JP7360690B2 - Composite and method of manufacturing the composite - Google Patents

Composite and method of manufacturing the composite Download PDF

Info

Publication number
JP7360690B2
JP7360690B2 JP2019167387A JP2019167387A JP7360690B2 JP 7360690 B2 JP7360690 B2 JP 7360690B2 JP 2019167387 A JP2019167387 A JP 2019167387A JP 2019167387 A JP2019167387 A JP 2019167387A JP 7360690 B2 JP7360690 B2 JP 7360690B2
Authority
JP
Japan
Prior art keywords
graphene
photobase generator
carbon
thin film
based thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167387A
Other languages
Japanese (ja)
Other versions
JP2021041671A (en
Inventor
和大 桐原
慶碩 衛
侑揮 沖川
雅一 向田
雅考 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019167387A priority Critical patent/JP7360690B2/en
Publication of JP2021041671A publication Critical patent/JP2021041671A/en
Application granted granted Critical
Publication of JP7360690B2 publication Critical patent/JP7360690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本願は、幅広い濃度領域で電子濃度が制御でき、大気中で長時間安定するN型ドープされた炭素系薄膜を含む複合体と、この複合体の製造方法に関する。 The present application relates to a composite comprising an N-type doped carbon-based thin film that can control the electron concentration over a wide range of concentrations and is stable for long periods in the atmosphere, and a method for manufacturing the composite.

グラフェンを用いた高感度・高速のセンサーまたは高周波デバイスを実用化するためには、グラフェンに欠陥を与えずに、キャリアをP型/N型で自在に制御し安定化する必要がある。グラフェンはP型を示すことがよく知られているが、グラフェンのN型ドープ(電子ドープ)を大気中で長期間安定化する方法は確立されていない。大気中で長時間安定するグラフェンのN型ドープは、特に要求されている技術の1つである。 In order to put into practical use high-sensitivity, high-speed sensors or high-frequency devices using graphene, it is necessary to freely control and stabilize carriers into P-type/N-type without causing defects in graphene. Although it is well known that graphene exhibits P-type, a method for stabilizing N-type doping (electron doping) of graphene in the atmosphere for a long period of time has not been established. N-type doping of graphene, which is stable for long periods in the atmosphere, is one of the technologies in particular demand.

特許文献1には、TTF等の電子供与性有機分子をグラフェン表面に成膜することによって、グラフェンをN型ドープする方法が記載されている。この方法によれば、1013 cm-2以上の電子濃度を有するN型ドープされたグラフェンが得られる。しかしながら、このN型ドープされたグラフェンは、大気中で長期間安定するか不明である。また、このN型ドープされたグラフェンは、1013cm-2未満の電子濃度領域で、電子濃度を自在に制御できない。 Patent Document 1 describes a method of N-doping graphene by forming a film of an electron-donating organic molecule such as TTF on the graphene surface. According to this method, N-type doped graphene with an electron concentration of 10 13 cm -2 or higher is obtained. However, it is unclear whether this N-type doped graphene is stable for long periods in the atmosphere. Further, in this N-type doped graphene, the electron concentration cannot be freely controlled in the electron concentration region of less than 10 13 cm −2 .

国際公開第2014/030534号International Publication No. 2014/030534

本願の課題は、幅広い濃度領域で電子濃度が制御でき、大気中で長時間安定するN型ドープされた炭素系薄膜を含む複合体を提供することである。 The object of the present application is to provide a composite comprising an N-type doped carbon-based thin film whose electron concentration can be controlled over a wide concentration range and which is stable for long periods in the atmosphere.

本願の複合体は、N型ドープされた炭素系薄膜と、炭素系薄膜上に設けられ、光塩基発生剤に由来する塩基の誘導体で、正電荷を帯びた塩基誘導体と、炭素系薄膜上に設けられ、光塩基発生剤から塩基が脱離した物質に由来する酸誘導体とを有する。 The composite of the present application includes an N-type doped carbon-based thin film, a base derivative derived from a photobase generator, which is provided on the carbon-based thin film, and a positively charged base derivative and the carbon-based thin film. and an acid derivative derived from a substance from which a base has been removed from a photobase generator.

本願の複合体の製造方法は、紫外光を透過する基材と、基材上に設けられた炭素系薄膜とを有する積層体の炭素系薄膜上に、光塩基発生剤層を形成する光塩基発生剤層形成工程と、積層体の基材側から、炭素系薄膜に紫外光を照射する紫外光照射工程を有する。 The method for producing a composite of the present application involves forming a photobase generator layer on a carbon-based thin film of a laminate having a base material that transmits ultraviolet light and a carbon-based thin film provided on the base material. The method includes a generator layer forming step and an ultraviolet light irradiation step of irradiating the carbon-based thin film with ultraviolet light from the base material side of the laminate.

本願によれば、幅広い濃度領域で電子濃度が制御でき、大気中で長時間安定するN型ドープされた炭素系薄膜を含む複合体が得られる。 According to the present application, a composite including an N-type doped carbon-based thin film is obtained, in which the electron concentration can be controlled over a wide concentration range and is stable for a long time in the atmosphere.

ある光塩基発生剤の構造、この光塩基発生剤の光反応による構造変化、およびこの光塩基発生剤とグラフェンの相互作用を示す化学式と化学反応式。A chemical formula and a chemical reaction formula showing the structure of a certain photobase generator, the structural change of this photobase generator due to photoreaction, and the interaction between this photobase generator and graphene. (a)実施例の複合体の2層グラフェンのコンダクタンスの経時変化を示すグラフ。(b)実施例の複合体の2層グラフェンの紫外光照射前後の熱起電力を示すグラフ。(a) Graph showing the change over time in the conductance of the bilayer graphene of the composite of the example. (b) A graph showing the thermoelectromotive force of the bilayer graphene of the composite of the example before and after irradiation with ultraviolet light. (a)実施例の複合体の単層グラフェンのコンダクタンスの経時変化を示すグラフ。(b)実施例の複合体の2層グラフェンのコンダクタンスの経時変化を示すグラフ。(a) Graph showing the change over time in the conductance of the single-layer graphene of the composite of the example. (b) A graph showing the change over time in the conductance of the bilayer graphene of the composite of the example. 実施例の複合体の2層グラフェンの熱起電力の経時変化を示すグラフ。2 is a graph showing changes over time in thermoelectromotive force of two-layer graphene of a composite of an example. 実施例の積層体または複合体の2層グラフェンのシート抵抗、Hall係数、キャリア濃度、および移動度の変化を示すグラフ。2 is a graph showing changes in sheet resistance, Hall coefficient, carrier concentration, and mobility of bilayer graphene of a laminate or composite of an example. 実施例の積層体または複合体の単層グラフェンのシート抵抗、Hall係数、キャリア濃度、および移動度の変化を示すグラフ。3 is a graph showing changes in sheet resistance, Hall coefficient, carrier concentration, and mobility of single-layer graphene of a laminate or composite of an example. 実施例の積層体または複合体の1.7層グラフェンの処理前後のラマンスペクトル。Raman spectra of the 1.7-layer graphene of the laminate or composite of the example before and after treatment. 光塩基発生剤を塗布し、紫外光を照射したグラフェンの構造モデル。Structural model of graphene coated with a photobase generator and irradiated with ultraviolet light.

グラフェンの正孔濃度は、大気中で吸着した酸素分子または水分子、および基材の影響を受けて、1013cm-2程度と高い状態である場合が多い。本願の発明者らは、グラフェンへの光塩基発生剤塗布と紫外光照射のプロセスが、グラフェンの正孔濃度の抑制に使用できるだけでなく、光反応進行によってグラフェンをN型ドープできると考え、各種実験を行った。その結果、Seebeck係数およびHall係数の符号変化で、着想どおりにグラフェンがN型ドープされていることを確認した。 The hole concentration in graphene is often as high as about 10 13 cm −2 due to the influence of oxygen or water molecules adsorbed in the atmosphere and the base material. The inventors of this application believe that the process of applying a photobase generator to graphene and irradiating it with ultraviolet light can not only be used to suppress the hole concentration in graphene, but also that graphene can be doped with N-type by the progress of a photoreaction. We conducted an experiment. As a result, the sign change of the Seebeck coefficient and Hall coefficient confirmed that the graphene was N-type doped as conceived.

さらに、このグラフェンのN型ドープ状態は、大気中で2か月経過した後も安定していること、キャリア移動度が光塩基発生剤塗布前の2~4倍に増加し、PET基材上のグラフェンとしては非常に高いキャリア移動度を示すこと、および紫外光照射による欠陥形成がないことなども発見した。この長期安定性は、光塩基発生剤のN型ドーパントの対となる非イオン化(不活性)分子が、N型ドープされたグラフェンに空気中の酸素または水分等が侵入するのを防ぐ保護剤の役割をしているからだと考えた。さらに、光の照射量によって、P型からN型に至る1013cm-2未満のキャリア濃度を任意に制御できることもわかった。 Furthermore, this N-type doped state of graphene is stable even after 2 months in the atmosphere, and the carrier mobility increases 2 to 4 times that before application of the photobase generator. They also discovered that graphene exhibits extremely high carrier mobility for graphene, and that no defects are formed by ultraviolet light irradiation. This long-term stability is due to the fact that the non-ionized (inactive) molecule that is the pair of the N-type dopant in the photobase generator is a protective agent that prevents oxygen or moisture in the air from entering the N-type doped graphene. I thought it was because I was playing a role. Furthermore, it was found that the carrier concentration of less than 10 13 cm −2 from P type to N type can be arbitrarily controlled by adjusting the amount of light irradiation.

本願の実施形態の複合体は、炭素系薄膜と、塩基誘導体と、酸誘導体を備えている。炭素系薄膜は、主成分が炭素であり、厚さが0.24nm以上0.66nm以下の膜である。炭素系薄膜としては、単層グラフェン、2層グラフェン、および2層グラフェン中に部分的に単層グラフェンの領域が混在するグラフェンが挙げられる。光透過率測定によって算出した層数の平均値は、単層グラフェンで0.8以上1.2以下、2層グラフェンで1.8以上2.2以下、2層グラフェン中に部分的に単層グラフェンの領域が混在するグラフェンで0.8以上2.2以下である。 The composite of the embodiment of the present application includes a carbon-based thin film, a base derivative, and an acid derivative. The carbon-based thin film is a film whose main component is carbon and whose thickness is 0.24 nm or more and 0.66 nm or less. Examples of carbon-based thin films include single-layer graphene, double-layer graphene, and graphene in which a single-layer graphene region is partially mixed in double-layer graphene. The average value of the number of layers calculated by light transmittance measurement is 0.8 or more and 1.2 or less for single-layer graphene, 1.8 or more and 2.2 or less for bilayer graphene, and some monolayers in bilayer graphene. It is 0.8 or more and 2.2 or less for graphene in which graphene regions are mixed.

本願の実施形態の炭素系薄膜はN型ドープされている。光塩基発生剤に由来する塩基は、炭素系薄膜のN型ドーパントである。塩基誘導体は、光塩基発生剤に由来する塩基の誘導体である。つまり、塩基誘導体は、光塩基発生剤に紫外光が照射されて発生した塩基が、炭素系薄膜に電子を供与して、正電荷を帯びた物質である。光塩基発生剤は、紫外光が照射されると塩基を発生する。紫外光は波長10nm~400nmの光である。 The carbon-based thin film of the embodiment of the present application is N-type doped. The base derived from the photobase generator is an N-type dopant for the carbon-based thin film. A base derivative is a derivative of a base derived from a photobase generator. In other words, the base derivative is a substance that is positively charged by the base generated by irradiating the photobase generator with ultraviolet light and donating electrons to the carbon-based thin film. A photobase generator generates a base when irradiated with ultraviolet light. Ultraviolet light is light with a wavelength of 10 nm to 400 nm.

光塩基発生剤としては、2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムn-ブチルトリフェニルボラート、および1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジウム2-(3-ベンゾイルフェニル)プロピオナートなどが挙げられ、いずれも市販品として入手できる。光塩基発生剤から発生した塩基および塩基誘導体は炭素系薄膜上に設けられている。この塩基および塩基誘導体は、塩基が炭素系薄膜のN型ドーパントとして機能できれば、炭素系薄膜に接していても、酸誘導体または他の物質を介して炭素系薄膜上に設けられていてもよい。 As a photobase generator, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,2-dicyclohexyl-4 2-(9-oxoxanthen-2-yl)propionic acid , 4,5,5-tetramethylbiguanidium n-butyltriphenylborate, and 1,2-diisopropyl-3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate. Both are commercially available. The base and base derivative generated from the photobase generator are provided on the carbon-based thin film. The base and base derivative may be in contact with the carbon-based thin film or may be provided on the carbon-based thin film via an acid derivative or other substance, as long as the base can function as an N-type dopant for the carbon-based thin film.

酸誘導体は、光塩基発生剤から塩基が脱離した物質に由来する。つまり、酸誘導体は、光塩基発生剤に紫外光が照射されて塩基が発生し、発生した塩基が光塩基発生剤から脱離したときに残った物質自体、この物質からCOなどの簡単な分子が抜けたもの、この物質にHなどの簡単な化学種が付加したもの、またはこの物質の化学構造がそのまま変化したものである。 The acid derivative is derived from a substance from which a base has been removed from a photobase generator. In other words, the acid derivative is the substance itself that remains when the photobase generator is irradiated with ultraviolet light to generate a base, and the generated base is desorbed from the photobase generator. A substance with molecules missing, a simple chemical species such as H + added to this substance, or a substance whose chemical structure has changed as it is.

酸誘導体は炭素系薄膜上に設けられている。酸誘導体は、炭素系薄膜に接していても、塩基、塩基誘導体または他の物質を介して炭素系薄膜上に設けられていてもよい。実施形態の複合体は、紫外光を透過する基材をさらに備え、炭素系薄膜が基材上に設けられていてもよい。基材と、基材上の炭素系薄膜と、炭素系薄膜上の光塩基発生剤を備える多層構造体の基材側から紫外線を照射すれば、実施形態の複合体が簡易に製造できるからである。 The acid derivative is provided on the carbon-based thin film. The acid derivative may be in contact with the carbon-based thin film, or may be provided on the carbon-based thin film via a base, a base derivative, or another substance. The composite of the embodiment may further include a base material that transmits ultraviolet light, and a carbon-based thin film may be provided on the base material. This is because the composite of the embodiment can be easily manufactured by irradiating ultraviolet rays from the base material side of a multilayer structure comprising a base material, a carbon-based thin film on the base material, and a photobase generator on the carbon-based thin film. be.

本願の実施形態の複合体の製造方法は、光塩基発生剤層形成工程と、光塩基発生剤層形成工程後の紫外光照射工程を備えている。光塩基発生剤層形成工程では、積層体の表面に光塩基発生剤層を形成する。積層体は、基材と、基材上に設けられた炭素系薄膜を備えている。光塩基発生剤層は、積層体の表面のうち、炭素系薄膜上に形成される。基材は紫外光を透過する。「紫外光を透過する」とは、その物を介して光塩基発生剤に紫外光を照射したときに、光塩基発生剤が塩基を発生する程度の紫外光透過性を有することをいう。なお、「紫外光を照射する」は、紫外光を含有する光を照射することを意味し、紫外光以外の光も含まれる光を照射することを含む。 The method for producing a composite according to an embodiment of the present application includes a photobase generator layer forming step and an ultraviolet light irradiation step after the photobase generator layer forming step. In the photobase generator layer forming step, a photobase generator layer is formed on the surface of the laminate. The laminate includes a base material and a carbon-based thin film provided on the base material. The photobase generator layer is formed on the carbon-based thin film on the surface of the laminate. The substrate is transparent to ultraviolet light. "Transmits ultraviolet light" means that the photobase generator has ultraviolet light transmittance to such an extent that the photobase generator generates a base when the photobase generator is irradiated with ultraviolet light through the object. Note that "irradiating with ultraviolet light" means irradiating with light containing ultraviolet light, and includes irradiating with light that includes light other than ultraviolet light.

光塩基発生剤層形成工程は、弾性体、例えばジメチルポリシロキサン(PDMS)またはポリイミドフィルムの表面に形成した光塩基発生剤層を、積層体の表面に転写する過程を備えていることが好ましい。この過程により、炭素系薄膜表面に光塩基発生剤が均一かつ十分に塗布される。このため、光塩基発生剤の光反応によるN型ドーピングの効果が炭素系薄膜上で均一に与えられるとともに、炭素系薄膜表面に存在する光塩基発生剤が不十分の場合に空気または水分が炭素系薄膜に侵入してN型ドーピングの効果を損ねることを防止できる。 The photobase generator layer forming step preferably includes a process of transferring the photobase generator layer formed on the surface of an elastic body, such as dimethylpolysiloxane (PDMS) or polyimide film, to the surface of the laminate. Through this process, the photobase generator is uniformly and sufficiently applied to the surface of the carbon-based thin film. For this reason, the effect of N-type doping due to the photoreaction of the photobase generator is uniformly applied to the carbon-based thin film, and when there is insufficient photobase generator present on the surface of the carbon-based thin film, air or moisture may be absorbed into the carbon. It can be prevented from penetrating the system thin film and impairing the effect of N-type doping.

紫外光照射工程では、積層体の基材側から紫外光を照射する。すなわち、基材に紫外光を照射して、基材を透過した紫外光が炭素系薄膜に照射されるようにする。炭素系薄膜は薄いので、基材を介して炭素系薄膜に照射された紫外光は、炭素系薄膜上に形成された光塩基発生剤に届く。光塩基発生剤に届いた紫外光によって、光塩基発生剤は塩基を発生する。この塩基は、構造変化して炭素系薄膜に電子を供与し、さらに塩基誘導体となる。つまり、この塩基は、炭素系薄膜のN型ドーパントとして機能する。 In the ultraviolet light irradiation step, ultraviolet light is irradiated from the base material side of the laminate. That is, the base material is irradiated with ultraviolet light so that the ultraviolet light that has passed through the base material is irradiated onto the carbon-based thin film. Since the carbon-based thin film is thin, the ultraviolet light irradiated onto the carbon-based thin film via the base material reaches the photobase generator formed on the carbon-based thin film. The photobase generator generates a base by the ultraviolet light that reaches the photobase generator. This base undergoes a structural change, donates electrons to the carbon-based thin film, and further becomes a base derivative. In other words, this base functions as an N-type dopant for the carbon-based thin film.

また、積層体の基材側から紫外光を照射することによって、炭素系薄膜と光塩基発生剤の境界で塩基が多く発生し、炭素系薄膜のN型ドープを促進する。塩基誘導体は、正電荷を帯びており、安定化された状態で炭素系薄膜上に存在する。なお、光塩基発生剤から塩基が発生すると、光塩基発生剤から塩基が脱離した物質に由来する酸誘導体も、炭素系薄膜上に存在する。 Furthermore, by irradiating ultraviolet light from the base material side of the laminate, a large amount of base is generated at the boundary between the carbon-based thin film and the photobase generator, promoting N-type doping of the carbon-based thin film. The base derivative is positively charged and exists in a stabilized state on the carbon-based thin film. Note that when a base is generated from the photobase generator, an acid derivative derived from a substance from which the base is removed from the photobase generator also exists on the carbon-based thin film.

なお、炭素系薄膜表面に形成された光塩基発生剤に炭素系薄膜側から紫外光が照射された場合、炭素系薄膜の表面近傍で光反応が完了して塩基と酸誘導体が生成する領域(光反応領域)と、光反応領域の上に堆積し、紫外光と未反応の領域(未反応領域)とが存在する場合もある(図8参照)。光反応領域では、光塩基発生剤は、炭素系薄膜に電子を供与して、炭素系薄膜をN型導電体にできる塩基と、不活性な酸誘導体に変化している。なお、塩基の少なくとも一部は、炭素系薄膜をN型導電体にした後に、塩基誘導体として炭素系薄膜上に存在する。 Note that when the photobase generator formed on the surface of the carbon-based thin film is irradiated with ultraviolet light from the carbon-based thin film side, a region ( In some cases, there is a photoreactive region) and a region deposited on the photoreactive region that does not react with ultraviolet light (unreacted region) (see FIG. 8). In the photoreaction region, the photobase generator changes into a base that donates electrons to the carbon-based thin film and makes the carbon-based thin film an N-type conductor, and an inert acid derivative. Note that at least a portion of the base exists on the carbon-based thin film as a base derivative after the carbon-based thin film is made into an N-type conductor.

この塩基、塩基誘導体、および酸誘導体は、空気中の酸素または水分等が炭素系薄膜表面に侵入することを防いで、炭素系薄膜のN型状態が損なわれるのを抑制する。加えて、未反応領域がある場合、未反応領域も、空気中の酸素または水分等が光反応領域および炭素系薄膜表面に侵入することを防いで、炭素系薄膜のN型状態が損なわれるのを抑制する。このため、塩基、塩基誘導体、および酸誘導体の上に、光塩基発生剤をさらに有する複合体では、炭素系薄膜のN型ドープが、大気中で長時間安定、例えば約2か月間安定する。 The base, base derivative, and acid derivative prevent oxygen or moisture in the air from entering the surface of the carbon-based thin film, thereby suppressing damage to the N-type state of the carbon-based thin film. In addition, if there is an unreacted region, the unreacted region also prevents oxygen or moisture in the air from entering the photoreactive region and the surface of the carbon-based thin film, thereby impairing the N-type state of the carbon-based thin film. suppress. Therefore, in a composite that further includes a photobase generator on top of a base, a base derivative, and an acid derivative, the N-type dope of the carbon-based thin film is stable for a long time in the atmosphere, for example, for about 2 months.

(グラフェンの製造)
銅箔を加熱しながら、プラズマ中の荷電粒子または電子のエネルギーで銅箔中の炭素成分を活性化し、銅箔に含まれる炭素成分、反応容器内に付着した微量の炭素成分、および処理ガスに含まれる微量の炭素成分を用いて、単層グラフェンおよび2層グラフェン(以下、単層グラフェンと2層グラフェンをまとめて、グラフェンと記載することがある)を銅箔上にそれぞれ製造した(特開2015-13797号公報参照)。
(Manufacture of graphene)
While heating the copper foil, the carbon components in the copper foil are activated by the energy of charged particles or electrons in the plasma, and the carbon components contained in the copper foil, trace amounts of carbon components adhering to the inside of the reaction vessel, and the processing gas are Single-layer graphene and double-layer graphene (hereinafter, single-layer graphene and double-layer graphene may be collectively referred to as graphene) were manufactured on copper foil using a trace amount of carbon component (Unexamined Japanese Patent Publication No. (See Publication No. 2015-13797).

(グラフェンのPET基材への転写と積層体の加工)
熱剥離シート(日東電工社製、リバアルファー)上に、銅箔上のグラフェンを貼った。0.5mol/L過硫酸アンモニウムで銅箔をエッチングした後、流水で洗浄した。この熱剥離シートとグラフェンの積層体のグラフェン部分を、A4判のPET基材に貼り付けた。熱加熱することで剥離シートを剥離して、透明のPET基材上にグラフェンが形成された積層体を得た。A4判の積層体を切断して、一辺が10mmの正方形、または幅10mm×長さ20~20mmの長方形の積層体を得た。
(Transfer of graphene to PET base material and processing of laminate)
Graphene on copper foil was pasted on a thermal release sheet (manufactured by Nitto Denko Corporation, Riva Alpha). After etching the copper foil with 0.5 mol/L ammonium persulfate, it was washed with running water. The graphene portion of this thermal release sheet and graphene laminate was attached to an A4 size PET base material. The release sheet was peeled off by heating to obtain a laminate in which graphene was formed on a transparent PET base material. The A4 size laminate was cut to obtain a square laminate with a side of 10 mm or a rectangle with a width of 10 mm and a length of 20 to 20 mm.

(グラフェンの石英基材への転写)
銅箔上のグラフェンの表面に、ポリメタクリル酸メチル樹脂(PMMA)の2質量%アニソール溶液を、3000rpmで30秒間スピンコートした。自然乾燥させた後、0.5mol/L過硫酸アンモニウムで銅箔をエッチングした後、流水で洗浄した。このPMMA層とグラフェンの積層体のグラフェン部分を、一辺が10mmの正方形の石英基材に貼り付けた。アセトンで浸潤してPMMAを除去し、透明の石英基材上にグラフェンが形成された積層体を得た。
(Transfer of graphene to quartz base material)
A 2% by mass anisole solution of polymethyl methacrylate resin (PMMA) was spin-coated on the surface of graphene on the copper foil at 3000 rpm for 30 seconds. After air drying, the copper foil was etched with 0.5 mol/L ammonium persulfate, and then washed with running water. The graphene portion of the PMMA layer and graphene laminate was attached to a square quartz substrate with sides of 10 mm. PMMA was removed by infiltration with acetone to obtain a laminate in which graphene was formed on a transparent quartz substrate.

(グラフェンの層数の測定)
グラフェンの層数測定は、ヘイズメータ(日本電色工業株式会社、NDH5000SP)を用いた光透過率測定によって行った。光源は白色LEDであり、観測エリアは10mm×10mm程度である。グラフェンは1層あたり光透過率が2.3%低下することを用いて、層数nは以下の式で算出できる。
n=LOG(サンプル透過率/基板の透過率)/LOG(0.977)
この算出結果から、測定の誤差等を鑑みて、0.8≦n≦1.2を単層、1.8≦n≦2.2を2層とした。
(Measurement of the number of graphene layers)
The number of graphene layers was measured by light transmittance measurement using a haze meter (Nippon Denshoku Industries Co., Ltd., NDH5000SP). The light source is a white LED, and the observation area is approximately 10 mm x 10 mm. Using the fact that the light transmittance of graphene decreases by 2.3% per layer, the number of layers n can be calculated using the following formula.
n=LOG (sample transmittance/substrate transmittance)/LOG (0.977)
From this calculation result, in consideration of measurement errors and the like, 0.8≦n≦1.2 was set as a single layer, and 1.8≦n≦2.2 was set as a two-layer.

(光塩基発生剤の塗布)
図1に示すように、光塩基発生剤(PBG)の2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(東京化成工業製、O0396)は、陰イオン化した分子A(2-(9-オキソキサンテン-2-イル)プロピオン酸:2-(9-oxoxanthen-2-yl)propionic acid)と陽イオン化した分子B(1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-triazabicyclo[4.4.0]dec-5-ene)から構成される塩である。
(Application of photobase generator)
As shown in Figure 1, the photobase generator (PBG) 1,5,7-triazabicyclo[4.4.0]dec-5-ene 2-(9-oxoxanthen-2-yl)propionic acid (manufactured by Tokyo Kasei Kogyo, O0396) is an anionized molecule A (2-(9-oxoxanthen-2-yl)propionic acid) and a cationized molecule A salt composed of B (1,5,7-triazabicyclo[4.4.0]dec-5-ene: 1,5,7-triazabicyclo[4.4.0]dec-5-ene) be.

この光塩基発生剤の10~20mg/mLメタノール溶液をPDMS(polydimethylsiloxane)シート(東レ SILPOT 184)またはポリイミドフィルム(東レ・デュポン Kapton 20EN、厚さ7μm)上に滴下した。積層体のグラフェンの両端以外の部分または四隅以外の部分に、このPDMSシートまたはポリイミドフィルムを押し当てて、積層体のグラフェンの表面に光塩基発生剤を転写した。ホットプレート上に、表面に光塩基発生剤が設けられたこの積層体を載せ、大気中80℃で20分間乾燥して、溶媒のメタノールを除去した。 A 10 to 20 mg/mL methanol solution of this photobase generator was dropped onto a PDMS (polydimethylsiloxane) sheet (Toray SILPOT 184) or a polyimide film (DuPont Toray Kapton 20EN, thickness 7 μm). The PDMS sheet or polyimide film was pressed against a portion other than both ends or four corners of the graphene in the laminate to transfer the photobase generator onto the surface of the graphene in the laminate. This laminate, the surface of which was provided with a photobase generator, was placed on a hot plate and dried in the air at 80° C. for 20 minutes to remove methanol as a solvent.

(紫外光照射)
光源(分光計器製、高強度分光光源:SM25型ハイパーモノライト)を用いて、石英基材およびPET基材側から、波長340nm、最大強度1.3mWcm-2の紫外光(UV)を最大460秒間照射して、石英基材またはPET基材と、グラフェンと、光塩基発生剤に由来する物質を備える複合体を得た。
(Ultraviolet light irradiation)
Using a light source (manufactured by Spectrometer, high-intensity spectral light source: SM25 type Hyper Monolight), ultraviolet light (UV) with a wavelength of 340 nm and a maximum intensity of 1.3 mWcm -2 is emitted at a maximum of 460 nm from the quartz and PET substrate sides. After irradiation for seconds, a composite comprising a quartz substrate or a PET substrate, graphene, and a substance derived from a photobase generator was obtained.

(コンダクタンスと熱起電力の測定)
複合体のグラフェンの光塩基発生剤が設けられていない両端部分は、コンダクタンス測定用の電極および温度計測用の熱電対を接触させる部分である。複合体のグラフェンのコンダクタンスと熱起電力を測定しながら紫外光照射を行ない、照射量の増加によるグラフェンのキャリアのP型からN型への経時変化を測定した。グラフェンの両端部分に、コンダクタンス測定装置(ケースレーインスツルメンツ製、2400型ソースメータ)のプローブ電極を接触させ、2端子間において、1mAの一定のバイアス電流を印加しながら、グラフェンのコンダクタンスを測定した。
(Measurement of conductance and thermoelectromotive force)
Both end portions of the graphene of the composite where the photobase generator is not provided are portions that are brought into contact with an electrode for conductance measurement and a thermocouple for temperature measurement. Ultraviolet light irradiation was performed while measuring the conductance and thermoelectromotive force of graphene in the composite, and the change over time of graphene carriers from P-type to N-type as the irradiation amount increased was measured. Probe electrodes of a conductance measuring device (2400 type source meter, manufactured by Keithley Instruments) were brought into contact with both ends of the graphene, and the conductance of the graphene was measured while applying a constant bias current of 1 mA between the two terminals.

電気的に絶縁し、離れて設けられた2種の金属板の上に、複合体のグラフェンを載せた。グラフェンの両端部分に温度計測用の薄型K熱電対をそれぞれ接触させて固定した。この2種の金属板を熱浴として加熱し、互いに異なる温度に制御することで温度差を生じさせて、その際の両端の2つのK熱電対による温度差と、2つのK熱電対のアルメル線間の熱起電力を、計測装置(日置電機製、LR8400型メモリハイロガー)で記録した。 The graphene composite was placed on two electrically insulated and separated metal plates. Thin K thermocouples for temperature measurement were fixed in contact with both ends of the graphene. These two kinds of metal plates are heated as a heat bath and controlled to different temperatures to create a temperature difference. The thermoelectromotive force between the wires was recorded with a measuring device (manufactured by Hioki Electric, LR8400 type Memory Hilogger).

(シート抵抗とHall係数の測定)
積層体または複合体のグラフェンの光塩基発生剤が設けられていない四隅に金電極を接触させ、Hall計測システム(東陽テクニカ製、Resitest8300型)を用いて、van der Pauw法でこれら4端子間に対するシート抵抗とHall係数を測定した。すなわち、基材とグラフェンから構成される積層体、基材とグラフェンと光塩基発生剤から構成される複合体、および基材とグラフェンと光塩基発生剤から構成され、光塩基発生剤に紫外光を照射した後の複合体の3種類の試料のグラフェンのシート抵抗とHall係数を測定した。試料への印加電流は0.2~0.5mAとし、印加磁場は正磁場・負磁場共に0.55Tとした。
(Measurement of sheet resistance and Hall coefficient)
Gold electrodes are brought into contact with the four corners of the graphene of the stack or composite where the photobase generator is not provided, and the distance between these four terminals is measured by the van der Pauw method using a Hall measurement system (Resitest 8300, manufactured by Toyo Technica). Sheet resistance and Hall coefficient were measured. In other words, a laminate consisting of a base material and graphene, a composite body consisting of a base material, graphene, and a photobase generator, and a composite body consisting of a base material, graphene, and a photobase generator, in which the photobase generator is exposed to ultraviolet light. The sheet resistance and Hall coefficient of graphene of three types of composite samples after irradiation were measured. The current applied to the sample was 0.2 to 0.5 mA, and the applied magnetic field was 0.55 T for both positive and negative magnetic fields.

(キャリア濃度と移動度の算出)
グラフェンのキャリア濃度nと移動度μは、シート抵抗R、Hall係数R、電荷素量e(=1.602×10-19C)用いて、n=t/(eR)とμ=R/(tRs)の式により算出した。ここでtはグラフェンの厚さであり、単層、2層、1.7層のグラフェンの厚さをそれぞれ0.3nm、0.6nm、0.51nmとした。Rの符号の正負により、グラフェンのキャリアが正孔(P型)であるか、電子(N型)であるかを判定した。
(Calculation of carrier concentration and mobility)
The carrier concentration n and mobility μ of graphene are calculated as follows: n=t/(eR H ) and μ= Calculated using the formula R H /(tRs). Here, t is the thickness of graphene, and the thicknesses of single-layer, double-layer, and 1.7-layer graphene were 0.3 nm, 0.6 nm, and 0.51 nm, respectively. Based on the sign of R H , it was determined whether the carriers in graphene were holes (P type) or electrons (N type).

(ラマンスペクトルの測定)
光塩基発生剤の塗布と紫外光照射によるグラフェンの欠陥形成および構造変化を調べるため、レーザラマン分光光度計(日本分光製、NRS-2100型)を用いて、積層体または複合体のグラフェンのラマンスペクトルを測定した。本実験では、グラフェンのラマンスペクトルを明瞭に測定するために、上面が一辺10mmの正方形で厚さ1.0mmの合成石英基板を基材とした。また、光塩基発生剤自体のラマンスペクトルと、グラフェンのラマンスペクトルの重複が大きいため、合成石英基板上のグラフェンのラマンスペクトルを測定した後、このグラフェンに光塩基発生剤の塗布と紫外光照射を行い、光塩基発生剤をメタノールで洗浄除去してから、グラフェンのラマンスペクトルを再度測定した。
(Raman spectrum measurement)
In order to investigate defect formation and structural changes in graphene due to application of a photobase generator and irradiation with ultraviolet light, we measured the Raman spectrum of graphene in a stack or composite using a laser Raman spectrophotometer (NRS-2100, manufactured by JASCO Corporation). was measured. In this experiment, in order to clearly measure the Raman spectrum of graphene, a synthetic quartz substrate with a square top surface of 10 mm on a side and a thickness of 1.0 mm was used as the base material. In addition, since there is a large overlap between the Raman spectrum of the photobase generator itself and the Raman spectrum of graphene, after measuring the Raman spectrum of graphene on a synthetic quartz substrate, we coated the graphene with a photobase generator and irradiated it with ultraviolet light. After washing and removing the photobase generator with methanol, the Raman spectrum of graphene was measured again.

(結果)
図2(a)は、PET基材と2層グラフェンの積層体の2層グラフェン上に光塩基発生剤を塗布した後、PET基材に紫外光を照射したときの2層グラフェンのコンダクタンスの経時変化を示している。時刻50秒で紫外光照射を開始すると、2層グラフェンのコンダクタンスは減少し、時刻70秒(紫外光照射開始後20秒)程度で最低値に達した後、再び増加に転じて、時刻300秒(紫外光照射開始後250秒)で飽和に近づいた。この変化は、紫外光によって光塩基発生剤から生じた塩基によるものであると考えられる。
(result)
Figure 2(a) shows the conductance of the two-layer graphene over time when the PET base material is irradiated with ultraviolet light after a photobase generator is applied onto the two-layer graphene in a laminate of a PET base material and two-layer graphene. It shows change. When UV light irradiation was started at a time of 50 seconds, the conductance of the bilayer graphene decreased, reaching the lowest value at about a time of 70 seconds (20 seconds after the start of UV light irradiation), and then started increasing again until a time of 300 seconds. It approached saturation (250 seconds after the start of ultraviolet light irradiation). This change is believed to be due to the base generated from the photobase generator by ultraviolet light.

図1に示すように、2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンは、紫外光照射によって、分子Bがプロトンを1個放出して分子B′の塩基となる。そして、この塩基1分子当たり電子1個をグラフェンに供与することで、グラフェンのドーピング状態を変化、つまりFermiレベルを移動させ、グラフェン特有の電子構造として知られるディラックポイントを横切ることで、グラフェンがP型導電体からN型導電体に変化すると推測される。 As shown in Figure 1, 1,5,7-triazabicyclo[4.4.0]dec-5-ene 2-(9-oxoxanthen-2-yl)propionic acid can be molecule-treated by ultraviolet light irradiation. B releases one proton and becomes the base of molecule B'. By donating one electron per molecule of this base to graphene, the doping state of graphene is changed, that is, the Fermi level is moved, and graphene crosses the Dirac point, which is known as the electronic structure unique to graphene. It is presumed that the conductor changes from a type conductor to an N-type conductor.

そこで、図2(a)に示す紫外光照射の前後で、2層グラフェンの熱起電力を測定した結果を図2(b)に示す。紫外光照射前後に関わらず、2層グラフェンの熱起電力は、温度変化に対して比例しており、Seebeck係数が求められた。その結果、紫外光照射前の2層グラフェンのSeebeck係数は+30μV/Kで、紫外光照射前の2層グラフェンはP型導電体であった。これに対して、紫外光照射後の2層グラフェンのSeebeck係数は-50μV/Kで、紫外光照射後の2層グラフェンはN型導電体となった。したがって、上記の推測どおり、P型導電体であったグラフェンが、光塩基発生剤の反応によってディラックポイントを横切り、紫外光照射後の2層グラフェンがN型導電体に変化することが確認できた。 Therefore, the results of measuring the thermoelectromotive force of the bilayer graphene before and after the ultraviolet light irradiation shown in FIG. 2(a) are shown in FIG. 2(b). Regardless of whether before or after irradiation with ultraviolet light, the thermoelectromotive force of bilayer graphene was proportional to the temperature change, and the Seebeck coefficient was determined. As a result, the Seebeck coefficient of the two-layer graphene before irradiation with ultraviolet light was +30 μV/K, and the two-layer graphene before irradiation with ultraviolet light was a P-type conductor. On the other hand, the Seebeck coefficient of the two-layer graphene after irradiation with ultraviolet light was −50 μV/K, and the two-layer graphene after irradiation with ultraviolet light became an N-type conductor. Therefore, as predicted above, it was confirmed that graphene, which was a P-type conductor, crossed the Dirac point due to the reaction of the photobase generator, and the bilayer graphene after irradiation with ultraviolet light changed to an N-type conductor. .

図3(a)は、PET基材と単層グラフェンの積層体の単層グラフェン上に光塩基発生剤を塗布した後、PET基材に紫外光を照射したときの単層グラフェンのコンダクタンスの経時変化を示している。図2(a)に示す2層グラフェンのコンダクタンスの変化が、単層グラフェンでも同様にみられた。図3(b)は、PET基材と2層グラフェンの積層体の2層グラフェン上に光塩基発生剤を塗布した後、PET基材に紫外光を照射したときの2層グラフェンのコンダクタンスの経時変化を示している。なお、図2(a)に示す試料と異なる試料で、2層グラフェンのコンダクタンスを測定した。図2(a)および図3(b)に示すように、2層グラフェンのコンダクタンス変化は再現性があった。 Figure 3(a) shows the conductance of single-layer graphene over time when the PET base material is irradiated with ultraviolet light after a photobase generator is applied onto the single-layer graphene in a laminate of a PET base material and single-layer graphene. It shows change. The change in conductance of the two-layer graphene shown in FIG. 2(a) was also observed in the single-layer graphene. Figure 3(b) shows the conductance of the two-layer graphene over time when the PET base material is irradiated with ultraviolet light after a photobase generator is applied onto the two-layer graphene in a laminate of a PET base material and two-layer graphene. It shows change. Note that the conductance of bilayer graphene was measured using a sample different from the sample shown in FIG. 2(a). As shown in FIGS. 2(a) and 3(b), the conductance change of the bilayer graphene was reproducible.

図3(a)および図3(b)に示す実験では、紫外光の照射密度を1.3mW/cmとしたが、単層グラフェンおよび2層グラフェンのいずれについても、紫外光照射開始後約300秒程度で、紫外光照射後のコンダクタンス再増加が飽和していた。紫外光照射量に応じて、単層グラフェンおよび2層グラフェンのN型ドーピング状態が飽和していると考えられる。 In the experiments shown in Figures 3(a) and 3(b), the irradiation density of ultraviolet light was 1.3 mW/ cm2 , but for both single-layer graphene and bilayer graphene, approximately The re-increase in conductance after ultraviolet light irradiation was saturated in about 300 seconds. It is considered that the N-type doping state of single-layer graphene and bilayer graphene becomes saturated depending on the amount of ultraviolet light irradiation.

図4は、PET基材と2層グラフェンの積層体の2層グラフェン上に光塩基発生剤を塗布した後、PET基材に紫外光を照射したときの2層グラフェンの熱起電力の経時変化を示している。この実験では2層グラフェンに6Kの一定の温度差を付与して、熱起電力を計測した。その結果、紫外光照射を開始すると速やかに熱起電力の符号が正から負に反転し、2層グラフェンがP型導電体からN型導電体へ変化した。Hall係数についても同様に、単層グラフェンと2層グラフェンの両方で、紫外光照射による符号の反転(P型からN型へ変化)を確認した。 Figure 4 shows the change over time in the thermoelectromotive force of the two-layer graphene when the PET base material was irradiated with ultraviolet light after a photobase generator was applied onto the two-layer graphene in a laminate of a PET base material and two-layer graphene. It shows. In this experiment, a constant temperature difference of 6K was applied to the bilayer graphene and the thermoelectromotive force was measured. As a result, as soon as ultraviolet light irradiation was started, the sign of the thermoelectromotive force reversed from positive to negative, and the bilayer graphene changed from a P-type conductor to an N-type conductor. Regarding the Hall coefficient, we also confirmed that the sign of both single-layer graphene and bilayer graphene was reversed (changed from P-type to N-type) by ultraviolet light irradiation.

図5は、PET基材上の2層グラフェンのシート抵抗およびHall係数の測定結果と、それらによって算出されるキャリア濃度および移動度の値を、2層グラフェンへの光塩基発生剤塗布前(処理前)、2層グラフェンへのPBG塗布後紫外光未照射の状態、PET基材側からPBGに紫外光を照射した後の3つの過程でそれぞれ示した。この実験では、紫外光の照射密度を1.3mW/cm、照射時間を300秒とした。 Figure 5 shows the measurement results of the sheet resistance and Hall coefficient of two-layer graphene on a PET substrate, and the values of carrier concentration and mobility calculated from them, before application of a photobase generator to the two-layer graphene (treatment). (before), a state in which PBG was applied to two-layer graphene but not irradiated with ultraviolet light, and a state in which PBG was irradiated with ultraviolet light from the PET base material side. In this experiment, the irradiation density of ultraviolet light was 1.3 mW/cm 2 and the irradiation time was 300 seconds.

処理前の2層グラフェンは、従来よく知られているように、P型(Hall係数の符号が正)であり、キャリア(正孔)濃度が約2.0×1013cm-2、移動度が約1200cm/Vsであった。これに対して、2層グラフェンにPBGを塗布した直後では、2層グラフェンはN型(Hall係数の符号が負)に転じたが、そのまま暗中でHall係数測定を続けると、PBG塗布50分後には再びP型に戻った。 As is well known, the two-layer graphene before treatment is P-type (Hall coefficient has a positive sign), has a carrier (hole) concentration of approximately 2.0×10 13 cm −2 , and has a mobility was approximately 1200 cm 2 /Vs. On the other hand, immediately after applying PBG to the bilayer graphene, the bilayer graphene turned to N-type (the sign of the Hall coefficient is negative), but if we continued to measure the Hall coefficient in the dark, 50 minutes after applying PBG, has returned to type P.

PBG塗布直後の2層グラフェンのキャリア濃度の絶対値は、PBG塗布前の2層グラフェンのキャリア濃度の絶対値と比べて約1/10に低下し、移動度は1.5~2.0倍に増加した。PBG塗布のみでも、2層グラフェンはN型に変化した。これは、自然の屋内光が存在する実験室でPBG塗布工程を行っているために、一部のPBGが反応して、塗布直後に2層グラフェンがN型となったものの、紫外光照射量が少なくN型ドーピング状態が不安定で、2層グラフェンがすぐにP型に復帰したと考えられる。 The absolute value of the carrier concentration of the two-layer graphene immediately after applying PBG is reduced to about 1/10 compared to the absolute value of the carrier concentration of the two-layer graphene before applying PBG, and the mobility is 1.5 to 2.0 times higher. increased to Even with PBG coating alone, the bilayer graphene changed to N-type. This is because the PBG coating process was performed in a laboratory with natural indoor light, so some PBG reacted and the bilayer graphene became N-type immediately after coating, but the amount of UV light irradiation was It is thought that the N-type doping state was unstable due to the small amount of N-type doping, and the bilayer graphene quickly returned to P-type.

また、大気中のグラフェンは、表面に吸着した酸素分子や水分子の影響を受けて、正孔が大量にドーピングされた状態である。このグラフェンに光塩基発生剤を塗布することによって、グラフェンの表面に吸着していたこれらの分子がある程度除去され、PBG塗布後のキャリア濃度の絶対値が1/10程度に低下したと考えられる。つづいて、UV照射後の2層グラフェンのHall係数の符号は再度負に転じ、2層グラフェンがN型である状態は、UV照射後150分経過後、さらには2か月経過後も維持された。 Furthermore, graphene in the atmosphere is heavily doped with holes due to the influence of oxygen and water molecules adsorbed on its surface. It is thought that by applying a photobase generator to this graphene, these molecules adsorbed on the surface of graphene were removed to some extent, and the absolute value of the carrier concentration after PBG application was reduced to about 1/10. Subsequently, the sign of the Hall coefficient of bilayer graphene after UV irradiation turned negative again, and the N-type state of bilayer graphene was maintained even after 150 minutes and even 2 months after UV irradiation. Ta.

キャリア(電子)濃度は、UV照射直後に2.1×1012cm-2で、150分後にいったん増加したものの、2か月後もUV照射直後とほぼ同じ電子濃度を保っていた。また、UV照射後の2層グラフェンの電子の移動度は、2320~3560cm/Vsとなり、PBG塗布前の正孔の移動度の2倍以上の値を2か月維持した。 The carrier (electron) concentration was 2.1×10 12 cm −2 immediately after UV irradiation, and although it increased once after 150 minutes, the electron concentration remained almost the same as immediately after UV irradiation even after 2 months. Furthermore, the electron mobility of the two-layer graphene after UV irradiation was 2320 to 3560 cm 2 /Vs, which was maintained for two months at a value more than twice the hole mobility before PBG application.

単層グラフェンについて、図5に示す実験と同じ実験を行った結果を図6に示す。処理前の単層グラフェンは、2層グラフェンと同様に、P型(Hall係数の符号が正)であり、キャリア(正孔)濃度が約1.6×1013cm-2、移動度約1000cm/Vsであった。これに対し、PBG塗布後はN型導電体(Hall係数の符号が負)に転じた。これは、自然の屋内光が存在する実験室でPBG塗布工程を行っているために、一部のPBGが反応して、塗布直後に単層グラフェンがN型導電体となったものの、紫外光照射量が少なくN型ドーピング状態が低く不安定であった。 FIG. 6 shows the results of the same experiment as shown in FIG. 5 for single-layer graphene. Like the bilayer graphene, the single-layer graphene before treatment is P-type (the sign of the Hall coefficient is positive), has a carrier (hole) concentration of approximately 1.6 × 10 13 cm -2 , and a mobility of approximately 1000 cm. 2 /Vs. On the other hand, after applying PBG, the conductor changed to an N-type conductor (the sign of the Hall coefficient was negative). This is because the PBG coating process was performed in a laboratory with natural indoor light, so some of the PBG reacted and the single-layer graphene became an N-type conductor immediately after coating, but it was not exposed to ultraviolet light. The irradiation dose was small and the N-type doping state was low and unstable.

加えて、UV照射後150分経過後、さらには2か月経過後も、単層グラフェンがN型の状態が維持され、キャリア(電子)濃度は、2.0×1012cm-2前後(1.3~2.9×1012cm-2)の値を示した。電子の移動度は、PBG塗布後UV照射前で3610~4240cm/Vs、UV照射後で2120~2750cm/Vsとなり、PBG塗布前の正孔の移動度の2倍以上の値を2か月維持した。 In addition, even after 150 minutes and even 2 months after UV irradiation, the monolayer graphene remains in the N-type state, and the carrier (electron) concentration is around 2.0 × 10 12 cm -2 ( 1.3 to 2.9×10 12 cm −2 ). The electron mobility is 3610 to 4240 cm 2 /Vs after PBG application and before UV irradiation, and 2120 to 2750 cm 2 /Vs after UV irradiation, which is more than twice the hole mobility before PBG application. Maintained for a month.

石英基板上の1.7層グラフェンのラマンスペクトルを図7に示す。処理前の1.7層グラフェンでは、1330cm-1付近のDバンド、1580cm-1付近のGバンド、2700cm-1付近の2Dバンドの3つの特徴的なピークが、石英基板のスペクトルに影響を受けることなく測定できた。PBG塗布およびUV照射(照射密度1.3mW/cm、照射時間300秒)後に、光塩基発生剤を除去して測定した石英基板上の1.7層グラフェンのラマンスペクトルは、処理前の1.7層グラフェンのラマンスペクトルから大きな変化がなかった。特に、グラフェンに生じる欠陥形成に起因するDバンドの相対強度は変化がなかった。これは、PBG塗布およびUV照射による1.7層グラフェンの欠陥形成が認められなかったことを示している。 Figure 7 shows the Raman spectrum of 1.7-layer graphene on a quartz substrate. In the 1.7-layer graphene before treatment, three characteristic peaks, the D band around 1330 cm, the G band around 1580 cm, and the 2D band around 2700 cm , are affected by the spectrum of the quartz substrate. I was able to measure it without any problems. After PBG coating and UV irradiation (irradiation density 1.3 mW/cm 2 , irradiation time 300 seconds), the photobase generator was removed and the Raman spectrum of the 1.7-layer graphene on the quartz substrate was measured as 1. .There was no significant change from the Raman spectrum of 7-layer graphene. In particular, the relative intensity of the D band, which is caused by defect formation in graphene, did not change. This indicates that no defects were observed in the 1.7-layer graphene due to PBG application and UV irradiation.

また、このことは、2層グラフェンおよび単層グラフェンが、光塩基発生剤塗布前に比べて約2倍以上高いキャリア移動度を2か月維持している図5および図6の結果を裏付けるものである。図2から図7に示す実験結果から、以下の4つが確認できた。
(1)光塩基発生剤塗布および紫外光照射によって、2層グラフェンおよび単層グラフェンがP型からN型に変化することを熱起電力(Seebeck係数)およびHall係数の符号変化で確認し、N型導電体の状態を2か月保持できた。
(2)2層グラフェンおよび単層グラフェンのN型への変化後の電子濃度は、照射密度1.3mW/cm、照射時間300秒の紫外光照射により、光塩基発生剤塗布前の正孔濃度に比べて約1/10に低下した。
This also supports the results shown in Figures 5 and 6, in which double-layer graphene and single-layer graphene maintain carrier mobility that is approximately twice as high for two months compared to before application of the photobase generator. It is. From the experimental results shown in FIGS. 2 to 7, the following four points were confirmed.
(1) It was confirmed by the change in sign of thermoelectromotive force (Seebeck coefficient) and Hall coefficient that double-layer graphene and single-layer graphene changed from P-type to N-type by application of a photobase generator and irradiation with ultraviolet light. The state of the mold conductor could be maintained for two months.
(2) The electron concentration of double-layer graphene and single-layer graphene after changing to N-type is determined by ultraviolet light irradiation at an irradiation density of 1.3 mW/cm 2 and an irradiation time of 300 seconds. The concentration was reduced to about 1/10.

(3)グラフェンのN型への変化後のキャリア移動度は、照射密度1.3mW/cm、照射時間300秒の紫外光照射により、光塩基発生剤塗布前のキャリア移動度に比べて約2倍以上増加した。
(4)グラフェンの欠陥形成に起因するラマンスペクトルのDバンド強度の変化は、光塩基発生剤塗布および紫外光照射後(PBG塗布&UV照射→PBG除去後)でも観測されず、これらの処理によるグラフェンの欠陥形成が認められなかった。
(3) The carrier mobility after graphene changes to N-type is approximately 30% higher than that before application of the photobase generator by ultraviolet light irradiation at an irradiation density of 1.3 mW/cm 2 and an irradiation time of 300 seconds. It has increased more than twice.
(4) Changes in the D-band intensity of the Raman spectrum due to defect formation in graphene were not observed even after application of a photobase generator and irradiation with ultraviolet light (PBG application & UV irradiation → after PBG removal). No defect formation was observed.

ここで、光塩基発生剤がグラフェンのドーピング状態を紫外光照射によってP型からN型に変化させるメカニズムと、N型状態が2か月にわたり安定に保持されていた原因について考察する。グラフェン上に塗布された光塩基発生剤に紫外光が照射されると、図1に示すように、分子AからCOが分離し、さらに分子Bから分離したプロトンが結合した分子A′に変化し、非イオン化して安定化する。一方、分子Bからプロトンを1個放出した分子B′は塩基となり、1分子当たり電子1個をグラフェンに供与して、正イオン化した塩基誘導体である分子B′′となり安定化する。 Here, we will discuss the mechanism by which the photobase generator changes the doping state of graphene from P-type to N-type by irradiation with ultraviolet light, and the reason why the N-type state was stably maintained for two months. When the photobase generator coated on graphene is irradiated with ultraviolet light, as shown in Figure 1, CO2 separates from molecule A, which then changes to molecule A', which is bonded with the proton separated from molecule B. It becomes non-ionized and stabilized. On the other hand, molecule B', which releases one proton from molecule B, becomes a base, donates one electron per molecule to graphene, and becomes stable as molecule B'', which is a positively ionized base derivative.

グラフェンの代わりに色素であるフェノールレッドを用いて、PBG塗布とUV照射を行った。PET基材上にフェノールレッド膜を形成し、フェノールレッド膜上の光塩基発生剤を塗布し、PET基材側からフェノールレッド膜に紫外光を最大10分間照射した。紫外光照射時間が長いほど、フェノールレッド膜の赤色が強くなったことを、光塩基発生剤を塗布したフェノールレッド膜の光吸収スペクトルで確認した。フェノールレッドは電子が供与されると赤色を帯びる。つまり、光塩基発生剤を塗布したフェノールレッド膜は、紫外光照射によって分子B′から電子を供与された。これより、電子を受容できる膜上に光塩基発生剤を塗布し、紫外光照射すると、光塩基発生剤から生じた塩基がこの膜に電子を供与して、塩基誘導体となって膜上に存在すると考えられる。 PBG coating and UV irradiation were performed using the pigment phenol red instead of graphene. A phenol red film was formed on a PET base material, a photobase generator was coated on the phenol red film, and the phenol red film was irradiated with ultraviolet light for a maximum of 10 minutes from the PET base material side. It was confirmed by the light absorption spectrum of the phenol red film coated with the photobase generator that the longer the UV light irradiation time, the stronger the red color of the phenol red film. Phenol red takes on a red color when electrons are donated. In other words, the phenol red film coated with the photobase generator received electrons from molecule B' when irradiated with ultraviolet light. From this, when a photobase generator is coated on a film that can accept electrons and irradiated with ultraviolet light, the base generated from the photobase generator donates electrons to this film and becomes a base derivative that exists on the film. It is thought that then.

図8に、表面に光塩基発生剤を塗布し、裏面から紫外光を照射したグラフェンの構造モデルを示す。裏面から炭素系薄膜を通過して光塩基発生剤層に紫外光が届いた際に、図1に示した反応によって分子B′と分子A′に変化する。ただし、光塩基発生剤層の厚みによっては、グラフェンの表面近傍で光反応が完了した領域(光反応領域)だけでなく、その上に堆積する未反応の領域(未反応領域)が存在する場合もある。光反応領域では、分子B′が供与した電子によって、P型導電体であるグラフェンは、正孔が消去された後、電子ドープ状態(N型導電体)になる。 FIG. 8 shows a structural model of graphene coated with a photobase generator on the front surface and irradiated with ultraviolet light from the back surface. When ultraviolet light passes through the carbon-based thin film from the back surface and reaches the photobase generator layer, it changes into molecules B' and A' by the reaction shown in FIG. However, depending on the thickness of the photobase generator layer, there may be not only a region where the photoreaction has been completed near the graphene surface (photoreactive region), but also an unreacted region (unreacted region) deposited on top of it. There is also. In the photoreaction region, the holes in graphene, which is a P-type conductor, are erased by the electrons donated by the molecule B', and then the graphene becomes an electron-doped state (N-type conductor).

なお、図8には示していないが、電子を供与した分子B′は、塩基誘導体である分子B′′に変化する。分子A′は不活性でありドーピングには寄与しない。分子B′、分子B′′、および分子A′は、空気中の酸素または水分等がグラフェン表面に侵入してグラフェンのN型状態を損なうのを防ぎ、大気中でのN型導電体の安定性を与えていると考えられる。加えて、未反応領域も、空気中の酸素または水分等が光反応領域またはグラフェン表面に侵入してN型状態を損なうのを防ぎ、大気中でのN型導電体の安定性を与えていると考えられる。 Although not shown in FIG. 8, the electron-donated molecule B' changes into a base derivative molecule B''. Molecule A' is inactive and does not contribute to doping. Molecule B', molecule B'', and molecule A' prevent oxygen or moisture in the air from entering the graphene surface and damaging the N-type state of graphene, and stabilize the N-type conductor in the atmosphere. It is thought that it gives sex. In addition, the unreacted region also prevents oxygen or moisture in the air from entering the photoreactive region or the graphene surface and damaging the N-type state, giving stability to the N-type conductor in the atmosphere. it is conceivable that.

Claims (8)

N型ドープされた炭素系薄膜と、
前記炭素系薄膜上に設けられ、光塩基発生剤に由来する塩基の誘導体で、正電荷を帯びた塩基誘導体と、
前記炭素系薄膜上に設けられ、前記光塩基発生剤から前記塩基が脱離した物質に由来する酸誘導体と、
前記塩基誘導体および前記酸誘導体の上に設けられた前記光塩基発生剤と、
を有する複合体。
an N-type doped carbon-based thin film;
a positively charged base derivative that is provided on the carbon-based thin film and is derived from a photobase generator;
an acid derivative provided on the carbon-based thin film and derived from a substance from which the base has been removed from the photobase generator;
the photobase generator provided on the base derivative and the acid derivative;
A complex with.
紫外光を透過する基材上に設けられ、N型ドープされた炭素系薄膜と、
前記炭素系薄膜上に設けられ、光塩基発生剤に由来する塩基の誘導体で、正電荷を帯びた塩基誘導体と、
前記炭素系薄膜上に設けられ、前記光塩基発生剤から前記塩基が脱離した物質に由来する酸誘導体と、
を有する複合体。
an N-type doped carbon-based thin film provided on a base material that transmits ultraviolet light;
a positively charged base derivative that is provided on the carbon-based thin film and is derived from a photobase generator;
an acid derivative provided on the carbon-based thin film and derived from a substance from which the base has been removed from the photobase generator;
A complex with .
請求項1または2において、
前記炭素系薄膜が、層数の平均値が0.8以上1.2以下である単層グラフェン、層数の平均値が1.8以上2.2以下である2層グラフェン、および層数の平均値が0.8以上2.2以下である2層グラフェン中に部分的に単層グラフェンの領域が混在するグラフェンのいずれかである複合体。
In claim 1 or 2 ,
The carbon-based thin film may include single-layer graphene with an average number of layers of 0.8 or more and 1.2 or less, bilayer graphene with an average number of layers of 1.8 or more and 2.2 or less, and A composite consisting of graphene in which a region of single-layer graphene is partially mixed in a double-layer graphene with an average value of 0.8 or more and 2.2 or less.
請求項1からのいずれかにおいて、
前記光塩基発生剤が2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンである複合体。
In any one of claims 1 to 3 ,
A complex wherein the photobase generator is 1,5,7-triazabicyclo[4.4.0]dec-5-ene 2-(9-oxoxanthen-2-yl)propionic acid.
紫外光を透過する基材と、前記基材上に設けられた炭素系薄膜とを有する積層体の前記炭素系薄膜上に、光塩基発生剤層を形成する光塩基発生剤層形成工程と、
光塩基発生剤層形成工程後、前記積層体の前記基材側から紫外光を照射する紫外光照射工程と、
を有する複合体の製造方法。
A photobase generator layer forming step of forming a photobase generator layer on the carbon-based thin film of a laminate having a base material that transmits ultraviolet light and a carbon-based thin film provided on the base material;
After the photobase generator layer forming step, an ultraviolet light irradiation step of irradiating ultraviolet light from the base material side of the laminate;
A method for producing a composite having the following.
請求項において、
前記光塩基発生剤層形成工程では、弾性体の表面に形成した光塩基発生剤層を、前記炭素系薄膜上に転写する過程を備える複合体の製造方法。
In claim 5 ,
The method for producing a composite body, wherein the photobase generator layer forming step includes transferring the photobase generator layer formed on the surface of the elastic body onto the carbon-based thin film.
請求項またはにおいて、
前記炭素系薄膜が、層数の平均値が0.8以上1.2以下である単層グラフェン、層数の平均値が1.8以上2.2以下である2層グラフェン、および層数の平均値が0.8以上2.2以下である2層グラフェン中に部分的に単層グラフェンの領域が混在するグラフェンのいずれかである複合体の製造方法。
In claim 5 or 6 ,
The carbon-based thin film may include single-layer graphene with an average number of layers of 0.8 or more and 1.2 or less, bilayer graphene with an average number of layers of 1.8 or more and 2.2 or less, and A method for producing a composite comprising graphene in which a region of single-layer graphene is partially mixed in a double-layer graphene having an average value of 0.8 or more and 2.2 or less.
請求項からのいずれかにおいて、
前記光塩基発生剤が2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンである複合体の製造方法。
In any one of claims 5 to 7 ,
A method for producing a composite, wherein the photobase generator is 1,5,7-triazabicyclo[4.4.0]dec-5-ene 2-(9-oxoxanthen-2-yl)propionic acid.
JP2019167387A 2019-09-13 2019-09-13 Composite and method of manufacturing the composite Active JP7360690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167387A JP7360690B2 (en) 2019-09-13 2019-09-13 Composite and method of manufacturing the composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167387A JP7360690B2 (en) 2019-09-13 2019-09-13 Composite and method of manufacturing the composite

Publications (2)

Publication Number Publication Date
JP2021041671A JP2021041671A (en) 2021-03-18
JP7360690B2 true JP7360690B2 (en) 2023-10-13

Family

ID=74861498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167387A Active JP7360690B2 (en) 2019-09-13 2019-09-13 Composite and method of manufacturing the composite

Country Status (1)

Country Link
JP (1) JP7360690B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255564A (en) 2003-02-26 2004-09-16 Samsung Electronics Co Ltd Pattern film making method using carbon nanotube with surface modified by hardening functional group and production method of composite polymer
WO2011074270A1 (en) 2009-12-18 2011-06-23 昭和電工株式会社 Coating liquid
JP2012036040A (en) 2010-08-06 2012-02-23 Fujitsu Ltd Method for forming graphene sheet-based material and graphene sheet-based material
JP2012204184A (en) 2011-03-25 2012-10-22 Toshiba Corp Light-emitting device
JP2019064259A (en) 2017-09-29 2019-04-25 日東電工株式会社 Laminate, optical member and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255564A (en) 2003-02-26 2004-09-16 Samsung Electronics Co Ltd Pattern film making method using carbon nanotube with surface modified by hardening functional group and production method of composite polymer
WO2011074270A1 (en) 2009-12-18 2011-06-23 昭和電工株式会社 Coating liquid
JP2012036040A (en) 2010-08-06 2012-02-23 Fujitsu Ltd Method for forming graphene sheet-based material and graphene sheet-based material
JP2012204184A (en) 2011-03-25 2012-10-22 Toshiba Corp Light-emitting device
JP2019064259A (en) 2017-09-29 2019-04-25 日東電工株式会社 Laminate, optical member and optical device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BALTAZAR Jose, et al.,Photochemical Doping and Tuning of the Work Function and Dirac Point in Graphene Using Photoacid and Photobase Generators,Advanced Functional Materials,2014年,Vol.24,p.5147-5156

Also Published As

Publication number Publication date
JP2021041671A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
Trung et al. High thermal responsiveness of a reduced graphene oxide field‐effect transistor
Kim et al. Tailored Graphene Micropatterns by Wafer‐Scale Direct Transfer for Flexible Chemical Sensor Platform
Pak et al. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons
Kollipara et al. Optical patterning of two-dimensional materials
Polavarapu et al. Alkylamine capped metal nanoparticle “inks” for printable SERS substrates, electronics and broadband photodetectors
ES2785095T3 (en) Interconnected corrugated carbon-based network
Han et al. Sunlight‐Reduced Graphene Oxides as Sensitive Moisture Sensors for Smart Device Design
JP6200094B2 (en) Method and apparatus for patterning graphene oxide
Iqbal et al. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene
Papazoglou et al. Direct laser printing of graphene oxide for resistive chemosensors
KR20150142269A (en) Method of preparing Graphene Nanoribbon Arrays and Sensor comprising the same
Zhao et al. Room temperature NH 3 detection of Ti/graphene devices promoted by visible light illumination
Sheikh et al. Two‐Step Antisolvent Precipitated MAPbI3‐Pellet‐Based Robust Room‐Temperature Ammonia Sensor
JP2016047777A (en) Method for producing graphene thin film, and electronic element and sensor comprising graphene thin film
Lord et al. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS
JP7360690B2 (en) Composite and method of manufacturing the composite
Sun et al. Three-dimensional (3D) crumpled graphene-silver hybrid nanostructures on shape memory polymers for surface-enhanced Raman scattering
Torrisi et al. Graphene oxide modifications by X-rays irradiations in air and vacuum
Duan et al. Enhancement of SO2 sensing performance of micro-ribbon graphene sensors using nitrogen doping and light exposure
Wang et al. meso‐Tritolylcorrole‐Functionalized Single‐walled Carbon Nanotube Donor Acceptor Nanocomposites for NO2 Detection
Jafari et al. Effect of post‐deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine thin films
Okotrub et al. Interaction of NH3 with the reduced surface of graphite fluoride C2F
Guenther et al. Physical properties and structure of thin ion-beam modified polymer films
Kumar et al. Laser annealing of Au/HfO2 bi-layers to fabricate Au nanoparticles without altering the phase of HfO2 for applications in SERS and memory devices
Yogi et al. Trace level sensitivity and selectivity of room temperature NH3 gas sensors based on RGO/ZnO@ SiNWs heterostructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7360690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150