WO2011073587A1 - Systeme de motorisation d'une roue associee a une suspension - Google Patents

Systeme de motorisation d'une roue associee a une suspension Download PDF

Info

Publication number
WO2011073587A1
WO2011073587A1 PCT/FR2010/052780 FR2010052780W WO2011073587A1 WO 2011073587 A1 WO2011073587 A1 WO 2011073587A1 FR 2010052780 W FR2010052780 W FR 2010052780W WO 2011073587 A1 WO2011073587 A1 WO 2011073587A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine block
motorization
drive
wheel
Prior art date
Application number
PCT/FR2010/052780
Other languages
English (en)
Inventor
Olivier Essinger
Cesare Stacchi
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to JP2012543883A priority Critical patent/JP5866525B2/ja
Priority to CN201080057090.8A priority patent/CN102656086B/zh
Priority to US13/395,803 priority patent/US9169004B2/en
Priority to BR112012014323A priority patent/BR112012014323A2/pt
Priority to EP10807608.4A priority patent/EP2512917B1/fr
Priority to EP16154537.1A priority patent/EP3034397B1/fr
Publication of WO2011073587A1 publication Critical patent/WO2011073587A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/405Powered wheels, e.g. for taxing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/80Energy efficient operational measures, e.g. ground operations or mission management

Definitions

  • the present invention relates to a motorization system of a wheel associated with a suspension for the ground taxiing of aircraft.
  • a motorization system of a wheel associated with a suspension of the type comprising a motor unit and a drive member integral with the wheel.
  • Another known motorization system of a wheel associated with a suspension of the type comprising a motor unit carried by the suspended portion of the strut and a drive member secured to the wheel.
  • Such a system often has the disadvantage that the engine block remains housed in the part covered by the belly of the aircraft, without the possibility of being cooled by the ambient air.
  • the mechanical transmission up to the wheel is often performed in the form of gears which perform several angle references of the associated shafts, which is detrimental to the performance of the transmission and requires increased accuracy of the points. fastening in order to guarantee a good meshing of the gears.
  • the present invention aims to provide a motorization system having a significantly lower impact sensitivity, without imposing additional cooling constraint in the aircraft and which aims for a better performance of the mechanical transmission.
  • the engine block is integral with a suspended part of a suspension strut, the engine system further comprising a clutch device connecting a block output shaft. motor to the drive member, the transmission between the motor unit and the drive member being a positive transmission.
  • the mass of the drive system which is not suspended is minimal and limited to the drive member which is secured to the wheel.
  • the engine block is thus suspended.
  • this distribution of the engine system between the suspended part and the unsprung part allows the engine system to have less impact on landing.
  • the mass added to the unsprung portion is minimized, which limits the over-dimensioning of the landing gear.
  • the engine block comprises an electric motor and a reduction system connecting the output shaft of the motor to the drive member.
  • the reduction system is integral with the engine.
  • the clutch device is shaped so as to move the engine block in an engaged position in which the block is connected to the drive member, and a disengaged position in which the block is separated.
  • the clutch device is shaped to allow automatic disengagement of the engine block in case of exceeding a given level of force transmitted between the wheel and at least one motor forming part of the engine block.
  • the clutch device is shaped so that the engine block is rotatably mounted relative to the suspended portion of the strut, along a horizontal axis.
  • the clutch device comprises two connecting rods defining the instantaneous axis of rotation of the engine block.
  • the clutch device comprises a displacement system adapted to move the engine block from one to the other of its two positions engaged and disengaged.
  • the displacement system comprises a motor element.
  • the driving element is formed by a jack.
  • the jack is an electric jack which comprises a drive motor which is arranged in the cylinder, a nut which is mounted in translation, and a screw which makes it possible to transform the rotational movement of the drive motor into translational movement of the nut.
  • the displacement system comprises a return element adapted to move the engine block in the opposite direction to that imposed by the motor element.
  • the return element is formed by a return spring.
  • the jack is adapted to move the engine block into its interengaged position
  • the return spring is adapted to drive the engine block in its disengaged position
  • the displacement system is adapted to apply to the engine block a force greater than a limit value necessary for the engine block remains in the engaged position.
  • the drive member is a ring gear carried by the rim of the wheel, and adapted to receive in meshing the output gear of the engine block when the latter is in its engaged position.
  • the geared position of the output gear is defined by the non-sliding abutment of two race lips carried by the ring gear on two raceways carried by the output gear.
  • the pinion is carried by the output shaft of the engine block via a constant velocity joint.
  • the invention also relates to a set of two motorization systems according to the first aspect of the invention, this assembly being adapted to be associated with one and the same suspension strut, the two wheels being coaxial and the two engine blocks being integral with one another. the other.
  • the two engine blocks of the set of two drive systems are arranged between the two wheels.
  • the two engine blocks of the set of two drive systems are arranged behind the suspension strut.
  • the set of two drive systems comprises only one clutch device common to both systems which allows to disengage at the same time the engine block of each wheel.
  • the two engine blocks are arranged in V, the tip of V corresponding to the common axis of the two output gears of the two reduction systems, and each corresponding upper end to the axis of an engine.
  • a motorization system or such a set of two motorization systems, as appropriate is advantageously used for the motorization of a main landing gear of an aircraft.
  • FIG. 1 is a perspective view of an aircraft landing gear equipped with a set of two wheel drive systems according to the present invention, the assembly being engaged with the wheels and the nearest wheel being represented without tire;
  • Figure 2 is a sectional view along a plane perpendicular to the axis of the wheels of the landing gear of Figure 1, all of the two systems being in the engaged position;
  • Figure 3 is a view similar to Figure 2, all of the two systems being in the disengaged position;
  • Figure 4 is a view along a plane perpendicular to the axis of the wheels, the clutch device of all two systems;
  • Figure 5 is a sectional view of the displacement system of the clutch device
  • Figure 6 is a sectional view along a plane perpendicular to the axes of the rotation shafts of the two engine blocks of all two drive systems;
  • Figure 7 is a sectional view along a plane passing through the three axes of rotation of one of the two reduction systems
  • Figure 8 is a view illustrating the cooperation between a wheel and the output shaft of the corresponding engine block
  • Figure 9 is a perspective view of the wheel / pinion connection of Figure 8.
  • Figure 10 is a perspective view similar to Figure 9 without the pinion.
  • Figure 1 shows a main landing gear 1 of an aircraft, one of the two wheels 5 of this train being shown without tire for reasons of clarity.
  • the train 1 also comprises a set of two wheel drive systems, namely, a wheel system 5. Having a motorization system for each wheel 5 eliminates the need to add a differential and makes it possible to adapt the speed of the wheels 5 during turns. This also makes it possible to partially balance the forces on the suspension and on the motorization system of the wheel. In addition, this distributes the forces on all the tires so that homogenizes and limits their wear.
  • a motorization system comprises an engine block 3 which is carried by the suspended part 2a of the strut 2, a drive member 4 which is integral with the wheel 5, and a clutch device 6 which allows to connect to the drive member 4 a pinion 9 integral with the output shaft 7 of the engine block 3.
  • the drive member 4 secured to the wheel 5 is formed by a ring gear 4 carried by the rim 8 of the wheel 5, this ring 4 receiving in meshing the output gear 9 of the engine block 3 when the latter is in its engaged position.
  • the ring gear 4 may be attached to the rim or machined directly thereon.
  • This type of gear and sprocket transmission is referred to as "positive" transmission as opposed to friction transmission systems such as roller systems.
  • a positive transmission is not dependent on the coefficient of friction and therefore for example insensitive to weathering or wear of the elements used.
  • timing belt systems are also classified as positive transmissions, while Smooth belts (flat or V) are classified as friction drive systems.
  • the engine block 3 comprises a motor 10 (more specifically, an electric motor which here is a brushless synchronous motor) and a reduction system 11 which allows to connect the output shaft of the motor 10 to the drive member 4.
  • the reduction system 11 is integral with the motor 10.
  • the reduction system 11 comprises two stages arranged in cascade.
  • each floor is formed by a single train.
  • the motorization system comprises a third reduction stage formed by the output gear 9 of the engine block 3 (more precisely, the output gear 9 of the reduction system 11) and the ring gear 4 carried by the wheel 5.
  • the first stage of the reduction system 11 is formed by the meshing of a first driving pinion 12 carried by the output shaft of the motor 10 and a first gear 13 (the reduction ratio is here from 3).
  • the second stage is formed by 1 meshing of a second pinion 14 carried by the first gear 13 and a second gear 15 (the reduction ratio is here 2.5).
  • the third stage (outside the engine block) is formed by one meshing of the output gear 9 of the engine block 3 carried by the output shaft 7 integral with the second gear 15, and by the ring gear 4 carried by the wheel 5 (the reduction ratio here is 6.8).
  • the two engine blocks 3 are integral with each other (here, they are protected from the outside by the same housing 16). For reasons of compactness, the two engine blocks 3 are arranged between the two wheels 5. In addition, to reduce the risk of collision with external objects (or birds), especially during the take-off and landing phases, the two engine blocks 3 are arranged behind the suspension strut 2.
  • the ring gear 4 in order to define the meshing position of the engine block 3, the ring gear 4 carries two tread lips 17 (see FIG. 8) which are adapted to receive two bearing tracks 18 carried by the output pinion 9 of FIG. motor block 3.
  • the rolling is carried out without sliding and therefore without friction because the rolling diameters correspond to the pitch diameters of the gears.
  • the two blocks motor 3 are arranged so that their output shafts 7 are coaxial.
  • the two blocks Engine 3 are arranged in V. Moreover, this V arrangement allows engine blocks 3 not to touch the ground on landing if a tire bursts and protect the second engine impacts (birds, etc.).
  • the low tip of the V corresponds to the common axis of the two output shafts 7 of the two reduction systems 11, each upper end of the V corresponding to the axis of a motor 10.
  • this V arrangement of the reducers is advantageous for the lubrication of the gears.
  • the gears circulate the oil (which is at rest in the tank located in the tip of the V) to the first stage which allows lubrication of all the gears.
  • the clutch device 6 of a motorization system is shaped so as to move the engine block 3 between an engaged position in which the block 3 is connected to the body 4 (output gear 9 of the reduction system 11 geared to the ring gear 4 of the wheel 5, as shown in Figure 2), and a disengaged position in which the block 3 is separated (pinion 9). disengaged from the ring gear 4, as shown in Figure 3).
  • the set of two engine systems comprises only only one clutch device 6. However the speed synchronization between the pinion 9 and the ring gear 4 is performed separately for each wheel pair 5 / engine block 3.
  • the clutch device 6 is shaped so that the engine block 3 is rotatably mounted (relative to the suspended portion of the strut 2) along a horizontal axis.
  • the clutch corresponds to a movement of the engine block 3 downwards and forwards, and the clutch to a movement upwards and backwards (movement illustrated in Figure 4 by the different arrows).
  • the reducing block is mounted on the clutch device via a substantially vertical rotary axis.
  • the clutch device 6 is associated with an electronically controlled speed adaptation system. This system comprises a sensor for measuring the speed of the wheel 5 and means for controlling the corresponding rotational speed of the motor 10.
  • the clutch device 6 comprises two connecting rods 19, 20 whose intersecting intersection defines the instantaneous axis of rotation of the engine block 3 (more precisely, here it is two pairs of rods).
  • Each connecting rod 19, 20 is rotatably mounted by one of its ends to the engine block 3, and the other to the suspended part of the suspension strut 2.
  • the clutch device 6 also comprises a displacement system 21 for moving the engine block 3 from one to the other of its two positions engaged and disengaged.
  • the displacement system 21 comprises a jack 22 connected to the engine block 3 and to the suspended part of the suspension strut 2. More precisely, one end of the jack (here, the cylinder 23) is mounted in rotation along a horizontal axis on the suspended portion of the strut 2. The other end (the rod 24) is rotatably mounted to two connecting rods 25, 26 along two horizontal axes, one of these rods is also rotatably mounted along a horizontal axis on the suspended portion of the strut 2, the other rod 26 is rotated along a horizontal axis on the engine block 3.
  • the jack 22 is an electric jack. More precisely, this jack 22 comprises a drive motor 27 which is arranged in the cylinder 23, a nut 24 to which the two connecting rods 25, 26 are connected, and a screw (with balls or satellite rollers) which makes it possible to transforming the rotational movement of the drive motor 27 into translational movement of the nut 24.
  • This ball screw is mounted on the output of a planetary gearbox, itself mounted on the drive motor 27.
  • the clutch device 6 (more precisely, the displacement system 21) makes it possible to apply a sufficient force to the output gear 9 of the engine block 3 in order to keep it meshing with the ring gear 4.
  • the system of movement 21 comprises a return spring 28 which here envelops the cylinder 22.
  • the cylinder 22 is used to drive the engine block 3 in its engaged position and the spring 28 is used to drive it into its unengaged position.
  • the spring 28 also ensures that there is no meshing of the pinion 9 on the toothed wheel 4 during landing, while damping the shock when the aircraft touches the ground if one releases the rotation of the opinion.
  • the displacement system 21 is adapted to apply to the engine block 3 (to the pinion 9) a force greater than a limit value necessary for the engine block 3 remains in the engaged position (so that the pinion 9 and the ring gear remain intermeshed).
  • This force may be constant or, on the contrary, regulated to a value adapted to the force required to transmit the engine or braking torque.
  • the clutch is forced by a mechanical effect of the force of the teeth on the engine block when a bearing limit force is reached; It can also be controlled following an alert from another element of the system such as reaching a given engine torque level.
  • the pinion 9 is carried by the shaft output 7 of the engine block 3 via a constant velocity joint 29 which accepts an angular deformation while transmitting the drive torque without variation of speed.
  • This homokinetic joint may be, for example, a sliding tripod joint or a ball-and-socket joint.
  • This use of a constant velocity joint is not usual. Indeed, the conventional use of a constant velocity joint is the same as that of a universal joint, that is to say that it works in pure torsion, the radial and axial forces being taken up by the bearings supporting the axes.
  • the constant velocity joint is used to transmit a radial force (thrust force of the clutch device) and a tangential force (driving force).
  • the seal then makes it possible to absorb an angular misalignment between the gearbox and the wheel.
  • the use of the rolling tracks which define the meshing distance and the position of the constant velocity joint complement the device and allow to achieve a gear transmission working under strong deformation of the wheel relative to the gearbox, for example a angular deformation of several degrees (for example of the order of +/- 5 °).
  • this engine system is used for example during the phases before take-off, after landing, that is to say for any ground travel as long as the speed is less than the speed maximum taxiing allowed. During these phases, it is then possible not to use the main engines of the aircraft, which reduces fuel consumption, and therefore the costs and emissions of pollutants and C0 2 . Another consequence of the extinction of the main engines of the aircraft is a decrease in noise.
  • the system can only be engaged when the aircraft is on the ground and is traveling at a speed lower than the maximum permitted taxiing speed. He disengaged in all other cases.
  • the system is designed to motorize the wheels of the aircraft, while accepting the deformations of the train.
  • the two connecting rods defining the instantaneous axis of rotation could be parallel.
  • the cylinder could move the engine block to its interlocked position, as in its position disengaged.
  • the cylinder could also be pneumatic or hydraulic.
  • the spring could be replaced by a gas spring.
  • the leg could carry a different number of wheels, depending on the size of the plane (from a wheel to eight). There could also be several systems per wheel (a wheel driven by multiple engines). It is also possible that some wheels only be motorized (or only one).
  • the present invention can be applied in a similar manner to the motorization of the nose landing gear of an aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Vehicle Body Suspensions (AREA)
  • Gear Transmission (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne un système de motorisation d'une roue (5) associée à une suspension, le système comprenant un bloc moteur (3) et un organe d'entraînement (4) solidaire de la roue (5). Selon l'invention, le bloc moteur est solidaire de la partie suspendue de la jambe de suspension (2) et un dispositif d'embrayage (6) relie l'arbre de sortie (7) du bloc moteur (3) à l'organe d'entraînement (4).

Description

SYSTEME DE MOTORISATION D'UNE ROUE ASSOCIEE A UNE
SUSPENSION
La présente invention concerne un système de motorisation d'une roue associée à une suspension pour la circulation au sol d'aéronef.
Lorsque l'on parle de motoriser la circulation des aéronef au sol, il s'agit de motoriser le déplacement des aéronefs de manière autonome mais à des vitesses réduites comme c'est le cas pour un avion avant son décollage ou après son atterrissage sur les aéroports, il s'agit de ce quon appelle couramment le « taxiing » Il ne s'agit donc pas ici de motoriser la roue de manière à lui donner une vitesse en rapport avec la vitesse d'atterrissage comme on l'a déjà proposé dans l'état de la technique.
On connaît un système de motorisation d'une roue associée à une suspension, du type comprenant un bloc moteur et un organe d'entraînement solidaire de la roue.
Cependant, un tel système présente une certaine sensibilité aux chocs, d'autant plus importante et préjudiciable que la vitesse de déplacement sur le sol du véhicule portant le système de motorisation est élevée et que ce sol est irrégulier.
On connaît un autre système de motorisation d'une roue associée à une suspension, du type comprenant un bloc moteur porté par la partie suspendue de la jambe de suspension et un organe d'entraînement solidaire de la roue .
Un tel système présente souvent l'inconvénient que le bloc moteur reste logé dans la partie couverte par le ventre de l'avion, sans possibilité d'être refroidi par l'air ambiant. De plus, la transmission mécanique jusqu'à la roue est souvent réalisée sous forme d'engrenages qui effectuent plusieurs renvois d'angle des arbres associés, ce qui est préjudiciable pour le rendement de la transmission et nécessite une précision accrue des points de fixation afin de garantir un bon engrènement des engrenages .
La présente invention vise à réaliser un système de motorisation présentant une sensibilité aux chocs nettement moins importante, sans imposer de contrainte supplémentaire de refroidissement dans l'aéronef et qui vise un meilleur rendement de la transmission mécanique.
Selon l'invention, dans le système de motorisation du type précité, le bloc moteur est solidaire d'une partie suspendue d'une jambe de suspension, le système de motorisation comprenant en outre un dispositif d'embrayage reliant un arbre de sortie du bloc moteur à l'organe d'entraînement, la transmission entre le bloc moteur et l'organe d'entraînement étant une transmission positive.
Ainsi, la masse du système de motorisation qui n'est pas suspendue est minimale et limitée à l'organe d'entraînement qui est solidaire de la roue. En revanche, le bloc moteur se trouve donc suspendu. Dans le cas où le véhicule concerné est un avion, cette répartition du système de motorisation entre la partie suspendue et la partie non suspendue permet au système de motorisation d'avoir moins de choc à l'atterrissage. De plus, comme seul l'organe d'entraînement est solidaire de la roue, la masse ajoutée à la partie non suspendue est minimisée, ce qui permet de limiter le surdimensionnement du train d' atterrissage .
Selon une première variante, le bloc moteur comprend un moteur électrique et un système de réduction reliant l'arbre de sortie du moteur à l'organe d'entraînement.
Selon une seconde variante, le système de réduction est solidaire du moteur.
Selon une troisième variante, le dispositif d'embrayage est conformé de façon à pouvoir déplacer le bloc moteur dans une position embrayée dans laquelle ce bloc est relié à l'organe d'entraînement, et une position débrayée dans laquelle ce bloc en est séparé. Selon une quatrième variante, le dispositif d'embrayage est conformé de façon à permettre le débrayage automatique du bloc moteur en cas de dépassement d'un niveau donné d'effort transmis entre la roue et au moins un moteur faisant partie du bloc moteur.
Selon une cinquième variante, le dispositif d'embrayage est conformé de sorte que le bloc moteur est monté en rotation par rapport à la partie suspendue de la jambe de suspension, selon un axe horizontal.
Selon une sixième variante, le dispositif d'embrayage comprend deux bielles définissant l'axe instantané de rotation du bloc moteur.
Selon une septième variante, le dispositif d'embrayage comprend un système de déplacement adapté à déplacer le bloc moteur de l'une à l'autre de ses deux positions embrayée et débrayée.
Selon une huitième variante, le système de déplacement comprend un élément moteur.
Selon une neuvième variante, l'élément moteur est formé par un vérin.
Selon une dixième variante, le vérin est un vérin électrique qui comprend un moteur d'entraînement qui est disposé dans le cylindre, un écrou qui est monté en translation, et une vis qui permet de transformer le mouvement de rotation du moteur d'entraînement en mouvement de translation de l' écrou.
Selon une onzième variante, le système de déplacement comprend un élément de rappel adapté à déplacer le bloc moteur dans le sens opposé de celui imposé par l'élément moteur.
Selon une douzième variante, l'élément de rappel est formé par un ressort de rappel.
Selon une treizième variante, le vérin est adapté à déplacer du bloc moteur dans sa position engrenée, et le ressort de rappel est adapté à entraîner le bloc moteur dans sa position désengrenée.
Selon une quatorzième variante, le système de déplacement est adapté à appliquer au bloc moteur une force supérieure à une valeur limite nécessaire pour que le bloc moteur reste en position embrayée.
Selon une quinzième variante, l'organe d'entraînement est une couronne dentée portée par la jante de la roue, et adaptée à recevoir en engrènement le pignon de sortie du bloc moteur quand ce dernier est dans sa position embrayée .
Selon une seizième variante, la position engrenée du pignon de sortie est définie par la mise en butée sans glissement de deux lèvres de roulement portées par la couronne dentée sur deux pistes de roulement portées par le pignon de sortie.
Selon une dix-septième variante, le pignon est porté par l'arbre de sortie du bloc moteur par l'intermédiaire d'un joint homocinétique .
L' invention concerne également un ensemble de deux systèmes de motorisation conformes au premier aspect de l'invention, cet ensemble étant adapté à être associé à une même jambe de suspension, les deux roues étant coaxiales et les deux blocs moteur étant solidaires l'un de l'autre.
Selon une première variante, les deux blocs moteur de l'ensemble de deux systèmes de motorisation sont disposés entre les deux roues.
Selon une seconde variante, les deux blocs moteur de l'ensemble de deux systèmes de motorisation sont disposés derrière la jambe de suspension.
Selon une troisième variante, l'ensemble de deux systèmes de motorisation ne comprend qu'un seul dispositif d'embrayage commun aux deux systèmes qui permet de débrayer en même temps le bloc moteur de chaque roue .
Selon une quatrième variante, dans l'ensemble de deux systèmes de motorisation, les deux blocs moteur sont disposés en V, la pointe du V correspondant à l'axe commun des deux pignons de sortie des deux systèmes de réduction, et chaque extrémité supérieure correspondant à l'axe d'un moteur. Un tel système de motorisation ou un tel ensemble de deux systèmes de motorisation, selon le cas, est avantageusement utilisé pour la motorisation d'un train d'atterrissage principal d'un avion.
D' autres particularités et avantages de la présente invention apparaîtront dans le mode de réalisation donné à titre d'exemple non limitatif et illustré par les dessins mis en annexe dans lesquels :
La figure 1 est une vue en perspective d'un train d'atterrissage d'avion équipé d'un ensemble de deux systèmes de motorisation de roue conformes à la présente invention, l'ensemble étant embrayé aux roues et la roue la plus proche étant représentée sans pneu ;
La figure 2 est une vue en coupe selon un plan perpendiculaire à l'axe des roues du train d'atterrissage de la figure 1, l'ensemble des deux systèmes étant en position embrayée ;
La figure 3 est une vue similaire à la figure 2, l'ensemble des deux systèmes étant en position débrayée ;
La figure 4 est une vue selon un plan perpendiculaire à l'axe des roues, du dispositif d'embrayage de l'ensemble des deux systèmes ;
La figure 5 est une vue en coupe du système de déplacement du dispositif d'embrayage ;
La figure 6 est une vue en coupe selon un plan perpendiculaire aux axes des arbres de rotation des deux blocs moteurs de l'ensemble des deux systèmes de motorisation ;
La figure 7 est une vue en coupe selon un plan passant par les trois axes de rotation d'un des deux systèmes de réduction ;
La figure 8 est une vue illustrant la coopération entre une roue et l'arbre de sortie du bloc moteur correspondant ;
La figure 9 est une vue en perspective de la liaison roue / pignon de la figure 8 ; et
La figure 10 est une vue en perspective similaire à la figure 9 sans le pignon. La figure 1 représente un train d'atterrissage principal 1 d'un avion, l'une des deux roues 5 de ce train étant représentée sans pneu pour des raisons de clarté. Outre les deux roues 5 qui sont coaxiales, et la jambe de suspension 2 portant ces deux roues 5, le train 1 comprend également un ensemble de deux systèmes de motorisation de roue, à savoir, un système par roue 5. Le fait d'avoir un système de motorisation pour chaque roue 5 supprime le besoin de rajouter un différentiel et permet d'adapter la vitesse des roues 5 pendant les virages. Cela permet aussi d'équilibrer en partie les efforts sur la suspension et sur le système de motorisation de la roue. De plus, cela répartit les efforts sur tous les pneumatiques donc cela homogénéise et limite leur usure.
Un système de motorisation conforme à la présente invention comprend un bloc moteur 3 qui est porté par la partie suspendue 2a de la jambe de suspension 2, un organe d'entraînement 4 qui est solidaire de la roue 5, et un dispositif d'embrayage 6 qui permet de relier à l'organe d'entraînement 4 un pignon 9 solidaire de l'arbre de sortie 7 du bloc moteur 3.
Comme illustré dans les différentes figures, dans le présent mode de réalisation, l'organe d'entraînement 4 solidaire de la roue 5 est formé par une couronne dentée 4 portée par la jante 8 de cette roue 5, cette couronne 4 recevant en engrènement le pignon de sortie 9 du bloc moteur 3 quand ce dernier est dans sa position embrayée. La couronne dentée 4 peut être rapportée à la jante ou usinée directement sur celle-ci. Ce type de transmission par pignons et roues dentées est qualifié de transmission « positive » par opposition aux systèmes de transmission par frottement comme les systèmes à galets. Une transmission positive n'est pas tributaire du coefficient de frottement et donc par exemple insensible aux intempéries ou à l'usure des éléments mis en œuvre. On classe donc également les systèmes à courroies crantées parmi les transmissions positives, alors que les courroies lisses (plates ou en V) sont classées parmi les systèmes de transmission par frottement.
Par ailleurs, dans le présent mode de réalisation (cf. figure 7), le bloc moteur 3 comprend un moteur 10 (plus précisément, un moteur électrique qui, ici, est un moteur synchrone sans balai) et un système de réduction 11 qui permet de relier l'arbre de sortie du moteur 10 à l'organe d'entraînement 4. Ici, le système de réduction 11 est solidaire du moteur 10.
Comme illustré à la figure 7, le système de réduction 11 comprend deux étages disposés en cascade. Ici, chaque étage est formé par un train simple. En outre, le système de motorisation comprend un troisième étage de réduction formé par le pignon de sortie 9 du bloc moteur 3 (plus précisément, le pignon de sortie 9 du système de réduction 11) et la couronne dentée 4 portée par la roue 5.
De façon plus précise, le premier étage du système de réduction 11 est formé par 1 ' engrènement d'un premier pignon moteur 12 porté par l'arbre de sortie du moteur 10 et d'une première roue dentée 13 (le rapport de réduction est ici de 3) . Le second étage est formé par 1 ' engrènement d'un second pignon 14 porté par la première roue dentée 13 et d'une seconde roue dentée 15 (le rapport de réduction est ici de 2,5) . Le troisième étage (hors du bloc moteur) est formé par 1 ' engrènement du pignon de sortie 9 du bloc moteur 3 porté par l'arbre de sortie 7 solidaire de la seconde roue dentée 15, et par la couronne dentée 4 portée par la roue 5 (le rapport de réduction est ici de 6,8) .
Dans l'ensemble de deux systèmes de motorisation illustré à la figure 1, les deux blocs moteur 3 sont solidaires l'un de l'autre (ici, ils sont protégés de l'extérieur par un même carter 16) . Pour des raisons de compacité, les deux blocs moteurs 3 sont disposés entre les deux roues 5. En outre, pour diminuer le risque de collision avec des objets externes (ou des oiseaux), surtout lors des phases de décollage et d'atterrissage, les deux blocs moteurs 3 sont disposés derrière la jambe de suspension 2.
De plus, afin de définir la position d' engrènement du bloc moteur 3, la couronne dentée 4 porte deux lèvres de roulement 17 (cf. figure 8) qui sont adaptées à recevoir deux pistes de roulement 18 portées par le pignon de sortie 9 du bloc moteur 3. Le roulement s'effectue sans glissement et donc sans friction car les diamètres de roulement correspondent aux diamètres primitifs des engrenages.
Afin que l'ensemble des deux systèmes de motorisation suive le mouvement vertical de la roue par rapport à la position de l'absorbeur de chocs qui dépend de la charge de l'avion et de l'exécution ou non de virages, les deux blocs moteur 3 sont disposés de sorte que leurs arbres de sortie 7 sont coaxiaux.
Afin de pouvoir loger les deux blocs moteur 3 entre les deux roues 5, tout en satisfaisant l'exigence d'engrenage simultané, dans le présent mode de réalisation, outre l'utilisation de systèmes de réduction 11 à deux étages simples, les deux blocs moteur 3 sont disposés en V. De plus, cette disposition en V permet aux blocs moteur 3 de ne pas toucher le sol à l'atterrissage si un pneu éclate et de protéger le deuxième moteur des impacts (oiseaux, etc.) . La pointe basse du V correspond à l'axe commun des deux arbres de sortie 7 des deux systèmes de réduction 11, chaque extrémité supérieure du V correspondant à l'axe d'un moteur 10. De plus, cette disposition en V des réducteurs est avantageuse pour la lubrification des engrenages. Pendant le fonctionnement, les engrenages font circuler l'huile (qui à repos se trouve dans le réservoir situé dans la pointe du V) jusqu'au premier étage ce qui permet une lubrification de tous les engrenages.
Par ailleurs, le dispositif d'embrayage 6 d'un système de motorisation est conformé de façon à pouvoir déplacer le bloc moteur 3 entre une position embrayée dans laquelle ce bloc 3 est relié à l'organe d'entraînement 4 (pignon de sortie 9 du système de réduction 11 engrené à la couronne dentée 4 de la roue 5, tel qu'illustré à la figure 2), et une position débrayée dans laquelle ce bloc 3 en est séparé (pignon 9 désengrené de la couronne dentée 4, tel qu'illustré à la figure 3) . Dans le présent mode de réalisation, afin d'avoir une mise en engrenage simultanée des deux blocs moteur 3 avec les deux roues 5 et du fait de la solidarisation des deux blocs moteur 3, l'ensemble de deux systèmes de motorisation ne comprend qu'un seul dispositif d'embrayage 6. Cependant la synchronisation en vitesse entre le pignon 9 et la couronne dentée 4 est réalisée de manière séparée pour chaque couple roue 5 / bloc moteur 3.
Dans le présent mode de réalisation, le dispositif d'embrayage 6 est conformé de sorte que le bloc moteur 3 est monté en rotation (par rapport à la partie suspendue de la jambe de suspension 2) selon un axe horizontal. Ainsi, l'embrayage correspond à un mouvement du bloc moteur 3 vers le bas et vers l'avant, et le débrayage à un mouvement vers le haut et vers l'arrière (mouvement illustré à la figure 4 par les différentes flèches) .
De plus, dans une variante non représentée, pour permettre un certain degré de liberté de déplacement horizontal relatif des réducteurs en cas de déformation du train d'atterrissage, et ainsi assurer une force d'appui approximativement égale sur chaque roue, le bloc réducteur est monté sur le dispositif d'embrayage via un axe rotatif sensiblement vertical.
Au dispositif d'embrayage 6 est associé un système d'adaptation de vitesse commandé électroniquement. Ce système comprend un capteur permettant de mesurer la vitesse de la roue 5 et des moyens permettant de commander la vitesse de rotation correspondante du moteur 10.
Dans le présent mode de réalisation, comme illustré à la figure 4, le dispositif d'embrayage 6 comprend deux bielles 19, 20 concourantes dont l'intersection définit l'axe de rotation instantané du bloc moteur 3 (de façon plus précise, ici, il s'agit de deux paires de bielles) . Chaque bielle 19, 20 est montée en rotation, par une de ses extrémités au bloc moteur 3, et par l'autre à la partie suspendue de la jambe de suspension 2.
Le dispositif d'embrayage 6 comprend également un système de déplacement 21 permettant de déplacer le bloc moteur 3 de l'une à l'autre de ses deux positions embrayée et débrayée. Comme illustré à la figure 5, le système de déplacement 21 comprend un vérin 22 relié au bloc moteur 3 et à la partie suspendue de la jambe de suspension 2. De façon plus précise, une extrémité du vérin (ici, le cylindre 23) est montée en rotation selon un axe horizontal sur la partie suspendue de la jambe de suspension 2. L'autre extrémité (la tige 24) est montée en rotation à deux bielles 25, 26 selon deux axes horizontaux, l'une 25 de ces bielles est également montée en rotation selon un axe horizontal sur la partie suspendue de la jambe de suspension 2, l'autre bielle 26 est quant à elle montée en rotation selon un axe horizontal sur le bloc moteur 3.
Ici, le vérin 22 est un vérin électrique. De façon plus précise, ce vérin 22 comprend un moteur d'entraînement 27 qui est disposé dans le cylindre 23, un écrou 24 auquel sont reliées les deux bielles 25, 26, et une vis (à billes ou à rouleaux satellites) qui permet de transformer le mouvement de rotation du moteur d'entraînement 27 en mouvement de translation de l' écrou 24. Cette vis à billes est montée sur la sortie d'un réducteur planétaire, lui-même monté sur le moteur d'entraînement 27.
Le dispositif d'embrayage 6 (plus précisément, le système de déplacement 21) permet d'appliquer une force suffisante sur le pignon de sortie 9 du bloc moteur 3 afin de le maintenir engrené avec la couronne dentée 4.
Dans le présent exemple, afin d'avoir un débrayage du bloc moteur 3 dès que l'alimentation électrique du moteur d'entraînement 27 du vérin 22 est coupée, le système de déplacement 21 comprend un ressort de rappel 28 qui, ici, enveloppe le vérin 22. Ainsi, le vérin 22 est utilisé pour entraîner le bloc moteur 3 dans sa position engrenée et le ressort 28 est utilisé pour l'entraîner dans sa position désengrenée. Le ressort 28 assure également qu'il n'y ait pas d' engrènement du pignon 9 sur la roue dentée 4 lors de l'atterrissage, tout en amortissant le choc lorsque l'avion touche le sol si l'on libère la rotation de la vis.
Le système de déplacement 21 est adapté à appliquer au bloc moteur 3 (au pignon 9) une force supérieure à une valeur limite nécessaire pour que le bloc moteur 3 reste en position embrayée (pour que le pignon 9 et la couronne dentée restent engrenés) . Cette force peut être constante ou au contraire régulée à une valeur adaptée à l'effort nécessaire permettant de transmettre le couple moteur ou freineur .
Il s'agit aussi d'un système auto-dégageant au cas où une des roues ou un des moteurs se bloque, et ceci quel que ce soit le sens de marche de l'avion, dès que l'effort généré par les dentures est supérieur à celui du système de mise en place. Ainsi, le débrayage est forcé par un effet mécanique de l'effort des dentures sur le bloc moteur quand une force limite d'appui est atteinte ; II peut aussi être commandé suite à une alerte émanant d'un autre élément du système comme par exemple l'atteinte d'un niveau de couple moteur donné.
Enfin, afin de compenser une variation angulaire entre le pignon de sortie 9 du bloc moteur 3 et la couronne dentée 4 de la roue 5 qui serait engendrée par la déformation du train d'atterrissage sous charge, le pignon 9 est porté par l'arbre de sortie 7 du bloc moteur 3 par l'intermédiaire d'un joint homocinétique 29 qui accepte une déformation angulaire tout en transmettant le couple d'entraînement sans variation de vitesse. Ce joint homocinétique peut être, par exemple, un joint tripode coulissant ou un joint à bille plongeant. Cette utilisation d'un joint homocinétique n'est pas habituelle. En effet, l'utilisation classique d'un joint homocinétique est la même que celle d'un joint cardan, c'est à dire qu'il travaille en torsion pure, les efforts radiaux et axiaux étant repris par les paliers supportant les axes. Or, dans l'utilisation présente, le joint homocinétique est utilisé pour transmettre un effort radial (force d'appui du dispositif d'embrayage) et un effort tangentiel (force motrice) . Le joint permet alors d'absorber un désalignement angulaire entre le réducteur et la roue.
De plus, l'utilisation des pistes de roulement qui définissent l'entraxe d' engrènement et la position du joint homocinétique complètent le dispositif et permettent de réaliser une transmission par engrenage travaillant sous forte déformation de la roue par rapport au réducteur, par exemple une déformation angulaire de plusieurs degrés (par exemple de l'ordre de +/- 5°) .
Dans la présente application à un avion, ce système de motorisation est utilisé par exemple lors des phases avant le décollage, après l'atterrissage, c'est-à-dire pour tout déplacement au sol pour autant que la vitesse soit inférieure à la vitesse de taxiing maximale autorisée. Pendant ces phases, il est alors possible de ne pas utiliser les moteurs principaux de l'avion, ce qui permet de réduire la consommation de carburant, et donc les coûts et les émissions de polluants et de C02. Une autre conséquence de l'extinction des moteurs principaux de l'avion est une baisse des nuisances sonores.
Le système ne peut être embrayé que lorsque l'avion est au sol et roule à une vitesse inférieure à la vitesse de taxiing maximale autorisée. Il débrayé dans tous les autres cas.
Le système est conçu afin de motoriser les roues de l'avion, tout en acceptant les déformations du train.
Ainsi, les deux bielles définissant l'axe instantané de rotation pourraient être parallèles.
De même, le vérin pourrait déplacer le bloc moteur dans sa position engrenée, comme dans sa position désengrenée. Le vérin pourrait également être pneumatique ou hydraulique.
Le ressort pourrait être remplacé par un vérin à gaz.
La jambe pourrait porter un nombre différent de roues, selon notamment la taille de l'avion (d'une roue à huit) . Il pourrait aussi y avoir plusieurs systèmes par roue (une roue entraînée par plusieurs moteurs) . Il serait également possible que certaines roues seulement soit motorisées (voire une seule) .
La présente invention peut être appliquée de manière similaire à la motorisation du train d'atterrissage du nez d'un avion.

Claims

REVENDICATIONS
1. Système de motorisation d'une roue (5) associée à une suspension pour la circulation au sol d'un aéronef, le système comprenant un bloc moteur (3) et un organe d'entraînement (4) solidaire de la roue (5), caractérisé en ce que le bloc moteur est solidaire d'une partie suspendue d'une jambe de suspension (2), en ce qu'un dispositif d'embrayage (6) relie un arbre de sortie (7) du bloc moteur (3) à l'organe d'entraînement (4) et en ce que la transmission entre le bloc moteur et l'organe d'entraînement est une transmission positive.
2. Système de motorisation selon la revendication 1, caractérisé en ce que le bloc moteur (3) comprend un moteur électrique (10) et un système de réduction (11) reliant l'arbre de sortie du moteur (10) à l'organe d'entraînement (4) .
3. Système de motorisation selon la revendication 2, caractérisé en ce que le système de réduction (11) est solidaire du moteur (10) .
4. Système de motorisation selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif d'embrayage (6) est conformé de façon à pouvoir déplacer le bloc moteur (3) dans une position embrayée dans laquelle ce bloc (3) est relié à l'organe d'entraînement (4), et une position débrayée dans laquelle ce bloc (3) en est séparé.
5. Système de motorisation selon la revendication 4, caractérisé en ce que le dispositif d'embrayage (6) est conformé de façon a permettre le débrayage automatique du bloc moteur (3) en cas de dépassement d'un niveau donné d'effort transmis entre la roue (5) et au moins un moteur faisant partie du bloc moteur (3) .
6. Système de motorisation selon l'une des revendications 4 ou 5, caractérisé en ce que le dispositif d'embrayage (6) est conformé de sorte que le bloc moteur (3) est monté en rotation par rapport à la partie suspendue de la jambe de suspension (2), selon un axe horizontal.
7. Système de motorisation selon la revendication 6, caractérisé en ce que le dispositif d'embrayage (6) comprend deux bielles (19, 20) définissant l'axe instantané de rotation du bloc moteur (3) .
8. Système de motorisation selon l'une des revendications 6 et 7, caractérisé en ce que le dispositif d'embrayage (6) comprend un système de déplacement (21) adapté à déplacer le bloc moteur (3) de l'une à l'autre de ses deux positions embrayée et débrayée .
9. Système de motorisation selon la revendication 8, caractérisé en ce que le système de déplacement (21) comprend un élément moteur (22) .
10. Système de motorisation selon la revendication 9, caractérisé en ce que l'élément moteur (22) est formé par un vérin (22 ) .
11. Système de motorisation selon la revendication 10, caractérisé en ce que le vérin (22) est un vérin électrique qui comprend un moteur d'entraînement (27) qui est disposé dans le cylindre (23), un écrou (24) qui est monté en translation, et une vis qui permet de transformer le mouvement de rotation du moteur d'entraînement (27) en mouvement de translation de l' écrou (24) .
12. Système de motorisation selon l'une des revendications 9 à 11, caractérisé en ce que le système de déplacement (21) comprend un élément de rappel (28) adapté à déplacer le bloc moteur dans le sens opposé de celui imposé par l'élément moteur (22) .
13. Système de motorisation selon la revendication 12, caractérisé en ce que l'élément de rappel (28) est formé par un ressort de rappel (28) .
14. Système de motorisation selon la revendication 13 dépendante de la revendication 10, caractérisé en ce que le vérin (22) est adapté à déplacer le bloc moteur (3) dans sa position engrenée, et le ressort de rappel (28) étant adapté à entraîner le bloc moteur (3) dans sa position désengrenée.
15. Système de motorisation selon l'une des revendications 8 à 14, caractérisé en ce que système de déplacement (21) est adapté à appliquer au bloc moteur (3) une force supérieure à une valeur limite nécessaire pour que le bloc moteur (3) reste en position embrayée .
16. Système de motorisation selon l'une des revendications 1 à 15, caractérisé en ce que l'organe d'entraînement (4) est une couronne dentée (4) portée par la jante (8) de la roue (5), et adaptée à recevoir en engrènement le pignon de sortie (9) du bloc moteur (3) quand ce dernier est dans sa position embrayée.
17. Système de motorisation selon la revendication 16, caractérisé en ce que la position engrenée du pignon de sortie (9) est définie par la mise en butée sans glissement de deux lèvres de roulement (17) portées par la couronne dentée (4) sur deux pistes de roulement (18) portées par le pignon de sortie (9) .
18. Système de motorisation selon l'une des revendications 16 ou 17, caractérisé en ce que le pignon (9) est porté par l'arbre de sortie (7) du bloc moteur (3) par l'intermédiaire d'un joint homocinétique (29).
19. Ensemble de deux systèmes de motorisation conformes à l'une des revendications 1 à 18, caractérisé en ce que cet ensemble est adapté à être associé à une même jambe de suspension (2), en ce que les deux roues (5) sont coaxiales, et en ce que les deux blocs moteur (3) sont solidaires l'un de l'autre.
20. Ensemble de deux systèmes de motorisation selon la revendication 19, caractérisé en ce que les deux blocs moteurs (3) sont disposés entre les deux roues (5) .
21. Ensemble de deux systèmes de motorisation selon la revendication 20, caractérisé en ce que les deux blocs moteur (3) sont disposés derrière la jambe de suspension (2 ) .
22. Ensemble de deux systèmes de motorisation selon l'une des revendications 20 à 21, caractérisé en ce que chaque système de motorisation est conforme à l'une des revendications 16 à 18, et en ce qu'il comprend un seul dispositif d'embrayage (6) commun aux deux systèmes qui permet de débrayer en même temps le bloc moteur (3) de chaque roue (5) et qui est conforme à l'une des revendications 4 à 15.
23. Ensemble de deux systèmes de motorisation selon la revendication 22, caractérisé en ce que les deux blocs moteur (3) sont conformes à l'une des revendications 2 ou 3 et sont disposés en V, la pointe du V correspondant à l'axe commun des deux pignons de sortie (9) des deux systèmes de réduction (11), et chaque extrémité supérieure correspondant à l'axe d'un moteur (10) .
24. Ensemble de deux systèmes de motorisation selon la revendication 22 ou 23, caractérisé en ce que les blocs moteur (3) sont reliés au dispositif d'embrayage (6) commun par une liaison pivotante de sorte que les blocs moteur (3) puissent avoir un déplacement horizontal relatif permettant d'absorber des déformations des roues.
PCT/FR2010/052780 2009-12-17 2010-12-17 Systeme de motorisation d'une roue associee a une suspension WO2011073587A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012543883A JP5866525B2 (ja) 2009-12-17 2010-12-17 懸架装置に連結された車輪を動力化するシステム
CN201080057090.8A CN102656086B (zh) 2009-12-17 2010-12-17 对连接至悬架的轮子进行机动化的系统
US13/395,803 US9169004B2 (en) 2009-12-17 2010-12-17 System for motorizing a wheel connected to a suspension
BR112012014323A BR112012014323A2 (pt) 2009-12-17 2010-12-17 sistema de motorização de uma roda associada à uma suspensão
EP10807608.4A EP2512917B1 (fr) 2009-12-17 2010-12-17 Systeme de motorisation d'une roue associee a une suspension
EP16154537.1A EP3034397B1 (fr) 2009-12-17 2010-12-17 Systeme de motorisation d'une roue associee a une suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959143A FR2954234B1 (fr) 2009-12-17 2009-12-17 Systeme de motorisation d'une roue associee a une suspension
FR0959143 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011073587A1 true WO2011073587A1 (fr) 2011-06-23

Family

ID=42320795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052780 WO2011073587A1 (fr) 2009-12-17 2010-12-17 Systeme de motorisation d'une roue associee a une suspension

Country Status (7)

Country Link
US (1) US9169004B2 (fr)
EP (5) EP2537749B1 (fr)
JP (4) JP5866525B2 (fr)
CN (1) CN102656086B (fr)
BR (1) BR112012014323A2 (fr)
FR (1) FR2954234B1 (fr)
WO (1) WO2011073587A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033125A1 (fr) * 2013-09-05 2015-03-12 Airbus Operations Limited Interface souple de système d'entraînement de train d'atterrissage
WO2015033160A1 (fr) * 2013-09-05 2015-03-12 Airbus Operations Limited Interface flexible de système d'entraînement de train d'atterrissage
WO2015040364A1 (fr) * 2013-09-18 2015-03-26 Airbus Operations Limited Système d'entraînement pour train d'atterrissage
WO2015040363A1 (fr) * 2013-09-18 2015-03-26 Airbus Operations Limited Système d'entraînement pour train d'atterrissage d'avion
EP2860103A1 (fr) * 2013-10-09 2015-04-15 Hamilton Sundstrand Corporation Mécanisme de couplage à sécurité passive
FR3022859A1 (fr) * 2014-06-30 2016-01-01 Michelin & Cie Systeme de motorisation de roue, notamment d'un aeronef
FR3022858A1 (fr) * 2014-06-30 2016-01-01 Michelin & Cie Systeme de motorisation de roue, notamment d'un aeronef
GB2543606A (en) * 2015-07-26 2017-04-26 Borealis Tech Ltd Powered clutch for aircraft wheel drive system
FR3048954A1 (fr) * 2016-03-21 2017-09-22 Messier Bugatti Dowty Systeme de desengagement verrouillable d’actionneur de roue sur un atterisseur d’aeronef.
US9821905B2 (en) 2014-08-07 2017-11-21 Airbus Operations Limited Landing gear drive system
JP2018070156A (ja) * 2012-08-08 2018-05-10 エアバス オペレーションズ リミテッドAirbus Operations Limited 着陸装置駆動システム
FR3082825A1 (fr) * 2018-06-26 2019-12-27 Safran Landing Systems Mecanisme de verrouillage d’actionneur de roue

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0915009D0 (en) 2009-08-28 2009-09-30 Airbus Operations Ltd Aircraft landing gear
US20130001355A1 (en) * 2011-03-01 2013-01-03 Borealis Technical Limited Method of reducing fuel carried by an aircraft in flight
WO2012171589A1 (fr) * 2011-06-17 2012-12-20 L-3 Communications Magnet-Motor Gmbh Unité d'entraînement pour roues d'engrenage tournantes d'aéronef
US20130112805A1 (en) * 2011-07-06 2013-05-09 Borealis Technical Limited Method for reducing requirements for aircraft brake size, complexity, and heat dissipation
FR2998870B1 (fr) 2012-12-03 2015-01-09 Michelin & Cie Systeme de motorisation de roue, notamment d'un aeronef
FR2998859B1 (fr) * 2012-12-05 2014-11-21 Michelin & Cie Dispositif d'assistance electrique pour velo et velo a assistance electrique equipe dudit dispositif
FR2998858B1 (fr) 2012-12-05 2014-11-21 Michelin & Cie Dispositif d'assistance electrique pour velo et velo a assistance electrique equipe dudit dispositif
US20140187370A1 (en) * 2012-12-31 2014-07-03 Goodrich Corporation Landing gear wheel drive system
US9139291B2 (en) * 2013-05-28 2015-09-22 Hamilton Sundstrand Corporation Integrated hydrostatic transmission for electronic taxiing operations
FR3008956B1 (fr) * 2013-07-26 2018-05-04 Safran Landing Systems Dispositif d'entrainement en rotation d'une roue d'aeronef
FR3009277B1 (fr) * 2013-08-02 2017-11-03 Messier Bugatti Dowty Atterrisseur d'aeronef muni d'un organe d'entrainement des roues.
FR3011531B1 (fr) * 2013-10-04 2017-04-21 Messier Bugatti Dowty Atterrisseur d'aeronef equipe de moyens d'entrainement en rotation des roues portees par l'atterrisseur
FR3013327B1 (fr) * 2013-11-15 2015-12-25 Messier Bugatti Dowty Roue d'aeronef equipee de moyens de son entrainement en rotation par un actionneur d'entrainement.
DE102013020339B4 (de) 2013-11-27 2024-09-05 Malte SCHWARZE Schleppverband, bestehend aus mindestens einem Luftfahrzeug mit erhöhter Leistungsfähigkeit und Betriebssicherheit
US20150210384A1 (en) * 2014-01-24 2015-07-30 Honeywell International Inc. Aircraft wheel driving system
GB2524762B (en) * 2014-04-01 2020-06-17 Airbus Operations Ltd Drive system for aircraft landing gear
GB2558863B (en) * 2014-11-30 2021-03-03 Borealis Tech Ltd Monitoring system for aircraft drive wheel system
FR3031960B1 (fr) * 2015-01-23 2017-02-10 Messier Bugatti Dowty Procede d'entrainement en rotation d'une roue d'aeronef.
FR3031963B1 (fr) * 2015-01-23 2020-02-28 Safran Landing Systems Procede d'entrainement en rotation d'une roue d'aeronef.
CN108128141B (zh) * 2017-08-28 2020-11-17 北京理工大学 一种电动轮的力传递方法及使用该方法的车辆
FR3087513B1 (fr) * 2018-10-17 2022-08-26 Safran Trans Systems Reducteur compact pour un dispositif de taxiage d'un aeronef
KR102674555B1 (ko) * 2022-03-29 2024-06-13 현대자동차주식회사 유니버설 구동 장치
KR102674558B1 (ko) * 2022-03-29 2024-06-13 현대자동차주식회사 유니버설 휠 구동 시스템
KR102674559B1 (ko) * 2022-03-29 2024-06-13 현대자동차주식회사 유니버설 휠 구동 시스템
KR102676722B1 (ko) * 2022-03-29 2024-06-18 현대자동차주식회사 유니버설 휠 구동 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2320547A (en) * 1942-01-30 1943-06-01 Roy L Tiger Landing wheel rotating device for airplanes
US3762670A (en) * 1971-12-16 1973-10-02 Curtiss Wright Corp Landing gear wheel drive system for aircraft
US3764094A (en) * 1970-12-23 1973-10-09 Rotax Ltd Motor powered wheels for aircraft
US3977631A (en) * 1975-06-04 1976-08-31 The Boeing Company Aircraft wheel drive apparatus and method
US20070158497A1 (en) * 2003-10-09 2007-07-12 Edelson Jonathan S Geared wheel motor design
DE102008006295A1 (de) * 2008-01-28 2009-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Angetriebenes Flugzeugfahrwerk
US20090218440A1 (en) * 2008-02-29 2009-09-03 Airbus Deutschland Gmbh Integrated multifunctional powered wheel system for aircraft
WO2010063895A1 (fr) * 2008-12-02 2010-06-10 Messier-Dowty Sa Dispositif electromecanique multifonctions pour atterrisseur

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850389A (en) * 1973-05-04 1974-11-26 D Dixon Landing gear wheel device for aircraft
US3874619A (en) 1974-05-03 1975-04-01 Boeing Co Reciprocating powered wheel drive
GB8724123D0 (en) * 1987-10-14 1987-11-18 Balloch J Variable speed aircraft landing wheels
GB2323345A (en) * 1998-07-08 1998-09-23 Kate Elizabeth May Rotating aircraft wheels prior to landing
US20030233900A1 (en) 2002-04-26 2003-12-25 Olympus Optical Co., Ltd. Rotary transmission device
JP2004068964A (ja) * 2002-08-08 2004-03-04 Olympus Corp 歯車機構
JP4245438B2 (ja) * 2003-08-08 2009-03-25 シャープ株式会社 炭素薄膜ならびにそれを用いた電界放出電子源および作用電極
JP4442315B2 (ja) * 2004-05-18 2010-03-31 トヨタ自動車株式会社 電動輪
US7445178B2 (en) * 2004-09-28 2008-11-04 The Boeing Company Powered nose aircraft wheel system
FR2903072B1 (fr) 2006-06-28 2009-11-20 Airbus France Dispositif pour le deplacement autonome d'un aeronef au sol
US8220740B2 (en) 2007-11-06 2012-07-17 Borealis Technical Limited Motor for driving aircraft, located adjacent to undercarriage wheel
GB0915009D0 (en) 2009-08-28 2009-09-30 Airbus Operations Ltd Aircraft landing gear
EP2563657B1 (fr) 2010-04-28 2016-09-21 L-3 Communications Magnet-Motor GmbH Unité d'entrainement pour une trein d'atterrissage d'aéronef

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2320547A (en) * 1942-01-30 1943-06-01 Roy L Tiger Landing wheel rotating device for airplanes
US3764094A (en) * 1970-12-23 1973-10-09 Rotax Ltd Motor powered wheels for aircraft
US3762670A (en) * 1971-12-16 1973-10-02 Curtiss Wright Corp Landing gear wheel drive system for aircraft
US3977631A (en) * 1975-06-04 1976-08-31 The Boeing Company Aircraft wheel drive apparatus and method
US20070158497A1 (en) * 2003-10-09 2007-07-12 Edelson Jonathan S Geared wheel motor design
DE102008006295A1 (de) * 2008-01-28 2009-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Angetriebenes Flugzeugfahrwerk
US20090218440A1 (en) * 2008-02-29 2009-09-03 Airbus Deutschland Gmbh Integrated multifunctional powered wheel system for aircraft
WO2010063895A1 (fr) * 2008-12-02 2010-06-10 Messier-Dowty Sa Dispositif electromecanique multifonctions pour atterrisseur

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070156A (ja) * 2012-08-08 2018-05-10 エアバス オペレーションズ リミテッドAirbus Operations Limited 着陸装置駆動システム
US9884678B2 (en) 2013-09-05 2018-02-06 Airbus Operations Limited Landing gear drive system flexible interface
WO2015033160A1 (fr) * 2013-09-05 2015-03-12 Airbus Operations Limited Interface flexible de système d'entraînement de train d'atterrissage
US10864984B2 (en) 2013-09-05 2020-12-15 Airbus Operations Limited Landing gear drive system flexible interface
US10676178B2 (en) 2013-09-05 2020-06-09 Airbus Operations Limited Landing gear drive system flexible interface
WO2015033125A1 (fr) * 2013-09-05 2015-03-12 Airbus Operations Limited Interface souple de système d'entraînement de train d'atterrissage
EP3363736A1 (fr) * 2013-09-05 2018-08-22 Airbus Operations Limited Interface flexible de système d'entraînement de train d'atterrissage
US10421535B2 (en) 2013-09-18 2019-09-24 Airbus Operations Limited Drive system for aircraft landing gear
US10486800B2 (en) 2013-09-18 2019-11-26 Airbus Operations Limited Drive system for landing gear
WO2015040364A1 (fr) * 2013-09-18 2015-03-26 Airbus Operations Limited Système d'entraînement pour train d'atterrissage
WO2015040363A1 (fr) * 2013-09-18 2015-03-26 Airbus Operations Limited Système d'entraînement pour train d'atterrissage d'avion
CN105555662A (zh) * 2013-09-18 2016-05-04 空中客车营运有限公司 用于起落架的驱动系统
GB2533982A (en) * 2013-09-18 2016-07-13 Airbus Operations Ltd Drive system for aircraft landing gear
WO2015040370A3 (fr) * 2013-09-18 2015-05-14 Airbus Operations Limited Système d'entraînement pour train d'atterrissage d'avion
GB2533982B (en) * 2013-09-18 2016-12-28 Airbus Operations Ltd Drive system for aircraft landing gear
GB2518605B (en) * 2013-09-18 2020-02-12 Airbus Operations Ltd Drive system for landing gear
EP3348473A1 (fr) * 2013-09-18 2018-07-18 Airbus Operations Limited Système de commande de train d'atterrissage d'aéronef
US10435141B2 (en) 2013-09-18 2019-10-08 Airbus Operations Limited Drive system for aircraft landing gear
GB2518605A (en) * 2013-09-18 2015-04-01 Airbus Operations Ltd Drive system for landing gear
EP3372494A1 (fr) * 2013-09-18 2018-09-12 Airbus Operations Limited Système de commande de train d'atterrissage d'aéronef
CN105555662B (zh) * 2013-09-18 2017-12-05 空中客车营运有限公司 用于起落架的驱动系统
EP3251949A1 (fr) * 2013-09-18 2017-12-06 Airbus Operations Limited Système de commande de train d'atterrissage
CN107839873A (zh) * 2013-09-18 2018-03-27 空中客车营运有限公司 驱动系统和飞行器的起落架
EP2860103A1 (fr) * 2013-10-09 2015-04-15 Hamilton Sundstrand Corporation Mécanisme de couplage à sécurité passive
US9422053B2 (en) 2013-10-09 2016-08-23 Hamilton Sundstrand Corporation Passive fail safe coupling mechanism
US10442528B2 (en) 2014-06-30 2019-10-15 Compagnie Generale Des Etablissements Michelin Wheel drive system, in particular for an aircraft
CN106458319A (zh) * 2014-06-30 2017-02-22 米其林集团总公司 特别是用于飞机的机轮驱动系统
FR3022859A1 (fr) * 2014-06-30 2016-01-01 Michelin & Cie Systeme de motorisation de roue, notamment d'un aeronef
FR3022858A1 (fr) * 2014-06-30 2016-01-01 Michelin & Cie Systeme de motorisation de roue, notamment d'un aeronef
US10457385B2 (en) 2014-06-30 2019-10-29 Compagnie Generale Des Etablissements Michelin Wheel drive system, in particular for an aircraft
WO2016001192A1 (fr) * 2014-06-30 2016-01-07 Compagnie Generale Des Etablissements Michelin Système de motorisation de roue, notamment d'un aéronef
WO2016001188A1 (fr) * 2014-06-30 2016-01-07 Compagnie Generale Des Etablissements Michelin Système de motorisation de roue, notamment d'un aéronef
US9821905B2 (en) 2014-08-07 2017-11-21 Airbus Operations Limited Landing gear drive system
US10329012B2 (en) 2014-08-07 2019-06-25 Airbus Operations Limited Landing gear drive system
US11524771B2 (en) 2014-08-07 2022-12-13 Airbus Operations Limited Landing gear drive system
GB2543606B (en) * 2015-07-26 2019-01-09 Borealis Tech Ltd Powered clutch assembly for aircraft wheel drive system
GB2543606A (en) * 2015-07-26 2017-04-26 Borealis Tech Ltd Powered clutch for aircraft wheel drive system
EP3222521A1 (fr) * 2016-03-21 2017-09-27 Safran Landing Systems Systeme de desengagement verrouillable d'actionneur de roue sur un atterisseur d aeronef
US10589847B2 (en) 2016-03-21 2020-03-17 Safran Landing Systems Lockable wheel actuator disengagement system on an aircraft landing gear
FR3048954A1 (fr) * 2016-03-21 2017-09-22 Messier Bugatti Dowty Systeme de desengagement verrouillable d’actionneur de roue sur un atterisseur d’aeronef.
EP3587256A1 (fr) * 2018-06-26 2020-01-01 Safran Landing Systems Mecanisme de verrouillage d'actionneur de roue
FR3082825A1 (fr) * 2018-06-26 2019-12-27 Safran Landing Systems Mecanisme de verrouillage d’actionneur de roue
US11305870B2 (en) 2018-06-26 2022-04-19 Safran Landing Systems Wheel actuator locking mechanism

Also Published As

Publication number Publication date
JP2016047720A (ja) 2016-04-07
EP2512917A1 (fr) 2012-10-24
FR2954234B1 (fr) 2012-03-02
EP2537750A1 (fr) 2012-12-26
US20120217340A1 (en) 2012-08-30
FR2954234A1 (fr) 2011-06-24
CN102656086B (zh) 2015-07-15
JP2017159906A (ja) 2017-09-14
CN102656086A (zh) 2012-09-05
EP2512917B1 (fr) 2016-03-16
JP2019073286A (ja) 2019-05-16
JP6169144B2 (ja) 2017-07-26
JP2013514228A (ja) 2013-04-25
BR112012014323A2 (pt) 2016-07-05
US9169004B2 (en) 2015-10-27
JP5866525B2 (ja) 2016-02-17
EP2537749B1 (fr) 2014-05-14
EP2537749A1 (fr) 2012-12-26
EP3034397B1 (fr) 2020-04-29
EP2537750B1 (fr) 2014-05-14
EP2537751B1 (fr) 2014-05-14
EP2537751A1 (fr) 2012-12-26
EP3034397A1 (fr) 2016-06-22
JP6470798B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
EP2537749B1 (fr) Système de motorisation d'une roue associée à une suspension
EP2512918B1 (fr) Système de motorisation électrique d'une roue
EP2527249B1 (fr) Dispositif d'interface débrayable entre un système de motorisation de roue de train d'atterrissage d'avion et une roue
EP2524816B1 (fr) Dispositif d'accouplement en rotation d'une couronne à une roue ainsi qu'un atterrisseur d'aéronef muni d'un tel dispositif
FR2954236A1 (fr) Systeme de motorisation electrique d'une roue
WO2011073320A1 (fr) Moyeu motorise comprenant des moyens de couplage et de decouplage
FR2939763A1 (fr) Train d'atterrissage motorise pour aeronef
FR3026717A1 (fr) Atterrisseur d'aeronef.
FR2988797A1 (fr) Actionneur electromecanique de surface de vol d'aeronef et aeronef pourvu d'un tel actionneur
WO2013092301A1 (fr) Moyeu motorisé pour la motorisation électrique d'un essieu d'un véhicule automobile à traction hybride
EP0135421A1 (fr) Ensemble compact de transmission pour véhicule à deux essieux moteurs
FR2984240A1 (fr) Moyeu motorise pour la motorisation electrique d'un essieu d'un vehicule automobile a traction hybride
FR2807490A1 (fr) Differentiel pour vehicule automobile
BE378986A (fr)
FR2984241A1 (fr) Moyeu motorise pour la motorisation electrique d'un essieu d'un vehicule automobile a traction hybride

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057090.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395803

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012543883

Country of ref document: JP

Ref document number: 2010807608

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014323

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014323

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120613