WO2011074270A1 - Coating liquid - Google Patents

Coating liquid Download PDF

Info

Publication number
WO2011074270A1
WO2011074270A1 PCT/JP2010/007318 JP2010007318W WO2011074270A1 WO 2011074270 A1 WO2011074270 A1 WO 2011074270A1 JP 2010007318 W JP2010007318 W JP 2010007318W WO 2011074270 A1 WO2011074270 A1 WO 2011074270A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
active material
electrode active
layer
coating solution
Prior art date
Application number
PCT/JP2010/007318
Other languages
French (fr)
Japanese (ja)
Inventor
忠利 黒住
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2011074270A1 publication Critical patent/WO2011074270A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a coating liquid.
  • this invention relates to the coating liquid for manufacturing the electrode used for electrochemical elements, such as a secondary battery and an electrical double layer capacitor.
  • Electrode of an electrochemical element generally comprises a current collector and an electrode active material layer.
  • the electrode is usually produced by applying a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it.
  • a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it.
  • Patent Document 1 discloses that an electrode active material layer or an undercoat layer is produced by applying a coating liquid containing a hydroxyalkyl chitosan and an organic acid and / or a derivative thereof onto a current collector and drying it. Proposed. Organic acids and their derivatives have the role of crosslinking hydroxyalkylchitosan.
  • Patent Documents 2 and 3 disclose that an undercoat layer and an electrode active material layer are collected by applying a coating solution containing a crosslinked polysaccharide and a carbon particle on a current collector and drying it. It is described that it is provided between the electric body.
  • Organic compounds such as maleic anhydride are exemplified as compounds used for crosslinking polysaccharides. It is generally known that it is necessary to make chitosan acidic in order to dissolve it in water.
  • An acidic component may remain in the electrode active material layer or the undercoat layer obtained with a coating solution containing an organic acid.
  • This acidic component may erode a current collector made of aluminum or copper.
  • chitosan is hydrophilic, it tends to absorb moisture in the air, and there is a tendency that the risk of erosion of the current collector increases due to acidic components and water.
  • the internal resistance and impedance may increase.
  • an object of the present invention is to provide an electrochemical device having excellent storage stability and low internal resistance or impedance, and a coating solution used for the production thereof.
  • the coating solution contains a base generator, decomposes the base generator after crosslinking with an acid to generate a base, and neutralizes the undercoat layer or electrode active material layer, thereby improving storage stability. It has been found that an electrochemical element having excellent internal resistance or impedance can be obtained. The present invention has been completed by further studies based on this finding.
  • the present invention includes the following.
  • a coating solution for producing an electrochemical device comprising a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, a conductivity imparting material and / or an electrode active material.
  • the base generator is a thermal base generator.
  • the thermal base generator is urea or a urea derivative.
  • the base generator is a photobase generator.
  • the photobase generator is 2-nitrobenzyl cyclohexyl carbamate, 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, 1,1-dimethyl-2-phenylethyl-N-isopropyl carbamate, triphenylmethanol, ⁇ 4>
  • the coating solution according to ⁇ 4> which is o-carbamoylhydroxylamide, N-cyclohexyl-4-methylphenylsulfonamide, or o-carbamoyloxime.
  • ⁇ 6> The coating solution according to any one of ⁇ 1> to ⁇ 5>, wherein the acid and / or the acid derivative is a polyvalent organic acid and / or a polyvalent organic acid derivative.
  • ⁇ 7> The coating solution according to any one of ⁇ 1> to ⁇ 6>, wherein the acid derivative is an acid anhydride.
  • a laminate for an electrode comprising: a current collector; and a layer a formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material.
  • a current collector a layer a formed using a coating liquid containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material, and an electrode active material layer electrode.
  • ⁇ 12> An electrochemical device having the electrode according to ⁇ 10> or ⁇ 11>.
  • ⁇ 13> A power supply system having the electrochemical element according to ⁇ 12>.
  • ⁇ 14> An automobile having the electrochemical element according to ⁇ 12>.
  • ⁇ 15> A transport device having the electrochemical element according to ⁇ 12>.
  • ⁇ 16> A portable device having the electrochemical element according to ⁇ 12>.
  • ⁇ 17> A power generation system having the electrochemical element according to ⁇ 12>.
  • An electrode active material layer or an undercoat layer having excellent storage stability can be formed on the current collector by applying the coating liquid of the present invention to the current collector and then generating a base.
  • an electrode having the electrode active material layer or the undercoat layer is used, an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained.
  • the coating liquid according to the present invention contains a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, a conductivity imparting material and / or an electrode active material.
  • the base generator used in the coating liquid according to the present invention is decomposed by a stimulus such as heat or light, thereby generating a base.
  • the base generator used in the present invention is not particularly limited, but a thermal base generator that decomposes by heat and / or a photobase generator that decomposes by light is preferable.
  • the thermal base generator used in the present invention is not particularly limited, but preferably does not contain a metal.
  • carbamate derivatives such as 1-methyl-1- (4-biphenylyl) ethyl carbamate and 1,1-dimethyl-2-cyanoethyl carbamate; urea and N, N-dimethyl-N′-methyl urea Urea derivatives; dihydropyridine derivatives such as 1,4-dihydronicotinamide; dicyandiamide, phenylsulfonylacetic acid guanidine, p-methanesulfonylphenylsulfonylacetic acid guanidine, phenylpropiolic acid guanidine, p-phenylene-bis-phenylpropiolic acid guanidine, phenylsulfonylacetic acid Examples thereof include tetramethylammonium and tetramethylammonium phenylpropiolate.
  • urea derivatives such as urea and N, N-dimethyl-N′-methylurea are preferable in that they can generate a base even by hydrothermal hydrolysis and can remove moisture in the coating solution.
  • the thermal base generator preferably has a temperature at which a base is generated higher than a temperature at which a crosslinking reaction described later occurs. If the temperature at which the base is generated is too lower than the temperature at which the crosslinking reaction occurs, crosslinking tends to be insufficient.
  • the photobase generator used in the present invention is not particularly limited.
  • photoactive carbamates such as triphenylmethanol, benzylcarbamate and benzoincarbamate
  • amides such as o-carbamoylhydroxylamide, o-carbamoyloxime, aromatic sulfonamide, alpha-lactam and N- (2-allylethynyl) amide and Other amides
  • oxime esters, ⁇ -aminoacetophenone and the like can be mentioned. These can be used alone or in combination of two or more.
  • 2-nitrobenzyl cyclohexyl carbamate 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, 1,1-dimethyl-2-phenylethyl-N-isopropyl carbamate, triphenyl methanol, o-carbamoyl hydroxyl Amide, N-cyclohexyl-4-methylphenylsulfonamide, or o-carbamoyloxime may be mentioned as preferred.
  • a photosensitizer may be added.
  • the hot base generator generates a base when heated.
  • the photobase generator generates a base when irradiated with light.
  • the generated base neutralizes the acidic component of the undercoat layer or the electrode active material layer. As a result, erosion of the current collector can be effectively prevented. Even after an electrode manufactured with the coating solution is stored for a long period of time, the electrochemical element having the electrode maintains a low internal resistance or impedance.
  • the base generator is preferably contained in the coating solution in an amount that generates enough base to neutralize the acidic component of the undercoat layer or electrode active material layer.
  • the specific amount of the base generator varies depending on the type and amount of the acid and acid derivative, but is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts per 100 parts by mass of the total amount of the acid and acid derivative. Part by mass. If the amount of the base generator is too small, the acidic component cannot be sufficiently neutralized. Conversely, if the amount of the base generator is too large, the basicity tends to become strong.
  • the polysaccharide used in the coating solution according to the present invention is a polymer compound in which a large number of monosaccharides (including monosaccharide substitutes and derivatives) are polymerized by glycosidic bonds.
  • the polymer compound generates a large number of monosaccharides by hydrolysis. Usually, 10 or more monosaccharides are polymerized.
  • the polysaccharide may have a substituent, for example, a polysaccharide in which an alcoholic hydroxyl group is substituted with an amino group (amino sugar), a one in which a carboxyl group or an alkyl group is substituted, or a deacetylated polysaccharide Etc. are included.
  • the polysaccharide may be either a homopolysaccharide or a heteropolysaccharide. Hydroxyl polysaccharides or derivatives thereof, carboxyalkyl polysaccharides are preferred, and hydroxyalkyl polysaccharides are preferred because they can increase the solubility in polar solvents and increase the mobility of ions by crosslinking with acids and / or acid derivatives. preferable. Hydroxyalkyl polysaccharides or derivatives and carboxyalkyl polysaccharides can be produced by known methods.
  • polysaccharides include agarose, amylose, amylopectin, arabinan, arabinogalactan, alginic acid, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, carboxyalkylchitin, chitin, glycogen, glucomannan, keratan sulfate, colomine Acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, cellulose, dextran, starch, hyaluronic acid, fructan, pectic acid, pectin, heparic acid, heparin, hemicellulose, pentozan, ⁇ -1,4'-mannan, ⁇ -1,6'-mannan, lichenan, levan, lentinan, chitosan, pullulan, curdlan, carrageenan and the like.
  • chitin, chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan, hydroxyalkylcellulose or carboxyalkylcellulose are preferred because of their high ion permeability; chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan More preferred is at least one selected from the group consisting of hydroxyalkyl cellulose and carboxyalkyl cellulose.
  • These polysaccharides can be used individually by 1 type or in combination of 2 or more types.
  • hydroxyalkyl chitosan examples include hydroxyethyl chitosan, hydroxypropyl chitosan, glycerylated chitosan and the like.
  • hydroxyalkyl cellulose examples include hydroxyethyl cellulose and hydroxypropyl cellulose.
  • carboxyalkyl chitosan examples include carboxymethyl chitosan and carboxyethyl chitosan.
  • carboxyalkyl cellulose include carboxymethyl cellulose and carboxyethyl cellulose.
  • the acid and acid derivative used in the coating solution according to the present invention are not particularly limited as long as the polysaccharide can be cross-linked, but those capable of cross-linking the polysaccharide by a thermal reaction are preferable.
  • the acid and acid derivative preferably have a temperature at which the crosslinking reaction occurs at 100 to 400 ° C. If the temperature is 100 ° C. or lower, the crosslinking reaction is too fast and difficult to handle. Above 400 ° C, the current collector may be affected.
  • the acid or acid derivative is preferably a polyvalent organic acid or a polyvalent organic acid derivative. Examples of acid derivatives include esters, acid halides, acid anhydrides, and the like. Of these, acid anhydrides are preferred.
  • Carboxylic anhydride reacts with polysaccharides and moisture to become polyvalent carboxylic acid.
  • a polybasic acid is preferable in that it has a high crosslinking effect.
  • the polybasic acid tribasic acid, tetrabasic acid or pentabasic acid is preferable.
  • Preferred acids or acid derivatives include 1,2,3,4-butanetetracarboxylic acid, phthalic acid, adipic acid, trimellitic acid, pyromellitic acid, maleic acid, salicylic acid, citric acid, malic acid, pyrrolidone carboxylic acid, Examples thereof include succinic acid, phthalic anhydride, adipic anhydride, trimellitic anhydride, pyromellitic anhydride, and maleic anhydride. These acids or acid derivatives can be used alone or in combination of two or more.
  • the total amount of the acid and the acid derivative is not particularly limited, but is preferably 20 to 300 parts by mass, more preferably 50 to 150 parts by mass with respect to 100 parts by mass of the polysaccharide. If the total amount of acid and acid derivative is too small, it is difficult to obtain a crosslinking effect. When the total amount of the acid and the acid derivative is too large, a lot of acidic components tend to remain.
  • an aprotic polar solvent preferably one that evaporates at a temperature below the temperature at which the crosslinking reaction starts.
  • the boiling point at normal pressure is preferably 50 to 300 ° C., more preferably 100 to 220 ° C.
  • the aprotic polar solvent include ethers, carbonates, amides and the like.
  • the protic polar solvent include alcohols and polyhydric alcohols.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the solvent used in the coating liquid according to the present invention is not particularly limited as long as it can be adjusted to a viscosity suitable for the coating work.
  • the amount of the solvent used is such that the viscosity of the coating solution at the temperature at which the coating operation is performed is preferably 100 to 100,000 mPa ⁇ s, more preferably 1,000 to 50,000 mPa ⁇ s, and still more preferably 5, The amount is 000 to 20,000 mPa ⁇ s.
  • the amount of solvent used is preferably 50 to 99 parts by weight, more preferably 70 to 95 parts by weight, and still more preferably 80 to 95 parts in 100 parts by weight of the coating solution. Part by mass.
  • the conductivity imparting material used in the coating liquid according to the present invention is a conductive carbon material containing carbon as a main component.
  • the conductive carbon material carbon black such as acetylene black and ketjen black; vapor grown carbon fiber; graphite and the like are suitable. These conductive carbon materials can be used singly or in combination of two or more.
  • the conductivity imparting material preferably has a powder electrical resistance of 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less in 100% green compact.
  • the conductivity-imparting material may be particles such as a spherical shape, or may have an anisotropic shape such as a fiber shape, a needle shape, or a rod shape.
  • the particulate conductivity imparting material is not particularly limited by the particle size, but preferably has a volume-based average particle size of 10 nm to 50 ⁇ m, more preferably 10 nm to 100 nm.
  • An anisotropic conductivity imparting material has a large surface area per weight and a large contact area with the current collector, electrode active material, etc., so even if it is added in a small amount, it is between the current collector and the electrode active material or the electrode active material. The conductivity between substances can be increased.
  • Examples of the anisotropic conductivity imparting material include carbon nanotubes and carbon nanofibers.
  • Carbon nanotubes and carbon nanofibers have a fiber diameter of usually 0.001 to 0.5 ⁇ m, preferably 0.003 to 0.2 ⁇ m, and a fiber length of usually 1 to 100 ⁇ m, preferably 1 to 30 ⁇ m. It is suitable for improvement.
  • the total amount of the base generator, polysaccharide, acid and / or acid derivative in the coating solution for forming the layer a described later is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the conductivity-imparting material. It is.
  • the solid content of the coating solution for forming the layer a is preferably 1 to 50% by mass.
  • the electrode active material used in the coating liquid according to the present invention is not particularly limited as long as it is used in an electrochemical element such as a lithium ion battery or an electric double layer capacitor.
  • the electrode active material used for lithium ion batteries is different for positive and negative electrodes.
  • the positive electrode active material used for the lithium ion battery is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions.
  • lithium cobalt oxide (LiCoO 2), lithium manganate (LiMn 2 O 4), lithium nickel oxide (LiNiO 2); Co, 3 ternary lithium compounds of Mn and Ni (Li (Co x Mn y Ni z ) O 2 ), sulfur-based compounds (TiS 2 ), olivine-based compounds (LiFePO 4 ) and the like can be mentioned as suitable ones.
  • the total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating solution for forming the positive electrode layer b of the lithium ion battery is preferably 100 parts by mass of the positive electrode active material. 0.1 to 30 parts by mass.
  • the negative electrode active material used for the lithium ion battery is not particularly limited. Specific examples include graphite carbon such as graphite, amorphous graphite carbon, and oxide.
  • the total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating solution for forming the negative electrode layer b of the lithium ion battery is preferably 100 parts by mass of the negative electrode active material. 0.1 to 30 parts by mass.
  • the coating liquid for forming the layer b of the lithium ion battery electrode it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the obtained layer b.
  • the amount of the conductivity imparting material is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
  • the electrode active material used for the electric double layer capacitor can be the same for the positive electrode and the negative electrode.
  • the electrode active material used for the electric double layer capacitor is preferably activated carbon.
  • the activated carbon preferably has a large specific surface area from the viewpoint of increasing the electric capacity.
  • the activated carbon preferably has a BET specific surface area of 800 to 2500 m 2 / g.
  • the activated carbon preferably has an average particle size (D50) of 1 ⁇ m to 50 ⁇ m.
  • the average particle diameter (D50) of the activated carbon is a volume-based 50% cumulative particle diameter ( ⁇ m) measured with a Microtrac particle size distribution meter.
  • the activated carbon examples include coconut shell activated carbon and fibrous activated carbon.
  • the activated carbon is not particularly limited by its activation method, and those obtained by a steam activation method, a chemical activation method, or the like can be employed.
  • what performed the alkali activation process, ie, alkali activated carbon is suitable.
  • the alkali activated carbon is obtained, for example, by heat-treating coconut shell, coke, polymer carbide, non-graphitizable carbide or graphitizable carbide in the presence of an alkali metal compound.
  • Examples of graphitizable carbides include those obtained by heat-treating pitches such as petroleum pitch, coal pitch, and their organic solvent soluble components, and carbides of polyvinyl chloride compounds.
  • Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • the activated carbon preferably has a hardened bulk density (tap density) in the range of 0.3 g / cm 3 to 0.9 g / cm 3 . If the compacted bulk density is too small, the packing density is decreased, and the electric capacity per volume of the electric double layer capacitor and per cell tends to decrease. If the hardened bulk density is too large, the electric capacity per weight decreases, and the amount of electrolyte that can be retained tends to decrease, so the capacity retention rate may decrease.
  • the total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating liquid for forming the layer b of the electrode for the electric double layer capacitor is preferably 0 with respect to 100 parts by mass of the electrode active material. 1 to 20 parts by mass.
  • the coating liquid for forming the layer b of the electrode for an electric double layer capacitor it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained.
  • the amount of the conductivity imparting material is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
  • additives may be added to the coating liquid of the present invention as necessary.
  • other crosslinking agents dispersants, wetting agents, thickeners, coupling agents, anti-settling agents, anti-skinning agents, polymerization inhibitors, antifoaming agents, electrostatic coating modifiers, sagging inhibitors, colors
  • examples include a minute inhibitor, a leveling agent, an effect accelerator, and a repellency inhibitor.
  • the method for preparing the coating liquid according to the present invention is not particularly limited.
  • a method in which a base generator, a polysaccharide, an acid and / or an acid derivative are dissolved in a solvent, and a conductivity-imparting material and / or an electrode active material is added and dispersed in the solution is preferably mentioned. it can.
  • a well-known kneader and a stirrer can be selected suitably, and it can be used for preparation of a coating liquid.
  • the electrode laminate according to the present invention includes a current collector, a layer a formed using a coating liquid containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material; It is what has.
  • the laminate for an electrode according to the present invention can be used in place of a conventionally known current collector in the production of an electrode.
  • the electrode according to the present invention includes a current collector, a layer a formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material, And a current collector and a layer b formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material. It is.
  • the layer a corresponds to an undercoat layer in the background art
  • the layer b corresponds to an electrode active material layer in the background art.
  • the layer a or the layer b can be formed by a method including applying the coating liquid according to the present invention to a current collector and then generating a base.
  • the coating method of the coating liquid is not particularly limited, and a known coating method or drying method used in the production of an undercoat layer or an electrode active material layer used for a lithium ion battery or an electric double layer capacitor can be directly employed. .
  • Examples of the coating method include a casting method, a bar coater method, a dip method, and a printing method. Among these, from the point that it is easy to control the thickness of the coating film, bar coater, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot diamond coat, A slide die coat and a dip coat are preferred. Further, in order to adjust the coating amount, the concentration of the coating solution can be adjusted with the above solvent.
  • the application may be performed on a part of the current collector, on the entire surface, or on one surface or both surfaces. In the case of applying to both sides, the application operation may be performed on each side, or the application operation may be performed on both sides simultaneously.
  • the coating film When a thermal base generator is used in the coating liquid, the coating film may be dried simultaneously with the heat treatment described later or separately. Drying can be performed in air, under an inert gas, or under vacuum. Of these, it is preferable to perform in the atmosphere because of low cost.
  • drying can be performed before light irradiation.
  • the drying method is not particularly limited, but it is preferably performed within a temperature range of 100 to 400 ° C., preferably for 10 seconds to 10 minutes.
  • heat treatment or light irradiation is performed according to the type of base generator contained in the coating solution.
  • the temperature during the heat treatment varies depending on the coating speed, heating method, etc., but is preferably 100 to 400 ° C. If the heat treatment temperature is too low, neutralization tends to be insufficient, and if the heat treatment temperature is too high, the current collector tends to be annealed.
  • the heat treatment time is preferably 10 seconds to 10 minutes. If the heat treatment time is too short, neutralization tends to be insufficient. If the heat treatment time is too long, productivity is lowered and cost is likely to increase.
  • the light irradiation method is not particularly limited.
  • a light source for light irradiation for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a deep UV lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, an excimer laser, a flood bulb for photography, the sun
  • a known light source that irradiates light such as ultraviolet light and visible light such as a lamp can be given.
  • the irradiation energy of light is generally in the range of 10 to 3000 mJ / cm 2 , although it depends on the thickness of layer a or b and the type of photobase generator.
  • the irradiation energy can be controlled by the illuminance of the light source and the irradiation time.
  • the current collector is not particularly limited as long as it is used in a lithium ion battery, an electric double layer capacitor, or the like.
  • the current collector includes not only a non-perforated foil but also a punched metal foil or a perforated foil such as a net.
  • the current collector is not particularly limited as long as it is composed of a conductive material, and examples thereof include those made of a conductive metal and those made of a conductive resin. Particularly preferred are aluminum and copper.
  • As the aluminum foil pure aluminum-based A1085 material, A3003 material, or the like is usually used.
  • As the copper foil rolled copper foil or electrolytic copper foil is usually used.
  • the current collector may have a smooth surface, but a surface roughened by an electrical or chemical etching process, that is, an etching foil is also suitable.
  • the current collector is not particularly limited by the thickness, but it is usually preferable to have a thickness of 5 ⁇ m to 100 ⁇ m. If the thickness is 5 ⁇ m or less, the strength may be insufficient and the foil may be broken in the coating process. On the other hand, when the thickness exceeds 100 ⁇ m, the ratio of the current collector in the predetermined volume increases, which may lead to a decrease in capacity.
  • aluminum is often used for the positive electrode and copper is often used for the negative electrode. In an electric double layer capacitor, aluminum is often used for both the positive electrode and the negative electrode.
  • the aluminum current collector is preferably an aluminum foil, an aluminum etching foil or an aluminum punching foil.
  • the copper current collector is preferably a copper foil, a copper etching foil or a copper punching foil.
  • the layer a is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material.
  • the layer b is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and an electrode active material.
  • An electrode active material layer is usually formed on the layer a.
  • the electrode active material layer formed on the layer a is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material.
  • the layer b may be a well-known electrode active material layer.
  • the thickness of the layer a is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the thickness is too thin, desired effects such as a decrease in internal resistance or impedance tend not to be obtained. On the other hand, the resistance or impedance does not become smaller than a certain value even if the thickness is increased too much.
  • the thickness of the electrode active material layer or layer b in the electric double layer capacitor is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the electrode active material layer or layer b in the lithium ion battery is preferably 0.1 ⁇ m or more and 500 ⁇ m or less. When the thickness is 0.1 ⁇ m or less, the desired effect tends not to be obtained. When the thickness is 500 ⁇ m or more, it is easy for the current collector to fall off.
  • the layer a or the layer b formed with the coating liquid according to the present invention can be peeled off from the current collector and used as a film.
  • the membrane has high ion permeability or ion mobility.
  • the electrochemical device according to the present invention has the electrode according to the present invention described above, and further usually has a separator and an electrolytic solution.
  • the electrodes in the electrochemical device according to the present invention may both be the electrodes according to the present invention, or one of them may be the electrode according to the present invention and the other may be a known electrode.
  • a separator and electrolyte solution will not be restrict
  • the electrochemical element according to the present invention can be applied to a power supply system.
  • this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
  • Production Example 1 Preparation of solutions 1 to 6 According to the formulation shown in Table 1, polysaccharides and acids and / or acid derivatives were added and dissolved in a solvent to obtain solutions 1 to 6.
  • Production Example 2 Preparation of Solutions 7 to 15 According to the formulation shown in Table 2, polysaccharides, acids and / or acid derivatives, and base generators were added and dissolved in solvents to obtain solutions 7 to 15.
  • Example 1> Manufacture of coating liquid for undercoat layer manufacturing 10 parts by mass of acetylene black (average particle size 40 nm) as a conductivity imparting material and 790 parts by mass of solution 790 were stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution was diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the resulting undercoat layer was 5 ⁇ m to obtain a slurry-like coating solution for producing an undercoat layer.
  • An aluminum foil having a thickness of 30 ⁇ m made of A1085 material washed with alkali was prepared.
  • an applicator with a gap of 10 ⁇ m an undercoat layer production coating solution was applied onto an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), was made to dry, a crosslinking reaction, and neutralization reaction, and obtained the aluminum foil provided with the undercoat layer.
  • N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 ⁇ m.
  • the negative electrode paste was applied to an electrolytic copper foil having a thickness of 9 ⁇ m and dried to form an electrode active material layer having a thickness of 250 ⁇ m, thereby obtaining a negative electrode for a lithium ion secondary battery.
  • a porous polyethylene separator was incorporated between the positive electrode and the negative electrode obtained above, and these were impregnated with an organic electrolyte solution to assemble a lithium ion battery.
  • the organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
  • the initial capacity retention ratio and internal resistance of the lithium ion battery were measured.
  • the results are shown in Table 3.
  • the initial capacity retention rate was determined by measuring the capacity after 100 cycles at a current rate of 20 C using a battery charging / discharging device HJ-2010 model manufactured by Hokuto Denko Co., Ltd. as the measuring instrument.
  • the percentage relative to is expressed as a percentage.
  • the internal resistance was measured at a measurement frequency of 1 kHz by an AC impedance method using a HIOKI3551 battery tester.
  • the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. The results are shown in Table 3.
  • the electrode paste is applied to the aluminum foil having the undercoat layer obtained above and dried, and an electrode active material layer having a thickness of 200 ⁇ m is formed on the undercoat layer. Obtained.
  • two electric double layer capacitor electrodes were punched out with a diameter of 20 mm ⁇ in accordance with the size of the capacitor container for evaluation. Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
  • organic electrolytic solution trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
  • the impedance and electric capacity of the electric double layer capacitor were measured. The results are shown in Table 4.
  • the impedance was measured under the condition of 1 kHz using an impedance measuring instrument (PAN110-5AM) manufactured by KIKUSUI.
  • the electric capacity was measured using a charge / discharge test apparatus (HJ-101SM6) manufactured by Hokuto Denko Corporation at a current density of 1.59 mA / cm 2 at a voltage of 0 to 2.5 V, during the second constant current discharge.
  • the electric capacity (F / cell) per cell of the electric double layer capacitor was calculated from the measured discharge curve.
  • the capacity retention rate (%) was calculated by a formula of (electric capacity at the 50th cycle) / (electric capacity at the second cycle) ⁇ 100.
  • the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 4.
  • Example 7 A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 9 was used instead of the solution 7.
  • An aluminum foil provided with an undercoat layer was produced in the same manner as in Example 1 except that this coating liquid for producing an undercoat layer was used and the drying conditions were changed to 250 ° C. for 1 minute. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
  • Examples 8 and 9 A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively. Using this coating solution for undercoat layer production, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp, and the irradiation energy was 900 mJ / cm 2. Thus, an aluminum foil provided with an undercoat layer was manufactured in the same manner as in Example 1 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of 1.5 mW / cm 2 . Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
  • Example 1 A coating liquid for producing an undercoat layer was prepared in the same manner as in Example 1 except that the solutions 1 to 6 were used in place of the solution 7 to obtain an aluminum foil provided with the undercoat layer. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
  • Example 10> Manufacture of copper foil with an undercoat layer
  • a copper foil provided with an undercoat layer was obtained in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 9 ⁇ m was used instead of the aluminum foil.
  • N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 ⁇ m.
  • the positive electrode paste was applied to an aluminum foil having a thickness of 30 ⁇ m made of alkali-washed A1085 material and dried to form a positive electrode active material layer having a thickness of 200 ⁇ m to obtain a positive electrode for a lithium ion secondary battery. .
  • a lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
  • the organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
  • Example 2 In the same manner as in Example 1, the initial capacity retention rate and internal resistance of the lithium ion battery were measured. Table 5 shows the measurement results. Moreover, the copper foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the copper foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. Table 5 shows the measurement results.
  • Example 11 A coating solution for producing an undercoat layer was obtained in the same manner as in Example 10 except that the solution 9 was used instead of the solution 7.
  • a copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that the drying condition was changed to 250 ° C. and 1 minute using the coating solution. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
  • Example 12 to 16> A copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
  • Examples 17 to 18> A coating solution for producing an undercoat layer was produced in the same manner as in Example 10 except that the solution 14 and the solution 15 were used in place of the solution 7, respectively. Using this coating solution, the drying conditions are changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) are applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy is 900 mJ / cm 2.
  • a copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of / cm 2 . Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
  • Example 19 Manufacture of coating liquid for manufacturing electrode active material layer of electric double layer capacitor
  • Planetary 85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 5 parts by mass of acetylene black (average particle size 40 nm) as a conductivity imparting material, and 750 parts by mass of a solution
  • the mixture was stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a mixer.
  • the mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the resulting electrode active material layer has a thickness of 200 ⁇ m to obtain a slurry-like electrode active material layer production coating solution. It was.
  • Example 6 In the same manner as in Example 1, the impedance and capacitance of the electric double layer capacitor obtained above were measured. The results are shown in Table 6.
  • the electrode obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the electrode stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 6.
  • Example 20 A coating solution for producing an electrode active material layer was produced in the same manner as in Example 19 except that the solution 9 was used instead of the solution 7. An electrode was obtained in the same manner as in Example 19 except that the coating solution was used and the drying conditions were changed to 250 ° C. for 1 minute. In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
  • Example 21 to 25 An electrode was obtained in the same manner as in Example 19 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively. In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
  • Examples 26 to 27 A coating solution for producing an electrode active material layer was produced in the same manner as in Example 19 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively. Using this coating solution, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy was 900 mJ / cm 2. An electrode was obtained in the same manner as in Example 19 except that irradiation was performed at an ultraviolet illuminance of / cm 2 for 10 minutes. In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
  • Example 28> Manufacture of coating solution for manufacturing positive electrode of lithium ion battery
  • 95 parts by mass of lithium cobaltate as a positive electrode active material, 5 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, and 40 parts by mass of a solution 7 are 120 minutes at a rotation speed of 60 rpm with a planetary mixer. Stir and mix.
  • the mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained positive electrode active material layer becomes 200 ⁇ m, and a slurry-like coating solution for producing a lithium ion battery positive electrode is obtained.
  • a porous polyethylene separator was incorporated between the positive electrode and the negative electrode obtained above, and these were impregnated with an organic electrolyte solution to assemble a lithium ion battery.
  • the organic electrolyte used was a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte was LiPF 6 , and the product name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd., having a concentration of 1 mol / liter. .
  • Example 7 shows the measurement results. Further, the positive electrode and the negative electrode obtained above were stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the positive electrode and the negative electrode stored in the environment, a lithium ion battery was manufactured by the same method as described above. The internal resistance of this lithium ion battery was measured. Table 7 shows the measurement results.
  • Example 29> A positive electrode manufacturing coating solution and a negative electrode manufacturing coating solution were prepared in the same manner as in Example 28 except that the solution 9 was used instead of the solution 7.
  • a positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that the coating solution was used and the drying conditions were changed to 250 ° C. for 1 minute.
  • the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
  • Examples 30 to 34> A positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively.
  • the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
  • Examples 35 to 36> A positive electrode manufacturing coating solution and a negative electrode manufacturing coating solution were prepared in the same manner as in Example 28 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively. Using this coating solution, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy was 900 mJ / cm 2.
  • a positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of / cm 2 .
  • the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
  • the pH of the undercoat layer or electrode active material layer obtained with the coating solution containing the polysaccharide and the organic acid is low, and the lithium ion battery or electric battery obtained in the comparative example is low. It can be seen that the multilayer capacitor has insufficient characteristics.

Abstract

Disclosed is a coating liquid which contains: a thermal base generator or a photobase generator; a polysaccharide such as glycerylated chitosan; an acid and/or an acid derivative such as a polyvalent organic acid or a derivative thereof; a solvent; and a conductivity-imparting agent and/or an electrode active material. An undercoat layer or an electrode active material layer is formed by applying the coating liquid over a collector and generating a base. A secondary battery such as a lithium ion battery or an electric double layer capacitor is fabricated using an electrode that comprises the undercoat layer or the electrode active material layer.

Description

塗工液Coating liquid
 本発明は、塗工液に関する。より詳細に、本発明は、二次電池や電気二重層キャパシタなどの電気化学素子に用いられる電極を製造するための塗工液に関する。 The present invention relates to a coating liquid. In more detail, this invention relates to the coating liquid for manufacturing the electrode used for electrochemical elements, such as a secondary battery and an electrical double layer capacitor.
 電気化学素子として、リチウムイオンバッテリー(リチウムイオン二次電池と呼ぶことがある。)やニッケル水素電池などの二次電池、および電気二重層キャパシタやハイブリッドキャパシタなどのキャパシタが知られている。
 電気化学素子の電極は、一般に、集電体と電極活物質層とから成る。該電極は、電極活物質とバインダーと溶媒とを含む塗工液を集電体に塗布し乾燥させることによって、通常、製造される。また、二次電池や電気二重層キャパシタの内部抵抗若しくはインピーダンスを下げるために、電極活物質層と集電体との間に、アンダーコート層を介在させることが提案されている。
Known electrochemical devices include secondary batteries such as lithium ion batteries (sometimes referred to as lithium ion secondary batteries) and nickel metal hydride batteries, and capacitors such as electric double layer capacitors and hybrid capacitors.
The electrode of an electrochemical element generally comprises a current collector and an electrode active material layer. The electrode is usually produced by applying a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it. In order to reduce the internal resistance or impedance of secondary batteries and electric double layer capacitors, it has been proposed to interpose an undercoat layer between the electrode active material layer and the current collector.
 ところで、キトサンなどの多糖類を含有する塗工液で得られる膜は、イオン透過性若しくはイオン移動性が高く、リチウムイオンバッテリーや電気二重層キャパシタの内部抵抗若しくはインピーダンスを下げることができると言われている。
 例えば、特許文献1には、ヒドロキシアルキルキトサンと、有機酸および/またはその誘導体とを含む塗工液を集電体上に塗布し乾燥させて電極活物質層若しくはアンダーコート層を製造することが提案されている。有機酸およびその誘導体はヒドロキシアルキルキトサンを架橋する役割を持っている。
By the way, it is said that a film obtained with a coating solution containing a polysaccharide such as chitosan has high ion permeability or ion mobility, and can reduce the internal resistance or impedance of a lithium ion battery or an electric double layer capacitor. ing.
For example, Patent Document 1 discloses that an electrode active material layer or an undercoat layer is produced by applying a coating liquid containing a hydroxyalkyl chitosan and an organic acid and / or a derivative thereof onto a current collector and drying it. Proposed. Organic acids and their derivatives have the role of crosslinking hydroxyalkylchitosan.
 また、特許文献2および3には、多糖類を架橋させたものと、炭素粒子とを含む塗工液を集電体上に塗布し乾燥させることによって、アンダーコート層を電極活物質層と集電体との間に設けることが記載されている。多糖類を架橋させるために用いる化合物として無水マレイン酸などの有機酸が例示されている。なお、キトサンを水に溶解させるためには、酸性にすることが必要であることが一般に知られている。 Patent Documents 2 and 3 disclose that an undercoat layer and an electrode active material layer are collected by applying a coating solution containing a crosslinked polysaccharide and a carbon particle on a current collector and drying it. It is described that it is provided between the electric body. Organic compounds such as maleic anhydride are exemplified as compounds used for crosslinking polysaccharides. It is generally known that it is necessary to make chitosan acidic in order to dissolve it in water.
WO2008/015828WO2008 / 015828 WO2007/043515WO2007 / 043515 特開2007-226969号公報JP 2007-226969 A
 有機酸を含有する塗工液で得られる電極活物質層またはアンダーコート層には酸性成分が残存することがある。この酸性成分がアルミニウムや銅からなる集電体を浸食するおそれがある。特にキトサンは親水性であるので、空気中の水分を吸収しやすく、酸性成分と水とによって集電体の浸食の恐れが増す傾向がある。集電体が浸食されると内部抵抗やインピーダンスが上昇する懸念がある。 An acidic component may remain in the electrode active material layer or the undercoat layer obtained with a coating solution containing an organic acid. This acidic component may erode a current collector made of aluminum or copper. In particular, since chitosan is hydrophilic, it tends to absorb moisture in the air, and there is a tendency that the risk of erosion of the current collector increases due to acidic components and water. When the current collector is eroded, the internal resistance and impedance may increase.
 本発明者は、上記事情に鑑み、先ず電極活物質層やアンダーコート層を中性にするために多糖類と有機酸とを含有する塗工液の中和を試みた。ところが、中和のために塩基を塗工液に添加すると、有機酸塩が生成して架橋機能が低下し、また、電極活物質の分散が悪くなってしまった。また、酸成分が残存する電極活物質層やアンダーコート層の表面に塩基の溶液を塗布して中和を試みたが、塩基が層の内部にまで達し得ないので、十分な効果は得られなかった。
 そこで、本発明の目的は、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子並びにそれの製造に用いられる塗工液を提供することである。
In view of the above circumstances, the present inventor first tried to neutralize a coating solution containing a polysaccharide and an organic acid in order to make the electrode active material layer and the undercoat layer neutral. However, when a base is added to the coating solution for neutralization, an organic acid salt is generated, the crosslinking function is lowered, and the dispersion of the electrode active material is deteriorated. Also, neutralization was attempted by applying a base solution to the surface of the electrode active material layer or undercoat layer where the acid component remained, but the base could not reach the inside of the layer, so a sufficient effect was obtained. There wasn't.
Accordingly, an object of the present invention is to provide an electrochemical device having excellent storage stability and low internal resistance or impedance, and a coating solution used for the production thereof.
 本発明者は、上記目的を達成するために鋭意検討した。その結果、塗工液に、塩基発生剤を含有させ、酸による架橋後に塩基発生剤を分解して塩基を発生させ、アンダーコート層もしくは電極活物質層を中和することによって、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子が得られることを見出した。本発明は、この知見に基づきさらに検討することによって完成するに至ったものである。 The present inventor has intensively studied to achieve the above object. As a result, the coating solution contains a base generator, decomposes the base generator after crosslinking with an acid to generate a base, and neutralizes the undercoat layer or electrode active material layer, thereby improving storage stability. It has been found that an electrochemical element having excellent internal resistance or impedance can be obtained. The present invention has been completed by further studies based on this finding.
 すなわち、本発明は、以下のものを含むものである。
〈1〉 塩基発生剤と、多糖類と、酸および/または酸誘導体と、溶媒と、導電性付与材および/または電極活物質とを含む、電気化学素子製造用の塗工液。
〈2〉 塩基発生剤が熱塩基発生剤である前記〈1〉に記載の塗工液。
〈3〉 熱塩基発生剤が尿素または尿素誘導体である前記〈2〉に記載の塗工液。
〈4〉 塩基発生剤が光塩基発生剤である前記〈1〉に記載の塗工液。
〈5〉 光塩基発生剤が2-ニトロベンジルシクロヘキシルカルバメート、2-ニトロベンジルカルバメート、2,5-ジニトロベンジルシクロヘキシルカルバメート、1,1-ジメチル-2-フェニルエチル-N-イソプロピルカルバメート、トリフェニルメタノール、o-カルバモイルヒドロキシルアミド、N-シクロヘキシル-4- メチルフェニルスルホンアミドまたはo-カルバモイルオキシムである前記〈4〉に記載の塗工液。
〈6〉 酸および/または酸誘導体が多価有機酸および/または多価有機酸誘導体である前記〈1〉~〈5〉のいずれか1項に記載の塗工液。
〈7〉 酸誘導体が酸無水物である前記〈1〉~〈6〉のいずれか1項に記載の塗工液。
That is, the present invention includes the following.
<1> A coating solution for producing an electrochemical device, comprising a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, a conductivity imparting material and / or an electrode active material.
<2> The coating solution according to <1>, wherein the base generator is a thermal base generator.
<3> The coating solution according to <2>, wherein the thermal base generator is urea or a urea derivative.
<4> The coating solution according to <1>, wherein the base generator is a photobase generator.
<5> The photobase generator is 2-nitrobenzyl cyclohexyl carbamate, 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, 1,1-dimethyl-2-phenylethyl-N-isopropyl carbamate, triphenylmethanol, <4> The coating solution according to <4>, which is o-carbamoylhydroxylamide, N-cyclohexyl-4-methylphenylsulfonamide, or o-carbamoyloxime.
<6> The coating solution according to any one of <1> to <5>, wherein the acid and / or the acid derivative is a polyvalent organic acid and / or a polyvalent organic acid derivative.
<7> The coating solution according to any one of <1> to <6>, wherein the acid derivative is an acid anhydride.
〈8〉 前記〈1〉~〈7〉のいずれか1項に記載の塗工液を用いて形成される膜。
〈9〉 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含む塗工液を用いて形成される層aと を有する電極用積層体。
<8> A film formed using the coating liquid according to any one of <1> to <7>.
<9> A laminate for an electrode comprising: a current collector; and a layer a formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material.
〈10〉 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含む塗工液を用いて形成される層aと、 電極活物質層と を有する電極。
〈11〉 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および電極活物質を含む塗工液を用いて形成される層bと を有する電極。
<10> A current collector, a layer a formed using a coating liquid containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material, and an electrode active material layer electrode.
<11> An electrode having a current collector and a layer b formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material.
〈12〉 前記〈10〉または〈11〉に記載の電極を有する電気化学素子。
〈13〉 前記〈12〉に記載の電気化学素子を有する電源システム。
〈14〉 前記〈12〉に記載の電気化学素子を有する自動車。
〈15〉 前記〈12〉に記載の電気化学素子を有する輸送機器。
〈16〉 前記〈12〉に記載の電気化学素子を有する携帯機器。
〈17〉 前記〈12〉に記載の電気化学素子を有する発電システム。
<12> An electrochemical device having the electrode according to <10> or <11>.
<13> A power supply system having the electrochemical element according to <12>.
<14> An automobile having the electrochemical element according to <12>.
<15> A transport device having the electrochemical element according to <12>.
<16> A portable device having the electrochemical element according to <12>.
<17> A power generation system having the electrochemical element according to <12>.
 本発明の塗工液を集電体に塗布し、次いで塩基を発生させることによって集電体上に保存安定性に優れた電極活物質層もしくはアンダーコート層を形成することができる。該電極活物質層もしくはアンダーコート層を有する電極を用いると、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子が得られる。 An electrode active material layer or an undercoat layer having excellent storage stability can be formed on the current collector by applying the coating liquid of the present invention to the current collector and then generating a base. When an electrode having the electrode active material layer or the undercoat layer is used, an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained.
 本発明に係る塗工液は、塩基発生剤と、多糖類と、酸および/または酸誘導体と、溶媒と、導電性付与材および/または電極活物質とを含むものである。 The coating liquid according to the present invention contains a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, a conductivity imparting material and / or an electrode active material.
 本発明に係る塗工液に用いられる塩基発生剤は、熱や光などの刺激によって分解し、それによって塩基を発生させるものである。本発明に用いられる塩基発生剤は、特に制限はないが、熱によって分解する熱塩基発生剤および/または光によって分解する光塩基発生剤が好ましい。 The base generator used in the coating liquid according to the present invention is decomposed by a stimulus such as heat or light, thereby generating a base. The base generator used in the present invention is not particularly limited, but a thermal base generator that decomposes by heat and / or a photobase generator that decomposes by light is preferable.
 本発明に用いられる熱塩基発生剤は、特に限定されないが、金属を含まないものが好ましい。具体的には、1-メチル-1-(4-ビフェニルイル)エチルカルバメート、1,1-ジメチル-2-シアノエチルカルバメートなどのカルバメート誘導体;尿素やN,N-ジメチル-N’-メチル尿素などの尿素誘導体;1,4-ジヒドロニコチンアミドなどのジヒドロピリジン誘導体;ジシアンジアミド、フェニルスルホニル酢酸グアニジン、p-メタンスルホニルフェニルスルホニル酢酸グアニジン、フェニルプロピオール酸グアニジン、p-フェニレン-ビス-フェニルプロピオール酸グアニジン、フェニルスルホニル酢酸テトラメチルアンモニウム、フェニルプロピオール酸テトラメチルアンモニウム等を挙げることができる。これらは1種単独でもしくは2種以上を組み合わせて用いることができる。
 これらのうち、尿素やN,N-ジメチル-N’-メチル尿素などの尿素誘導体は、熱水加水分解でも塩基を発生させることができ、しかも塗工液中の水分を除去できる点で、好ましい。熱塩基発生剤は、塩基を発生させる温度が、後述する架橋反応が起きる温度よりも高いものが好ましい。塩基を発生させる温度が架橋反応が起きる温度よりも低すぎると、架橋が不十分になる傾向がある。
The thermal base generator used in the present invention is not particularly limited, but preferably does not contain a metal. Specifically, carbamate derivatives such as 1-methyl-1- (4-biphenylyl) ethyl carbamate and 1,1-dimethyl-2-cyanoethyl carbamate; urea and N, N-dimethyl-N′-methyl urea Urea derivatives; dihydropyridine derivatives such as 1,4-dihydronicotinamide; dicyandiamide, phenylsulfonylacetic acid guanidine, p-methanesulfonylphenylsulfonylacetic acid guanidine, phenylpropiolic acid guanidine, p-phenylene-bis-phenylpropiolic acid guanidine, phenylsulfonylacetic acid Examples thereof include tetramethylammonium and tetramethylammonium phenylpropiolate. These can be used alone or in combination of two or more.
Among these, urea derivatives such as urea and N, N-dimethyl-N′-methylurea are preferable in that they can generate a base even by hydrothermal hydrolysis and can remove moisture in the coating solution. . The thermal base generator preferably has a temperature at which a base is generated higher than a temperature at which a crosslinking reaction described later occurs. If the temperature at which the base is generated is too lower than the temperature at which the crosslinking reaction occurs, crosslinking tends to be insufficient.
 本発明に用いられる光塩基発生剤は、特に限定されない。例えば、トリフェニルメタノール、ベンジルカルバメートおよびベンゾインカルバメート等の光活性なカルバメート;o-カルバモイルヒドロキシルアミド、o-カルバモイルオキシム、アロマティックスルホンアミド、アルファーラクタムおよびN-(2-アリルエチニル)アミド等のアミドならびにその他のアミド;オキシムエステル、α-アミノアセトフェノン等を挙げることができる。これらは1種単独でまたは2種以上を組み合わせて使用することができる。
 これらのうち、2-ニトロベンジルシクロヘキシルカルバメート、2-ニトロベンジルカルバメート、2,5-ジニトロベンジルシクロヘキシルカルバメート、1,1-ジメチル-2-フェニルエチル-N-イソプロピルカルバメート、トリフェニルメタノール、o-カルバモイルヒドロキシルアミド、N-シクロヘキシル-4- メチルフェニルスルホンアミド、またはo-カルバモイルオキシムが好ましいものとして挙げることができる。
 また、光塩基発生剤の機能を向上させるために、光増感剤を添加してもよい。
The photobase generator used in the present invention is not particularly limited. For example, photoactive carbamates such as triphenylmethanol, benzylcarbamate and benzoincarbamate; amides such as o-carbamoylhydroxylamide, o-carbamoyloxime, aromatic sulfonamide, alpha-lactam and N- (2-allylethynyl) amide and Other amides; oxime esters, α-aminoacetophenone and the like can be mentioned. These can be used alone or in combination of two or more.
Of these, 2-nitrobenzyl cyclohexyl carbamate, 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, 1,1-dimethyl-2-phenylethyl-N-isopropyl carbamate, triphenyl methanol, o-carbamoyl hydroxyl Amide, N-cyclohexyl-4-methylphenylsulfonamide, or o-carbamoyloxime may be mentioned as preferred.
In order to improve the function of the photobase generator, a photosensitizer may be added.
 熱塩基発生剤は加熱することによって塩基を発生する。光塩基発生剤は光を照射することによって塩基を発生する。発生した塩基が、アンダーコート層もしくは電極活物質層の酸性成分を中和する。その結果、集電体の浸食を効果的に防止することができる。該塗工液で製造された電極を長期間保存した後でも、その電極を有する電気化学素子は、内部抵抗もしくはインピーダンスが低く保持される。 The hot base generator generates a base when heated. The photobase generator generates a base when irradiated with light. The generated base neutralizes the acidic component of the undercoat layer or the electrode active material layer. As a result, erosion of the current collector can be effectively prevented. Even after an electrode manufactured with the coating solution is stored for a long period of time, the electrochemical element having the electrode maintains a low internal resistance or impedance.
 塩基発生剤は、アンダーコート層もしくは電極活物質層の酸性成分を中和できるだけの塩基を発生させる量を塗工液に含有させることが好ましい。
 塩基発生剤の具体的な量は、酸および酸誘導体の種類やその量によって異なるが、酸および酸誘導体の総量100質量部に対して、好ましくは10~200質量部、より好ましくは20~100質量部である。塩基発生剤の量が少なすぎると酸性成分を充分に中和することができない。逆に塩基発生剤の量が多すぎると、塩基性が強くなりやすい。
The base generator is preferably contained in the coating solution in an amount that generates enough base to neutralize the acidic component of the undercoat layer or electrode active material layer.
The specific amount of the base generator varies depending on the type and amount of the acid and acid derivative, but is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts per 100 parts by mass of the total amount of the acid and acid derivative. Part by mass. If the amount of the base generator is too small, the acidic component cannot be sufficiently neutralized. Conversely, if the amount of the base generator is too large, the basicity tends to become strong.
 本発明に係る塗工液に用いられる多糖類は、単糖類(単糖類の置換体および誘導体を含む。)が、グリコシド結合によって多数重合した高分子化合物である。該高分子化合物は加水分解によって多数の単糖類を生ずるものである。通常10以上の単糖類が重合したものを多糖類という。多糖類は置換基を有していてもよく、例えばアルコール性水酸基がアミノ基で置換された多糖類(アミノ糖)、カルボキシル基やアルキル基で置換されたもの、多糖類を脱アセチル化したものなどが含まれる。多糖類はホモ多糖、ヘテロ多糖のいずれでもよい。極性溶媒への溶解度を高くでき、酸および/または酸誘導体によって架橋することによってイオンの移動性を高められることから、ヒドロキシアルキル多糖類若しくはその誘導体、カルボキシアルキル多糖類が好ましく、ヒドロキシアルキル多糖類が好ましい。ヒドロキシアルキル多糖類若しくは誘導体およびカルボキシアルキル多糖類は、公知の方法で製造することができる。 The polysaccharide used in the coating solution according to the present invention is a polymer compound in which a large number of monosaccharides (including monosaccharide substitutes and derivatives) are polymerized by glycosidic bonds. The polymer compound generates a large number of monosaccharides by hydrolysis. Usually, 10 or more monosaccharides are polymerized. The polysaccharide may have a substituent, for example, a polysaccharide in which an alcoholic hydroxyl group is substituted with an amino group (amino sugar), a one in which a carboxyl group or an alkyl group is substituted, or a deacetylated polysaccharide Etc. are included. The polysaccharide may be either a homopolysaccharide or a heteropolysaccharide. Hydroxyl polysaccharides or derivatives thereof, carboxyalkyl polysaccharides are preferred, and hydroxyalkyl polysaccharides are preferred because they can increase the solubility in polar solvents and increase the mobility of ions by crosslinking with acids and / or acid derivatives. preferable. Hydroxyalkyl polysaccharides or derivatives and carboxyalkyl polysaccharides can be produced by known methods.
 多糖類の具体例としては、アガロース、アミロース、アミロペクチン、アラビナン、アラビノガラクタン、アルギン酸、イヌリン、カラギーナン、ガラクタン、グルカン、キシラン、キシログルカン、カルボキシアルキルキチン、キチン、グリコーゲン、グルコマンナン、ケラタン硫酸、コロミン酸、コンドロイチン硫酸A、コンドロイチン硫酸B、コンドロイチン硫酸C、セルロース、デキストラン、デンプン、ヒアルロン酸、フルクタン、ペクチン酸、ペクチン質、ヘパラン酸、ヘパリン、ヘミセルロース、ペントザン、β-1,4’-マンナン、α-1,6’-マンナン、リケナン、レバン、レンチナン、キトサン、プルラン、カードラン、カラゲナン等を挙げることができる。
 これらのうち、キチン、キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロース若しくはカルボキシアルキルセルロースは、イオン透過性が高いので好ましく;キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロースおよびカルボキシアルキルセルロースからなる群から選ばれる少なくとも1種がより好ましい。
 これらの多糖類は、一種単独でまたは二種以上を組み合わせて用いることができる。
 ヒドロキシアルキルキトサンの例としては、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、グリセリル化キトサンなどを挙げることができる。
 ヒドロキシアルキルセルロースの例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどを挙げることができる。
 カルボキシアルキルキトサンの例としては、カルボキシメチルキトサン、カルボキシエチルキトサンなどを挙げることができる。
 カルボキシアルキルセルロースの例としては、カルボキシメチルセルロース、カルボキシエチルセルロースなどを挙げることができる。
Specific examples of polysaccharides include agarose, amylose, amylopectin, arabinan, arabinogalactan, alginic acid, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, carboxyalkylchitin, chitin, glycogen, glucomannan, keratan sulfate, colomine Acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, cellulose, dextran, starch, hyaluronic acid, fructan, pectic acid, pectin, heparic acid, heparin, hemicellulose, pentozan, β-1,4'-mannan, α -1,6'-mannan, lichenan, levan, lentinan, chitosan, pullulan, curdlan, carrageenan and the like.
Of these, chitin, chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan, hydroxyalkylcellulose or carboxyalkylcellulose are preferred because of their high ion permeability; chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan More preferred is at least one selected from the group consisting of hydroxyalkyl cellulose and carboxyalkyl cellulose.
These polysaccharides can be used individually by 1 type or in combination of 2 or more types.
Examples of hydroxyalkyl chitosan include hydroxyethyl chitosan, hydroxypropyl chitosan, glycerylated chitosan and the like.
Examples of hydroxyalkyl cellulose include hydroxyethyl cellulose and hydroxypropyl cellulose.
Examples of carboxyalkyl chitosan include carboxymethyl chitosan and carboxyethyl chitosan.
Examples of carboxyalkyl cellulose include carboxymethyl cellulose and carboxyethyl cellulose.
 本発明に係る塗工液に用いられる酸および酸誘導体は、多糖類を架橋させることができるものであれば特に限定されないが、熱反応により多糖類を架橋できるものが好ましい。酸および酸誘導体は、架橋反応が起きる温度が100~400℃のものが好ましい。100℃以下のものでは、架橋反応が速過ぎて扱いにくい。400℃以上では、集電体に影響を及ぼす恐れがある。酸または酸誘導体としては、多価の有機酸または多価有機酸の誘導体が好ましい。酸誘導体の例としては、エステル、酸ハライド、酸無水物などを挙げることができる。これらのうち、酸無水物が好ましい。カルボン酸無水物は、多糖類や水分と反応して、多価カルボン酸になる。有機酸としては、多塩基酸が架橋効果が高い点で好ましい。多塩基酸としては、3塩基酸、4塩基酸もしくは5塩基酸が好ましい。 The acid and acid derivative used in the coating solution according to the present invention are not particularly limited as long as the polysaccharide can be cross-linked, but those capable of cross-linking the polysaccharide by a thermal reaction are preferable. The acid and acid derivative preferably have a temperature at which the crosslinking reaction occurs at 100 to 400 ° C. If the temperature is 100 ° C. or lower, the crosslinking reaction is too fast and difficult to handle. Above 400 ° C, the current collector may be affected. The acid or acid derivative is preferably a polyvalent organic acid or a polyvalent organic acid derivative. Examples of acid derivatives include esters, acid halides, acid anhydrides, and the like. Of these, acid anhydrides are preferred. Carboxylic anhydride reacts with polysaccharides and moisture to become polyvalent carboxylic acid. As the organic acid, a polybasic acid is preferable in that it has a high crosslinking effect. As the polybasic acid, tribasic acid, tetrabasic acid or pentabasic acid is preferable.
 好ましい酸または酸誘導体としては、1,2,3,4-ブタンテトラカルボン酸、フタル酸、アジピン酸、トリメリット酸、ピロメリット酸、マレイン酸、サリチル酸、クエン酸、リンゴ酸、ピロリドンカルボン酸、コハク酸、無水フタル酸、無水アジピン酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸などを挙げることができる。これらの酸または酸誘導体は、一種単独でまたは二種以上を組み合わせて用いることができる。
 酸および酸誘導体の総量は、特に制限はないが、多糖類100質量部に対して、好ましくは20~300質量部、より好ましくは50~150質量部である。酸および酸誘導体の総量が少なすぎると架橋効果が得られにくい。酸および酸誘導体の総量が多すぎると、酸性成分が多く残存する傾向になる。
Preferred acids or acid derivatives include 1,2,3,4-butanetetracarboxylic acid, phthalic acid, adipic acid, trimellitic acid, pyromellitic acid, maleic acid, salicylic acid, citric acid, malic acid, pyrrolidone carboxylic acid, Examples thereof include succinic acid, phthalic anhydride, adipic anhydride, trimellitic anhydride, pyromellitic anhydride, and maleic anhydride. These acids or acid derivatives can be used alone or in combination of two or more.
The total amount of the acid and the acid derivative is not particularly limited, but is preferably 20 to 300 parts by mass, more preferably 50 to 150 parts by mass with respect to 100 parts by mass of the polysaccharide. If the total amount of acid and acid derivative is too small, it is difficult to obtain a crosslinking effect. When the total amount of the acid and the acid derivative is too large, a lot of acidic components tend to remain.
 本発明に係る塗工液に用いられる溶媒は、特に制限はなく、例えば、非プロトン性極性溶媒、プロトン性極性溶媒、水、などが用いられる。係る溶媒は、架橋反応が開始する温度以下の温度で蒸発するものが望ましい。具体的には、常圧での沸点が50~300℃のものが好ましく、100~220℃のものがより好ましい。
 非プロトン性極性溶媒としては、エーテル類、カーボネート類、アミド類などを挙げることができる。プロトン性極性溶媒としては、アルコール類、多価アルコール類などを挙げることができる。溶媒は、一種単独でまたは二種以上を組み合わせて用いることができる。
There is no restriction | limiting in particular in the solvent used for the coating liquid which concerns on this invention, For example, an aprotic polar solvent, a protic polar solvent, water, etc. are used. Such a solvent is preferably one that evaporates at a temperature below the temperature at which the crosslinking reaction starts. Specifically, the boiling point at normal pressure is preferably 50 to 300 ° C., more preferably 100 to 220 ° C.
Examples of the aprotic polar solvent include ethers, carbonates, amides and the like. Examples of the protic polar solvent include alcohols and polyhydric alcohols. A solvent can be used individually by 1 type or in combination of 2 or more types.
 本発明に係る塗工液における溶媒の使用量は、塗工作業に適した粘度に調整することができるものであれば、特に制限されない。例えば、溶媒の使用量は、塗工作業を行う温度における塗工液の粘度が、好ましくは100~100,000mPa・s、より好ましくは1,000~50,000mPa・s、さらに好ましくは5,000~20,000mPa・sとなる量である。例えば、25℃にて塗工作業を行う場合、溶媒の使用量は塗工液100質量部中に、好ましくは50~99質量部、より好ましくは70~95質量部、さらに好ましくは80~95質量部である。 The amount of the solvent used in the coating liquid according to the present invention is not particularly limited as long as it can be adjusted to a viscosity suitable for the coating work. For example, the amount of the solvent used is such that the viscosity of the coating solution at the temperature at which the coating operation is performed is preferably 100 to 100,000 mPa · s, more preferably 1,000 to 50,000 mPa · s, and still more preferably 5, The amount is 000 to 20,000 mPa · s. For example, when the coating operation is performed at 25 ° C., the amount of solvent used is preferably 50 to 99 parts by weight, more preferably 70 to 95 parts by weight, and still more preferably 80 to 95 parts in 100 parts by weight of the coating solution. Part by mass.
 本発明に係る塗工液に用いられる導電性付与材は、炭素を主構成成分とする導電性の炭素材である。導電性炭素材としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック;気相法炭素繊維;グラファイトなどが好適である。これらの導電性炭素材は一種単独でまたは2種以上を組み合わせて用いることができる。
 導電性付与材は、100%の圧粉体における粉体電気抵抗が1×10-1Ω・cm以下のものが好ましい。
The conductivity imparting material used in the coating liquid according to the present invention is a conductive carbon material containing carbon as a main component. As the conductive carbon material, carbon black such as acetylene black and ketjen black; vapor grown carbon fiber; graphite and the like are suitable. These conductive carbon materials can be used singly or in combination of two or more.
The conductivity imparting material preferably has a powder electrical resistance of 1 × 10 −1 Ω · cm or less in 100% green compact.
 導電性付与材は、球状などの粒子であってもよいし、繊維状、針状、棒状などの異方形状のものであってもよい。
 粒子状の導電性付与材は、その粒子サイズによって特に制限されないが、体積基準の平均粒径が10nm~50μmのものが好ましく、10nm~100nmのものがより好ましい。
 異方形状の導電性付与材は重量あたりの表面積が大きく、集電体や電極活物質等との接触面積が大きくなるので、少量の添加でも集電体と電極活物質との間もしくは電極活物質同士間の導電性を高くすることができる。異方形状の導電性付与材としては、カーボンナノチューブやカーボンナノファイバーを挙げることができる。カーボンナノチューブやカーボンナノファイバーは繊維径が通常0.001~0.5μm、好ましくは0.003~0.2μmであり、繊維長が通常1~100μm、好ましくは1~30μmであるものが導電性向上において好適である。
 後述の層aを形成させるための塗工液における塩基発生剤と多糖類と酸および/または酸誘導体との合計量は、導電性付与材100質量部に対して、好ましくは20~300質量部である。また、層aを形成させるための塗工液の固形分は1~50質量%であることが好ましい。
The conductivity-imparting material may be particles such as a spherical shape, or may have an anisotropic shape such as a fiber shape, a needle shape, or a rod shape.
The particulate conductivity imparting material is not particularly limited by the particle size, but preferably has a volume-based average particle size of 10 nm to 50 μm, more preferably 10 nm to 100 nm.
An anisotropic conductivity imparting material has a large surface area per weight and a large contact area with the current collector, electrode active material, etc., so even if it is added in a small amount, it is between the current collector and the electrode active material or the electrode active material. The conductivity between substances can be increased. Examples of the anisotropic conductivity imparting material include carbon nanotubes and carbon nanofibers. Carbon nanotubes and carbon nanofibers have a fiber diameter of usually 0.001 to 0.5 μm, preferably 0.003 to 0.2 μm, and a fiber length of usually 1 to 100 μm, preferably 1 to 30 μm. It is suitable for improvement.
The total amount of the base generator, polysaccharide, acid and / or acid derivative in the coating solution for forming the layer a described later is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the conductivity-imparting material. It is. The solid content of the coating solution for forming the layer a is preferably 1 to 50% by mass.
 本発明に係る塗工液に用いられる電極活物質は、リチウムイオンバッテリーや電気二重層キャパシタなどの電気化学素子において使用されるものであれば、特に限定されない。 The electrode active material used in the coating liquid according to the present invention is not particularly limited as long as it is used in an electrochemical element such as a lithium ion battery or an electric double layer capacitor.
 リチウムイオンバッテリーに用いられる電極活物質は、正極用と負極用とで相違する。 The electrode active material used for lithium ion batteries is different for positive and negative electrodes.
 リチウムイオンバッテリーに用いられる正電極活物質は、リチウムイオンを吸蔵および脱離することができる物質であれば特に制限されない。具体的には、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2);Co、MnおよびNiの3元系リチウム化合物(Li(CoxMnyNiz)O2)、イオウ系化合物(TiS2)、オリビン系化合物(LiFePO4)などが好適なものとして挙げることができる。
 リチウムイオンバッテリーの正電極の層bを形成させるための塗工液における塩基発生剤と多糖類と酸および/または酸誘導体との合計量は、正電極活物質100質量部に対して、好ましくは0.1~30質量部である。
The positive electrode active material used for the lithium ion battery is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions. Specifically, lithium cobalt oxide (LiCoO 2), lithium manganate (LiMn 2 O 4), lithium nickel oxide (LiNiO 2); Co, 3 ternary lithium compounds of Mn and Ni (Li (Co x Mn y Ni z ) O 2 ), sulfur-based compounds (TiS 2 ), olivine-based compounds (LiFePO 4 ) and the like can be mentioned as suitable ones.
The total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating solution for forming the positive electrode layer b of the lithium ion battery is preferably 100 parts by mass of the positive electrode active material. 0.1 to 30 parts by mass.
 リチウムイオンバッテリーに用いられる負電極活物質は、特に制限されない。具体的にはグラファイト等の黒鉛系炭素、非晶質黒鉛系炭素、酸化物などを挙げることができる。
 リチウムイオンバッテリーの負電極の層bを形成させるための塗工液における塩基発生剤と多糖類と酸および/または酸誘導体との合計量は、負電極活物質100質量部に対して、好ましくは0.1~30質量部である。
The negative electrode active material used for the lithium ion battery is not particularly limited. Specific examples include graphite carbon such as graphite, amorphous graphite carbon, and oxide.
The total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating solution for forming the negative electrode layer b of the lithium ion battery is preferably 100 parts by mass of the negative electrode active material. 0.1 to 30 parts by mass.
 リチウムイオンバッテリー用電極の層bを形成させるための塗工液には、得られる層bの導電性を高めるために、前述の導電性付与材と電極活物質とを併用することが好ましい。該導電性付与材の量は、電極活物質100質量部に対して、好ましくは1~15質量部である。また、層bを形成させるための塗工液の固形分は50~99質量%であることが好ましい。 In the coating liquid for forming the layer b of the lithium ion battery electrode, it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the obtained layer b. The amount of the conductivity imparting material is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the electrode active material. The solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
 電気二重層キャパシタに用いられる電極活物質は、正極用と負極用とを同じにすることができる。
 電気二重層キャパシタに用いられる電極活物質は、活性炭であることが好ましい。
 活性炭は、電気容量を高くする観点から比表面積の大きいものが好ましい。具体的に活性炭はBET比表面積が800~2500m2/gのものが好ましい。活性炭は、平均粒径(D50)が、1μm~50μmのものが好ましい。ここで、活性炭の平均粒径(D50)は、マイクロトラック粒度分布計により測定した体積基準の50%累積粒子径(μm)である。
The electrode active material used for the electric double layer capacitor can be the same for the positive electrode and the negative electrode.
The electrode active material used for the electric double layer capacitor is preferably activated carbon.
The activated carbon preferably has a large specific surface area from the viewpoint of increasing the electric capacity. Specifically, the activated carbon preferably has a BET specific surface area of 800 to 2500 m 2 / g. The activated carbon preferably has an average particle size (D50) of 1 μm to 50 μm. Here, the average particle diameter (D50) of the activated carbon is a volume-based 50% cumulative particle diameter (μm) measured with a Microtrac particle size distribution meter.
 活性炭としては、ヤシ殻活性炭、繊維状活性炭などを挙げることができる。活性炭は、その賦活方法によっても特に限定されず、水蒸気賦活法、薬品賦活法などによって得たものが採用可能である。なお高容量のキャパシタを得るためには、アルカリ賦活処理を施したもの、すなわちアルカリ賦活炭が好適である。アルカリ賦活炭は、例えば、ヤシ殻、コークス、ポリマー炭化物、難黒鉛化性炭化物もしくは易黒鉛化性炭化物をアルカリ金属化合物の存在下に熱処理することによって得られる。易黒鉛化性炭化物としては、例えば、石油系ピッチ、石炭系ピッチ、及びそれらの有機溶媒可溶成分などのピッチを熱処理して得られるものや、ポリ塩化ビニル系化合物の炭化物を挙げることができる。アルカリ金属化合物としては水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどを挙げることができる。 Examples of the activated carbon include coconut shell activated carbon and fibrous activated carbon. The activated carbon is not particularly limited by its activation method, and those obtained by a steam activation method, a chemical activation method, or the like can be employed. In addition, in order to obtain a high capacity | capacitance capacitor, what performed the alkali activation process, ie, alkali activated carbon, is suitable. The alkali activated carbon is obtained, for example, by heat-treating coconut shell, coke, polymer carbide, non-graphitizable carbide or graphitizable carbide in the presence of an alkali metal compound. Examples of graphitizable carbides include those obtained by heat-treating pitches such as petroleum pitch, coal pitch, and their organic solvent soluble components, and carbides of polyvinyl chloride compounds. . Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, and potassium carbonate.
 活性炭は、固め嵩密度(タップ密度)が、0.3g/cm3~0.9g/cm3の範囲内にあるものが好ましい。固め嵩密度が小さすぎると充てん密度が小さくなり電気二重層キャパシタの体積あたりやセルあたりの電気容量が低下傾向になる。固め嵩密度が大きすぎると重量あたりの電気容量が低下し、電解液を保持できる量が減少傾向になるために容量保持率が低下する場合がある。 The activated carbon preferably has a hardened bulk density (tap density) in the range of 0.3 g / cm 3 to 0.9 g / cm 3 . If the compacted bulk density is too small, the packing density is decreased, and the electric capacity per volume of the electric double layer capacitor and per cell tends to decrease. If the hardened bulk density is too large, the electric capacity per weight decreases, and the amount of electrolyte that can be retained tends to decrease, so the capacity retention rate may decrease.
 電気二重層キャパシタ用電極の層bを形成させるための塗工液における塩基発生剤と多糖類と酸および/または酸誘導体との合計量は、電極活物質100質量部に対して、好ましくは0.1~20質量部である。 The total amount of the base generator, the polysaccharide, the acid and / or the acid derivative in the coating liquid for forming the layer b of the electrode for the electric double layer capacitor is preferably 0 with respect to 100 parts by mass of the electrode active material. 1 to 20 parts by mass.
 電気二重層キャパシタ用電極の層bを形成させるための塗工液では、得られる層bの導電性を高めるために、前述の導電性付与材と電極活物質とを併用することが好ましい。該導電性付与材の量は、電極活物質100質量部に対して、好ましくは0.1~20質量部である。層bを形成させるための塗工液の固形分は50~99質量%であることが好ましい。 In the coating liquid for forming the layer b of the electrode for an electric double layer capacitor, it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained. The amount of the conductivity imparting material is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material. The solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
 さらに、本発明の塗工液には、必要に応じて、種々の添加剤を加えてもよい。例えば、他の架橋剤、分散剤、湿潤剤、増粘剤、カップリング剤、沈降防止剤、皮張り防止剤、重合防止剤、消泡剤、静電塗装製改良剤、タレ防止剤、色分防止剤、レベリング剤、効果促進剤、ハジキ防止剤などを挙げることができる。 Furthermore, various additives may be added to the coating liquid of the present invention as necessary. For example, other crosslinking agents, dispersants, wetting agents, thickeners, coupling agents, anti-settling agents, anti-skinning agents, polymerization inhibitors, antifoaming agents, electrostatic coating modifiers, sagging inhibitors, colors Examples include a minute inhibitor, a leveling agent, an effect accelerator, and a repellency inhibitor.
 本発明に係る塗工液の調製方法は特に制限されない。例えば、塩基発生剤と多糖類と酸および/または酸誘導体とを溶媒に溶解し、該溶液に導電性付与材および/または電極活物質を添加して分散させるという方法が好ましいものとして挙げることができる。また、塗工液の粘度等に応じて、公知の混練機や攪拌機を適宜選択して、塗工液の調製に使用することができる。 The method for preparing the coating liquid according to the present invention is not particularly limited. For example, a method in which a base generator, a polysaccharide, an acid and / or an acid derivative are dissolved in a solvent, and a conductivity-imparting material and / or an electrode active material is added and dispersed in the solution is preferably mentioned. it can. Moreover, according to the viscosity of a coating liquid, etc., a well-known kneader and a stirrer can be selected suitably, and it can be used for preparation of a coating liquid.
 本発明に係る電極用積層体は、 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと を有するものである。本発明に係る電極用積層体は、電極の製造において、従来公知の集電体の代わりに用いることができる。 The electrode laminate according to the present invention includes a current collector, a layer a formed using a coating liquid containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material; It is what has. The laminate for an electrode according to the present invention can be used in place of a conventionally known current collector in the production of an electrode.
 本発明に係る電極は、 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと、 電極活物質層と を有するもの; および
 集電体と、 塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および電極活物質を含有する塗工液を用いて形成される層bと を有するものである。
 なお、層aは背景技術におけるアンダーコート層に相当し、層bは背景技術における電極活物質層に相当する。
The electrode according to the present invention includes a current collector, a layer a formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material, And a current collector and a layer b formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material. It is.
The layer a corresponds to an undercoat layer in the background art, and the layer b corresponds to an electrode active material layer in the background art.
 本発明に係る塗工液を、集電体に塗布し、次いで塩基を発生させることを含む方法によって、前記の層aもしくは層bを形成させることができる。
 塗工液の塗布方法は、特に制限されず、リチウムイオンバッテリーや電気二重層キャパシタなどに使用されるアンダーコート層もしくは電極活物質層の製造において用いられる公知の塗布方法や乾燥方法がそのまま採用できる。
The layer a or the layer b can be formed by a method including applying the coating liquid according to the present invention to a current collector and then generating a base.
The coating method of the coating liquid is not particularly limited, and a known coating method or drying method used in the production of an undercoat layer or an electrode active material layer used for a lithium ion battery or an electric double layer capacitor can be directly employed. .
 塗布方法としては、キャスト法、バーコーター法、ディップ法、印刷法などを挙げることができる。これらのうち、塗布膜の厚さを制御しやすい点から、バーコーター、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイヤコート、スライドダイコート、ディップコートが好ましい。また、塗布量を調節するために、上記溶媒で塗工液の濃度を調整することができる。
 塗布は、集電体の一部分に行ってもよいし、全面に行ってもよいし、片面もしくは両面に行ってもよい。両面に塗布する場合は、片面ずつ塗布操作を行ってもよいし、両面同時に塗布操作を行ってもよい。
 塗膜の乾燥は、塗工液に熱塩基発生剤を使用している場合には後述する熱処理と同時に行ってもよいし、別に行ってもよい。乾燥は、大気下、不活性ガス下または真空下で行うことができる。これらのうち、大気下で行うのが低コストであるので好ましい。また塗工液に光塩基発生剤を使用している場合には、光照射の前に乾燥を行うことができる。乾燥方法は特に制限されないが、好ましくは100~400℃の温度範囲内で、好ましくは10秒間~10分間の時間で行う。
Examples of the coating method include a casting method, a bar coater method, a dip method, and a printing method. Among these, from the point that it is easy to control the thickness of the coating film, bar coater, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot diamond coat, A slide die coat and a dip coat are preferred. Further, in order to adjust the coating amount, the concentration of the coating solution can be adjusted with the above solvent.
The application may be performed on a part of the current collector, on the entire surface, or on one surface or both surfaces. In the case of applying to both sides, the application operation may be performed on each side, or the application operation may be performed on both sides simultaneously.
When a thermal base generator is used in the coating liquid, the coating film may be dried simultaneously with the heat treatment described later or separately. Drying can be performed in air, under an inert gas, or under vacuum. Of these, it is preferable to perform in the atmosphere because of low cost. When a photobase generator is used in the coating solution, drying can be performed before light irradiation. The drying method is not particularly limited, but it is preferably performed within a temperature range of 100 to 400 ° C., preferably for 10 seconds to 10 minutes.
 塩基を発生させる工程は、塗工液に含まれる塩基発生剤の種類に応じて熱処理もしくは光照射が行われる。
 熱処理時の温度は、塗布速度や加熱方法等により異なるが、100~400℃であることが好ましい。熱処理温度が低すぎると中和が不十分に成りやすく、熱処理温度が高すぎると集電体の焼鈍がおきやすい。熱処理時間は、10秒間~10分間が好ましい。熱処理時間が短すぎると中和が不十分に成りやすい。熱処理時間が長すぎると生産性が落ち、コストが高くなりやすい。
In the step of generating a base, heat treatment or light irradiation is performed according to the type of base generator contained in the coating solution.
The temperature during the heat treatment varies depending on the coating speed, heating method, etc., but is preferably 100 to 400 ° C. If the heat treatment temperature is too low, neutralization tends to be insufficient, and if the heat treatment temperature is too high, the current collector tends to be annealed. The heat treatment time is preferably 10 seconds to 10 minutes. If the heat treatment time is too short, neutralization tends to be insufficient. If the heat treatment time is too long, productivity is lowered and cost is likely to increase.
 光照射の方法は特に制限されない。光照射の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ、Deep UV ランプ、高圧水銀灯、低圧水銀灯、メタルハライドランプ、エキシマレーザー、写真用フラッド電球、太陽ランプ等の紫外線や可視光線などの光を照射する公知の光源を挙げることができる。
 光の照射エネルギーは、層a若しくは層bの厚さや、光塩基発生剤の種類にもよるが、一般に、10~3000mJ/cm2の範囲である。照射エネルギーは、光源の照度と照射時間等で制御することができる。
The light irradiation method is not particularly limited. As a light source for light irradiation, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a deep UV lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, an excimer laser, a flood bulb for photography, the sun A known light source that irradiates light such as ultraviolet light and visible light such as a lamp can be given.
The irradiation energy of light is generally in the range of 10 to 3000 mJ / cm 2 , although it depends on the thickness of layer a or b and the type of photobase generator. The irradiation energy can be controlled by the illuminance of the light source and the irradiation time.
 集電体は、リチウムイオンバッテリーや電気二重層キャパシタなどにおいて使用されるものであれば、特に限定されない。
 集電体は、孔の開いていない箔だけでなく、パンチングメタル箔や網のような孔の開いた箔などを含む。集電体は導電性材料で構成されるものであれば特に制限されず、導電性金属製のものや導電性樹脂製のものを挙げることができる。特にアルミニウム製、銅製のものが好ましいものとして挙げることができる。アルミニウム箔としては、純アルミ系のA1085材、A3003材などの箔が通常用いられる。銅箔としては、圧延銅箔や電解銅箔が通常用いられる。
 集電体は、表面が平滑なものでもよいが、電気的又は化学的なエッチング処理などによって表面が粗面化されたもの、すなわちエッチング箔も好適である。
The current collector is not particularly limited as long as it is used in a lithium ion battery, an electric double layer capacitor, or the like.
The current collector includes not only a non-perforated foil but also a punched metal foil or a perforated foil such as a net. The current collector is not particularly limited as long as it is composed of a conductive material, and examples thereof include those made of a conductive metal and those made of a conductive resin. Particularly preferred are aluminum and copper. As the aluminum foil, pure aluminum-based A1085 material, A3003 material, or the like is usually used. As the copper foil, rolled copper foil or electrolytic copper foil is usually used.
The current collector may have a smooth surface, but a surface roughened by an electrical or chemical etching process, that is, an etching foil is also suitable.
 集電体は、厚さによって特に制限されないが、通常、5μm~100μm厚のものが好ましい。厚さが5μm以下であると、強度が不足して塗布工程などで箔が破断する恐れがある。一方、厚さが100μmを超えると所定体積中に占める集電体の割合が増大して、容量の低下を招くことがある。
 リチウムイオンバッテリーにおいては、正電極にアルミニウムが用いられることが多く、負電極に銅が用いられることが多い。
 電気二重層キャパシタにおいては、正電極および負電極ともにアルミニウムが用いられることが多い。
 アルミニウム製の集電体は、アルミニウム箔、アルミニウムエッチング箔またはアルミニウムパンチング箔であることが好ましい。銅製の集電体は、銅箔、銅エッチング箔または銅パンチング箔であることが好ましい。
The current collector is not particularly limited by the thickness, but it is usually preferable to have a thickness of 5 μm to 100 μm. If the thickness is 5 μm or less, the strength may be insufficient and the foil may be broken in the coating process. On the other hand, when the thickness exceeds 100 μm, the ratio of the current collector in the predetermined volume increases, which may lead to a decrease in capacity.
In lithium ion batteries, aluminum is often used for the positive electrode and copper is often used for the negative electrode.
In an electric double layer capacitor, aluminum is often used for both the positive electrode and the negative electrode.
The aluminum current collector is preferably an aluminum foil, an aluminum etching foil or an aluminum punching foil. The copper current collector is preferably a copper foil, a copper etching foil or a copper punching foil.
 層aは、塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含有する塗工液を用いて形成される。
 層bは、塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および電極活物質を含有する塗工液を用いて形成される。
 前記の層aの上には、通常、電極活物質層が形成される。本発明に係る電極において、層aの上に形成される電極活物質層は、塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および電極活物質を含有する塗工液を用いて形成される層bであってもよいし、これ以外の公知の電極活物質層であってもよい。
The layer a is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and a conductivity-imparting material.
The layer b is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, and an electrode active material.
An electrode active material layer is usually formed on the layer a. In the electrode according to the present invention, the electrode active material layer formed on the layer a is formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material. The layer b may be a well-known electrode active material layer.
 層aの厚さは、好ましくは0.01μm以上50μm以下、より好ましくは0.1μ以上10μm以下である。厚さが薄すぎると内部抵抗もしくはインピーダンスの低下などの所望効果が得られない傾向になる。一方、厚さを厚くしすぎても抵抗もしくはインピーダンスはある値より小さくならない。
 電気二重層キャパシタにおける電極活物質層または層bの厚さは、好ましくは10μm以上500μm以下である。
 リチウムイオンバッテリーにおける電極活物質層または層bの厚さは、好ましくは0.1μm以上500μm以下である。0.1μm以下になると、所望効果が得られない傾向になる。500μm以上になると、集電体からの脱落がおきやすくなる。
The thickness of the layer a is preferably 0.01 μm or more and 50 μm or less, more preferably 0.1 μm or more and 10 μm or less. If the thickness is too thin, desired effects such as a decrease in internal resistance or impedance tend not to be obtained. On the other hand, the resistance or impedance does not become smaller than a certain value even if the thickness is increased too much.
The thickness of the electrode active material layer or layer b in the electric double layer capacitor is preferably 10 μm or more and 500 μm or less.
The thickness of the electrode active material layer or layer b in the lithium ion battery is preferably 0.1 μm or more and 500 μm or less. When the thickness is 0.1 μm or less, the desired effect tends not to be obtained. When the thickness is 500 μm or more, it is easy for the current collector to fall off.
 なお、本発明に係る塗工液で形成された層aまたは層bを集電体から剥がして、膜として利用することができる。該膜はイオン透過性若しくはイオン移動性が高い。 In addition, the layer a or the layer b formed with the coating liquid according to the present invention can be peeled off from the current collector and used as a film. The membrane has high ion permeability or ion mobility.
 本発明に係る電気化学素子は、前述の本発明に係る電極を有し、さらに、セパレーターおよび電解液を、通常、有するものである。本発明に係る電気化学素子における電極は、両方とも本発明に係る電極であってもよいし、どちらか一方が本発明に係る電極であり、他方が公知の電極であってもよい。
 セパレーターおよび電解液は、リチウムイオンバッテリーなどの二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどにおいて使用されるものであれば特に制限されない。
The electrochemical device according to the present invention has the electrode according to the present invention described above, and further usually has a separator and an electrolytic solution. The electrodes in the electrochemical device according to the present invention may both be the electrodes according to the present invention, or one of them may be the electrode according to the present invention and the other may be a known electrode.
A separator and electrolyte solution will not be restrict | limited especially if used in secondary batteries, such as a lithium ion battery, an electric double layer capacitor, a hybrid capacitor.
 本発明に係る電気化学素子は、電源システムに適用することができる。そして、この電源システムは、自動車;鉄道、船舶、航空機などの輸送機器;携帯電話、携帯情報端末、携帯電子計算機などの携帯機器;事務機器;太陽光発電システム、風力発電システム、燃料電池システムなどの発電システム;などに適用することができる。 The electrochemical element according to the present invention can be applied to a power supply system. And this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
 次に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、本実施例によってその範囲が制限されるものではない。本発明に係る塗工液、膜、電極用積層体、電極、電気化学素子、電源システム、自動車、輸送機器、携帯機器および発電システムは、本発明の要旨を変更しない範囲において適宜変更して実施することができる。 Next, the present invention will be described more specifically with reference to examples and comparative examples. The scope of the present invention is not limited by this embodiment. The coating liquid, film, electrode laminate, electrode, electrochemical device, power supply system, automobile, transportation equipment, portable device, and power generation system according to the present invention are appropriately modified and implemented without departing from the scope of the present invention. can do.
 製造例1:溶液1~6の調製
 表1に示す配合処方に従って、溶媒に多糖類と酸および/または酸誘導体とを添加し溶解させて溶液1~6を得た。
Production Example 1: Preparation of solutions 1 to 6 According to the formulation shown in Table 1, polysaccharides and acids and / or acid derivatives were added and dissolved in a solvent to obtain solutions 1 to 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 製造例2:溶液7~15の調製
 表2に示す配合処方に従って、溶媒に多糖類と酸および/または酸誘導体と塩基発生剤とを添加し溶解させて溶液7~15を得た。
Production Example 2: Preparation of Solutions 7 to 15 According to the formulation shown in Table 2, polysaccharides, acids and / or acid derivatives, and base generators were added and dissolved in solvents to obtain solutions 7 to 15.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1>
(アンダーコート層製造用塗工液の製造)
 導電性付与材としてのアセチレンブラック(平均粒子径40nm)10質量部と、溶液7 90質量部とを、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られるアンダーコート層の厚さが5μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈してスラリー状のアンダーコート層製造用塗工液を得た。
<Example 1>
(Manufacture of coating liquid for undercoat layer manufacturing)
10 parts by mass of acetylene black (average particle size 40 nm) as a conductivity imparting material and 790 parts by mass of solution 790 were stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution was diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the resulting undercoat layer was 5 μm to obtain a slurry-like coating solution for producing an undercoat layer.
(アンダーコート層を備えたアルミニウム箔の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が10μmのアプリケーターを用いて、アルミニウム箔上に、アンダーコート層製造用塗工液をキャスト法によって塗工した。その後、180℃にて3分間加熱して、乾燥と架橋反応と中和反応とをさせて、アンダーコート層を備えたアルミニウム箔を得た。
(Manufacture of aluminum foil with an undercoat layer)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using an applicator with a gap of 10 μm, an undercoat layer production coating solution was applied onto an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), was made to dry, a crosslinking reaction, and neutralization reaction, and obtained the aluminum foil provided with the undercoat layer.
(アンダーコート層のpH評価)
 アンダーコート層を備えたアルミニウム箔を純水に浸漬させ、密封した。24時間経過後にpHを測定した。水の量は、塗布面積1cm2に対して、0.02mlになるようにした。結果を表3に示す。
(Evaluation of pH of undercoat layer)
The aluminum foil provided with the undercoat layer was immersed in pure water and sealed. The pH was measured after 24 hours. The amount of water was 0.02 ml with respect to 1 cm 2 of application area. The results are shown in Table 3.
(リチウムイオンバッテリーとしての評価)
 正電極活物質としてのコバルト酸リチウム95質量部と、バインダーとしてのポリフッ化ビニリデン2質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)3質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、正極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
 アンダーコート層を備えたアルミニウム箔に、該正極ペーストを塗布し乾燥させ、厚さ200μmの電極活物質層をアンダーコート層の上に形成させて、リチウムイオン二次電池用正電極を得た。
(Evaluation as a lithium ion battery)
To 95 parts by mass of lithium cobaltate as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride as a binder, and 3 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
The positive electrode paste was applied to an aluminum foil provided with an undercoat layer, dried, and an electrode active material layer having a thickness of 200 μm was formed on the undercoat layer to obtain a positive electrode for a lithium ion secondary battery.
 負電極活物質としてのグラファイト92質量部と、バインダーとしてのポリフッ化ビニリデン3質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、負極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが250μmになるように加えた。
 厚さ9μmの電解銅箔に、該負極ペーストを塗布し乾燥させ、厚さ250μmの電極活物質層を形成させて、リチウムイオン二次電池用負電極を得た。
92 parts by mass of graphite as a negative electrode active material, 3 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 μm.
The negative electrode paste was applied to an electrolytic copper foil having a thickness of 9 μm and dried to form an electrode active material layer having a thickness of 250 μm, thereby obtaining a negative electrode for a lithium ion secondary battery.
 上記で得られた正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 有機電解液は、溶媒がエチレンカーボネートとジエチルカーボネートとの容量比1/1の混合液、電解質がLiPF6、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTER-EDMC/PF1を使用した。
A porous polyethylene separator was incorporated between the positive electrode and the negative electrode obtained above, and these were impregnated with an organic electrolyte solution to assemble a lithium ion battery.
The organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
 該リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。それらの結果を表3に示す。
 なお、初期容量維持率は、測定機として北斗電工株式会社製電池充放電装置HJ-2010型機を用い、電流レート20Cで、100サイクル後における容量を測定し、初期(1サイクル後における)容量に対する割合を百分率で表示した。
 内部抵抗は、HIOKI3551バッテリーテスターを用いて、ACインピーダンス法で、測定周波数1kHzにて測定した。
The initial capacity retention ratio and internal resistance of the lithium ion battery were measured. The results are shown in Table 3.
The initial capacity retention rate was determined by measuring the capacity after 100 cycles at a current rate of 20 C using a battery charging / discharging device HJ-2010 model manufactured by Hokuto Denko Co., Ltd. as the measuring instrument. The percentage relative to is expressed as a percentage.
The internal resistance was measured at a measurement frequency of 1 kHz by an AC impedance method using a HIOKI3551 battery tester.
 また、上記で得られたアンダーコート層を備えたアルミニウム箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管されたアルミニウム箔を用いて、上記と同じ手法でリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。結果を表3に示す。 Moreover, the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. The results are shown in Table 3.
(電気二重層キャパシタとしての評価)
 電極活物質としての活性炭(比表面積1500m2/gのアルカリ賦活炭)85質量部と、バインダーとしてのポリフッ化ビニリデン10質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、電極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
(Evaluation as an electric double layer capacitor)
85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 10 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material To this part, N-methyl-2-pyrrolidone as a solvent was added to produce an electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
 上記で得られたアンダーコート層を備えたアルミニウム箔に、前記電極ペーストを塗布し乾燥させ、厚さ200μmの電極活物質層をアンダーコート層の上に形成させて、電気二重層キャパシタ用電極を得た。
 次に、電気二重層キャパシタ用電極を、評価用キャパシタ容器の大きさに合わせて、直径20mmφで2枚打ち抜いた。ガラス不織布製のセパレーターを間に挟んで2枚の電極を重ね合わせ、評価用キャパシタ容器に収め、有機電解液を該容器に注ぎ入れ、電極等を浸漬させ、最後に容器に蓋をして、評価用の電気二重層キャパシタを作製した。
 有機電解液は、溶媒がプロピレンカーボネート、電解質が(C254NBF4、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTE-P/EAFINを使用した。
The electrode paste is applied to the aluminum foil having the undercoat layer obtained above and dried, and an electrode active material layer having a thickness of 200 μm is formed on the undercoat layer. Obtained.
Next, two electric double layer capacitor electrodes were punched out with a diameter of 20 mmφ in accordance with the size of the capacitor container for evaluation. Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
As the organic electrolytic solution, trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
 該電気二重層キャパシタのインピーダンス及び電気容量を測定した。結果を表4に示す。
 なお、インピーダンスの測定は、KIKUSUI社製のインピーダンス測定器(PAN110-5AM)を用いて1kHzの条件で行った。
 電気容量の測定は、北斗電工社製充放電試験装置(HJ-101SM6)を用いて、電流密度1.59mA/cm2で0~2.5Vで充放電を行い、2回目の定電流放電時に測定した放電曲線から電気二重層キャパシタのセルあたりの電気容量(F/セル)を算出した。容量保持率(%)は(50サイクル目の電気容量)/(2サイクル目の電気容量)×100の計算式で算出した。
The impedance and electric capacity of the electric double layer capacitor were measured. The results are shown in Table 4.
The impedance was measured under the condition of 1 kHz using an impedance measuring instrument (PAN110-5AM) manufactured by KIKUSUI.
The electric capacity was measured using a charge / discharge test apparatus (HJ-101SM6) manufactured by Hokuto Denko Corporation at a current density of 1.59 mA / cm 2 at a voltage of 0 to 2.5 V, during the second constant current discharge. The electric capacity (F / cell) per cell of the electric double layer capacitor was calculated from the measured discharge curve. The capacity retention rate (%) was calculated by a formula of (electric capacity at the 50th cycle) / (electric capacity at the second cycle) × 100.
 上記で得られたアンダーコート層を備えたアルミニウム箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管されたアルミニウム箔を用いて、上記と同じ手法で電気二重層キャパシタを製造した。この電気二重層キャパシタのインピーダンスを測定した。結果を表4に示す。 The aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 4.
<実施例2~6>
 溶液7の代わりに、溶液8、溶液10、溶液11、溶液12および溶液13をそれぞれ用いた以外は、実施例1と同じ手法で、アンダーコート層製造用塗工液を作製し、アンダーコート層を備えたアルミニウム箔を得た。そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表3および表4に示す。
<Examples 2 to 6>
A coating liquid for producing an undercoat layer was prepared in the same manner as in Example 1 except that Solution 8, Solution 10, Solution 11, Solution 12 and Solution 13 were used instead of Solution 7, respectively. The aluminum foil provided with was obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
<実施例7>
 溶液7の代わりに、溶液9を用いた以外は、実施例1と同じ手法で、アンダーコート層製造用塗工液を作製した。
 このアンダーコート層製造用塗工液を用い、且つ乾燥条件を250℃、1分間に変更した以外は、実施例1と同じ手法で、アンダーコート層を備えたアルミニウム箔を製造した。
 そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表3および表4に示す。
<Example 7>
A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 9 was used instead of the solution 7.
An aluminum foil provided with an undercoat layer was produced in the same manner as in Example 1 except that this coating liquid for producing an undercoat layer was used and the drying conditions were changed to 250 ° C. for 1 minute.
Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
<実施例8および9>
 溶液7の代わりに、溶液14および溶液15をそれぞれ用いた以外は、実施例1と同じ手法にて、アンダーコート層製造用塗工液を作製した。
 このアンダーコート層製造用塗工液を用い、乾燥条件を180℃、3分間に変更し、且つ乾燥後に、紫外線ランプを用いて、紫外線(波長365nm)を、照射エネルギーが900mJ/cm2となるように1.5mW/cm2の紫外線照度で10分間照射した以外は、実施例1と同じ手法で、アンダーコート層を備えたアルミニウム箔を製造した。
 そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表3および表4に示す。
<Examples 8 and 9>
A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively.
Using this coating solution for undercoat layer production, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp, and the irradiation energy was 900 mJ / cm 2. Thus, an aluminum foil provided with an undercoat layer was manufactured in the same manner as in Example 1 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of 1.5 mW / cm 2 .
Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
<比較例1~6>
 溶液7の代わりに、溶液1~6をそれぞれ用いた以外は、実施例1と同じ手法にて、アンダーコート層製造用塗工液を作製し、アンダーコート層を備えたアルミニウム箔を得た。そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表3および表4に示す。
<Comparative Examples 1 to 6>
A coating liquid for producing an undercoat layer was prepared in the same manner as in Example 1 except that the solutions 1 to 6 were used in place of the solution 7 to obtain an aluminum foil provided with the undercoat layer. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 3 and Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例10>
(アンダーコート層を備えた銅箔の製造)
 アルミニウム箔に代えて、厚さ9μmの電解銅箔を用いた以外は、実施例1と同じ手法で、アンダーコート層を備えた銅箔を得た。
<Example 10>
(Manufacture of copper foil with an undercoat layer)
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 9 μm was used instead of the aluminum foil.
(アンダーコート層のpH評価)
 実施例1と同じ手法にて、上記で得られたアンダーコート層を備えた銅箔のpH評価を行った。結果を表5に示す。
(Evaluation of pH of undercoat layer)
The pH of the copper foil provided with the undercoat layer obtained above was evaluated by the same method as in Example 1. The results are shown in Table 5.
(リチウムイオンバッテリーとしての評価)
 負電極活物質としてのグラファイト92質量部と、バインダーとしてのポリフッ化ビニリデン3質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、負極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが250μmになるように加えた。
 上記で得られたアンダーコート層を備えた銅箔に、該負極ペーストを塗布し乾燥させて、厚さ250μmの負電極活物質層をアンダーコート層の上に形成させて、リチウムイオン二次電池用負電極を得た。
(Evaluation as a lithium ion battery)
92 parts by mass of graphite as a negative electrode active material, 3 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 μm.
A negative electrode active material layer having a thickness of 250 μm is formed on the undercoat layer by applying the negative electrode paste to the copper foil provided with the undercoat layer and drying the resulting copper foil. A negative electrode was obtained.
 正電極活物質としてのコバルト酸リチウム95質量部と、バインダーとしてのポリフッ化ビニリデン2質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)3質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、正極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔に、該正極ペーストを塗布し乾燥させて、厚さ200μmの正電極活物質層を形成させて、リチウムイオン二次電池用正電極を得た。
To 95 parts by mass of lithium cobaltate as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride as a binder, and 3 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
The positive electrode paste was applied to an aluminum foil having a thickness of 30 μm made of alkali-washed A1085 material and dried to form a positive electrode active material layer having a thickness of 200 μm to obtain a positive electrode for a lithium ion secondary battery. .
 上記で得られた、正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 有機電解液は、溶媒がエチレンカーボネートとジエチルカーボネートとの容量比1/1の混合液、電解質がLiPF6、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTER-EDMC/PF1を使用した。
A lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
The organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
 実施例1と同じ手法にて、リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。測定結果を表5に示す。
 また、上記で得られたアンダーコート層を備えた銅箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された銅箔を用いて、上記と同じ手法でリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。測定結果を表5に示す。
In the same manner as in Example 1, the initial capacity retention rate and internal resistance of the lithium ion battery were measured. Table 5 shows the measurement results.
Moreover, the copper foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the copper foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. Table 5 shows the measurement results.
<実施例11>
 溶液7の代わりに、溶液9を用いた以外は、実施例10と同じ手法にて、アンダーコート層製造用塗工液を得た。
 該塗工液を用い、乾燥条件を250℃、1分間に変更した以外は、実施例10と同じ手法にて、アンダーコート層を備えた銅箔を得た。そして、実施例10と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表5に示す。
<Example 11>
A coating solution for producing an undercoat layer was obtained in the same manner as in Example 10 except that the solution 9 was used instead of the solution 7.
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that the drying condition was changed to 250 ° C. and 1 minute using the coating solution. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
<実施例12~16>
 溶液7の代わりに、溶液8、溶液10、溶液11、溶液12および溶液13をそれぞれ用いた以外は、実施例10と同じ手法にてアンダーコート層を備えた銅箔を得た。そして、実施例10と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表5に示す。
<Examples 12 to 16>
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
<実施例17~18>
 溶液7の代わりに、溶液14および溶液15をそれぞれ用いた以外は、実施例10と同じ手法にてアンダーコート層製造用塗工液を製造した。
 該塗工液を用い、乾燥条件を180℃、3分間に変更し、且つ乾燥後に、紫外線ランプを用いて、紫外線(波長365nm)を、照射エネルギーが900mJ/cm2となるように1.5mW/cm2の紫外線照度で10分間照射した以外は、実施例10と同じ手法にて、アンダーコート層を備えた銅箔を得た。そして、実施例10と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表5に示す。
<Examples 17 to 18>
A coating solution for producing an undercoat layer was produced in the same manner as in Example 10 except that the solution 14 and the solution 15 were used in place of the solution 7, respectively.
Using this coating solution, the drying conditions are changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) are applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy is 900 mJ / cm 2. A copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of / cm 2 . Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
<比較例7~12>
 溶液7の代わりに、溶液1~6をそれぞれ用いた以外は、実施例10と同じ手法にて、アンダーコート層を備えた銅箔を得た。そして、実施例10と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表5に示す。
<Comparative Examples 7-12>
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 10 except that the solutions 1 to 6 were used in place of the solution 7, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 10. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例19>
(電気二重層キャパシタの電極活物質層製造用塗工液の製造)
 電極活物質としての活性炭(比表面積1500m2/gのアルカリ賦活炭)85質量部、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部、および溶液7 50質量部を、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる電極活物質層の厚さが200μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈して、スラリー状の電極活物質層製造用塗工液を得た。
<Example 19>
(Manufacture of coating liquid for manufacturing electrode active material layer of electric double layer capacitor)
Planetary, 85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 5 parts by mass of acetylene black (average particle size 40 nm) as a conductivity imparting material, and 750 parts by mass of a solution The mixture was stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a mixer. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the resulting electrode active material layer has a thickness of 200 μm to obtain a slurry-like electrode active material layer production coating solution. It was.
(電極の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が250μmのアプリケーターを用いて、アルミニウム箔上に、前記の電極活物質層製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応と中和反応とをさせて、電極を得た。
(Manufacture of electrodes)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using an applicator with a gap of 250 μm, the above-mentioned coating liquid for producing an electrode active material layer was applied onto an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), and the drying, crosslinking reaction, and neutralization reaction were made, and the electrode was obtained.
(電極活物質層のpH評価)
 実施例1におけるアンダーコート層のpH評価と同じ手法にて、上記で得られた電極活物質層のpH評価を行った。結果を表6に示す。
(Evaluation of pH of electrode active material layer)
The pH evaluation of the electrode active material layer obtained above was performed by the same method as the pH evaluation of the undercoat layer in Example 1. The results are shown in Table 6.
(電気二重層キャパシタとしての評価)
 上記で得られた電極を、評価用キャパシタ容器の大きさに合わせて、直径20mmφで2枚打ち抜いた。ガラス不織布製のセパレーターを間に挟んで2枚の電極を重ね合わせ、評価用キャパシタ容器に収め、有機電解液を該容器に注ぎ入れ、電極等を浸漬させ、最後に容器に蓋をして、評価用の電気二重層キャパシタを作製した。
 有機電解液は、溶媒がプロピレンカーボネート、電解質が(C254NBF4、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTE-P/EAFINを使用した。
(Evaluation as an electric double layer capacitor)
Two of the electrodes obtained above were punched out with a diameter of 20 mm in accordance with the size of the evaluation capacitor container. Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
As the organic electrolytic solution, trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
 実施例1と同じ手法にて、上記で得られた電気二重層キャパシタのインピーダンス及び電気容量を測定した。結果を表6に示す。
 上記で得られた電極を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された電極を用いて、上記と同じ手法にて電気二重層キャパシタを製造した。この電気二重層キャパシタのインピーダンスを測定した。結果を表6に示す。
In the same manner as in Example 1, the impedance and capacitance of the electric double layer capacitor obtained above were measured. The results are shown in Table 6.
The electrode obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the electrode stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 6.
<実施例20>
 溶液7の代わり、溶液9を用いた以外は、実施例19と同じ手法にて、電極活物質層製造用塗工液を作製した。
 該塗工液を用い、且つ乾燥条件を250℃、1分間に変更した以外は、実施例19と同じ手法にて、電極を得た。
 実施例19と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表6に示す。
<Example 20>
A coating solution for producing an electrode active material layer was produced in the same manner as in Example 19 except that the solution 9 was used instead of the solution 7.
An electrode was obtained in the same manner as in Example 19 except that the coating solution was used and the drying conditions were changed to 250 ° C. for 1 minute.
In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
<実施例21~25>
 溶液7の代わりに、溶液8、溶液10、溶液11、溶液12および溶液13をそれぞれ用いた以外は、実施例19と同じ手法にて、電極を得た。
 実施例19と同じ手法にて、電極活物質層のpH、電気二重層キャパシタに特性を測定した。結果を表6に示す。
<Examples 21 to 25>
An electrode was obtained in the same manner as in Example 19 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively.
In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
<実施例26~27>
 溶液7の代わりに、溶液14および溶液15をそれぞれ用いた以外は、実施例19と同じ手法にて、電極活物質層製造用塗工液を作製した。
 該塗工液を用い、乾燥条件を180℃、3分間に変更し、且つ乾燥後に、紫外線ランプを用いて、紫外線(波長365nm)を、照射エネルギーが900mJ/cm2となるように1.5mW/cm2の紫外線照度で10分間照射した以外は、実施例19と同じ手法にて、電極を得た。
 実施例19と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表6に示す。
<Examples 26 to 27>
A coating solution for producing an electrode active material layer was produced in the same manner as in Example 19 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively.
Using this coating solution, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy was 900 mJ / cm 2. An electrode was obtained in the same manner as in Example 19 except that irradiation was performed at an ultraviolet illuminance of / cm 2 for 10 minutes.
In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
<比較例13~18>
 溶液7の代わりに、溶液1~6をそれぞれ用いた以外は、実施例19と同じ手法にて、電極を得た。
 実施例19と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表6に示す。
<Comparative Examples 13 to 18>
An electrode was obtained in the same manner as in Example 19 except that solutions 1 to 6 were used instead of solution 7, respectively.
In the same manner as in Example 19, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例28>
(リチウムイオンバッテリーの正電極製造用塗工液の製造)
 正電極活物質としてのコバルト酸リチウム95質量部、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部、および溶液7 40質量部を、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる正電極活物質層の厚さが200μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈して、スラリー状のリチウムイオンバッテリー正電極製造用塗工液を得た。
<Example 28>
(Manufacture of coating solution for manufacturing positive electrode of lithium ion battery)
95 parts by mass of lithium cobaltate as a positive electrode active material, 5 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, and 40 parts by mass of a solution 7 are 120 minutes at a rotation speed of 60 rpm with a planetary mixer. Stir and mix. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained positive electrode active material layer becomes 200 μm, and a slurry-like coating solution for producing a lithium ion battery positive electrode is obtained. Got.
(正電極の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が250μmのアプリケーターを用いて、アルミニウム箔上に、前記の正電極製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応と中和反応とをさせて、正電極を得た。
(Manufacture of positive electrode)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using the applicator with a gap of 250 μm, the above-mentioned coating solution for producing a positive electrode was applied on an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), and the drying, the crosslinking reaction, and the neutralization reaction were made, and the positive electrode was obtained.
(リチウムイオンバッテリーの負電極製造用塗工液の製造)
 負電極活物質としてのグラファイト92質量部、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部、および溶液7 50質量部を、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる電極活物質層の厚さが250μmになるように該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈してスラリー状の電気二重層キャパシタ負電極製造用塗工液を得た。
(Manufacture of coating solution for manufacturing negative electrode of lithium ion battery)
92 parts by mass of graphite as a negative electrode active material, 5 parts by mass of acetylene black (average particle size 40 nm) as a conductivity imparting material, and 750 parts by mass of a solution are stirred and mixed at a rotation speed of 60 rpm for 120 minutes using a planetary mixer. I let you. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained electrode active material layer is 250 μm to obtain a slurry-like coating solution for producing an electric double layer capacitor negative electrode. It was.
(負電極の製造)
 隙間が300μmのアプリケーターを用いて、厚さ9μmの電解銅箔上に、負電極製造用塗工液を塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応と中和反応とをさせて、負電極を得た。
(Manufacture of negative electrode)
Using an applicator having a gap of 300 μm, a coating solution for producing a negative electrode was applied onto an electrolytic copper foil having a thickness of 9 μm. Then, it heated at 180 degreeC for 3 minute (s), and the drying, the crosslinking reaction, and the neutralization reaction were made, and the negative electrode was obtained.
(正電極活物質層および負電極活物質層のpH評価)
 実施例1におけるアンダーコート層のpH評価と同じ手法にて、上記で得られた正電極活物質層および負電極活物質層のpH評価を行った。結果を表7に示す。
(PH evaluation of positive electrode active material layer and negative electrode active material layer)
In the same manner as the pH evaluation of the undercoat layer in Example 1, the pH evaluation of the positive electrode active material layer and the negative electrode active material layer obtained above was performed. The results are shown in Table 7.
(リチウムイオンバッテリーとしての評価)
 上記で得られた正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 有機電解液は、エチレンカーボネートとジエチルカーボネートとの容量比1/1の混合液、電解質がLiPF6、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTER-EDMC/PF1を使用した。
(Evaluation as a lithium ion battery)
A porous polyethylene separator was incorporated between the positive electrode and the negative electrode obtained above, and these were impregnated with an organic electrolyte solution to assemble a lithium ion battery.
The organic electrolyte used was a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte was LiPF 6 , and the product name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd., having a concentration of 1 mol / liter. .
 実施例1と同じ手法にて、リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。測定結果を表7に示す。
 また、上記で得られた正電極と負電極を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された正電極と負電極とを用いて、上記と同じ手法にてリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。測定結果を表7に示す。
In the same manner as in Example 1, the initial capacity retention rate and internal resistance of the lithium ion battery were measured. Table 7 shows the measurement results.
Further, the positive electrode and the negative electrode obtained above were stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the positive electrode and the negative electrode stored in the environment, a lithium ion battery was manufactured by the same method as described above. The internal resistance of this lithium ion battery was measured. Table 7 shows the measurement results.
<実施例29>
 溶液7の代わりに、溶液9を用いた以外は、実施例28と同じ手法にて、正電極製造用塗工液および負電極製造用塗工液を作製した。
 該塗工液を用い、且つ乾燥条件を250℃、1分間に変更した以外は、実施例28と同じ手法にて正電極と負電極を得た。
 実施例28と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表7に示す。
<Example 29>
A positive electrode manufacturing coating solution and a negative electrode manufacturing coating solution were prepared in the same manner as in Example 28 except that the solution 9 was used instead of the solution 7.
A positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that the coating solution was used and the drying conditions were changed to 250 ° C. for 1 minute.
In the same manner as in Example 28, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
<実施例30~34>
 溶液7の代わりに、溶液8、溶液10、溶液11、溶液12および溶液13をそれぞれ用いた以外は、実施例28と同じ手法にて、正電極と負電極を得た。
 実施例28と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表7に示す。
<Examples 30 to 34>
A positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that Solution 8, Solution 10, Solution 11, Solution 12, and Solution 13 were used instead of Solution 7, respectively.
In the same manner as in Example 28, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
<実施例35~36>
 溶液7の代わりに、溶液14および溶液15をそれぞれ用いた以外は、実施例28と同じ手法にて、正電極製造用塗工液および負電極製造用塗工液を作製した。
 該塗工液を用い、乾燥条件を180℃、3分間に変更し、且つ乾燥後に、紫外線ランプを用いて、紫外線(波長365nm)を、照射エネルギーが900mJ/cm2となるように1.5mW/cm2の紫外線照度で10分間照射した以外は、実施例28と同じ手法にて正電極と負電極を得た。
 実施例28と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表7に示す。
<Examples 35 to 36>
A positive electrode manufacturing coating solution and a negative electrode manufacturing coating solution were prepared in the same manner as in Example 28 except that the solution 14 and the solution 15 were used instead of the solution 7, respectively.
Using this coating solution, the drying conditions were changed to 180 ° C. for 3 minutes, and after drying, ultraviolet rays (wavelength 365 nm) were applied using an ultraviolet lamp to 1.5 mW so that the irradiation energy was 900 mJ / cm 2. A positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that irradiation was performed for 10 minutes at an ultraviolet illuminance of / cm 2 .
In the same manner as in Example 28, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
<比較例19~24>
 溶液7の代わりに、溶液1~6をそれぞれ用いた以外は、実施例28と同じ手法にて、正電極および負電極を得た。
 実施例28と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表7に示す。
<Comparative Examples 19 to 24>
A positive electrode and a negative electrode were obtained in the same manner as in Example 28 except that the solutions 1 to 6 were used in place of the solution 7, respectively.
In the same manner as in Example 28, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、多糖類と有機酸とを含む塗工液(比較例)で得られたアンダーコート層若しくは電極活物質層はpHが低く、また比較例で得られたリチウムイオンバッテリーや電気二重層キャパシタは各特性が不十分であることがわかる。
 これに対して、本発明に従って製造された、塩基発生剤と、多糖類と、有機酸と、溶媒と、導電性付与材および/または電極活物質とを含む塗工液で、アンダーコート層若しくは電極活物質層を形成させると、該アンダーコート層若しくは電極活物質層は、pHが7付近になり、また本発明に従って製造されたリチウムイオンバッテリーや電気二重層キャパシタは各特性が比較例のものに比べて良好であることがわかる。
From the above results, the pH of the undercoat layer or electrode active material layer obtained with the coating solution containing the polysaccharide and the organic acid (comparative example) is low, and the lithium ion battery or electric battery obtained in the comparative example is low. It can be seen that the multilayer capacitor has insufficient characteristics.
On the other hand, a coating solution containing a base generator, a polysaccharide, an organic acid, a solvent, a conductivity-imparting material and / or an electrode active material produced according to the present invention, an undercoat layer or When the electrode active material layer is formed, the undercoat layer or the electrode active material layer has a pH of around 7, and the lithium ion battery and electric double layer capacitor manufactured according to the present invention are of comparative examples. It turns out that it is favorable compared with.

Claims (17)

  1.  塩基発生剤と、多糖類と、酸および/または酸誘導体と、溶媒と、導電性付与材および/または電極活物質とを含む、電気化学素子製造用の塗工液。 A coating solution for producing an electrochemical element, comprising a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent, a conductivity imparting material and / or an electrode active material.
  2.  塩基発生剤が熱塩基発生剤である請求項1に記載の塗工液。 The coating solution according to claim 1, wherein the base generator is a thermal base generator.
  3.  熱塩基発生剤が尿素または尿素誘導体である請求項2に記載の塗工液。 The coating solution according to claim 2, wherein the thermal base generator is urea or a urea derivative.
  4.  塩基発生剤が光塩基発生剤である請求項1に記載の塗工液。 The coating solution according to claim 1, wherein the base generator is a photobase generator.
  5.  光塩基発生剤が2-ニトロベンジルシクロヘキシルカルバメート、2-ニトロベンジルカルバメート、2,5-ジニトロベンジルシクロヘキシルカルバメート、1,1-ジメチル-2-フェニルエチル-N-イソプロピルカルバメート、トリフェニルメタノール、o-カルバモイルヒドロキシルアミド、N-シクロヘキシル-4-メチルフェニルスルホンアミドまたはo-カルバモイルオキシムである請求項4に記載の塗工液。 Photobase generator is 2-nitrobenzyl cyclohexyl carbamate, 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, 1,1-dimethyl-2-phenylethyl-N-isopropyl carbamate, triphenylmethanol, o-carbamoyl The coating solution according to claim 4, which is hydroxylamide, N-cyclohexyl-4-methylphenylsulfonamide or o-carbamoyloxime.
  6.  酸および/または酸誘導体が多価有機酸および/または多価有機酸誘導体である請求項1~5のいずれか1項に記載の塗工液。 The coating solution according to any one of claims 1 to 5, wherein the acid and / or the acid derivative is a polyvalent organic acid and / or a polyvalent organic acid derivative.
  7.  酸誘導体が酸無水物である請求項1~6のいずれか1項に記載の塗工液。 The coating solution according to any one of claims 1 to 6, wherein the acid derivative is an acid anhydride.
  8.  請求項1~7のいずれか1項に記載の塗工液を用いて形成される膜。 A film formed using the coating liquid according to any one of claims 1 to 7.
  9.  集電体と、
     塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含む塗工液を用いて形成される層aと
     を有する電極用積層体。
    A current collector,
    A layered product for an electrode having a layer a formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material.
  10.  集電体と、
     塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および導電性付与材を含む塗工液を用いて形成される層aと、
     電極活物質層と
     を有する電極。
    A current collector,
    A layer a formed using a coating liquid containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and a conductivity-imparting material;
    An electrode having an electrode active material layer.
  11.  集電体と、
     塩基発生剤、多糖類、酸および/または酸誘導体、溶媒および電極活物質を含む塗工液を用いて形成される層bと
     を有する電極。
    A current collector,
    An electrode having a layer b formed using a coating solution containing a base generator, a polysaccharide, an acid and / or an acid derivative, a solvent and an electrode active material.
  12.  請求項10または11に記載の電極を有する電気化学素子。 An electrochemical element having the electrode according to claim 10 or 11.
  13.  請求項12に記載の電気化学素子を有する電源システム。 A power supply system having the electrochemical element according to claim 12.
  14.  請求項12に記載の電気化学素子を有する自動車。 An automobile having the electrochemical element according to claim 12.
  15.  請求項12に記載の電気化学素子を有する輸送機器。 Transportation equipment having the electrochemical element according to claim 12.
  16.  請求項12に記載の電気化学素子を有する携帯機器。 A portable device having the electrochemical element according to claim 12.
  17.  請求項12に記載の電気化学素子を有する発電システム。 A power generation system having the electrochemical element according to claim 12.
PCT/JP2010/007318 2009-12-18 2010-12-17 Coating liquid WO2011074270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-287831 2009-12-18
JP2009287831 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074270A1 true WO2011074270A1 (en) 2011-06-23

Family

ID=44167040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007318 WO2011074270A1 (en) 2009-12-18 2010-12-17 Coating liquid

Country Status (2)

Country Link
TW (1) TW201140911A (en)
WO (1) WO2011074270A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005739A1 (en) * 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
JP2016197596A (en) * 2016-05-11 2016-11-24 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery and electricity storage component
JP7360690B2 (en) 2019-09-13 2023-10-13 国立研究開発法人産業技術総合研究所 Composite and method of manufacturing the composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264156A (en) * 2004-02-16 2005-09-29 Mitsubishi Gas Chem Co Inc Photobase generating agent
JP2007065093A (en) * 2005-08-29 2007-03-15 Tokyo Ohka Kogyo Co Ltd Film-forming composition, and pattern forming method and three-dimensional mold using the same
JP2007224263A (en) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd Hydroxyalkylated chitosan solution
JP2008060060A (en) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264156A (en) * 2004-02-16 2005-09-29 Mitsubishi Gas Chem Co Inc Photobase generating agent
JP2007065093A (en) * 2005-08-29 2007-03-15 Tokyo Ohka Kogyo Co Ltd Film-forming composition, and pattern forming method and three-dimensional mold using the same
JP2007224263A (en) * 2006-01-25 2007-09-06 Dainichiseika Color & Chem Mfg Co Ltd Hydroxyalkylated chitosan solution
JP2008060060A (en) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005739A1 (en) * 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
JP2016197596A (en) * 2016-05-11 2016-11-24 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery and electricity storage component
JP7360690B2 (en) 2019-09-13 2023-10-13 国立研究開発法人産業技術総合研究所 Composite and method of manufacturing the composite

Also Published As

Publication number Publication date
TW201140911A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4499795B2 (en) Electric current collector for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and manufacturing method thereof
Aziz et al. Protonic EDLC cell based on chitosan (CS): Methylcellulose (MC) solid polymer blend electrolytes
EP2838145B1 (en) Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
WO2011024799A1 (en) Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US20130295458A1 (en) Current collector
JPWO2019059368A1 (en) A carbon dioxide absorber, a non-aqueous electrolyte storage battery containing the carbon dioxide absorber, and a method for separating and recovering carbon dioxide gas.
WO2014007330A1 (en) Method for using electrochemical element
Ani et al. Cellulose from waste materials for electrochemical energy storage applications: A review
Li et al. Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application
Rasheed et al. Biopolymer based materials as alternative greener binders for sustainable electrochemical energy storage applications
WO2011074270A1 (en) Coating liquid
WO2011074269A1 (en) Coating liquid
JP2012072396A (en) Coating liquid, current collector, and method for manufacturing current collector
JP2012074369A (en) Collector and method for producing collector
TWI445026B (en) A collector for an electric double layer capacitor ,an electrode for an electric double layer capacitor ,electrilytic double layered capacitor and method of producing them
JP2015173201A (en) lithium ion capacitor
JP2016058246A (en) Composition for battery electrode and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP