WO2011071085A1 - 多能性幹細胞から分化誘導された細胞の生産方法 - Google Patents

多能性幹細胞から分化誘導された細胞の生産方法 Download PDF

Info

Publication number
WO2011071085A1
WO2011071085A1 PCT/JP2010/072044 JP2010072044W WO2011071085A1 WO 2011071085 A1 WO2011071085 A1 WO 2011071085A1 JP 2010072044 W JP2010072044 W JP 2010072044W WO 2011071085 A1 WO2011071085 A1 WO 2011071085A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
pluripotent stem
derived
ips
Prior art date
Application number
PCT/JP2010/072044
Other languages
English (en)
French (fr)
Inventor
啓光 中内
聡英 紙谷
奈穂 鈴木
慶一 伊藤
聡 山▲崎▼
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2011545228A priority Critical patent/JP5896457B2/ja
Publication of WO2011071085A1 publication Critical patent/WO2011071085A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0271Chimeric vertebrates, e.g. comprising exogenous cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1394Bone marrow stromal cells; whole marrow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for producing target cells differentiated from pluripotent stem cells, and more specifically, a step of administering a differentiation inducer to target cells to the non-human mammal, and transplanted pluripotent stem cells Growing the animal for a period of time sufficient to form teratomas in the living body of the non-human mammal and inducing differentiation of the pluripotent stem cells into target cells, and from the non-human mammal to the mammal And a method for producing a target cell induced to differentiate from a pluripotent stem cell, and a target cell obtained by the production method.
  • Stem cells are undifferentiated cells that have both self-renewal ability and pluripotency.
  • ES cells and iPS cells form teratomas (benign tumors) when administered to a living body, including three germ layers (digestive tract, liver, pancreas, bladder, lung, tonsils, pharynx, parathyroid gland, etc.) Including mesoderm system, nerve cells and skin cells, inner ear, eyes, mammary gland, nails, teeth, spinal cord and brain, such as germ layer, blood cells and muscle cells, bone cells, heart, gonadal, urinary system, fat, spleen Because it contains fetal tissues and mature tissue structures derived from the ectoderm system, which becomes the nervous system, etc., it must be versatile enough to differentiate into all cell lines including germ cells in vivo. Are known (Non-Patent Documents 1 to 4).
  • HSC transplantable hematopoietic stem cells
  • HoxB4 transplantable hematopoietic stem cells
  • the present invention has been made in view of the above-described problems of the prior art, and is capable of efficiently inducing differentiation of pluripotent stem cells into desired functional cells, and an object of differentiation induction from pluripotent stem cells. It aims at providing the production method of a cell.
  • the present inventors utilize the teratoma-forming ability of pluripotent stem cells and control it in vivo, so that the desired functional cells and tissues, A method for creating an organ has been found and the present invention has been completed.
  • the target differentiated cells derived from the iPS cells are formed in the formed teratoma or in the mouse body.
  • transplanting the differentiated cells induced in this way to a dysfunctional animal restores its function, and it is clear that the induced differentiated cells have almost the same function as the original cells. did.
  • pluripotent stem cells are administered to various treated individuals, such as organ-deficient animals or immunodeficient animals, so that the target cells (including target tissues and target organs) can be more efficiently and transspecies. It also showed that it becomes possible to obtain.
  • pluripotent stem cells that have been induced to differentiate to some extent from universal cells such as ES cells and iPS cells, a teratoma containing more target cells and the like can be formed.
  • the inventors have also found that the influence can be suppressed, and have completed the present invention.
  • the present invention provides the following inventions. (1) transplanting pluripotent stem cells derived from a mammal individual to a non-human mammal; Administering to the non-human mammal a differentiation-inducing agent for target cells; Growing the animal for a time sufficient for the transplanted pluripotent stem cells to form teratomas in the living body of the non-human mammal, and inducing differentiation of the pluripotent stem cells into target cells; Recovering a target cell derived from the mammal individual from the non-human mammal; A method for producing a target cell induced to differentiate from a pluripotent stem cell.
  • the pluripotent stem cell is an induced pluripotent stem (iPS) cell prepared using a somatic cell of the mammal individual.
  • the pluripotent stem cell is an embryonic stem (ES) cell prepared from a fertilized egg derived from the mammal.
  • the pluripotent stem cell is transplanted into at least one tissue selected from the group consisting of subcutaneous, testis, and renal capsule of the non-human mammal (1) to (3) The method described in 1.
  • pancreatic cells are pancreatic Langerhans islet cells.
  • the target cell is a hematopoietic cell, and the hematopoietic cell is recovered from the bone marrow of the non-human mammal.
  • the pluripotent stem cell is a Lnk-deficient cell.
  • the step of inducing differentiation of the pluripotent stem cell into a target cell is performed in the presence of co-cultured cells.
  • the co-cultured cells are OP-9 cells.
  • the present invention has made it possible to efficiently induce differentiation of target cells from pluripotent stem cells. Moreover, unlike in vitro differentiation-inducing systems, differentiation induction into cells having almost the same functions as the original cells (for example, cells capable of restoring the functions when transplanted into dysfunctional animals). Became possible.
  • Murine iPS cells are transplanted into nude mice, differentiation inducers such as cytokines are administered to the nude mice, and teratomas are formed in the living body of the nude mice, differentiation induced hepatocytes, pancreatic cells, or hematopoietic system
  • differentiation inducers such as cytokines
  • teratomas are formed in the living body of the nude mice, differentiation induced hepatocytes, pancreatic cells, or hematopoietic system
  • FIG. 5 is a plot diagram showing that ⁇ Kit + Sca-1 + (KSL) exists.
  • Schematic diagram showing transplantation of mouse-derived bone marrow cells in which teratoma is formed into wild type C57 / BL6 mice, and by peripheral cytoplasm in wild type C57 / BL6 mice 4 weeks after transplantation by flow cytometer analysis.
  • FIG. 1 It is a plot figure which shows that the various hematopoietic system cell derived from an iPS cell exists.
  • a vector encoding a suicide gene (TK gene) used to remove cells other than target cells (hepatocytes) mixed in the teratoma, and Cre under the control of the Alb promoter which is a marker gene for hepatocytes.
  • TK gene suicide gene
  • It is the microscope picture of a cell line which shows that the screening system by a suicide gene is effective in removal of cells other than the target cell mixed in the teratoma.
  • FIG. 2 is a schematic diagram showing the process of establishing iPS cells from Lnk ⁇ / ⁇ GFP transgenic (Tg) mice or GFP Tg mice. It is a microscope picture which shows the result of the immunostaining of Nanog and SSEA-1 in a Lnk ⁇ / ⁇ GFP iPS cell. In the figure, the scale bar indicates 100 ⁇ m. It is a photograph showing a chimeric mouse prepared from Lnk ⁇ / ⁇ GFP iPS cells.
  • FIG. 5 is a photograph showing nude mice in which teratomas derived from Lnk ⁇ / ⁇ GFP iPS cells are formed.
  • FIG. 2 is a photograph showing teratomas derived from Lnk ⁇ / ⁇ GFP iPS cells collected from nude mice.
  • the scale bar indicates 1.25 cm.
  • HSC hematopoietic stem cell
  • FIG. 1 It is a graph which shows the ratio of the GFP + cell derived from iPS cell in the peripheral blood and the bone marrow of the mouse
  • 12 weeks after iPS cell injection 5 teratoma-forming mice under each condition were analyzed.
  • the vertical axis on the left indicates the ratio of GFP + cells in CD45 + cells (GFP + / CD45 + cells (%)) in the peripheral blood of teratoma-forming nude mice.
  • the right vertical axis shows the ratio of GFP + cells in KSL cells (GFP + / KSLcells (%)) in the bone marrow of teratoma-forming nude mice.
  • the left side shows the result of analyzing peripheral blood
  • the right side shows the result of analyzing bone marrow.
  • Error bars represent standard deviation. Those marked with three asterisks (***) indicate a significantly different value (p ⁇ 0.001) compared to untreated (None, iPS cells only) injected samples.
  • FIG. 2 is a photomicrograph showing the results of analyzing colonies derived from iPS cells formed by dividing GFP + CD34 ⁇ KSL cells derived from teratoma-forming mouse bone marrow cells one by one and adding a cytokine that induces hematopoietic differentiation.
  • the left side shows the result of phase difference observation
  • the right side shows the result of fluorescence observation.
  • a graph showing the results of evaluation of the quantity and type of CFC-nmEM by dividing 100 GFP + CD34 ⁇ KSL cells derived from teratoma-forming mouse bone marrow one by one, adding a cytokine that induces hematopoietic differentiation, and culturing for 10 days. is there.
  • CFC-nmEM indicates the number of colony forming cells-neutrophil / macrophage / erythroblast / megakaryocyte (colony-forming units-neutrophil / macrophage / erythroblast / megakaryocyte).
  • “nm” on the horizontal axis represents a colony composed of two strains of neutrophil / macrophage
  • “nmM” represents a colony composed of three strains of neutrophil / macrophage / megakaryocyte
  • “nmE” represents neutrophil.
  • NmEM indicates a colony consisting of 4 strains of neutrophil / macrophage / erythroblast / megakaryocyte.
  • FIG. 6 is a micrograph of a cytospin sample of a CD34 ⁇ KSL cell-derived colony observed by leuco staining (Leukostein).
  • GM represents granulocytes / macrophages
  • Meg represents megakaryocytes
  • E represents erythroblasts.
  • It is a graph which shows the result of a bone marrow transplantation assay. That is, GFP derived from Lnk ⁇ / ⁇ GFP iPS cells in the peripheral blood of a primary mouse transplanted with bone marrow cells derived from teratoma-forming mice into irradiated mice and a secondary transplant recipient mouse 12 weeks after the primary transplantation.
  • HPC hematopoietic progenitor cells
  • HSC hematopoietic stem cells
  • HSC hematopoietic stem cells
  • HPC hematopoietic progenitor cells
  • HSC hematopoietic stem cells
  • results were obtained by dividing 100 GFP + CD34 ⁇ KSL cells derived from teratoma-forming mouse bone marrow one by one, adding cytokines that induce hematopoietic differentiation, culturing, and culturing for 10 days to evaluate the quantity and type of CFC-nmEM. It is a graph to show.
  • CFC-nmEM indicates the number of colony forming cells-neutrophil / macrophage / erythroblast / megakaryocyte (colony-forming units-neutrophil / macrophage / erythroblast / megakaryocyte).
  • “nm” on the horizontal axis represents a colony composed of two strains of neutrophil / macrophage
  • “nmM” represents a colony composed of three strains of neutrophil / macrophage / megakaryocyte
  • “nmE” represents neutrophil.
  • NmEM indicates a colony consisting of 4 strains of neutrophil / macrophage / erythroblast / megakaryocyte.
  • FIG. 3 is a schematic diagram showing a method for producing m ⁇ c-iPS cells into T cells in X-SCID mice.
  • iPS cells were established from X-SCID mice, and m ⁇ c gene was introduced into the iPS cells to prepare m ⁇ c-iPS cells. Then, m ⁇ c-iPS cells and OP9 cells were injected into X-SCID mice for teratoma formation. It is an electrophoresis photograph showing the PCR analysis result of m ⁇ c-iPS cells.
  • m ⁇ c-iPS cells (m ⁇ c-iPSC) # 1 to 5 are obtained by introducing 3 factors (Oct3 / 4, Klf4, and Sox2) into cells derived from X-SCID mice having IL-2Rg mutation.
  • Cell. 4F B6 iPS cells (4F B6 iPS iPSC) are cells having a c-Myc transgene and having no common gamma chain ( ⁇ c) mutation. Pure water (Water) represents a negative control.
  • 2 is an electrophoresis photograph showing the results of analyzing the expression of an ES cell marker gene in m ⁇ c-iPS cells by RT-PCR. Pure water (Water) and MEF represent negative controls.
  • ES cells (ESC) represent a positive control.
  • FIG. 4 is a plot and histogram showing expression of GFP and mouse gamma chain ( ⁇ c) in m ⁇ c-iPS cell # 4 (m ⁇ c-iPSC # 4).
  • B6 iPS cells (B6 iPSC) represent a negative control.
  • the filled histogram on the right side shows the results for m ⁇ c-iPSC # 4, and the white histogram on the left side shows the results for the negative control (B6 iPS cells).
  • the numerical value indicates the ratio (%) of GFP + cells in each cell.
  • M indicates that it is derived from a mouse
  • h indicates that it is derived from a human.
  • It is a microscope picture which shows the result of having investigated the expression of CD45, CD34, and osteocalcin in the teratoma section derived from a human iPS cell by immunostaining.
  • “Merge” indicates a superposition of these three expressions.
  • 2 is a photomicrograph showing the results of examining the expression of CD45, CD34, and VE-cadherin by immunostaining in teratoma sections derived from human iPS cells.
  • “Merge” indicates a superposition of these three expressions.
  • DAPI + merge shows the expression of CD45 and GFP and the result of DAPI staining superimposed, and the arrow shows GFP + CD45 + cells derived from GFP iPS cells.
  • the scale bar indicates 150 ⁇ m.
  • FIG. 2 is a photomicrograph showing the results of immunostaining of CD45, c-Kit, and HSC niche marker: VE-cadherin in teratoma.
  • “DAPI + merge” indicates a superposition of these three expressions and the results of DAPI staining, and the arrow indicates CD45 + c-Kit + cells.
  • the scale bar indicates 75 ⁇ m. It is the photograph which shows the teratoma formed in the mouse
  • the present invention (A) transplanting pluripotent stem cells derived from a mammal individual to a non-human mammal; (B) administering to the non-human mammal an agent for inducing differentiation into a target cell; (C) growing the animal for a time sufficient for the transplanted pluripotent stem cells to form a teratoma in the living body of the non-human mammal, and inducing differentiation of the pluripotent stem cells into target cells; (D) recovering a target cell derived from the mammal individual from the non-human mammal; A method for producing target cells induced to differentiate from pluripotent stem cells.
  • the “mammal” is not particularly limited, and examples thereof include humans, mice, rats, cows, horses, pigs, sheep, monkeys, dogs, and cats.
  • the “non-human mammal” is not particularly limited, and examples thereof include mice, rats, cows, horses, pigs, sheep, monkeys, dogs, and cats.
  • the “target cell” according to the present invention is one or a plurality of cells selected from various cells constituting the mammal individual, for example, hematopoietic cells, hepatocytes, pancreas Examples include cells, intestinal cells, thymocytes, and bone / chondrocytes.
  • the “target cell” according to the present invention includes various cell groups (for example, tissues and organs) constituting the mammal individual.
  • hematopoietic cell means a hematopoietic stem cell (HSC), a hematopoietic progenitor cell (HPC), and a cell obtained by differentiation from HSC or HPC, that is, erythroblast, myeloid cell, megakaryocyte system, lymphocyte. And the like, and examples thereof include HSC, HPC, neutrophils, macrophages, erythroblasts, and megakaryocytes.
  • pancreatic cell means a cell constituting the pancreas, that is, an exocrine cell constituting the exocrine part, a Langerhans islet cell constituting the Langerhans islet (endocrine part), and the like, for example, an acinar cell, A Examples include cells ( ⁇ cells), B cells ( ⁇ cells), D cells ( ⁇ cells), and PP cells.
  • the “pluripotent stem cell” to be differentiated in the present invention is a cell having pluripotency capable of differentiating into various cells constituting the mammal individual and self-replicating ability, for example, an embryonic stem cell (Embryonic stem cells (ES cells), induced pluripotent stem cells (Induced pluripotent stem cells, iPS cells), embryonic tumor cells (Embryonic carcinoma cells, EC cells), embryonic germ cells (EmbrycellG cells) Universal cells such as multipotent germline stem cell (mGS cell), fertilized egg, inner cell mass (inner cell mass, ICM), ectoderm progenitor cells, endoderm progenitor cells, mesoderm
  • mGS cell multipotent germline stem cell
  • ICM inner cell mass
  • ectoderm progenitor cells endoderm progenitor cells
  • mesoderm mesoderm
  • progenitor cells, differentiable cell series include stem cells / progenitor cells are limited.
  • iPS cells prepared using somatic cells of the individual mammal as the pluripotent stem cells according to the present invention.
  • the “iPS cell” is a cell that has acquired ES cell (Embryonic stem cells) -like differentiation pluripotency by introducing a cell reprogramming factor into the somatic cell of the individual mammal.
  • the “cell reprogramming factor” used in the present invention when introduced into a somatic cell, imparts pluripotency to the somatic cell alone or in cooperation with other pluripotent factors. It can be any factor that can be used, and is not particularly limited.
  • Oct3 / 4 c-Myc, Sox2, Klf4, Klf5, LIN28, Nanog, ECAT1, ESG1, Fbx15, Eras, ECAT7, ECAT8, Gdf3, Sox15
  • It is preferably at least one protein selected from the group consisting of ECAT15-1, ECAT15-2, Fthl17, Sal14, Rex1, Utf1, Tcl1, Stella, ⁇ -catenin, Stat3 and Grb2.
  • Oct3 / 4, Sox2 and Klf4 (3 factors) excluding c-Myc into the somatic cells.
  • pluripotent stem cell for example, the stem cell / progenitor cell in which the differentiable cell line is limited
  • pluripotent stem cells are seeded in a culture dish coated with Collagen-Type4 as shown in the Examples below, and activin A, BMP4, etc. And then culturing in a serum-free medium supplemented with activin A, EGF, FGF4, and the like.
  • Non-Patent Documents 5 to 8 for example, it is generally difficult to induce differentiation of pluripotent stem cells into functional cells without genetic modification.
  • functional cells induced to differentiate can be efficiently obtained even using pluripotent stem cells that are not genetically modified.
  • pluripotent stem cells that have been genetically modified can also be used as pluripotent stem cells according to the present invention from the viewpoint of increasing the number of target cells produced and enhancing the function of the target cells.
  • genetic modification is not particularly limited, and known techniques can be appropriately employed. For example, in the case of enhancing the function or expression of a protein that induces an increase in the number of target cells produced or enhancement of function, a method of introducing a gene encoding the protein into a pluripotent stem cell as a transgene, And a method for introducing into the pluripotent stem cell a mutation that enhances the expression of the gene in the DNA sequence of the expression control region of the gene.
  • a method of knocking out or knocking in a gene encoding the protein in pluripotent stem cells for example, a method of knocking out or knocking in a gene encoding the protein in pluripotent stem cells.
  • a method of introducing a mutation that suppresses the expression of the gene into the DNA sequence of the gene expression regulatory region, or a transgene encoding siRNA or shRNA for the gene is introduced into the pluripotent stem cell. A method is mentioned.
  • the target cell is a hematopoietic cell
  • a mouse lacking the Lnk protein overproduces a hematopoietic stem cell (HSC) having a high self-renewal capacity, and the Lnk protein is deficient as shown in Examples described later.
  • HSC hematopoietic stem cell
  • the pluripotent stem cell-derived HSC has a very high replication ability, it is preferable to use Lnk-deficient cells as the pluripotent stem cells according to the present invention.
  • the Lnk protein is an intercellular adapter protein that is known as a factor that negatively regulates the TPO / c-mpl pathway in HSC and the like.
  • the protein (gene) specified by NP_005466 (No. NM_005474) is mentioned, and Access No. Examples include proteins (genes) specified by NP_032533 (No. NM_008507).
  • the “Lnk deficient cell” is a cell deficient in the expression and / or function of the Lnk protein, and the “Lnk deficient cell” is, for example, as described above, knocking out the Lnk gene, It can be prepared by introducing siRNA against the Lnk gene.
  • a method for transplanting the pluripotent stem cells into a non-human mammal is not particularly limited, and a known technique can be appropriately used.
  • the tissue for transplanting the pluripotent stem cells into a non-human mammal is not particularly limited, and examples thereof include subcutaneous, testis, renal capsule, and bone marrow. Among these, it is preferable to transplant subcutaneously from the viewpoint that it is frequently used as a place where teratomas derived from mouse iPS cells and the like are formed. In addition, when transplanting human iPS cells into a non-human mammal, the frequency of teratoma formation is low even when injected into mice or the like subcutaneously, and from the viewpoint that it is a tissue with more blood flow, It is preferable to transplant to the testis.
  • transplantation into bone marrow is preferable. Furthermore, from the viewpoint that the donor-derived tissue and the recipient tissue are not easily mixed, it is preferable to transplant to a tissue (ectopic) other than the tissue in which the target cell exists.
  • the pluripotent stem cells when the pluripotent stem cells are transplanted into a non-human mammal, the pluripotent stem cells may be used by mixing with other components.
  • Such other components are not particularly limited, and include physiological saline such as phosphate buffered saline (PBS), medium, buffer, and preservative.
  • PBS phosphate buffered saline
  • co-cultured cell means a cell that can be used in a culture system for pluripotent stem cells to prepare culture conditions for inducing proliferation or differentiation of pluripotent stem cells.
  • Cells stromal cells, and more specifically OP-9 cells, PA6 cells, MEF (mouse fetal fibroblasts), NIH3T3 cells, M15 cells, and 10T / 2 cells.
  • the “co-culture cells” according to the present invention can increase the induction efficiency of the pluripotent stem cells to the target cells by mixing with the pluripotent stem cells.
  • OP-9 cells are preferably used.
  • TGF- at least selected from the group consisting of ⁇ , epidermal growth factor, insulin-like growth factor, fibroblast growth factor, tissue plasminogen activator 3, 4 and other growth factors naturally produced in EHS tumors
  • One component is preferably mixed in the pluripotent stem cell.
  • the non-human mammal to which the pluripotent stem cells are transplanted is not particularly limited, and includes the aforementioned mice, etc., but a space for inducing target cells derived from pluripotent stem cells is secured.
  • an animal lacking the ability to form target cells is preferable.
  • the target cell differentiated from the pluripotent stem cell is produced. From the viewpoint of being able to do so, it is preferably an immunodeficient animal.
  • the "differentiation inducer to target cells" administered to the non-human mammal is not particularly limited as long as it is a physiologically active substance that works when differentiation induction from pluripotent stem cells to target cells is performed, Examples thereof include polypeptides and proteins (cytokines, hormones, enzymes, etc.), vitamins, saccharides, fatty acids, amino acids, nucleic acids, minerals and the like.
  • the “differentiation inducer to target cells” is more specifically, when the target cells are hepatocytes, retinoic acid, fibroblast growth factor 1 (FGF1), FGF4, hepatocyte proliferation Factor (HGF), oncostatin M (OsM), and when the target cell is a pancreatic cell, activin A, epidermal growth factor (EGF), Noggin, insulin-like growth factor-2 (IGF-2), When nicotinamide is used and the target cell is a hematopoietic cell, stem cell factor (SCF) and thrombopoietin (TPO) are used. When the target cell is an enteric cell, activin A and bone morphogenetic factor 4 ( BMP4), EGF, FGF4, NOGGIN.
  • BMP4 bone morphogenetic factor 4
  • pancreatic Langerhans islet cells in the differentiation induction of pancreatic Langerhans islet cells, first, activin A or the like is added to iPS cells to induce differentiation into endoderm progenitor cells, and EGF, After inducing endoderm cells committed to the pancreas by adding bFGF and Noggin, nicotinamide or IGF-2 is added to the endoderm cells to induce differentiation of the pancreas into Langerhans islet cells.
  • the differentiation stage at which the “differentiation inducer” acts varies depending on the type of differentiation inducer.
  • the predetermined period for administering the differentiation-inducing agent to the non-human mammal is a period sufficient for each differentiation-inducing agent to act and induce the desired differentiation.
  • Each differentiation-inducing agent may be administered to cells transiently or continuously as long as each target differentiation can be achieved. From the viewpoint of mimicking the development of an original organ, it is preferable to administer the differentiation inducer continuously.
  • the site for administering the differentiation-inducing agent in the non-human mammal is not particularly limited, but is preferably subcutaneous from the viewpoint that the procedure required for administration is simple.
  • the method for administering the differentiation inducer to the non-human mammal is not particularly limited, and a known method (for example, a method using an osmotic pump) can be appropriately selected and used.
  • the transplanted pluripotent stem cells are allowed to grow for a sufficient period of time to form teratomas in the living body of the non-human mammal, and the pluripotent stem cells are induced to differentiate into target cells.
  • the process will be described.
  • a sufficient time for the transplanted pluripotent stem cells to form teratomas in the living body of the non-human mammal is preferably 4 to 12 weeks after the transplantation, More preferably, it is 8-12 weeks. If the time is less than the lower limit, the transplanted pluripotent stem cells tend not to be sufficiently induced to differentiate into target cells. On the other hand, if the time exceeds the upper limit, the health of the non-human mammal due to teratoma increase It tends to adversely affect the condition.
  • the step of inducing differentiation of the pluripotent stem cell derived from the animal individual according to the present invention into the target cell cells other than the target cell to be mixed are removed from the viewpoint of efficiently inducing differentiation of only the target cell. It is preferable to perform the operation to do.
  • the “cell other than the target cell” is not particularly limited.
  • a pluripotent stem cell undifferentiated cell
  • Cells derived from pluripotent stem cells that have differentiated into other cells are derived from pluripotent stem cells that have differentiated into other cell lineages).
  • the operation for removing cells other than the target cells to be mixed is not particularly limited.
  • a “suicide gene” used to cause a suicide gene to function in cells other than the target cell is cell death (apoptosis) in cells expressing the protein under conditions that allow the protein encoded by the gene to function.
  • cell death apoptosis
  • Necrosis etc.
  • TK thymidine kinase
  • HSVtk herpesvirus thymidine kinase
  • cytosine deaminase gene EG11326 codA 355395.356678 E.
  • coli uracil phosphoribosyltransferase gene (EG11332 up 26618894.26618268 E.c) li), guanine phosphoribosyl transferase (gpt) gene (EG10414 gpt 255977..256435 E.coli), a nitro reductase gene.
  • gpt guanine phosphoribosyl transferase
  • TK is a microorganism-derived metabolic enzyme gene, which metabolizes ganciclovir (GCV) to produce ganciclovir 5'-triphosphate.
  • GCV ganciclovir
  • This ganciclovir 5'-triphosphate inhibits DNA synthesis, thereby inducing cell death of cells expressing TK. That is, by adding GCV, the condition is such that TK can function, and cell death is induced in cells in which TK is expressed.
  • the method of ⁇ working the suicide gene '' there is no particular limitation as to the method of ⁇ working the suicide gene '', and any method can be used as long as the protein encoded by the suicide gene can function.
  • Examples include a method in which a TK gene is introduced into a pluripotent stem cell and the TK gene is removed only by a cell differentiated into a target cell by a Cre-LoxP system, as shown in the Examples described later. More specifically, when the target cell is a hepatocyte, as shown in FIG. 9, a viral vector in which an HSV-derived TK gene is sandwiched between LoxP sequences, and control of an Alb promoter that is a marker gene for hepatocytes.
  • a viral vector expressing Cre recombinase is prepared below. After the cells are infected with the two viruses, differentiation induction into hepatocytes is performed in the present invention. Thereafter, by administering GCV, only Alb-producing cells from which the TK gene has been removed by the expression of Cre can survive, and cell death of undifferentiated cells or cells differentiated into other cell lineages can be induced. In the same manner as described above, even when the target cell is a cell other than a hepatocyte, by selecting a promoter specific to the target cell (for example, when a pancreatic lineage cell is used as the target cell). By selecting the Pdxl promoter, cells other than the target cell can be removed.
  • the pluripotent stem cells can be used as promoters of undifferentiated marker genes (Nanog, Oct3 / 4 gene, etc.).
  • undifferentiated marker genes Nag, Oct3 / 4 gene, etc.
  • TK which is a suicide gene, has been introduced, and inducing differentiation of the pluripotent stem cells into target cells according to the present invention, then selectively removing only undifferentiated cells by administering GCV. Can do.
  • the method for recovering the target cells derived from the individual mammal is not particularly limited, and examples thereof include a method for recovering from the teratoma formed in the living body of the non-human mammal.
  • the target cell is a hematopoietic cell, as shown in the examples below, the hematopoietic cell induced to differentiate by the method of the present invention surprisingly moves from the teratoma and engrafts in the bone marrow. It can also be recovered from the bone marrow of the non-human mammal.
  • the present invention also provides target cells obtained by the above-described method. That is, the present invention also provides one or a plurality of cells selected from various cells constituting the mammalian individual, which are induced to differentiate from pluripotent stem cells by the method described above. Furthermore, a tissue or organ composed of one or a plurality of cells selected from various cells constituting the mammal individual is also provided.
  • target cells are not particularly limited, and examples thereof include hematopoietic cells, hepatocytes, pancreatic cells, intestinal cells, thymocytes, and bone / chondrocytes.
  • ⁇ Cell> As mouse iPS cells, three genes of Oct3 / 4, Sox2 and Klf4 were introduced into the tail tip fibroblasts (TTF, tail tip fibroblast) of Kusterrorism Orange transgenic mice (129 / Sv mice derived) using a retroviral vector. Established and Lnk knockout mice (derived from C57BL / 6 mice) were used by introducing the above 3 genes with a lentiviral vector. In addition, it was confirmed before the experiment that both the cell lines can produce chimeric mice as blastocyst hosts for wild-type mice.
  • E14.1 KSR medium Mouse iPS cells were cultured in E14.1 KSR medium by co-culture with mouse fetal fibroblasts (MEF) treated with mitomycin C.
  • the composition of the E14.1 KSR medium is as follows. Dulbecco's modified Eagle medium (DMEM, manufactured by Invitrogen), 15% knockout serum substitute (KSR, manufactured by Invitrogen) as an additive, 2 mM L-glutamine-penicillin-streptomycin (manufactured by Invitrogen), 1 ⁇ non-essential amino acid ( 1 mM HEPES (manufactured by Invitrogen), 0.1 mM 2-mercaptoethanol (manufactured by Gibco), 1000 IU / ml leukemia inhibitory factor (Leukemia Inhibitory Factor, LIF).
  • DMEM Dulbecco's modified Eagle medium
  • KSR knockout serum substitute
  • 2 mM L-glutamine-penicillin-streptomycin manufactured by In
  • ⁇ Teratoma formation and differentiation into target cells Mouse iPS cells were peeled off from the dish by trypsin treatment and suspended in PBS at about 5 ⁇ 10 6 cells / 50 ⁇ L and injected subcutaneously into KSN / Slc-nu / nu mice. The day of iPS cell injection was set to “day 1”, and cytokine administration was started on the same day. A total amount of 100 ⁇ L of cytokine was placed in alzet micro-osmotic pump model 1002 (manufactured by DURECT Corporation), and a pump was implanted subcutaneously into the mouse.
  • alzet micro-osmotic pump model 1002 manufactured by DURECT Corporation
  • cytokine type, dose, and administration timing are shown in FIG.
  • KSN / Slc-nu / nu indicates a nude mouse in the KSN background
  • the names of cytokines and the like injected into the mouse are as follows.
  • RA Retinoic Acid (retinoic acid)
  • FGF1 Fibroblast Growth Factor 1 (fibroblast growth factor 1)
  • FGF4 Fibroblast Growth Factor 4 (fibroblast growth factor 4)
  • HGF Hepatocyte Growth Factor (Hepatocyte Growth Factor)
  • OsM Oncostatin M (Oncostatin M, a cytokine belonging to leukemia inhibitory factor, has multiple functions)
  • Activin A Activin A
  • EGF Epidermal Growth Factor (epidermal growth factor)
  • bFGF basic FGF (basic fibroblast growth factor) Nicotinamide (Nicotinamide)
  • IGF-2 Inslin Like Growth Factor-2 (insulin-like growth factor-2)
  • OP9 Mouse bone marrow stromal cell line
  • SCF Stem Cell Factor (stem cell factor)
  • TPO Thrombopoietin (thrombopoietin, a hematopoietic factor involved in the proliferation and
  • C. T.A A frozen section was prepared by embedding with a compound (manufactured by Tissue-TeK). Sections were fixed with 4% paraformaldehyde (PFA), treated with acetone, blocked with MAXBlock Blocking Medium (registered trademark, manufactured by Active Motif) for 1 hour at room temperature, washed twice with PBS and applied with primary antibody. The reaction was allowed to proceed overnight at 4 ° C.
  • PFA paraformaldehyde
  • MAXBlock Blocking Medium registered trademark, manufactured by Active Motif
  • Primary antibodies include goat anti-mouse ALB Ab, Rabbit anti-mouse CK19 Ab (manufactured by Invitrogen), Rat anti-mouse CYP7A1 Ab (manufactured by Santa Cruz), mouse anti-mouseIns It was. Next, after washing 3 times with PBS, the reaction was allowed to proceed with the secondary antibody for 1 hour at room temperature. As secondary antibodies, donkey anti-goat IgG Alexa 647, goat anti-rabbit IgG Alexa 488, goat anti-rat IgG Alexa 488, and goat anti-mouse IgG Alexa 488 (manufactured by Invitrogen) were used.
  • Indocyanine green adsorption reaction Indocyanine green (Indocyanine green, manufactured by Sigma) was dissolved in 5 mg / ml DMSO (manufactured by Sigma) and prepared with PBS to 1 mg / ml. 500 ⁇ L of this solution was intravenously injected into mice, and after 30 minutes, the teratomas and liver were excised and the color was observed. Alternatively, the teratoma and liver excised from the mouse were immersed in an indocyanine green solution, and the color was observed after incubation at 37 ° C. for 30 minutes.
  • Flow cytometry analysis> For determination of blood cell differentiation ability, peripheral blood and bone marrow cells were analyzed by flow cytometry (FACS Aria).
  • the antibodies used were anti-mouse CD45-APC, anti-mouse CD4, CD8, Gr-1, Mac-1, B220, IL-7R-Biotin, anti-Streptavidin-APC / Cy7, anti-mouse Sca-1- Pacific Blue, anti-mouse c-Kit-APC, anti-mouse CD3-PE / Cy5, anti-mouse B220- Pacific Blue, anti-mouse Gr-1-APC (manufactured by Anti-mouse Mac-1-APC) ) was used.
  • Peripheral blood was collected from the mouse's inferior vein and analyzed by reacting with antibodies after hemolysis. Bone marrow cells were collected from the femur and tibia of mice and reacted with antibodies for analysis.
  • Example 1 ⁇ Differentiation into the liver> As described above, frozen sections were prepared from teratomas differentiated into hepatocytes and immunostained with albumin, CK19, and CYP7A1, which are hepatocyte markers. The obtained results are shown in FIGS. As is clear from the results shown in FIG. 2 and FIG. 3, only the teratoma that received differentiation induction by cytokines was confirmed to express the same marker as that of hepatocytes.
  • Example 2 ⁇ Differentiation into pancreas> As described above, frozen sections were prepared from teratomas differentiated into pancreatic cells, and immunostaining for insulin, which is a marker for pancreatic islets of Langerhans, was performed. The obtained results are shown in FIG. As is clear from the results shown in FIG. 5, only the teratoma that received differentiation induction by cytokines was confirmed to express insulin similar to pancreatic cells.
  • Example 3 ⁇ Differentiation into blood cells and hematopoietic stem cells>
  • blood cells derived from Lnk ⁇ / ⁇ iPS cells were confirmed in the blood of the nude mouse (see FIG. 6).
  • the ratio of blood cells derived from iPS cells was higher under the conditions of SCF + TPO + OP9 than SCF + TPO.
  • hematopoietic progenitor cells Lineage-c-Kit + Sca-1 + (KSL) derived from iPS cells were confirmed in the bone marrow (see FIG. 7). Further, when this bone marrow cell was transplanted into a wild type C57 / BL6 mouse and peripheral blood after 4 weeks was analyzed, it was confirmed that almost 100% of the blood was derived from iPS cells and differentiated into various cells. (See Figure 8). That is, it was suggested that iPS cells differentiated into hematopoietic stem cells in nude mice and home to bone marrow.
  • hematopoietic stem cells and progenitor cells deficient in the protein Lnk that negatively regulates the functions of hematopoietic stem cells and progenitor cells. Furthermore, by using ES cells and iPS cells deficient in the protein Lnk that negatively regulates the functions of hematopoietic stem cells and progenitor cells, a larger amount of hematopoietic stem cells and progenitor cells was amplified compared to normal ES cells iPS cells. .
  • Example 4 Removal of undifferentiated cells to be mixed and method of removing other than target cells>
  • a problem of tumor formation due to pluripotency may occur.
  • transplanting differentiation-induced cells in vitro there is a risk that the mixed undifferentiated cells form a tumor. Therefore, in the present invention, it is preferable to use a screening system that allows only the target differentiated cells to survive.
  • TK Thymidine Kinase
  • GCV ganciclovir
  • This ganciclovir 5'-triphosphate inhibits DNA synthesis, thereby inducing cell death of cells expressing TK.
  • a virus-derived TK gene is introduced into an ES cell or iPS cell, and a system in which the TK gene is removed by the Cre-LoxP system only in cells that have differentiated into target cells is constructed.
  • a retroviral vector in which an HSV-derived TK gene is sandwiched between LoxP sequences and a lentiviral vector that expresses Cre recombinase under the control of the Alb promoter, which is a marker gene for hepatocytes are prepared.
  • a VSV-G envelope for virus production, it can be used for both mouse ES / iPS cells and human ES / iPS cells (see FIG. 9).
  • hepatocyte differentiation is induced as described above.
  • GCV it is considered that only Alb-producing cells from which the TK gene has been removed by the expression of Cre can survive, and cell death of undifferentiated cells or cells differentiated into other cell lineages can be induced.
  • genes such as Cre recombinase and TK under the control of the Alb promoter were introduced into HuH7 cells (cell line derived from human liver cancer) and NIH3T3 cells (mouse fetal epithelial cell line) using the viral vector shown in FIG.
  • HuH7 cells cell line derived from human liver cancer
  • NIH3T3 cells mouse fetal epithelial cell line
  • the present method can be suitably used in the present invention.
  • the establishment of this system makes it possible to survive only differentiated cells of interest such as Alb-expressing cells by administering GCV after transplanting undifferentiated cells into the living body.
  • Example 3 the method for producing hematopoietic stem cells and hematopoietic progenitor cells of the present invention shown in Example 3 and the functions of these cells obtained by the method were analyzed in more detail.
  • Examples 5 to 8 the following materials were used and the following methods were used.
  • ⁇ Mouse> C57BL / 6 (B6) mice, KSN / Slc nude mice, and green fluorescent protein (GFP) transgenic mice were purchased from Japan SLC Corporation. Lnk ⁇ / ⁇ GFP transgenic mice were bred and maintained at the laboratory animal research facility of the Institute of Medical Science, University of Tokyo. In addition, the production and evaluation of X-SCID mice having a genetic background of B6 were carried out according to the description in “Ohbo, K et al., Blood, 1996, Vol. 87, pages 956-967”. Furthermore, NOD / SCID mice were purchased from Nippon Claire Co., Ltd. NOD / SCID / JAK3-deficient mice were purchased from Sankyo Lab Service Co., Ltd. In addition, the care of these mice was performed according to the guidance regarding the recombinant DNA experiments and experimental animals of the University of Tokyo.
  • Mouse iPS cells include Lnk ⁇ / ⁇ GFP transgenic C57BL / 6 (B6) mice, or tail tip fibroblasts (TTF, tail tip fibroblasts) derived from GFP transgenic B6 mice, Oct3 / 4, Sox2, and Klf4. These three genes were introduced by lentivirus all-in-one vector and re-programmed and used. The characteristics of the obtained iPS cells were confirmed as shown in FIGS. 11 to 16 described later.
  • mouse iPS cells maintained an undifferentiated state by co-culture with mouse fetal fibroblasts (MEF).
  • the composition of the medium used for the co-culture is as follows. Dulbecco's modified Eagle medium (DMEM, manufactured by GIBCO), 15% knockout serum substitute (Knockout SR, manufactured by GIBCO), 20 mM HEPES buffer solution (manufactured by Invitrogen), 0.1 mM MEM non-essential amino acid solution (Manufactured by Invitrogen), 0.1 mM L-glutamine (manufactured by Invitrogen), 100 U / ml penicillin, 100 ⁇ g / ml streptomycin (manufactured by Sigma-Aldrich), 0.1 mM 2-mercaptoethanol (manufactured by GIBCO), and 1000 U / Ml ESGRO (manufactured by GIBCO). The medium was changed daily and the cells were passaged every 2-3 days to avoid abnormal
  • human iPS cells those established by reprogramming by introducing 3 genes of Oct3 / 4, Sox2 and Klf4 into normal human epidermal keratinocytes (Lonza) by using a lentiviral vector were used.
  • human iPS cells maintained an undifferentiated state by co-culture with MEF.
  • the composition of the human iPS cell culture medium used for co-culture is as follows.
  • Dulbecco's Modified Eagle Medium-F12 (Sigma-Aldrich), 20% Knockout SR (GIBCO), 0.1 mM MEM non-essential amino acid solution (Invitrogen), 0.2 mM L-glutamine (additives) Invitrogen), 0.1 mM 2-mercaptoethanol (GIBCO), and 5 ng / ml bFGF (Peprotech).
  • the medium was changed every day and the cells were passaged every 7 days.
  • OP9 cells were maintained in a growth medium consisting of minimal essential medium ⁇ ( ⁇ -MEM, manufactured by Invitrogen) supplemented with 20% fetal calf serum (FBS, manufactured by HyClone).
  • ⁇ -MEM minimal essential medium ⁇
  • FBS fetal calf serum
  • Tissue sections were evaluated by paraffin-embedding teratoma tissue and staining with hematoxylin and eosin (H & E).
  • Fluorescent immunostaining of Nanog and SSEA-1 was performed using anti-mouse Nanog antibody (diluted to 1/100, Cosmo Bio) and anti-mouse SSEA-1 antibody (diluted to 1/100, Abcam) And then Alexa Fluor 546-labeled anti-rabbit IgG antibody (diluted to 1/300, manufactured by Invitrogen), and allophycocyanin (APC) -labeled anti-mouse IgM antibody (1/100) Used by diluting and incubating with eBioscience). The counterstaining of the nuclei was performed using DAPI (manufactured by Sigma-Aldrich) according to the manufacturer's instructions. Subsequently, the sections immunofluorescently stained were visualized with a microscope (BX-51) and a digital camera system (DP-71) (both from Olympus) and photographed.
  • DAPI manufactured by Sigma-Aldrich
  • the teratoma tissue is rapidly frozen using dry ice, embedded in Optimal Cutting Temperature (OCT) compound (Sakura Finetek), and using CM3050 cryostat (Leica Microsystems), Prepared in 7-8 ⁇ m sections. These tissue sections were fixed with ethanol and immunostained. That is, each section was incubated with the primary antibody for 24 hours at 4 ° C. and then with the secondary antibody for 30 minutes at room temperature.
  • OCT Optimal Cutting Temperature
  • the primary antibodies are anti-mouse CD45 antibody (diluted to 1/50, used by BD Bioscience), Alexa Fluor488 labeled anti-mouse CD117 (c-Kit) antibody (diluted to 1/10, used by BioLegend) ), Anti-mouse osteocalcin antibody (Ostecalcin, BGLAP) (diluted to 1/200, LifeSpan Biosciences), and anti-mouse VE-cadherin antibody (diluted to 1/200, used, Abcam) ) was used.
  • Alexa Fluor 546-labeled goat-derived anti-rat IgG antibody and Alexa Fluor 647-labeled goat-derived anti-rabbit IgG antibody both manufactured by Invitrogen were used.
  • the section was sealed with a fluorescent staining mounting medium (manufactured by Dako) containing 4,6-diamidino-2-phenylindole (DAPI) for counterstaining the nucleus, and both TCS SP2 and AOBS were encapsulated. Observation was carried out with a focal laser scanning microscope (manufactured by Leica Microsystems).
  • a fluorescent staining mounting medium manufactured by Dako
  • DAPI 4,6-diamidino-2-phenylindole
  • iPS cells were trypsinized with a 0.25% trypsin-EDTA solution (GIBCO). Trypsinized iPS cells and MEFs were replated on non-coating dishes and incubated for 30 minutes to remove MEFs. To create a chimeric mouse, 10 iPS cells were injected into blastocysts derived from ICR mice, and the blastocysts injected with iPS cells were transplanted into the uterus of pseudopregnant mice.
  • GEBCO trypsin-EDTA solution
  • HSC hematopoietic stem cells
  • Hematopoietic cytokines containing 200 ng stem cell factor (SCF, manufactured by Peprotech) and 200 ng thrombopoietin (TPO, manufactured by Peprotech) were placed in a micro osmotic pump (manufactured by ALZET), and the pump was implanted subcutaneously for 2 weeks.
  • iPS cells were transplanted with 1 ⁇ 10 6 OP9 stromal cells.
  • the hematopoietic cytokine and the OP9 stromal cells were administered.
  • differentiation induction from human iPS cells to HSC is as follows. That is, 1 ⁇ 10 6 human iPS cells and 5 ⁇ 10 5 OP9 stromal cells were injected into the testis of NOD / SCID mice (5-7 weeks old). Furthermore, hematopoietic cytokines containing 200 ng human SCF (Peprotech) and 200 ng TPO (Peprotech) were placed in a micro-osmotic pump (ALZET), and the pump was implanted subcutaneously for 2 weeks.
  • AZAT micro-osmotic pump
  • HSC hematopoietic stem cells
  • mice Peripheral blood cells and spleen cells of mice were APC-labeled anti-CD45 antibody (BD Biosciences), APC-Cy7-labeled anti-CD34 antibody (manufactured by eBioscience), Pacific Blue-labeled anti-CD45R / B220 antibody (manufactured by eBioscience), phycoerythrin (Phycoerythrin (PE) -Cy7-labeled anti-Gr-1 antibody (BioLegend) and PE-Cy7-labeled anti-Mac-1 antibody (BioLegend) were used for staining.
  • APC-labeled anti-CD45 antibody BD Biosciences
  • APC-Cy7-labeled anti-CD34 antibody manufactured by eBioscience
  • Pacific Blue-labeled anti-CD45R / B220 antibody manufactured by eBioscience
  • phycoerythrin Phycoerythrin (PE) -Cy7-labeled anti-Gr-1
  • the mouse bone marrow cells in which the teratoma was formed were analyzed according to the description of Osawa, M, et al., Science, 1996, 273, 242-245. That is, the bone marrow cells are biotinylated anti-Gr-1 antibody, anti-Mac-1 antibody, anti-CD45R / B220 antibody, anti-CD4 antibody, anti-CD8 antibody, anti-IL-7R antibody, and anti-TER119 antibody (manufactured by eBioscience). ).
  • the cells were stained with Alexa Fluor 700-labeled anti-CD34 antibody, Pacific Blue-labeled anti-Sca-1, and APC-labeled anti-c-Kit antibody (all manufactured by eBioscience).
  • the biotinylated antibody was detected using streptavidin-APC-Cy7 (manufactured by eBioscience).
  • Four-color analysis and sorting were performed by FACSAria (Becton Dickinson).
  • HSC hematopoietic stem cells
  • Bone marrow cells of teratoma-formed mice were treated with APC-labeled anti-CD45 antibody (BD Biosciences), Pacific Blue-labeled anti-human CD45 antibody (BioLegend), and FITC-labeled anti-human CD34 antibody (BD Biosciences). Stained.
  • Peripheral blood of recipient mice was APC-labeled anti-mouse CD45 antibody (BD Biosciences), Pacific Blue-labeled anti-human CD45 antibody (BioLegend), Alexa Fluor 488-labeled anti-human CD3 antibody (BD Biosciences), APC- Staining was performed using an H7-labeled anti-human CD19 antibody (BD, Biosciences) and a PE-Cy7-labeled anti-human CD33 antibody (BD, Biosciences).
  • ⁇ Single cell culture> Purified CD34 ⁇ KSL cells derived from iPS cells were seeded in 96-well plates containing 200 ⁇ L of medium in each well for single clones.
  • the composition of the used culture medium is as follows. S-clone SF-O3 medium (manufactured by Sanko Junyaku Co., Ltd.), as additives, 1% bovine serum albumin (BSA), mouse SCF (50 ng / mL), mouse TPO (50 ng / mL), mouse IL-3 ( 10 ng / mL), and mouse EPO (1 U / mL) (all manufactured by PeproTech). The cells were cultured at 37 ° C.
  • S-clone SF-O3 medium manufactured by Sanko Junyaku Co., Ltd.
  • BSA bovine serum albumin
  • mouse SCF 50 ng / mL
  • mouse TPO 50 ng / mL
  • mouse IL-3 10 ng / m
  • hema color registered trademark, manufactured by MERCK
  • ⁇ Bone marrow transplantation assay> For Lnk ⁇ / ⁇ GFP iPS cell-derived HSCs, 1 ⁇ 10 7 BM cells of mice with teratoma formation were transplanted into lethal radiation treated (9.5 Gy) wild type B6 recipient mice. Then, 4 weeks and 12 weeks after transplantation, PB cells of recipient mice were analyzed by flow cytometry.
  • GFP + CD34 ⁇ KSL cells were selected from the primary recipient mouse and secondary to another recipient mouse (secondary recipient mouse) along with 2 ⁇ 10 5 B6 bone marrow cells. Transplanted as a transplant.
  • mice with teratoma formed were transplanted into radiation-treated (2 Gy) NOD / SCID recipient mice or NOD / SCID / JAK3-deficient recipient mice. did. And 8 weeks after transplantation, PB cells of recipient mice were analyzed by flow cytometry.
  • iPS cells were first established from Lnk ⁇ / ⁇ GFP transgenic mice. That is, as shown in FIG. 11, the TTF of Lnk ⁇ / ⁇ GFP transgenic mice was reprogrammed by introducing 3 factors (Oct3 / 4, Klf4, and Sox2) using a lentiviral all-in-one vector. did.
  • the obtained iPS cells (Lnk ⁇ / ⁇ GFP iPS cells) were confirmed to express GFP, Nanog, and SSEA-1 by immunofluorescence analysis (see FIG. 12).
  • Lnk ⁇ / ⁇ GFP iPS cells have the ability to form teratomas in nude mice and can contribute to chimeric mice by injecting into blastocysts, confirming that they have pluripotency. (See FIGS. 13-16).
  • Lnk ⁇ / ⁇ GFP iPS cells were analyzed using KSN / Slc nude mice were injected subcutaneously and induced to differentiate into HSC under the following conditions (see FIG. 17).
  • Condition 1 As a control, iPS cells were injected into nude mice.
  • Condition 2 Hematopoietic cytokines (SCF and TPO) were placed in a micro osmotic pump and administered continuously for 2 weeks.
  • Condition 3 OP9 stromal cell line was transplanted with iPS cells.
  • Condition 4 The hematopoietic cytokine and the OP9 stromal cell line were administered.
  • the ratio was highest when cytokine and OP9 cells were administered (the average value after 12 weeks after iPS cell introduction was the condition 1: 0. 002 ⁇ 0.01%, Condition 2: 1.02 ⁇ 1.15%, Condition 3: 0.87 ⁇ 0.79%, Condition 4: 4.26 ⁇ 3.79%).
  • hematopoietic cells defined as an immunophenotype including a BM primitive cell population is similar to the results described in Example 3 through Lnk ⁇ / ⁇ . It has also been found that this can be done from GFP iPS cells and that hematopoietic cytokines and co-cultured cells (eg, OP9 cells) promote this induction.
  • CFC-nmEM indicates the number of colony forming cells-neutrophil / macrophage / erythroblast / megakaryocyte (colony-forming units-neutrophil / macrophage / erythroblast / megakaryocyte). The obtained results are shown in FIGS.
  • CD34 ⁇ KSL cells formed large colonies containing nmEM colonies (see FIG. 22), and CD34 ⁇ KSL cells were neutrophils.
  • the formation of all blood cell lineages with spheres, macrophages, erythroblasts and megakaryocytes demonstrated that HSCs derived from Lnk ⁇ / ⁇ GFP iPS cells are multipotent, ie functional HSCs (See FIG. 23 and FIG. 24). .
  • HSPC hematopoietic stem / progenitor cells
  • hematopoietic cells derived from Lnk ⁇ / ⁇ GFP iPS cells having multi-lineage reconstruction ability were found. Detected frequently. Further, as is apparent from the results shown in FIG. 27, cells derived from Lnk ⁇ / ⁇ GFP iPS cells are bone marrow cells, and the average proportion of GFP + cells in the CD34 ⁇ KSL cell fraction (HSC cell fraction) is It was as high as 45%.
  • lethal bone marrow cells of primary recipient mice as shown in FIG. Transplanted into B6 mice (secondary recipient mice) irradiated with radiation (secondary transplantation). The obtained results are shown in FIG.
  • HSCs derived from Lnk ⁇ / ⁇ GFP iPS cells have normal hematopoietic ability. Became clear.
  • Example 6 ⁇ Production of functional HSC from GFP iPS cells not having Lnk mutation>
  • iPS cells GFP iPS cells
  • GFP iPS cell-derived cells were obtained in the peripheral blood, spleen, and bone marrow cells of primary recipient mice. It was detected that blood cells were engrafted. Furthermore, GFP + cells were also detected in the hematopoietic primitive cell fraction in the recipient bone marrow, including Lin ⁇ cells, KSL cells, and CD34 ⁇ KSL cells (see FIG. 34).
  • CD34 ⁇ KSL cells formed all the blood cell lineages with neutrophils, macrophages, erythroblasts, megakaryocytes, and thus derived from GFP iPS cells. It has been demonstrated that HSCs are pluripotent, ie functional HSCs.
  • the method of the present invention is a method capable of producing a functional HSC having long-term bone marrow reconstruction ability even from iPS cells without Lnk mutation.
  • X-linked severe combined immunodeficiency is one of severe combined immunodeficiencies (SCID) characterized by severe impairment in T cell and B cell immunity. Luo patients are known to have mutations in a gene encoding a common gamma chain ( ⁇ c) shared by many cytokine receptors that play important functions in the immune system. (See Buckley, RH, et al., Journal of Pediatrics, 1997, 130, 378-387).
  • hematopoietic progenitor cells that can be transplanted and can reconstruct the lymph-myeloid lineage can be prepared from iPS cells. Then, next, an attempt was made to apply the present invention to an X-SCID treatment model using gene therapy and disease-specific iPS cells.
  • iPS cells were prepared from X-SCID mice, mouse ⁇ C gene and the like were introduced via retrovirus, and then clone selection was performed, so that mouse ⁇ C was highly expressed.
  • Cell line (m ⁇ c-iPSC # 4) was established. (See Figures 37-39).
  • m ⁇ c-iPSC # 4 was injected together with OP9 cells subcutaneously in X-SCID mice. Twelve weeks after the injection of iPS cells, GFP + CD45 + cells derived from m ⁇ c-iPS cells (m ⁇ c-iPSC) were detected in the peripheral blood of one teratoma-formed X-SCID mouse ( (See FIG. 40).
  • HSPC hematopoietic stem / progenitor cells
  • a heterogeneous cell population (such as HSPC derived from a patient) into which a viral vector is randomly integrated must be transplanted, and there is a risk that the transplanted patient suffers from leukemia. It was.
  • the iPS cell into which the gene is introduced at a risk-free position on the genomic DNA can be selected, cloned and proliferated. Therefore, by using hematopoietic stem cells derived from iPS cells whose safety has been confirmed for transplantation, the present invention can also provide a gene therapy method capable of avoiding the risk of leukemia.
  • Example 8 ⁇ Induction of engraftable HSCs from human iPS cells via teratoma formation>
  • human iPS cells are injected subcutaneously into NOD / SCID mice as shown in FIG. 41 to produce teratomas.
  • HSC was induced by the same method as mouse HSC induction.
  • a human-derived cell population (mCD45 ⁇ hCD45 + ) was clearly detected in the peripheral blood of 1 of 15 mice examined, and 10 teratomas were found.
  • fractions of human-derived cells (hCD45 ⁇ hCD34 + , hCD45 dull hCD34 + , and hCD45 + hCD34 ⁇ ) could be detected in the mCD45 negative cell population.
  • the present invention can produce engraftable HSCs from human iPS cells without any genetic modification.
  • HSCs niche-like cells were present was examined.
  • HSC niche is a microenvironment necessary for maintaining the HSC.
  • the actual state of HSC has not yet been clarified (Calvi, LM, et al., Nature, 2003, 425, 841-846, Kiel, MJ, et al., Cell, 2005, 121.
  • BM-residential glial cells contribute to HSC niche formation.
  • osteocalcin expression as an osteoblast marker
  • VE-cadherin expression as an endothelial marker
  • GFAP glial fibrillary acidic protein
  • teratoma mCD45 ⁇ cells contained human iPS cell-derived cell fractions (hCD45 + hCD34 ⁇ , hCD45 + hCD34 + , hCD45 ⁇ hCD34 + ) (see FIG. 47). ).
  • HSC niche-like cells such as osteocalcin + cells, VE-cadherin + cells, and GFAP + cells can be confirmed (see FIG. 50). Furthermore, it was confirmed that CD45 + c-Kit + cells containing mouse iPS cell-derived HSC were present in the vicinity of VE-cadherin + cells and osteocalcin + cells (see FIGS. 51 and 52).
  • an environment corresponding to bone marrow is formed in the teratoma by producing various cells that can constitute the HSC niche in an environment suitable for hematopoietic differentiation, and as a result. It was suggested that HSC is produced.
  • Example 9 ⁇ Organogenesis in mouse individuals using germinal progenitor cells>
  • a method for organ transplantation by directly transplanting ES cells or iPS cells as described above into a mouse individual 1. Since pluripotent stem cells retain the differentiation ability of various cell lineages, cells other than the target cells may be formed. 2. When the teratoma-forming ability of the transplanted pluripotent stem cells is too high, there is a possibility that the health condition of the host is harmed by the increase in teratomas before the target cells are formed. This can be a problem.
  • ES cells and iPS cells are first induced to differentiate in vitro, and endoderm progenitors having high differentiation potential to endoderm system while maintaining pluripotency.
  • Cells were prepared and transplanted into mice. That is, it was performed according to the materials and methods described below. The obtained results are shown in FIGS.
  • E14tg2a a MEF-independent ES cell line
  • E14tg2a a MEF-independent ES cell line
  • GMEM Glasgow Modified Eagle Medium
  • FCS 1% L-glutamine-penicillin-streptomycin solution
  • SIGMA 1% L-glutamine-penicillin-streptomycin solution
  • GIBCO 1% L-glutamine-penicillin-streptomycin solution
  • GIBCO 0.1 mM non-essential amino acid
  • 1 mM Sodium pyruvate 0.1 mM 2-mercaptoethanol
  • LIF leukemia inhibitory factor
  • Collagen-Type4 coated culture dishes were seeded with E14tg2a at a density of 1 ⁇ 10 4 cells / ml. 20 ng / ml human activin A (manufactured by Peprotech) and 10 ng / ml human BMP4 (manufactured by Peprotech) were added to an SFO3 serum-free medium (manufactured by Sanko Junyaku Co., Ltd.) and cultured for 2 days.
  • the medium was changed to one in which 20 ng / ml human activin A (manufactured by Peprotech), 20 ng / ml mouse EGF (manufactured by Peprotech) and 10 ng / ml FGF4 (manufactured by SIGMA) were added to the SFO3 medium.
  • the culture was further continued for 5 days.
  • Matrigel is a soluble basement membrane preparation extracted from Engelbreth-Holm-Swarm (EHS) mouse sarcoma rich in extracellular matrix protein.
  • the main components are laminin, collagen IV, heparan sulfate proteoglycan, And entactin / nidogen 1 and 2, which are naturally produced by TGF- ⁇ , epidermal growth factor, insulin-like growth factor, fibroblast growth factor, tissue plasminogen activator 3, 4 and EHS tumors Other growth factors.
  • the tissue specimen was washed twice with PBS and immersed in methanol (MtOH) cooled to ⁇ 20 ° C. for 10 minutes. After washing MtOH twice with PBS, blocking with 5% donkey serum (manufactured by SIGMA) / PBS was performed at room temperature for 30 minutes. Primary antibodies (anti-FoxA2 and CK19 antibodies) diluted in blocking buffer were added and allowed to react overnight at 4 ° C.
  • ES cells and teratomas obtained by injecting endoderm progenitor cells obtained by inducing differentiation from ES cells, and CK19-positive intestinal tract present in tissue sections. The number of like structures was counted.
  • pluripotent stem cells that have been induced to differentiate to some extent from universal cells such as ES cells, a teratoma containing more cells constituting the target organ can be formed, and a host due to an increase in teratoma It has become clear that the effects on the health status of can be suppressed.
  • pluripotent stem cells can be efficiently induced to differentiate into desired functional cells. Therefore, the method for producing target cells induced to differentiate from pluripotent stem cells of the present invention is useful in regenerative medicine, transplantation medicine, cell medicine and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 哺乳動物個体に由来する多能性幹細胞を、非ヒト哺乳動物に移植する工程と、前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程と、移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程と、前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程とを含む、多能性幹細胞から分化誘導された目的細胞の生産方法。

Description

多能性幹細胞から分化誘導された細胞の生産方法
 本発明は、多能性幹細胞から分化誘導された目的細胞の生産方法に関し、より詳しくは、前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程と、移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程と、前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程とを含む、多能性幹細胞から分化誘導された目的細胞の生産方法、並びに該生産方法によって得られる目的細胞に関する。
 幹細胞は、自己複製能と多分化能を合わせ持った未分化な細胞である。特にES細胞やiPS細胞は、生体に投与するとテラトーマ(良性腫瘍)を形成し、その中には3胚葉(消化器官、肝臓、膵臓、膀胱、肺、扁桃腺、咽頭、副甲状腺などになる内胚葉系、血液細胞や筋細胞、骨細胞、心臓、性腺、泌尿器系、脂肪、脾臓などになる中胚葉系、神経細胞や皮膚細胞、内耳、目、乳腺、爪、歯、脊髄と脳を含む神経系などになる外胚葉系)由来の胎児性組織および成熟組織構造が含まれていることから、in vivoにおいて、生殖細胞を含むすべての細胞系列に分化可能な万能性を有していることが知られている(非特許文献1~4)。
 そこで、再生医療等の現場では、ES細胞やiPS細胞といった多能性幹細胞から不全な又は損傷を受けた細胞や組織を体外において作製する技術の開発に期待が寄せられているが、多能性幹細胞を用いても、in vitroの条件下において、機能的な細胞へ効率良く分化誘導することは困難である。
 例えば、造血幹/前駆細胞(HSPC)への分化誘導においては、HoxB4を過剰発現させることにより、マウスES細胞から移植可能な造血幹細胞(HSC)が作製できたという報告はある(非特許文献5~6)。しかしながら、HoxB4によってES細胞から誘導されたHSCは成体型HSCと異なる表現型(胎児型HSCと成体型HSCとの中間位まで発達したHSC)を有しているということが報告されている(非特許文献7~8)ことからも明らかなように、in vitroの条件下において、多能性幹細胞を機能的な細胞に分化誘導することは困難である。
 一方、in vivoにおいてES細胞等から形成されたテラトーマにおいては、前述の通り、様々な細胞が形成され、形成された細胞は機能的であることが期待される。しかしながら、細胞がランダム且つ多種多様に産生されてしまうため、in vivoの条件下においても、多能性幹細胞を所望の機能的な細胞に効率良く分化誘導することは困難であった。
 このように、疾患又は損傷の治療を行う際に必要となる目的細胞の生産方法の開発が求められているものの、多能性幹細胞から所望の機能的な細胞に効率良く分化誘導する方法は、実用化されていないのが現状である。
Cudennec,C.ら、J Embryol Exp Morphol、1977年、38巻、203~210ページ Cudennec,C.A.ら、Cell Differ、1979年、8巻、75~82ページ Cudennec,C.A.ら、J Embryol Exp Morphol、1981年、61巻、51~59ページ Li,Z.ら、Proc Natl Acad Sci USA、2009年、106巻、22399~22404ページ Kyba,M.ら、Cell、2002年、109巻、29~37ページ Chan,K.M.ら、Blood 111、2008年、111巻、2953~2961ページ Matsumoto,K.ら、「Stepwise development of hematopoietic stem cells from embryonic stem cells.」、PLoS One、2009年3月16日(Epub)、4巻、3号、e4820 McKinney-Freeman,S.L.ら、Blood、2009年、114巻、268~278ページ
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、多能性幹細胞を所望の機能的な細胞に効率良く分化誘導することができる、多能性幹細胞から分化誘導された目的細胞の生産方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、多能性幹細胞のもつテラトーマ形成能を利用し、in vivoにおいてこれを制御することで、目的の機能的細胞や組織、臓器を作り出す方法を見出し、本発明を完成するに至った。
 すなわち、マウス又はヒト由来のiPS細胞をマウスに移植し、目的細胞に分化誘導するためのサイトカイン等を投与することにより、形成されたテラトーマ内またはマウス体内に前記iPS細胞由来の目的とする分化細胞が高効率で形成されることを見出した。また、このようにして誘導された分化細胞を機能不全動物に移植することにより、その機能が回復されることから、誘導された分化細胞は本来の細胞とほぼ同等の機能を有することも明らかにした。さらに、多能性幹細胞を、様々な処置をした個体、例えば臓器形成不全動物や免疫不全動物などに投与することで、より効率的かつ種をこえて目的細胞(目的組織、目的臓器を含む)を得ることが可能となることも示した。
 また、多能性幹細胞の遺伝子にあらかじめ処置を加え、時期特異的に自殺遺伝子等の遺伝子の発現を制御することで、目的細胞のみを効率的に誘導することができることも示した。
 さらに、ES細胞やiPS細胞等の万能細胞からある程度分化誘導させた多能性幹細胞を用いることで、目的の細胞等をより多く含むテラトーマが形成でき、且つテラトーマの増大による宿主の健康状態への影響も抑えることができることも見出し、本発明を完成するに至った。
 本発明は、より詳しくは、以下の発明を提供するものである。
(1) 哺乳動物個体に由来する多能性幹細胞を、非ヒト哺乳動物に移植する工程と、
前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程と、
移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程と、
前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程と、
を含む、多能性幹細胞から分化誘導された目的細胞の生産方法。
(2) 前記多能性幹細胞が、前記哺乳動物個体の体細胞を用いて調製された人工多能性幹(iPS)細胞である(1)に記載の方法。
(3) 前記多能性幹細胞が、前記哺乳動物に由来する受精卵から調製された胚性幹(ES)細胞である(1)に記載の方法。
(4) 前記多能性幹細胞が、前記非ヒト哺乳動物の皮下、精巣、及び腎皮膜からなる群より選択される少なくとも一の組織に移植される(1)~(3)のうちのいずれかに記載の方法。
(5) 前記目的細胞が肝細胞又は膵臓細胞であり、当該目的細胞を前記非ヒト哺乳動物に形成されたテラトーマから回収する(1)~(4)のうちのいずれかに記載の方法。
(6) 前記膵臓細胞が膵臓のランゲルハンス氏島細胞である、(5)に記載の方法。
(7) 前記目的細胞が造血系細胞であり、当該造血系細胞を前記非ヒト哺乳動物の骨髄から回収する(1)~(4)のうちのいずれかに記載の方法。
(8) 前記多能性幹細胞がLnk欠損細胞である、(7)に記載の方法。
(9) 前記多能性幹細胞を目的細胞へ分化誘導させる工程において、共培養細胞の存在下で行う、(1)~(8)に記載の方法。
(10) 前記共培養細胞がOP-9細胞である(9)に記載の方法。
(11) 前記分化誘導剤を前記非ヒト哺乳動物の皮下に所定の期間連続的に投与する、(1)~(10)のうちのいずれか一項に記載の方法。
(12) 前記非ヒト哺乳動物が、目的細胞の形成能を欠損している(1)~(11)のうちのいずれかに記載の方法。
(13) 前記非ヒト哺乳動物が、免疫不全動物である(1)~(12)のうちのいずれかに記載の方法。
(14) 前記動物個体に由来する多能性幹細胞を目的細胞へ分化誘導させる工程において、混入する目的細胞以外の細胞を除去する操作を施す、(1)~(13)のうちのいずれに記載の方法。
(15) 前記目的細胞以外の細胞が、未分化状態のままである多能性幹細胞である、(14)に記載の方法。
(16) 前記除去する操作が、所望の時期に自殺遺伝子を働かせることにより達成される、(14)又は(15)に記載の方法。
(17) (1)~(16)のうちのいずれかに記載の方法により得られる、目的細胞。
 本発明により、多能性幹細胞から目的とする細胞を効率良く分化誘導することが可能となった。しかも、in vitroにおける分化誘導系と異なり、本来の細胞とほぼ同等の機能を有する細胞(例えば、機能不全動物に移植した場合に、当該機能を回復する能力のある細胞)へと分化誘導することが可能となった。
ヌードマウスにマウスiPS細胞を移植し、該ヌードマウスにサイトカイン等の分化誘導剤を投与し、該ヌードマウスの生体内にてテラトーマを形成させ、分化誘導された肝細胞、膵臓細胞、又は造血系細胞を産生させる工程を示す、概略図である。 分化誘導剤を投与して作製されたテラトーマ内に肝細胞が産生されていることを示す、抗アルブミン抗体、又は抗CK19抗体を用いた免疫染色の顕微鏡写真である。 分化誘導剤を投与して作製されたテラトーマ内に肝細胞が産生されていることを示す、抗CYP7A1抗体を用いた免疫染色の顕微鏡写真である。 インドシアニングリーン吸着反応の工程を示す概略図、並びに該反応によって染色され、分化誘導剤を投与して作製されたテラトーマ内に肝細胞が産生されていることを示す写真である。 分化誘導剤を投与して作製されたテラトーマ内に膵臓細胞(膵臓ランゲルハンス島細胞)が産生されていることを示す、抗インスリン抗体を用いた免疫染色の顕微鏡写真である。 テラトーマが形成されたマウスの末梢血におけるCD45及びGFPの発現をフローサイトメーターにより解析した結果を示す、プロット図である。 iPS細胞がマウス体内で造血幹細胞に分化し、骨髄にホーミングしたことを示す概略図、並びに、フローサイトメーター解析によって、テラトーマが形成されたマウスの骨髄中にiPS細胞由来の造血前駆細胞 Lineage-c-Kit+Sca-1+(KSL)が存在していることを示すプロット図である。 テラトーマが形成されたマウス由来骨髄細胞の、野生型C57/BL6マウスへの移植を示す概略図、並びに、フローサイトメーター解析によって、該移植4週後の野生型C57/BL6マウスにおける末梢血中にiPS細胞由来の各種造血系細胞が存在していることを示すプロット図である。 テラトーマ内に混入している目的細胞(肝細胞)以外の細胞を除去するために用いる、自殺遺伝子(TK遺伝子)をコードするベクターと、肝細胞のマーカー遺伝子であるAlbプロモーターの制御下にてCreリコンビナーゼを発現するベクターとを示す概略図、並びに該2種のベクターを用いた、ガンシクロビル投与によるAlb発現細胞(肝細胞)のスクリーニング方法を示す概略図である。 テラトーマ内に混入している目的細胞以外の細胞の除去において、自殺遺伝子によるスクリーニング系が有効であることを示す、細胞株の顕微鏡写真である。 Lnk-/- GFP トランスジェニック(Tg)マウス又はGFP TgマウスからのiPS細胞の樹立の工程を示す概略図である。 Lnk-/-GFP iPS細胞における、Nanog及びSSEA-1の免疫染色の結果を示す顕微鏡写真である。なお図中、スケールバーは100μmを示す。 Lnk-/-GFP iPS細胞から作製されたキメラマウスを示す写真である。 Lnk-/-GFP iPS細胞由来のテラトーマが形成されたヌードマウスを示す写真である。 ヌードマウスから回収した、Lnk-/-GFP iPS細胞由来のテラトーマを示す写真である。なお図中、スケールバーは1.25cmを示す。 テラトーマ内の、iPS細胞由来の三胚葉を含む様々な組織を示す顕微鏡写真である。 テラトーマ形成を介したiPS細胞からの造血幹細胞(HSC)誘導、並びに該テラトーマを形成したマウス由来の骨髄を移植する工程を示す、概略図である。すなわち、OP9細胞と共に、またはOP9細胞を含めず、iPS細胞をヌードマウスの皮下に注入した。また、サイトカインは浸透圧ポンプに入れ、2週間投与した。そして、iPS細胞由来HSCが検出された骨髄細胞を放射線照射マウスに移植したことを示す、概略図である。 iPS細胞を注入してから12週間後のテラトーマ形成ヌードマウスの末梢血をフローサイトメトリーによって分析した結果を示すプロット図である。なお図中、数値はCD45細胞中のGFP細胞の割合(GFP/CD45cells(%))を示す。 CD45細胞中のGFP細胞の割合(GFP/CD45cells(%))の変化は、iPS細胞注入後の期間、並びにテラトーマのサイズに依存的であることを示すグラフである。 各条件下でテラトーマを形成させたマウスの末梢血及び骨髄における、iPS細胞由来のGFP細胞の割合を示すグラフである。なお、iPS細胞注入12週間後に各条件下におけるテラトーマ形成マウスを5匹ずつ分析した。また図中、左側の縦軸は、テラトーマ形成ヌードマウスの末梢血におけるCD45細胞中のGFP細胞の割合(GFP/CD45cells(%))を示す。右側の縦軸は、テラトーマ形成ヌードマウスの骨髄におけるKSL細胞中のGFP細胞の割合(GFP/KSLcells(%))を示す。さらに、各々の条件下における結果を示す棒グラフにおいて左側は末梢血を分析した結果を示し、右側は骨髄を分析した結果を示す。また、エラーバーは標準偏差を表わす。アスタリスク3つ(***)付されているものは未処理(None、iPS細胞のみ)注入のサンプルと比べて有意に異なる値(p<0.001)であることを示す。 iPS細胞注入12週間後の、サイトカイン及びOP9細胞を投与してテラトーマが形成されたマウスの骨髄をフローサイトメトリーで分析した結果を示すプロット図である。 テラトーマ形成マウス骨髄由来のGFPCD34KSL細胞を一細胞ずつ分け、造血分化を誘導するサイトカインを添加して培養して形成されたiPS細胞由来のコロニーを分析した結果を示す顕微鏡写真である。なお図中左側(Phase)は位相差観察の結果を示し、右側(GFP)は蛍光観察の結果を示す。 テラトーマ形成マウス骨髄由来のGFPCD34KSL細胞100個を一細胞ずつ分け、造血分化を誘導するサイトカインを添加し、10日間培養してCFC-nmEMの数量及びタイプを評価した結果を示すグラフである。なお、CFC-nmEMは、コロニー形成細胞数-好中球/マクロファージ/赤芽球/巨核球(colony-forming units-neutrophil/macrophage/Erythroblast/Megakaryocyte)のことを示す。また図中横軸の「nm」は好中球/マクロファージの2系統からなるコロニーを、「nmM」は好中球/マクロファージ/巨核球の3系統からなるコロニーを、「nmE」は好中球/マクロファージ/赤芽球の3系統からなるコロニーを、「nmEM」は好中球/マクロファージ/赤芽球/巨核球の4系統からなるコロニーを示す。 CD34KSL細胞由来コロニーのサイトスピン試料をロイコ染色(Leukostain)して観察した顕微鏡写真である。なお図中、GMは顆粒球/マクロファージ、Megは巨核球、Eは赤芽球を示す。 骨髄移植アッセイの結果を示すグラフである。すなわち、テラトーマ形成マウス由来の骨髄細胞を放射線照射マウスに移植した一次移植、並びに一次移植の12週間後に行った二次移植のレシピエントマウスの末梢血における、Lnk-/-GFP iPS細胞由来のGFP/CD45細胞のキメリズムを示すグラフである。なお、一次移植においては4匹ずつ、二次移植においては10匹ずつ分析した。図中、エラーバーは標準偏差を示す。また各棒グラフにおいて、上から「ミエロイド」「B細胞」「T細胞」を示す。 一次移植してから12週間後の、レシピエントマウス(分析数:4匹)の脾臓及び骨髄のLnk-/-GFP iPS細胞由来GFP造血細胞/CD45細胞のキメリズムを示すグラフである。なお図中、エラーバーは標準偏差(SD)を示す。また各棒グラフにおいて、上から「ミエロイド」「B細胞」「T細胞」を示す。 一次移植してから12週間後の、レシピエントマウス(分析数:4匹)の骨髄細胞における、造血前駆細胞(HPC、Lin)又は造血幹細胞(HSC、CD34KSL)中のGFP細胞の割合を示すグラフである。なお図中、エラーバーは標準偏差(SD)を示す。 iPS細胞を注入してから12週間後のテラトーマ形成ヌードマウスの末梢血をフローサイトメトリーによって分析した結果を示すプロット図である。なお図中、数値はCD45細胞中のGFP細胞の割合(GFP/CD45cells(%))を示す。 サイトカイン及びOP9細胞を投与してテラトーマが形成されたマウスの末梢血における、GFP iPS細胞由来のGFPCD45細胞数とiPS細胞注入後の期間との対応関係を示すプロット図である。 テラトーマ形成ヌードマウスの末梢血におけるCD45細胞中のGFP細胞の割合(GFP/CD45cells(%))を示すグラフである。なお、iPS細胞を注入してから12週間後に各条件下のマウスを各々4匹ずつ分析した。また図中、エラーバーは標準偏差を表わす。アスタリスク2つ(**)付されているものは未処理のサンプルと比べて有意に異なる値(p<0.01)であることを示す。 iPS細胞を注入してから12週間後の、サイトカイン及びOP9細胞を投与してテラトーマが形成されたマウス由来の骨髄細胞を、フローサイトメトリーで分析した結果を示すプロット図である。 骨髄移植アッセイの結果を示すグラフである。すなわち、テラトーマ形成マウスの全ての骨髄細胞を移植した一次レシピエントマウス、並びに骨髄からGFPCD34KSL細胞40個を選抜して移植した二次レシピエントマウスの末梢血における、GFP iPS細胞由来のGFP/CD45細胞のキメリズムを示すグラフである。なお、一次移植においては6匹ずつ、二次移植においては5匹ずつ分析した。エラーバーは標準偏差を表わす。また各棒グラフにおいて、上から「ミエロイド」「B細胞」「T細胞」を示す。 一次移植してから12週間後のレシピエントマウス(分析数:6匹)の脾臓及び骨髄における、GFP iPS細胞由来のGFP造血細胞/CD45細胞のキメリズムを示すプロット図である。 一次移植してから12週間後のレシピエントマウス(分析数:6匹)の脾臓及び骨髄における、造血前駆細胞(HPC、Lin)又は造血幹細胞(HSC、CD34KSL)中のGFP細胞の割合を示すグラフである。なお図中、エラーバーは標準偏差(SD)を示す。 テラトーマ形成マウス骨髄由来のGFPCD34KSL細胞100個を一細胞ずつ分け、造血分化を誘導するサイトカインを添加して培養し、10日間培養してCFC-nmEMの数量及びタイプを評価した結果を示すグラフである。なお、CFC-nmEMは、コロニー形成細胞数-好中球/マクロファージ/赤芽球/巨核球(colony-forming units-neutrophil/macrophage/Erythroblast/Megakaryocyte)のことを示す。また図中横軸の「nm」は好中球/マクロファージの2系統からなるコロニーを、「nmM」は好中球/マクロファージ/巨核球の3系統からなるコロニーを、「nmE」は好中球/マクロファージ/赤芽球の3系統からなるコロニーを、「nmEM」は好中球/マクロファージ/赤芽球/巨核球の4系統からなるコロニーを示す。 X-SCIDマウスにおけるmγc-iPS細胞からT細胞への作製方法を示す概略図である。iPS細胞はX-SCIDマウスから樹立し、mγc遺伝子をそのiPS細胞に導入し、mγc-iPS細胞を作製した。そして、mγc-iPS細胞及びOP9細胞は、テラトーマ形成のため、X-SCIDマウスに注入した。 mγc-iPS細胞のPCR解析結果を示す電気泳動写真である。図中、mγc-iPS細胞(mγc-iPSC)♯1~5は、IL-2Rg変異を有するX-SCIDマウス由来の細胞に3因子(Oct3/4、Klf4、及びSox2)を導入することによって得られた細胞であることを示す。4F B6 iPS細胞(4F B6 iPS iPSC)は、c-Myc導入遺伝子を有し、共通ガンマ鎖(common gamma chain(γc))の変異を有していない細胞であることを示す。純水(Water)は陰性対照を示す。 mγc-iPS細胞におけるES細胞マーカー遺伝子の発現をRT-PCRにより解析した結果を示す電気泳動写真である。純水(Water)及びMEFは陰性対照を示す。ES細胞(ESC)は陽性対照を示す。 mγc-iPS細胞♯4(mγc-iPSC♯4)におけるGFP及びマウスガンマ鎖(γc)の発現を示すプロット図及びヒストグラムである。なお図中、B6 iPS細胞(B6 iPSC)は陰性対照を示す。また右側の塗りつぶされたヒストグラムはmγc-iPSC♯4の結果を示し、左側の白いヒストグラムは陰性対照(B6 iPS細胞)における結果を示す。 iPS細胞を注入してから12週間後のテラトーマ形成マウスの末梢血をフローサイトメトリーによって分析した結果を示すプロット図である。なお図中、数値は各細胞中のGFP細胞の割合(%)を示す。 テラトーマ形成を介したヒトiPS細胞から造血幹細胞(HSC)への誘導方法を示す、概略図である。すなわち、OP9細胞と共に、ヒトiPS細胞をNOD/SCIDマウスの精巣に注入した。また、サイトカインは浸透圧ポンプに入れ、2週間投与した。そして、テラトーマ形成マウスの骨髄細胞を放射線照射NOD/SCIDマウス又は放射線照射NOD/SCID/JAK3欠損マウスに移植したことを示す、概略図である。 ヒトiPS細胞を注入してから12週間後のテラトーマ形成ヌードマウスの骨髄細胞をフローサイトメトリーによって分析した結果を示すプロット図である。なお図中「m」はマウス由来であることを示し、「h」はヒト由来であることを示す。 骨髄移植8週間後のレシピエントマウスの末梢血におけるキメリズムを示すプロット図である。なお図中、「Sorted」は、テラトーマ形成マウスのmCD45細胞を除去した骨髄細胞を移植した結果を示す。「Total」は、テラトーマ形成マウスの全ての骨髄細胞を移植した結果を示す。また「m」はマウス由来であることを示し、「h」はヒト由来であることを示す。 ヒトiPS細胞由来のテラトーマ切片における、CD45、CD34、及びオステオカルシン(Osteocalcin)の発現を免疫染色によって調べた結果を示す、顕微鏡写真である。なお図中「Merge」はこれら3つの発現を重ね合わせたものを示す。 ヒトiPS細胞由来のテラトーマ切片における、CD45、CD34、及びVE-カドヘリン(VE-cadherin)の発現を免疫染色によって調べた結果を示す、顕微鏡写真である。なお図中「Merge」はこれら3つの発現を重ね合わせたものを示す。 ヒトiPS細胞由来のテラトーマ切片における、CD45、CD34、及びGFAPの発現を免疫染色によって調べた結果を示す、顕微鏡写真である。なお図中「Merge」はこれら3つの発現を重ね合わせたものを示す。 テラトーマにおけるヒトiPS細胞由来の細胞をフローサイトメトリーにて分析した結果を示す、プロット図である。また「m」はマウス由来であることを示し、「h」はヒト由来であることを示す。 GFP iPS細胞由来のテラトーマにおけるCD45細胞の免疫染色の結果を示す、顕微鏡写真である。なお図中、「DAPI+merge」は、CD45とGFPとの発現に、DAPI染色の結果を重ね合わせたものを示し、矢印はGFP iPS細胞由来のGFPCD45細胞を示す。また、スケールバーは150μmを示す。 テラトーマにおけるiPS細胞由来GFPCD45細胞及びKSL細胞をフローサイトメトリーで分析した結果を示すプロット図である。なお図中、左側の数値はテラトーマ細胞中のGFPCD45細胞の割合(%)を示し、右側の数値は該細胞(テラトーマ細胞中のGFPCD45細胞)中のc-KitSca-1細胞の割合(%)を示す。 テラトーマにおけるオステオカルシン(Osteocalcin)、VE-カドヘリン(VE-cadherin)、及びGFAPの免疫染色の結果を示す顕微鏡写真である。なお図中、スケールバーは75μmを示す。 テラトーマにおける、CD45、c-Kit、及びHSCニッチマーカー:オステオカルシンの免疫染色の結果を示す顕微鏡写真である。なお図中、「DAPI+merge」は、これら3つの発現と、DAPI染色の結果とを重ね合わせたものを示し、矢印はCD45c-Kit細胞を示す。スケールバーは75μmを示す。 テラトーマにおける、CD45、c-Kit、及びHSCニッチマーカー:VE-カドヘリン(VE-cadherin)の免疫染色の結果を示す顕微鏡写真である。なお図中、「DAPI+merge」は、これら3つの発現と、DAPI染色の結果とを重ね合わせたものを示し、矢印はCD45c-Kit細胞を示す。スケールバーは75μmを示す。 未分化なES細胞を移植したマウス(図中左側)、及び内胚葉系前駆細胞に分化誘導してから移植したマウス(図中右側)において形成されたテラトーマを示す写真である。 形成されたテラトーマにおける免疫組織化学染色の結果を示す顕微鏡写真である。なお図中「Merge」は、CK19とFoxa2との発現と、DAPI染色との結果を重ね合わせたものを示す。 作製したテラトーマ組織切片中のCK19陽性の腸管様構造の数を示すグラフである。
 本発明は、
(a)哺乳動物個体に由来する多能性幹細胞を、非ヒト哺乳動物に移植する工程と、
(b)前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程と、
(c)移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程と、
(d)前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程と、
を含む、多能性幹細胞から分化誘導された目的細胞の生産方法である。
 本発明において「哺乳動物」とは特に制限されることなく、例えば、ヒト、マウス、ラット、ウシ、ウマ、ブタ、ヒツジ、サル、イヌ、ネコが挙げられる。また、本発明において「非ヒト哺乳動物」とは特に制限されることなく、例えば、マウス、ラット、ウシ、ウマ、ブタ、ヒツジ、サル、イヌ、ネコが挙げられる。
 また、本発明にかかる「目的細胞」とは、前記哺乳動物の個体を構成する種々の細胞の中から選択される一又は複数の細胞のことであり、例えば、造血系細胞、肝細胞、膵臓細胞、腸管細胞、胸腺細胞、骨・軟骨細胞が挙げられる。さらに、本発明にかかる「目的細胞」には、前記哺乳動物の個体を構成する種々の細胞群(例えば、組織、臓器)も含まれる。
 ここで、「造血系細胞」とは、造血幹細胞(HSC)、造血前駆細胞(HPC)、及びHSC又はHPCから分化してできる細胞、すなわち、赤芽球、骨髄球、巨核球系、リンパ球等の性質を有する細胞を意味し、例えば、HSC、HPC、好中球、マクロファージ、赤芽球、巨核球が挙げられる。
 また、「膵臓細胞」とは、膵臓を構成する細胞、すなわち外分泌部を構成する外分泌細胞、ランゲルハンス氏島(内分泌部)を構成するランゲルハンス氏島細胞等を意味し、例えば、腺房細胞、A細胞(α細胞)、B細胞(β細胞)、D細胞(δ細胞)、PP細胞が挙げられる。
 先ず、(a)前記哺乳動物の個体に由来する多能性幹細胞を、前記非ヒト哺乳動物に移植する工程について説明する。
 本発明において分化誘導させる対象とする「多能性幹細胞」は、前記哺乳動物個体を構成する種々の細胞に分化できる多能性と自己複製能とを有する細胞であり、例えば、胚性幹細胞(Embryonic stem cell、ES細胞)、人工多能性幹細胞(Induced pluripotent stem cell、iPS細胞)、胚性腫瘍細胞(Embryonic carcinoma cell、EC細胞)、胚性生殖細胞(Embryonic Germ cell、EG細胞)、多能性生殖細胞(Multipotent Germline Stem cell、mGS細胞)、受精卵、内部細胞塊(inner cell mass、ICM)といった万能細胞や、外胚葉系前駆細胞、内胚葉系前駆細胞、中胚葉系前駆細胞といった、分化可能な細胞系列が限定されている幹細胞/前駆細胞が挙げられる。
 これらの中では、胚を壊すことなく作製することができるという倫理的な観点から、さらに再生医療等に用いる際に、多能性幹細胞から分化した細胞を移植する患者と血液型(赤血球型、白血球型)の点において適合させ易いという観点から、本発明にかかる多能性幹細胞として、前記哺乳動物個体の体細胞を用いて調製されたiPS細胞を用いることが好ましい。
 なお、本発明にかかる「iPS細胞」は、前記哺乳動物個体の体細胞に細胞初期化因子を導入することにより、ES細胞(Embryonic stem cells)様の分化多能性を獲得した細胞である。また、本発明に用いられる「細胞初期化因子」は、体細胞に導入されることにより、単独で、又は他の分化多能性因子と協働して該体細胞に分化多能性を付与できる因子であればよく、特に制限されることはないが、Oct3/4、c-Myc、Sox2、Klf4、Klf5、LIN28、Nanog、ECAT1、ESG1、Fbx15、ERas、ECAT7、ECAT8、Gdf3、Sox15、ECAT15-1、ECAT15-2、Fthl17、Sal14、Rex1、Utf1、Tcl1、Stella、β-catenin、Stat3及びGrb2からなる群から選択される少なくとも一種のタンパク質であるであることが好ましい。さらにこれらタンパク質の中では、少ない因子で効率良くiPS細胞を樹立できるという観点から、Oct3/4、c-Myc、Sox2及びKlf4(4因子)を前記体細胞に導入することがより好ましい。また、得られる多能性幹細胞の癌化のリスクを低くするという観点から、c-Mycを除く、Oct3/4、Sox2及びKlf4(3因子)を前記体細胞に導入することがより好ましい。
 また、後述の実施例において示すように、目的細胞をより多く含むテラトーマが形成でき、且つテラトーマの増大による宿主の健康状態への影響も抑えることができるという観点から、万能細胞からある程度分化誘導させた多能性幹細胞(例えば、前記分化可能な細胞系列が限定されている幹細胞/前駆細胞)を、本発明にかかる多能性幹細胞として用いることが好ましい。かかる多能性幹細胞の樹立方法としては、例えば、内胚葉系前駆細胞に関しては、後述の実施例に示すような、Collagen-Type4をコートした培養皿に万能細胞を播種し、アクチビンA、BMP4等を添加した無血清培地で培養した後、アクチビンA、EGF、FGF4等を添加した無血清培地で培養する方法が挙げられる。
 なお、例えば非特許文献5~8に記載されているように、遺伝子改変を施すことなく多能性幹細胞を機能的な細胞に分化誘導することは一般的に困難である。しかし、本発明においては、後述の実施例において示すように、遺伝子改変を施さない多能性幹細胞を用いても、分化誘導された機能的な細胞を効率良く得ることができる。
 しかしながら、目的細胞の産生数の増加や、目的細胞の機能を亢進させるという観点から、遺伝子改変が施された多能性幹細胞を、本発明にかかる多能性幹細胞として用いることもできる。かかる多能性幹細胞において、遺伝子改変とは特に制限されることなく、公知の技術を適宜採用することができる。例えば、目的細胞の産生数の増加や機能の亢進を誘導するタンパク質の機能や発現を亢進させる場合においては、該タンパク質をコードする遺伝子をトランスジーンとして多能性幹細胞に導入する方法や、該遺伝子の発現調節領域のDNA配列に該遺伝子の発現を亢進させるような変異を多能性幹細胞に導入する方法が挙げられる。さらに、目的細胞の産生数の増加や機能の亢進を阻害するタンパク質の発現や機能を抑制させる場合においては、例えば、多能性幹細胞において該タンパク質をコードする遺伝子をノックアウト又はノックインする方法や、該遺伝子の発現調節領域のDNA配列に該遺伝子の発現を抑制するような変異を多能性幹細胞に導入する方法や、該遺伝子に対するsiRNAやshRNA等をコードするトランスジーンを多能性幹細胞に導入する方法が挙げられる。
 さらにまた、目的細胞が造血系細胞である場合、Lnkタンパク質が欠損しているマウスは高い自己複製能を有する造血幹細胞(HSC)を過剰産生し、後述の実施例において示すようにLnkタンパク質が欠損している多能性幹細胞由来のHSCは非常に高い複製能を有していることから、Lnk欠損細胞を、本発明にかかる多能性幹細胞として用いることが好ましい。
 なお、Lnkタンパク質とは、HSC等においてTPO/c-mpl経路を負に制御する因子として知られている細胞間アダプタータンパク質であり、典型的には、ヒト由来のLnkとして、Accession No.NP_005466(No.NM_005474)で特定されるタンパク質(遺伝子)が挙げられ、マウス由来のLnkとして、Accession No.NP_032533(No.NM_008507)で特定されるタンパク質(遺伝子)が挙げられる。
 また、本発明にかかる「Lnk欠損細胞」とは、Lnkタンパク質の発現及び/又は機能が欠損している細胞のことであり、「Lnk欠損細胞」は、例えば前述の通り、Lnk遺伝子をノックアウト、Lnk遺伝子に対するsiRNAを導入すること等によって調製することができる。
 本発明において、前記多能性幹細胞を非ヒト哺乳動物に移植する方法としては特に制限はなく、公知の技術を適宜用いることができる。
 また、本発明において、前記多能性幹細胞を非ヒト哺乳動物に移植する組織としては特に制限はなく、例えば、皮下、精巣、腎皮膜、骨髄が挙げられる。これらの中では、マウスiPS細胞等由来のテラトーマが形成される場所として多用されているという観点から、皮下に移植することが好ましい。また、ヒトiPS細胞を非ヒト哺乳動物に移植する場合には、マウス等の皮下等に注入してもテラトーマが形成される頻度は低く、さらに、より血流の多い組織であるという観点から、精巣に移植することが好ましい。また、造血幹細胞への誘導を目的とする場合には、骨髄に移植することが好ましい。さらに、ドナー由来の組織とレシピエントの組織とが混ざりにくいという観点から、目的細胞が存在している組織以外の組織(異所)に移植することが好ましい。
 また、本発明において、前記多能性幹細胞を非ヒト哺乳動物に移植する際、前記多能性幹細胞は、他の成分と混合して用いてもよい。このような他の成分としては特に制限はなく、リン酸緩衝生理食塩水(PBS)等の生理食塩水、培地、緩衝剤、保存剤が挙げられる。
 さらに、後述の実施例において示すように造血系細胞への分化誘導の効率を上げるという観点から、またインビトロの研究成果に基づき、神経細胞、血管内皮細胞、心筋細胞への分化誘導の効率を上げられる可能性があるという観点から、共培養細胞を前記多能性幹細胞に混入しておくことが好ましい(インビトロの研究成果については「Zengら、Stem Cells、2004年、22巻、925~940ページ」、「Soneら、Arterioscler Thromb Vasc Biol.、2007年、27巻、2127~2134ページ」、「Yamashitaら、FASEB J.、2005年、19巻、1534~1536ページ」参照)。
 本発明にかかる「共培養細胞」は、多能性幹細胞の培養系において、多能性幹細胞の増殖や分化誘導の際の培養条件を整えるために用いることができる細胞を意味し、例えば、フィーダー細胞、ストローマ(Stromal)細胞、より具体的には、OP-9細胞、PA6細胞、MEF(マウス胎児線維芽細胞)、NIH3T3細胞、M15細胞、10T/2細胞が挙げられる。これらの中では本発明にかかる「共培養細胞」として、後述の実施例において示すように、多能性幹細胞に混入させることで、多能性幹細胞の目的細胞への誘導効率をより上げられるという観点から、OP-9細胞を用いることが好ましい。
 また、後述の実施例において示すように、腸管細胞、肝細胞、神経細胞、血管内皮細胞等へ分化誘導させる場合には、ラミニン、コラーゲンIV、ヘパラン硫酸プロテオグリカン、エンタクチン/ニドジェン1,2、TGF-β、上皮細胞増殖因子、インシュリン様成長因子、線維芽細胞増殖因子、組織プラスミノーゲン活性化因子3,4、及びEHS腫瘍に自然に産生される他の増殖因子からなる群から選択される少なくとも一の成分を前記多能性幹細胞に混入しておくことが好ましい。
 さらに、本発明において、前記多能性幹細胞を移植する非ヒト哺乳動物としては特に制限はなく、前述のマウス等が挙げられるが、多能性幹細胞由来の目的細胞等が誘導されるスペースを確保することにより、分化誘導の効率を上げるという観点から、目的細胞の形成能を欠損している動物であることが好ましい。また、多能性幹細胞の由来である哺乳動物と、該多能性幹細胞が移植される非ヒト哺乳動物とが異種の関係においても、該多能性幹細胞から分化誘導された目的細胞を産生することができるという観点から、免疫不全動物であることが好ましい。
 次に、(b)前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程について説明する。
 本発明において、前記非ヒト哺乳動物に投与する「目的細胞への分化誘導剤」としては、多能性幹細胞から目的細胞に分化誘導される際に働く生理活性物質であれば特に制限はなく、例えば、ポリペプチドやタンパク質(サイトカイン、ホルモン、酵素等)、ビタミン類、糖類、脂肪酸、アミノ酸、核酸、ミネラル等が挙げられる。
 本発明にかかる「目的細胞への分化誘導剤」として、より具体的には、目的細胞が肝細胞である場合には、レチノイン酸、繊維芽細胞増殖因子1(FGF1)、FGF4、肝細胞増殖因子(HGF)、オンコスタチンM(OsM)が挙げられ、目的細胞が膵臓細胞である場合にはアクチビンA、上皮細胞増殖因子(EGF)、Noggin、インスリン様増殖因子-2(IGF-2)、ニコチン酸アミドが挙げられ、目的細胞が造血系細胞である場合には、幹細胞因子(SCF)、トロンボポエチン(TPO)が挙げられ、目的細胞が腸管細胞ある場合にはアクチビンA、骨形成因子4(BMP4)、EGF、FGF4、NOGGINが挙げられる。
 後述の実施例に示すように、膵臓のランゲルハンス氏島細胞への分化誘導においては、先ずアクチビンA等をiPS細胞に添加して内胚葉系の前駆細胞に分化誘導し、該前駆細胞にEGF、bFGF、Nogginを添加して膵臓にコミットした内胚葉系細胞に誘導した後、該内胚葉系細胞にニコチン酸アミドやIGF-2を添加して膵臓のランゲルハンス氏島細胞への分化を誘導する。このように、目的細胞の分化誘導において、「分化誘導剤」が作用する分化段階は、分化誘導剤の種類により異なる。従って、本発明において、前記非ヒト哺乳動物に前記分化誘導剤を投与する所定の期間としては、各々の前記分化誘導剤について、それが作用して目的の分化を誘導するのに十分な期間を意味する。また、各々の前記分化誘導剤は、各々の目的の分化を達成しうる限り、細胞に対して一過的に投与しても良く、また、連続的に投与しても良いが、生体内における本来の臓器の発生を模倣するという観点から、前記分化誘導剤を連続的に投与することが好ましい。
 また、本発明において、前記非ヒト哺乳動物における前記分化誘導剤を投与する部位としては特に制限はないが、投与に要する手技が簡便であるという観点から、皮下であることが好ましい。
 さらに、本発明において、前記非ヒト哺乳動物に前記分化誘導剤を投与する方法としては特に制限はなく、公知の手法(例えば、浸透圧ポンプを用いる方法)を適宜選択して用いることができる。
 次に、(c)移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程について説明する。
 本発明において、「移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間」として特に制限はないが、移植後4~12週であることが好ましく、8~12週であることがより好ましい。前記時間が前記下限未満だと移植した多能性幹細胞が十分に目的細胞に分化誘導されていない傾向にあり、他方、前記時間が前記上限を超えると、テラトーマ増大による前記非ヒト哺乳動物の健康状態に悪影響を及ぼしやすい傾向にある。
 また、本発明にかかる、前記動物個体に由来する多能性幹細胞を目的細胞へ分化誘導させる工程において、目的細胞のみを効率的に分化誘導するという観点から、混入する目的細胞以外の細胞を除去する操作を施すことが好ましい。
 なお、本発明において、「目的細胞以外の細胞」としては特に制限されることなく、例えば、分化誘導がかからず未分化状態のままである多能性幹細胞(未分化細胞)や目的細胞以外の細胞に分化してしまった多能性幹細胞由来の細胞(他の細胞系譜に分化した細胞)が挙げられる。
 また、かかる混入する目的細胞以外の細胞を除去する操作としては特に制限されないが、例えば、後述の実施例に示すような、目的細胞以外の細胞において自殺遺伝子を機能させることが好ましい。これにより、目的とする細胞のみを高度に純化して移殖に用いることができる。
 また、目的細胞以外の細胞において自殺遺伝子を機能させることに用いる、「自殺遺伝子」としては、その遺伝子がコードするタンパク質が機能できる条件下において、該タンパク質が発現している細胞に細胞死(アポトーシス、ネクローシス等)を誘導することができる遺伝子であれがよく、例えばチミジンキナーゼ(TK)遺伝子、ヘルペスウイルスチミジンキナーゼ(HSVtk)遺伝子(Proc.Natl.Acad.Sci,USA 78(1981)1441~1445ページ 参照)、シトシンデアミナーゼ遺伝子(EG11326 codA 355395..356678 E.coli)、ウラシルホスホリボシルトランスフェラーゼ遺伝子(EG11332 upp 2618894..2618268 E.coli)、グアニンホスホリボシルトランスフェラーゼ(gpt)遺伝子(EG10414 gpt 255977..256435 E.coli)、ニトロレダクターゼ遺伝子が挙げられる。
 なおTKは、微生物由来の代謝酵素遺伝子であり、ガンシクロビル(GCV)を代謝し、ガンシクロビル5’-三リン酸を生じさせる。このガンシクロビル5’-三リン酸がDNA合成を阻害することにより、TKを発現している細胞の細胞死を誘導できる。すなわち、GCV添加によってTKが機能できる条件となり、TKが発現している細胞に細胞死が誘導されることになる。
 さらに、かかる所望の時期に自殺遺伝子を働かせることにより達成される操作における、「自殺遺伝子を働かせる」方法としては特に制限はなく、自殺遺伝子がコードするタンパク質が機能できる方法であればよく、例えば、後述の実施例に示すような、TK遺伝子を多能性幹細胞に遺伝子導入し、目的細胞へと分化した細胞のみにおいてCre-LoxPシステムによりTK遺伝子を除去する方法が挙げられる。より具体的には、目的細胞が肝細胞である場合には、図9に示すように、HSV由来のTK遺伝子をLoxP配列で挟み込んだウイルスベクターと、肝細胞のマーカー遺伝子であるAlbプロモーターの制御下にCreリコンビナーゼを発現するウイルスベクターを作製する。2つのウイルスを細胞に感染させた後に、本発明において肝細胞への分化誘導を行う。その後、GCVを投与する事で、TK遺伝子がCreの発現により除去されたAlb産生細胞のみが生存でき、未分化細胞や他の細胞系譜に分化した細胞の細胞死を誘導できる。また、前記と同様にして、目的細胞が肝細胞以外の細胞である場合においても、目的細胞に特異的なプロモータ-を選択することによって(例えば、膵臓系譜の細胞を目的細胞とする場合においてはPdx1プロモーターを選択することによって)、目的細胞以外の細胞を除去することができる。
 さらに、前記目的細胞以外の細胞が未分化状態のままである多能性幹細胞である場合においては、例えば、多能性幹細胞にに未分化マーカー遺伝子(Nanog、Oct3/4遺伝子等)のプロモーターに自殺遺伝子であるTKを連結した遺伝子を導入したものを用い、該多能性幹細胞を本発明によって目的細胞に分化誘導した後、GCVを投与することで未分化細胞のみを選択的に除去することができる。
 次に、(d)前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程について説明する。
 本発明において、前記哺乳動物個体に由来する目的細胞を回収する方法については特に制限されることなく、前記非ヒト哺乳動物の生体内で形成されたテラトーマから回収する方法が挙げられる。また、目的細胞が造血系細胞である場合には、後述の実施例に示すように、本発明の方法によって分化誘導した造血系細胞は驚くべきことにテラトーマから移動し骨髄に生着するので、前記非ヒト哺乳動物の骨髄から回収することもできる。
 また、本発明は前述の方法により得られる目的細胞も提供する。すなわち、前述の方法により多能性幹細胞から分化誘導された、前記哺乳動物個体を構成する種々の細胞の中から選択される一又は複数の細胞も提供する。さらに、該哺乳動物の個体を構成する種々の細胞の中から選択される一又は複数の細胞から構成される組織、臓器も提供する。このような「目的細胞」としては特に制限はなく、例えば、造血系細胞、肝細胞、膵臓細胞、腸管細胞、胸腺細胞、骨・軟骨細胞が挙げられる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例1~3については下記材料を用いて、下記方法等に沿って行った。
 <細胞>
 マウスiPS細胞としては、Kusabira Orangeトランスジェニックマウス(129/Svマウス由来)の尾端線維芽細胞(TTF、tail tip fibroblast)にOct3/4、Sox2、Klf4の3遺伝子をレトロウイルスベクターにより導入して樹立したもの、およびLnkノックアウトマウス(C57BL/6マウス由来)のTTFに上記3遺伝子をレンチウイルスベクターにより導入して樹立したものを使用した。なお、両細胞株ともに、野生型マウスの胚盤胞宿主としてキメラマウスを作製できることを実験前に確認した。
 <細胞培養>
 マウスiPS細胞は、マイトマイシンCで処理したマウス胎仔線維芽細胞(MEF)との共培養によってE14.1KSR培地にて培養した。E14.1KSR培地の組成は以下の通りである。
ダルベッコ変法イーグル培地(DMEM、Invitrogen社製)、添加物として15% ノックアウト血清代替物(KSR、Invitrogen社製)、2mM L-グルタミン-ペニシリン-ストレプトマイシン(Invitrogen社製)、1×非必須アミノ酸(Invitrogen社製)、1mM HEPES(Invitrogen社製),0.1mM 2-メルカプトエタノール(Gibco社製)、1000IU/ml 白血病抑制因子(Leukemia Inhibitory Factor、LIF)。
 <動物>
 KSN/Slc-nu/nuマウス及びC57BL/6マウスは、日本SLC株式会社より購入した。
 <細胞の投与>
 5×10個のiPS細胞を前記ヌードマウスの皮下に投与した。なお血球細胞・造血幹細胞への分化実験においては、同時に1×10個のOP9細胞も投与した。
 <テラトーマ形成と目的細胞への分化>
 マウスiPS細胞は、トリプシン処理により細胞をディッシュから剥がし、5×10cells/50μL程度 PBSに懸濁したものを、KSN/Slc-nu/nuマウスの皮下に注入した。iPS細胞の注入と同日を「day1」とし、同日にサイトカイン投与を始めた。サイトカインは総量 100μLをalzet micro-osmotic pump model 1002(DURECT Corporation社製)に入れ、ポンプをマウスの皮下に埋め込んだ。肝細胞(Hepatocyte cell)と膵臓細胞(Islet cell、膵臓のランゲルハンス氏島細胞)に関しては、day14とday28に空のポンプをマウス皮下より除去し、新しいサイトカインの入ったポンプを埋め込んだ。サイトカインの種類、投与量、投与のタイミングの例を図1に示す。なお図1中、「KSN/Slc-nu/nu」はKSNバックグラウンドのヌードマウスを示し、またマウスに注入したサイトカイン等の名称は下記の通りである。
RA:Retinoic Acid(レチノイン酸)
FGF1:Fibroblast Growth Factor 1(繊維芽細胞増殖因子1)
FGF4:Fibroblast Growth Factor 4(繊維芽細胞増殖因子4)
HGF:Hepatcyte Growth Factor(肝細胞増殖因子)OsM:Oncostatin M(オンコスタチンM、白血病抑制因子に属するサイトカイン、多面的な作用を持つ)
Activin A(アクチビンA)
EGF:Epidermal Growth Factor(上皮細胞増殖因子)
bFGF:basic FGF(塩基性繊維芽細胞増殖因子)
Nicotinamide(ニコチン酸アミド)
IGF-2:Inslin Like Growth Factor-2(インスリン様増殖因子-2)
OP9:マウス骨髄ストロマ細胞株
SCF:Stem Cell Factor(幹細胞因子)
TPO:Thrombopoietin(トロンボポエチン、血小板の前駆細胞の増殖および分化に関与する造血因子)。
 <免疫染色>
 作製したテラトーマ及び、野生型マウスの肝臓、膵臓を、切除後液体窒素で凍結し、O.C.T.コンパウンド(Tissue-TeK社製)で包埋して凍結切片を作製した。切片は、4%パラホルムアルデヒド(PFA)にて固定後、アセトン処理し、MAXBlock Blocking Medium(登録商標、Active motif社製)にて室温1時間ブロッキング後、PBSで2回洗浄し一次抗体をかけて4℃で1晩反応させた。一次抗体は、goat anti-mouse ALB Ab、Rabbit anti-mouse CK19 Ab(Invitrogen社製)、Rat anti-mouse CYP7A1 Ab(Santa Cruz社製)、mouse anti-mouse Insulin Ab(Cell signaling社製)を用いた。次いで、PBSで3回洗浄後、二次抗体にて室温1時間反応させた。二次抗体には、donkey anti-goat IgG Alexa 647、goat anti-rabbit IgG Alexa 488、goat anti-rat IgG Alexa 488、goat anti-mouse IgG Alexa 488(Invitrogen社製)を使用した。
 <インドシアニングリーン吸着反応>
 インドシアニングリーン(Indocyanine green、Sigma社製)は、5mg/ml DMSO(Sigma社製)に溶解し、1mg/mlになるようPBSで調製した。この溶液をマウスに500μL静注し、30分後にテラトーマ及び肝臓を切除して呈色を観察した。または、マウスから切除したテラトーマ及び肝臓をインドシアニングリーン溶液に浸し、37℃で30分インキュベート後に呈色を観察した。
 <フローサイトメトリー解析>
 血球分化能の判定には末梢血及び骨髄細胞をフローサイトメトリー(FACS Aria)にて解析した。使用した抗体は、anti-mouse CD45- APC、anti-mouse CD4,CD8,Gr-1,Mac-1,B220,IL-7R-Biotin、anti-Streptavidin-APC/Cy7、anti-mouse Sca-1-Pacific Blue、anti-mouse c-Kit-APC、anti-mouse CD3-PE/Cy5、anti-mouse B220-Pacific Blue、anti-mouse Gr-1-APC、anti-mouse Mac-1-APC(BioLegend社製)を用いた。末梢血は、マウスの眼下静脈より採取し、溶血反応後、抗体と反応させ解析した。骨髄細胞は、マウスの大腿骨及び脛骨から採取し、抗体と反応させ解析した。
 (実施例1)
 <肝臓への分化>
 前述の通り、肝細胞へ分化させたテラトーマより凍結切片を作製し、肝細胞マーカーである、アルブミン、CK19、CYP7A1の免疫染色を行った。得られた結果を図2及び図3に示す。図2及び図3に示した結果から明らかなように、サイトカインによる分化誘導を受けたテラトーマのみ、肝細胞と同様のマーカーの発現が確認された。
 また、前述の通り、肝細胞へ分化させたテラトーマにおけるインドシアニングリーンの吸着反応においても、分化誘導したテラトーマのみで肝臓と同様の吸着を示した。つまり、分化誘導したテラトーマは、肝臓と同様の機能を持つことが示唆された(図4 参照)。
 (実施例2)
 <膵臓への分化>
 前述の通り、膵臓細胞へ分化させたテラトーマより凍結切片を作製し、膵臓ランゲルハンス島細胞マーカーである、インスリンの免疫染色を行った。得られた結果を図5に示す。図5に示した結果から明らかなように、サイトカインによる分化誘導を受けたテラトーマのみ、膵臓細胞と同様のインスリンの発現が確認された。
 (実施例3)
 <血球細胞・造血幹細胞への分化>
 前述の通り、テラトーマを作製したマウスの末梢血をフローサイトメーターにより解析した結果、ヌードマウス血中に、Lnk-/-iPS細胞由来の血球が確認された(図6 参照)。また、SCF+TPOよりもSCF+TPO+OP9の条件において、iPS細胞由来の血球の割合が高かった。さらに、テラトーマを作製したヌードマウスの骨髄細胞を解析した結果、骨髄中にiPS細胞由来の造血前駆細胞 Lineage-c-Kit+Sca-1+(KSL)が確認された(図7 参照)。また、この骨髄細胞を野生型C57/BL6マウスに移植し、4週後の末梢血を解析したところ、ほぼ100%の血液がiPS細胞由来であり、各種細胞に分化していることを確認した(図8 参照)。つまり、iPS細胞はヌードマウス体内で造血幹細胞に分化し、骨髄へホーミングしたことが示唆された。さらに造血幹細胞および前駆細胞機能を負に制御する蛋白質Lnkを欠損したES細胞、iPS細胞を用いることで、正常なES細胞iPS細胞に比し造血幹細胞・前駆細胞のより多量の増幅が認められた。
 (実施例4)
 <混入する未分化細胞の除去ならびに目的の細胞以外を除去する方法>
 前述のような、多能性幹細胞の効率的な分化誘導をin vivoの環境下で行う場合、多能性ゆえの腫瘍形成という問題が生じ得る。また、in vitroにおいて分化誘導した細胞を移植する際にも、混入した未分化細胞が腫瘍を形成する危険性が存在する。従って、目的となる分化細胞だけを生存させるようなスクリーニングの系を本発明においては併用することが好ましい。
 これらの問題点を解決しうる一つの手法として、自殺遺伝子によるスクリーニング系が挙げられる。例えば、本来哺乳類動物に存在しない微生物由来の代謝酵素遺伝子であるThymidine Kinase(TK)は、ガンシクロビル(GCV)の添加によりその代謝産物であるガンシクロビル5’-三リン酸を生じる。このガンシクロビル5’-三リン酸がDNA合成を阻害する事で、TKを発現している細胞の細胞死を誘導できる。そして、本発明の一つの態様として、ウイルス由来のTK遺伝子をES細胞又はiPS細胞に遺伝子導入し、目的細胞へと分化した細胞のみにおいてCre-LoxPシステムによりTK遺伝子が除去される系を構築する事で、in vivoの臓器形成環境を利用したES、iPS細胞の目的細胞への効率的な分化を行うことが出来ると考えられる。
 具体的には、HSV由来のTK遺伝子をLoxP配列で挟み込んだレトロウイルスベクターと、肝細胞のマーカー遺伝子であるAlbプロモーターの制御下にCreリコンビナーゼを発現するレンチウイルスベクターとを作製する。なお、ウイルス作製にはVSV-Gエンべロープを用いることで、マウスES/iPS細胞及びヒトES/iPS細胞の双方で使用する事が可能となる(図9 参照)。2つのウイルスを細胞に感染させた後に、前述の通り、肝細胞分化誘導を行う。その後、GCVを投与する事で、TK遺伝子がCreの発現により除去されたAlb産生細胞のみが生存でき、未分化細胞や他の細胞系譜に分化した細胞の細胞死を誘導出来ると考えられる。
 そこで、前述の可能性を検証した。すなわち、HuH7細胞(ヒト肝癌由来の細胞株)及びNIH3T3細胞(マウス胎児上皮系細胞株)に、図9に示した前記ウイルスベクターを用いてAlbプロモーター制御下のCreリコンビナーゼやTK等の遺伝子導入を行った後にGCVを投与すると、Alb発現細胞であるHuH7細胞のみが生存し、NIH3T3細胞では効率的な細胞死が誘導されること(図10 参照)から、本法が本発明に好適に利用できることが確認された。従って、この系の確立により、未分化な細胞を生体内に移植した後に、GCVを投与する事でAlb発現細胞等の目的となる分化細胞だけを生存させる事が可能となる。
 次に、実施例3において示した、本発明の造血幹細胞、造血前駆細胞の生産方法、並びに該方法によって得られたこれら細胞の機能をより詳細に分析した。なお、実施例5~8については下記材料を用いて、下記方法に沿って行った。
 <マウス>
 C57BL/6(B6)マウス、KSN/Slcヌードマウス、及び緑色蛍光タンパク質(GFP)トランスジェニックマウスは、日本SLC株式会社より購入した。Lnk-/-GFPトランスジェニックマウスは、東京大学 医科学研究所 実験動物研究施設にて、繁殖、維持した。また、B6を遺伝的背景とするX-SCIDマウスの作製及び評価は「Ohbo,Kら、Blood、1996年、87巻、956-967ページ」の記載に沿って行った。さらに、NOD/SCIDマウスは日本クレア株式会社より購入した。また、NOD/SCID/JAK3欠損マウスは三協ラボサービス株式会社より購入した。なお、これらマウスのケアは、東京大学の組み換えDNA実験及び実験動物に関するガイダンスに従って行った。
 <細胞株、並びにその培養条件>
 マウスiPS細胞としては、Lnk-/-GFPトランスジェニックC57BL/6(B6)マウス、又はGFPトランスジェニックB6マウス由来の尾端線維芽細胞(TTF、tail tip fibroblast)にOct3/4、Sox2、及びKlf4の3遺伝子をレンチウィルスall-in-oneベクターにより導入することにより、再プログラミングして樹立したものを使用した。なお、得られたiPS細胞の特性については、後述の図11~16に示す通りに確認した。
 また、マウスiPS細胞は、マウス胎仔線維芽細胞(MEF)との共培養によって、未分化状態を維持した。なお、共培養に用いた培地の組成は以下の通りである。
ダルベッコ変法イーグル培地(DMEM、GIBCO社製)、添加物として、15% ノックアウト血清代替物(Knockout SR、GIBCO社製)、20mM HEPES緩衝溶液(Invitrogen社製)、0.1mM MEM非必須アミノ酸溶液(Invitrogen社製)、0.1mM L-グルタミン(Invitrogen社製)、100U/mlペニシリン、100μg/ml ストレプトマイシン(Sigma-Aldrich社製)、0.1mM 2-メルカプトエタノール(GIBCO社製)、及び1000U/ml ESGRO(GIBCO社製)。そして、培地は毎日交換し、細胞は異常増殖と分化とを避けるため、2~3日毎に継代した。
 ヒトiPS細胞としては、正常ヒト表皮角化細胞(Lonza社製)にOct3/4、Sox2、及びKlf4の3遺伝子をレンチウィルスベクターにより導入することにより、再プログラミングして樹立したものを使用した。また、ヒトiPS細胞は、MEFとの共培養によって、未分化状態を維持した。なお、共培養に用いたヒトiPS細胞培養用培地の組成は以下の通りである。
ダルベッコ変法イーグル培地-F12(Sigma-Aldrich社製)、添加物として、20% Knockout SR(GIBCO社製)、0.1mM MEM非必須アミノ酸溶液(Invitrogen社製)、0.2mM L-グルタミン(Invitrogen社製)、0.1mM 2-メルカプトエタノール(GIBCO社製)、及び5ng/ml bFGF(Peprotech社製)。そして、培地は毎日交換し、細胞は7日毎に継代した。
 OP9細胞は、20%ウシ胎仔血清(FBS、HyClone社製)を添加した最少必須培地α(α-MEM、Invitrogen社製)からなる成長培地で維持した。
 <組織病理及び免疫染色>
 組織切片は、テラトーマ組織をパラフィン包埋し、へマトキシリン・エオシン(H&E)染色することによって評価した。
 Nanog及びSSEA-1の蛍光免疫染色は、抗マウスNanog抗体(1/100に希釈して使用、Cosmo Bio株式会社製)、及び抗マウスSSEA-1抗体(1/100に希釈して使用、Abcam社製)によってクライオ切片を染色し、次いでAlexa Fluor 546標識抗ウサギIgG抗体(1/300に希釈して使用、Invitrogen社製)、及びアロフィコシアニン(APC)標識抗マウスIgM抗体(1/100に希釈して使用、eBioscienc社製)と共にインキュベーションすることによって行った。また、核の対比染色は、DAPI(Sigma-Aldrich社製)を用いて、製造者の説明書に従って行った。続いて、蛍光免疫染色した切片を、顕微鏡(BX-51)及びデジタルカメラシステム(DP-71)(共にオリンパス社製)にて、視覚化し、写真に撮った。
 テラトーマ組織は、ドライアイスを用いて急速に冷凍し、Optimal Cutting Temperature(O.C.T.)コンパウンド(Sakura Finetek社製)中に包埋し、CM3050クライオスタット(Leica Microsystems社製)を用いて、7~8μmの切片に調製した。そして、これらの組織切片はエタノールで固定して免疫染色した。すなわち、切片は各々、一次抗体と共に4℃で24時間インキュベーションした後、二次抗体と共に室温で30分間インキュベーションした。
 なお、一次抗体は、抗マウスCD45抗体(1/50に希釈して使用、BD Bioscience社製)、Alexa Fluor488標識抗マウスCD117 (c-Kit)抗体(1/10に希釈して使用、BioLegend社製)、抗マウス オステオカルシニン抗体(Osteocalcin、BGLAP) (1/200に希釈して使用、LifeSpan Biosciences社製)、及び 抗マウスVE-カドヘリン抗体(1/200に希釈して使用、Abcam社製)を用いた。二次抗体は、Alexa Fluor 546標識ヤギ由来抗ラットIgG抗体、及びAlexa Fluor 647標識ヤギ由来抗ウサギIgG抗体(共にInvitrogen社製)を用いた。
 かかる抗体で処理した後、核の対比染色用の4,6-diamidino-2-phenylindole(DAPI)を含有する蛍光染色用マウンテチィングメディウム(Dako社製)で切片を封入し、TCS SP2 AOBS共焦点レーザー走査顕微鏡(Leica Microsystems社製)で観察した。
 <胚盤胞注入>
 iPS細胞は0.25% トリプシン-EDTA溶液(GIBCO社製)によりトリプシン処理した。トリプシン処理したiPS細胞及びMEFを非コ―ティングディッシュに播き直し、MEFを除去するために30分間インキュベーションした。キメラマウスを作製するために、iPS細胞10個をICRマウス由来の胚盤胞に注入し、そして、iPS細胞が注入された胚盤胞を偽妊娠マウスの子宮に移植した。
 <テラトーマ形成及びiPS細胞から造血幹細胞(HSC)への分化>
 マウスiPS細胞からHSCへの分化誘導は下記の通りである。すなわち、5×10個のマウスiPS細胞をKSN/Slc マウス(4~5週齢)の皮下に注入した。そして、HSCへの分化誘導は下記条件にて行った。
1)対照として、iPS細胞のみを注入した。
2)200ng幹細胞因子(SCF、Peprotech社製)及び200ngトロンボポエチン(TPO、Peprotech社製)を含有する造血サイトカインをマイクロ浸透圧ポンプ(ALZET社製)に入れ、そのポンプを皮下に2週間埋め込んだ。
3)1×10個のOP9間質細胞とともにiPS細胞を移植した。
4)前記造血サイトカインと前記OP9間質細胞とを投与した。
 また、ヒトiPS細胞からHSCへの分化誘導は下記の通りである。すなわち、1×10個のヒトiPS細胞及び5×10個のOP9間質細胞は、NOD/SCIDマウス(5~7週齢)の精巣に注入した。さらに、200ngヒトSCF(Peprotech社製)及び200ngTPO(Peprotech社製)を含有する造血サイトカインをマイクロ浸透圧ポンプ(ALZET社製)に入れ、そのポンプを皮下に2週間埋め込んだ。
 <フローサイトメトリー分析、及びソーティング>
 マウスiPS細胞由来の血球細胞に関して、造血幹細胞(HSC)は下記の通り、フローサイトメトリーを用いて分析した。
 マウスの末梢血細胞及び脾臓細胞は、APC標識抗CD45抗体(BD Biosciences社製)、APC-Cy7標識抗CD34抗体(eBioscience社製)、Pacific Blue標識抗CD45R/B220抗体(eBioscience社製)、フィコエリトリン(phycoerythrin、PE)-Cy7標識抗Gr-1抗体(BioLegend社製)、PE-Cy7標識抗Mac-1抗体(BioLegend社製)を用いて染色した。
 テラトーマが形成されたマウスの骨髄細胞は、Osawa,Mら、Science、1996年、273巻、242~245ページの記載に沿って分析した。すなわち、骨髄細胞は、ビオチン化した、抗Gr-1抗体、抗Mac-1抗体、抗CD45R/B220抗体、抗CD4抗体、抗CD8抗体、抗IL-7R抗体、及び抗TER119抗体(eBioscience社製)を用いて染色した。
 次いで、これら細胞をMACS抗ビオチンマイクロビーズ(Miltenyi Biotec社製)によって標識し、系統細胞(Lineagecell)をLS-MACSシステム(Miltenyi Biotec社製)によって除去した。
 さらに、細胞をAlexa Fluor 700標識抗CD34抗体、Pacific Blue標識抗Sca-1、APC標識抗c-Kit抗体(全てeBioscience社製)を用いて染色した。また、ビオチン化抗体はストレプトアビジン-APC-Cy7(eBioscience社製)を用いて検出した。そして、4色解析及びソーティングはFACSAria (Becton Dickinson社製)にて行った。
 ヒトiPS細胞由来の血球細胞に関して、造血幹細胞(HSC)は下記の通り、フローサイトメトリーを用いて分析した。
 テラトーマが形成されたマウスの骨髄細胞を、APC標識抗CD45抗体 (BD Biosciences社製)、Pacific Blue標識抗ヒトCD45抗体(BioLegend社製)、及びFITC標識抗ヒトCD34抗体(BD Biosciences社製)を用いて染色した。
 レシピエントマウスの末梢血は、APC標識抗マウスCD45抗体(BD Biosciences社製)、Pacific Blue標識抗ヒトCD45抗体(BioLegend社製),Alexa Fluor488標識抗ヒトCD3抗体(BD Biosciences社製)、APC-H7標識抗ヒトCD19抗体(BD Biosciences社製),、及びPE-Cy7標識抗ヒトCD33抗体(BD Biosciences社製)を用いて染色した。
 そして、これらの分析及びソーティングはFACSAria(BD社製)を用いて行った。
 <単一細胞培養(Single cell culture)>
 iPS細胞由来の精製したCD34KSL細胞を、単一クローンにすべく、各ウェルに200μLの培地を含む96ウェルプレートに播いた。なお、用いた培地の組成は、以下の通りである。
S-clone SF-O3培地(三光純薬株式会社製)、添加物として、1%ウシ血清アルブミン(BSA)、マウスSCF(50ng/mL)、マウスTPO(50ng/mL)、マウスIL-3(10ng/mL)、及びマウスEPO(1U/mL)(全てPeproTech社製)。
細胞は、37℃、加湿雰囲気、5%CO環境下で培養した。そして、培養開始10日後、細胞をスライドグラス上にサイトスピンを用いて付着させ、ヘマカラー(登録商標、MERCK社製)を用いた血液塗抹染色に供した。
 <骨髄移植アッセイ>
 Lnk-/- GFP iPS細胞由来HSCに関して、テラトーマが形成されたマウスの1×10個のBM細胞を、致死的に放射線処理(9.5Gy)した野生型B6レシピエントマウスに移植した。そして、移植後4週間及び12週間後に、レシピエントマウスのPB細胞をフローサイトメトリーにて分析した。
 また、一次BM移植の12週間後に、一次移植したレシピエントマウス(一次レシピエントマウス)由来の1×10個の骨髄細胞を、別のレシピエントマウス(二次レシピエントマウス)に二次移植として移植した。そして、キメリズムの割合は、(GFP細胞数/CD45細胞数)×100%という計算にて導き出した。
 さらに、GFP iPS細胞由来HSCに関して、一次レシピエントマウスからGFPCD34KSL細胞40個を選別し、B6 骨髄細胞2×10個と共に別のレシピエントマウス(二次レシピエントマウス)に二次移植として移植した。
 また、ヒトiPS細胞由来HSCに関して、テラトーマが形成されたマウスの1×10個のBM細胞を、放射線処理(2Gy)したNOD/SCIDレシピエントマウス又はNOD/SCID/JAK3欠損レシピエントマウスに移植した。そして、移植後8週間後に、レシピエントマウスのPB細胞をフローサイトメトリーにて分析した。
 (実施例5)
 <Lnk-/- GFP iPS細胞を用いたHSC誘導方法>
 前述の通り、先ずLnk-/- GFP トランスジェニックマウスからiPS細胞を樹立した。すなわち、図11に示す通り、3因子(Oct3/4、Klf4、及びSox2)をレンチウィルスall-in-oneベクターを用いて導入することにより、Lnk-/- GFP トランスジェニックマウスのTTFを再プログラムした。また、得られたiPS細胞(Lnk-/- GFP iPS細胞)は、免疫蛍光分析によって、GFP、Nanog、及びSSEA-1が発現していることが確認された(図12 参照)。さらに、Lnk-/- GFP iPS細胞は、ヌードマウスにおけるテラトーマ形成能を有し、胚盤胞に注入することによてキメラマウスに寄与できることから、多分化能を有していることが確認された(図13~16 参照)。
 そして、Lnkタンパク質欠損iPS細胞を用いてテラトーマを作製することにより、HSCへの誘導が可能であるかどうかを、さらに前記誘導に適した条件を調べるため、Lnk-/- GFP iPS細胞をKSN/Slcヌードマウスの皮下に注入し、下記条件下にてHSCへの分化を誘導した(図17 参照)。
条件1:対照として、iPS細胞をヌードマウスに注入した。
条件2:造血サイトカイン(SCF及びTPO)をマイクロ浸透圧ポンプに入れ、2週間連続して投与した。
条件3:OP9間質細胞株をiPS細胞とともに移植した。
条件4:前記造血サイトカイン及び前記OP9間質細胞株を投与した。
 次いで、テラトーマ形成マウスの末梢血及び骨髄細胞における、Lnk-/- iPS細胞由来のGFPCD45細胞の割合を、所定の時期にフローサイトメトリーによって分析した。得られた結果を図18~21に示す
 図18に示した結果から明らかなように、テラトーマ形成マウスの殆どの末梢血において、Lnk-/- GFP iPS細胞由来のCD45細胞は検出された。また、テラトーマの成長(サイズ)に沿って、Lnk-/- GFP iPS細胞由来の CD45細胞の割合は徐々に増加していくことが明らかになった(図19 参照)。そして、図18~20に示した結果から明らかなように、前記割合は、サイトカイン及びOP9細胞を投与した際に最も高くなった(iPS細胞導入12週間後の平均値は、条件1:0.002±0.01%、条件2:1.02±1.15%、条件3:0.87±0.79%、条件4:4.26±3.79%)。
 また、iPS細胞導入後12週間後のテラトーマ形成マウスの骨髄細胞を分析した結果、図21が示す通り、多能性前駆細胞(multipotent progenitors、MPPs)としてLineage(Lin)細胞、HSPCとしてLin c-Kit Sca-1(KSL)細胞、及び長期HSC(LT-HSCs)としてCD34KSL細胞において、GFP細胞を検出した。また、サイトカイン及びOP9細胞を投与した際に、Lnk-/- GFP iPS細胞由来のKSL細胞の割合が最も高かった(図20 参照)
 すなわち、これらの結果から、骨髄原始細胞(BM primitive cell)集団を含む、免疫表現型に定義された造血細胞の誘導は、実施例3に記載した結果同様、テラトーマ形成を介してLnk-/-GFP iPS細胞から行うことはでき、さらに造血サイトカイン及び共培養細胞(例えば、OP9細胞)は、この誘導を促進するということも明らかになった。
 次に、このようにして得られたLnk-/- GFP iPS細胞由来のHSCに、機能的なHSCが含まれているかどうかをコロニ―アッセイによって調べた。すなわち、骨髄におけるGFP CD34KSL細胞を一細胞ずつに分け、各々96ウェルプレートに播き、コロニ―形成のためのサイトカイン(造血分化を誘導するサイトカイン)と共に10日間培養した。そして、培養10日後のCFC-nmEMの数量及びタイプを評価した。なお、CFC-nmEMは、コロニー形成細胞数-好中球/マクロファージ/赤芽球/巨核球(colony-forming units-neutrophil/macrophage/Erythroblast/Megakaryocyte)のことを示す。得られた結果を図22~24に示す。
 図22~24に示した結果から明らかなように、播種したCD34KSL細胞において、22.9%がnmEMコロニーを含む大きいコロニーを形成し(図22 参照)、CD34KSL細胞は、好中球、マクロファージ、赤芽球、巨核球と全ての血球系譜を形成したため、Lnk-/- GFP iPS細胞由来のHSCは多分化能を有する、すなわち、機能的なHSCであるということが実証された(図23及び図24 参照).。
 また、Lnk-/- GFP iPS細胞由来の造血幹/前駆細胞(HSPC)が骨髄再建能(キメリズム)を有しているという直接的な証拠を得るために、図17に示すように、テラトーマ形成マウスの骨髄細胞を、致死的に放射線を照射したB6マウスに移植した。次いで、かかるB6マウス(レシピエントマウス)の末梢血、脾臓、及び骨髄におけるLnk-/- GFP iPS細胞由来のHSPCの割合を調べた。得られた結果を図25~27、及び表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1は骨髄移植してから12週間後のレシピエントマウスにおけるiPS細胞由来の造血細胞のキメリズムを示した表であり、T細胞のキメリズムはGFPCD3/CD45cellsの割合(%)であり、B細胞のキメリズムはGFPB220/CD45cellsの割合(%)であり、ミエロイドのキメリズムはGFPGr-1Mac-1/CD45cellsの割合(%)である(平均値±s.e.,Lnk-/-GFP iPS細胞グループ:n=4、GFPiPS細胞グループ:n=6)。
 図25及び表1に示した結果から明らかなように、レシピエントマウスの末梢血細胞を分析した結果、多分化再建能を有しているLnk-/- GFP iPS細胞由来の造血細胞が高頻度で検出された。
 また、図26及び表1に示した結果から明らかなように、レシピエントマウスの脾臓及び骨髄を分析した結果、多分化再建能を有しているLnk-/- GFP iPS細胞由来の造血細胞が高頻度で検出された。さらに、図27に示した結果から明らかなようにLnk-/- GFP iPS細胞由来の細胞は、骨髄細胞において、CD34KSL細胞画分(HSC細胞画分)におけるGFP細胞の平均割合は、45%という高い割合に達していた。
 また、Lnk-/- GFP iPS細胞由来のHSCが長期骨髄再建能を有しているという直接的な証拠を得るために、図17に示すように、一次レシピエントマウスの骨髄細胞を致死的に放射線を照射したB6マウス(二次レシピエントマウス)に移植(二次移植)した。得られた結果を図25に示す。
 図25に示した結果から、移植後少なくとも12週間後の二次レシピエントマウスにおいて、Lnk-/- GFP iPS細胞由来の細胞は多系譜の細胞に常駐しており(4週間後:76.6±9.5%、12週間後:60.6±13.2%、なお、これら数値(%)は平均値±標準偏差を示す。また、調べた数は各々、n=10である)、テラトーマ形成を介して、Lnk-/- GFP iPS細胞から、自己複製及び多分化造血再建が長期的に可能なHSCが作製可能であるということが明らかになった。そして、一連の移植実験の観察期間中、白血病やその他の異常(血液異常)はレシピエントマウスにおいて認められず、Lnk-/- GFP iPS細胞由来のHSCは正常な造血能を有していることが明らかになった。
 (実施例6)
 <Lnk変異を有さないGFP iPS細胞からの機能的なHSCの作製>
 次に、Lnk欠損を伴わないiPS細胞においても機能的なHSCが誘導できるかどうかを評価するため、図11に示す通り、GFPトランスジェニックマウスからiPS細胞(GFP iPS細胞)を樹立した。そして、Lnk-/- GFP iPS細胞を用いた時と同様の条件にてテラトーマ形成を介したHSC誘導を調べた。得られた結果を図28~35に示す。
 図28及び図29に示した結果から明らかなように、テラトーマ形成マウスの末梢血において、GFPCD45細胞は経時的に増加していた。また、GFPCD45細胞の割合は、サイトカイン及びOP9細胞の存在下、iPS細胞移植12週間後において最も高くなった(条件1:0.003±0.006%、条件2:0.013±0.01%、条件3:0.025±0.01%、条件4:0.16±0.09%、これら数値(%)は平均値±標準偏差を示す。また調べた数は各々n=4である)(図30 参照)。さらに、図31に示した結果から明らかなように、GFP細胞は、iPS細胞移植12週間後のテラトーマ形成マウスの骨髄のLin細胞、KSL細胞、及びCD34KSL細胞において検出された。
 また、図32及び図33に示した結果から明らかなように、テラトーマ形成マウスから得られた骨髄細胞の移植の結果、一次レシピエントマウスの末梢血、脾臓、及び骨髄細胞においてGFP iPS細胞由来の血球細胞が生着していることが検出された。さらに、GFP細胞は、Lin細胞、KSL細胞、及びCD34KSL細胞を含む、レシピエント骨髄中の造血原始細胞画分においても検出された(図34 参照)。
 さらに、図35に示した結果から明らかなように、コロニーアッセイにおいて、CD34KSL細胞は、好中球、マクロファージ、赤芽球、巨核球と全ての血球系譜を形成したため、GFP iPS細胞由来のHSCは多分化能を有する、すなわち、機能的なHSCであるということが実証された。
 さらに図32に示した結果から明らかなように、これら一連の骨髄細胞の移植によって得られた二次レシピエントマウスにおいては、移植後4週から12週の間、高いキメリズムが確認され、またGFP細胞が有する強固な生着能は維持されていた。
 従って、本発明の方法は、Lnk変異を伴わないiPS細胞からでさえ、長期骨髄再建能を有する機能的なHSCを作製することができる方法であるということが明らかになった。
 (実施例7)
 <X-SCIDマウスにおけるiPS細胞を介した遺伝子治療>
 X連鎖重症複合免疫不全症(X-SCID)は、T細胞及びB細胞の免疫における重度の障害を特徴とする重症複合免疫不全症(SCID)の一つである。羅患者は、免疫系において重要な機能を担う多数のサイトカインの受容体が共有している、共通ガンマ鎖(common gamma chain(γc))をコードする遺伝子に変異を有していることが知られている(Buckley,R.H.ら、Journal of Pediatrics、1997年、130巻、378~387ページ 参照)。
 そこで、疾患特異的iPS細胞を用いた遺伝子治療法の開発が期待されているものの(Hanna,J.ら、Science、2007年、318巻、1920~1923ページ 参照)、今まで機能的な造血幹細胞(HSC)の作製方法が実用化されていなかったため、この点が、かかる遺伝子治療法の開発において大きさ障害となっていた。
 前述の通り、本発明の方法によって、移植可能であり、リンパ-ミエロイド系譜の再構成が可能な造血前駆細胞をiPS細胞から作製することができる。そこで次に、遺伝子治療法及び疾患特異的なiPS細胞を用いたX-SCIDの治療モデルに本発明を適用することを試みた。
 すなわち先ず、図36に示すように、X-SCIDマウスからiPS細胞を作製し、レトロウィルスを介して、マウスγC遺伝子等の導入を行い、次いでクローンの選択を行うことにより、マウスγCが高発現している細胞株(mγc-iPSC#4)を樹立した。(図37~39 参照)。
 そしてテラトーマを作製するために、X-SCIDマウスの皮下にOP9細胞と共にmγc-iPSC#4を注入した。iPS細胞を注入してから12週間経過後、mγc-iPS細胞(mγc-iPSC)由来のGFPCD45細胞が、テラトーマが形成されたX-SCIDマウスの一匹の末梢血において検出された(図40 参照)。
 しかしながら、臨床経験から予想された通り、宿主由来の骨髄中に残存している圧倒的多数の同種細胞(B細胞及びミエロイド)と競合することによって、GFPが発現しているB細胞及びミエロイド系統の細胞の子孫の拡大は制限された可能性が最も高く、それら細胞は痕跡程度しか現れなかった(図40 参照)。
 対して、機能的に矯正されたmγc-iPSC#4に由来する成熟T細胞の発現においてはは、CD4/CD8細胞が正常に分布していること、並びにナイーブT細胞(CD4CD62L)発生がはっきりと認められた(図40 参照)。
 これらの結果から、疾患特異的iPS細胞を用いた治療用遺伝子組み換えと、本発明のテラトーマ形成を介した、インビボリンパ球産生に対応する造血幹/前駆細胞(HSPC)の産生方法とを組み合わせることによって、X-SCID遺伝子治療のモデルに成り得るということが示された。
 また、従前の遺伝子治療では、ウイルスベクターがランダムに組み込まれたヘテロな細胞集団(患者由来のHSPC等)を移植せざるを得なかったために、移植された患者が白血病に羅患するリスクがあった。一方、前記方法においては、iPS細胞に遺伝子を導入しているので、ゲノムDNA上でリスクのない位置に遺伝子が導入されたiPS細胞を選別し、クローン化して増殖させることができる。従って、安全性を確認したiPS細胞から誘導した造血幹細胞を移植に使用することで、本発明においては、白血病のリスクを回避することもできる遺伝子治療法を提供することもできる。
 (実施例8)
 <テラトーマ形成を介した、ヒトiPS細胞からの生着可能なHSCへの誘導>
 次に、テラトーマ形成を介して、ヒトiPS細胞からも機能的なHSCが誘導できるかどうかを調べるため、図41に示す通り、ヒトiPS細胞をNOD/SCIDマウスの皮下に注入してテラトーマを作製し、マウスHSC誘導と同様の方法にてHSCを誘導した。そして、ヒトiPS細胞を注入してから12週間後に、テラトーマ形成マウスの末梢血及び骨髄を分析した。得られた結果を図42、及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図42及び表2に示した結果から明らかなように、調べた15匹中1匹のマウスの末梢血において、ヒト由来の細胞集団(mCD45hCD45)がはっきりと検出され、10匹のテラトーマ形成マウスの骨髄において、mCD45陰性細胞集団中に、ヒト由来細胞の画分(hCD45hCD34、hCD45dullhCD34、及び hCD45hCD34)を検出することができた。
 さらに、複製能を有している、ヒトiPS細胞由来のHSCが存在していることを確かめるため、図41に示す通り、テラトーマ形成マウスから得られた全骨髄細胞又はmCD45を除去した骨髄細胞を、放射線照射NOD/SCIDマウス、又はNOD/SCID/JAK3欠損マウスに移植した。得られた結果を図43及び表2に示す。
 図43及び表2に示した結果から明らかなように、移植してから8週間後のレシピエントマウスの末梢血において、多系譜の複製能を有しているヒトiPS細胞由来の血球細胞の生着が確認された。また、ヒトiPS細胞由来のキメリズムは、mCD45除去細胞を移植したマウス(Sorted)の方が全骨髄細胞を移植したマウス(Total)よりも総じて高かった。
 従って、本発明によって、何の遺伝子改変をすることなく、ヒトiPS細胞から生着可能なHSCを産生することができるということが明らかになった。
 さらに、iPS細胞由来の血球細胞又はHSCはどのように作られ、テラトーマ内に存在しているいのかを調べるため、マウスに形成されたiPS細胞由来のテラトーマを構成する細胞を分析し、HSCニッチ様細胞(HSCs niche-like cells)が存在するかどうかを調べた。
 なお、HSCニッチは、HSCの維持に必要な微小環境のことである。HSCに関してはまだ実態は明らかになっていないものの(Calvi,L.M.ら、Nature、2003年、425巻、841~846ページ、Kiel,M.J.ら、Cell、2005年、121巻、1109~1121ページ 参照)、昨今の研究成果から、骨芽細胞、内皮細胞、及び骨髄常在グリア細胞(BM-resident glial cells)に含まれる他の細胞種がHSCニッチ形成に寄与していることが示唆されている(骨芽細胞及び内皮細胞に関しては、前記2文献(「Calvi,L.M.ら、2003」、「Kiel,M.J.ら、2005」)参照。骨髄常在グリア細胞に関しては、本発明者等の未公開の観察結果に基づく。)。
 そこで、ヒトiPS細胞注入12週間後のテラトーマ組織切片において、骨芽細胞マーカーとしてオステオカルシンの発現を、内皮マーカーとしてVE-カドヘリンの発現を、グリアマーカーとしてグリア線維性酸性タンパク質(glial fibrillary acidic protein、GFAP)の発現を調べた。得られた結果を図44~46に示す。
 図44~46に示した結果から明らかなように、ヒトiPS細胞由来テラトーマにおいて、オステオカルシン、VE-カドヘリン、又はGFAPを発現している細胞が多く検出された。また、これらのHSCニッチ様細胞の近くに、CD45CD34 HSC細胞は高い頻度で存在していることも明らかになった。
 さらに、テラトーマのmCD45細胞において、ヒトiPS細胞由来の細胞画分(hCD45hCD34、hCD45hCD34、hCD45hCD34)が含まれていることがFACS分析によって確認された(図47 参照)。
 また、マウスiPS細胞由来のテラトーマにおいて、免疫染色によって、GFP iPS細胞を注入してから12週間後に、GFPCD45細胞及びGFPCD45細胞が存在していることが確認された (図48 参照)。
 さらに、FACS分析によって、CD45細胞においてGFPKSL細胞を同定することができ(図49 参照)、かかる結果から、テラトーマにおいてiPS細胞から成体型造血幹細胞が産生されていることが明らかになった.。
 また、マウスiPS細胞由来のテラトーマにおいても、オステオカルシン+細胞、VE-カドヘリン+細胞、及びGFAP+細胞といった、HSCニッチ様細胞の存在を確認することができ(図50 参照)。さらに、マウスiPS細胞由来のHSCを含むCD45c-Kit細胞は、VE-カドヘリン+細胞及びオステオカルシン+細胞の近くに存在していることが確認された(図51及び図52 参照)。
 従って、本発明にかかるテラトーマ形成過程において、造血分化に好適な環境下で、HSCニッチを構成し得る様々な細胞が産生されることによって、テラトーマ内に骨髄に相当する環境が形成され、その結果、HSCは産生されているということが示唆された。
 (実施例9)
 <胚葉系前駆細胞を用いた、マウス個体内での器官形成>
 前述のようなES細胞やiPS細胞をマウス個体に直接移植して器官形成を行う方法において、
1.多能性幹細胞は様々な細胞系譜の分化能を保持するため、目的細胞以外の細胞が形成される可能性がある。
2.移殖した多能性幹細胞のテラトーマ形成能が高過ぎる場合に、目的細胞が形成されるより先にテラトーマの増大により宿主の健康状態が害される可能性がある。
といった点が問題に成り得る。
 そこで、かかる問題点を解消すべく、その一態様として、ES細胞やiPS細胞を先ずは試験管内で分化誘導させ、多能性を保ちつつ内胚葉系への分化能の高い、内胚葉系前駆細胞を作製しマウスへと移植した。すなわち、以下に記載の材料、方法に沿って行った。得られた結果は図53~55に示す。
 <マウスES細胞の培養>
 MEF非依存性ES細胞株であるE14tg2aを0.1%ゼラチンコートの培養皿で以下の組成の培地で培養した。
グラスゴー改変イーグル培地(Glasgow Modified Eagle Medium、GMEM)、添加物として、10%FCS、1%L-グルタミン-ペニシリン-ストレプトマイシン 溶液(SIGMA社製)、0.1mM 非必須アミノ酸(GIBCO社製)、1mM ピルビン酸ナトリウム、0.1mM 2-メルカプトエタノール、白血病抑制因子(Leukemia Inhibitory Factor、LIF)(1000U/ml)。
 <E14Tg2aから前腸内胚葉(内胚葉系前駆細胞)への分化誘導>
 Collagen-Type4をコートした培養皿に1×10細胞数/mlの密度でE14tg2aを播種した。SFO3無血清培地(三光純薬株式会社製)に20ng/ml ヒト アクチビンA(Peprotech社製)、10ng/ml ヒト BMP4(Peprotech社製)を添加して2日間培養した。2日後からは培地を、SFO3培地に20ng/ml ヒト アクチビンA(Peprotech社製)、20ng/ml マウス EGF(Peprotech社製)、10ng/ml FGF4(SIGMA社製)を添加したものへと変え、更に5日間培養を続けた。
 <マウス個体への移植>
 未分化なES細胞、及びES細胞から分化誘導して得られた内胚葉系前駆細胞を、8週齢のKSNヌードマウスの腎皮膜へ各々2×10細胞数移植した。移植の際には、各細胞を100μlの氷冷したDMEM無血清培地とマトリゲル(BD Biosciences社製)とを等量に混合した液体に懸濁し、マウス腎皮膜下へと移植した。
 なお、マトリゲルとは、細胞外マトリックスタンパク質を豊富に含むEngelbreth-Holm-Swarm(EHS)マウス肉腫から抽出した可溶性基底膜調製品のことであり、主成分は、ラミニン、コラーゲンIV、ヘパラン硫酸プロテオグリカン、およびエンタクチン/ニドジェン1,2であり、これらにTGF-β、上皮細胞増殖因子、インシュリン様成長因子、線維芽細胞増殖因子、組織プラスミノーゲン活性化因子3,4、EHS腫瘍に自然に産生される他の増殖因子が含まれるものである。
 <免疫組織化学染色>
 KSNヌードマウスの腎皮膜下に形成されたテラトーマは適当な大きさに切り分け4%PFA中で一晩振とうした後、10%スクロース溶液で一日、30%スクロース溶液中で2日間振とうした。クリオモルド2号(Sakura Finetek Japan社製)を用いて、O.C.T.コンパウンド(Sakura Finetek Japan社製)中にブロック状に包埋して、ドライアイス上で凍結した。そして、ブロックを、Cryostat CM 3050SIV (Leica社製)を用いて、厚さ7μmに切断し、MASコートを施してあるスライドグラスに張り付けて組織標本を作成した。組織標本はPBSにより洗浄を2回行い、-20℃に氷冷したメタノール(MtOH)に10分間浸した。PBSによりMtOHの洗浄を2回行った後に、5% ロバ血清(SIGMA社製)/PBSでブロッキングを室温で30分間行った。ブロッキングバッファーに希釈した一次抗体(抗-FoxA2およびCK19 抗体)を加えて一晩4℃で反応させた。一次抗体を反応させた後にPBSで3度洗浄を行い、二次抗体としてロバ由来 抗-ヤギ Alexa 546抗体(invitrogen社製)、及びロバ由来 抗-ウサギ Alexa 488抗体(invitrogen社製)をブロッキングバッファーに各々500倍希釈して室温で45分間反応させた。最後に2回PBSで洗浄を行い、4’,6-diamidino-2-phenylindole(DAPI、Roche社製)を10分間反応させた。DAPIを反応させた後に、PBSによる洗浄を一度行った。その後、PBSを除き、Dako Fluorescent Mounting Medium(Dako社製)で包埋し、観察した。
 また、未分化なES細胞、及びES細胞から分化誘導して得られた内胚葉系前駆細胞を注入して得られたテラトーマよりランダムに3セクションを選び、組織切片中に存在するCK19陽性の腸管様構造の数をカウントした。
 図53~55に示した結果から明らかなように、ES細胞を移植した場合と比較して、内胚葉系前駆細胞を移植した場合には形成されるテラトーマの大きさは小さかった(図53 参照)。さらに、内胚葉系前駆細胞由来のテラトーマ内では、ES細胞由来のそれと比較して、FoxA2陽性の内胚葉系細胞、特にCK19陽性の腸管様細胞の数は増大していた(図54及び図55 参照)。従って、本発明において、ES細胞等の万能細胞からある程度分化誘導させた多能性幹細胞を用いることで、目的とする臓器を構成する細胞をより多く含むテラトーマが形成でき、且つテラトーマの増大による宿主の健康状態への影響も抑えることができることが明らかになった。
 以上説明したように、本発明によれば、多能性幹細胞を所望の機能的な細胞に効率良く分化誘導することが可能となる。したがって、本発明の多能性幹細胞から分化誘導された目的細胞の生産方法は、再生医療、移植医療、細胞医療等において有用である。

Claims (17)

  1.  哺乳動物個体に由来する多能性幹細胞を、非ヒト哺乳動物に移植する工程と、
    前記非ヒト哺乳動物に、目的細胞への分化誘導剤を投与する工程と、
    移植した多能性幹細胞が前記非ヒト哺乳動物の生体内でテラトーマを形成するために十分な時間、当該動物を生育させ、前記多能性幹細胞を目的細胞へ分化誘導させる工程と、
    前記非ヒト哺乳動物から、前記哺乳動物個体に由来する目的細胞を回収する工程と、
    を含む、多能性幹細胞から分化誘導された目的細胞の生産方法。
  2.  前記多能性幹細胞が、前記哺乳動物個体の体細胞を用いて調製された人工多能性幹(iPS)細胞である請求項1に記載の方法。
  3.  前記多能性幹細胞が、前記哺乳動物に由来する受精卵から調製された胚性幹(ES)細胞である請求項1に記載の方法。
  4.  前記多能性幹細胞が、前記非ヒト哺乳動物の皮下、精巣、及び腎皮膜からなる群より選択される少なくとも一の組織に移植される請求項1~3のうちのいずれか一項に記載の方法。
  5.  前記目的細胞が肝細胞又は膵臓細胞であり、当該目的細胞を前記非ヒト哺乳動物に形成されたテラトーマから回収する請求項1~4のうちのいずれか一項に記載の方法。
  6.  前記膵臓細胞が膵臓のランゲルハンス氏島細胞である、請求項5に記載の方法。
  7.  前記目的細胞が造血系細胞であり、当該造血系細胞を前記非ヒト哺乳動物の骨髄から回収する請求項1~4のうちのいずれか一項に記載の方法。
  8.  前記多能性幹細胞がLnk欠損細胞である、請求項7に記載の方法
  9.  前記多能性幹細胞を目的細胞へ分化誘導させる工程において、共培養細胞の存在下で行う、請求項1~8のうちのいずれか一項に記載の方法。
  10.  前記共培養細胞がOP-9細胞である請求項9に記載の方法。
  11.  前記分化誘導剤を前記非ヒト哺乳動物の皮下に所定の期間連続的に投与する、請求項1~10のうちのいずれか一項に記載の方法。
  12.  前記非ヒト哺乳動物が、目的細胞の形成能を欠損している請求項1~11のうちのいずれか一項に記載の方法。
  13.  前記非ヒト哺乳動物が、免疫不全動物である請求項1~12のうちのいずれか一項に記載の方法。
  14.  前記動物個体に由来する多能性幹細胞を目的細胞へ分化誘導させる工程において、混入する目的細胞以外の細胞を除去する操作を施す、請求項1~13のうちのいずれか一項に記載の方法。
  15.  前記目的細胞以外の細胞が、未分化状態のままである多能性幹細胞である、請求項14に記載の方法。
  16.  前記除去する操作が、所望の時期に自殺遺伝子を機能させることにより達成される、請求項14又は15に記載の方法。
  17.  請求項1~16のうちのいずれか一項に記載の方法により得られる、目的細胞。
PCT/JP2010/072044 2009-12-08 2010-12-08 多能性幹細胞から分化誘導された細胞の生産方法 WO2011071085A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545228A JP5896457B2 (ja) 2009-12-08 2010-12-08 多能性幹細胞から分化誘導された細胞の生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26756609P 2009-12-08 2009-12-08
US61/267,566 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011071085A1 true WO2011071085A1 (ja) 2011-06-16

Family

ID=44145630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072044 WO2011071085A1 (ja) 2009-12-08 2010-12-08 多能性幹細胞から分化誘導された細胞の生産方法

Country Status (2)

Country Link
JP (1) JP5896457B2 (ja)
WO (1) WO2011071085A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133147A1 (ja) * 2014-03-05 2015-09-11 公益財団法人先端医療振興財団 疾患ヒト化モデル動物及び奇形腫組織
KR20150104689A (ko) * 2014-03-06 2015-09-16 건국대학교 산학협력단 만능줄기세포로부터 형성된 테라토마 유래 체내 신경줄기세포 생산 방법
EP2756092A4 (en) * 2011-09-16 2015-10-28 Giovanni Amabile METHOD FOR THE PRODUCTION OF CELLS, TISSUE AND ANTIBODIES
WO2016039278A1 (ja) * 2014-09-08 2016-03-17 株式会社オーガンテクノロジーズ 分泌腺の製造方法
WO2016039279A1 (ja) * 2014-09-08 2016-03-17 株式会社オーガンテクノロジーズ 皮膚付属器官を有する全層皮膚の製造方法
WO2016143836A1 (ja) * 2015-03-09 2016-09-15 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
WO2016208532A1 (ja) * 2015-06-22 2016-12-29 全国農業協同組合連合会 血液キメラ動物の作出法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563477A (zh) * 2016-07-28 2019-04-02 豪夫迈·罗氏有限公司 非人灵长类诱导的多潜能干细胞衍生型肝细胞及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506047A (ja) * 2002-05-28 2006-02-23 ノボセル インコーポレイテッド インスリン産生細胞のための方法、成分並びに成長および分化因子
JP2008512095A (ja) * 2004-09-07 2008-04-24 財団法人実験動物中央研究所 コモンマーモセット胚性幹細胞株

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506047A (ja) * 2002-05-28 2006-02-23 ノボセル インコーポレイテッド インスリン産生細胞のための方法、成分並びに成長および分化因子
JP2008512095A (ja) * 2004-09-07 2008-04-24 財団法人実験動物中央研究所 コモンマーモセット胚性幹細胞株

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BLUM, B. ET AL.: "Clonal analysis of human embryonic stem cell differentiation into teratomas", STEM CELLS, vol. 25, 2007, pages 1924 - 1930 *
DREWEL, D.: "SCF modulates organ distribution and hematopoietic engraftment of CB-derived pluripotent HPC transplanted in NOD/SCID mice", CYTOTHERAPY, vol. 8, no. 1, 2006, pages 70 - 78 *
FURTH, M.E. ET AL.: "Stem cell sources to treat diabetes", J.CELL.BIOCHEM., vol. 106, 7 January 2009 (2009-01-07), pages 507 - 511, XP009147430, DOI: doi:10.1002/jcb.22000 *
HAMAZAKI, T. ET AL.: "Hepatic maturation in differentiating embryonic stem cells in vitro", FEBS LETT., vol. 497, 2001, pages 15 - 19, XP004250029, DOI: doi:10.1016/S0014-5793(01)02423-1 *
HENTZE, H. ET AL.: "Teratoma formation by human embryonic stem cells : Evaluation of essential parameters for future safty studies", STEM CELL RESEARCH, vol. 2, May 2009 (2009-05-01), pages 198 - 210, XP026087757, DOI: doi:10.1016/j.scr.2009.02.002 *
HIROMITSU NAKAUCHI: "Saibo Chiryo kara Jisshitsu Zoki no Saisei Iryo e", CLINICIAN, vol. 56, no. 575, 1 January 2009 (2009-01-01), pages 17 - 21 *
KROON, E. ET AL.: "Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo", NATURE BIOTECH., vol. 26, no. 4, 2008, pages 443 - 452, XP002561975, DOI: doi:10.1038/nbt1393 *
LAVON, N. ET AL.: "The effect of overexpression of Pdxl and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells", STEM CELLS, vol. 24, 2006, pages 1923 - 1930, XP055097084, DOI: doi:10.1634/stemcells.2005-0397 *
MCCULLAGH, P. ET AL.: "Interception of the development of self tolerance in fetal lambs", EUR.J.IMMUNOL., vol. 19, 1989, pages 1387 - 1392 *
SASAKI, K. ET AL.: "Hematopoietic microchimerism in sheep after in utero transplantation of cultured cynomolgous embryonic stem cells", TRANSPLANTATION, vol. 79, no. 1, 2005, pages 32 - 37 *
SEITA, J.: "Lnk negatively regulates self- renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction", PROC.NATL.ACAD.SCI.USA, vol. 104, no. 7, 2007, pages 2349 - 2354 *
SHIRAKI, N. ET AL.: "Differentiation of mouse and human embryonic stem cells into hepatic lineages", GENES TO CELLS, vol. 13, 2008, pages 731 - 746, XP003026524, DOI: doi:10.1111/J.1365-2443.2008.01201.X *
TAKAHASHI, K. ET AL.: "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors", CELL, vol. 126, 2006, pages 663 - 676 *
TAKIZAWA, H. ET AL.: "Transient blocking of Lnk-mediated pathways as a potential approach to promote engrafting ability of hematopoietic progenitor cells", INFLAMMATION AND REGENERATION, vol. 27, no. 1, January 2007 (2007-01-01), pages 59 - 64 *
THOMSON, J.A. ET AL.: "Embryonic stem cell lines derived human blastocysts", SCIENCE, vol. 282, 1998, pages 1145 - 1147, XP002933311, DOI: doi:10.1126/science.282.5391.1145 *
YAMAMOTO, H. ET AL.: "Differentiation of embryonic stem cells into hepatocytes: Biological functions and therapeutic application", HEPATOLOGY, vol. 37, 2003, pages 983 - 993, XP002321738, DOI: doi:10.1053/jhep.2003.50202 *
YUTAKA HANAZONO: "Hitsuji o Mochiita Saru Soshiki Sanseiho", BIO IND., vol. 25, no. 12, 2008, pages 76 - 80.6 *
ZHANG, D. ET AL.: "Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin- producing cells", CELL RESEARCH, vol. 19, no. 4, 3 March 2009 (2009-03-03), pages 429 - 438, XP055074920, DOI: doi:10.1038/cr.2009.28 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2756092A4 (en) * 2011-09-16 2015-10-28 Giovanni Amabile METHOD FOR THE PRODUCTION OF CELLS, TISSUE AND ANTIBODIES
WO2015133147A1 (ja) * 2014-03-05 2015-09-11 公益財団法人先端医療振興財団 疾患ヒト化モデル動物及び奇形腫組織
KR20150104689A (ko) * 2014-03-06 2015-09-16 건국대학교 산학협력단 만능줄기세포로부터 형성된 테라토마 유래 체내 신경줄기세포 생산 방법
KR101588110B1 (ko) 2014-03-06 2016-01-25 건국대학교 산학협력단 만능줄기세포로부터 형성된 테라토마 유래 체내 신경줄기세포 생산 방법
CN106794278A (zh) * 2014-09-08 2017-05-31 株式会社器官再生工学 产生具有皮肤附属器官的全厚皮肤的方法
WO2016039279A1 (ja) * 2014-09-08 2016-03-17 株式会社オーガンテクノロジーズ 皮膚付属器官を有する全層皮膚の製造方法
WO2016039278A1 (ja) * 2014-09-08 2016-03-17 株式会社オーガンテクノロジーズ 分泌腺の製造方法
EP3192533A4 (en) * 2014-09-08 2018-05-30 Organ Technologies, Inc. Method of producing full thickness skin having skin accessory organs
WO2016143836A1 (ja) * 2015-03-09 2016-09-15 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
JPWO2016143836A1 (ja) * 2015-03-09 2017-12-21 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
US11976301B2 (en) 2015-03-09 2024-05-07 Megakaryon Corporation Method for producing culture containing megakaryocytes, and method for producing platelets using same
WO2016208532A1 (ja) * 2015-06-22 2016-12-29 全国農業協同組合連合会 血液キメラ動物の作出法
CN107920499A (zh) * 2015-06-22 2018-04-17 全国农业协同组合连合会 血液嵌合动物的制作方法
JPWO2016208532A1 (ja) * 2015-06-22 2018-06-07 全国農業協同組合連合会 血液キメラ動物の作出法
EP3311660A4 (en) * 2015-06-22 2018-11-14 National Federation of Agricultural Cooperative Associations Method for producing blood chimeric animal
US11432537B2 (en) 2015-06-22 2022-09-06 The University Of Tokyo Method for producing blood chimeric animal

Also Published As

Publication number Publication date
JP5896457B2 (ja) 2016-03-30
JPWO2011071085A1 (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
JP7134317B2 (ja) 生体組織から単離できる多能性幹細胞
JP5896457B2 (ja) 多能性幹細胞から分化誘導された細胞の生産方法
US11261426B2 (en) Pluripotent stem cell that can be isolated from body tissue
JP2018531025A6 (ja) 多能性幹細胞の免疫細胞への分化を誘導する方法
JP2018531025A (ja) 多能性幹細胞の免疫細胞への分化を誘導する方法
WO2012133948A1 (ja) 生体組織から単離できるssea-3陽性の多能性幹細胞を含む他家移植用細胞治療用組成物
WO2012133942A1 (ja) 生体の臍帯又は脂肪組織から単離できる多能性幹細胞
JP2023502522A (ja) ヒト多能性幹細胞からバイオエンジニアリングされた胸腺オルガノイド
Li et al. Differentiation of embryonic stem cells in adult bone marrow
Muggeo A STEP-BY-STEP PROCESS TO GENERATE FUNCTIONAL OSTEOCLASTS FROM SITE SPECIFIC GENE-CORRECTED INDUCED PLURIPOTENT STEM CELLS: AN AUTOLOGOUS CELL THERAPY APPROACH TO TREAT AUTOSOMAL RECESSIVE OSTEOPETROSIS.
Banerjee et al. 598 Stem Cell Rev and Rep (2013) 9586–598

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545228

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836005

Country of ref document: EP

Kind code of ref document: A1