WO2011073589A2 - Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes - Google Patents

Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes Download PDF

Info

Publication number
WO2011073589A2
WO2011073589A2 PCT/FR2010/052784 FR2010052784W WO2011073589A2 WO 2011073589 A2 WO2011073589 A2 WO 2011073589A2 FR 2010052784 W FR2010052784 W FR 2010052784W WO 2011073589 A2 WO2011073589 A2 WO 2011073589A2
Authority
WO
WIPO (PCT)
Prior art keywords
base body
tube
fins
heat exchanger
envelope
Prior art date
Application number
PCT/FR2010/052784
Other languages
English (en)
Other versions
WO2011073589A3 (fr
Inventor
Herveline Robidou
Sébastien BOUDAUD
Dominique Cellerin
Régis SOTTY
Original Assignee
Gea Batignolles Technologies Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gea Batignolles Technologies Thermiques filed Critical Gea Batignolles Technologies Thermiques
Publication of WO2011073589A2 publication Critical patent/WO2011073589A2/fr
Publication of WO2011073589A3 publication Critical patent/WO2011073589A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/154Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • B21C37/26Making finned or ribbed tubes by fixing strip or like material to tubes helically-ribbed tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/127Fastening; Joining by methods involving deformation of the elements by shrinking

Definitions

  • the invention relates to a method for manufacturing tubes for heat exchanger, each tube comprising a basic tubular body, an intermediate casing placed on the periphery of the base body, and fins spirally wound around the intermediate casing.
  • the invention also relates to a heat exchanger comprising several of these tubes.
  • the invention is more particularly concerned with the technical field of tube heat exchangers using air as a secondary exchange fluid, such as equipment of the air-cooling, aero-condenser, aero-heater or aero-evaporator type.
  • the latter are used respectively for the cooling, condensation, heating and evaporation of a fluid, in particular in refining processes, gas treatment and compression stations, gas liquefaction units, coal and gas synthesis, power generation facilities, regasification units, or other fluid processing facilities.
  • such equipment comprises a main heat exchanger provided with a bundle of tubes, each of which comprises in particular a basic tubular body, as well as external fins. It is also provided distribution manifolds and distribution of the fluid between the tubes.
  • a first fluid to be cooled, condensed, heated or evaporated circulates inside the tubular body.
  • the heat treatment of this fluid is performed at the outer fins, by heat exchange with a second fluid flowing to the periphery of each tube, including ambient air.
  • a circulation or forced ventilation of ambient air is provided by fans positioned either below (what is called a forced draft) or above (so-called induced draft) tubes exchanger .
  • the present invention is more particularly concerned with the technical problem of the joining of the intermediate envelope to the basic tubular body.
  • US Pat. No. 3,100,930 discloses a tube for a heat exchanger comprising a basic tubular body hollowed out on its periphery with dovetail grooves for fixing an intermediate envelope.
  • US 5097585 discloses a basic tubular body surrounded by a casing so as to leave an annular space between the base body and the casing. Then, to secure the body and the envelope, is inserted into the body a mandrel that enlarges both the body and the envelope.
  • US Patent 4332073 discloses a method for manufacturing a heat exchanger tube comprising a basic tubular body and a casing attached to the body in a plurality of steps: the casing is heated to expand, for example by a current electric, then apply a hydraulic pressure to the body to expand it, finally reduce the hydraulic pressure in the body and cool the envelope.
  • the present invention is also concerned with the technical problem of securing the basic tubular body with respect to the external exchange fins.
  • a first known solution consists in directly winding, in a helical form, an aluminum strip around the base body, so as to form the fins. This first state of the art may be called "coiled fins".
  • the fins may be embedded in a groove made in the base body, or may be fixed around the body after folding the foot of the fin in an L shape, to increase the contact area between the body and the fin.
  • the foot of the fin can also be knurled to strengthen the holding on the base body.
  • extruded fin tube in which a base tube covered with an aluminum peripheral tube is used.
  • the fins are helically formed in aluminum, using a series of rotating discs. This solution offers the advantage of protecting the base tube against external corrosion.
  • Another way of bringing the fins to the tubular body is to cut the fins in a strip and then insert them around the tube.
  • the main problem lies in the creation of a game, at the junction between the tube and the fin, which is not conducive to heat exchange. To reduce this clearance, the tubular body can be expanded when its thickness is low and the material used is easily deformable.
  • treatments that can be carried out after manufacture such as galvanizing if the tubes and fins are made of steel. In the case of aluminum fins, it is very difficult to get a good contact between the tube and the fin.
  • Another type of assembly provides for brazing the fins on the tubular body, which is made of steel.
  • US-B-7,093,650 relates to a heat exchanger tube comprising, in addition to the body and the fins, an intermediate layer made of resin, covering the base tube and around which are wound the fins.
  • This resin protects the base body against external corrosion phenomena.
  • the disadvantages of this type of assembly are, first of all, related to the addition of a thermal resistance by the resin which is not good heat conductor.
  • these heat exchangers can not be used at temperatures above about 150 ° C. In fact, the resins used either do not resist these temperature ranges or prevent the expansion of the metals at these temperatures.
  • Patent document FR 2369034 discloses a tube for a heat exchanger formed of a basic tubular body, an intermediate envelope and an outer tube.
  • Two sets of fins having a corrugated configuration longitudinally aligned along the tube are formed on the one hand between the base body and the envelope and on the other hand, between the casing and the outer tube in two respective channels.
  • radial deformation is applied to them by means of a magnetic field.
  • the base body is here directly in contact with the fluids circulating in the tube, and is therefore not protected against corrosion.
  • the invention aims to remedy the various disadvantages of the prior art, mentioned above. It aims in particular to provide a method of manufacturing heat exchanger tubes for obtaining heat exchanger tubes which, while relatively economical, are substantially not subject to the phenomenon of corrosion and have good properties of thermal conduction and mechanical strength.
  • the subject of the invention is a method for manufacturing tubes for a heat exchanger, each tube comprising a tubular base body, an intermediate casing placed at the periphery of the base body, and fins spirally wound around of the intermediate envelope, comprising at least the following successive steps:
  • the base body and the intermediate casing are made separately, the external dimensions of the base body, in particular the diameter, being smaller than the internal dimensions of the intermediate casing;
  • the base body is introduced into the interior volume of the intermediate envelope
  • a magnetic field is applied to said base body and to said intermediate envelope so as to mutually connect them;
  • the intermediate casing and the fins are mutually positioned in the configuration that they must adopt once secured, and the intermediate casing and / or the fins are mechanically deformed in order to ensure that they are mutually interconnected.
  • the intermediate envelope is secured to the base body so as to protect it from external corrosion and on the other hand, the fins are secured to the intermediate envelope so as to ensure good thermal conduction.
  • a method of manufacturing heat exchanger tubes according to the invention may advantageously have the following characteristics:
  • said magnetic field is induced by means of a coil surrounding said tube, said tube and said coil are moved relative to one another in successive steps so as to progressively mutually fasten said base body to said intermediate envelope; step by step;
  • said coil has a length of between 50 millimeters and 300 millimeters; - moving said tube and said coil relative to each other in successive steps with a covering, said covering being between 5 millimeters and 30 millimeters;
  • At least one receiving groove of one end of a fin is hollowed out in the intermediate envelope, at least one of the intermediate envelope and fin having a zone of mechanical deformation provided in the vicinity of at least one edge and arranged to ensure a good mechanical strength between the intermediate envelope and the fin and good thermal conduction properties;
  • said groove has a depth of between 0.2 and 0.5 mm.
  • the invention also relates to a heat exchanger comprising several tubes obtained by the above manufacturing method.
  • said base body is longer at each of its ends than said intermediate envelope
  • the heat exchanger comprises a header plate in which are formed orifices adapted to receive said ends of the base body of the tubes, a respective recess being formed at the inlet of each orifice for receiving said intermediate envelope;
  • the intermediate envelope and the fins are made of the same material, in particular aluminum or aluminum alloy, or else copper.
  • Figure 1 is a longitudinal sectional view illustrating a heat exchanger according to the invention
  • Figures 2 and 3 are partial longitudinal sectional views, illustrating more specifically the joining of the various constituent elements of the exchanger according to the invention.
  • FIG. 4 is a graph illustrating, in a comparative manner, the quantity of material used for an exchanger according to the invention, as well as for two exchangers of the prior art.
  • a tube 1 belonging to a heat exchanger comprises, in the usual way, several of these tubes 1 arranged in a bundle, in a number typically between 50 and 300.
  • the exchanger further comprises an inlet and an outlet of a first fluid intended to circulate in the interior volume. of each of the tubes 1.
  • a second fluid is circulated transversely to the tubes 1, by means of fans, in order to enter in heat exchange with the first aforementioned fluid.
  • the tube 1 comprises a tubular base body 10, an intermediate casing 20, as well as peripheral fins 30.
  • the base body 10 is hollow, so as to ensure the passage of the aforementioned first fluid. It is made of any suitable metallic material, such as for example a grade of steel, such as carbon steel or stainless steel, duplex, incolloy, inconel, titanium or even copper.
  • the base body 10 has an outer diameter of between 10 and 60 mm.
  • the intermediate sheath 20, forming a sheath is disposed at the periphery of the base body 10.
  • This intermediate sheath 20 is hollowed out with a groove 22 (shown in FIGS. 2 and 3), extending at its outer periphery according to a spiral shape, especially a helix.
  • the intermediate envelope 20 has a small thickness, here substantially equal to 0.7 mm, preferably 0.5 mm.
  • the fins 30 may have a flat surface, or be provided with disrupters for improving the heat exchange performance.
  • the inner radial end 32 of these fins 30 is embedded in the groove 22 above, as will be explained in more detail in the following.
  • the intermediate envelope 20 and the fins 30 are made of the same material.
  • the base body 10 and the intermediate envelope 20 may have different profiles. Thus, they can both be cylindrical, of circular section, but also in a variant of oblong, oval, elliptical or flattened section.
  • the base body 10 of the tube 1 has a length greater than the length of the intermediate envelope 20, so that at each of its ends 1 1, the base body 10 exceeds between about 5 millimeters (mm) to 80 mm of the intermediate envelope 20.
  • the fins 30 surrounding the intermediate casing 20 over its entire length preferably leave an end 21 of the free intermediate casing 20, without fins, over a portion of length of about 5 to 20 mm.
  • FIG. 1 shows a collector plate 40 of the heat exchanger (not shown here) assembled to the tube 1.
  • a tight assembly of the tube 1 on the collector plate 40 is conventionally carried out by expansion, that is to say that the tube 1 is plastically deformed radially to adhere to the collector plate 40, or by welding.
  • the end 1 1 of the base body 10 is inserted into a substantially cylindrical orifice 41 formed in the collecting plate 40, the end 21 of the intermediate casing 20 with the fins 30 stopping before the orifice 41.
  • the appropriate anti-corrosion paint or resin is then conventionally deposited on the end of the base body 10 before the assembly of the tube 1 on the manifold plate 40, to protect the tube 1 from external corrosion.
  • the intermediate casing 20 of the tube 1 according to the invention extended without fins at its end 21 can penetrate a recess 42 advantageously provided for this purpose at the entrance to the orifice 41 of the collecting plate 40.
  • This introduction of the intermediate casing 20 within the manifold plate 40 ensures a very good protection against corrosion of the base body 10 by the intermediate casing 20, without resorting to the paint or anti-corrosion resin.
  • This method comprises two main stages, namely on the one hand the mutual attachment of the base body 10 with respect to the intermediate casing 20 and, on the other hand, the mutual attachment of the intermediate casing 20 with respect to the fins 30 .
  • the base body 10 and the intermediate envelope 20 are made separately, by any appropriate process. Two alternative methods can then be implemented.
  • a magnetic field whose properties allow the intermediate casing 20 to be crimped on the base body 10, by nonreversible material movement and without intermediate play.
  • a pulsed magnetic field whose variation allows this movement of material.
  • this crimping step by application of a magnetic field, also called magnetoforming is advantageously implemented before the step of securing the intermediate envelope 20 and the fins 30, described below.
  • the base body 10 is inserted into the intermediate casing 20, with a clearance between the base body 10 and the intermediate casing 20 preferably between 0.1 mm and 1 mm. It will be understood that this insertion is carried out without adding heat, cold or lubricant, thanks to the difference in diameters of the base body 10 and the intermediate envelope 20.
  • one end of the base body 10 surrounded by the intermediate envelope 20 is introduced into a coil (not shown) which induces a magnetic field pulsed around this end.
  • the pulsed magnetic field is here created in a manner known per se by fast discharge of capacitors.
  • the intensity of the current flowing through the coil is between 100 and 500 kilo-amperes and the frequency is between 5 and 20 kilo-Herz.
  • the length of the magnetoforming zone is preferably between 50 mm and 300 mm.
  • the pulsed magnetic field causes the displacement of material of the base body 10 towards the intermediate casing 20 and vice versa, without elastic return and thus the securing of the intermediate casing 20 on the basic body 10. There is very little heating of the intermediate casing 20 during this magnetization forming process, so that the intermediate casing 20 maintains a constant thickness and a flawless surface after the magnetization.
  • the base body 10 with the intermediate envelope 20 is moved axially in the coil, with or without rotation, in successive steps, at a speed preferably of between 1 meter / minute (m / min) and 8 m / min. , so as to secure the base body 10 and the intermediate casing 20 in a progressive manner, and to pass the entire length of the tube 1 by the coil to secure the intermediate envelope 20 over the entire length of the base body 10.
  • magnetoforming is carried out entirely at ambient temperature.
  • a vacuum can be created between the base body 10 and the intermediate casing 20.
  • a first end of the tube 1 is closed and connecting a second end of the tube 1 to a vacuum group, for example by screwing, before starting the magnetoforming step which then takes place as described above.
  • the difference in length between the base body 10 and the intermediate envelope 20 described above advantageously facilitates the evacuation.
  • the base body 10 and the intermediate casing 20 can be formed such that, under the normal conditions of use of the tube 1, the outside diameter of the base body 10 is greater than the inside diameter of the casing 20. It is then necessary to apply a stress, including thermal, at least one of these elements, to change its radial dimensions.
  • the intermediate casing 20 is expanded by heating it and / or the base body 10 is compacted by cooling it, and then the base body 10 is introduced into the intermediate casing 20, an operation that is now made possible. Finally, the thermal stress is suppressed, so that the peripheral walls facing the envelope and the base body 10 come close together, without intermediate play.
  • FIG 2 there is the groove 22 for receiving the fins 30, which advantageously has a depth of between 0.2 and 0.5 mm.
  • the transverse dimension, or width, of this groove 22 is slightly greater than that of the inner end 32 of the fins 30, to form a game facilitating the insertion of the latter.
  • the constituent strip of the fins 30 is inserted in the groove 22.
  • the fins 30 and the intermediate envelope 20 are therefore positioned in the final configuration that they must adopt, once the tube 1 has been made.
  • the lateral edges 24 of this groove 22 are then mechanically deformed according to an action represented by the arrows F in FIG. 3, which makes it possible to mutually fasten the fins 30 and the intermediate envelope 20.
  • zone Z of mechanical deformation represented in dotted lines, at the level of the walls facing the fin 30 and the intermediate envelope 20, in the vicinity of at least one edge in particular of a lateral edge of the groove 22.
  • This deformation is for example made by crimping, which is implemented in a manner known per se.
  • the invention achieves the previously mentioned objectives.
  • the invention first ensures the protection of the base body 10 vis-à-vis the external corrosion, which is not allowed by the tubes comprising coiled type fins, as presented in the preamble.
  • the base body 10 is made of a noble material, the extra thickness that it is essential to provide in the material of this base body 10, to make the fins 30 of the recessed type, is no longer necessary thanks to the invention.
  • the advantage of the invention vis-à-vis a tube with extruded fins lies in particular thermal performance. Indeed, at the junction between the intermediate casing 20 and the fin 30, the thickness of the latter is lower in the invention, since the fin 30 is reported. Therefore the surface, which is at the highest temperature and is directly in contact with the air, is more important thanks to the invention. Finally, the invention makes it possible to reduce the amount of aluminum used to manufacture the fins 30.
  • FIG. 4 shows the quantities of aluminum used for the manufacture of different tubes 1.
  • the curve in solid lines is relative to a tube 1 according to the invention.
  • the quantity Q of aluminum which corresponds to the mass of the intermediate envelope 20 and the fins 30, increases continuously with the thickness E of this intermediate envelope 20.
  • the lower curve in phantom lines relates to a tube with fins wound according to the known prior art, the amount of aluminum corresponding only to the mass of the fins.
  • the upper curve in dashed lines is relative to an extruded finned tube according to the known prior art, the amount of aluminum corresponding to the mass of the peripheral tube and vanes integrally formed therewith. For these two other curves, this quantity Q does not vary with the thickness E.
  • FIG. 4 clearly shows the interest of the invention in economic terms, in particular for thicknesses E up to 2.5 mm. It should be noted that the present comparison only relates to the quantities of aluminum. Thus, for the tube with coiled fins (curve in phantom), it is necessary to take into account the extra thickness needed to embed the strip in the base tube. In these circumstances, the quantity of total necessary to produce this type of tube is greater than that used in the invention.
  • the invention also has specific advantages in comparison with the solution presented in US Pat. No. 7,093,650. Indeed, the mutual attachment of the intermediate casing 20 and the fins 30, in the invention, guarantees a better holding mechanical that in this prior art, for which this bonding is implemented by adhesion. Furthermore, the tube 1 for heat exchanger according to the invention can be used at high temperatures, of the order of 400 ° C. Finally, the tube 1 of the invention allows a very satisfactory evacuation of the heat from the base body 10 in the direction of the fins 30, in particular when the intermediate envelope 20 is crimped around the base body 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Le procédé de fabrication de tubes (1) pour échangeur de chaleur comprend les étapes suivantes de réalisation séparée d'un corps de base (10) et d'une enveloppe intermédiaire (20) de diamètre supérieur à celle du corps de base (10), d'introduction du corps de base (10) dans le volume intérieur de l'enveloppe intermédiaire (20), d'application d'un champ magnétique pour les solidariser mutuellement, de positionnement les ailettes (30) par rapport à l'enveloppe intermédiaire (20) et de déformation mécanique de l'enveloppe intermédiaire (20) et/ou les ailettes (30) afin d'assurer leur solidarisation mutuelle. L'échangeur de chaleur comporte des tubes (1) obtenus par ce procédé de fabrication.

Description

Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes
L'invention concerne un procédé de fabrication de tubes pour échangeur de chaleur, chaque tube comprenant un corps tubulaire de base, une enveloppe intermédiaire placée à la périphérie du corps de base, ainsi que des ailettes enroulées en spirale autour de l'enveloppe intermédiare. L'invention concerne également un échangeur de chaleur comprenant plusieurs de ces tubes.
L'invention vise plus particulièrement le domaine technique des échangeurs de chaleur à tubes utilisant l'air comme fluide d'échange secondaire, tels que des équipements de type aéro-réfrigérant, aéro-condenseur, aéro- réchauffeur ou aéro-évaporateur. Ces derniers sont utilisés respectivement pour le refroidissement, la condensation, le réchauffage et l'évaporation d'un fluide, notamment dans des procédés de raffinage, des stations de traitement et de compression du gaz, des unités de liquéfaction de gaz, des unités de synthèse du charbon et du gaz, des installations de production d'électricité, des unités de regazéification, ou toute autre installation de traitement de fluide.
De manière générale, de tels équipements comprennent un échangeur de chaleur principal muni d'un faisceau de tubes, dont chacun comprend notamment un corps tubulaire de base, ainsi que des ailettes externes. Il est par ailleurs prévu des collecteurs de distribution et de répartition du fluide entre les tubes.
Un premier fluide à refroidir, à condenser, à réchauffer ou à évaporer circule à l'intérieur du corps tubulaire. Le traitement thermique de ce fluide s'effectue au niveau des ailettes externes, par échange de chaleur avec un second fluide s'écoulant à la périphérie de chaque tube, notamment de l'air ambiant. Pour cela, une circulation ou ventilation forcée d'air ambiant est assurée par des ventilateurs positionnés soit en dessous (ce qu'on appelle un tirage forcé) ou en dessus (ce qu'on appelle un tirage induit) des tubes de l'échangeur. La présente invention s'intéresse plus particulièrement au problème technique de la solidarisation de l'enveloppe intermédiaire sur le corps tubulaire de base.
On connaît par exemple du document de brevet US 3100930 un tube pour échangeur de chaleur comprenant un corps tubulaire de base creusé sur sa périphérie de rainures en queue d'aronde permettant de fixer une enveloppe intermédiaire.
On connaît aussi du document de brevet EP 0894547 un procédé de fabrication d'un tube pour échangeur de chaleur dans lequel on chauffe l'enveloppe pour la dilater, puis on la place autour du corps de base, de sorte qu'après refroidissement et rétractation, l'enveloppe soit solidarisée sur le corps de base.
Le document de brevet US 5097585 décrit un corps tubulaire de base entouré d'une enveloppe, de sorte à laisser un espace annulaire entre le corps de base et l'enveloppe. Puis, pour solidariser le corps et l'enveloppe, on insère dans le corps un mandrin qui élargit à la fois le corps et l'enveloppe.
Le document de brevet US 4332073 décrit un procédé pour fabriquer un tube pour échangeur de chaleur comprenant un corps tubulaire de base et une enveloppe fixée sur le corps en plusieurs étapes : on chauffe l'enveloppe de sorte à la dilater, par exemple par un courant électrique, puis on applique une pression hydraulique au corps pour le dilater, enfin on réduit la pression hydraulique dans le corps et on refroidit l'enveloppe.
La présente invention s'intéresse aussi au problème technique de la solidarisation du corps tubulaire de base, par rapport aux ailettes externes d'échange.
Une première solution connue consiste à enrouler directement, selon une forme hélicoïdale, un feuillard d'aluminium autour du corps de base, de façon à former les ailettes. Ce premier état de la technique peut être dénommé « à ailettes enroulées ».
A titre d'alternative, les ailettes peuvent être encastrées dans une rainure réalisée dans le corps de base, ou bien encore être fixées autour du corps après pliage du pied de l'ailette selon une forme de L, afin d'augmenter la surface de contact entre le corps et l'ailette. Dans ce dernier cas, le pied de l'ailette peut également être moleté pour en renforcer la tenue sur le corps de base.
Cette solution, dite à ailettes encastrées, implique cependant certains inconvénients. Ainsi, la protection contre la corrosion externe de ce type de tubes n'est pas satisfaisante et, en cas d'utilisation dans un environnement marin ou industriel à forte humidité ambiante, le corps de base peut être sujet à une corrosion sensible, depuis l'extérieur.
Un autre type d'assemblage connu est le tube dit à ailettes extrudées, dans lequel on utilise un tube de base recouvert d'un tube périphérique en aluminium. Les ailettes sont formées de façon hélicoïdale dans l'aluminium, en utilisant une série de disques en rotation. Cette solution offre l'avantage de protéger le tube de base à l'égard de la corrosion externe.
En revanche, elle présente certains inconvénients, liés tout d'abord à la nécessité de reprise des extrémités pour obtenir une couverture complète. Par ailleurs, les procédés de fabrication mis en œuvre sont relativement difficiles à maîtriser. De plus, il est nécessaire de bien maîtriser le contact entre les deux tubes, ce qui nécessite l'utilisation d'outils spécifiques qui ralentissent la fabrication. Enfin, un dernier inconvénient est que la quantité d'aluminium nécessaire pour la fabrication de ce type de tube est quasiment deux fois plus élevée que celle nécessaire pour réaliser les tubes avec des ailettes enroulées, alors que la performance thermique est légèrement inférieure.
Une autre façon de rapporter les ailettes sur le corps tubulaire consiste à réaliser des découpes d'ailettes dans un feuillard, puis à les insérer autour du tube. Le principal problème réside alors dans la création d'un jeu, au niveau de la jonction entre le tube et l'ailette, ce qui n'est pas favorable à l'échange thermique. Pour réduire ce jeu, le corps tubulaire peut être expansé lorsque son épaisseur est faible et que la matière utilisée est facilement déformable. Il existe également des traitements qui peuvent être réalisés après la fabrication, tels que la galvanisation si les tubes et les ailettes sont en acier. Dans le cas d'ailettes en aluminium, il est très difficile d'obtenir un bon contact entre le tube et l'ailette. Un autre type d'assemblage prévoit de braser les ailettes sur le corps tubulaire, lequel est réalisé en acier. Ce procédé permet d'obtenir un tube dont les propriétés thermiques sont intéressantes et qui présente une protection notable vis-à-vis de la corrosion externe. Cependant, les coûts de fabrication qu'implique ce type d'assemblages sont nettement supérieurs à ceux correspondant aux procédés présentés ci-dessus. De plus, pendant l'étape de brasage, le corps de base subit un traitement thermique du fait des températures à atteindre pour la fusion des alliages d'aluminium, ce qui peut altérer sa qualité.
Enfin, US-B-7 093 650 concerne un tube d'échangeur thermique comportant, outre le corps et les ailettes, une couche intermédiaire réalisée en résine, recouvrant le tube de base et autour de laquelle sont enroulées les ailettes. L'utilisation de cette résine permet de protéger le corps de base à l'égard des phénomènes de corrosion externe. Les inconvénients de ce type d'assemblages sont, tout d'abord, liés à l'ajout d'une résistance thermique par la résine qui n'est pas bonne conductrice de la chaleur. D'autre part, ces échangeurs de chaleurs ne peuvent être utilisés à des températures supérieures à environ 150°C. En effet, les résines employées, soit ne résistent pas à ces gammes de températures, soit empêchent la dilatation des métaux à ces températures.
Le document de brevet FR 2369034 décrit un tube pour échangeur de chaleur formé d'un corps tubulaire de base, d'une enveloppe intermédiaire et d'un tube externe. Deux séries d'ailettes ayant une configuration ondulée alignée longitudinalement le long du tube sont formés d'une part entre le corps de base et l'enveloppe et d'autre part, entre l'enveloppe et le tube externe dans deux canaux respectifs. Pour fixer les éléments composant le tube, on leur applique une déformation radiale grâce à un champ magnétique. Cependant, le corps de base est ici directement en contact avec les fluides circulant dans le tube, et n'est donc pas protégé contre la corrosion.
L'invention vise à remédier aux différents inconvénients de l'art antérieur, évoqués ci-dessus. Elle vise en particulier à proposer un procédé de fabrication de tubes d'échangeur de chaleur permettant d'obtenir des tubes d'échangeur de chaleur qui, tout en étant relativement économiques, ne sont sensiblement pas sujet au phénomène de corrosion et présentent de bonnes propriétés de conduction thermique et de tenue mécanique.
A cet effet, l'invention a pour objet un procédé de fabrication de tubes pour échangeur de chaleur, chaque tube comprenant un corps de base tubulaire, une enveloppe intermédiaire placée à la périphérie du corps de base, ainsi que des ailettes enroulées en spirale autour de l'enveloppe intermédiaire, comprenant au moins les étapes successives suivantes:
- on réalise de façon séparée le corps de base et l'enveloppe intermédiaire, les dimensions extérieures du corps de base, notamment le diamètre, étant inférieures aux dimensions intérieures de l'enveloppe intermédiaire;
- on introduit le corps de base dans le volume intérieur de l'enveloppe intermédiaire;
- on applique un champ magnétique audit corps de base et à ladite enveloppe intermédiaire, de façon à les solidariser mutuellement;
- on positionne mutuellement l'enveloppe intermédiaire et les ailettes dans la configuration qu'elles doivent adopter une fois solidarisées, et on déforme mécaniquement l'enveloppe intermédiaire et/ou les ailettes afin d'assurer leur solidarisation mutuelle.
Avec le procédé selon l'invention, d'une part, l'enveloppe intermédiaire est solidarisée sur le corps de base de façon à le protéger de la corrosion externe et d'autre part, les ailettes sont solidarisées sur l'enveloppe intermédiaire de façon à assurer une bonne conduction thermique. Un procédé de fabrication de tubes d'échangeur de chaleur selon l'invention peut présenter avantageusement les caractéristiques suivantes :
- on induit ledit champ magnétique au moyen d'une bobine entourant ledit tube, on déplace ledit tube et ladite bobine l'un par rapport à l'autre par pas successifs de sorte à solidariser progressivement mutuellement ledit corps de base à ladite enveloppe intermédiaire pas à pas ;
- ladite bobine a une longueur comprise entre 50 millimètres et 300 millimètres ; - on déplace ledit tube et ladite bobine l'un par rapport à l'autre par pas successifs avec un recouvrement, ledit recouvrement étant compris entre 5 millimètres et 30 millimètres ;
- on creuse dans l'enveloppe intermédiaire au moins une rainure de réception d'une extrémité d'une ailette, l'une au moins des enveloppe intermédiaire et ailette comportant une zone de déformation mécanique prévue au voisinage d'au moins un bord et agencée pour garantir une bonne tenue mécanique entre l'enveloppe intermédiaire et l'ailette et de bonnes propriétés de conduction thermique ;
- ladite rainure présente une profondeur comprise entre 0,2 et 0,5 mm.
L'invention a aussi pour objet un échangeur de chaleur comprenant plusieurs tubes obtenus par le procédé de fabrication ci-dessus.
Un échangeur de chaleur selon l'invention peut présenter avantageusement les caractéristiques suivantes :
- ledit corps de base est plus long à chacune de ses extrémités que ladite enveloppe intermédiaire ;
- l'échangeur de chaleur comprend une plaque collectrice dans laquelle sont formés des orifices aptes à recevoir lesdites extrémités des corps de base des tubes, un évidement respectif étant formé à l'entrée de chaque orifice pour recevoir ladite enveloppe intermédiaire ;
- l'enveloppe intermédiaire et les ailettes sont réalisées en un même matériau, notamment en aluminium ou en alliage d'aluminium, ou bien en cuivre.
La présente invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple nullement limitatif et illustré par les dessins annexés, dans lesquels :
la figure 1 est une vue en coupe longitudinale illustrant un échangeur de chaleur conforme à l'invention; les figures 2 et 3 sont des vues en coupe longitudinale partielles, illustrant de façon plus précise la solidarisation des différents éléments constitutifs de l'échangeur selon l'invention; et
la figure 4 est un graphique illustrant, de façon comparée, la quantité de matière utilisée pour un échangeur selon l'invention, ainsi que pour deux échangeurs de l'art antérieur.
Sur la figure 1 , on a représenté un tube 1 appartenant à un échangeur de chaleur. Ce dernier comprend, de façon habituelle, plusieurs de ces tubes 1 disposés en faisceau, selon un nombre typiquement compris entre 50 et 300. L'échangeur comporte en outre une entrée et une sortie d'un premier fluide destiné à circuler dans le volume intérieur de chacun des tubes 1 .
De plus, un second fluide, en général de l'air ambiant, est amené à circuler de manière transversale aux tubes 1 , par l'intermédiaire de ventilateurs, afin d'entrer en échange thermique avec le premier fluide précité. Les différents éléments mécaniques évoqués ci-dessus sont classiques, de sorte qu'ils ne sont pas illustrés sur les figures et qu'ils sont présentés de manière succincte dans la description.
Le tube 1 comprend un corps tubulaire de base 10, une enveloppe intermédiaire 20, ainsi que des ailettes 30 périphériques.
Le corps de base 10 est creux, de façon à assurer le passage du premier fluide précité. Il est réalisé en tout matériau métallique approprié, tel que par exemple une nuance d'acier, comme de l'acier au carbone ou inoxydable, du duplex, de l'incolloy, de l'inconel, du titane ou même du cuivre. De façon avantageuse, le corps de base 10 présente un diamètre extérieur compris entre 10 et 60 mm.
L'enveloppe intermédiaire 20, formant une gaine, est disposée à la périphérie du corps de base 10. Cette enveloppe intermédiaire 20 est creusée d'une rainure 22 (représentée sur les figures 2 et 3), s'étendant à sa périphérie extérieure selon une forme de spirale, notamment d'hélice. Avantageusement, l'enveloppe intermédiaire 20 a une faible épaisseur, ici sensiblement égale à 0,7 mm, de préférence 0,5 mm.
De façon connue en soi, les ailettes 30 peuvent présenter une surface plane, ou bien être pourvues de perturbateurs destinés à améliorer les performances d'échange thermique. De plus, l'extrémité radiale interne 32 de ces ailettes 30 est encastrée dans la rainure 22 précitée, comme cela va être expliqué plus en détail dans ce qui suit.
De façon avantageuse, l'enveloppe intermédiaire 20 et les ailettes 30 sont réalisées en un même matériau. A titre purement indicatif, on citera notamment l'aluminium ou un alliage d'aluminium, ou bien encore le cuivre. De plus, le corps de base 10 et l'enveloppe intermédiaire 20 peuvent présenter des profils différents. Ainsi, ils peuvent être tous deux cylindriques, de section circulaire, mais aussi en variante de section oblongue, ovale, elliptique ou aplatie.
Avantageusement, le corps de base 10 du tube 1 a une longueur supérieure à la longueur de l'enveloppe intermédiaire 20, de sorte qu'à chacune de ses extrémités 1 1 , le corps de base 10 dépasse entre environ 5 millimètres (mm) à 80 mm de l'enveloppe intermédiaire 20.
En outre, les ailettes 30 qui entourent l'enveloppe intermédiaire 20 sur toute sa longueur laissent de préférence une extrémité 21 de l'enveloppe intermédiaire 20 libre, sans ailettes, sur une partie de longueur d'environ 5 à 20 mm.
On a représenté sur la figure 1 une plaque collectrice 40 de l'échangeur de chaleur (non représenté ici) assemblée au tube 1 . Un assemblage étanche du tube 1 sur la plaque collectrice 40 est classiquement réalisé par dudgeonnage, c'est-à-dire que le tube 1 est déformé plastiquement radialement pour adhérer à la plaque collectrice 40, ou par soudage. Classiquement, l'extrémité 1 1 du corps de base 10 est inséré dans un orifice 41 sensiblement cylindrique formé dans la plaque collectrice 40, l'extrémité 21 de l'enveloppe intermédiaire 20 avec les ailettes 30 s'arrêtant avant l'orifice 41 . De la peinture ou résine anti-corrosion appropriée est alors classiquement déposée sur l'extrémité du corps de base 10 avant l'assemblage du tube 1 sur la plaque collectrice 40, pour protéger le tube 1 de la corrosion externe.
Avantageusement, comme on peut le voir sur la figure 1 , l'enveloppe intermédiaire 20 du tube 1 selon l'invention prolongée sans ailettes à son extrémité 21 peut pénétrer un évidement 42 avantageusement prévu à cet effet à l'entrée de l'orifice 41 de la plaque collectrice 40. Cette introduction de l'enveloppe intermédiaire 20 au sein de la plaque collectrice 40 permet d'assurer une très bonne protection contre la corrosion du corps de base 10 par l'enveloppe intermédiaire 20, sans avoir recours à de la peinture ou à de la résine anti-corrosion.
Un procédé de fabrication du tube 1 , décrit ci-dessus, va maintenant être explicité plus en détail dans ce qui suit. Ce procédé comprend deux étapes principales, à savoir d'une part la solidarisation mutuelle du corps de base 10 par rapport à l'enveloppe intermédiaire 20 et, d'autre part, la solidarisation mutuelle de l'enveloppe intermédiaire 20 par rapport aux ailettes 30.
Le corps de base 10 et l'enveloppe intermédiaire 20 sont réalisés de façon séparée, par tout processus approprié. Deux procédés alternatifs peuvent alors être mis en œuvre.
On peut tout d'abord former ces deux éléments de sorte que, dans les conditions normales d'utilisation du tube 1 , le diamètre extérieur du corps de base 10 est inférieur au diamètre intérieur de l'enveloppe intermédiaire 20. Dans ce cas, on insère le corps de base 10 à l'intérieur de l'enveloppe intermédiaire 20, grâce à cette différence de diamètres.
Puis, afin de garantir une qualité de contact satisfaisante entre ces deux éléments, pour limiter les pertes thermiques, on peut procéder à une opération de sertissage de l'enveloppe intermédiaire 20 autour du corps de base 10. A cet effet, on peut utiliser un champ magnétique, dont les propriétés permettent à l'enveloppe intermédiaire 20 d'être sertie sur le corps de base 10, par déplacement de matière non réversible et sans jeu intermédiaire. On utilisera de préférence un champ magnétique puisé dont la variation permet ce déplacement de matière. Dans ce cas, cette étape de sertissage par application d'un champ magnétique, encore appelée magnétoformage, est avantageusement mise en œuvre avant l'étape de solidarisation de l'enveloppe intermédiaire 20 et des ailettes 30, décrite ci-après.
Dans un premier temps, le corps de base 10 est inséré dans l'enveloppe intermédiaire 20, avec un jeu entre le corps de base 10 et l'enveloppe intermédiaire 20 compris de préférence entre 0,1 mm et 1 mm. On comprendra que cette insertion est réalisée sans apport de chaleur, ni de froid, ni de lubrifiant, grâce à la différence de diamètres du corps de base 10 et de l'enveloppe intermédiaire 20.
Puis, une extrémité du corps de base 10 entourée de l'enveloppe intermédiaire 20 est introduite dans une bobine (non représentée) qui induit un champ magnétique puisé autour de cette extrémité. Le champ magnétique puisé est ici créé de manière connue en soi par la décharge rapide de condensateurs. De préférence, l'intensité du courant traversant la bobine est comprise entre 100 et 500 kilo-Ampères et la fréquence est comprise entre 5 et 20 kilo-Herz. La longueur de la zone de magnétoformage est comprise de préférence entre 50 mm et 300 mm.
Le champ magnétique puisé provoque le déplacement de matière du corps de base 10 vers de l'enveloppe intermédiaire 20 et inversement, sans retour élastique et donc la solidarisation de l'enveloppe intermédiaire 20 sur le corps de base 10. Il y a très peu d'échauffement de l'enveloppe intermédiaire 20 au cours de ce processus de solidarisation par magnétoformage, de sorte l'enveloppe intermédiaire 20 conserve une épaisseur constante et une surface sans défaut après le magnétoformage.
Puis, le corps de base 10 avec l'enveloppe intermédiaire 20 est déplacé axialement dans la bobine, avec ou sans rotation, par pas successifs, à une vitesse comprise de préférence entre 1 mètre/minute (m/min) et 8 m/min, de sorte à solidariser le corps de base 10 et l'enveloppe intermédiaire 20 de manière progressive, et jusqu'à passer toute la longueur du tube 1 par la bobine pour solidariser l'enveloppe intermédiaire 20 sur toute la longueur du corps de base 10.
De préférence, on prévoit une zone de recouvrement d'une longueur comprise entre 5 mm et 30 mm entre deux déplacements successifs du corps de base 10, de sorte que le pas de déplacement du corps de base 10 dans la bobine est sensiblement égal à la longueur de la zone de magnétoformage diminuée de la longueur de la zone de recouvrement.
En variante, on peut déplacer le corps de base 10 avec l'enveloppe intermédiaire 20 axialement dans la bobine par pas successifs de sorte à solidariser l'enveloppe intermédiaire 20 sur le corps de base 10.
Grâce au magnétoformage, on obtient une qualité de contact uniforme entre le corps de base 10 et l'enveloppe intermédiaire 20, sans affaiblissement du corps de base 10. En outre, la résistance thermique de contact est très faible.
On notera que le magnétoformage est réalisé entièrement à température ambiante.
Par ailleurs, pour améliorer encore la solidarisation du corps de base 10 avec l'enveloppe intermédiaire 20, on peut réaliser un vide entre le corps de base 10 et l'enveloppe intermédiaire 20. Pour cela, on obture une première extrémité du tube 1 et on relie une seconde extrémité du tube 1 à un groupe de mise sous vide, par exemple par vissage, avant de commencer l'étape de magnétoformage qui se déroule alors comme décrit ci-dessus. Dans ce cas, la différence de longueur entre le corps de base 10 et l'enveloppe intermédiaire 20 décrite plus haut facilite avantageusement la mise sous vide.
En variante, on peut également déformer l'enveloppe intermédiaire 20 grâce à tout outil approprié, tel que par exemple des molettes, auquel cas cette étape est avantageusement mise en œuvre après l'étape de solidarisation de l'enveloppe intermédiaire 20 et des ailettes 30.
Selon une alternative, on peut former le corps de base 10 et l'enveloppe intermédiaire 20 de sorte que, dans les conditions normales d'utilisation du tube 1 , le diamètre extérieur du corps de base 10 est supérieur au diamètre intérieur de l'enveloppe intermédiaire 20. Il s'agit alors d'appliquer une contrainte, notamment thermique, à au moins un de ces éléments, afin de modifier ses dimensions radiales.
Ainsi, on dilate l'enveloppe intermédiaire 20 en la chauffant et/ou on contracte le corps de base 10 en le refroidissant, puis on introduit le corps de base 10 dans l'enveloppe intermédiaire 20, opération rendue désormais possible. Enfin, on supprime la contrainte thermique, de sorte que les parois périphériques en regard de l'enveloppe et du corps de base 10 se rapprochent intimement, sans jeu intercalaire. Ces étapes de mise en contrainte thermique et d'introduction sont avantageusement mises en œuvre avant la solidarisation de l'enveloppe intermédiaire 20 et des ailettes 30, décrite ci-après.
Cette solidarisation est illustrée en référence aux figures 2 et 3. On retrouve, sur la figure 2, la rainure 22 destinée à recevoir les ailettes 30, laquelle présente avantageusement une profondeur comprise entre 0.2 et 0.5 mm. La dimension transversale, ou largeur, de cette rainure 22 est légèrement supérieure à celle de l'extrémité interne 32 des ailettes 30, afin de former un jeu facilitant l'insertion de ces dernières.
Puis, on insère le feuillard constitutif des ailettes 30 dans la rainure 22. Les ailettes 30 et l'enveloppe intermédiaire 20 sont donc positionnées dans la configuration définitive qu'ils doivent adopter, une fois le tube 1 réalisé. On déforme ensuite mécaniquement les bords latéraux 24 de cette rainure 22, selon une action matérialisée par les flèches F à la figure 3, ce qui permet de solidariser mutuellement les ailettes 30 et l'enveloppe intermédiaire 20.
On retrouve ainsi une zone Z de déformation mécanique, représentée en traits pointillés, au niveau des parois en regard de l'ailette 30 et de l'enveloppe intermédiaire 20, au voisinage d'au moins un bord en particulier d'un bord latéral de la rainure 22. Cette déformation est par exemple réalisée par sertissage, lequel est mis en œuvre de façon connue en soi. A titre de variante, en complément ou en alternative à la déformation du bord de la rainure 22, on peut également prévoir de déformer l'extrémité 32 de l'ailette 30, afin de solidariser cette dernière par rapport à l'enveloppe intermédiaire 20.
L'invention permet d'atteindre les objectifs précédemment mentionnés. L'invention assure tout d'abord la protection du corps de base 10 vis-à-vis de la corrosion externe, qui n'est pas autorisée par les tubes comprenant des ailettes de type enroulées, telles que présentées en préambule. De plus si le corps de base 10 est réalisé en une matière noble, la surépaisseur qu'il est indispensable de prévoir dans la matière de ce corps de base 10, pour réaliser des ailettes 30 de type encastrées, n'est plus nécessaire grâce à l'invention.
L'avantage de l'invention, vis-à-vis d'un tube à ailettes extrudées, réside notamment dans les performances thermiques. En effet, au niveau de la jonction entre l'enveloppe intermédiaire 20 et l'ailette 30, l'épaisseur de cette dernière est plus faible dans l'invention, puisque l'ailette 30 est rapportée. Par conséquent la surface, qui est à la température la plus élevée et se trouve directement en contact avec l'air, est plus importante grâce à l'invention. Enfin, l'invention permet de réduire la quantité d'aluminium utilisée pour fabriquer les ailettes 30.
A cet égard, la figure 4 montre les quantités d'aluminium utilisées pour la fabrication de différents tubes 1 . La courbe en traits pleins est relative à un tube 1 conforme à l'invention. Dans ce cas, la quantité Q d'aluminium, qui correspond à la masse de l'enveloppe intermédiaire 20 et des ailettes 30, augmente continûment avec l'épaisseur E de cette enveloppe intermédiaire 20.
La courbe inférieure en traits mixtes est relative à un tube à ailettes enroulées selon l'art antérieur connu, la quantité d'aluminium correspondant uniquement à la masse des ailettes. Enfin, la courbe supérieure en traits pointillés est relative à un tube à ailettes extrudées selon l'art antérieur connu, la quantité d'aluminium correspondant à la masse du tube périphérique et des ailettes venues de matière avec celui-ci. Pour ces deux autres courbes, cette quantité Q ne varie pas avec l'épaisseur E.
La figure 4 montre clairement l'intérêt de l'invention en termes économiques, en particulier pour des épaisseurs E allant jusqu'à 2.5 mm. Il est à noter que la présente comparaison porte uniquement sur les quantités d'aluminium. Ainsi, pour le tube à ailettes enroulées (courbe en traits mixtes), il convient de prendre en compte la surépaisseur nécessaire à l'encastrement du feuillard dans le tube de base. Dans ces conditions, la quantité de matière totale nécessaire à la réalisation de ce type de tubes est supérieure à celle utilisée dans l'invention.
L'invention présente également des avantages spécifiques, par comparaison avec la solution présentée dans US-B-7 093 650. En effet, la solidarisation mutuelle de l'enveloppe intermédiaire 20 et des ailettes 30, dans l'invention, garantit une meilleure tenue mécanique que dans cet art antérieur, pour lequel cette solidarisation est mise en œuvre par adhérence. Par ailleurs, le tube 1 pour échangeur de chaleur conforme à l'invention peut être utilisé à des températures élevées, de l'ordre de 400°C. Enfin, le tube 1 de l'invention autorise une évacuation très satisfaisante de la chaleur, du corps de base 10 en direction des ailettes 30, en particulier lorsque l'enveloppe intermédiaire 20, est sertie autour du corps de base 10.

Claims

REVENDICATIONS
1 . Procédé de fabrication de tubes (1 ) pour échangeur de chaleur, chaque tube (1 ) comprenant un corps de base (10) tubulaire, une enveloppe intermédiaire (20) placée à la périphérie du corps de base (10), ainsi que des ailettes (30) enroulées en spirale autour de l'enveloppe intermédiaire (20), caractérisé en ce qu'il comprend au moins les étapes successives suivantes:
- on réalise de façon séparée le corps de base (10) et l'enveloppe intermédiaire (20), les dimensions extérieures du corps de base (10), notamment le diamètre, étant inférieures aux dimensions intérieures de l'enveloppe intermédiaire (20);
- on introduit le corps de base (10) dans le volume intérieur de l'enveloppe intermédiaire (20);
- on applique un champ magnétique audit corps de base (10) et à ladite enveloppe intermédiaire (20), de façon à les solidariser mutuellement;
- on positionne mutuellement l'enveloppe intermédiaire (20) et les ailettes (30) dans la configuration qu'elles doivent adopter une fois solidarisées, et on déforme mécaniquement l'enveloppe intermédiaire (20) et/ou les ailettes (30) afin d'assurer leur solidarisation mutuelle.
2. Procédé de fabrication selon la revendication 1 , dans lequel on induit ledit champ magnétique au moyen d'une bobine entourant ledit tube (1 ), on déplace ledit tube (1 ) et ladite bobine l'un par rapport à l'autre par pas successifs de sorte à solidariser progressivement mutuellement ledit corps de base (10) à ladite enveloppe intermédiaire (20) pas à pas.
3. Procédé de fabrication selon la revendication 2, dans lequel ladite bobine a une longueur comprise entre 50 millimètres et 300 millimètres.
4. Procédé de fabrication selon la revendication 2 ou 3, dans lequel on déplace ledit tube (1 ) et ladite bobine l'un par rapport à l'autre par pas successifs avec un recouvrement, ledit recouvrement étant compris entre 5 millimètres et 30 millimètres.
5. Procédé de fabrication selon l'une des revendications 1 à 4, dans lequel on creuse dans l'enveloppe intermédiaire (20) au moins une rainure (22) de réception d'une extrémité (32) d'une ailette (30), l'une au moins des enveloppe intermédiaire (20) et ailette (30) comportant une zone de déformation mécanique (Z) prévue au voisinage d'au moins un bord et agencée pour garantir une bonne tenue mécanique entre l'enveloppe intermédiaire (20) et l'ailette (30) et de bonnes propriétés de conduction thermique.
6. Procédé de fabrication selon la revendication 5, dans lequel ladite rainure (22) présente une profondeur comprise entre 0,2 et 0,5 mm.
7. Echangeur de chaleur comprenant plusieurs tubes (1 ) obtenus par le procédé de fabrication selon l'une quelconque des revendications 1 à 6.
8. Echangeur de chaleur selon la revendication 7, dans lequel ledit corps de base (10) de chaque tube (1 ), est plus long à chacune de ses extrémités, que ladite enveloppe intermédiaire (20).
9. Echangeur de chaleur selon la revendication 8, comprenant une plaque collectrice (40) dans laquelle sont formés des orifices (41 ) aptes à recevoir lesdites extrémités des corps de base (10) des tubes (1 ), un évidement (42) respectif étant formé à l'entrée de chaque orifice (41 ) pour recevoir ladite enveloppe intermédiaire (20).
10. Echangeur de chaleur selon l'une des revendications 1 à 9, dans lequel l'enveloppe intermédiaire (20) et les ailettes (30) sont réalisées en un même matériau, notamment en aluminium ou en alliage d'aluminium, ou bien en cuivre.
PCT/FR2010/052784 2009-12-17 2010-12-17 Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes WO2011073589A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959121 2009-12-17
FR0959121A FR2954479B1 (fr) 2009-12-17 2009-12-17 Tube pour echangeur de chaleur, son procede de fabrication et echangeur de chaleur comprenant de tels tubes

Publications (2)

Publication Number Publication Date
WO2011073589A2 true WO2011073589A2 (fr) 2011-06-23
WO2011073589A3 WO2011073589A3 (fr) 2012-05-10

Family

ID=41697890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052784 WO2011073589A2 (fr) 2009-12-17 2010-12-17 Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes

Country Status (2)

Country Link
FR (1) FR2954479B1 (fr)
WO (1) WO2011073589A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938935B2 (en) 2012-07-12 2018-04-10 General Electric Company Exhaust gas recirculation system and method
US10508621B2 (en) 2012-07-12 2019-12-17 Ge Global Sourcing Llc Exhaust gas recirculation system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100930A (en) 1959-12-30 1963-08-20 Baldwin Lima Hamilton Corp Heat exchanger tubing manufacture
FR2369034A1 (fr) 1976-10-28 1978-05-26 Gen Electric Procede de fabrication d'un echangeur de chaleur a tubes concentriques
US4332073A (en) 1979-02-28 1982-06-01 Kawasaki Jukogyo Kabushiki Kaisha Method of producing multiple-wall composite pipes
US5097585A (en) 1989-07-31 1992-03-24 Construction Forms, Inc. Method of forming a composite tubular unit by expanding, low-frequency induction heating and successively quenching
EP0894547A2 (fr) 1997-07-23 1999-02-03 The Furukawa Electric Co., Ltd. Tube de refroidissement composite en alliage d'aluminium et procédé pour sa fabrication
US7093650B2 (en) 2003-09-01 2006-08-22 Usui Kokusai Sangyo Kaisha, Ltd. Heat conduction pipe externally covered with fin member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004388A (en) * 1932-06-25 1935-06-11 Griscom Russell Co Manufacture of finned tubing
BE664918A (fr) * 1964-06-11 1900-01-01
JPH01154818A (ja) * 1987-12-14 1989-06-16 Kawasaki Heavy Ind Ltd 二重管の製造方法
JPH02115689U (fr) * 1989-03-06 1990-09-17
DE60111935T2 (de) * 2000-04-26 2006-04-20 Cosma International Inc., Concord Verfahren zum hydroformen einer rohrförmigen struktur mit unterschiedlichen durchmessern aus einem rohrförmigen rohling, beim magnetimpuls-schweissen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100930A (en) 1959-12-30 1963-08-20 Baldwin Lima Hamilton Corp Heat exchanger tubing manufacture
FR2369034A1 (fr) 1976-10-28 1978-05-26 Gen Electric Procede de fabrication d'un echangeur de chaleur a tubes concentriques
US4332073A (en) 1979-02-28 1982-06-01 Kawasaki Jukogyo Kabushiki Kaisha Method of producing multiple-wall composite pipes
US5097585A (en) 1989-07-31 1992-03-24 Construction Forms, Inc. Method of forming a composite tubular unit by expanding, low-frequency induction heating and successively quenching
EP0894547A2 (fr) 1997-07-23 1999-02-03 The Furukawa Electric Co., Ltd. Tube de refroidissement composite en alliage d'aluminium et procédé pour sa fabrication
US7093650B2 (en) 2003-09-01 2006-08-22 Usui Kokusai Sangyo Kaisha, Ltd. Heat conduction pipe externally covered with fin member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938935B2 (en) 2012-07-12 2018-04-10 General Electric Company Exhaust gas recirculation system and method
US10508621B2 (en) 2012-07-12 2019-12-17 Ge Global Sourcing Llc Exhaust gas recirculation system and method

Also Published As

Publication number Publication date
FR2954479A1 (fr) 2011-06-24
WO2011073589A3 (fr) 2012-05-10
FR2954479B1 (fr) 2012-02-10

Similar Documents

Publication Publication Date Title
EP0701680B1 (fr) Tubes rainures pour echangeurs thermiques d'appareils de conditionnement d'air et de refrigeration, et echangeurs correspondants
EP2333472B1 (fr) Echangeur thermique interne pour circuit de climatisation de véhicule automobile et un tel circuit
EP2588828B1 (fr) Collecteur pour un echangeur de chaleur et un echangeur de chaleur equipe d'un tel collecteur
FR2929149A1 (fr) Procede de fabrication d'une aube creuse
FR2558926A1 (fr) Procede de fixation d'une structure de tube a double paroi et revetement interieur de titane a une plaque tubulaire en titane
WO2008025617A1 (fr) Boitier de distribution d'un fluide caloporteur pour un echangeur de chaleur et echangeur de chaleur comportant un tel boitier
WO2011073589A2 (fr) Procédé de fabrication de tubes pour échangeur de chaleur et échangeur de chaleur comprenant de tels tubes
EP2056054B1 (fr) Tube pour échangeur thermique
EP3469206B1 (fr) Chambre de combustion de moteur fusee avec ailettes a composition variable
EP2655000A1 (fr) Procédé de brasage pour échangeur thermique, tube et échangeur thermique correspondants
EP3781890A1 (fr) Boite collectrice et échangeur thermique correspondant
EP0692692A1 (fr) Tube à section transversale oblongue pour échangeur de chaleur
WO2013127770A1 (fr) Procédé de fabrication d'un tube d'échangeur de chaleur pour véhicule
EP1949012B1 (fr) Tubes rainures pour echangeurs thermiques a resistance a l'expansion amelioree
WO2015007551A1 (fr) Plaque collectrice de collecteur d'un echangeur de chaleur
EP3314190B1 (fr) Echangeur de chaleur à tubes améliorés
EP3247965B1 (fr) Echangeur de chaleur amélioré à tubes et ailettes et procédé de fabrication d'un tel échangeur de chaleur
WO2018078300A1 (fr) Plaque collectrice pour échangeur de chaleur de véhicule automobile
FR3056720A1 (fr) Echangeur thermique comprenant un materiau a changement de phase
FR2929391A1 (fr) Echangeur de chaleur a collecteur ameliore
FR3060727A1 (fr) Echangeur de chaleur a plaque collectrice amelioree.
WO2017046486A1 (fr) Module et dispositif thermo électriques, notamment destinés a générer un courant électrique dans un véhicule automobile
FR3083026A1 (fr) Procede de connexion de fils sur un collecteur de moteur electrique
FR2887974A1 (fr) Collecteur pour echangeur de chaleur, procede pour sa fabrication et echangeur de chaleur ainsi obtenu
FR3056719A1 (fr) Echangeur thermique comprenant un materiau a changement de phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 10807611

Country of ref document: EP

Kind code of ref document: A2