoton II (Beckman Coulter)
Measurement conditions: After adjusting the particle size of 30,000 particles to a concentration that can be measured in 20 seconds by adding the aggregated particle dispersion, the resin particle adhesion aggregated particle dispersion, or the coalesced particle dispersion to 100 mL of the electrolytic solution. 30,000 particles are measured, and the volume median particle size (D50) is determined from the particle size distribution. The particle size distribution is represented by a CV value (standard deviation of particle size distribution / volume median particle size (D50) × 100). The fine powder amount is represented by the content ratio (number%) of components having a particle size of 2 μm or less in the number average particle size.
[トナーの粒径]
・測定機:コールターマルチサイザーIII(ベックマンコールター社製)
・アパチャー径:50μm
・解析ソフト:マルチサイザーIIIバージョン3.51(ベックマンコールター社製)
・電解液:アイソトンII(ベックマンコールター社製)
・分散液:エマルゲン109P(花王社製、ポリオキシエチレンラウリルエーテル、HLB:13.6)を5重量%濃度となるように前記電解液に溶解させて分散液を得る。
・分散条件:前記分散液5mLに測定試料10mgを添加し、超音波分散機にて1分間分散させ、その後、電解液25mLを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を作製する。
・測定条件:前記試料分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
・粒度分布は、CV値(粒度分布の標準偏差/体積中位粒径(D50)×100)(%)で示す。
[Toner particle size]
-Measuring machine: Coulter Multisizer III (Beckman Coulter, Inc.)
・ Aperture diameter: 50μm
・ Analysis software: Multisizer III version 3.51 (Beckman Coulter, Inc.)
・ Electrolyte: Isoton II (Beckman Coulter)
-Dispersion: Emulgen 109P (manufactured by Kao Corporation, polyoxyethylene lauryl ether, HLB: 13.6) is dissolved in the electrolyte so as to have a concentration of 5% by weight to obtain a dispersion.
-Dispersion condition: 10 mg of a measurement sample is added to 5 mL of the dispersion, and dispersed for 1 minute with an ultrasonic disperser, and then 25 mL of an electrolyte is added, and further dispersed for 1 minute with an ultrasonic disperser. A sample dispersion is prepared.
Measurement conditions: The sample dispersion is added to 100 mL of the electrolytic solution to adjust the particle size of 30,000 particles to a concentration that can be measured in 20 seconds, and then 30,000 particles are measured and the particle size distribution thereof. To determine the volume-median particle size (D50).
The particle size distribution is indicated by a CV value (standard deviation of particle size distribution / volume median particle size (D50) × 100) (%).
ポリエステル製造例1(ポリエステルAの製造)
 ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン8,320g、ポリオキシエチレン(2.0)-2,2-ビス(4-ヒドロキシフェニル)プロパン80g、テレフタル酸1,592g及び酸化ジブチル錫(エステル化触媒)32gを窒素雰囲気下、常圧(101.3kPa)下230℃で5時間反応させ、さらに減圧(8.3kPa)下で反応させた。210℃に冷却し、フマル酸1,672g、ハイドロキノン8gを加え、5時間反応させた後に、さらに減圧下で反応させて、ポリエステルAを得た。ポリエステルAの軟化点は110℃、ガラス転移点は66℃、酸価は24.4mgKOH/gであった。
Polyester production example 1 (Production of polyester A)
Polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane 8,320 g, Polyoxyethylene (2.0) -2,2-bis (4-hydroxyphenyl) propane 80 g, terephthalic acid 1,592 g and 32 g of dibutyltin oxide (esterification catalyst) were reacted at 230 ° C. under normal pressure (101.3 kPa) for 5 hours under a nitrogen atmosphere, and further reacted under reduced pressure (8.3 kPa). After cooling to 210 ° C., 1,672 g of fumaric acid and 8 g of hydroquinone were added and reacted for 5 hours, and further reacted under reduced pressure to obtain polyester A. Polyester A had a softening point of 110 ° C., a glass transition point of 66 ° C., and an acid value of 24.4 mgKOH / g.
ポリエステル製造例2(ポリエステルBの製造)
  ポリオキシプロピレン(2.2)-2、2-ビス(4-ヒドロキシフェニル)プロパン4,176g、ポリオキシエチレン(2.0)-2、2-ビス(4-ヒドロキシフェニル)プロパン3,881g、テレフタル酸2,253g、ドデセニルコハク酸無水物322g、トリメリット酸無水物945g及び酸化ジブチル錫15gを窒素導入管、脱水管、攪拌器及び熱電対を装備した四つ口フラスコに入れ、窒素雰囲気下、220℃で攪拌し、ASTM D36-86に従って測定した軟化点が120℃に達するまで反応させて、ポリエステルBを得た。ポリエステルBの軟化点は121℃、ガラス転移点は65℃、酸価は21.0mgKOH/gであった。
Polyester production example 2 (Production of polyester B)
Polyoxypropylene (2.2) -2, 2-bis (4-hydroxyphenyl) propane 4,176 g, polyoxyethylene (2.0) -2, 2-bis (4-hydroxyphenyl) propane 3,881 g, 2,253 g of terephthalic acid, 322 g of dodecenyl succinic anhydride, 945 g of trimellitic anhydride and 15 g of dibutyltin oxide were placed in a four-necked flask equipped with a nitrogen introducing tube, a dehydrating tube, a stirrer, and a thermocouple. The mixture was stirred at 220 ° C. and reacted until the softening point measured according to ASTM D36-86 reached 120 ° C. to obtain polyester B. Polyester B had a softening point of 121 ° C, a glass transition point of 65 ° C, and an acid value of 21.0 mgKOH / g.
樹脂粒子分散液製造例1(樹脂粒子分散液Aの製造)
 2リットル容のステンレス釜で、ポリエステルA 390.0g、ポリエステルB 210.0g、銅フタロシアニン顔料(ECB-301:大日精化工業社製)45g、及び、アニオン性界面活性剤(花王社製「ネオペレックスG-15」ドデシルベンゼンスルホン酸ナトリウム15重量%水溶液)20.0g、非イオン性界面活性剤「エマルゲン 430(花王社製)」ポリオキシエチレン(26mol)オレイルエーテル(HLB:16.2)6.0g、及び5重量%水酸化カリウム水溶液278.5gをカイ型の攪拌機で200r/minの攪拌下、95℃で分散させた。カイ型の攪拌機で200r/minの攪拌下で2時間保持した。続いて、カイ型の攪拌機で200r/minの攪拌下、脱イオン水1222gを6g/分で滴下した。また、系の温度は95℃に保持した。25℃まで冷却後、カイ型の攪拌機で200r/minの攪拌下、水溶性のオキサゾリン基を含有する重合体「日本触媒社製 エポクロスWS-700」28gを添加し、その後95℃に温度を上げ95℃を1時間保持した。
 冷却後、200メッシュ(目開き:105μm)の金網を通して、微粒化した樹脂粒子分散液Aを得た。得られた樹脂粒子分散液A中の樹脂粒子の体積中位粒径(D50)は180nm、CV値は28%、固形分濃度は31重量%であった。
Resin particle dispersion production example 1 (Production of resin particle dispersion A)
In a 2 liter stainless steel kettle, 390.0 g of polyester A, 210.0 g of polyester B, 45 g of copper phthalocyanine pigment (ECB-301: manufactured by Dainichi Seika Kogyo Co., Ltd.), and an anionic surfactant (“Neo” manufactured by Kao Corporation) Perex G-15 “Sodium dodecylbenzenesulfonate 15 wt% aqueous solution) 20.0 g, nonionic surfactant“ Emulgen 430 (manufactured by Kao) ”polyoxyethylene (26 mol) oleyl ether (HLB: 16.2) 6 0.08 g and 58.5% by weight potassium hydroxide aqueous solution 278.5 g were dispersed at 95 ° C. with stirring at 200 r / min using a chi-type stirrer. The mixture was held for 2 hours under stirring at 200 r / min with a Kai-type stirrer. Subsequently, 1222 g of deionized water was added dropwise at 6 g / min while stirring at 200 r / min with a Kai-type stirrer. The system temperature was maintained at 95 ° C. After cooling to 25 ° C., 28 g of a polymer containing water-soluble oxazoline group “Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd.” is added with a chi-type stirrer at 200 r / min, and the temperature is raised to 95 ° C. The temperature was maintained at 95 ° C. for 1 hour.
After cooling, the resin particle dispersion A was atomized through a 200 mesh (mesh: 105 μm) wire mesh. The resin particles in the obtained resin particle dispersion A had a volume median particle size (D50) of 180 nm, a CV value of 28%, and a solid content concentration of 31% by weight.
樹脂粒子分散液製造例2(樹脂粒子分散液Bの製造)
 2リットル容のステンレス釜で、ポリエステルA 390.0g、ポリエステルB 210.0g、及び、アニオン性界面活性剤(花王社製「ネオペレックスG-15」ドデシルベンゼンスルホン酸ナトリウム15重量%水溶液)20.0g、非イオン性界面活性剤「エマルゲン 430(花王社製)」ポリオキシエチレン(26mol)オレイルエーテル(HLB:16.2)6.0g、及び5重量%水酸化カリウム水溶液278.5gをカイ型の攪拌機で200r/minの攪拌下、95℃で分散させた。カイ型の攪拌機で200r/minの攪拌下で2時間保持した。続いて、カイ型の攪拌機で200r/minの攪拌下、脱イオン水を6g/分で滴下した。また、系の温度は95℃に保持した。冷却後、200メッシュ(目開き:105μm)の金網を通して、微粒化した樹脂粒子分散液Bを得た。得られた樹脂粒子分散液B中の樹脂粒子の体積中位粒径(D50)は141nm、CV値は24%、固形分濃度は31重量%であった。
Resin particle dispersion production example 2 (Production of resin particle dispersion B)
In a 2 liter stainless steel kettle, 390.0 g of polyester A, 210.0 g of polyester B, and an anionic surfactant (“Neoperex G-15” sodium dodecylbenzenesulfonate 15 wt% aqueous solution manufactured by Kao Corporation) 20. 0 g, nonionic surfactant “Emulgen 430 (manufactured by Kao)” polyoxyethylene (26 mol) oleyl ether (HLB: 16.2) 6.0 g, and 58.5% by weight potassium hydroxide aqueous solution 278.5 g The mixture was dispersed at 95 ° C. with stirring of 200 r / min. The mixture was held for 2 hours under stirring at 200 r / min with a Kai-type stirrer. Subsequently, deionized water was added dropwise at a rate of 6 g / min while stirring at 200 r / min with a Kai-type stirrer. The system temperature was maintained at 95 ° C. After cooling, the resin particle dispersion B was atomized through a 200 mesh (mesh: 105 μm) wire mesh. The resin particles in the obtained resin particle dispersion B had a volume median particle size (D50) of 141 nm, a CV value of 24%, and a solid content concentration of 31% by weight.
離型剤分散液製造例1(離型剤分散液Aの製造) 1リットル容のビーカーで、脱イオン水400gにポリカルボン酸ナトリウム水溶液としてアクリル酸-マレイン酸共重合体のナトリウム塩水溶液、化学式(II)、花王社製「ポイズ521」重量平均分子量:2.0×104、有効濃度40重量%)7.5gを溶解させた後、これにカルナウバワックス(加藤洋行社製、融点83℃)58gとパラフィンワックスHNP-9(日本精鑞社製、融点75℃)42gを添加し分散させた。この分散液を90~95℃に温度を保持しながら、「Ultrasonic Homogenizer 600W」(日本精機社製)で30分間分散処理を行った後に室温(25℃)まで冷却し、ここにイオン交換水を加え、離型剤固形分20重量%に調整し、離型剤分散液Aを得た。 Release Agent Dispersion Production Example 1 (Production of Release Agent Dispersion A) In a 1 liter beaker, 400 g of deionized water, an aqueous solution of sodium salt of acrylic acid-maleic acid copolymer as an aqueous solution of sodium polycarboxylate, chemical formula (II), 7.5 g of “Poise 521” manufactured by Kao Corporation, weight average molecular weight: 2.0 × 10 4 , effective concentration 40% by weight) was dissolved, and then carnauba wax (manufactured by Kato Yoko Co., melting point 83) was dissolved therein. 58 g) and paraffin wax HNP-9 (Nihon Seiki Co., Ltd., melting point 75 ° C.) 42 g was added and dispersed. While maintaining the temperature at 90 to 95 ° C., the dispersion was subjected to a dispersion treatment with “Ultrasonic Homogenizer 600W” (manufactured by Nippon Seiki Co., Ltd.) for 30 minutes and then cooled to room temperature (25 ° C.). In addition, the release agent solid content was adjusted to 20% by weight to obtain a release agent dispersion A.
離型剤分散液製造例2(離型剤分散液Bの製造)
 離型剤分散液製造例1において、パラフィンワックスHNP-9に変えて、パラフィンワックスHNP-51(日本精鑞社製、融点77℃)を用い、アクリル酸-マレイン酸共重合体のナトリウム塩水溶液に変えて、ポリアクリル酸ナトリウム水溶液(化学式(I)、花王社製「ポイズ530」、重量平均分子量3.8×104、有効濃度40重量%)を用いた以外は同様にして、離型剤分散液Bを得た。
Release agent dispersion production example 2 (Production of release agent dispersion B)
In the release agent dispersion production example 1, instead of paraffin wax HNP-9, paraffin wax HNP-51 (manufactured by Nippon Seiki Co., Ltd., melting point 77 ° C.) was used, and an aqueous sodium salt solution of acrylic acid-maleic acid copolymer In the same manner, except that a sodium polyacrylate aqueous solution (chemical formula (I), “Poise 530” manufactured by Kao Corporation, weight average molecular weight 3.8 × 10 4 , effective concentration 40% by weight) was used instead of An agent dispersion B was obtained.
離型剤分散液製造例3(離型剤分散液Cの製造)
 離型剤分散液製造例1において、パラフィンワックスHNP-9に変えて、エステルワックスWEP-3(日油社製、融点73℃)を用いた以外は同様にして、離型剤分散液Cを得た。
Release agent dispersion production example 3 (Production of release agent dispersion C)
In Release Agent Dispersion Production Example 1, release agent dispersion C was prepared in the same manner except that ester wax WEP-3 (manufactured by NOF Corporation, melting point 73 ° C.) was used instead of paraffin wax HNP-9. Obtained.
比較製造例1
 離型剤分散液製造例1において、離型剤として、パラフィンワックスHNP-9を使用せず、カルナウバワックス(加藤洋行社製、融点83℃)100gを用い、アクリル酸-マレイン酸共重合体のナトリウム塩水溶液に変えて、ポリアクリル酸ナトリウム水溶液(前記式(I)の化合物、花王社製「ポイズ530」、重量平均分子量3.8×104、有効濃度40重量%)を用い同様に分散処理を行ったが、粘度上昇し、分散液が得られなかった。
Comparative production example 1
In the release agent dispersion production example 1, 100 g of carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.) is used as a release agent without using paraffin wax HNP-9, and an acrylic acid-maleic acid copolymer. In the same manner, an aqueous sodium polyacrylate solution (compound of the above formula (I), “Poise 530” manufactured by Kao Corporation, weight average molecular weight 3.8 × 10 4 , effective concentration 40% by weight) was used instead of Although the dispersion treatment was performed, the viscosity increased and a dispersion liquid could not be obtained.
比較製造例2
 離型剤分散液製造例1において、離型剤として、カルナウバワックスを用いず、パラフィンワックスHNP-9(日本精鑞社製、融点75℃)100gを用い同様に分散処理を行ったが、離型剤と水が分離し、分散液が得られなかった。
Comparative production example 2
In the release agent dispersion production example 1, dispersion treatment was performed in the same manner using 100 g of paraffin wax HNP-9 (manufactured by Nippon Seiki Co., Ltd., melting point 75 ° C.) without using carnauba wax as the release agent. The release agent and water were separated, and a dispersion was not obtained.
比較製造例3(離型剤分散液Dの製造)
 離型剤分散液製造例1において、アクリル酸-マレイン酸共重合体のナトリウム塩水溶液「ポイズ521」(花王社製)に変えて、ネオペレックスG15(ドデシルベンゼンスルホン酸ナトリウム 有効成分濃度15%、花王社製)6.7gを用いた以外は同様にして離型剤分散液Dを得た。
Comparative Production Example 3 (Production of release agent dispersion D)
In the release agent dispersion production example 1, instead of the sodium salt aqueous solution “Poise 521” (manufactured by Kao Corporation) of acrylic acid-maleic acid copolymer, Neoperex G15 (sodium dodecylbenzenesulfonate active ingredient concentration 15%) A release agent dispersion D was obtained in the same manner except that 6.7 g of Kao Corporation was used.
比較製造例4(離型剤分散液Eの製造)
 離型剤分散液製造例1において、離型剤として、パラフィンワックスHNP-9を使用せず、カルナウバワックス(加藤洋行社製、融点83℃)100gを用い、アクリル酸-マレイン酸共重合体のナトリウム塩水溶液「ポイズ521」(花王社製)に変えて、ラテムルASK(アルケニルコハク酸ジカリウム 有効成分濃度28%、花王社製)3.6g用いた以外は同様にして離型剤分散液Eを得た。
Comparative Production Example 4 (Production of release agent dispersion E)
In the release agent dispersion production example 1, 100 g of carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.) is used as a release agent without using paraffin wax HNP-9, and an acrylic acid-maleic acid copolymer. The release agent dispersion E was used in the same manner except that 3.6 g latemul ASK (dipotassium alkenyl succinate active ingredient concentration 28%, manufactured by Kao) was used instead of the sodium salt aqueous solution “Poise 521” (manufactured by Kao). Got.
比較製造例5(離型剤分散液Fの製造)
 離型剤分散液製造例1において、離型剤として、カルナウバワックス(加藤洋行社製、融点83℃)を使用せず、パラフィンワックスHNP-9(日本精鑞社製、融点75℃)100gを用い、アクリル酸-マレイン酸共重合体のナトリウム塩水溶液「ポイズ521」(花王社製)に変えて、ラテムルASK(アルケニルコハク酸ジカリウム 有効成分濃度28%、花王社製)3.6g用いた以外は同様にして、離型剤分散液Fを得た。
Comparative Production Example 5 (Production of release agent dispersion F)
In the release agent dispersion production example 1, 100 g of paraffin wax HNP-9 (manufactured by Nippon Seiki Co., Ltd., melting point 75 ° C.) is used as a releasing agent without using carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.). Was replaced with an aqueous sodium salt solution of an acrylic acid-maleic acid copolymer “Poise 521” (manufactured by Kao Corporation), and 3.6 g of latem ASK (active potassium dialkenyl succinate, 28% active ingredient concentration, manufactured by Kao Corporation) was used. Except for the above, release agent dispersion F was obtained in the same manner.
比較製造例6
 離型剤分散液製造例1において、離型剤として、パラフィンワックスHNP-9を使用せず、カルナウバワックス(加藤洋行社製、融点83℃)100gを用い同様に分散処理を行ったが、粘度上昇し、分散液が得られなかった。

 離型剤分散液製造例1~3及び比較製造例1~6の各々において得られた離型剤分散液A~Fの各々について、その組成及び性状を表1に示す。
Comparative Production Example 6
In Release Agent Dispersion Production Example 1, the same dispersion treatment was performed using 100 g of carnauba wax (manufactured by Kato Yoko Co., Ltd., melting point 83 ° C.) without using paraffin wax HNP-9 as the release agent. The viscosity increased and a dispersion could not be obtained.

Table 1 shows the compositions and properties of the release agent dispersions A to F obtained in the release agent dispersion production examples 1 to 3 and the comparative production examples 1 to 6, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例1
 樹脂粒子分散液A 250gと脱イオン水58gと離型剤分散液A 41gを脱水管、攪拌機及び熱電対を装備した2リットル容4つ口フラスコに入れ、室温下(25℃)で混合した。次に、カイ型の攪拌機で攪拌下、この混合物に硫酸アンモニウム18.2gを162gの脱イオン水に溶解させた水溶液を室温下で30分かけて滴下した。次いで、得られた混合溶液を55℃まで昇温し、55℃で保持し体積中位粒径が4.0μmの凝集粒子を形成した。
 続いて、樹脂微粒子分散液として樹脂粒子分散液B 23gと脱イオン水7.5gを混合した混合液を60分かけて滴下した。この操作を合計3回繰り返した。次に、樹脂微粒子分散液として樹脂粒子分散液A 28gと脱イオン水9.0gを混合した混合液と、硫酸アンモニウム1.5gを15gの脱イオン水に溶解させた水溶液を同時に60分かけて滴下した。この操作を合計2回繰り返し、体積中位粒径が5.0μmの樹脂微粒子付着凝集粒子分散液を得た。
Example 1
250 g of resin particle dispersion A, 58 g of deionized water, and 41 g of release agent dispersion A were placed in a 2-liter four-necked flask equipped with a dehydrating tube, a stirrer, and a thermocouple, and mixed at room temperature (25 ° C.). Next, an aqueous solution in which 18.2 g of ammonium sulfate was dissolved in 162 g of deionized water was dropped into this mixture over 30 minutes while stirring with a Kai-type stirrer. Next, the obtained mixed solution was heated up to 55 ° C. and held at 55 ° C. to form aggregated particles having a volume median particle size of 4.0 μm.
Subsequently, a mixed liquid in which 23 g of resin particle dispersion B and 7.5 g of deionized water were mixed as a resin fine particle dispersion was dropped over 60 minutes. This operation was repeated a total of 3 times. Next, a mixture of 28 g of resin particle dispersion A and 9.0 g of deionized water, and an aqueous solution in which 1.5 g of ammonium sulfate is dissolved in 15 g of deionized water are simultaneously added dropwise over 60 minutes. did. This operation was repeated twice in total to obtain a resin fine particle-attached aggregated particle dispersion having a volume median particle size of 5.0 μm.
 得られた樹脂微粒子付着凝集粒子分散液に、ポリオキシエチレンラウリルエーテル硫酸ナトリウム(エマールE27C、固形分:28重量%)11.6gを脱イオン水450gで希釈した水溶液を添加した後、80℃まで2時間かけて昇温し2時間保持した後、体積中位粒径が5.0μmの合一粒子を得た。その後、室温(25℃)まで冷却した。この間に、樹脂微子付着凝集粒子が合一粒子へ変化した。
 得られた合一粒子を、固液分離のためのろ過工程、乾燥工程、洗浄工程を経てトナー粒子を得た。このトナー粒子100重量部に対して、疎水性シリカ(日本アエロジル社製;RY50、個数平均粒径;0.04μm)2.5部、疎水性シリカ(キャボット社製;キャボシールTS720、個数平均粒径;0.012μm)1.0部、及び有機微粒子(日本ペイント社製;ファインスフェアP2000、個数平均粒径;0.5μm)0.8部をヘンシェルミキサーで外添処理し、150メッシュの篩いを通過した微粒子をシアントナーとした。
After adding an aqueous solution obtained by diluting 11.6 g of sodium polyoxyethylene lauryl ether sulfate (Emar E27C, solid content: 28% by weight) with 450 g of deionized water to the obtained resin fine particle adhering aggregated particle dispersion, up to 80 ° C. After raising the temperature over 2 hours and holding for 2 hours, coalescent particles having a volume median particle size of 5.0 μm were obtained. Then, it cooled to room temperature (25 degreeC). During this time, the resin fine particle adhesion aggregated particles changed to coalesced particles.
The obtained coalesced particles were subjected to a filtration step for solid-liquid separation, a drying step, and a washing step to obtain toner particles. With respect to 100 parts by weight of the toner particles, 2.5 parts of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd .; RY50, number average particle size; 0.04 μm), hydrophobic silica (manufactured by Cabot; Cabo Seal TS720, number average particle size) 0.012 μm) and 0.8 part of organic fine particles (manufactured by Nippon Paint Co., Ltd .; Finesphere P2000, number average particle size; 0.5 μm) were externally added with a Henschel mixer, and a 150 mesh sieve was obtained. The fine particles that passed through were used as cyan toner.
実施例2
 実施例1において、離型剤分散液A 41gに変えて、離型剤分散液B 41gを用いた以外は同様にしてトナーを得た。
Example 2
A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion B was used instead of 41 g of the release agent dispersion A.
実施例3
 実施例1において、離型剤分散液A 41gに変えて、離型剤分散液C 41gを用いた以外は同様にしてトナーを得た。
Example 3
A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion C was used instead of 41 g of the release agent dispersion A.
比較例1
 実施例1において、離型剤分散液A 41gに変えて、離型剤分散液D 41gを用いた以外は同様にしてトナーを得た。
Comparative Example 1
A toner was obtained in the same manner as in Example 1 except that 41 g of the release agent dispersion D was used instead of 41 g of the release agent dispersion A.
比較例2
 実施例1において、離型剤分散液A 41gに変えて、離型剤分散液E 24gおよび離型剤分散液F 17gを用いた以外は同様にしてトナーを得た。

 実施例1~3及び比較例1,2の各々において得られたトナーについて、以下の方法で、トナー製造工程における凝集時、合一時の微粉、上澄みの状態、定着性及び保存安定性を評価した。結果を表2に示す。
Comparative Example 2
A toner was obtained in the same manner as in Example 1, except that 24 g of the release agent dispersion E and 17 g of the release agent dispersion F were used instead of 41 g of the release agent dispersion A.

With respect to the toners obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the following methods were used to evaluate the aggregation and temporary fine powder, the state of the supernatant, the fixability and the storage stability in the toner production process. . The results are shown in Table 2.
[凝集時の微粉と上澄みの状態]
 トナー製造工程における凝集時の離型剤粒子と樹脂粒子との凝集性について、採取した凝集粒子分散液中の凝集粒子の粒度分布の測定と、採取した凝集粒子分散液の上澄み液の濁りを確認した。凝集粒子の粒度分布において微粉量(粒径2μm以下の粒子の割合(個数%))が多いほど離型剤粒子が樹脂粒子と凝集性が悪いことを示し、また、上澄み液が白濁するものは離型剤が遊離していることを示す。
 A:上澄み液は透明である
 B:上澄み液が若干白濁している
 C:上澄み液が白濁している
[The state of fine powder and supernatant during aggregation]
Regarding the agglomeration between the release agent particles and the resin particles during aggregation in the toner manufacturing process, measurement of the particle size distribution of the aggregated particles in the collected aggregated particle dispersion and confirmation of the turbidity of the collected supernatant of the aggregated particle dispersion did. The larger the amount of fine particles (ratio (number%) of particles having a particle diameter of 2 μm or less)) in the particle size distribution of the agglomerated particles, the more the release agent particles are less agglomerated with the resin particles, and the supernatant liquid becomes cloudy Indicates that the release agent is released.
A: The supernatant liquid is transparent. B: The supernatant liquid is slightly cloudy. C: The supernatant liquid is cloudy.
[合一時の微粉と上澄みの状態]
 トナー製造工程における合一時の離型剤の遊離について、採取した合一粒子分散液中の合一粒子の粒度分布の測定と、採取した合一粒子分散液の上澄み液の濁りを
凝集時の微粉と上澄みの状態の評価方法と同様にして確認した。合一粒子の粒度分布において微粉量(粒径2μm以下の粒子の割合(個数%))が多いほど離型剤粒子が凝集粒子から遊離しているか、合一の時に遊離したことを示し、また、上澄み液が白濁するものは離型剤が遊離していることを示す。
[State of fine powder and supernatant at the same time]
Measurement of the particle size distribution of the coalesced particle dispersion in the collected coalesced particle dispersion and the turbidity of the supernatant of the collected coalesced particle dispersion in the toner production process It confirmed in the same manner as the evaluation method of the state of the supernatant. In the particle size distribution of coalesced particles, the larger the amount of fine powder (ratio (number%) of particles having a particle size of 2 μm or less)), the more release agent particles are released from the agglomerated particles, or they are released at the time of coalescence. When the supernatant liquid becomes cloudy, it indicates that the release agent is liberated.
[トナーの定着性評価]
 上質紙(富士ゼロックス社製、J紙A4サイズ)に市販のプリンタ(沖データ社製、「ML5400」)を用いて画像を出力し、トナーの紙上の付着量が0.45±0.03mg/cm2となるベタ画像をA4紙の上端から5mmの余白部分を残し、50mmの長さで未定着画像のまま出力した。同プリンタに搭載されている定着器を温度可変に改造し、温度定着速度34枚/分(A4縦方向)で定着した。得られた定着画像の定着性は以下のテープ剥離法によって評価した。
(テープ剥離法) メンディングテープ(3M製Scotchメンディングテープ810 幅18mm)を長さ50mmに切り、定着した画像上の上端の余白部分に軽く貼り付けた後、500gのおもりをのせ、速さ10mm/secで1往復押し当てた。その後、貼付したテープを下端側から剥離角度180度、速さ10mm/secで剥がし、テープ貼付前後の反射画像濃度を前記測定方法に従い測定し、これから下記の式で定着率を算出した。
 定着率=(テープ剥離後の画像濃度/テープ貼付前の画像濃度)×100テープ
[Toner fixability evaluation]
An image is output on a high-quality paper (Fuji Xerox Co., Ltd., J paper A4 size) using a commercially available printer (Oki Data Co., Ltd., “ML5400”), and the toner adhesion amount on the paper is 0.45 ± 0.03 mg / A solid image of cm 2 was output as an unfixed image with a length of 50 mm, leaving a margin of 5 mm from the top of A4 paper. The fixing device mounted on the printer was modified to have a variable temperature, and fixed at a temperature fixing speed of 34 sheets / minute (A4 vertical direction). The fixability of the obtained fixed image was evaluated by the following tape peeling method.
(Tape peeling method) Cut the mending tape (3M Scotch mending tape 810 width 18mm) into a length of 50mm, lightly affix it to the margin at the top of the fixed image, put a 500g weight and speed One reciprocal pressing was performed at 10 mm / sec. Thereafter, the applied tape was peeled off from the lower end side at a peeling angle of 180 degrees and a speed of 10 mm / sec, the reflection image density before and after tape application was measured according to the measurement method, and the fixing rate was calculated from the following formula.
Fixing rate = (image density after tape peeling / image density before tape application) × 100 tape
 剥離後の画像濃度がテープ貼付前の画像濃度と同じ値になった時を定着率100とし、値が小さくなるにつれ定着性が低いことを示す。定着率が90以上を定着性良好とする。
 5℃刻みで定着温度の各々で前記試験を行い、コールドオフセットが発生する温度または、定着率90未満となる温度から、ホットオフセットが発生する温度まで実施する。なお、コールドオフセットとは定着温度が低い場合に、未定着画像上のトナーが充分に溶融せずに、定着ローラーにトナーが付着する現象を指し、一方、ホットオフセットとは定着温度を高温にした場合に、未定着画像上のトナーの粘弾性が低下することで、定着ローラーにトナーが付着する現象を指す。コールドオフセットまたはホットオフセットの発生は定着ローラーが一周した際に、再度、紙上にトナーが付着するか否かで判断することができ、本試験ではべた画像上端から87mmの部分にトナー付着があるか否かで判断した。ここで、ホットオフセット発生温度とは、ホットオフセットが発生し始める温度であり、最高定着温度は、ホットオフセット-5℃である。また、最低定着温度とは、コールドオフセットが発生しないか、あるいは定着率が90以上となる温度のうち、その最低温度をいい、本試験では最低定着温度及びトナーの定着可能温度範囲温度(最高定着温度-最低定着温度)で評価した。
When the image density after peeling becomes the same value as the image density before sticking the tape, the fixing rate is 100, and the lower the value, the lower the fixability. When the fixing rate is 90 or more, the fixing property is good.
The test is performed at each fixing temperature in increments of 5 ° C., and the test is performed from a temperature at which a cold offset occurs or a temperature at which the fixing rate is less than 90 to a temperature at which a hot offset occurs. The cold offset refers to a phenomenon in which the toner on the unfixed image does not melt sufficiently when the fixing temperature is low, and the toner adheres to the fixing roller. On the other hand, the hot offset refers to a high fixing temperature. In this case, the phenomenon is that the toner adheres to the fixing roller due to a decrease in the viscoelasticity of the toner on the unfixed image. The occurrence of cold offset or hot offset can be judged again by whether toner adheres to the paper when the fixing roller makes one round. In this test, whether toner adheres to the area 87 mm from the top of the solid image. Judged by no. Here, the hot offset occurrence temperature is a temperature at which hot offset starts to occur, and the maximum fixing temperature is hot offset −5 ° C. The minimum fixing temperature is the minimum temperature among those at which a cold offset does not occur or the fixing rate is 90 or more. In this test, the minimum fixing temperature and the temperature range within which the toner can be fixed (maximum fixing temperature). Temperature-minimum fixing temperature).
[トナーの保存安定性評価]
 20ml容のポリビンにトナー10gをいれ、温度50℃、相対湿度40Rh%の環境下に開放状態で48時間放置した。放置後、パウダーテスター(ホソカワミクロン社製)で、凝集度を測定し、以下の基準に従って保存安定性を下記基準で評価した。
 凝集度が小さいほど保存安定性に優れることを現す。
  A:凝集度が10%未満。
  B:凝集度が10%以上20%未満。
  C:凝集度が20%以上。
 なお、具体的にパウダーテスターを使用した凝集度は次のように求めた。
 パウダーテスターの振動台に、3つの異なる目開きのフルイを上段250μm、中段150μm、下段75μmの順でセットし、その上にトナー2gを乗せ60秒間振動を行い、各フルイ上に残ったトナー重量を測定する。
 測定したトナー重量を次式に当てはめて計算し、凝集度[%]を求める。
 凝集度[%]=a+b+c
  a=(上段フルイ残トナー重量)/2[g]×100
  b=(中段フルイ残トナー重量)/2[g]×100×(3/5)
  c=(下段フルイ残トナー重量)/2[g]×100×(1/5)
[Evaluation of storage stability of toner]
10 g of toner was placed in a 20 ml polybin and left in an open state for 48 hours in an environment of a temperature of 50 ° C. and a relative humidity of 40 Rh%. After standing, the degree of aggregation was measured with a powder tester (manufactured by Hosokawa Micron), and the storage stability was evaluated according to the following criteria according to the following criteria.
The smaller the degree of aggregation, the better the storage stability.
A: The degree of aggregation is less than 10%.
B: The degree of aggregation is 10% or more and less than 20%.
C: The degree of aggregation is 20% or more.
In addition, the aggregation degree using a powder tester was specifically determined as follows.
Three different sieve openings are set in the order of 250 μm in the upper stage, 150 μm in the middle stage, and 75 μm in the lower stage on the powder tester's shaking table, and 2 g of toner is placed on the shaker for 60 seconds, and the remaining toner weight on each sieve. Measure.
The measured toner weight is applied to the following equation and calculated to obtain the degree of aggregation [%].
Aggregation degree [%] = a + b + c
a = (weight of residual toner on upper stage) / 2 [g] × 100
b = (middle stage residual toner weight) / 2 [g] × 100 × (3/5)
c = (lower stage residual toner weight) / 2 [g] × 100 × (1/5)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  本発明の製造方法によれば、トナー製造時において小粒径で凝集制御が可能であることから、電子写真法、静電記録法、静電印刷法などに好適に使用される電子写真用トナーを得ることができる。 According to the production method of the present invention, since aggregation can be controlled with a small particle size at the time of toner production, the toner for electrophotography suitably used for electrophotography, electrostatic recording method, electrostatic printing method, etc. Can be obtained.

Claims (12)

  1.  (1)離型剤(A)、及び該離型剤(A)の融点より5℃以上高い融点を有する離型剤(B)を、水系媒体中、ポリカルボン酸塩の存在下で乳化して離型剤粒子を得る工程、及び(2)得られた離型剤粒子と樹脂粒子を凝集及び合一させる工程、を含むトナーの製造方法。 (1) The release agent (A) and the release agent (B) having a melting point 5 ° C. higher than the melting point of the release agent (A) are emulsified in an aqueous medium in the presence of a polycarboxylate. And a step of agglomerating and coalescing the obtained release agent particles and the resin particles.
  2.  前記離型剤(B)の融点が100℃以下である、請求項1記載のトナーの製造方法。 The method for producing a toner according to claim 1, wherein the release agent (B) has a melting point of 100 ° C. or less.
  3.  前記離型剤(B)がカルナウバワックスである、請求項1又は2に記載のトナーの製造方法。 The method for producing a toner according to claim 1 or 2, wherein the release agent (B) is carnauba wax.
  4.  前記ポリカルボン酸塩が、アクリル酸-マレイン酸共重合体の塩である、請求項1~3のいずれかに記載のトナーの製造方法。 4. The method for producing a toner according to claim 1, wherein the polycarboxylate is a salt of an acrylic acid-maleic acid copolymer.
  5.  前記ポリカルボン酸塩が、アクリル酸-マレイン酸共重合体のナトリウム塩である、請求項1~4のいずれかに記載のトナーの製造方法。 5. The method for producing a toner according to claim 1, wherein the polycarboxylate is a sodium salt of an acrylic acid-maleic acid copolymer.
  6.  前記ポリカルボン酸塩を、離型剤合計量100重量部に対し、0.2~15重量部存在させる、請求項1~5のいずれかに記載のトナーの製造方法。 6. The method for producing a toner according to claim 1, wherein the polycarboxylate is present in an amount of 0.2 to 15 parts by weight with respect to 100 parts by weight of the total amount of the release agent.
  7.  前記樹脂粒子がポリエステルを含む、請求項1~6のいずれかに記載のトナーの製造方法。 The method for producing a toner according to claim 1, wherein the resin particles contain polyester.
  8.  前記ポリエステルが非晶質ポリエステルを含む、請求項7記載のトナーの製造方法。 The method for producing a toner according to claim 7, wherein the polyester includes an amorphous polyester.
  9.  離型剤(A)の融点が60~95℃である、請求項1~8のいずれかに記載のトナーの製造方法。 The method for producing a toner according to claim 1, wherein the releasing agent (A) has a melting point of 60 to 95 ° C.
  10.  前記離型剤(A)がエステルワックスである、請求項1~9のいずれかに記載のトナーの製造方法。 10. The method for producing a toner according to claim 1, wherein the release agent (A) is an ester wax.
  11.  離型剤(A)がパラフィンワックスである、請求項1~9のいずれかに記載のトナーの製造方法。
    The method for producing a toner according to any one of claims 1 to 9, wherein the release agent (A) is paraffin wax.
  12.  請求項1~11のいずれかに記載の製造方法で得られる電子写真用トナー。 An electrophotographic toner obtained by the production method according to any one of claims 1 to 11.
PCT/JP2010/072491 2009-12-14 2010-12-14 Method for producing toner WO2011074580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011546133A JP5552493B2 (en) 2009-12-14 2010-12-14 Toner production method
DE112010004799T DE112010004799T5 (en) 2009-12-14 2010-12-14 Process for the production of toner
CN201080056507.9A CN102652287B (en) 2009-12-14 2010-12-14 Method for producing toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009283227 2009-12-14
JP2009-283227 2009-12-14

Publications (1)

Publication Number Publication Date
WO2011074580A1 true WO2011074580A1 (en) 2011-06-23

Family

ID=44167332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072491 WO2011074580A1 (en) 2009-12-14 2010-12-14 Method for producing toner

Country Status (4)

Country Link
JP (1) JP5552493B2 (en)
CN (1) CN102652287B (en)
DE (1) DE112010004799T5 (en)
WO (1) WO2011074580A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134488A (en) * 2011-12-27 2013-07-08 Kao Corp Method for manufacturing toner for electrostatic charge image development
JP2014102463A (en) * 2012-11-22 2014-06-05 Kao Corp Manufacturing method of electrophotographic toner
JP2015011346A (en) * 2013-06-28 2015-01-19 ゼロックス コーポレイションXerox Corporation Toner processes for hyper-pigmented toners
JP2015118277A (en) * 2013-12-18 2015-06-25 花王株式会社 Manufacturing method of toner for electrostatic charge image development
WO2016121438A1 (en) * 2015-01-26 2016-08-04 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170663A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner and image forming apparatus
JP2008209489A (en) * 2007-02-23 2008-09-11 Fuji Xerox Co Ltd Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus
JP2008268866A (en) * 2007-03-27 2008-11-06 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner, and image forming apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474270B2 (en) 1994-07-07 2003-12-08 三菱レイヨン株式会社 Crosslinked polyester resin for toner
JP3725282B2 (en) 1997-02-27 2005-12-07 三洋化成工業株式会社 Toner binder for electrostatic image development
JPH11133668A (en) 1997-10-31 1999-05-21 Sanyo Chem Ind Ltd Toner binder
JP4189514B2 (en) * 2005-01-21 2008-12-03 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic toner and method for producing electrophotographic toner
JP2006267280A (en) 2005-03-22 2006-10-05 Fuji Xerox Co Ltd Electrostatic charge developing toner, electrostatic charge developer, image forming method
JP2007218961A (en) 2006-02-14 2007-08-30 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner and image forming apparatus
JP4901357B2 (en) 2006-07-31 2012-03-21 花王株式会社 Release agent dispersion
JP4436874B2 (en) * 2007-07-06 2010-03-24 シャープ株式会社 Toner and manufacturing method thereof, two-component developer, developing device, and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170663A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner and image forming apparatus
JP2008209489A (en) * 2007-02-23 2008-09-11 Fuji Xerox Co Ltd Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, and image forming apparatus
JP2008268866A (en) * 2007-03-27 2008-11-06 Matsushita Electric Ind Co Ltd Toner, method for manufacturing toner, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134488A (en) * 2011-12-27 2013-07-08 Kao Corp Method for manufacturing toner for electrostatic charge image development
JP2014102463A (en) * 2012-11-22 2014-06-05 Kao Corp Manufacturing method of electrophotographic toner
JP2015011346A (en) * 2013-06-28 2015-01-19 ゼロックス コーポレイションXerox Corporation Toner processes for hyper-pigmented toners
JP2015118277A (en) * 2013-12-18 2015-06-25 花王株式会社 Manufacturing method of toner for electrostatic charge image development
WO2016121438A1 (en) * 2015-01-26 2016-08-04 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development and method for producing same
JPWO2016121438A1 (en) * 2015-01-26 2017-10-19 京セラドキュメントソリューションズ株式会社 Toner for developing electrostatic latent image and method for producing the same

Also Published As

Publication number Publication date
JP5552493B2 (en) 2014-07-16
DE112010004799T5 (en) 2012-11-15
JPWO2011074580A1 (en) 2013-04-25
CN102652287B (en) 2015-03-18
CN102652287A (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5297094B2 (en) Crosslinked resin particle dispersion
JP5192158B2 (en) Resin emulsion
JP2008165177A (en) Process for producing toner for electrophotography
JP5097568B2 (en) Method for producing toner for electrophotography
JP5325757B2 (en) Method for producing toner for electrophotography
JP4963582B2 (en) Toner for electrophotography
JP5006682B2 (en) Toner for electrophotography
JP5015743B2 (en) Method for producing release agent dispersion for toner
JP5552493B2 (en) Toner production method
JP5189820B2 (en) Method for producing toner for electrophotography
JP5189787B2 (en) Method for producing resin emulsion
JP5186304B2 (en) Toner for electrophotography
JP5111956B2 (en) Resin emulsion
JP5390984B2 (en) Toner for electrophotography
JP5072410B2 (en) Method for producing resin emulsion
JP5438336B2 (en) Method for producing toner for electrophotography
JP5552297B2 (en) Method for producing toner for electrophotography
JP4832274B2 (en) Resin emulsion for toner
JP5255351B2 (en) Method for producing toner for electrophotography
JP5973908B2 (en) Method for producing toner for developing electrostatic image
JP5080341B2 (en) Method for producing resin particle dispersion
JP5248996B2 (en) Method for producing toner for electrophotography
JP5249002B2 (en) Method for producing toner for electrophotography
JP5112833B2 (en) Toner for electrophotography
JP5064865B2 (en) Method for producing yellow toner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056507.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546133

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112010004799

Country of ref document: DE

Ref document number: 1120100047995

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837606

Country of ref document: EP

Kind code of ref document: A1