WO2011074269A1 - Coating liquid - Google Patents

Coating liquid Download PDF

Info

Publication number
WO2011074269A1
WO2011074269A1 PCT/JP2010/007317 JP2010007317W WO2011074269A1 WO 2011074269 A1 WO2011074269 A1 WO 2011074269A1 JP 2010007317 W JP2010007317 W JP 2010007317W WO 2011074269 A1 WO2011074269 A1 WO 2011074269A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
active material
electrode active
polymer
layer
Prior art date
Application number
PCT/JP2010/007317
Other languages
French (fr)
Japanese (ja)
Inventor
忠利 黒住
仁 横内
石井 伸晃
陽太郎 服部
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2011074269A1 publication Critical patent/WO2011074269A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a coating liquid.
  • this invention relates to the coating liquid for manufacturing the electrode used for electrochemical elements, such as a secondary battery and an electrical double layer capacitor.
  • Electrode of an electrochemical element generally comprises a current collector and an electrode active material layer.
  • the electrode is usually produced by applying a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it. Further, in order to reduce the internal resistance or impedance of the secondary battery or electric double layer capacitor, it has been proposed to interpose an undercoat layer between the electrode active material layer and the current collector.
  • Patent Document 1 discloses that an electrode active material layer or an undercoat layer is produced by applying a coating liquid containing a hydroxyalkyl chitosan and an organic acid and / or a derivative thereof onto a current collector and drying it. Proposed. Organic acids and their derivatives have the role of crosslinking hydroxyalkylchitosan.
  • Patent Document 2 discloses that an undercoat layer is coated with an electrode active material layer and a current collector by applying a coating solution containing a crosslinked polysaccharide and a carbon particle on the current collector and drying it. Between the two.
  • Organic compounds such as maleic anhydride are exemplified as compounds used for crosslinking polysaccharides.
  • Patent Document 3 contains a carbonaceous material, a hydroxyalkyl polysaccharide derivative, a compound having an isocyanate group in the molecule, and a compound having two or more active hydrogen groups capable of reacting with the isocyanate group.
  • a coating liquid is disclosed.
  • a three-dimensional network structure can be formed by a compound having an isocyanate group in the molecule and a compound having two or more active hydrogen groups capable of reacting with the isocyanate group.
  • an acid component may remain in the electrode active material layer or the undercoat layer obtained with the coating solution containing an organic acid described in Patent Document 1 or 2.
  • This acid component may erode a current collector made of aluminum or copper. When the current collector is eroded, there is a concern that resistance or impedance increases.
  • the compound which has an isocyanate group used with the coating liquid of patent document 3 has very high reactivity. Therefore, it is necessary to lower the crosslinking temperature to about 80 ° C.
  • the solvent may be sealed inside the film. The encapsulated solvent is difficult to evaporate and may cause blistering.
  • an object of the present invention is to provide an electrochemical device having excellent storage stability and low internal resistance or impedance, and a coating solution used for the production thereof.
  • the present inventors have collected a coating solution containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity-imparting material and / or an electrode active material. It was found that an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained by applying to a body and drying. The present invention has been completed by further studies based on this finding.
  • the present invention includes the following.
  • the polymer having a blocked isocyanate structure is a polymer including a repeating unit derived from a monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group.
  • liquid. ⁇ 3> The coating liquid according to ⁇ 2>, wherein the monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group is a compound represented by formula (1) or formula (2). .
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • ⁇ 4> Any of the above ⁇ 1> to ⁇ 3>, wherein the polysaccharide is at least one selected from the group consisting of chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan, hydroxyalkylcellulose and carboxyalkylcellulose
  • ⁇ 5> The coating solution according to any one of ⁇ 1> to ⁇ 4>, wherein the amount of the polymer having a blocked isocyanate structure is 20 to 300 parts by mass with respect to 100 parts by mass of the polysaccharide.
  • ⁇ 6> A film formed using the coating liquid according to any one of ⁇ 1> to ⁇ 5>.
  • a laminate for an electrode comprising a current collector and a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material.
  • ⁇ 10> An electrochemical device having the electrode according to ⁇ 8> or ⁇ 9>.
  • ⁇ 11> A power supply system having the electrochemical element according to ⁇ 10>.
  • ⁇ 12> An automobile having the electrochemical element according to ⁇ 10>.
  • ⁇ 13> A transport device having the electrochemical element according to ⁇ 10>.
  • ⁇ 14> A portable device having the electrochemical element according to ⁇ 10>.
  • ⁇ 15> A power generation system having the electrochemical element according to ⁇ 10>.
  • the electrode active material layer or the undercoat layer having excellent storage stability can be formed on the current collector by applying the coating liquid of the present invention to the current collector and drying it.
  • an electrode having the electrode active material layer or the undercoat layer is used, an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained.
  • the coating liquid according to the present invention contains a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity imparting material and / or an electrode active material.
  • the polysaccharide used in the coating solution according to the present invention is a polymer compound in which a large number of monosaccharides (including monosaccharide substitutes and derivatives) are polymerized by glycosidic bonds.
  • the polymer compound generates a large number of monosaccharides by hydrolysis. Usually, 10 or more monosaccharides are polymerized.
  • the polysaccharide may have a substituent, for example, a polysaccharide in which an alcoholic hydroxyl group is substituted with an amino group (amino sugar), a one in which a carboxyl group or an alkyl group is substituted, or a deacetylated polysaccharide Etc. are included.
  • the polysaccharide may be either a homopolysaccharide or a heteropolysaccharide. Since the solubility in a polar solvent can be increased and the mobility of ions can be increased by crosslinking with a polymer having a blocked isocyanate structure, hydroxyalkyl polysaccharides or derivatives thereof, carboxyalkyl polysaccharides are preferred, and hydroxyalkyl polysaccharides are preferred. preferable. Hydroxyalkyl polysaccharides or derivatives thereof and carboxyalkyl polysaccharides can be produced by known methods.
  • polysaccharides include agarose, amylose, amylopectin, arabinan, arabinogalactan, alginic acid, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, carboxyalkylchitin, chitin, glycogen, glucomannan, keratan sulfate, colomine Acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, cellulose, dextran, starch, hyaluronic acid, fructan, pectic acid, pectin, heparic acid, heparin, hemicellulose, pentozan, ⁇ -1,4'-mannan, ⁇ -1,6'-mannan, lichenan, levan, lentinan, chitosan, pullulan, curdlan and the like.
  • agarose, amylose, amylopectin, arabinan, arabinogalactan, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, chitin, glycogen, glucomannan, cellulose, dextran, starch, fructan, pectic substance, hemicellulose, pentozan , ⁇ -1,4′-mannan, ⁇ -1,6′-mannan, lichenan, levan, lentinan, chitosan, pullulan, and curdlan are layers a or layers described below obtained by using the coating solution of the present invention. Since b is difficult to become acidic, it is preferable.
  • Chitin, chitosan, hydroxyalkyl chitosan, carboxyalkyl chitosan, caprolactone-modified chitosan, hydroxyalkyl cellulose or carboxyalkyl cellulose are preferable because of high ion permeability.
  • at least one selected from the group consisting of chitosan, hydroxyalkyl chitosan, carboxyalkyl chitosan, caprolactone-modified chitosan, hydroxyalkyl cellulose and carboxyalkyl cellulose is most preferable.
  • These polysaccharides can be used individually by 1 type or in combination of 2 or more types.
  • hydroxyalkyl chitosan examples include hydroxyethyl chitosan, hydroxypropyl chitosan, glycerylated chitosan and the like.
  • hydroxyalkyl cellulose examples include hydroxyethyl cellulose and hydroxypropyl cellulose.
  • carboxyalkyl chitosan examples include carboxymethyl chitosan and carboxyethyl chitosan.
  • carboxyalkyl cellulose include carboxymethyl cellulose and carboxyethyl cellulose.
  • the polymer having a blocked isocyanate structure used in the coating liquid according to the present invention is not particularly limited.
  • the blocked isocyanate structure is obtained by reacting an isocyanate group with an active hydrogen compound to make it inactive at room temperature. When this blocked isocyanate structure is heated, the active hydrogen compound is separated and an isocyanate group is generated. The generated isocyanate group can react with the hydroxyl group of the aforementioned polysaccharide to form a crosslinked structure.
  • Examples of the polymer having a blocked isocyanate structure include a polymer containing a repeating unit derived from a monomer (A) having a blocked isocyanate structure and at least one polymerizable unsaturated group in the molecule, the monomer (A) For example, a polymer containing a repeating unit other than the repeating unit derived from. Among these, a polymer containing a repeating unit derived from the monomer (A) having a blocked isocyanate structure and at least one polymerizable unsaturated group in the molecule is preferable.
  • the urethane polymer containing a carbamoyl sulfonate group can be mentioned.
  • examples of commercially available products include Elastron MF-9 (Daiichi Kogyo Seiyaku Co., Ltd.).
  • a compound represented by the formula (1) or the formula (2) is preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • monomers (A) are commercially available.
  • 2- (O- [1′methylpropylideneamino] carboxyamino) ethyl methacrylate (“Karenz MOI-BM” (registered trademark); manufactured by Showa Denko KK ), 2-[(3,5-dimethylpyrazolyl) carboxyamino] ethyl methacrylate (“Karenz MOI-BP” (registered trademark); manufactured by Showa Denko KK) and the like.
  • the polymer having a blocked isocyanate structure used in the present invention may contain a repeating unit derived from another monomer (B) in addition to the repeating unit derived from the monomer (A).
  • the monomer (B) is not particularly limited as long as it has at least one polymerizable unsaturated group in the molecule.
  • ethylenically unsaturated aromatic compounds such as styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene; acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid
  • Carboxyl group-containing compounds such as 2- (meth) acryloyloxyethyl succinic acid and 2- (meth) acryloyloxyethyl hexahydrophthalic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (Meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acryl
  • Isocyanic acid (meth) acrylates such as 2- (meth) acryloyloxyethyl isocyanate, 1,3-bis (meth) acryloyloxy-2-methylpropane-2-isocyanate, 3- (meth) acryloyloxyphenyl isocyanate, methyl -Benzyl (meth) acrylate, hydroxy (meth) acrylates, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, cap Hydroxyl-containing (meth) acrylates such as lactone-modified alcohol mono (meth) acrylate, phenyl (meth) acrylate
  • Aromatic (meth) acrylates cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) ) (Meth) acrylates having an alicyclic skeleton such as acrylate, norbornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth) Acrylate, caprolactone-modified one-terminal (meth) acrylate, and one end (meth) acrylate having a siloxane skeleton.
  • (meth) acrylate represents either a methacrylate or an acrylate.
  • (Meth) acryloyl represents either methacryloyl or acryloyl.
  • monomers (B) (meth) acrylates having an alicyclic skeleton are preferable, and dicyclopentanyl methacrylate is particularly preferable.
  • the repeating unit derived from the monomer (A) is preferably 5 to 100 mol%, more preferably 20 to 85 mol%, still more preferably 25 to
  • the repeating unit derived from the monomer (B) is preferably 0 to 95 mol%, more preferably 15 to 80 mol%, and still more preferably 20 to 75 mol%.
  • the monomer (B) acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthal
  • the repeating unit derived from the carboxyl group-containing compound is preferably 60 mol% or less in the polymer containing the repeating unit derived from the monomer (A). Preferably it is 50 mol% or less, Most preferably, it is 40 mol% or less.
  • the polymer having a blocked isocyanate structure suitably used in the present invention has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) of preferably 1000 to 10,000, more preferably 2000 to 8000.
  • the amount of the polymer having a blocked isocyanate structure in the coating solution is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the polysaccharide.
  • Examples of the solvent used in the coating liquid according to the present invention include an aprotic polar solvent and a protic polar solvent.
  • Examples of the aprotic polar solvent include ethers, carbonates, amides and the like.
  • the aprotic polar solvent is preferably one that evaporates at a temperature not higher than the temperature at which the crosslinking reaction between the generated isocyanate group and the polysaccharide starts.
  • the boiling point at normal pressure is preferably 50 to 300 ° C., more preferably 100 to 220 ° C.
  • a solvent containing an aprotic polar solvent is preferable.
  • the protic polar solvent examples include alcohols and polyhydric alcohols.
  • the protic polar solvent preferably has a boiling point at normal pressure lower than the isocyanate generation temperature of the polymer having a blocked isocyanate structure. Specifically, the boiling point at normal pressure is preferably 100 ° C. or lower.
  • the boiling point of the protic polar solvent is higher than the isocyanate generation temperature of the polymer having a blocked isocyanate structure, the protic polar solvent may remain in the coating film. It becomes easy to react, and it may become difficult to fully produce bridge
  • Preferable protic polar solvents include ethanol, isopropyl alcohol, and n-propyl alcohol.
  • the amount of the protic polar solvent is not particularly limited, but is preferably 1 to 20% by mass with respect to the total amount of the solvent in the coating solution. If it is less, the effect of improving wettability will be reduced. If the amount is large, transpiration tends to be insufficient during drying, and crosslinking between the polysaccharide and the isocyanate group may be difficult to occur.
  • the amount of the solvent used in the coating liquid according to the present invention is not particularly limited as long as it can be adjusted to a viscosity suitable for the coating work.
  • the amount of the solvent used is such that the viscosity of the coating solution at the temperature at which the coating operation is performed is preferably 100 to 100,000 mPa ⁇ s, more preferably 1,000 to 50,000 mPa ⁇ s, and still more preferably 5, The amount is 000 to 20,000 mPa ⁇ s.
  • the amount of solvent used is preferably 50 to 99 parts by weight, more preferably 70 to 95 parts by weight, and still more preferably 80 to 95 parts in 100 parts by weight of the coating solution. Part by mass.
  • the conductivity imparting material used in the coating liquid according to the present invention is preferably a conductive carbon material containing carbon as a main component.
  • a conductive carbon material carbon black such as acetylene black and ketjen black; vapor grown carbon fiber; graphite and the like are suitable. These conductive carbon materials can be used singly or in combination of two or more.
  • the conductivity imparting material preferably has a powder electrical resistance of 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less in 100% green compact.
  • the conductivity-imparting material may be particles such as a spherical shape, or may have an anisotropic shape such as a fiber shape, a needle shape, or a rod shape.
  • the particulate conductivity imparting material is not particularly limited by the particle size, but preferably has a volume-based average particle size of 10 nm to 50 ⁇ m, more preferably 10 nm to 100 nm.
  • An anisotropic conductivity imparting material has a large surface area per weight and a large contact area with the current collector, electrode active material, etc., so even if it is added in a small amount, it is between the current collector and the electrode active material or the electrode active material. The conductivity between substances can be increased.
  • anisotropic conductive carbon material examples include carbon nanotubes and carbon nanofibers.
  • Carbon nanotubes and carbon nanofibers have a fiber diameter of usually 0.001 to 0.5 ⁇ m, preferably 0.003 to 0.2 ⁇ m, and a fiber length of usually 1 to 100 ⁇ m, preferably 1 to 30 ⁇ m. It is suitable for improvement.
  • the total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the layer a described later is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the conductivity-imparting material.
  • the solid content of the coating solution for forming the layer a is preferably 1 to 50% by mass.
  • the electrode active material used in the coating liquid according to the present invention is not particularly limited as long as it is used in an electrochemical element such as a lithium ion battery or an electric double layer capacitor.
  • the electrode active material used for lithium ion batteries is different for positive and negative electrodes.
  • the positive electrode active material used for the lithium ion battery is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions.
  • lithium cobalt oxide (LiCoO 2); lithium manganate (LiMn 2 O 4); lithium nickel oxide (LiNiO 2); Co, 3 ternary lithium compounds of Mn and Ni (Li (Co x Mn y Ni z ) O 2 ), sulfur-based compounds (TiS 2 ), olivine-based compounds (LiFePO 4 ) and the like can be mentioned as suitable ones.
  • the total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the positive electrode layer b of the lithium ion battery is preferably 0.1 to 100 parts by mass of the positive electrode active material. 30 parts by mass.
  • the negative electrode active material used for the lithium ion battery is not particularly limited. Specific examples include graphite carbon such as graphite, amorphous graphite carbon, and oxide.
  • the total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating solution for forming the negative electrode layer b of the lithium ion battery is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material. 30 parts by mass.
  • the coating liquid for forming the layer b of the lithium ion battery electrode it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained.
  • the amount of the conductivity imparting material is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
  • the electrode active material used for the electric double layer capacitor can be the same for the positive electrode and the negative electrode.
  • the electrode active material used for the electric double layer capacitor is preferably activated carbon.
  • the activated carbon preferably has a large specific surface area from the viewpoint of increasing the electric capacity.
  • the activated carbon preferably has a BET specific surface area of 800 to 2500 m 2 / g.
  • the activated carbon preferably has an average particle size (D50) of 1 ⁇ m to 50 ⁇ m.
  • the average particle diameter (D50) of the activated carbon is a volume-based 50% cumulative particle diameter ( ⁇ m) measured with a Microtrac particle size distribution meter.
  • the activated carbon examples include coconut shell activated carbon and fibrous activated carbon.
  • the activated carbon is not particularly limited by its activation method, and those obtained by a steam activation method, a chemical activation method, or the like can be employed.
  • what performed the alkali activation process, ie, alkali activated carbon is suitable.
  • the alkali activated carbon is obtained, for example, by heat-treating coconut shell, coke, polymer carbide, non-graphitizable carbide or graphitizable carbide in the presence of an alkali metal compound.
  • Examples of graphitizable carbides include those obtained by heat-treating pitches such as petroleum pitch, coal pitch, and their organic solvent soluble components, and carbides of polyvinyl chloride compounds.
  • Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • the activated carbon preferably has a hardened bulk density (tap density) in the range of 0.3 g / cm 3 to 0.9 g / cm 3 . If the compacted bulk density is too small, the packing density is decreased, and the electric capacity per volume of the electric double layer capacitor and per cell tends to decrease. If the hardened bulk density is too large, the electric capacity per weight decreases, and the amount of electrolyte that can be retained tends to decrease, so the capacity retention rate may decrease.
  • the total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the layer b of the electrode for an electric double layer capacitor is preferably 0.1 to 20 with respect to 100 parts by mass of the electrode active material. Part by mass.
  • the coating liquid for forming the layer b of the electrode for an electric double layer capacitor it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained.
  • the amount of the conductivity imparting material is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
  • additives may be added to the coating liquid of the present invention as necessary.
  • other crosslinking agents dispersants, wetting agents, thickeners, coupling agents, anti-settling agents, anti-skinning agents, polymerization inhibitors, antifoaming agents, electrostatic coating property improving agents, anti-sagging agents, colors
  • examples include a minute inhibitor, a leveling agent, an effect accelerator, and a repellency inhibitor.
  • the method for preparing the coating liquid according to the present invention is not particularly limited.
  • a method in which a polysaccharide and a polymer having a blocked isocyanate structure are dissolved in a solvent, and a conductivity imparting material and / or an electrode active material is added and dispersed in the solution can be mentioned as a preferable example.
  • a well-known kneader and a stirrer can be selected suitably, and it can be used for preparation of a coating liquid.
  • the electrode laminate according to the present invention includes a current collector and a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material. is there.
  • the laminate for an electrode according to the present invention can be used in place of a conventionally known current collector in the production of an electrode.
  • An electrode according to the present invention includes a current collector, a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material, and an electrode active material layer. And a current collector, and a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
  • the layer a corresponds to an undercoat layer in the background art
  • the layer b corresponds to an electrode active material layer in the background art.
  • the layer a or the layer b can be formed by a method including applying the coating liquid according to the present invention to a current collector and drying it.
  • the coating method and the drying method of the coating liquid are not particularly limited, and there are known coating methods and drying methods used in the production of an undercoat layer or an electrode active material layer used for a lithium ion battery or an electric double layer capacitor. Can be used as is.
  • Examples of the coating method include a casting method, a bar coater method, a dip method, and a printing method. Among these, from the point that it is easy to control the thickness of the coating film, bar coater, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot diamond coat, A slide die coat and a dip coat are preferred. Further, in order to adjust the coating amount, the concentration of the coating solution can be adjusted with the above solvent.
  • the application may be performed on a part of the current collector, on the entire surface, or on one surface or both surfaces. In the case of applying to both sides, the application operation may be performed on each side, or the application operation may be performed on both sides simultaneously.
  • Drying can be performed under air, inert gas, or vacuum. Of these, it is preferable to perform in the atmosphere because of low cost.
  • the drying temperature varies depending on the coating speed, heating method, etc., but is preferably 100 to 400 ° C. If the drying temperature is too low, curing of the coating liquid tends to be insufficient, and if the drying temperature is too high, the current collector tends to be annealed.
  • the drying time is preferably 10 seconds to 10 minutes. If the drying time is too short, the coating solution is likely to be insufficiently cured. If the drying time is too long, productivity is lowered and cost is likely to increase.
  • the current collector is not particularly limited as long as it is used in a lithium ion battery, an electric double layer capacitor, or the like.
  • the current collector includes not only a non-perforated foil but also a punched metal foil or a perforated foil such as a net.
  • the current collector is not particularly limited as long as it is composed of a conductive material, and examples thereof include those made of a conductive metal and those made of a conductive resin. Particularly preferred are aluminum and copper.
  • As the aluminum foil pure aluminum-based A1085 material, A3003 material, or the like is usually used.
  • As the copper foil rolled copper foil or electrolytic copper foil is usually used.
  • the current collector may have a smooth surface, but a surface roughened by an electrical or chemical etching process, that is, an etching foil is also suitable.
  • the current collector is not particularly limited by the thickness, but it is usually preferable to have a thickness of 5 ⁇ m to 100 ⁇ m. If the thickness is 5 ⁇ m or less, the strength may be insufficient and the foil may be broken in the coating process. On the other hand, when the thickness exceeds 100 ⁇ m, the ratio of the current collector in the predetermined volume increases, which may lead to a decrease in capacity.
  • aluminum is often used for the positive electrode and copper is often used for the negative electrode. In an electric double layer capacitor, aluminum is often used for both the positive electrode and the negative electrode.
  • the aluminum current collector is preferably an aluminum foil, an aluminum etching foil or an aluminum punching foil.
  • the copper current collector is preferably a copper foil, a copper etching foil or a copper punching foil.
  • the layer a is formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material.
  • the layer b is formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
  • An electrode active material layer is usually formed on the layer a.
  • the electrode active material layer formed on the layer a is a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material. It may be a well-known electrode active material layer other than this.
  • the thickness of the layer a is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the thickness is too thin, desired effects such as a decrease in internal resistance or impedance tend not to be obtained. On the other hand, the resistance or impedance does not become smaller than a certain value even if the thickness is increased too much.
  • the thickness of the electrode active material layer or layer b in the electric double layer capacitor is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the electrode active material layer or layer b in the lithium ion battery is preferably 0.1 ⁇ m or more and 500 ⁇ m or less. When the thickness is 0.1 ⁇ m or less, the desired effect tends not to be obtained. When the thickness is 500 ⁇ m or more, it is easy for the current collector to fall off.
  • the layer a or the layer b formed with the coating liquid according to the present invention can be peeled off from the current collector and used as a film.
  • the membrane has high ion permeability or ion mobility.
  • the electrochemical device according to the present invention has the electrode according to the present invention described above, and further usually has a separator and an electrolytic solution.
  • the electrodes in the electrochemical device according to the present invention may both be the electrodes according to the present invention, or one of them may be the electrode according to the present invention and the other may be a known electrode.
  • a separator and electrolyte solution will not be restrict
  • the electrochemical element according to the present invention can be applied to a power supply system.
  • this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
  • Production Example 1 Synthesis of polymer having blocked isocyanate structure (P-1) A four-necked flask equipped with a dropping funnel, a thermometer, a condenser tube and a stirrer was charged with 185.61 g of N-methylpyrrolidone. The flask was purged with nitrogen. It heated to 100 degreeC with the oil bath.
  • Production Example 2 Synthesis of polymer having blocked isocyanate structure (P-2) A four-necked flask equipped with a dropping funnel, a thermometer, a condenser tube and a stirrer was charged with 189.23 g of N-methylpyrrolidone. The flask was purged with nitrogen. It heated to 100 degreeC with the oil bath.
  • Production Example 3 Preparation of solutions 1 to 7 According to the formulation shown in Table 1, polysaccharides and polymers or cross-linking agents were added to a solvent and dissolved to obtain solutions 1 to 7.
  • Example 1> Manufacture of coating liquid for undercoat layer manufacturing 10 parts by mass of acetylene black (average particle diameter: 40 nm) as a conductivity imparting material and 90 parts by mass of the solution were stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution was diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the resulting undercoat layer was 5 ⁇ m to obtain a slurry-like coating solution for producing an undercoat layer.
  • N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 ⁇ m.
  • the negative electrode paste was applied to an electrolytic copper foil having a thickness of 9 ⁇ m and dried to form an electrode active material layer having a thickness of 250 ⁇ m, thereby obtaining a negative electrode for a lithium ion secondary battery.
  • a lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
  • the organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
  • the initial capacity retention ratio and internal resistance of the lithium ion battery were measured. The results are shown in Table 2.
  • the initial capacity retention rate was determined by measuring the capacity after 100 cycles at a current rate of 20 C using a battery charging / discharging device HJ-2010 model manufactured by Hokuto Denko Co., Ltd. as the measuring instrument. The percentage relative to is expressed as a percentage.
  • the internal resistance was measured at a measurement frequency of 1 kHz by an AC impedance method using a HIOKI3551 battery tester.
  • the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. The results are shown in Table 2.
  • the electrode paste is applied to the aluminum foil having the undercoat layer obtained above and dried to form an electrode active material layer having a thickness of 200 ⁇ m on the undercoat layer. Obtained.
  • two electric double layer capacitor electrodes were punched out with a diameter of 20 mm ⁇ in accordance with the size of the capacitor container for evaluation.
  • Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
  • organic electrolytic solution trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
  • the impedance and electric capacity of the electric double layer capacitor were measured. The results are shown in Table 3.
  • the impedance was measured under the condition of 1 kHz using an impedance measuring instrument (PAN110-5AM) manufactured by KIKUSUI.
  • the electric capacity was measured using a charge / discharge test apparatus (HJ-101SM6) manufactured by Hokuto Denko Corporation at a current density of 1.59 mA / cm 2 at a voltage of 0 to 2.5 V, during the second constant current discharge.
  • the electric capacity (F / cell) per cell of the electric double layer capacitor was calculated from the measured discharge curve.
  • the capacity retention rate (%) was calculated by a formula of (electric capacity at the 50th cycle) / (electric capacity at the second cycle) ⁇ 100.
  • the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 3.
  • Examples 2 to 4 A coating liquid for producing an undercoat layer was prepared in the same manner as in Example 1 except that Solution 2, Solution 3 and Solution 4 were used in place of Solution 1, and an aluminum foil provided with an undercoat layer was prepared. Obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
  • Example 1 A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 5 was used instead of the solution 1, and an aluminum foil provided with the undercoat layer was obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
  • Example 5 Manufacture of copper foil with an undercoat layer
  • a copper foil provided with an undercoat layer was obtained in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 9 ⁇ m was used instead of the aluminum foil.
  • N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 ⁇ m.
  • the positive electrode paste was applied to a 30 ⁇ m thick aluminum foil made of alkali-cleaned A1085 material and dried to form a positive electrode active material layer having a thickness of 200 ⁇ m to obtain a positive electrode for a lithium ion secondary battery.
  • a lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
  • the organic electrolyte solution is a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
  • Example 4 shows the measurement results.
  • the copper foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%.
  • a lithium ion battery was manufactured in the same manner as described above.
  • the internal resistance of this lithium ion battery was measured. Table 4 shows the measurement results.
  • Examples 6 to 8> A copper foil provided with an undercoat layer was obtained in the same manner as in Example 5 except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 5. The results are shown in Table 4.
  • Example 9> Manufacture of coating liquid for manufacturing electrode active material layer of electric double layer capacitor 85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity imparting material, and 150 parts by mass of a solution, The mixture was stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the resulting electrode active material layer has a thickness of 200 ⁇ m to obtain a slurry-like electrode active material layer production coating solution. It was.
  • activated carbon alkaline activated charcoal having a specific surface area of 1500 m 2 / g
  • acetylene black average particle diameter 40 nm
  • Example 5 In the same manner as in Example 1, the impedance and capacitance of the electric double layer capacitor obtained above were measured. The results are shown in Table 5.
  • the electrode obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the electrode stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 5.
  • Example 10 to 12 An electrode was obtained in the same manner as in Example 9, except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively.
  • the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 5.
  • Example 13> Manufacture of coating solution for manufacturing positive electrode of lithium ion battery 95 parts by mass of lithium cobaltate as a positive electrode active material, 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, and 40 parts by mass of a solution 120 at a rotational speed of 60 rpm for 120 minutes using a planetary mixer Stir and mix.
  • the mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained positive electrode active material layer becomes 200 ⁇ m, and a slurry-like coating solution for producing a lithium ion battery positive electrode is obtained.
  • a lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
  • the initial capacity retention rate and internal resistance of the lithium ion battery were measured.
  • Table 6 shows the measurement results.
  • the positive electrode and the negative electrode obtained above were stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%.
  • a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. Table 6 shows the measurement results.
  • Example 14 to 16> A positive electrode and a negative electrode were obtained in the same manner as in Example 13 except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively.
  • the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 6.
  • Example 10 A positive electrode and a negative electrode were obtained in the same manner as in Example 13 except that the solution 5 was used instead of the solution 1. In the same manner as in Example 13, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 6.
  • an undercoat layer or an electrode produced in accordance with the present invention is a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity-imparting material and / or an electrode active material.
  • the active material layer is formed, the undercoat layer or the electrode active material layer has a pH of around 7, and the lithium ion battery and the electric double layer capacitor manufactured according to the present invention have the characteristics of the comparative examples. It turns out that it is favorable compared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Disclosed is a coating liquid which contains: a polysaccharide; a polymer having a block isocyanate structure such as a polymer that contains a repeating unit derived from a monomer that has a block isocyanate structure and at least one polymerizable unsaturated group; a solvent; and a conductivity-imparting agent and/or an electrode active material. An undercoat layer or an electrode active material layer is formed by applying the coating liquid over a collector and drying the applied coating liquid thereon. A secondary battery such as a lithium ion battery or an electric double layer capacitor is fabricated using an electrode that comprises the undercoat layer or the electrode active material layer.

Description

塗工液Coating liquid
 本発明は、塗工液に関する。より詳細に、本発明は、二次電池や電気二重層キャパシタなどの電気化学素子に用いられる電極を製造するための塗工液に関する。 The present invention relates to a coating liquid. In more detail, this invention relates to the coating liquid for manufacturing the electrode used for electrochemical elements, such as a secondary battery and an electrical double layer capacitor.
 電気化学素子として、リチウムイオンバッテリー(リチウムイオン二次電池と呼ぶことがある。)やニッケル水素電池などの二次電池、および電気二重層キャパシタやハイブリッドキャパシタなどのキャパシタが知られている。
 電気化学素子の電極は、一般に、集電体と電極活物質層とから成る。該電極は、電極活物質とバインダーと溶媒とを含む塗工液を集電体に塗布し乾燥させることによって、通常、製造される。また、二次電池や電気二重層キャパシタの内部抵抗もしくはインピーダンスを下げるために、電極活物質層と集電体との間に、アンダーコート層を介在させることが提案されている。
Known electrochemical devices include secondary batteries such as lithium ion batteries (sometimes referred to as lithium ion secondary batteries) and nickel metal hydride batteries, and capacitors such as electric double layer capacitors and hybrid capacitors.
The electrode of an electrochemical element generally comprises a current collector and an electrode active material layer. The electrode is usually produced by applying a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it. Further, in order to reduce the internal resistance or impedance of the secondary battery or electric double layer capacitor, it has been proposed to interpose an undercoat layer between the electrode active material layer and the current collector.
 ところで、キトサンなどの多糖類を含有する塗工液で得られる膜は、イオン透過性若しくはイオン移動性が高く、リチウムイオンバッテリーや電気二重層キャパシタの内部抵抗もしくはインピーダンスを下げることができると言われている。
 例えば、特許文献1には、ヒドロキシアルキルキトサンと、有機酸および/またはその誘導体とを含む塗工液を集電体上に塗布し乾燥させて電極活物質層若しくはアンダーコート層を製造することが提案されている。有機酸およびその誘導体はヒドロキシアルキルキトサンを架橋する役割を持っている。
By the way, it is said that a film obtained with a coating liquid containing a polysaccharide such as chitosan has high ion permeability or ion mobility, and can reduce the internal resistance or impedance of a lithium ion battery or an electric double layer capacitor. ing.
For example, Patent Document 1 discloses that an electrode active material layer or an undercoat layer is produced by applying a coating liquid containing a hydroxyalkyl chitosan and an organic acid and / or a derivative thereof onto a current collector and drying it. Proposed. Organic acids and their derivatives have the role of crosslinking hydroxyalkylchitosan.
 また、特許文献2には、多糖類を架橋させたものと、炭素粒子とを含む塗工液を集電体上に塗布し乾燥させることによって、アンダーコート層を電極活物質層と集電体との間に設けることが記載されている。多糖類を架橋させるために用いる化合物として無水マレイン酸などの有機酸が例示されている。 Patent Document 2 discloses that an undercoat layer is coated with an electrode active material layer and a current collector by applying a coating solution containing a crosslinked polysaccharide and a carbon particle on the current collector and drying it. Between the two. Organic compounds such as maleic anhydride are exemplified as compounds used for crosslinking polysaccharides.
 一方、特許文献3には、炭素質材料と、ヒドロキシアルキル多糖類誘導体と、分子内にイソシアネート基を有する化合物と、このイソシアネート基と反応可能な2つ以上の活性水素基を有する化合物とを含有する塗工液が開示されている。分子内にイソシアネート基を有する化合物と、このイソシアネート基と反応可能な2つ以上の活性水素基を有する化合物とによって三次元網目構造を形成できる。 On the other hand, Patent Document 3 contains a carbonaceous material, a hydroxyalkyl polysaccharide derivative, a compound having an isocyanate group in the molecule, and a compound having two or more active hydrogen groups capable of reacting with the isocyanate group. A coating liquid is disclosed. A three-dimensional network structure can be formed by a compound having an isocyanate group in the molecule and a compound having two or more active hydrogen groups capable of reacting with the isocyanate group.
WO2008/015828WO2008 / 015828 WO2007/043515WO2007 / 043515 特開2002-128514号公報JP 2002-128514 A
 ところが、特許文献1または2に記載されている有機酸を含有する塗工液で得られる電極活物質層またはアンダーコート層には、酸成分が残存することがある。この酸成分がアルミニウムや銅からなる集電体を浸食するおそれがある。集電体が浸食されると抵抗もしくはインピーダンスが上昇する懸念がある。
 また、特許文献3に記載の塗工液で使用されるイソシアネート基を有する化合物は反応性が非常に高い。そのため、架橋温度を80℃程度に低くする必要がある。塗布膜の架橋では、一般に膜表面から順次内側に向かって架橋されていくので、溶媒が膜内側に封じ込まれることがある。封じ込まれた溶媒は留去がむずかしく、ブリスターなどを生じることもある。そのため、三次元網目構造が形成されても、電極活物質が動きやすく、機能が十分に発揮できないリチウムイオンバッテリーや電気二重層キャパシタが得られることがあった。
 そこで、本発明の目的は、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子並びにそれの製造に用いられる塗工液を提供することである。
However, an acid component may remain in the electrode active material layer or the undercoat layer obtained with the coating solution containing an organic acid described in Patent Document 1 or 2. This acid component may erode a current collector made of aluminum or copper. When the current collector is eroded, there is a concern that resistance or impedance increases.
Moreover, the compound which has an isocyanate group used with the coating liquid of patent document 3 has very high reactivity. Therefore, it is necessary to lower the crosslinking temperature to about 80 ° C. In the crosslinking of the coating film, since the crosslinking is generally performed sequentially from the film surface toward the inside, the solvent may be sealed inside the film. The encapsulated solvent is difficult to evaporate and may cause blistering. For this reason, even if a three-dimensional network structure is formed, a lithium ion battery or an electric double layer capacitor in which the electrode active material is easy to move and the function cannot be sufficiently obtained may be obtained.
Accordingly, an object of the present invention is to provide an electrochemical device having excellent storage stability and low internal resistance or impedance, and a coating solution used for the production thereof.
 本発明者らは、上記目的を達成するために鋭意検討した結果、多糖類とブロックイソシアネート構造を有するポリマーと溶媒と導電性付与材および/または電極活物質とを含む塗工液を、集電体に塗布し乾燥させることによって、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子が得られることを見出した。本発明はこの知見に基づいてさらに検討したことによって完成するに至ったものである。 As a result of intensive studies to achieve the above object, the present inventors have collected a coating solution containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity-imparting material and / or an electrode active material. It was found that an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained by applying to a body and drying. The present invention has been completed by further studies based on this finding.
 すなわち、本発明は、以下のものを含むものである。
〈1〉 多糖類と、ブロックイソシアネート構造を有するポリマーと、溶媒と、導電性付与材および/または電極活物質とを含む塗工液。
〈2〉 ブロックイソシアネート構造を有するポリマーが、ブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体に由来する繰り返し単位を含む重合体である、前記〈1〉に記載の塗工液。
〈3〉 ブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体が、式(1)若しくは式(2)で表される化合物である、前記〈2〉に記載の塗工液。
That is, the present invention includes the following.
<1> A coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity imparting material and / or an electrode active material.
<2> The coating according to <1>, wherein the polymer having a blocked isocyanate structure is a polymer including a repeating unit derived from a monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group. liquid.
<3> The coating liquid according to <2>, wherein the monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group is a compound represented by formula (1) or formula (2). .
Figure JPOXMLDOC01-appb-C000001
(R1は水素原子またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000001
(R 1 represents a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000002
(R2は水素原子またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000002
(R 2 represents a hydrogen atom or a methyl group.)
〈4〉 多糖類が、キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロースおよびカルボキシアルキルセルロースからなる群から選ばれる少なくとも1種である、前記〈1〉~〈3〉のいずれか1項に記載の塗工液。
〈5〉 多糖類100質量部に対して、ブロックイソシアネート構造を有するポリマーの量が、20~300質量部である、前記〈1〉~〈4〉のいずれか1項に記載の塗工液。
〈6〉 前記〈1〉~〈5〉のいずれか1項に記載の塗工液を用いて形成される膜。
〈7〉 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと を有する電極用積層体。
<4> Any of the above <1> to <3>, wherein the polysaccharide is at least one selected from the group consisting of chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan, hydroxyalkylcellulose and carboxyalkylcellulose The coating liquid according to claim 1.
<5> The coating solution according to any one of <1> to <4>, wherein the amount of the polymer having a blocked isocyanate structure is 20 to 300 parts by mass with respect to 100 parts by mass of the polysaccharide.
<6> A film formed using the coating liquid according to any one of <1> to <5>.
<7> A laminate for an electrode comprising a current collector and a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material.
〈8〉 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと、 電極活物質層と を有する電極。
〈9〉 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および電極活物質を含有する塗工液を用いて形成される層bと を有する電極。
<8> An electrode having a current collector, a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material, and an electrode active material layer.
<9> An electrode having a current collector and a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
〈10〉 前記〈8〉または〈9〉に記載の電極を有する電気化学素子。
〈11〉 前記〈10〉に記載の電気化学素子を有する電源システム。
〈12〉 前記〈10〉に記載の電気化学素子を有する自動車。
〈13〉 前記〈10〉に記載の電気化学素子を有する輸送機器。
〈14〉 前記〈10〉に記載の電気化学素子を有する携帯機器。
〈15〉 前記〈10〉に記載の電気化学素子を有する発電システム。
<10> An electrochemical device having the electrode according to <8> or <9>.
<11> A power supply system having the electrochemical element according to <10>.
<12> An automobile having the electrochemical element according to <10>.
<13> A transport device having the electrochemical element according to <10>.
<14> A portable device having the electrochemical element according to <10>.
<15> A power generation system having the electrochemical element according to <10>.
 本発明の塗工液を集電体に塗布し乾燥させることによって集電体上に保存安定性に優れた電極活物質層もしくはアンダーコート層を形成することができる。該電極活物質層もしくはアンダーコート層を有する電極を用いると、保存安定性に優れ且つ内部抵抗もしくはインピーダンスの小さい電気化学素子が得られる。 The electrode active material layer or the undercoat layer having excellent storage stability can be formed on the current collector by applying the coating liquid of the present invention to the current collector and drying it. When an electrode having the electrode active material layer or the undercoat layer is used, an electrochemical element having excellent storage stability and low internal resistance or impedance can be obtained.
 本発明に係る塗工液は、多糖類と、ブロックイソシアネート構造を有するポリマーと、溶媒と、導電性付与材および/または電極活物質とを含むものである。 The coating liquid according to the present invention contains a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity imparting material and / or an electrode active material.
 本発明に係る塗工液に用いられる多糖類は、単糖類(単糖類の置換体及び誘導体を含む。)が、グリコシド結合によって多数重合した高分子化合物である。該高分子化合物は加水分解によって多数の単糖類を生ずるものである。通常10以上の単糖類が重合したものを多糖類という。多糖類は置換基を有していてもよく、例えばアルコール性水酸基がアミノ基で置換された多糖類(アミノ糖)、カルボキシル基やアルキル基で置換されたもの、多糖類を脱アセチル化したものなどが含まれる。多糖類はホモ多糖、ヘテロ多糖のいずれでもよい。極性溶媒への溶解度を高くでき、ブロックイソシアネート構造を有するポリマーによって架橋することによりイオンの移動性を高められることから、ヒドロキシアルキル多糖類若しくはその誘導体、カルボキシアルキル多糖類が好ましく、ヒドロキシアルキル多糖類が好ましい。ヒドロキシアルキル多糖類若しくはその誘導体およびカルボキシアルキル多糖類は、公知の方法で製造することができる。 The polysaccharide used in the coating solution according to the present invention is a polymer compound in which a large number of monosaccharides (including monosaccharide substitutes and derivatives) are polymerized by glycosidic bonds. The polymer compound generates a large number of monosaccharides by hydrolysis. Usually, 10 or more monosaccharides are polymerized. The polysaccharide may have a substituent, for example, a polysaccharide in which an alcoholic hydroxyl group is substituted with an amino group (amino sugar), a one in which a carboxyl group or an alkyl group is substituted, or a deacetylated polysaccharide Etc. are included. The polysaccharide may be either a homopolysaccharide or a heteropolysaccharide. Since the solubility in a polar solvent can be increased and the mobility of ions can be increased by crosslinking with a polymer having a blocked isocyanate structure, hydroxyalkyl polysaccharides or derivatives thereof, carboxyalkyl polysaccharides are preferred, and hydroxyalkyl polysaccharides are preferred. preferable. Hydroxyalkyl polysaccharides or derivatives thereof and carboxyalkyl polysaccharides can be produced by known methods.
 多糖類の具体例としては、アガロース、アミロース、アミロペクチン、アラビナン、アラビノガラクタン、アルギン酸、イヌリン、カラギーナン、ガラクタン、グルカン、キシラン、キシログルカン、カルボキシアルキルキチン、キチン、グリコーゲン、グルコマンナン、ケラタン硫酸、コロミン酸、コンドロイチン硫酸A、コンドロイチン硫酸B、コンドロイチン硫酸C、セルロース、デキストラン、デンプン、ヒアルロン酸、フルクタン、ペクチン酸、ペクチン質、ヘパラン酸、ヘパリン、ヘミセルロース、ペントザン、β-1,4’-マンナン、α-1,6’-マンナン、リケナン、レバン、レンチナン、キトサン、プルラン、カードラン等を挙げることができる。
 これらのうち、アガロース、アミロース、アミロペクチン、アラビナン、アラビノガラクタン、イヌリン、カラギーナン、ガラクタン、グルカン、キシラン、キシログルカン、キチン、グリコーゲン、グルコマンナン、セルロース、デキストラン、デンプン、フルクタン、ペクチン質、ヘミセルロース、ペントザン、β-1,4’-マンナン、α-1,6’-マンナン、リケナン、レバン、レンチナン、キトサン、プルラン、カードランは、本発明の塗工液を用いて得られる後述の層aまたは層bが酸性になり難いので好ましい。また、キチン、キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロース若しくはカルボキシアルキルセルロースは、イオン透過性が高いので好ましい。これらのうち、キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロースおよびカルボキシアルキルセルロースからなる群から選ばれる少なくとも1種が最も好ましい。
 これらの多糖類は一種単独でまたは二種以上を組み合わせて用いることができる。
 ヒドロキシアルキルキトサンの例としては、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、グリセリル化キトサンなどを挙げることができる。
 ヒドロキシアルキルセルロースの例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどを挙げることができる。
 カルボキシアルキルキトサンの例としては、カルボキシメチルキトサン、カルボキシエチルキトサンなどを挙げることができる。
 カルボキシアルキルセルロースの例としては、カルボキシメチルセルロース、カルボキシエチルセルロースなどを挙げることができる。
Specific examples of polysaccharides include agarose, amylose, amylopectin, arabinan, arabinogalactan, alginic acid, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, carboxyalkylchitin, chitin, glycogen, glucomannan, keratan sulfate, colomine Acid, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, cellulose, dextran, starch, hyaluronic acid, fructan, pectic acid, pectin, heparic acid, heparin, hemicellulose, pentozan, β-1,4'-mannan, α -1,6'-mannan, lichenan, levan, lentinan, chitosan, pullulan, curdlan and the like.
Among these, agarose, amylose, amylopectin, arabinan, arabinogalactan, inulin, carrageenan, galactan, glucan, xylan, xyloglucan, chitin, glycogen, glucomannan, cellulose, dextran, starch, fructan, pectic substance, hemicellulose, pentozan , Β-1,4′-mannan, α-1,6′-mannan, lichenan, levan, lentinan, chitosan, pullulan, and curdlan are layers a or layers described below obtained by using the coating solution of the present invention. Since b is difficult to become acidic, it is preferable. Chitin, chitosan, hydroxyalkyl chitosan, carboxyalkyl chitosan, caprolactone-modified chitosan, hydroxyalkyl cellulose or carboxyalkyl cellulose are preferable because of high ion permeability. Among these, at least one selected from the group consisting of chitosan, hydroxyalkyl chitosan, carboxyalkyl chitosan, caprolactone-modified chitosan, hydroxyalkyl cellulose and carboxyalkyl cellulose is most preferable.
These polysaccharides can be used individually by 1 type or in combination of 2 or more types.
Examples of hydroxyalkyl chitosan include hydroxyethyl chitosan, hydroxypropyl chitosan, glycerylated chitosan and the like.
Examples of hydroxyalkyl cellulose include hydroxyethyl cellulose and hydroxypropyl cellulose.
Examples of carboxyalkyl chitosan include carboxymethyl chitosan and carboxyethyl chitosan.
Examples of carboxyalkyl cellulose include carboxymethyl cellulose and carboxyethyl cellulose.
 本発明に係る塗工液に用いられるブロックイソシアネート構造を有するポリマーは、特に限定されない。
 ブロックイソシアネート構造とは、イソシアネート基を活性水素化合物と反応させて常温において不活性にしたものである。このブロックイソシアネート構造を加熱すると、活性水素化合物が分離してイソシアネート基が発生する。発生したイソシアネート基は前述の多糖類の水酸基と反応して架橋構造を形成させることができる。
 該ブロックイソシアネート構造を有するポリマーとしては、分子内にブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体(A)に由来する繰り返し単位を含む重合体、当該単量体(A)に由来する繰り返し単位以外の繰り返し単位を含む重合体などがある。これらのうち、分子内にブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体(A)に由来する繰り返し単位を含む重合体であることが好ましい。
 なお、当該単量体(A)に由来する繰り返し単位以外の繰り返し単位を含む重合体としては、カルバモイルスルフォネート基を含有するウレタンポリマーを挙げることができる。市販品としてはエラストロンMF-9(第一工業製薬社製)などを挙げることができる。
The polymer having a blocked isocyanate structure used in the coating liquid according to the present invention is not particularly limited.
The blocked isocyanate structure is obtained by reacting an isocyanate group with an active hydrogen compound to make it inactive at room temperature. When this blocked isocyanate structure is heated, the active hydrogen compound is separated and an isocyanate group is generated. The generated isocyanate group can react with the hydroxyl group of the aforementioned polysaccharide to form a crosslinked structure.
Examples of the polymer having a blocked isocyanate structure include a polymer containing a repeating unit derived from a monomer (A) having a blocked isocyanate structure and at least one polymerizable unsaturated group in the molecule, the monomer (A For example, a polymer containing a repeating unit other than the repeating unit derived from. Among these, a polymer containing a repeating unit derived from the monomer (A) having a blocked isocyanate structure and at least one polymerizable unsaturated group in the molecule is preferable.
In addition, as a polymer containing repeating units other than the repeating unit derived from the said monomer (A), the urethane polymer containing a carbamoyl sulfonate group can be mentioned. Examples of commercially available products include Elastron MF-9 (Daiichi Kogyo Seiyaku Co., Ltd.).
 分子内にブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体(A)としては、式(1)若しくは式(2)で表される化合物が好ましい。 As the monomer (A) having a blocked isocyanate structure and at least one polymerizable unsaturated group in the molecule, a compound represented by the formula (1) or the formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R1は水素原子またはメチル基を示す。
Figure JPOXMLDOC01-appb-C000003
In the formula (1), R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R2は水素原子またはメチル基を示す。
 これらの単量体(A)は市販されており、例えば、2-(O-[1’メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(「カレンズMOI-BM」(登録商標);昭和電工社製)、2-[(3,5-ジメチルピラゾリル)カルボキシアミノ]エチルメタクリレート(「カレンズMOI-BP」(登録商標);昭和電工社製)などを挙げることができる。
Figure JPOXMLDOC01-appb-C000004
In the formula (2), R 2 represents a hydrogen atom or a methyl group.
These monomers (A) are commercially available. For example, 2- (O- [1′methylpropylideneamino] carboxyamino) ethyl methacrylate (“Karenz MOI-BM” (registered trademark); manufactured by Showa Denko KK ), 2-[(3,5-dimethylpyrazolyl) carboxyamino] ethyl methacrylate (“Karenz MOI-BP” (registered trademark); manufactured by Showa Denko KK) and the like.
 本発明に用いられるブロックイソシアネート構造を有するポリマーは、前記の単量体(A)に由来する繰り返し単位以外に、別の単量体(B)に由来する繰り返し単位を含んでいてもよい。
 単量体(B)としては、分子内に少なくとも1つの重合性不飽和基を有するものであれば特に制限されない。例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレンなどのエチレン性不飽和芳香族化合物;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸などのカルボキシル基含有化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなどのフルオロアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシブチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート類;エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートなどのポリエチレングリコール(メタ)アクリレート類;メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレートなどのポリプロピレングリコール(メタ)アクリレート類;
The polymer having a blocked isocyanate structure used in the present invention may contain a repeating unit derived from another monomer (B) in addition to the repeating unit derived from the monomer (A).
The monomer (B) is not particularly limited as long as it has at least one polymerizable unsaturated group in the molecule. For example, ethylenically unsaturated aromatic compounds such as styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene; acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid Carboxyl group-containing compounds such as 2- (meth) acryloyloxyethyl succinic acid and 2- (meth) acryloyloxyethyl hexahydrophthalic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (Meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate Rate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) Alkyl (meth) acrylates such as acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate; trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, octafluoropentyl Fluoroalkyl (meth) acrylates such as (meth) acrylate and heptadecafluorodecyl (meth) acrylate; methoxyethyl (meth) acrylate, ethoxyethyl Alkoxyalkyl (meth) acrylates such as (meth) acrylate and methoxybutyl (meth) acrylate; polyethylene glycol (meth) such as ethoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and phenoxypolyethylene glycol (meth) acrylate Acrylates; polypropylene glycol (meth) acrylates such as methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate;
 2-(メタ)アクリロイルオキシエチルイソシアネート、1,3-ビス(メタ)アクリロイルオキシ-2-メチルプロパン-2-イソシアネート、3-(メタ)アクリロイルオキシフェニルイソシアネートなどのイソシアン酸(メタ)アクリレート類、メチル-ベンジル(メタ)アクリレート、ヒドロキシ(メタ)アクリレート類、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコ-ルモノ(メタ)アクリレート、カプロラクトン変性アルコールモノ(メタ)アクリレートなどのヒドロキシル含有(メタ)アクリレート類、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ビフェニル(メタ)アクリレート、ナフチル(メタ)アクリレートなどの芳香族(メタ)アクリレート類、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ノルボルニル(メタ)アクリレートなどの脂環式骨格を有する(メタ)アクリレート類、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、カプロラクトン変性片末端(メタ)アクリレート、シロキサン骨格を有する片末端(メタ)アクリレート等を挙げることができる。なお、(メタ)アクリレートは、メタクリレートとアクリレートとのいずれかを表わす。(メタ)アクリロイルは、メタクリロイルとアクリロイルとのいずれかを表わす。
 これらの単量体(B)のうち、脂環式骨格を有する(メタ)アクリレート類が好ましく、ジシクロペンタニルメタクリレートが特に好ましい。
Isocyanic acid (meth) acrylates such as 2- (meth) acryloyloxyethyl isocyanate, 1,3-bis (meth) acryloyloxy-2-methylpropane-2-isocyanate, 3- (meth) acryloyloxyphenyl isocyanate, methyl -Benzyl (meth) acrylate, hydroxy (meth) acrylates, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, cap Hydroxyl-containing (meth) acrylates such as lactone-modified alcohol mono (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, biphenyl (meth) acrylate, naphthyl (meth) acrylate, etc. Aromatic (meth) acrylates, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) ) (Meth) acrylates having an alicyclic skeleton such as acrylate, norbornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth) Acrylate, caprolactone-modified one-terminal (meth) acrylate, and one end (meth) acrylate having a siloxane skeleton. In addition, (meth) acrylate represents either a methacrylate or an acrylate. (Meth) acryloyl represents either methacryloyl or acryloyl.
Of these monomers (B), (meth) acrylates having an alicyclic skeleton are preferable, and dicyclopentanyl methacrylate is particularly preferable.
 本発明に好適に用いられるブロックイソシアネート構造を有するポリマーは、前記単量体(A)に由来する繰り返し単位が好ましくは5~100モル%、より好ましくは20~85モル%、さらに好ましくは25~80モル%であり、前記単量体(B)に由来する繰り返し単位が好ましくは0~95モル%、より好ましくは15~80モル%、さらに好ましくは20~75モル%である。
 なお、単量体(B)として、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸などのカルボキシル基含有化合物を用いる場合は、単量体(A)に由来する繰り返し単位を含む重合体中に、上記のカルボキシル基含有化合物に由来する繰り返し単位が好ましくは60モル%以下、より好ましくは50モル%以下、最も好ましくは40モル%以下である。このようにすると、本発明の塗工液を塗布、乾燥して得られる後述の層aおよび層bが酸性になり難くなる。
 本発明に好適に用いられるブロックイソシアネート構造を有するポリマーは、そのゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算の重量平均分子量が好ましくは1000~10000、より好ましくは2000~8000である。
In the polymer having a blocked isocyanate structure suitably used in the present invention, the repeating unit derived from the monomer (A) is preferably 5 to 100 mol%, more preferably 20 to 85 mol%, still more preferably 25 to The repeating unit derived from the monomer (B) is preferably 0 to 95 mol%, more preferably 15 to 80 mol%, and still more preferably 20 to 75 mol%.
As the monomer (B), acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthal When a carboxyl group-containing compound such as an acid is used, the repeating unit derived from the carboxyl group-containing compound is preferably 60 mol% or less in the polymer containing the repeating unit derived from the monomer (A). Preferably it is 50 mol% or less, Most preferably, it is 40 mol% or less. If it does in this way, the below-mentioned layer a and layer b obtained by apply | coating and drying the coating liquid of this invention will become difficult to become acidic.
The polymer having a blocked isocyanate structure suitably used in the present invention has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) of preferably 1000 to 10,000, more preferably 2000 to 8000.
 塗工液における、ブロックイソシアネート構造を有するポリマーの量は、多糖類100質量部に対して20~300質量部であることが好ましい。 The amount of the polymer having a blocked isocyanate structure in the coating solution is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the polysaccharide.
 本発明に係る塗工液に用いられる溶媒としては、非プロトン性極性溶媒やプロトン性極性溶媒などを挙げることができる。
 非プロトン性極性溶媒としては、エーテル類、カーボネート類、アミド類などを挙げることができる。非プロトン性極性溶媒は、発生したイソシアネート基と多糖類との架橋反応が開始する温度以下の温度で蒸発するものが望ましい。具体的には、常圧での沸点が50~300℃のものが好ましく、100~220℃のものがより好ましい。本発明においては溶媒として、非プロトン性極性溶媒を含有するものが好ましい。
Examples of the solvent used in the coating liquid according to the present invention include an aprotic polar solvent and a protic polar solvent.
Examples of the aprotic polar solvent include ethers, carbonates, amides and the like. The aprotic polar solvent is preferably one that evaporates at a temperature not higher than the temperature at which the crosslinking reaction between the generated isocyanate group and the polysaccharide starts. Specifically, the boiling point at normal pressure is preferably 50 to 300 ° C., more preferably 100 to 220 ° C. In the present invention, a solvent containing an aprotic polar solvent is preferable.
 プロトン性極性溶媒としては、アルコール類、多価アルコール類などを挙げることができる。プロトン性極性溶媒を用いると、塗工液の集電体に対する濡れ性を向上させることができる。プロトン性極性溶媒は常圧での沸点が、ブロックイソシアネート構造を有するポリマーのイソシアネート発生温度よりも低いものが好ましい。具体的には、常圧での沸点が100℃以下のものが好ましい。プロトン性極性溶媒の沸点がブロックイソシアネート構造を有するポリマーのイソシネート発生温度よりも高いと、プロトン性極性溶媒が塗膜中に残存するおそれがあり、プロトン性極性溶媒が残存すると、それがイソシアネート基と反応しやすくなり、多糖類の架橋が十分に生じ難くなることがある。
 好ましいプロトン性極性溶媒としては、エタノール、イソプロピルアルコール、n-プロピルアルコールを挙げることができる。
 プロトン性極性溶媒の量は、特に制限がないが、塗工液中の溶媒全体量に対して、1~20質量%が好ましい。少ないと、濡れ性改善の効果が低くなる。多いと、乾燥時に蒸散が不十分となりやすく、多糖類とイソシアネート基との架橋が生じ難くなることがある。
Examples of the protic polar solvent include alcohols and polyhydric alcohols. When a protic polar solvent is used, the wettability of the coating liquid to the current collector can be improved. The protic polar solvent preferably has a boiling point at normal pressure lower than the isocyanate generation temperature of the polymer having a blocked isocyanate structure. Specifically, the boiling point at normal pressure is preferably 100 ° C. or lower. When the boiling point of the protic polar solvent is higher than the isocyanate generation temperature of the polymer having a blocked isocyanate structure, the protic polar solvent may remain in the coating film. It becomes easy to react, and it may become difficult to fully produce bridge | crosslinking of a polysaccharide.
Preferable protic polar solvents include ethanol, isopropyl alcohol, and n-propyl alcohol.
The amount of the protic polar solvent is not particularly limited, but is preferably 1 to 20% by mass with respect to the total amount of the solvent in the coating solution. If it is less, the effect of improving wettability will be reduced. If the amount is large, transpiration tends to be insufficient during drying, and crosslinking between the polysaccharide and the isocyanate group may be difficult to occur.
 本発明に係る塗工液における溶媒の使用量は、塗工作業に適した粘度に調整することができるものであれば、特に制限されない。例えば、溶媒の使用量は、塗工作業を行う温度における塗工液の粘度が、好ましくは100~100,000mPa・s、より好ましくは1,000~50,000mPa・s、さらに好ましくは5,000~20,000mPa・sとなる量である。例えば、25℃にて塗工作業を行う場合、溶媒の使用量は塗工液100質量部中に、好ましくは50~99質量部、より好ましくは70~95質量部、さらに好ましくは80~95質量部である。 The amount of the solvent used in the coating liquid according to the present invention is not particularly limited as long as it can be adjusted to a viscosity suitable for the coating work. For example, the amount of the solvent used is such that the viscosity of the coating solution at the temperature at which the coating operation is performed is preferably 100 to 100,000 mPa · s, more preferably 1,000 to 50,000 mPa · s, and still more preferably 5, The amount is 000 to 20,000 mPa · s. For example, when the coating operation is performed at 25 ° C., the amount of solvent used is preferably 50 to 99 parts by weight, more preferably 70 to 95 parts by weight, and still more preferably 80 to 95 parts in 100 parts by weight of the coating solution. Part by mass.
 本発明に係る塗工液に用いられる導電性付与材は、炭素を主構成成分とする導電性の炭素材であることが好ましい。導電性炭素材としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック;気相法炭素繊維;グラファイトなどが好適である。これら導電性炭素材は一種単独で又は2種以上を組み合わせて用いることができる。
 導電性付与材は、100%の圧粉体における粉体電気抵抗が1×10-1Ω・cm以下のものが好ましい。
The conductivity imparting material used in the coating liquid according to the present invention is preferably a conductive carbon material containing carbon as a main component. As the conductive carbon material, carbon black such as acetylene black and ketjen black; vapor grown carbon fiber; graphite and the like are suitable. These conductive carbon materials can be used singly or in combination of two or more.
The conductivity imparting material preferably has a powder electrical resistance of 1 × 10 −1 Ω · cm or less in 100% green compact.
 導電性付与材は、球状などの粒子であってもよいし、繊維状、針状、棒状などの異方形状のものであってもよい。
 粒子状の導電性付与材は、その粒子サイズによって特に制限されないが、体積基準の平均粒径が10nm~50μmのものが好ましく、10nm~100nmのものがより好ましい。
 異方形状の導電性付与材は重量あたりの表面積が大きく、集電体や電極活物質等との接触面積が大きくなるので、少量の添加でも集電体と電極活物質との間もしくは電極活物質同士間の導電性を高くすることができる。異方形状の導電性炭素材としては、カーボンナノチューブやカーボンナノファイバーを挙げることができる。カーボンナノチューブやカーボンナノファイバーは繊維径が通常0.001~0.5μm、好ましくは0.003~0.2μmであり、繊維長が通常1~100μm、好ましくは1~30μmであるものが導電性向上において好適である。
 後述の層aを形成させるための塗工液における多糖類とブロックイソシアネート構造を有するポリマーとの合計量は、導電性付与材100質量部に対して、好ましくは20~300質量部である。また、層aを形成させるための塗工液の固形分は1~50質量%であることが好ましい。
The conductivity-imparting material may be particles such as a spherical shape, or may have an anisotropic shape such as a fiber shape, a needle shape, or a rod shape.
The particulate conductivity imparting material is not particularly limited by the particle size, but preferably has a volume-based average particle size of 10 nm to 50 μm, more preferably 10 nm to 100 nm.
An anisotropic conductivity imparting material has a large surface area per weight and a large contact area with the current collector, electrode active material, etc., so even if it is added in a small amount, it is between the current collector and the electrode active material or the electrode active material. The conductivity between substances can be increased. Examples of the anisotropic conductive carbon material include carbon nanotubes and carbon nanofibers. Carbon nanotubes and carbon nanofibers have a fiber diameter of usually 0.001 to 0.5 μm, preferably 0.003 to 0.2 μm, and a fiber length of usually 1 to 100 μm, preferably 1 to 30 μm. It is suitable for improvement.
The total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the layer a described later is preferably 20 to 300 parts by mass with respect to 100 parts by mass of the conductivity-imparting material. The solid content of the coating solution for forming the layer a is preferably 1 to 50% by mass.
 本発明に係る塗工液に用いられる電極活物質は、リチウムイオンバッテリーや電気二重層キャパシタなどの電気化学素子において使用されるものであれば、特に限定されない。 The electrode active material used in the coating liquid according to the present invention is not particularly limited as long as it is used in an electrochemical element such as a lithium ion battery or an electric double layer capacitor.
 リチウムイオンバッテリーに用いられる電極活物質は、正極用と負極用とで相違する。 The electrode active material used for lithium ion batteries is different for positive and negative electrodes.
 リチウムイオンバッテリーに用いられる正電極活物質は、リチウムイオンを吸蔵および脱離することができる物質であれば特に制限されない。具体的には、コバルト酸リチウム(LiCoO2);マンガン酸リチウム(LiMn24);ニッケル酸リチウム(LiNiO2);Co、MnおよびNiの3元系リチウム化合物(Li(CoxMnyNiz)O2)、イオウ系化合物(TiS2)、オリビン系化合物(LiFePO4)などが好適なものとして挙げることができる。
 リチウムイオンバッテリーの正電極の層bを形成させるための塗工液における多糖類とブロックイソシアネート構造を有するポリマーとの合計量は、正電極活物質100質量部に対して、好ましくは0.1~30質量部である。
The positive electrode active material used for the lithium ion battery is not particularly limited as long as it is a substance capable of inserting and extracting lithium ions. Specifically, lithium cobalt oxide (LiCoO 2); lithium manganate (LiMn 2 O 4); lithium nickel oxide (LiNiO 2); Co, 3 ternary lithium compounds of Mn and Ni (Li (Co x Mn y Ni z ) O 2 ), sulfur-based compounds (TiS 2 ), olivine-based compounds (LiFePO 4 ) and the like can be mentioned as suitable ones.
The total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the positive electrode layer b of the lithium ion battery is preferably 0.1 to 100 parts by mass of the positive electrode active material. 30 parts by mass.
 リチウムイオンバッテリーに用いられる負電極活物質は、特に制限されない。具体的にはグラファイト等の黒鉛系炭素、非晶質黒鉛系炭素、酸化物などを挙げることができる。
 リチウムイオンバッテリーの負電極の層bを形成させるための塗工液における多糖類とブロックイソシアネート構造を有するポリマーとの合計量は、負電極活物質100質量部に対して、好ましくは0.1~30質量部である。
The negative electrode active material used for the lithium ion battery is not particularly limited. Specific examples include graphite carbon such as graphite, amorphous graphite carbon, and oxide.
The total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating solution for forming the negative electrode layer b of the lithium ion battery is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material. 30 parts by mass.
 リチウムイオンバッテリー用電極の層bを形成させるための塗工液では、得られる層bの導電性を高めるために、前述の導電性付与材と電極活物質とを併用することが好ましい。該導電性付与材の量は、電極活物質100質量部に対して、好ましくは1~15質量部である。また、層bを形成させるための塗工液の固形分は50~99質量%であることが好ましい。 In the coating liquid for forming the layer b of the lithium ion battery electrode, it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained. The amount of the conductivity imparting material is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the electrode active material. The solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
 電気二重層キャパシタに用いられる電極活物質は、正極用と負極用とを同じにすることができる。
 電気二重層キャパシタに用いられる電極活物質は、活性炭であることが好ましい。
 活性炭は、電気容量を高くする観点から比表面積の大きいものが好ましい。具体的に、活性炭はBET比表面積が800~2500m2/gのものが好ましい。活性炭は、平均粒径(D50)が、1μm~50μmのものが好ましい。ここで、活性炭の平均粒径(D50)は、マイクロトラック粒度分布計により測定した体積基準の50%累積粒子径(μm)である。
The electrode active material used for the electric double layer capacitor can be the same for the positive electrode and the negative electrode.
The electrode active material used for the electric double layer capacitor is preferably activated carbon.
The activated carbon preferably has a large specific surface area from the viewpoint of increasing the electric capacity. Specifically, the activated carbon preferably has a BET specific surface area of 800 to 2500 m 2 / g. The activated carbon preferably has an average particle size (D50) of 1 μm to 50 μm. Here, the average particle diameter (D50) of the activated carbon is a volume-based 50% cumulative particle diameter (μm) measured with a Microtrac particle size distribution meter.
 活性炭としては、ヤシ殻活性炭、繊維状活性炭などを挙げることができる。活性炭は、その賦活方法によっても特に限定されず、水蒸気賦活法、薬品賦活法などによって得たものが採用可能である。なお高容量のキャパシタを得るためには、アルカリ賦活処理を施したもの、すなわちアルカリ賦活炭が好適である。アルカリ賦活炭は、例えば、ヤシ殻、コークス、ポリマー炭化物、難黒鉛化性炭化物もしくは易黒鉛化性炭化物をアルカリ金属化合物の存在下に熱処理することによって得られる。易黒鉛化性炭化物としては、例えば、石油系ピッチ、石炭系ピッチ、及びそれらの有機溶媒可溶成分などのピッチを熱処理して得られるものや、ポリ塩化ビニル系化合物の炭化物を挙げることができる。アルカリ金属化合物としては水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどを挙げることができる。 Examples of the activated carbon include coconut shell activated carbon and fibrous activated carbon. The activated carbon is not particularly limited by its activation method, and those obtained by a steam activation method, a chemical activation method, or the like can be employed. In addition, in order to obtain a high capacity | capacitance capacitor, what performed the alkali activation process, ie, alkali activated carbon, is suitable. The alkali activated carbon is obtained, for example, by heat-treating coconut shell, coke, polymer carbide, non-graphitizable carbide or graphitizable carbide in the presence of an alkali metal compound. Examples of graphitizable carbides include those obtained by heat-treating pitches such as petroleum pitch, coal pitch, and their organic solvent soluble components, and carbides of polyvinyl chloride compounds. . Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, and potassium carbonate.
 活性炭は、固め嵩密度(タップ密度)が、0.3g/cm3~0.9g/cm3の範囲内にあるものが好ましい。固め嵩密度が小さすぎると充てん密度が小さくなり電気二重層キャパシタの体積あたりやセルあたりの電気容量が低下傾向になる。固め嵩密度が大きすぎると重量あたりの電気容量が低下し、電解液を保持できる量が減少傾向になるために容量保持率が低下する場合がある。 The activated carbon preferably has a hardened bulk density (tap density) in the range of 0.3 g / cm 3 to 0.9 g / cm 3 . If the compacted bulk density is too small, the packing density is decreased, and the electric capacity per volume of the electric double layer capacitor and per cell tends to decrease. If the hardened bulk density is too large, the electric capacity per weight decreases, and the amount of electrolyte that can be retained tends to decrease, so the capacity retention rate may decrease.
 電気二重層キャパシタ用電極の層bを形成させるための塗工液における多糖類とブロックイソシアネート構造を有するポリマーとの合計量は、電極活物質100質量部に対して、好ましくは0.1~20質量部である。 The total amount of the polysaccharide and the polymer having a blocked isocyanate structure in the coating liquid for forming the layer b of the electrode for an electric double layer capacitor is preferably 0.1 to 20 with respect to 100 parts by mass of the electrode active material. Part by mass.
 電気二重層キャパシタ用電極の層bを形成させるための塗工液では、得られる層bの導電性を高めるために、前述の導電性付与材と電極活物質とを併用することが好ましい。該導電性付与材の量は、電極活物質100質量部に対して、好ましくは0.1~20質量部である。層bを形成させるための塗工液の固形分は50~99質量%であることが好ましい。 In the coating liquid for forming the layer b of the electrode for an electric double layer capacitor, it is preferable to use the aforementioned conductivity imparting material and the electrode active material in combination in order to increase the conductivity of the layer b obtained. The amount of the conductivity imparting material is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the electrode active material. The solid content of the coating liquid for forming the layer b is preferably 50 to 99% by mass.
 さらに、本発明の塗工液には、必要に応じて、種々の添加剤を加えてもよい。例えば、他の架橋剤、分散剤、湿潤剤、増粘剤、カップリング剤、沈降防止剤、皮張り防止剤、重合防止剤、消泡剤、静電塗装性改良剤、タレ防止剤、色分防止剤、レベリング剤、効果促進剤、ハジキ防止剤などを挙げることができる。 Furthermore, various additives may be added to the coating liquid of the present invention as necessary. For example, other crosslinking agents, dispersants, wetting agents, thickeners, coupling agents, anti-settling agents, anti-skinning agents, polymerization inhibitors, antifoaming agents, electrostatic coating property improving agents, anti-sagging agents, colors Examples include a minute inhibitor, a leveling agent, an effect accelerator, and a repellency inhibitor.
 本発明に係る塗工液の調製方法は特に制限されない。例えば、多糖類とブロックイソシアネート構造を有するポリマーとを溶媒に溶解し、該溶液に導電性付与材および/または電極活物質を添加して分散させるという方法が好ましいものとして挙げることができる。また、塗工液の粘度等に応じて、公知の混練機や攪拌機を適宜選択して、塗工液の調製に使用することができる。 The method for preparing the coating liquid according to the present invention is not particularly limited. For example, a method in which a polysaccharide and a polymer having a blocked isocyanate structure are dissolved in a solvent, and a conductivity imparting material and / or an electrode active material is added and dispersed in the solution can be mentioned as a preferable example. Moreover, according to the viscosity of a coating liquid, etc., a well-known kneader and a stirrer can be selected suitably, and it can be used for preparation of a coating liquid.
 本発明に係る電極用積層体は、 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと を有するものである。本発明に係る電極用積層体は、電極の製造において、従来公知の集電体の代わりに用いることができる。 The electrode laminate according to the present invention includes a current collector and a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material. is there. The laminate for an electrode according to the present invention can be used in place of a conventionally known current collector in the production of an electrode.
 本発明に係る電極は、 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと、 電極活物質層と を有するもの; および
 集電体と、 多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および電極活物質を含有する塗工液を用いて形成される層bと を有するものである。
 なお、層aは背景技術におけるアンダーコート層に相当し、層bは背景技術における電極活物質層に相当する。
An electrode according to the present invention includes a current collector, a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material, and an electrode active material layer. And a current collector, and a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
The layer a corresponds to an undercoat layer in the background art, and the layer b corresponds to an electrode active material layer in the background art.
 本発明に係る塗工液を、集電体に塗布し、乾燥させることを含む方法によって、前記の層aもしくは層bを形成させることができる。
 塗工液の塗布方法や乾燥方法は、特に制限されず、リチウムイオンバッテリーや電気二重層キャパシタなどに使用されるアンダーコート層もしくは電極活物質層の製造において用いられる公知の塗布方法や乾燥方法がそのまま採用できる。
The layer a or the layer b can be formed by a method including applying the coating liquid according to the present invention to a current collector and drying it.
The coating method and the drying method of the coating liquid are not particularly limited, and there are known coating methods and drying methods used in the production of an undercoat layer or an electrode active material layer used for a lithium ion battery or an electric double layer capacitor. Can be used as is.
 塗布方法としては、キャスト法、バーコーター法、ディップ法、印刷法などを挙げることができる。これらのうち、塗布膜の厚さを制御しやすい点から、バーコーター、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイヤコート、スライドダイコート、ディップコートが好ましい。また、塗布量を調節するために、上記溶媒で塗工液の濃度を調整することができる。
 塗布は、集電体の一部分に行ってもよいし、全面に行ってもよいし、片面もしくは両面に行ってもよい。両面に塗布する場合は、片面ずつ塗布操作を行ってもよいし、両面同時に塗布操作を行ってもよい。
Examples of the coating method include a casting method, a bar coater method, a dip method, and a printing method. Among these, from the point that it is easy to control the thickness of the coating film, bar coater, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot diamond coat, A slide die coat and a dip coat are preferred. Further, in order to adjust the coating amount, the concentration of the coating solution can be adjusted with the above solvent.
The application may be performed on a part of the current collector, on the entire surface, or on one surface or both surfaces. In the case of applying to both sides, the application operation may be performed on each side, or the application operation may be performed on both sides simultaneously.
 乾燥は、大気下、不活性ガス下、または真空下で行うことができる。これらのうち、大気下で行うのが低コストであるので好ましい。乾燥温度は、塗布速度や加熱方法等により異なるが、100~400℃であることが好ましい。乾燥温度が低すぎると塗工液の硬化が不十分に成りやすく、乾燥温度が高すぎると集電体の焼鈍がおきやすい。乾燥時間は、10秒間~10分間が好ましい。乾燥時間が短すぎると塗工液の硬化が不十分に成りやすい。乾燥時間が長すぎると生産性が落ち、コストが高くなりやすい。 Drying can be performed under air, inert gas, or vacuum. Of these, it is preferable to perform in the atmosphere because of low cost. The drying temperature varies depending on the coating speed, heating method, etc., but is preferably 100 to 400 ° C. If the drying temperature is too low, curing of the coating liquid tends to be insufficient, and if the drying temperature is too high, the current collector tends to be annealed. The drying time is preferably 10 seconds to 10 minutes. If the drying time is too short, the coating solution is likely to be insufficiently cured. If the drying time is too long, productivity is lowered and cost is likely to increase.
 集電体は、リチウムイオンバッテリーや電気二重層キャパシタなどにおいて使用されるものであれば、特に限定されない。
 集電体は、孔の開いていない箔だけでなく、パンチングメタル箔や網のような孔の開いた箔などを含む。集電体は導電性材料で構成されるものであれば特に制限されず、導電性金属製のものや導電性樹脂製のものを挙げることができる。特にアルミニウム製、銅製のものが好ましいものとして挙げることができる。アルミニウム箔としては、純アルミ系のA1085材、A3003材などの箔が通常用いられる。銅箔としては、圧延銅箔や電解銅箔が通常用いられる。
 集電体は、表面が平滑なものでもよいが、電気的又は化学的なエッチング処理などによって表面が粗面化されたもの、すなわちエッチング箔も好適である。
The current collector is not particularly limited as long as it is used in a lithium ion battery, an electric double layer capacitor, or the like.
The current collector includes not only a non-perforated foil but also a punched metal foil or a perforated foil such as a net. The current collector is not particularly limited as long as it is composed of a conductive material, and examples thereof include those made of a conductive metal and those made of a conductive resin. Particularly preferred are aluminum and copper. As the aluminum foil, pure aluminum-based A1085 material, A3003 material, or the like is usually used. As the copper foil, rolled copper foil or electrolytic copper foil is usually used.
The current collector may have a smooth surface, but a surface roughened by an electrical or chemical etching process, that is, an etching foil is also suitable.
 集電体は、厚さによって特に制限されないが、通常、5μm~100μm厚のものが好ましい。厚さが5μm以下であると、強度が不足して塗布工程などで箔が破断する恐れがある。一方、厚さが100μmを超えると所定体積中に占める集電体の割合が増大して、容量の低下を招くことがある。
 リチウムイオンバッテリーにおいては、正電極にアルミニウムが用いられることが多く、負電極に銅が用いられることが多い。
 電気二重層キャパシタにおいては、正電極および負電極ともにアルミニウムが用いられることが多い。
 アルミニウム製の集電体は、アルミニウム箔、アルミニウムエッチング箔またはアルミニウムパンチング箔であることが好ましい。銅製の集電体は、銅箔、銅エッチング箔または銅パンチング箔であることが好ましい。
The current collector is not particularly limited by the thickness, but it is usually preferable to have a thickness of 5 μm to 100 μm. If the thickness is 5 μm or less, the strength may be insufficient and the foil may be broken in the coating process. On the other hand, when the thickness exceeds 100 μm, the ratio of the current collector in the predetermined volume increases, which may lead to a decrease in capacity.
In lithium ion batteries, aluminum is often used for the positive electrode and copper is often used for the negative electrode.
In an electric double layer capacitor, aluminum is often used for both the positive electrode and the negative electrode.
The aluminum current collector is preferably an aluminum foil, an aluminum etching foil or an aluminum punching foil. The copper current collector is preferably a copper foil, a copper etching foil or a copper punching foil.
 層aは、多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される。
 層bは、多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および電極活物質を含有する塗工液を用いて形成される。
 前記の層aの上には、通常、電極活物質層が形成される。本発明に係る電極において、層aの上に形成される電極活物質層は、多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および電極活物質を含有する塗工液を用いて形成される層bであってもよいし、これ以外の公知の電極活物質層であってもよい。
The layer a is formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material.
The layer b is formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
An electrode active material layer is usually formed on the layer a. In the electrode according to the present invention, the electrode active material layer formed on the layer a is a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material. It may be a well-known electrode active material layer other than this.
 層aの厚さは、好ましくは0.01μm以上50μm以下、より好ましくは0.1μ以上10μm以下である。厚さが薄すぎると内部抵抗もしくはインピーダンスの低下などの所望効果が得られない傾向になる。一方、厚さを厚くしすぎても抵抗もしくはインピーダンスはある値より小さくならない。
 電気二重層キャパシタにおける電極活物質層または層bの厚さは、好ましくは10μm以上500μm以下である。
 リチウムイオンバッテリーにおける電極活物質層または層bの厚さは、好ましくは0.1μm以上500μm以下である。0.1μm以下になると、所望効果が得られない傾向になる。500μm以上になると、集電体からの脱落がおきやすくなる。
The thickness of the layer a is preferably 0.01 μm or more and 50 μm or less, more preferably 0.1 μm or more and 10 μm or less. If the thickness is too thin, desired effects such as a decrease in internal resistance or impedance tend not to be obtained. On the other hand, the resistance or impedance does not become smaller than a certain value even if the thickness is increased too much.
The thickness of the electrode active material layer or layer b in the electric double layer capacitor is preferably 10 μm or more and 500 μm or less.
The thickness of the electrode active material layer or layer b in the lithium ion battery is preferably 0.1 μm or more and 500 μm or less. When the thickness is 0.1 μm or less, the desired effect tends not to be obtained. When the thickness is 500 μm or more, it is easy for the current collector to fall off.
 なお、本発明に係る塗工液で形成された層aまたは層bを集電体から剥がして、膜として利用することができる。該膜はイオン透過性若しくはイオン移動性が高い。 In addition, the layer a or the layer b formed with the coating liquid according to the present invention can be peeled off from the current collector and used as a film. The membrane has high ion permeability or ion mobility.
 本発明に係る電気化学素子は、前述の本発明に係る電極を有し、さらに、セパレーターおよび電解液を、通常、有するものである。本発明に係る電気化学素子における電極は、両方とも本発明に係る電極であってもよいし、どちらか一方が本発明に係る電極であり、他方が公知の電極であってもよい。
 セパレーターおよび電解液は、リチウムイオンバッテリーなどの二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどにおいて使用されるものであれば特に制限されない。
The electrochemical device according to the present invention has the electrode according to the present invention described above, and further usually has a separator and an electrolytic solution. The electrodes in the electrochemical device according to the present invention may both be the electrodes according to the present invention, or one of them may be the electrode according to the present invention and the other may be a known electrode.
A separator and electrolyte solution will not be restrict | limited especially if used in secondary batteries, such as a lithium ion battery, an electric double layer capacitor, a hybrid capacitor.
 本発明に係る電気化学素子は、電源システムに適用することができる。そして、この電源システムは、自動車;鉄道、船舶、航空機などの輸送機器;携帯電話、携帯情報端末、携帯電子計算機などの携帯機器;事務機器;太陽光発電システム、風力発電システム、燃料電池システムなどの発電システム;などに適用することができる。 The electrochemical element according to the present invention can be applied to a power supply system. And this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
 次に、実施例および比較例を示し、本発明をより具体的に説明する。なお、本発明は、本実施例によってその範囲が制限されるものではない。本発明に係る塗工液、膜、電極用積層体、電極、電気化学素子、電源システム、自動車、輸送機器、携帯機器および発電システムは、本発明の要旨を変更しない範囲において適宜変更して実施することができる。 Next, examples and comparative examples will be shown to describe the present invention more specifically. The scope of the present invention is not limited by this embodiment. The coating liquid, film, electrode laminate, electrode, electrochemical device, power supply system, automobile, transportation equipment, portable device, and power generation system according to the present invention are appropriately modified and implemented without departing from the scope of the present invention. can do.
 製造例1:ブロックイソシアネート構造を有するポリマー(P-1)の合成
 滴下漏斗、温度計、冷却管および撹拌機を取り付けた4つ口フラスコに、N-メチルピロリドン185.61gを仕込み、4つ口フラスコ内を窒素置換した。オイルバスにて100℃まで加温した。2-(O-[1’メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(「カレンズMOI-BM」;昭和電工社製)60.57g、ジシクロペンタニルメタクリレート55.08g、およびジメチル-2,2-アゾビス(2-メチルプロピオネート)8.1gの混合液を2時間かけて滴下した。その後、30分間攪拌を継続した。次いで120℃に昇温して1時間重合させた。ブロックイソシアネート構造を有するポリマー(P-1)が得られた。ポリマー(P-1)は、GPCにより測定したポリスチレン換算の重量平均分子量が6100であった。
Production Example 1: Synthesis of polymer having blocked isocyanate structure (P-1) A four-necked flask equipped with a dropping funnel, a thermometer, a condenser tube and a stirrer was charged with 185.61 g of N-methylpyrrolidone. The flask was purged with nitrogen. It heated to 100 degreeC with the oil bath. 2- (O- [1′methylpropylideneamino] carboxyamino) ethyl methacrylate (“Karenz MOI-BM”; manufactured by Showa Denko KK) 60.57 g, dicyclopentanyl methacrylate 55.08 g, and dimethyl-2,2 -A solution of 8.1 g of azobis (2-methylpropionate) was added dropwise over 2 hours. Thereafter, stirring was continued for 30 minutes. Next, the temperature was raised to 120 ° C. and polymerization was performed for 1 hour. A polymer (P-1) having a blocked isocyanate structure was obtained. The polymer (P-1) had a weight average molecular weight in terms of polystyrene measured by GPC of 6100.
 製造例2:ブロックイソシアネート構造を有するポリマー(P-2)の合成
 滴下漏斗、温度計、冷却管および撹拌機を取り付けた4つ口フラスコに、N-メチルピロリドン189.23gを仕込み、4つ口フラスコ内を窒素置換した。オイルバスにて100℃まで加温した。2-[(3,5-ジメチルピラゾリル)カルボキシアミノ]エチルメタクリレート(「カレンズMOI-BP」;昭和電工社製)62.82g、ジシクロペンタニルメタクリレート55.08g、およびジメチル-2,2-アゾビス(2-メチルプロピオネート)8.25gの混合液を2時間かけて滴下した。その後、30分間攪拌を継続した。次いで120℃に昇温して1時間重合させた。ブロックイソシアネート構造を有するポリマー(P-2)が得られた。ポリマー(P-2)は、GPCにより測定したポリスチレン換算の重量平均分子量が6200であった。
Production Example 2: Synthesis of polymer having blocked isocyanate structure (P-2) A four-necked flask equipped with a dropping funnel, a thermometer, a condenser tube and a stirrer was charged with 189.23 g of N-methylpyrrolidone. The flask was purged with nitrogen. It heated to 100 degreeC with the oil bath. 2-[(3,5-dimethylpyrazolyl) carboxyamino] ethyl methacrylate (“Karenz MOI-BP”; manufactured by Showa Denko KK) 62.82 g, dicyclopentanyl methacrylate 55.08 g, and dimethyl-2,2-azobis A mixture of 8.25 g of (2-methylpropionate) was added dropwise over 2 hours. Thereafter, stirring was continued for 30 minutes. Next, the temperature was raised to 120 ° C. and polymerization was performed for 1 hour. A polymer (P-2) having a blocked isocyanate structure was obtained. The polymer (P-2) had a polystyrene-reduced weight average molecular weight of 6200 as measured by GPC.
 製造例3:溶液1~7の調製
 表1に示す配合処方に従って、溶媒に多糖類とポリマー若しくは架橋剤とを添加し溶解させて溶液1~7を得た。
Production Example 3: Preparation of solutions 1 to 7 According to the formulation shown in Table 1, polysaccharides and polymers or cross-linking agents were added to a solvent and dissolved to obtain solutions 1 to 7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1>
(アンダーコート層製造用塗工液の製造)
 導電性付与材としてのアセチレンブラック(平均粒子径40nm)10質量部と、溶液1 90質量部とを、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られるアンダーコート層の厚さが5μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈して、スラリー状のアンダーコート層製造用塗工液を得た。
<Example 1>
(Manufacture of coating liquid for undercoat layer manufacturing)
10 parts by mass of acetylene black (average particle diameter: 40 nm) as a conductivity imparting material and 90 parts by mass of the solution were stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution was diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the resulting undercoat layer was 5 μm to obtain a slurry-like coating solution for producing an undercoat layer.
(アンダーコート層を備えたアルミニウム箔の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が10μmのアプリケーターを用いて、アルミニウム箔上に、アンダーコート層製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応とをさせて、アンダーコート層を備えたアルミニウム箔を得た。
(Manufacture of aluminum foil with an undercoat layer)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using an applicator with a gap of 10 μm, the coating liquid for producing the undercoat layer was applied onto the aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), was made to dry and bridge | crosslink reaction and obtained the aluminum foil provided with the undercoat layer.
(アンダーコート層のpH評価)
 アンダーコート層を備えたアルミニウム箔を純水に浸漬させ、密封した。24時間経過後にpHを測定した。水の量は、塗布面積1cm2に対して、0.02mlになるようにした。結果を表2に示す。
(Evaluation of pH of undercoat layer)
The aluminum foil provided with the undercoat layer was immersed in pure water and sealed. The pH was measured after 24 hours. The amount of water was 0.02 ml with respect to 1 cm 2 of application area. The results are shown in Table 2.
(リチウムイオンバッテリーとしての評価)
 正電極活物質としてのコバルト酸リチウム95質量部と、バインダーとしてのポリフッ化ビニリデン2質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)3質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、正極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
 アンダーコート層を備えたアルミニウム箔に、該正極ペーストを塗布し乾燥させ、厚さ200μmの電極活物質層をアンダーコート層の上に形成させて、リチウムイオン二次電池用正電極を得た。
(Evaluation as a lithium ion battery)
To 95 parts by mass of lithium cobaltate as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride as a binder, and 3 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
The positive electrode paste was applied to an aluminum foil provided with an undercoat layer, dried, and an electrode active material layer having a thickness of 200 μm was formed on the undercoat layer to obtain a positive electrode for a lithium ion secondary battery.
 負電極活物質としてのグラファイト92質量部と、バインダーとしてのポリフッ化ビニリデン3質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、負極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが250μmになるように加えた。
 厚さ9μmの電解銅箔に、該負極ペーストを塗布し乾燥させ、厚さ250μmの電極活物質層を形成させて、リチウムイオン二次電池用負電極を得た。
92 parts by mass of graphite as a negative electrode active material, 3 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 μm.
The negative electrode paste was applied to an electrolytic copper foil having a thickness of 9 μm and dried to form an electrode active material layer having a thickness of 250 μm, thereby obtaining a negative electrode for a lithium ion secondary battery.
 上記で得られた、正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 有機電解液は、溶媒がエチレンカーボネートとジエチルカーボネートとの容量比1/1の混合液、電解質がLiPF6、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTER-EDMC/PF1を使用した。
A lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
The organic electrolyte is a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
 該リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。それらの結果を表2に示す。
 なお、初期容量維持率は、測定機として北斗電工株式会社製電池充放電装置HJ-2010型機を用い、電流レート20Cで、100サイクル後における容量を測定し、初期(1サイクル後における)容量に対する割合を百分率で表示した。
 内部抵抗は、HIOKI3551バッテリーテスターを用いて、ACインピーダンス法で、測定周波数1kHzにて測定した。
The initial capacity retention ratio and internal resistance of the lithium ion battery were measured. The results are shown in Table 2.
The initial capacity retention rate was determined by measuring the capacity after 100 cycles at a current rate of 20 C using a battery charging / discharging device HJ-2010 model manufactured by Hokuto Denko Co., Ltd. as the measuring instrument. The percentage relative to is expressed as a percentage.
The internal resistance was measured at a measurement frequency of 1 kHz by an AC impedance method using a HIOKI3551 battery tester.
 また、上記で得られたアンダーコート層を備えたアルミニウム箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管されたアルミニウム箔を用いて、上記と同じ手法でリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。その結果を表2に示す。 Moreover, the aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. The results are shown in Table 2.
(電気二重層キャパシタとしての評価)
 電極活物質としての活性炭(比表面積1500m2/gのアルカリ賦活炭)85質量部と、バインダーとしてのポリフッ化ビニリデン10質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、電極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
 上記で得られたアンダーコート層を備えたアルミニウム箔に、該電極ペーストを塗布し乾燥させ、厚さ200μmの電極活物質層をアンダーコート層の上に形成させて、電気二重層キャパシタ用電極を得た。
 次に、電気二重層キャパシタ用電極を、評価用キャパシタ容器の大きさに合わせて、直径20mmφで2枚打ち抜いた。ガラス不織布製のセパレーターを間に挟んで2枚の電極を重ね合わせ、評価用キャパシタ容器に収め、有機電解液を該容器に注ぎ入れ、電極等を浸漬させ、最後に容器に蓋をして、評価用の電気二重層キャパシタを作製した。
 有機電解液は、溶媒がプロピレンカーボネート、電解質が(C254NBF4、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTE-P/EAFINを使用した。
(Evaluation as an electric double layer capacitor)
85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 10 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material To this part, N-methyl-2-pyrrolidone as a solvent was added to produce an electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
The electrode paste is applied to the aluminum foil having the undercoat layer obtained above and dried to form an electrode active material layer having a thickness of 200 μm on the undercoat layer. Obtained.
Next, two electric double layer capacitor electrodes were punched out with a diameter of 20 mmφ in accordance with the size of the capacitor container for evaluation. Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
As the organic electrolytic solution, trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
 該電気二重層キャパシタのインピーダンス及び電気容量を測定した。結果を表3に示す。
 なお、インピーダンスの測定は、KIKUSUI社製のインピーダンス測定器(PAN110-5AM)を用いて1kHzの条件で行った。
 電気容量の測定は、北斗電工社製充放電試験装置(HJ-101SM6)を用いて、電流密度1.59mA/cm2で0~2.5Vで充放電を行い、2回目の定電流放電時に測定した放電曲線から電気二重層キャパシタのセルあたりの電気容量(F/セル)を算出した。容量保持率(%)は(50サイクル目の電気容量)/(2サイクル目の電気容量)×100の計算式で算出した。
The impedance and electric capacity of the electric double layer capacitor were measured. The results are shown in Table 3.
The impedance was measured under the condition of 1 kHz using an impedance measuring instrument (PAN110-5AM) manufactured by KIKUSUI.
The electric capacity was measured using a charge / discharge test apparatus (HJ-101SM6) manufactured by Hokuto Denko Corporation at a current density of 1.59 mA / cm 2 at a voltage of 0 to 2.5 V, during the second constant current discharge. The electric capacity (F / cell) per cell of the electric double layer capacitor was calculated from the measured discharge curve. The capacity retention rate (%) was calculated by a formula of (electric capacity at the 50th cycle) / (electric capacity at the second cycle) × 100.
 上記で得られたアンダーコート層を備えたアルミニウム箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管されたアルミニウム箔を用いて、上記と同じ手法で電気二重層キャパシタを製造した。この電気二重層キャパシタのインピーダンスを測定した。結果を表3に示す。 The aluminum foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the aluminum foil stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 3.
<実施例2~4>
 溶液1の代わりに、溶液2、溶液3および溶液4をそれぞれ用いた以外は、実施例1と同じ手法で、アンダーコート層製造用塗工液を作製し、アンダーコート層を備えたアルミニウム箔を得た。そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表2および表3に示す。
<Examples 2 to 4>
A coating liquid for producing an undercoat layer was prepared in the same manner as in Example 1 except that Solution 2, Solution 3 and Solution 4 were used in place of Solution 1, and an aluminum foil provided with an undercoat layer was prepared. Obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
<比較例1>
 溶液1の代わりに、溶液5を用いた以外は、実施例1と同じ手法で、アンダーコート層製造用塗工液を作製し、アンダーコート層を備えたアルミニウム箔を得た。そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表2および表3に示す。
<Comparative Example 1>
A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 5 was used instead of the solution 1, and an aluminum foil provided with the undercoat layer was obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
<比較例2および3>
 溶液1の代わりに、溶液6および溶液7をそれぞれ用いた以外は、実施例1と同じ手法で、アンダーコート層製造用塗工液を作製し、アンダーコート層を備えたアルミニウム箔を得た。そして、実施例1と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーおよび電気二重層キャパシタの特性を測定した。結果を表2および表3に示す。
<Comparative Examples 2 and 3>
A coating solution for producing an undercoat layer was produced in the same manner as in Example 1 except that the solution 6 and the solution 7 were used in place of the solution 1, and an aluminum foil provided with the undercoat layer was obtained. Then, the pH of the undercoat layer, the characteristics of the lithium ion battery, and the electric double layer capacitor were measured in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例5>
(アンダーコート層を備えた銅箔の製造)
 アルミニウム箔に代えて、厚さ9μmの電解銅箔を用いた以外は、実施例1と同じ手法で、アンダーコート層を備えた銅箔を得た。
<Example 5>
(Manufacture of copper foil with an undercoat layer)
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 1 except that an electrolytic copper foil having a thickness of 9 μm was used instead of the aluminum foil.
(アンダーコート層のpH評価)
 実施例1と同じ手法にて、上記で得られたアンダーコート層を備えた銅箔のpH評価を行った。結果を表4に示す。
(Evaluation of pH of undercoat layer)
The pH of the copper foil provided with the undercoat layer obtained above was evaluated by the same method as in Example 1. The results are shown in Table 4.
(リチウムイオンバッテリーとしての評価)
 負電極活物質としてのグラファイト92質量部と、バインダーとしてのポリフッ化ビニリデン3質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、負極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが250μmになるように加えた。
 上記で得られたアンダーコート層を備えた銅箔に、該負極ペーストを塗布し乾燥させ、厚さ250μmの負電極活物質層をアンダーコート層の上に形成させて、リチウムイオン二次電池用負電極を得た。
(Evaluation as a lithium ion battery)
92 parts by mass of graphite as a negative electrode active material, 3 parts by mass of polyvinylidene fluoride as a binder, and 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, N-methyl- 2-Pyrrolidone was added to produce a negative electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 250 μm.
A negative electrode active material layer having a thickness of 250 μm is formed on the undercoat layer by applying the negative electrode paste to the copper foil provided with the undercoat layer and drying it. A negative electrode was obtained.
 正電極活物質としてのコバルト酸リチウム95質量部と、バインダーとしてのポリフッ化ビニリデン2質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)3質量部とに、溶媒としてのN-メチル-2-ピロリドンを加え、正極ペーストを製造した。なお、N-メチル-2-ピロリドンは、得られる電極活物質層の厚さが200μmになるように加えた。
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔に、該正極ペーストを塗布し乾燥させ、厚さ200μmの正電極活物質層を形成させて、リチウムイオン二次電池用正電極を得た。
To 95 parts by mass of lithium cobaltate as a positive electrode active material, 2 parts by mass of polyvinylidene fluoride as a binder, and 3 parts by mass of acetylene black (average particle size 40 nm) as a conductivity-imparting material, N— Methyl-2-pyrrolidone was added to produce a positive electrode paste. N-methyl-2-pyrrolidone was added so that the thickness of the obtained electrode active material layer was 200 μm.
The positive electrode paste was applied to a 30 μm thick aluminum foil made of alkali-cleaned A1085 material and dried to form a positive electrode active material layer having a thickness of 200 μm to obtain a positive electrode for a lithium ion secondary battery.
 上記で得られた、正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 有機電解液は、溶媒がエチレンカーボネートとジエチルカーボネートとの容量比1/1の混合液、電解質がLiPF6、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTER-EDMC/PF1を使用した。
A lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
The organic electrolyte solution is a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1/1, the electrolyte is LiPF 6 , and the concentration is 1 mol / liter, trade name LIPASTER-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. used.
 実施例1と同じ手法にて、リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。測定結果を表4に示す。
 また、上記で得られたアンダーコート層を備えた銅箔を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された銅箔を用いて、上記と同じ手法でリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。測定結果を表4に示す。
In the same manner as in Example 1, the initial capacity retention rate and internal resistance of the lithium ion battery were measured. Table 4 shows the measurement results.
Moreover, the copper foil provided with the undercoat layer obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the copper foil stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. Table 4 shows the measurement results.
<実施例6~8>
 溶液1の代わりに、溶液2、溶液3および溶液4をそれぞれ用いた以外は、実施例5と同じ手法でアンダーコート層を備えた銅箔を得た。そして、実施例5と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表4に示す。
<Examples 6 to 8>
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 5 except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 5. The results are shown in Table 4.
<比較例4>
 溶液1の代わりに、溶液5を用いた以外は、実施例5と同じ手法でアンダーコート層を備えた銅箔を得た。そして、実施例5と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表4に示す。
<Comparative Example 4>
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 5 except that the solution 5 was used instead of the solution 1. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 5. The results are shown in Table 4.
<比較例5および6>
 溶液1の代わりに、溶液6および溶液7をそれぞれ用いた以外は、実施例5と同じ手法でアンダーコート層を備えた銅箔を得た。そして、実施例5と同じ手法にて、アンダーコート層のpH、リチウムイオンバッテリーの特性を測定した。結果を表4に示す。
<Comparative Examples 5 and 6>
A copper foil provided with an undercoat layer was obtained in the same manner as in Example 5 except that the solution 6 and the solution 7 were used instead of the solution 1, respectively. Then, the pH of the undercoat layer and the characteristics of the lithium ion battery were measured by the same method as in Example 5. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例9>
(電気二重層キャパシタの電極活物質層製造用塗工液の製造)
 電極活物質としての活性炭(比表面積1500m2/gのアルカリ賦活炭)85質量部と、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部と、溶液1 50質量部とを、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる電極活物質層の厚さが200μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈して、スラリー状の電極活物質層製造用塗工液を得た。
<Example 9>
(Manufacture of coating liquid for manufacturing electrode active material layer of electric double layer capacitor)
85 parts by mass of activated carbon (alkaline activated charcoal having a specific surface area of 1500 m 2 / g) as an electrode active material, 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity imparting material, and 150 parts by mass of a solution, The mixture was stirred and mixed at a rotation speed of 60 rpm for 120 minutes with a planetary mixer. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the resulting electrode active material layer has a thickness of 200 μm to obtain a slurry-like electrode active material layer production coating solution. It was.
(電極の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が250μmのアプリケーターを用いて、アルミニウム箔上に、前記の電極活物質層製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱し、乾燥と架橋反応とをさせて、電極を得た。
(Manufacture of electrodes)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using an applicator with a gap of 250 μm, the above-mentioned coating liquid for producing an electrode active material layer was applied onto an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), was made to dry and a crosslinking reaction, and the electrode was obtained.
(電極活物質層のpH評価)
 実施例1におけるアンダーコート層のpH評価と同じ手法にて、上記で得られた電極活物質層のpH評価を行った。結果を表5に示す。
(Evaluation of pH of electrode active material layer)
The pH evaluation of the electrode active material layer obtained above was performed by the same method as the pH evaluation of the undercoat layer in Example 1. The results are shown in Table 5.
(電気二重層キャパシタとしての評価)
 上記で得られた電極を、評価用キャパシタ容器の大きさに合わせて、直径20mmφで2枚打ち抜いた。ガラス不織布製のセパレーターを間に挟んで2枚の電極を重ね合わせ、評価用キャパシタ容器に収め、有機電解液を該容器に注ぎ入れ、電極等を浸漬させ、最後に容器に蓋をして、評価用の電気二重層キャパシタを作製した。
 有機電解液は、溶媒がプロピレンカーボネート、電解質が(C254NBF4、濃度1モル/リットルである、富山薬品工業社製の商品名LIPASTE-P/EAFINを使用した。
(Evaluation as an electric double layer capacitor)
Two of the electrodes obtained above were punched out with a diameter of 20 mmφ in accordance with the size of the capacitor container for evaluation. Two electrodes are stacked with a glass nonwoven fabric separator in between, placed in an evaluation capacitor container, poured into the container with an organic electrolyte, immersed in the electrode, and finally covered with a container, An electric double layer capacitor for evaluation was produced.
As the organic electrolytic solution, trade name LIPASTE-P / EAFIN manufactured by Toyama Pharmaceutical Co., Ltd., having a solvent of propylene carbonate, an electrolyte of (C 2 H 5 ) 4 NBF 4 and a concentration of 1 mol / liter was used.
 実施例1と同じ手法にて、上記で得られた電気二重層キャパシタのインピーダンス及び電気容量を測定した。結果を表5に示す。
 上記で得られた電極を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された電極を用いて、上記と同じ手法にて電気二重層キャパシタを製造した。この電気二重層キャパシタのインピーダンスを測定した。結果を表5に示す。
In the same manner as in Example 1, the impedance and capacitance of the electric double layer capacitor obtained above were measured. The results are shown in Table 5.
The electrode obtained above was stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the electrode stored in the environment, an electric double layer capacitor was manufactured in the same manner as described above. The impedance of this electric double layer capacitor was measured. The results are shown in Table 5.
<実施例10~12>
 溶液1の代わりに、溶液2、溶液3および溶液4をそれぞれ用いた以外は、実施例9と同じ手法で電極を得た。
 実施例9と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表5に示す。
<Examples 10 to 12>
An electrode was obtained in the same manner as in Example 9, except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively.
In the same manner as in Example 9, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 5.
<比較例7>
 溶液1の代わりに、溶液5を用いた以外は、実施例9と同じ手法で電極を得た。実施例9と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表5に示す。
<Comparative Example 7>
An electrode was obtained in the same manner as in Example 9 except that the solution 5 was used instead of the solution 1. In the same manner as in Example 9, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 5.
<比較例8および9>
 溶液1の代わりに、溶液6および溶液7をそれぞれ用いた以外は、実施例9と同じ手法で電極を得た。実施例9と同じ手法にて、電極活物質層のpH、電気二重層キャパシタの特性を測定した。結果を表5に示す。
<Comparative Examples 8 and 9>
An electrode was obtained in the same manner as in Example 9 except that the solution 6 and the solution 7 were used in place of the solution 1, respectively. In the same manner as in Example 9, the pH of the electrode active material layer and the characteristics of the electric double layer capacitor were measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例13>
(リチウムイオンバッテリーの正電極製造用塗工液の製造)
 正電極活物質としてのコバルト酸リチウム95質量部、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部、および溶液1 40質量部を、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる正電極活物質層の厚さが200μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈して、スラリー状のリチウムイオンバッテリー正電極製造用塗工液を得た。
<Example 13>
(Manufacture of coating solution for manufacturing positive electrode of lithium ion battery)
95 parts by mass of lithium cobaltate as a positive electrode active material, 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, and 40 parts by mass of a solution 120 at a rotational speed of 60 rpm for 120 minutes using a planetary mixer Stir and mix. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained positive electrode active material layer becomes 200 μm, and a slurry-like coating solution for producing a lithium ion battery positive electrode is obtained. Got.
(正電極の製造)
 アルカリ洗浄したA1085材からなる厚さ30μmのアルミニウム箔を用意した。隙間が250μmのアプリケーターを用いて、アルミニウム箔上に、前記の正電極製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応とをさせて、正電極を得た。
(Manufacture of positive electrode)
An aluminum foil having a thickness of 30 μm made of A1085 material washed with alkali was prepared. Using the applicator with a gap of 250 μm, the above-mentioned coating solution for producing a positive electrode was applied on an aluminum foil by a casting method. Then, it heated at 180 degreeC for 3 minute (s), and was made to dry and bridge | crosslink reaction and the positive electrode was obtained.
(リチウムイオンバッテリーの負電極製造用塗工液の製造)
 負電極活物質としてのグラファイト92質量部、導電性付与材としてのアセチレンブラック(平均粒子径40nm)5質量部、および溶液1 50質量部を、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合させた。得られる負電極活物質層の厚さが250μmになるように、該混合液をN-メチル-2-ピロリドンとイソプロピルアルコールとで希釈してスラリー状のリチウムイオンバッテリーの負電極製造用塗工液を得た。
(Manufacture of coating solution for manufacturing negative electrode of lithium ion battery)
92 parts by mass of graphite as a negative electrode active material, 5 parts by mass of acetylene black (average particle diameter 40 nm) as a conductivity-imparting material, and 150 parts by mass of a solution were stirred and mixed at a rotation speed of 60 rpm for 120 minutes using a planetary mixer. I let you. The mixed solution is diluted with N-methyl-2-pyrrolidone and isopropyl alcohol so that the thickness of the obtained negative electrode active material layer becomes 250 μm, and a slurry-like coating solution for producing a negative electrode of a lithium ion battery is obtained. Got.
(負電極の製造)
 隙間が300μmのアプリケーターを用いて、厚さ9μmの電解銅箔上に、負電極製造用塗工液をキャスト法によって塗布した。その後、180℃にて3分間加熱して、乾燥と架橋反応とをさせて、負電極を得た。
(Manufacture of negative electrode)
Using an applicator having a gap of 300 μm, a coating solution for producing a negative electrode was applied on an electrolytic copper foil having a thickness of 9 μm by a casting method. Then, it heated at 180 degreeC for 3 minute (s), and was made to dry and bridge | crosslink reaction and the negative electrode was obtained.
(正電極活物質層および負電極活物質層のpH評価)
 実施例1におけるアンダーコート層のpH評価と同じ手法にて、上記で得られた正電極活物質層および負電極活物質層のpH評価を行った。結果を表6に示す。
(PH evaluation of positive electrode active material layer and negative electrode active material layer)
In the same manner as the pH evaluation of the undercoat layer in Example 1, the pH evaluation of the positive electrode active material layer and the negative electrode active material layer obtained above was performed. The results are shown in Table 6.
(リチウムイオンバッテリーとしての評価)
 上記で得られた、正電極と負電極との間に、多孔質ポリエチレン製のセパレーターを組み込み、これらに有機電解液を含浸させて、リチウムイオンバッテリーを組み立てた。
 実施例1と同じ手法にて、リチウムイオンバッテリーの初期容量維持率および内部抵抗を測定した。測定結果を表6に示す。
 また、上記で得られた正電極と負電極を、温度60℃、相対湿度90%の環境で100時間保管した。該環境で保管された正電極と負電極とを用いて、上記と同じ手法でリチウムイオンバッテリーを製造した。このリチウムイオンバッテリーの内部抵抗を測定した。測定結果を表6に示す。
(Evaluation as a lithium ion battery)
A lithium polyethylene separator was assembled by incorporating a porous polyethylene separator between the positive electrode and the negative electrode obtained above and impregnating the separator with an organic electrolyte.
In the same manner as in Example 1, the initial capacity retention rate and internal resistance of the lithium ion battery were measured. Table 6 shows the measurement results.
Further, the positive electrode and the negative electrode obtained above were stored for 100 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%. Using the positive electrode and the negative electrode stored in the environment, a lithium ion battery was manufactured in the same manner as described above. The internal resistance of this lithium ion battery was measured. Table 6 shows the measurement results.
<実施例14~16>
 溶液1の代わりに、溶液2、溶液3および溶液4をそれぞれ用いた以外は、実施例13と同じ手法で正電極および負電極を得た。実施例13と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表6に示す。
<Examples 14 to 16>
A positive electrode and a negative electrode were obtained in the same manner as in Example 13 except that Solution 2, Solution 3, and Solution 4 were used instead of Solution 1, respectively. In the same manner as in Example 13, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 6.
<比較例10>
 溶液1の代わりに、溶液5を用いた以外は、実施例13と同じ手法で正電極および負電極を得た。
 実施例13と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表6に示す。
<Comparative Example 10>
A positive electrode and a negative electrode were obtained in the same manner as in Example 13 except that the solution 5 was used instead of the solution 1.
In the same manner as in Example 13, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 6.
<比較例11および12>
 溶液1の代わりに、溶液6および溶液7をそれぞれ用いた以外は、実施例13と同じ手法で正電極および負電極を得た。実施例13と同じ手法にて、正電極活物質層および負電極活物質層のpH、リチウムイオンバッテリーの特性を測定した。結果を表6に示す。
<Comparative Examples 11 and 12>
A positive electrode and a negative electrode were obtained in the same manner as in Example 13 except that the solution 6 and the solution 7 were used instead of the solution 1, respectively. In the same manner as in Example 13, the pH of the positive electrode active material layer and the negative electrode active material layer and the characteristics of the lithium ion battery were measured. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、ヒドロキシアルキルキトサンと有機酸とを含む塗工液(比較例)で得られたアンダーコート層若しくは電極活物質層はpHが低く、また比較例で得られたリチウムイオンバッテリーや電気二重層キャパシタは各特性が不十分であることがわかる。
 これに対して、本発明に従って製造された、多糖類と、ブロックイソシアネート構造を有するポリマーと、溶媒と、導電性付与材および/または電極活物質とを含む塗工液で、アンダーコート層若しくは電極活物質層を形成させると、該アンダーコート層若しくは電極活物質層は、pHが7付近になり、また本発明に従って製造されたリチウムイオンバッテリーや電気二重層キャパシタは各特性が比較例のものに比べて良好であることがわかる。
From the above results, the undercoat layer or the electrode active material layer obtained with the coating solution containing hydroxyalkyl chitosan and organic acid (comparative example) has a low pH, and the lithium ion battery or electric It can be seen that the double layer capacitor has insufficient characteristics.
On the other hand, an undercoat layer or an electrode produced in accordance with the present invention is a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity-imparting material and / or an electrode active material. When the active material layer is formed, the undercoat layer or the electrode active material layer has a pH of around 7, and the lithium ion battery and the electric double layer capacitor manufactured according to the present invention have the characteristics of the comparative examples. It turns out that it is favorable compared.

Claims (15)

  1.  多糖類と、ブロックイソシアネート構造を有するポリマーと、溶媒と、導電性付与材および/または電極活物質とを含む塗工液。 A coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, a conductivity imparting material and / or an electrode active material.
  2.  ブロックイソシアネート構造を有するポリマーが、ブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体に由来する繰り返し単位を含む重合体である、請求項1に記載の塗工液。 The coating liquid according to claim 1, wherein the polymer having a blocked isocyanate structure is a polymer containing a repeating unit derived from a monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group.
  3.  ブロックイソシアネート構造と少なくとも1つの重合性不飽和基とを有する単量体が、式(1)
    Figure JPOXMLDOC01-appb-I000001
    (R1は水素原子またはメチル基を示す。)若しくは式(2)
    Figure JPOXMLDOC01-appb-I000002
    (R2は水素原子またはメチル基を示す。)で表される化合物である、請求項2に記載の塗工液。
    A monomer having a blocked isocyanate structure and at least one polymerizable unsaturated group has the formula (1)
    Figure JPOXMLDOC01-appb-I000001
    (R 1 represents a hydrogen atom or a methyl group) or formula (2)
    Figure JPOXMLDOC01-appb-I000002
    (R 2 is. Represents a hydrogen atom or a methyl group) is a compound represented by, the coating liquid according to claim 2.
  4.  多糖類が、キトサン、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カプロラクトン変性キトサン、ヒドロキシアルキルセルロースおよびカルボキシアルキルセルロースからなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の塗工液。 The polysaccharide according to any one of claims 1 to 3, wherein the polysaccharide is at least one selected from the group consisting of chitosan, hydroxyalkylchitosan, carboxyalkylchitosan, caprolactone-modified chitosan, hydroxyalkylcellulose, and carboxyalkylcellulose. Coating liquid.
  5.  多糖類100質量部に対して、ブロックイソシアネート構造を有するポリマーの量が20~300質量部である、請求項1~4のいずれか1項に記載の塗工液。 The coating liquid according to any one of claims 1 to 4, wherein the amount of the polymer having a blocked isocyanate structure is 20 to 300 parts by mass with respect to 100 parts by mass of the polysaccharide.
  6.  請求項1~5のいずれか1項に記載の塗工液を用いて形成される膜。 A film formed using the coating liquid according to any one of claims 1 to 5.
  7.  集電体と、
     多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと
     を有する電極用積層体。
    A current collector,
    A layered product for an electrode having a layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and a conductivity-imparting material.
  8.  集電体と、
     多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および導電性付与材を含有する塗工液を用いて形成される層aと、
     電極活物質層と
     を有する電極。
    A current collector,
    A layer a formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent and a conductivity-imparting material;
    An electrode having an electrode active material layer.
  9.  集電体と、
     多糖類、ブロックイソシアネート構造を有するポリマー、溶媒および電極活物質を含有する塗工液を用いて形成される層bと
     を有する電極。
    A current collector,
    An electrode having a layer b formed using a coating liquid containing a polysaccharide, a polymer having a blocked isocyanate structure, a solvent, and an electrode active material.
  10.  請求項8または9に記載の電極を有する電気化学素子。 An electrochemical element having the electrode according to claim 8 or 9.
  11.  請求項10に記載の電気化学素子を有する電源システム。 A power supply system having the electrochemical element according to claim 10.
  12.  請求項10に記載の電気化学素子を有する自動車。 An automobile having the electrochemical element according to claim 10.
  13.  請求項10に記載の電気化学素子を有する輸送機器。 Transportation equipment having the electrochemical element according to claim 10.
  14.  請求項10に記載の電気化学素子を有する携帯機器。 A portable device having the electrochemical element according to claim 10.
  15.  請求項10に記載の電気化学素子を有する発電システム。 A power generation system having the electrochemical element according to claim 10.
PCT/JP2010/007317 2009-12-18 2010-12-17 Coating liquid WO2011074269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-287830 2009-12-18
JP2009287830 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074269A1 true WO2011074269A1 (en) 2011-06-23

Family

ID=44167039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007317 WO2011074269A1 (en) 2009-12-18 2010-12-17 Coating liquid

Country Status (2)

Country Link
TW (1) TW201137906A (en)
WO (1) WO2011074269A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154165A1 (en) * 2012-04-12 2013-10-17 三菱レイヨン株式会社 Secondary battery electrode binder resin, secondary battery electrode composition, secondary battery electrode, and secondary battery
WO2015037558A1 (en) * 2013-09-13 2015-03-19 日立マクセル株式会社 Electrode mix coating material, electrode for nonaqueous electrolyte secondary cell, method for producing electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP2016192409A (en) * 2012-04-09 2016-11-10 昭和電工株式会社 Manufacturing method of collector for electrochemical element, manufacturing method of electrode for electrochemical element, and coating liquid for manufacturing collector for electrochemical element
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2007265890A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
WO2008015828A1 (en) * 2006-08-04 2008-02-07 Kyoritsu Chemical & Co., Ltd. Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2007265890A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
WO2008015828A1 (en) * 2006-08-04 2008-02-07 Kyoritsu Chemical & Co., Ltd. Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
JP2016192409A (en) * 2012-04-09 2016-11-10 昭和電工株式会社 Manufacturing method of collector for electrochemical element, manufacturing method of electrode for electrochemical element, and coating liquid for manufacturing collector for electrochemical element
WO2013154165A1 (en) * 2012-04-12 2013-10-17 三菱レイヨン株式会社 Secondary battery electrode binder resin, secondary battery electrode composition, secondary battery electrode, and secondary battery
WO2015037558A1 (en) * 2013-09-13 2015-03-19 日立マクセル株式会社 Electrode mix coating material, electrode for nonaqueous electrolyte secondary cell, method for producing electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JPWO2015037558A1 (en) * 2013-09-13 2017-03-02 日立マクセル株式会社 Electrode mixture paint, electrode for nonaqueous electrolyte secondary battery, method for producing electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
TW201137906A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
JP4499795B2 (en) Electric current collector for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and manufacturing method thereof
US9834688B2 (en) Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device
KR102166878B1 (en) Binder composition for secondary batteries, slurry composition for secondary batteries, negative electrode for secondary batteries, and secondary battery
JP6273956B2 (en) Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
WO2011140150A1 (en) Alginate-containing compositions for use in battery applications
WO2015064464A1 (en) Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2012096189A1 (en) Current collector
JP6980217B2 (en) Binders for active material compositions containing cellulosic conductive polymers and lithium-ion batteries manufactured from them
WO2018096981A1 (en) Binder for electrochemical element
KR20180075436A (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, negative electrode and lithium ion secondary battery
WO2011074269A1 (en) Coating liquid
JP7493913B2 (en) Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
Rasheed et al. Biopolymer based materials as alternative greener binders for sustainable electrochemical energy storage applications
Huang et al. A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries
JP2016213027A (en) Binder resin composition for electrodes of nonaqueous electrolyte energy devices, nonaqueous electrolyte energy device electrode arranged by use thereof, and nonaqueous electrolyte energy device
JP2012074369A (en) Collector and method for producing collector
JP2012072396A (en) Coating liquid, current collector, and method for manufacturing current collector
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
WO2011074270A1 (en) Coating liquid
JP4240604B2 (en) Binder composition, slurry for battery electrode, electrode and battery
Soundarrajan et al. Dual application of non-fluorinated polymer: Influence on mitigating dendrite growth and structural integrity of high energy density lithium metal battery
EP4024534A1 (en) Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
Luo et al. Raspberry-like micro-size polymer with high spherical shape-retention capability and adhesion as binder for ceramic separators
Li et al. Ion-conductive and mechanically robust chitosan-based network binder for silicon/graphite anode
JP2001155737A (en) Binder for electrode of lithium ion secondary cell and its utilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP